1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "prims/methodHandles.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/os.hpp"
  44 #include "runtime/safepoint.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "crc32c.h"
  51 #ifdef COMPILER2
  52 #include "opto/intrinsicnode.hpp"
  53 #endif
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #define STOP(error) stop(error)
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define STOP(error) block_comment(error); stop(error)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 #ifdef ASSERT
  66 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  67 #endif
  68 
  69 static Assembler::Condition reverse[] = {
  70     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  71     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  72     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  73     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  74     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  75     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  76     Assembler::above          /* belowEqual    = 0x6 */ ,
  77     Assembler::belowEqual     /* above         = 0x7 */ ,
  78     Assembler::positive       /* negative      = 0x8 */ ,
  79     Assembler::negative       /* positive      = 0x9 */ ,
  80     Assembler::noParity       /* parity        = 0xa */ ,
  81     Assembler::parity         /* noParity      = 0xb */ ,
  82     Assembler::greaterEqual   /* less          = 0xc */ ,
  83     Assembler::less           /* greaterEqual  = 0xd */ ,
  84     Assembler::greater        /* lessEqual     = 0xe */ ,
  85     Assembler::lessEqual      /* greater       = 0xf, */
  86 
  87 };
  88 
  89 
  90 // Implementation of MacroAssembler
  91 
  92 // First all the versions that have distinct versions depending on 32/64 bit
  93 // Unless the difference is trivial (1 line or so).
  94 
  95 #ifndef _LP64
  96 
  97 // 32bit versions
  98 
  99 Address MacroAssembler::as_Address(AddressLiteral adr) {
 100   return Address(adr.target(), adr.rspec());
 101 }
 102 
 103 Address MacroAssembler::as_Address(ArrayAddress adr) {
 104   return Address::make_array(adr);
 105 }
 106 
 107 void MacroAssembler::call_VM_leaf_base(address entry_point,
 108                                        int number_of_arguments) {
 109   call(RuntimeAddress(entry_point));
 110   increment(rsp, number_of_arguments * wordSize);
 111 }
 112 
 113 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 126   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 127 }
 128 
 129 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 130   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 131   bs->obj_equals(this, src1, obj);
 132 }
 133 
 134 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 135   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 136   bs->obj_equals(this, src1, obj);
 137 }
 138 
 139 void MacroAssembler::extend_sign(Register hi, Register lo) {
 140   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 141   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 142     cdql();
 143   } else {
 144     movl(hi, lo);
 145     sarl(hi, 31);
 146   }
 147 }
 148 
 149 void MacroAssembler::jC2(Register tmp, Label& L) {
 150   // set parity bit if FPU flag C2 is set (via rax)
 151   save_rax(tmp);
 152   fwait(); fnstsw_ax();
 153   sahf();
 154   restore_rax(tmp);
 155   // branch
 156   jcc(Assembler::parity, L);
 157 }
 158 
 159 void MacroAssembler::jnC2(Register tmp, Label& L) {
 160   // set parity bit if FPU flag C2 is set (via rax)
 161   save_rax(tmp);
 162   fwait(); fnstsw_ax();
 163   sahf();
 164   restore_rax(tmp);
 165   // branch
 166   jcc(Assembler::noParity, L);
 167 }
 168 
 169 // 32bit can do a case table jump in one instruction but we no longer allow the base
 170 // to be installed in the Address class
 171 void MacroAssembler::jump(ArrayAddress entry) {
 172   jmp(as_Address(entry));
 173 }
 174 
 175 // Note: y_lo will be destroyed
 176 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 177   // Long compare for Java (semantics as described in JVM spec.)
 178   Label high, low, done;
 179 
 180   cmpl(x_hi, y_hi);
 181   jcc(Assembler::less, low);
 182   jcc(Assembler::greater, high);
 183   // x_hi is the return register
 184   xorl(x_hi, x_hi);
 185   cmpl(x_lo, y_lo);
 186   jcc(Assembler::below, low);
 187   jcc(Assembler::equal, done);
 188 
 189   bind(high);
 190   xorl(x_hi, x_hi);
 191   increment(x_hi);
 192   jmp(done);
 193 
 194   bind(low);
 195   xorl(x_hi, x_hi);
 196   decrementl(x_hi);
 197 
 198   bind(done);
 199 }
 200 
 201 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 202     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 203 }
 204 
 205 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 206   // leal(dst, as_Address(adr));
 207   // see note in movl as to why we must use a move
 208   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 209 }
 210 
 211 void MacroAssembler::leave() {
 212   mov(rsp, rbp);
 213   pop(rbp);
 214 }
 215 
 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 217   // Multiplication of two Java long values stored on the stack
 218   // as illustrated below. Result is in rdx:rax.
 219   //
 220   // rsp ---> [  ??  ] \               \
 221   //            ....    | y_rsp_offset  |
 222   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 223   //          [ y_hi ]                  | (in bytes)
 224   //            ....                    |
 225   //          [ x_lo ]                 /
 226   //          [ x_hi ]
 227   //            ....
 228   //
 229   // Basic idea: lo(result) = lo(x_lo * y_lo)
 230   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 231   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 232   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 233   Label quick;
 234   // load x_hi, y_hi and check if quick
 235   // multiplication is possible
 236   movl(rbx, x_hi);
 237   movl(rcx, y_hi);
 238   movl(rax, rbx);
 239   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 240   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 241   // do full multiplication
 242   // 1st step
 243   mull(y_lo);                                    // x_hi * y_lo
 244   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 245   // 2nd step
 246   movl(rax, x_lo);
 247   mull(rcx);                                     // x_lo * y_hi
 248   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 249   // 3rd step
 250   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 251   movl(rax, x_lo);
 252   mull(y_lo);                                    // x_lo * y_lo
 253   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 254 }
 255 
 256 void MacroAssembler::lneg(Register hi, Register lo) {
 257   negl(lo);
 258   adcl(hi, 0);
 259   negl(hi);
 260 }
 261 
 262 void MacroAssembler::lshl(Register hi, Register lo) {
 263   // Java shift left long support (semantics as described in JVM spec., p.305)
 264   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 265   // shift value is in rcx !
 266   assert(hi != rcx, "must not use rcx");
 267   assert(lo != rcx, "must not use rcx");
 268   const Register s = rcx;                        // shift count
 269   const int      n = BitsPerWord;
 270   Label L;
 271   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 272   cmpl(s, n);                                    // if (s < n)
 273   jcc(Assembler::less, L);                       // else (s >= n)
 274   movl(hi, lo);                                  // x := x << n
 275   xorl(lo, lo);
 276   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 277   bind(L);                                       // s (mod n) < n
 278   shldl(hi, lo);                                 // x := x << s
 279   shll(lo);
 280 }
 281 
 282 
 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 284   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 285   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 286   assert(hi != rcx, "must not use rcx");
 287   assert(lo != rcx, "must not use rcx");
 288   const Register s = rcx;                        // shift count
 289   const int      n = BitsPerWord;
 290   Label L;
 291   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 292   cmpl(s, n);                                    // if (s < n)
 293   jcc(Assembler::less, L);                       // else (s >= n)
 294   movl(lo, hi);                                  // x := x >> n
 295   if (sign_extension) sarl(hi, 31);
 296   else                xorl(hi, hi);
 297   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 298   bind(L);                                       // s (mod n) < n
 299   shrdl(lo, hi);                                 // x := x >> s
 300   if (sign_extension) sarl(hi);
 301   else                shrl(hi);
 302 }
 303 
 304 void MacroAssembler::movoop(Register dst, jobject obj) {
 305   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 306 }
 307 
 308 void MacroAssembler::movoop(Address dst, jobject obj) {
 309   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 310 }
 311 
 312 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 313   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 314 }
 315 
 316 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 317   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 321   // scratch register is not used,
 322   // it is defined to match parameters of 64-bit version of this method.
 323   if (src.is_lval()) {
 324     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 325   } else {
 326     movl(dst, as_Address(src));
 327   }
 328 }
 329 
 330 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 331   movl(as_Address(dst), src);
 332 }
 333 
 334 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 335   movl(dst, as_Address(src));
 336 }
 337 
 338 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 339 void MacroAssembler::movptr(Address dst, intptr_t src) {
 340   movl(dst, src);
 341 }
 342 
 343 
 344 void MacroAssembler::pop_callee_saved_registers() {
 345   pop(rcx);
 346   pop(rdx);
 347   pop(rdi);
 348   pop(rsi);
 349 }
 350 
 351 void MacroAssembler::pop_fTOS() {
 352   fld_d(Address(rsp, 0));
 353   addl(rsp, 2 * wordSize);
 354 }
 355 
 356 void MacroAssembler::push_callee_saved_registers() {
 357   push(rsi);
 358   push(rdi);
 359   push(rdx);
 360   push(rcx);
 361 }
 362 
 363 void MacroAssembler::push_fTOS() {
 364   subl(rsp, 2 * wordSize);
 365   fstp_d(Address(rsp, 0));
 366 }
 367 
 368 
 369 void MacroAssembler::pushoop(jobject obj) {
 370   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 371 }
 372 
 373 void MacroAssembler::pushklass(Metadata* obj) {
 374   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 375 }
 376 
 377 void MacroAssembler::pushptr(AddressLiteral src) {
 378   if (src.is_lval()) {
 379     push_literal32((int32_t)src.target(), src.rspec());
 380   } else {
 381     pushl(as_Address(src));
 382   }
 383 }
 384 
 385 void MacroAssembler::set_word_if_not_zero(Register dst) {
 386   xorl(dst, dst);
 387   set_byte_if_not_zero(dst);
 388 }
 389 
 390 static void pass_arg0(MacroAssembler* masm, Register arg) {
 391   masm->push(arg);
 392 }
 393 
 394 static void pass_arg1(MacroAssembler* masm, Register arg) {
 395   masm->push(arg);
 396 }
 397 
 398 static void pass_arg2(MacroAssembler* masm, Register arg) {
 399   masm->push(arg);
 400 }
 401 
 402 static void pass_arg3(MacroAssembler* masm, Register arg) {
 403   masm->push(arg);
 404 }
 405 
 406 #ifndef PRODUCT
 407 extern "C" void findpc(intptr_t x);
 408 #endif
 409 
 410 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 411   // In order to get locks to work, we need to fake a in_VM state
 412   JavaThread* thread = JavaThread::current();
 413   JavaThreadState saved_state = thread->thread_state();
 414   thread->set_thread_state(_thread_in_vm);
 415   if (ShowMessageBoxOnError) {
 416     JavaThread* thread = JavaThread::current();
 417     JavaThreadState saved_state = thread->thread_state();
 418     thread->set_thread_state(_thread_in_vm);
 419     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 420       ttyLocker ttyl;
 421       BytecodeCounter::print();
 422     }
 423     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 424     // This is the value of eip which points to where verify_oop will return.
 425     if (os::message_box(msg, "Execution stopped, print registers?")) {
 426       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 427       BREAKPOINT;
 428     }
 429   } else {
 430     ttyLocker ttyl;
 431     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 432   }
 433   // Don't assert holding the ttyLock
 434     assert(false, "DEBUG MESSAGE: %s", msg);
 435   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 436 }
 437 
 438 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 439   ttyLocker ttyl;
 440   FlagSetting fs(Debugging, true);
 441   tty->print_cr("eip = 0x%08x", eip);
 442 #ifndef PRODUCT
 443   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 444     tty->cr();
 445     findpc(eip);
 446     tty->cr();
 447   }
 448 #endif
 449 #define PRINT_REG(rax) \
 450   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 451   PRINT_REG(rax);
 452   PRINT_REG(rbx);
 453   PRINT_REG(rcx);
 454   PRINT_REG(rdx);
 455   PRINT_REG(rdi);
 456   PRINT_REG(rsi);
 457   PRINT_REG(rbp);
 458   PRINT_REG(rsp);
 459 #undef PRINT_REG
 460   // Print some words near top of staack.
 461   int* dump_sp = (int*) rsp;
 462   for (int col1 = 0; col1 < 8; col1++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     os::print_location(tty, *dump_sp++);
 465   }
 466   for (int row = 0; row < 16; row++) {
 467     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 468     for (int col = 0; col < 8; col++) {
 469       tty->print(" 0x%08x", *dump_sp++);
 470     }
 471     tty->cr();
 472   }
 473   // Print some instructions around pc:
 474   Disassembler::decode((address)eip-64, (address)eip);
 475   tty->print_cr("--------");
 476   Disassembler::decode((address)eip, (address)eip+32);
 477 }
 478 
 479 void MacroAssembler::stop(const char* msg) {
 480   ExternalAddress message((address)msg);
 481   // push address of message
 482   pushptr(message.addr());
 483   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 484   pusha();                                            // push registers
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 486   hlt();
 487 }
 488 
 489 void MacroAssembler::warn(const char* msg) {
 490   push_CPU_state();
 491 
 492   ExternalAddress message((address) msg);
 493   // push address of message
 494   pushptr(message.addr());
 495 
 496   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 497   addl(rsp, wordSize);       // discard argument
 498   pop_CPU_state();
 499 }
 500 
 501 void MacroAssembler::print_state() {
 502   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 503   pusha();                                            // push registers
 504 
 505   push_CPU_state();
 506   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 507   pop_CPU_state();
 508 
 509   popa();
 510   addl(rsp, wordSize);
 511 }
 512 
 513 #else // _LP64
 514 
 515 // 64 bit versions
 516 
 517 Address MacroAssembler::as_Address(AddressLiteral adr) {
 518   // amd64 always does this as a pc-rel
 519   // we can be absolute or disp based on the instruction type
 520   // jmp/call are displacements others are absolute
 521   assert(!adr.is_lval(), "must be rval");
 522   assert(reachable(adr), "must be");
 523   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 524 
 525 }
 526 
 527 Address MacroAssembler::as_Address(ArrayAddress adr) {
 528   AddressLiteral base = adr.base();
 529   lea(rscratch1, base);
 530   Address index = adr.index();
 531   assert(index._disp == 0, "must not have disp"); // maybe it can?
 532   Address array(rscratch1, index._index, index._scale, index._disp);
 533   return array;
 534 }
 535 
 536 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 537   Label L, E;
 538 
 539 #ifdef _WIN64
 540   // Windows always allocates space for it's register args
 541   assert(num_args <= 4, "only register arguments supported");
 542   subq(rsp,  frame::arg_reg_save_area_bytes);
 543 #endif
 544 
 545   // Align stack if necessary
 546   testl(rsp, 15);
 547   jcc(Assembler::zero, L);
 548 
 549   subq(rsp, 8);
 550   {
 551     call(RuntimeAddress(entry_point));
 552   }
 553   addq(rsp, 8);
 554   jmp(E);
 555 
 556   bind(L);
 557   {
 558     call(RuntimeAddress(entry_point));
 559   }
 560 
 561   bind(E);
 562 
 563 #ifdef _WIN64
 564   // restore stack pointer
 565   addq(rsp, frame::arg_reg_save_area_bytes);
 566 #endif
 567 
 568 }
 569 
 570 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 571   assert(!src2.is_lval(), "should use cmpptr");
 572 
 573   if (reachable(src2)) {
 574     cmpq(src1, as_Address(src2));
 575   } else {
 576     lea(rscratch1, src2);
 577     Assembler::cmpq(src1, Address(rscratch1, 0));
 578   }
 579 }
 580 
 581 int MacroAssembler::corrected_idivq(Register reg) {
 582   // Full implementation of Java ldiv and lrem; checks for special
 583   // case as described in JVM spec., p.243 & p.271.  The function
 584   // returns the (pc) offset of the idivl instruction - may be needed
 585   // for implicit exceptions.
 586   //
 587   //         normal case                           special case
 588   //
 589   // input : rax: dividend                         min_long
 590   //         reg: divisor   (may not be eax/edx)   -1
 591   //
 592   // output: rax: quotient  (= rax idiv reg)       min_long
 593   //         rdx: remainder (= rax irem reg)       0
 594   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 595   static const int64_t min_long = 0x8000000000000000;
 596   Label normal_case, special_case;
 597 
 598   // check for special case
 599   cmp64(rax, ExternalAddress((address) &min_long));
 600   jcc(Assembler::notEqual, normal_case);
 601   xorl(rdx, rdx); // prepare rdx for possible special case (where
 602                   // remainder = 0)
 603   cmpq(reg, -1);
 604   jcc(Assembler::equal, special_case);
 605 
 606   // handle normal case
 607   bind(normal_case);
 608   cdqq();
 609   int idivq_offset = offset();
 610   idivq(reg);
 611 
 612   // normal and special case exit
 613   bind(special_case);
 614 
 615   return idivq_offset;
 616 }
 617 
 618 void MacroAssembler::decrementq(Register reg, int value) {
 619   if (value == min_jint) { subq(reg, value); return; }
 620   if (value <  0) { incrementq(reg, -value); return; }
 621   if (value == 0) {                        ; return; }
 622   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 623   /* else */      { subq(reg, value)       ; return; }
 624 }
 625 
 626 void MacroAssembler::decrementq(Address dst, int value) {
 627   if (value == min_jint) { subq(dst, value); return; }
 628   if (value <  0) { incrementq(dst, -value); return; }
 629   if (value == 0) {                        ; return; }
 630   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 631   /* else */      { subq(dst, value)       ; return; }
 632 }
 633 
 634 void MacroAssembler::incrementq(AddressLiteral dst) {
 635   if (reachable(dst)) {
 636     incrementq(as_Address(dst));
 637   } else {
 638     lea(rscratch1, dst);
 639     incrementq(Address(rscratch1, 0));
 640   }
 641 }
 642 
 643 void MacroAssembler::incrementq(Register reg, int value) {
 644   if (value == min_jint) { addq(reg, value); return; }
 645   if (value <  0) { decrementq(reg, -value); return; }
 646   if (value == 0) {                        ; return; }
 647   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 648   /* else */      { addq(reg, value)       ; return; }
 649 }
 650 
 651 void MacroAssembler::incrementq(Address dst, int value) {
 652   if (value == min_jint) { addq(dst, value); return; }
 653   if (value <  0) { decrementq(dst, -value); return; }
 654   if (value == 0) {                        ; return; }
 655   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 656   /* else */      { addq(dst, value)       ; return; }
 657 }
 658 
 659 // 32bit can do a case table jump in one instruction but we no longer allow the base
 660 // to be installed in the Address class
 661 void MacroAssembler::jump(ArrayAddress entry) {
 662   lea(rscratch1, entry.base());
 663   Address dispatch = entry.index();
 664   assert(dispatch._base == noreg, "must be");
 665   dispatch._base = rscratch1;
 666   jmp(dispatch);
 667 }
 668 
 669 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 670   ShouldNotReachHere(); // 64bit doesn't use two regs
 671   cmpq(x_lo, y_lo);
 672 }
 673 
 674 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 675     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 676 }
 677 
 678 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 679   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 680   movptr(dst, rscratch1);
 681 }
 682 
 683 void MacroAssembler::leave() {
 684   // %%% is this really better? Why not on 32bit too?
 685   emit_int8((unsigned char)0xC9); // LEAVE
 686 }
 687 
 688 void MacroAssembler::lneg(Register hi, Register lo) {
 689   ShouldNotReachHere(); // 64bit doesn't use two regs
 690   negq(lo);
 691 }
 692 
 693 void MacroAssembler::movoop(Register dst, jobject obj) {
 694   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695 }
 696 
 697 void MacroAssembler::movoop(Address dst, jobject obj) {
 698   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 699   movq(dst, rscratch1);
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 703   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704 }
 705 
 706 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 707   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 708   movq(dst, rscratch1);
 709 }
 710 
 711 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 712   if (src.is_lval()) {
 713     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 714   } else {
 715     if (reachable(src)) {
 716       movq(dst, as_Address(src));
 717     } else {
 718       lea(scratch, src);
 719       movq(dst, Address(scratch, 0));
 720     }
 721   }
 722 }
 723 
 724 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 725   movq(as_Address(dst), src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 729   movq(dst, as_Address(src));
 730 }
 731 
 732 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 733 void MacroAssembler::movptr(Address dst, intptr_t src) {
 734   mov64(rscratch1, src);
 735   movq(dst, rscratch1);
 736 }
 737 
 738 // These are mostly for initializing NULL
 739 void MacroAssembler::movptr(Address dst, int32_t src) {
 740   movslq(dst, src);
 741 }
 742 
 743 void MacroAssembler::movptr(Register dst, int32_t src) {
 744   mov64(dst, (intptr_t)src);
 745 }
 746 
 747 void MacroAssembler::pushoop(jobject obj) {
 748   movoop(rscratch1, obj);
 749   push(rscratch1);
 750 }
 751 
 752 void MacroAssembler::pushklass(Metadata* obj) {
 753   mov_metadata(rscratch1, obj);
 754   push(rscratch1);
 755 }
 756 
 757 void MacroAssembler::pushptr(AddressLiteral src) {
 758   lea(rscratch1, src);
 759   if (src.is_lval()) {
 760     push(rscratch1);
 761   } else {
 762     pushq(Address(rscratch1, 0));
 763   }
 764 }
 765 
 766 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 767   // we must set sp to zero to clear frame
 768   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 769   // must clear fp, so that compiled frames are not confused; it is
 770   // possible that we need it only for debugging
 771   if (clear_fp) {
 772     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 773   }
 774 
 775   // Always clear the pc because it could have been set by make_walkable()
 776   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 777   vzeroupper();
 778 }
 779 
 780 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 781                                          Register last_java_fp,
 782                                          address  last_java_pc) {
 783   vzeroupper();
 784   // determine last_java_sp register
 785   if (!last_java_sp->is_valid()) {
 786     last_java_sp = rsp;
 787   }
 788 
 789   // last_java_fp is optional
 790   if (last_java_fp->is_valid()) {
 791     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 792            last_java_fp);
 793   }
 794 
 795   // last_java_pc is optional
 796   if (last_java_pc != NULL) {
 797     Address java_pc(r15_thread,
 798                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 799     lea(rscratch1, InternalAddress(last_java_pc));
 800     movptr(java_pc, rscratch1);
 801   }
 802 
 803   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 804 }
 805 
 806 static void pass_arg0(MacroAssembler* masm, Register arg) {
 807   if (c_rarg0 != arg ) {
 808     masm->mov(c_rarg0, arg);
 809   }
 810 }
 811 
 812 static void pass_arg1(MacroAssembler* masm, Register arg) {
 813   if (c_rarg1 != arg ) {
 814     masm->mov(c_rarg1, arg);
 815   }
 816 }
 817 
 818 static void pass_arg2(MacroAssembler* masm, Register arg) {
 819   if (c_rarg2 != arg ) {
 820     masm->mov(c_rarg2, arg);
 821   }
 822 }
 823 
 824 static void pass_arg3(MacroAssembler* masm, Register arg) {
 825   if (c_rarg3 != arg ) {
 826     masm->mov(c_rarg3, arg);
 827   }
 828 }
 829 
 830 void MacroAssembler::stop(const char* msg) {
 831   address rip = pc();
 832   pusha(); // get regs on stack
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   lea(c_rarg1, InternalAddress(rip));
 835   movq(c_rarg2, rsp); // pass pointer to regs array
 836   andq(rsp, -16); // align stack as required by ABI
 837   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 838   hlt();
 839 }
 840 
 841 void MacroAssembler::warn(const char* msg) {
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846   lea(c_rarg0, ExternalAddress((address) msg));
 847   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 848   call(rax);
 849   pop_CPU_state();
 850   mov(rsp, rbp);
 851   pop(rbp);
 852 }
 853 
 854 void MacroAssembler::print_state() {
 855   address rip = pc();
 856   pusha();            // get regs on stack
 857   push(rbp);
 858   movq(rbp, rsp);
 859   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 860   push_CPU_state();   // keeps alignment at 16 bytes
 861 
 862   lea(c_rarg0, InternalAddress(rip));
 863   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 864   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 865 
 866   pop_CPU_state();
 867   mov(rsp, rbp);
 868   pop(rbp);
 869   popa();
 870 }
 871 
 872 #ifndef PRODUCT
 873 extern "C" void findpc(intptr_t x);
 874 #endif
 875 
 876 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 877   // In order to get locks to work, we need to fake a in_VM state
 878   if (ShowMessageBoxOnError) {
 879     JavaThread* thread = JavaThread::current();
 880     JavaThreadState saved_state = thread->thread_state();
 881     thread->set_thread_state(_thread_in_vm);
 882 #ifndef PRODUCT
 883     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 884       ttyLocker ttyl;
 885       BytecodeCounter::print();
 886     }
 887 #endif
 888     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 889     // XXX correct this offset for amd64
 890     // This is the value of eip which points to where verify_oop will return.
 891     if (os::message_box(msg, "Execution stopped, print registers?")) {
 892       print_state64(pc, regs);
 893       BREAKPOINT;
 894       assert(false, "start up GDB");
 895     }
 896     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 897   } else {
 898     ttyLocker ttyl;
 899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 900                     msg);
 901     assert(false, "DEBUG MESSAGE: %s", msg);
 902   }
 903 }
 904 
 905 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 906   ttyLocker ttyl;
 907   FlagSetting fs(Debugging, true);
 908   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 909 #ifndef PRODUCT
 910   tty->cr();
 911   findpc(pc);
 912   tty->cr();
 913 #endif
 914 #define PRINT_REG(rax, value) \
 915   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 916   PRINT_REG(rax, regs[15]);
 917   PRINT_REG(rbx, regs[12]);
 918   PRINT_REG(rcx, regs[14]);
 919   PRINT_REG(rdx, regs[13]);
 920   PRINT_REG(rdi, regs[8]);
 921   PRINT_REG(rsi, regs[9]);
 922   PRINT_REG(rbp, regs[10]);
 923   PRINT_REG(rsp, regs[11]);
 924   PRINT_REG(r8 , regs[7]);
 925   PRINT_REG(r9 , regs[6]);
 926   PRINT_REG(r10, regs[5]);
 927   PRINT_REG(r11, regs[4]);
 928   PRINT_REG(r12, regs[3]);
 929   PRINT_REG(r13, regs[2]);
 930   PRINT_REG(r14, regs[1]);
 931   PRINT_REG(r15, regs[0]);
 932 #undef PRINT_REG
 933   // Print some words near top of staack.
 934   int64_t* rsp = (int64_t*) regs[11];
 935   int64_t* dump_sp = rsp;
 936   for (int col1 = 0; col1 < 8; col1++) {
 937     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 938     os::print_location(tty, *dump_sp++);
 939   }
 940   for (int row = 0; row < 25; row++) {
 941     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 942     for (int col = 0; col < 4; col++) {
 943       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 944     }
 945     tty->cr();
 946   }
 947   // Print some instructions around pc:
 948   Disassembler::decode((address)pc-64, (address)pc);
 949   tty->print_cr("--------");
 950   Disassembler::decode((address)pc, (address)pc+32);
 951 }
 952 
 953 #endif // _LP64
 954 
 955 // Now versions that are common to 32/64 bit
 956 
 957 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 958   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 959 }
 960 
 961 void MacroAssembler::addptr(Register dst, Register src) {
 962   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 963 }
 964 
 965 void MacroAssembler::addptr(Address dst, Register src) {
 966   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 967 }
 968 
 969 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 970   if (reachable(src)) {
 971     Assembler::addsd(dst, as_Address(src));
 972   } else {
 973     lea(rscratch1, src);
 974     Assembler::addsd(dst, Address(rscratch1, 0));
 975   }
 976 }
 977 
 978 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 979   if (reachable(src)) {
 980     addss(dst, as_Address(src));
 981   } else {
 982     lea(rscratch1, src);
 983     addss(dst, Address(rscratch1, 0));
 984   }
 985 }
 986 
 987 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 988   if (reachable(src)) {
 989     Assembler::addpd(dst, as_Address(src));
 990   } else {
 991     lea(rscratch1, src);
 992     Assembler::addpd(dst, Address(rscratch1, 0));
 993   }
 994 }
 995 
 996 void MacroAssembler::align(int modulus) {
 997   align(modulus, offset());
 998 }
 999 
1000 void MacroAssembler::align(int modulus, int target) {
1001   if (target % modulus != 0) {
1002     nop(modulus - (target % modulus));
1003   }
1004 }
1005 
1006 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
1007   // Used in sign-masking with aligned address.
1008   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1009   if (reachable(src)) {
1010     Assembler::andpd(dst, as_Address(src));
1011   } else {
1012     lea(rscratch1, src);
1013     Assembler::andpd(dst, Address(rscratch1, 0));
1014   }
1015 }
1016 
1017 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1018   // Used in sign-masking with aligned address.
1019   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1020   if (reachable(src)) {
1021     Assembler::andps(dst, as_Address(src));
1022   } else {
1023     lea(rscratch1, src);
1024     Assembler::andps(dst, Address(rscratch1, 0));
1025   }
1026 }
1027 
1028 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1029   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1030 }
1031 
1032 void MacroAssembler::atomic_incl(Address counter_addr) {
1033   if (os::is_MP())
1034     lock();
1035   incrementl(counter_addr);
1036 }
1037 
1038 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1039   if (reachable(counter_addr)) {
1040     atomic_incl(as_Address(counter_addr));
1041   } else {
1042     lea(scr, counter_addr);
1043     atomic_incl(Address(scr, 0));
1044   }
1045 }
1046 
1047 #ifdef _LP64
1048 void MacroAssembler::atomic_incq(Address counter_addr) {
1049   if (os::is_MP())
1050     lock();
1051   incrementq(counter_addr);
1052 }
1053 
1054 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1055   if (reachable(counter_addr)) {
1056     atomic_incq(as_Address(counter_addr));
1057   } else {
1058     lea(scr, counter_addr);
1059     atomic_incq(Address(scr, 0));
1060   }
1061 }
1062 #endif
1063 
1064 // Writes to stack successive pages until offset reached to check for
1065 // stack overflow + shadow pages.  This clobbers tmp.
1066 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1067   movptr(tmp, rsp);
1068   // Bang stack for total size given plus shadow page size.
1069   // Bang one page at a time because large size can bang beyond yellow and
1070   // red zones.
1071   Label loop;
1072   bind(loop);
1073   movl(Address(tmp, (-os::vm_page_size())), size );
1074   subptr(tmp, os::vm_page_size());
1075   subl(size, os::vm_page_size());
1076   jcc(Assembler::greater, loop);
1077 
1078   // Bang down shadow pages too.
1079   // At this point, (tmp-0) is the last address touched, so don't
1080   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1081   // was post-decremented.)  Skip this address by starting at i=1, and
1082   // touch a few more pages below.  N.B.  It is important to touch all
1083   // the way down including all pages in the shadow zone.
1084   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1085     // this could be any sized move but this is can be a debugging crumb
1086     // so the bigger the better.
1087     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1088   }
1089 }
1090 
1091 void MacroAssembler::reserved_stack_check() {
1092     // testing if reserved zone needs to be enabled
1093     Label no_reserved_zone_enabling;
1094     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1095     NOT_LP64(get_thread(rsi);)
1096 
1097     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1098     jcc(Assembler::below, no_reserved_zone_enabling);
1099 
1100     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1101     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1102     should_not_reach_here();
1103 
1104     bind(no_reserved_zone_enabling);
1105 }
1106 
1107 int MacroAssembler::biased_locking_enter(Register lock_reg,
1108                                          Register obj_reg,
1109                                          Register swap_reg,
1110                                          Register tmp_reg,
1111                                          bool swap_reg_contains_mark,
1112                                          Label& done,
1113                                          Label* slow_case,
1114                                          BiasedLockingCounters* counters) {
1115   assert(UseBiasedLocking, "why call this otherwise?");
1116   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1117   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1118   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1119   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1120   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1121   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1122 
1123   if (PrintBiasedLockingStatistics && counters == NULL) {
1124     counters = BiasedLocking::counters();
1125   }
1126   // Biased locking
1127   // See whether the lock is currently biased toward our thread and
1128   // whether the epoch is still valid
1129   // Note that the runtime guarantees sufficient alignment of JavaThread
1130   // pointers to allow age to be placed into low bits
1131   // First check to see whether biasing is even enabled for this object
1132   Label cas_label;
1133   int null_check_offset = -1;
1134   if (!swap_reg_contains_mark) {
1135     null_check_offset = offset();
1136     movptr(swap_reg, mark_addr);
1137   }
1138   movptr(tmp_reg, swap_reg);
1139   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1140   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1141   jcc(Assembler::notEqual, cas_label);
1142   // The bias pattern is present in the object's header. Need to check
1143   // whether the bias owner and the epoch are both still current.
1144 #ifndef _LP64
1145   // Note that because there is no current thread register on x86_32 we
1146   // need to store off the mark word we read out of the object to
1147   // avoid reloading it and needing to recheck invariants below. This
1148   // store is unfortunate but it makes the overall code shorter and
1149   // simpler.
1150   movptr(saved_mark_addr, swap_reg);
1151 #endif
1152   if (swap_reg_contains_mark) {
1153     null_check_offset = offset();
1154   }
1155   load_prototype_header(tmp_reg, obj_reg);
1156 #ifdef _LP64
1157   orptr(tmp_reg, r15_thread);
1158   xorptr(tmp_reg, swap_reg);
1159   Register header_reg = tmp_reg;
1160 #else
1161   xorptr(tmp_reg, swap_reg);
1162   get_thread(swap_reg);
1163   xorptr(swap_reg, tmp_reg);
1164   Register header_reg = swap_reg;
1165 #endif
1166   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1167   if (counters != NULL) {
1168     cond_inc32(Assembler::zero,
1169                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1170   }
1171   jcc(Assembler::equal, done);
1172 
1173   Label try_revoke_bias;
1174   Label try_rebias;
1175 
1176   // At this point we know that the header has the bias pattern and
1177   // that we are not the bias owner in the current epoch. We need to
1178   // figure out more details about the state of the header in order to
1179   // know what operations can be legally performed on the object's
1180   // header.
1181 
1182   // If the low three bits in the xor result aren't clear, that means
1183   // the prototype header is no longer biased and we have to revoke
1184   // the bias on this object.
1185   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1186   jccb(Assembler::notZero, try_revoke_bias);
1187 
1188   // Biasing is still enabled for this data type. See whether the
1189   // epoch of the current bias is still valid, meaning that the epoch
1190   // bits of the mark word are equal to the epoch bits of the
1191   // prototype header. (Note that the prototype header's epoch bits
1192   // only change at a safepoint.) If not, attempt to rebias the object
1193   // toward the current thread. Note that we must be absolutely sure
1194   // that the current epoch is invalid in order to do this because
1195   // otherwise the manipulations it performs on the mark word are
1196   // illegal.
1197   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1198   jccb(Assembler::notZero, try_rebias);
1199 
1200   // The epoch of the current bias is still valid but we know nothing
1201   // about the owner; it might be set or it might be clear. Try to
1202   // acquire the bias of the object using an atomic operation. If this
1203   // fails we will go in to the runtime to revoke the object's bias.
1204   // Note that we first construct the presumed unbiased header so we
1205   // don't accidentally blow away another thread's valid bias.
1206   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1207   andptr(swap_reg,
1208          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1209 #ifdef _LP64
1210   movptr(tmp_reg, swap_reg);
1211   orptr(tmp_reg, r15_thread);
1212 #else
1213   get_thread(tmp_reg);
1214   orptr(tmp_reg, swap_reg);
1215 #endif
1216   if (os::is_MP()) {
1217     lock();
1218   }
1219   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1220   // If the biasing toward our thread failed, this means that
1221   // another thread succeeded in biasing it toward itself and we
1222   // need to revoke that bias. The revocation will occur in the
1223   // interpreter runtime in the slow case.
1224   if (counters != NULL) {
1225     cond_inc32(Assembler::zero,
1226                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1227   }
1228   if (slow_case != NULL) {
1229     jcc(Assembler::notZero, *slow_case);
1230   }
1231   jmp(done);
1232 
1233   bind(try_rebias);
1234   // At this point we know the epoch has expired, meaning that the
1235   // current "bias owner", if any, is actually invalid. Under these
1236   // circumstances _only_, we are allowed to use the current header's
1237   // value as the comparison value when doing the cas to acquire the
1238   // bias in the current epoch. In other words, we allow transfer of
1239   // the bias from one thread to another directly in this situation.
1240   //
1241   // FIXME: due to a lack of registers we currently blow away the age
1242   // bits in this situation. Should attempt to preserve them.
1243   load_prototype_header(tmp_reg, obj_reg);
1244 #ifdef _LP64
1245   orptr(tmp_reg, r15_thread);
1246 #else
1247   get_thread(swap_reg);
1248   orptr(tmp_reg, swap_reg);
1249   movptr(swap_reg, saved_mark_addr);
1250 #endif
1251   if (os::is_MP()) {
1252     lock();
1253   }
1254   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1255   // If the biasing toward our thread failed, then another thread
1256   // succeeded in biasing it toward itself and we need to revoke that
1257   // bias. The revocation will occur in the runtime in the slow case.
1258   if (counters != NULL) {
1259     cond_inc32(Assembler::zero,
1260                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1261   }
1262   if (slow_case != NULL) {
1263     jcc(Assembler::notZero, *slow_case);
1264   }
1265   jmp(done);
1266 
1267   bind(try_revoke_bias);
1268   // The prototype mark in the klass doesn't have the bias bit set any
1269   // more, indicating that objects of this data type are not supposed
1270   // to be biased any more. We are going to try to reset the mark of
1271   // this object to the prototype value and fall through to the
1272   // CAS-based locking scheme. Note that if our CAS fails, it means
1273   // that another thread raced us for the privilege of revoking the
1274   // bias of this particular object, so it's okay to continue in the
1275   // normal locking code.
1276   //
1277   // FIXME: due to a lack of registers we currently blow away the age
1278   // bits in this situation. Should attempt to preserve them.
1279   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1280   load_prototype_header(tmp_reg, obj_reg);
1281   if (os::is_MP()) {
1282     lock();
1283   }
1284   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1285   // Fall through to the normal CAS-based lock, because no matter what
1286   // the result of the above CAS, some thread must have succeeded in
1287   // removing the bias bit from the object's header.
1288   if (counters != NULL) {
1289     cond_inc32(Assembler::zero,
1290                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1291   }
1292 
1293   bind(cas_label);
1294 
1295   return null_check_offset;
1296 }
1297 
1298 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1299   assert(UseBiasedLocking, "why call this otherwise?");
1300 
1301   // Check for biased locking unlock case, which is a no-op
1302   // Note: we do not have to check the thread ID for two reasons.
1303   // First, the interpreter checks for IllegalMonitorStateException at
1304   // a higher level. Second, if the bias was revoked while we held the
1305   // lock, the object could not be rebiased toward another thread, so
1306   // the bias bit would be clear.
1307   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1308   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1309   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1310   jcc(Assembler::equal, done);
1311 }
1312 
1313 #ifdef COMPILER2
1314 
1315 #if INCLUDE_RTM_OPT
1316 
1317 // Update rtm_counters based on abort status
1318 // input: abort_status
1319 //        rtm_counters (RTMLockingCounters*)
1320 // flags are killed
1321 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1322 
1323   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1324   if (PrintPreciseRTMLockingStatistics) {
1325     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1326       Label check_abort;
1327       testl(abort_status, (1<<i));
1328       jccb(Assembler::equal, check_abort);
1329       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1330       bind(check_abort);
1331     }
1332   }
1333 }
1334 
1335 // Branch if (random & (count-1) != 0), count is 2^n
1336 // tmp, scr and flags are killed
1337 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1338   assert(tmp == rax, "");
1339   assert(scr == rdx, "");
1340   rdtsc(); // modifies EDX:EAX
1341   andptr(tmp, count-1);
1342   jccb(Assembler::notZero, brLabel);
1343 }
1344 
1345 // Perform abort ratio calculation, set no_rtm bit if high ratio
1346 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1347 // tmpReg, rtm_counters_Reg and flags are killed
1348 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1349                                                  Register rtm_counters_Reg,
1350                                                  RTMLockingCounters* rtm_counters,
1351                                                  Metadata* method_data) {
1352   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1353 
1354   if (RTMLockingCalculationDelay > 0) {
1355     // Delay calculation
1356     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1357     testptr(tmpReg, tmpReg);
1358     jccb(Assembler::equal, L_done);
1359   }
1360   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1361   //   Aborted transactions = abort_count * 100
1362   //   All transactions = total_count *  RTMTotalCountIncrRate
1363   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1364 
1365   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1366   cmpptr(tmpReg, RTMAbortThreshold);
1367   jccb(Assembler::below, L_check_always_rtm2);
1368   imulptr(tmpReg, tmpReg, 100);
1369 
1370   Register scrReg = rtm_counters_Reg;
1371   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1373   imulptr(scrReg, scrReg, RTMAbortRatio);
1374   cmpptr(tmpReg, scrReg);
1375   jccb(Assembler::below, L_check_always_rtm1);
1376   if (method_data != NULL) {
1377     // set rtm_state to "no rtm" in MDO
1378     mov_metadata(tmpReg, method_data);
1379     if (os::is_MP()) {
1380       lock();
1381     }
1382     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1383   }
1384   jmpb(L_done);
1385   bind(L_check_always_rtm1);
1386   // Reload RTMLockingCounters* address
1387   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1388   bind(L_check_always_rtm2);
1389   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1390   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1391   jccb(Assembler::below, L_done);
1392   if (method_data != NULL) {
1393     // set rtm_state to "always rtm" in MDO
1394     mov_metadata(tmpReg, method_data);
1395     if (os::is_MP()) {
1396       lock();
1397     }
1398     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1399   }
1400   bind(L_done);
1401 }
1402 
1403 // Update counters and perform abort ratio calculation
1404 // input:  abort_status_Reg
1405 // rtm_counters_Reg, flags are killed
1406 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1407                                    Register rtm_counters_Reg,
1408                                    RTMLockingCounters* rtm_counters,
1409                                    Metadata* method_data,
1410                                    bool profile_rtm) {
1411 
1412   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1413   // update rtm counters based on rax value at abort
1414   // reads abort_status_Reg, updates flags
1415   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1416   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1417   if (profile_rtm) {
1418     // Save abort status because abort_status_Reg is used by following code.
1419     if (RTMRetryCount > 0) {
1420       push(abort_status_Reg);
1421     }
1422     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1423     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1424     // restore abort status
1425     if (RTMRetryCount > 0) {
1426       pop(abort_status_Reg);
1427     }
1428   }
1429 }
1430 
1431 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1432 // inputs: retry_count_Reg
1433 //       : abort_status_Reg
1434 // output: retry_count_Reg decremented by 1
1435 // flags are killed
1436 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1437   Label doneRetry;
1438   assert(abort_status_Reg == rax, "");
1439   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1440   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1441   // if reason is in 0x6 and retry count != 0 then retry
1442   andptr(abort_status_Reg, 0x6);
1443   jccb(Assembler::zero, doneRetry);
1444   testl(retry_count_Reg, retry_count_Reg);
1445   jccb(Assembler::zero, doneRetry);
1446   pause();
1447   decrementl(retry_count_Reg);
1448   jmp(retryLabel);
1449   bind(doneRetry);
1450 }
1451 
1452 // Spin and retry if lock is busy,
1453 // inputs: box_Reg (monitor address)
1454 //       : retry_count_Reg
1455 // output: retry_count_Reg decremented by 1
1456 //       : clear z flag if retry count exceeded
1457 // tmp_Reg, scr_Reg, flags are killed
1458 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1459                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1460   Label SpinLoop, SpinExit, doneRetry;
1461   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1462 
1463   testl(retry_count_Reg, retry_count_Reg);
1464   jccb(Assembler::zero, doneRetry);
1465   decrementl(retry_count_Reg);
1466   movptr(scr_Reg, RTMSpinLoopCount);
1467 
1468   bind(SpinLoop);
1469   pause();
1470   decrementl(scr_Reg);
1471   jccb(Assembler::lessEqual, SpinExit);
1472   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1473   testptr(tmp_Reg, tmp_Reg);
1474   jccb(Assembler::notZero, SpinLoop);
1475 
1476   bind(SpinExit);
1477   jmp(retryLabel);
1478   bind(doneRetry);
1479   incrementl(retry_count_Reg); // clear z flag
1480 }
1481 
1482 // Use RTM for normal stack locks
1483 // Input: objReg (object to lock)
1484 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1485                                        Register retry_on_abort_count_Reg,
1486                                        RTMLockingCounters* stack_rtm_counters,
1487                                        Metadata* method_data, bool profile_rtm,
1488                                        Label& DONE_LABEL, Label& IsInflated) {
1489   assert(UseRTMForStackLocks, "why call this otherwise?");
1490   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1491   assert(tmpReg == rax, "");
1492   assert(scrReg == rdx, "");
1493   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1494 
1495   if (RTMRetryCount > 0) {
1496     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1497     bind(L_rtm_retry);
1498   }
1499   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1500   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1501   jcc(Assembler::notZero, IsInflated);
1502 
1503   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1504     Label L_noincrement;
1505     if (RTMTotalCountIncrRate > 1) {
1506       // tmpReg, scrReg and flags are killed
1507       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1508     }
1509     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1510     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1511     bind(L_noincrement);
1512   }
1513   xbegin(L_on_abort);
1514   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1515   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1516   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1517   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1518 
1519   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1520   if (UseRTMXendForLockBusy) {
1521     xend();
1522     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1523     jmp(L_decrement_retry);
1524   }
1525   else {
1526     xabort(0);
1527   }
1528   bind(L_on_abort);
1529   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1530     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1531   }
1532   bind(L_decrement_retry);
1533   if (RTMRetryCount > 0) {
1534     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1535     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1536   }
1537 }
1538 
1539 // Use RTM for inflating locks
1540 // inputs: objReg (object to lock)
1541 //         boxReg (on-stack box address (displaced header location) - KILLED)
1542 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1543 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1544                                           Register scrReg, Register retry_on_busy_count_Reg,
1545                                           Register retry_on_abort_count_Reg,
1546                                           RTMLockingCounters* rtm_counters,
1547                                           Metadata* method_data, bool profile_rtm,
1548                                           Label& DONE_LABEL) {
1549   assert(UseRTMLocking, "why call this otherwise?");
1550   assert(tmpReg == rax, "");
1551   assert(scrReg == rdx, "");
1552   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1553   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1554 
1555   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1556   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1557   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1558 
1559   if (RTMRetryCount > 0) {
1560     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1561     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1562     bind(L_rtm_retry);
1563   }
1564   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1565     Label L_noincrement;
1566     if (RTMTotalCountIncrRate > 1) {
1567       // tmpReg, scrReg and flags are killed
1568       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1569     }
1570     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1571     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1572     bind(L_noincrement);
1573   }
1574   xbegin(L_on_abort);
1575   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1576   movptr(tmpReg, Address(tmpReg, owner_offset));
1577   testptr(tmpReg, tmpReg);
1578   jcc(Assembler::zero, DONE_LABEL);
1579   if (UseRTMXendForLockBusy) {
1580     xend();
1581     jmp(L_decrement_retry);
1582   }
1583   else {
1584     xabort(0);
1585   }
1586   bind(L_on_abort);
1587   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1588   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1589     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1590   }
1591   if (RTMRetryCount > 0) {
1592     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1593     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1594   }
1595 
1596   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1597   testptr(tmpReg, tmpReg) ;
1598   jccb(Assembler::notZero, L_decrement_retry) ;
1599 
1600   // Appears unlocked - try to swing _owner from null to non-null.
1601   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1602 #ifdef _LP64
1603   Register threadReg = r15_thread;
1604 #else
1605   get_thread(scrReg);
1606   Register threadReg = scrReg;
1607 #endif
1608   if (os::is_MP()) {
1609     lock();
1610   }
1611   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1612 
1613   if (RTMRetryCount > 0) {
1614     // success done else retry
1615     jccb(Assembler::equal, DONE_LABEL) ;
1616     bind(L_decrement_retry);
1617     // Spin and retry if lock is busy.
1618     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1619   }
1620   else {
1621     bind(L_decrement_retry);
1622   }
1623 }
1624 
1625 #endif //  INCLUDE_RTM_OPT
1626 
1627 // Fast_Lock and Fast_Unlock used by C2
1628 
1629 // Because the transitions from emitted code to the runtime
1630 // monitorenter/exit helper stubs are so slow it's critical that
1631 // we inline both the stack-locking fast-path and the inflated fast path.
1632 //
1633 // See also: cmpFastLock and cmpFastUnlock.
1634 //
1635 // What follows is a specialized inline transliteration of the code
1636 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1637 // another option would be to emit TrySlowEnter and TrySlowExit methods
1638 // at startup-time.  These methods would accept arguments as
1639 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1640 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1641 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1642 // In practice, however, the # of lock sites is bounded and is usually small.
1643 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1644 // if the processor uses simple bimodal branch predictors keyed by EIP
1645 // Since the helper routines would be called from multiple synchronization
1646 // sites.
1647 //
1648 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1649 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1650 // to those specialized methods.  That'd give us a mostly platform-independent
1651 // implementation that the JITs could optimize and inline at their pleasure.
1652 // Done correctly, the only time we'd need to cross to native could would be
1653 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1654 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1655 // (b) explicit barriers or fence operations.
1656 //
1657 // TODO:
1658 //
1659 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1660 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1661 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1662 //    the lock operators would typically be faster than reifying Self.
1663 //
1664 // *  Ideally I'd define the primitives as:
1665 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1666 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1667 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1668 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1669 //    Furthermore the register assignments are overconstrained, possibly resulting in
1670 //    sub-optimal code near the synchronization site.
1671 //
1672 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1673 //    Alternately, use a better sp-proximity test.
1674 //
1675 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1676 //    Either one is sufficient to uniquely identify a thread.
1677 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1678 //
1679 // *  Intrinsify notify() and notifyAll() for the common cases where the
1680 //    object is locked by the calling thread but the waitlist is empty.
1681 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1682 //
1683 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1684 //    But beware of excessive branch density on AMD Opterons.
1685 //
1686 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1687 //    or failure of the fast-path.  If the fast-path fails then we pass
1688 //    control to the slow-path, typically in C.  In Fast_Lock and
1689 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1690 //    will emit a conditional branch immediately after the node.
1691 //    So we have branches to branches and lots of ICC.ZF games.
1692 //    Instead, it might be better to have C2 pass a "FailureLabel"
1693 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1694 //    will drop through the node.  ICC.ZF is undefined at exit.
1695 //    In the case of failure, the node will branch directly to the
1696 //    FailureLabel
1697 
1698 
1699 // obj: object to lock
1700 // box: on-stack box address (displaced header location) - KILLED
1701 // rax,: tmp -- KILLED
1702 // scr: tmp -- KILLED
1703 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1704                                Register scrReg, Register cx1Reg, Register cx2Reg,
1705                                BiasedLockingCounters* counters,
1706                                RTMLockingCounters* rtm_counters,
1707                                RTMLockingCounters* stack_rtm_counters,
1708                                Metadata* method_data,
1709                                bool use_rtm, bool profile_rtm) {
1710   // Ensure the register assignments are disjoint
1711   assert(tmpReg == rax, "");
1712 
1713   if (use_rtm) {
1714     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1715   } else {
1716     assert(cx1Reg == noreg, "");
1717     assert(cx2Reg == noreg, "");
1718     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1719   }
1720 
1721   if (counters != NULL) {
1722     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1723   }
1724   if (EmitSync & 1) {
1725       // set box->dhw = markOopDesc::unused_mark()
1726       // Force all sync thru slow-path: slow_enter() and slow_exit()
1727       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1728       cmpptr (rsp, (int32_t)NULL_WORD);
1729   } else {
1730     // Possible cases that we'll encounter in fast_lock
1731     // ------------------------------------------------
1732     // * Inflated
1733     //    -- unlocked
1734     //    -- Locked
1735     //       = by self
1736     //       = by other
1737     // * biased
1738     //    -- by Self
1739     //    -- by other
1740     // * neutral
1741     // * stack-locked
1742     //    -- by self
1743     //       = sp-proximity test hits
1744     //       = sp-proximity test generates false-negative
1745     //    -- by other
1746     //
1747 
1748     Label IsInflated, DONE_LABEL;
1749 
1750     // it's stack-locked, biased or neutral
1751     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1752     // order to reduce the number of conditional branches in the most common cases.
1753     // Beware -- there's a subtle invariant that fetch of the markword
1754     // at [FETCH], below, will never observe a biased encoding (*101b).
1755     // If this invariant is not held we risk exclusion (safety) failure.
1756     if (UseBiasedLocking && !UseOptoBiasInlining) {
1757       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1758     }
1759 
1760 #if INCLUDE_RTM_OPT
1761     if (UseRTMForStackLocks && use_rtm) {
1762       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1763                         stack_rtm_counters, method_data, profile_rtm,
1764                         DONE_LABEL, IsInflated);
1765     }
1766 #endif // INCLUDE_RTM_OPT
1767 
1768     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1769     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1770     jccb(Assembler::notZero, IsInflated);
1771 
1772     // Attempt stack-locking ...
1773     orptr (tmpReg, markOopDesc::unlocked_value);
1774     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1775     if (os::is_MP()) {
1776       lock();
1777     }
1778     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1779     if (counters != NULL) {
1780       cond_inc32(Assembler::equal,
1781                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1782     }
1783     jcc(Assembler::equal, DONE_LABEL);           // Success
1784 
1785     // Recursive locking.
1786     // The object is stack-locked: markword contains stack pointer to BasicLock.
1787     // Locked by current thread if difference with current SP is less than one page.
1788     subptr(tmpReg, rsp);
1789     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1790     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1791     movptr(Address(boxReg, 0), tmpReg);
1792     if (counters != NULL) {
1793       cond_inc32(Assembler::equal,
1794                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1795     }
1796     jmp(DONE_LABEL);
1797 
1798     bind(IsInflated);
1799     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1800 
1801 #if INCLUDE_RTM_OPT
1802     // Use the same RTM locking code in 32- and 64-bit VM.
1803     if (use_rtm) {
1804       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1805                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1806     } else {
1807 #endif // INCLUDE_RTM_OPT
1808 
1809 #ifndef _LP64
1810     // The object is inflated.
1811 
1812     // boxReg refers to the on-stack BasicLock in the current frame.
1813     // We'd like to write:
1814     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1815     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1816     // additional latency as we have another ST in the store buffer that must drain.
1817 
1818     if (EmitSync & 8192) {
1819        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1820        get_thread (scrReg);
1821        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1822        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1823        if (os::is_MP()) {
1824          lock();
1825        }
1826        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1827     } else
1828     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1829        // register juggle because we need tmpReg for cmpxchgptr below
1830        movptr(scrReg, boxReg);
1831        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1832 
1833        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1834        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1835           // prefetchw [eax + Offset(_owner)-2]
1836           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1837        }
1838 
1839        if ((EmitSync & 64) == 0) {
1840          // Optimistic form: consider XORL tmpReg,tmpReg
1841          movptr(tmpReg, NULL_WORD);
1842        } else {
1843          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1844          // Test-And-CAS instead of CAS
1845          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1846          testptr(tmpReg, tmpReg);                   // Locked ?
1847          jccb  (Assembler::notZero, DONE_LABEL);
1848        }
1849 
1850        // Appears unlocked - try to swing _owner from null to non-null.
1851        // Ideally, I'd manifest "Self" with get_thread and then attempt
1852        // to CAS the register containing Self into m->Owner.
1853        // But we don't have enough registers, so instead we can either try to CAS
1854        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1855        // we later store "Self" into m->Owner.  Transiently storing a stack address
1856        // (rsp or the address of the box) into  m->owner is harmless.
1857        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1858        if (os::is_MP()) {
1859          lock();
1860        }
1861        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1862        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1863        // If we weren't able to swing _owner from NULL to the BasicLock
1864        // then take the slow path.
1865        jccb  (Assembler::notZero, DONE_LABEL);
1866        // update _owner from BasicLock to thread
1867        get_thread (scrReg);                    // beware: clobbers ICCs
1868        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1869        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1870 
1871        // If the CAS fails we can either retry or pass control to the slow-path.
1872        // We use the latter tactic.
1873        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1874        // If the CAS was successful ...
1875        //   Self has acquired the lock
1876        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1877        // Intentional fall-through into DONE_LABEL ...
1878     } else {
1879        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1880        movptr(boxReg, tmpReg);
1881 
1882        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1883        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1884           // prefetchw [eax + Offset(_owner)-2]
1885           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1886        }
1887 
1888        if ((EmitSync & 64) == 0) {
1889          // Optimistic form
1890          xorptr  (tmpReg, tmpReg);
1891        } else {
1892          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1893          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1894          testptr(tmpReg, tmpReg);                   // Locked ?
1895          jccb  (Assembler::notZero, DONE_LABEL);
1896        }
1897 
1898        // Appears unlocked - try to swing _owner from null to non-null.
1899        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1900        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1901        get_thread (scrReg);
1902        if (os::is_MP()) {
1903          lock();
1904        }
1905        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1906 
1907        // If the CAS fails we can either retry or pass control to the slow-path.
1908        // We use the latter tactic.
1909        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1910        // If the CAS was successful ...
1911        //   Self has acquired the lock
1912        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1913        // Intentional fall-through into DONE_LABEL ...
1914     }
1915 #else // _LP64
1916     // It's inflated
1917     movq(scrReg, tmpReg);
1918     xorq(tmpReg, tmpReg);
1919 
1920     if (os::is_MP()) {
1921       lock();
1922     }
1923     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1924     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1925     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1926     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1927     // Intentional fall-through into DONE_LABEL ...
1928     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1929 #endif // _LP64
1930 #if INCLUDE_RTM_OPT
1931     } // use_rtm()
1932 #endif
1933     // DONE_LABEL is a hot target - we'd really like to place it at the
1934     // start of cache line by padding with NOPs.
1935     // See the AMD and Intel software optimization manuals for the
1936     // most efficient "long" NOP encodings.
1937     // Unfortunately none of our alignment mechanisms suffice.
1938     bind(DONE_LABEL);
1939 
1940     // At DONE_LABEL the icc ZFlag is set as follows ...
1941     // Fast_Unlock uses the same protocol.
1942     // ZFlag == 1 -> Success
1943     // ZFlag == 0 -> Failure - force control through the slow-path
1944   }
1945 }
1946 
1947 // obj: object to unlock
1948 // box: box address (displaced header location), killed.  Must be EAX.
1949 // tmp: killed, cannot be obj nor box.
1950 //
1951 // Some commentary on balanced locking:
1952 //
1953 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1954 // Methods that don't have provably balanced locking are forced to run in the
1955 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1956 // The interpreter provides two properties:
1957 // I1:  At return-time the interpreter automatically and quietly unlocks any
1958 //      objects acquired the current activation (frame).  Recall that the
1959 //      interpreter maintains an on-stack list of locks currently held by
1960 //      a frame.
1961 // I2:  If a method attempts to unlock an object that is not held by the
1962 //      the frame the interpreter throws IMSX.
1963 //
1964 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1965 // B() doesn't have provably balanced locking so it runs in the interpreter.
1966 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1967 // is still locked by A().
1968 //
1969 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1970 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1971 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1972 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1973 // Arguably given that the spec legislates the JNI case as undefined our implementation
1974 // could reasonably *avoid* checking owner in Fast_Unlock().
1975 // In the interest of performance we elide m->Owner==Self check in unlock.
1976 // A perfectly viable alternative is to elide the owner check except when
1977 // Xcheck:jni is enabled.
1978 
1979 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1980   assert(boxReg == rax, "");
1981   assert_different_registers(objReg, boxReg, tmpReg);
1982 
1983   if (EmitSync & 4) {
1984     // Disable - inhibit all inlining.  Force control through the slow-path
1985     cmpptr (rsp, 0);
1986   } else {
1987     Label DONE_LABEL, Stacked, CheckSucc;
1988 
1989     // Critically, the biased locking test must have precedence over
1990     // and appear before the (box->dhw == 0) recursive stack-lock test.
1991     if (UseBiasedLocking && !UseOptoBiasInlining) {
1992        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1993     }
1994 
1995 #if INCLUDE_RTM_OPT
1996     if (UseRTMForStackLocks && use_rtm) {
1997       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1998       Label L_regular_unlock;
1999       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
2000       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2001       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2002       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2003       xend();                                       // otherwise end...
2004       jmp(DONE_LABEL);                              // ... and we're done
2005       bind(L_regular_unlock);
2006     }
2007 #endif
2008 
2009     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2010     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2011     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2012     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2013     jccb  (Assembler::zero, Stacked);
2014 
2015     // It's inflated.
2016 #if INCLUDE_RTM_OPT
2017     if (use_rtm) {
2018       Label L_regular_inflated_unlock;
2019       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2020       movptr(boxReg, Address(tmpReg, owner_offset));
2021       testptr(boxReg, boxReg);
2022       jccb(Assembler::notZero, L_regular_inflated_unlock);
2023       xend();
2024       jmpb(DONE_LABEL);
2025       bind(L_regular_inflated_unlock);
2026     }
2027 #endif
2028 
2029     // Despite our balanced locking property we still check that m->_owner == Self
2030     // as java routines or native JNI code called by this thread might
2031     // have released the lock.
2032     // Refer to the comments in synchronizer.cpp for how we might encode extra
2033     // state in _succ so we can avoid fetching EntryList|cxq.
2034     //
2035     // I'd like to add more cases in fast_lock() and fast_unlock() --
2036     // such as recursive enter and exit -- but we have to be wary of
2037     // I$ bloat, T$ effects and BP$ effects.
2038     //
2039     // If there's no contention try a 1-0 exit.  That is, exit without
2040     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2041     // we detect and recover from the race that the 1-0 exit admits.
2042     //
2043     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2044     // before it STs null into _owner, releasing the lock.  Updates
2045     // to data protected by the critical section must be visible before
2046     // we drop the lock (and thus before any other thread could acquire
2047     // the lock and observe the fields protected by the lock).
2048     // IA32's memory-model is SPO, so STs are ordered with respect to
2049     // each other and there's no need for an explicit barrier (fence).
2050     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2051 #ifndef _LP64
2052     get_thread (boxReg);
2053     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2054       // prefetchw [ebx + Offset(_owner)-2]
2055       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2056     }
2057 
2058     // Note that we could employ various encoding schemes to reduce
2059     // the number of loads below (currently 4) to just 2 or 3.
2060     // Refer to the comments in synchronizer.cpp.
2061     // In practice the chain of fetches doesn't seem to impact performance, however.
2062     xorptr(boxReg, boxReg);
2063     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2064        // Attempt to reduce branch density - AMD's branch predictor.
2065        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2066        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2067        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2068        jccb  (Assembler::notZero, DONE_LABEL);
2069        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2070        jmpb  (DONE_LABEL);
2071     } else {
2072        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2073        jccb  (Assembler::notZero, DONE_LABEL);
2074        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2075        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2076        jccb  (Assembler::notZero, CheckSucc);
2077        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2078        jmpb  (DONE_LABEL);
2079     }
2080 
2081     // The Following code fragment (EmitSync & 65536) improves the performance of
2082     // contended applications and contended synchronization microbenchmarks.
2083     // Unfortunately the emission of the code - even though not executed - causes regressions
2084     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2085     // with an equal number of never-executed NOPs results in the same regression.
2086     // We leave it off by default.
2087 
2088     if ((EmitSync & 65536) != 0) {
2089        Label LSuccess, LGoSlowPath ;
2090 
2091        bind  (CheckSucc);
2092 
2093        // Optional pre-test ... it's safe to elide this
2094        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2095        jccb(Assembler::zero, LGoSlowPath);
2096 
2097        // We have a classic Dekker-style idiom:
2098        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2099        // There are a number of ways to implement the barrier:
2100        // (1) lock:andl &m->_owner, 0
2101        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2102        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2103        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2104        // (2) If supported, an explicit MFENCE is appealing.
2105        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2106        //     particularly if the write-buffer is full as might be the case if
2107        //     if stores closely precede the fence or fence-equivalent instruction.
2108        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2109        //     as the situation has changed with Nehalem and Shanghai.
2110        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2111        //     The $lines underlying the top-of-stack should be in M-state.
2112        //     The locked add instruction is serializing, of course.
2113        // (4) Use xchg, which is serializing
2114        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2115        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2116        //     The integer condition codes will tell us if succ was 0.
2117        //     Since _succ and _owner should reside in the same $line and
2118        //     we just stored into _owner, it's likely that the $line
2119        //     remains in M-state for the lock:orl.
2120        //
2121        // We currently use (3), although it's likely that switching to (2)
2122        // is correct for the future.
2123 
2124        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2125        if (os::is_MP()) {
2126          lock(); addptr(Address(rsp, 0), 0);
2127        }
2128        // Ratify _succ remains non-null
2129        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2130        jccb  (Assembler::notZero, LSuccess);
2131 
2132        xorptr(boxReg, boxReg);                  // box is really EAX
2133        if (os::is_MP()) { lock(); }
2134        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2135        // There's no successor so we tried to regrab the lock with the
2136        // placeholder value. If that didn't work, then another thread
2137        // grabbed the lock so we're done (and exit was a success).
2138        jccb  (Assembler::notEqual, LSuccess);
2139        // Since we're low on registers we installed rsp as a placeholding in _owner.
2140        // Now install Self over rsp.  This is safe as we're transitioning from
2141        // non-null to non=null
2142        get_thread (boxReg);
2143        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2144        // Intentional fall-through into LGoSlowPath ...
2145 
2146        bind  (LGoSlowPath);
2147        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2148        jmpb  (DONE_LABEL);
2149 
2150        bind  (LSuccess);
2151        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2152        jmpb  (DONE_LABEL);
2153     }
2154 
2155     bind (Stacked);
2156     // It's not inflated and it's not recursively stack-locked and it's not biased.
2157     // It must be stack-locked.
2158     // Try to reset the header to displaced header.
2159     // The "box" value on the stack is stable, so we can reload
2160     // and be assured we observe the same value as above.
2161     movptr(tmpReg, Address(boxReg, 0));
2162     if (os::is_MP()) {
2163       lock();
2164     }
2165     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2166     // Intention fall-thru into DONE_LABEL
2167 
2168     // DONE_LABEL is a hot target - we'd really like to place it at the
2169     // start of cache line by padding with NOPs.
2170     // See the AMD and Intel software optimization manuals for the
2171     // most efficient "long" NOP encodings.
2172     // Unfortunately none of our alignment mechanisms suffice.
2173     if ((EmitSync & 65536) == 0) {
2174        bind (CheckSucc);
2175     }
2176 #else // _LP64
2177     // It's inflated
2178     if (EmitSync & 1024) {
2179       // Emit code to check that _owner == Self
2180       // We could fold the _owner test into subsequent code more efficiently
2181       // than using a stand-alone check, but since _owner checking is off by
2182       // default we don't bother. We also might consider predicating the
2183       // _owner==Self check on Xcheck:jni or running on a debug build.
2184       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2185       xorptr(boxReg, r15_thread);
2186     } else {
2187       xorptr(boxReg, boxReg);
2188     }
2189     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2190     jccb  (Assembler::notZero, DONE_LABEL);
2191     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2192     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2193     jccb  (Assembler::notZero, CheckSucc);
2194     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2195     jmpb  (DONE_LABEL);
2196 
2197     if ((EmitSync & 65536) == 0) {
2198       // Try to avoid passing control into the slow_path ...
2199       Label LSuccess, LGoSlowPath ;
2200       bind  (CheckSucc);
2201 
2202       // The following optional optimization can be elided if necessary
2203       // Effectively: if (succ == null) goto SlowPath
2204       // The code reduces the window for a race, however,
2205       // and thus benefits performance.
2206       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2207       jccb  (Assembler::zero, LGoSlowPath);
2208 
2209       xorptr(boxReg, boxReg);
2210       if ((EmitSync & 16) && os::is_MP()) {
2211         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2212       } else {
2213         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2214         if (os::is_MP()) {
2215           // Memory barrier/fence
2216           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2217           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2218           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2219           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2220           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2221           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2222           lock(); addl(Address(rsp, 0), 0);
2223         }
2224       }
2225       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2226       jccb  (Assembler::notZero, LSuccess);
2227 
2228       // Rare inopportune interleaving - race.
2229       // The successor vanished in the small window above.
2230       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2231       // We need to ensure progress and succession.
2232       // Try to reacquire the lock.
2233       // If that fails then the new owner is responsible for succession and this
2234       // thread needs to take no further action and can exit via the fast path (success).
2235       // If the re-acquire succeeds then pass control into the slow path.
2236       // As implemented, this latter mode is horrible because we generated more
2237       // coherence traffic on the lock *and* artifically extended the critical section
2238       // length while by virtue of passing control into the slow path.
2239 
2240       // box is really RAX -- the following CMPXCHG depends on that binding
2241       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2242       if (os::is_MP()) { lock(); }
2243       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2244       // There's no successor so we tried to regrab the lock.
2245       // If that didn't work, then another thread grabbed the
2246       // lock so we're done (and exit was a success).
2247       jccb  (Assembler::notEqual, LSuccess);
2248       // Intentional fall-through into slow-path
2249 
2250       bind  (LGoSlowPath);
2251       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2252       jmpb  (DONE_LABEL);
2253 
2254       bind  (LSuccess);
2255       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2256       jmpb  (DONE_LABEL);
2257     }
2258 
2259     bind  (Stacked);
2260     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2261     if (os::is_MP()) { lock(); }
2262     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2263 
2264     if (EmitSync & 65536) {
2265        bind (CheckSucc);
2266     }
2267 #endif
2268     bind(DONE_LABEL);
2269   }
2270 }
2271 #endif // COMPILER2
2272 
2273 void MacroAssembler::c2bool(Register x) {
2274   // implements x == 0 ? 0 : 1
2275   // note: must only look at least-significant byte of x
2276   //       since C-style booleans are stored in one byte
2277   //       only! (was bug)
2278   andl(x, 0xFF);
2279   setb(Assembler::notZero, x);
2280 }
2281 
2282 // Wouldn't need if AddressLiteral version had new name
2283 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2284   Assembler::call(L, rtype);
2285 }
2286 
2287 void MacroAssembler::call(Register entry) {
2288   Assembler::call(entry);
2289 }
2290 
2291 void MacroAssembler::call(AddressLiteral entry) {
2292   if (reachable(entry)) {
2293     Assembler::call_literal(entry.target(), entry.rspec());
2294   } else {
2295     lea(rscratch1, entry);
2296     Assembler::call(rscratch1);
2297   }
2298 }
2299 
2300 void MacroAssembler::ic_call(address entry, jint method_index) {
2301   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2302   movptr(rax, (intptr_t)Universe::non_oop_word());
2303   call(AddressLiteral(entry, rh));
2304 }
2305 
2306 // Implementation of call_VM versions
2307 
2308 void MacroAssembler::call_VM(Register oop_result,
2309                              address entry_point,
2310                              bool check_exceptions) {
2311   Label C, E;
2312   call(C, relocInfo::none);
2313   jmp(E);
2314 
2315   bind(C);
2316   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2317   ret(0);
2318 
2319   bind(E);
2320 }
2321 
2322 void MacroAssembler::call_VM(Register oop_result,
2323                              address entry_point,
2324                              Register arg_1,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331   pass_arg1(this, arg_1);
2332   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2333   ret(0);
2334 
2335   bind(E);
2336 }
2337 
2338 void MacroAssembler::call_VM(Register oop_result,
2339                              address entry_point,
2340                              Register arg_1,
2341                              Register arg_2,
2342                              bool check_exceptions) {
2343   Label C, E;
2344   call(C, relocInfo::none);
2345   jmp(E);
2346 
2347   bind(C);
2348 
2349   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2350 
2351   pass_arg2(this, arg_2);
2352   pass_arg1(this, arg_1);
2353   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2354   ret(0);
2355 
2356   bind(E);
2357 }
2358 
2359 void MacroAssembler::call_VM(Register oop_result,
2360                              address entry_point,
2361                              Register arg_1,
2362                              Register arg_2,
2363                              Register arg_3,
2364                              bool check_exceptions) {
2365   Label C, E;
2366   call(C, relocInfo::none);
2367   jmp(E);
2368 
2369   bind(C);
2370 
2371   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2372   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2373   pass_arg3(this, arg_3);
2374 
2375   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2376   pass_arg2(this, arg_2);
2377 
2378   pass_arg1(this, arg_1);
2379   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2380   ret(0);
2381 
2382   bind(E);
2383 }
2384 
2385 void MacroAssembler::call_VM(Register oop_result,
2386                              Register last_java_sp,
2387                              address entry_point,
2388                              int number_of_arguments,
2389                              bool check_exceptions) {
2390   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2391   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2392 }
2393 
2394 void MacroAssembler::call_VM(Register oop_result,
2395                              Register last_java_sp,
2396                              address entry_point,
2397                              Register arg_1,
2398                              bool check_exceptions) {
2399   pass_arg1(this, arg_1);
2400   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2401 }
2402 
2403 void MacroAssembler::call_VM(Register oop_result,
2404                              Register last_java_sp,
2405                              address entry_point,
2406                              Register arg_1,
2407                              Register arg_2,
2408                              bool check_exceptions) {
2409 
2410   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2411   pass_arg2(this, arg_2);
2412   pass_arg1(this, arg_1);
2413   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2414 }
2415 
2416 void MacroAssembler::call_VM(Register oop_result,
2417                              Register last_java_sp,
2418                              address entry_point,
2419                              Register arg_1,
2420                              Register arg_2,
2421                              Register arg_3,
2422                              bool check_exceptions) {
2423   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2424   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2425   pass_arg3(this, arg_3);
2426   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2427   pass_arg2(this, arg_2);
2428   pass_arg1(this, arg_1);
2429   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2430 }
2431 
2432 void MacroAssembler::super_call_VM(Register oop_result,
2433                                    Register last_java_sp,
2434                                    address entry_point,
2435                                    int number_of_arguments,
2436                                    bool check_exceptions) {
2437   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2438   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2439 }
2440 
2441 void MacroAssembler::super_call_VM(Register oop_result,
2442                                    Register last_java_sp,
2443                                    address entry_point,
2444                                    Register arg_1,
2445                                    bool check_exceptions) {
2446   pass_arg1(this, arg_1);
2447   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2448 }
2449 
2450 void MacroAssembler::super_call_VM(Register oop_result,
2451                                    Register last_java_sp,
2452                                    address entry_point,
2453                                    Register arg_1,
2454                                    Register arg_2,
2455                                    bool check_exceptions) {
2456 
2457   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2458   pass_arg2(this, arg_2);
2459   pass_arg1(this, arg_1);
2460   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2461 }
2462 
2463 void MacroAssembler::super_call_VM(Register oop_result,
2464                                    Register last_java_sp,
2465                                    address entry_point,
2466                                    Register arg_1,
2467                                    Register arg_2,
2468                                    Register arg_3,
2469                                    bool check_exceptions) {
2470   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2471   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2472   pass_arg3(this, arg_3);
2473   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2474   pass_arg2(this, arg_2);
2475   pass_arg1(this, arg_1);
2476   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2477 }
2478 
2479 void MacroAssembler::call_VM_base(Register oop_result,
2480                                   Register java_thread,
2481                                   Register last_java_sp,
2482                                   address  entry_point,
2483                                   int      number_of_arguments,
2484                                   bool     check_exceptions) {
2485   // determine java_thread register
2486   if (!java_thread->is_valid()) {
2487 #ifdef _LP64
2488     java_thread = r15_thread;
2489 #else
2490     java_thread = rdi;
2491     get_thread(java_thread);
2492 #endif // LP64
2493   }
2494   // determine last_java_sp register
2495   if (!last_java_sp->is_valid()) {
2496     last_java_sp = rsp;
2497   }
2498   // debugging support
2499   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2500   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2501 #ifdef ASSERT
2502   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2503   // r12 is the heapbase.
2504   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2505 #endif // ASSERT
2506 
2507   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2508   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2509 
2510   // push java thread (becomes first argument of C function)
2511 
2512   NOT_LP64(push(java_thread); number_of_arguments++);
2513   LP64_ONLY(mov(c_rarg0, r15_thread));
2514 
2515   // set last Java frame before call
2516   assert(last_java_sp != rbp, "can't use ebp/rbp");
2517 
2518   // Only interpreter should have to set fp
2519   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2520 
2521   // do the call, remove parameters
2522   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2523 
2524   // restore the thread (cannot use the pushed argument since arguments
2525   // may be overwritten by C code generated by an optimizing compiler);
2526   // however can use the register value directly if it is callee saved.
2527   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2528     // rdi & rsi (also r15) are callee saved -> nothing to do
2529 #ifdef ASSERT
2530     guarantee(java_thread != rax, "change this code");
2531     push(rax);
2532     { Label L;
2533       get_thread(rax);
2534       cmpptr(java_thread, rax);
2535       jcc(Assembler::equal, L);
2536       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2537       bind(L);
2538     }
2539     pop(rax);
2540 #endif
2541   } else {
2542     get_thread(java_thread);
2543   }
2544   // reset last Java frame
2545   // Only interpreter should have to clear fp
2546   reset_last_Java_frame(java_thread, true);
2547 
2548    // C++ interp handles this in the interpreter
2549   check_and_handle_popframe(java_thread);
2550   check_and_handle_earlyret(java_thread);
2551 
2552   if (check_exceptions) {
2553     // check for pending exceptions (java_thread is set upon return)
2554     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2555 #ifndef _LP64
2556     jump_cc(Assembler::notEqual,
2557             RuntimeAddress(StubRoutines::forward_exception_entry()));
2558 #else
2559     // This used to conditionally jump to forward_exception however it is
2560     // possible if we relocate that the branch will not reach. So we must jump
2561     // around so we can always reach
2562 
2563     Label ok;
2564     jcc(Assembler::equal, ok);
2565     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2566     bind(ok);
2567 #endif // LP64
2568   }
2569 
2570   // get oop result if there is one and reset the value in the thread
2571   if (oop_result->is_valid()) {
2572     get_vm_result(oop_result, java_thread);
2573   }
2574 }
2575 
2576 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2577 
2578   // Calculate the value for last_Java_sp
2579   // somewhat subtle. call_VM does an intermediate call
2580   // which places a return address on the stack just under the
2581   // stack pointer as the user finsihed with it. This allows
2582   // use to retrieve last_Java_pc from last_Java_sp[-1].
2583   // On 32bit we then have to push additional args on the stack to accomplish
2584   // the actual requested call. On 64bit call_VM only can use register args
2585   // so the only extra space is the return address that call_VM created.
2586   // This hopefully explains the calculations here.
2587 
2588 #ifdef _LP64
2589   // We've pushed one address, correct last_Java_sp
2590   lea(rax, Address(rsp, wordSize));
2591 #else
2592   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2593 #endif // LP64
2594 
2595   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2596 
2597 }
2598 
2599 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2600 void MacroAssembler::call_VM_leaf0(address entry_point) {
2601   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2602 }
2603 
2604 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2605   call_VM_leaf_base(entry_point, number_of_arguments);
2606 }
2607 
2608 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2609   pass_arg0(this, arg_0);
2610   call_VM_leaf(entry_point, 1);
2611 }
2612 
2613 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2614 
2615   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2616   pass_arg1(this, arg_1);
2617   pass_arg0(this, arg_0);
2618   call_VM_leaf(entry_point, 2);
2619 }
2620 
2621 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2622   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2623   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2624   pass_arg2(this, arg_2);
2625   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2626   pass_arg1(this, arg_1);
2627   pass_arg0(this, arg_0);
2628   call_VM_leaf(entry_point, 3);
2629 }
2630 
2631 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2632   pass_arg0(this, arg_0);
2633   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2634 }
2635 
2636 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2637 
2638   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2639   pass_arg1(this, arg_1);
2640   pass_arg0(this, arg_0);
2641   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2642 }
2643 
2644 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2645   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2646   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2647   pass_arg2(this, arg_2);
2648   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2649   pass_arg1(this, arg_1);
2650   pass_arg0(this, arg_0);
2651   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2652 }
2653 
2654 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2655   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2656   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2657   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2658   pass_arg3(this, arg_3);
2659   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2660   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2661   pass_arg2(this, arg_2);
2662   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2663   pass_arg1(this, arg_1);
2664   pass_arg0(this, arg_0);
2665   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2666 }
2667 
2668 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2669   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2670   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2671   verify_oop(oop_result, "broken oop in call_VM_base");
2672 }
2673 
2674 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2675   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2676   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2677 }
2678 
2679 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2680 }
2681 
2682 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2683 }
2684 
2685 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2686   if (reachable(src1)) {
2687     cmpl(as_Address(src1), imm);
2688   } else {
2689     lea(rscratch1, src1);
2690     cmpl(Address(rscratch1, 0), imm);
2691   }
2692 }
2693 
2694 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2695   assert(!src2.is_lval(), "use cmpptr");
2696   if (reachable(src2)) {
2697     cmpl(src1, as_Address(src2));
2698   } else {
2699     lea(rscratch1, src2);
2700     cmpl(src1, Address(rscratch1, 0));
2701   }
2702 }
2703 
2704 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2705   Assembler::cmpl(src1, imm);
2706 }
2707 
2708 void MacroAssembler::cmp32(Register src1, Address src2) {
2709   Assembler::cmpl(src1, src2);
2710 }
2711 
2712 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2713   ucomisd(opr1, opr2);
2714 
2715   Label L;
2716   if (unordered_is_less) {
2717     movl(dst, -1);
2718     jcc(Assembler::parity, L);
2719     jcc(Assembler::below , L);
2720     movl(dst, 0);
2721     jcc(Assembler::equal , L);
2722     increment(dst);
2723   } else { // unordered is greater
2724     movl(dst, 1);
2725     jcc(Assembler::parity, L);
2726     jcc(Assembler::above , L);
2727     movl(dst, 0);
2728     jcc(Assembler::equal , L);
2729     decrementl(dst);
2730   }
2731   bind(L);
2732 }
2733 
2734 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2735   ucomiss(opr1, opr2);
2736 
2737   Label L;
2738   if (unordered_is_less) {
2739     movl(dst, -1);
2740     jcc(Assembler::parity, L);
2741     jcc(Assembler::below , L);
2742     movl(dst, 0);
2743     jcc(Assembler::equal , L);
2744     increment(dst);
2745   } else { // unordered is greater
2746     movl(dst, 1);
2747     jcc(Assembler::parity, L);
2748     jcc(Assembler::above , L);
2749     movl(dst, 0);
2750     jcc(Assembler::equal , L);
2751     decrementl(dst);
2752   }
2753   bind(L);
2754 }
2755 
2756 
2757 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2758   if (reachable(src1)) {
2759     cmpb(as_Address(src1), imm);
2760   } else {
2761     lea(rscratch1, src1);
2762     cmpb(Address(rscratch1, 0), imm);
2763   }
2764 }
2765 
2766 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2767 #ifdef _LP64
2768   if (src2.is_lval()) {
2769     movptr(rscratch1, src2);
2770     Assembler::cmpq(src1, rscratch1);
2771   } else if (reachable(src2)) {
2772     cmpq(src1, as_Address(src2));
2773   } else {
2774     lea(rscratch1, src2);
2775     Assembler::cmpq(src1, Address(rscratch1, 0));
2776   }
2777 #else
2778   if (src2.is_lval()) {
2779     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2780   } else {
2781     cmpl(src1, as_Address(src2));
2782   }
2783 #endif // _LP64
2784 }
2785 
2786 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2787   assert(src2.is_lval(), "not a mem-mem compare");
2788 #ifdef _LP64
2789   // moves src2's literal address
2790   movptr(rscratch1, src2);
2791   Assembler::cmpq(src1, rscratch1);
2792 #else
2793   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2794 #endif // _LP64
2795 }
2796 
2797 void MacroAssembler::cmpoop(Register src1, Register src2) {
2798   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2799   bs->obj_equals(this, src1, src2);
2800 }
2801 
2802 void MacroAssembler::cmpoop(Register src1, Address src2) {
2803   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2804   bs->obj_equals(this, src1, src2);
2805 }
2806 
2807 #ifdef _LP64
2808 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2809   movoop(rscratch1, src2);
2810   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2811   bs->obj_equals(this, src1, rscratch1);
2812 }
2813 #endif
2814 
2815 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2816   if (reachable(adr)) {
2817     if (os::is_MP())
2818       lock();
2819     cmpxchgptr(reg, as_Address(adr));
2820   } else {
2821     lea(rscratch1, adr);
2822     if (os::is_MP())
2823       lock();
2824     cmpxchgptr(reg, Address(rscratch1, 0));
2825   }
2826 }
2827 
2828 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2829   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2830 }
2831 
2832 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2833   if (reachable(src)) {
2834     Assembler::comisd(dst, as_Address(src));
2835   } else {
2836     lea(rscratch1, src);
2837     Assembler::comisd(dst, Address(rscratch1, 0));
2838   }
2839 }
2840 
2841 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2842   if (reachable(src)) {
2843     Assembler::comiss(dst, as_Address(src));
2844   } else {
2845     lea(rscratch1, src);
2846     Assembler::comiss(dst, Address(rscratch1, 0));
2847   }
2848 }
2849 
2850 
2851 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2852   Condition negated_cond = negate_condition(cond);
2853   Label L;
2854   jcc(negated_cond, L);
2855   pushf(); // Preserve flags
2856   atomic_incl(counter_addr);
2857   popf();
2858   bind(L);
2859 }
2860 
2861 int MacroAssembler::corrected_idivl(Register reg) {
2862   // Full implementation of Java idiv and irem; checks for
2863   // special case as described in JVM spec., p.243 & p.271.
2864   // The function returns the (pc) offset of the idivl
2865   // instruction - may be needed for implicit exceptions.
2866   //
2867   //         normal case                           special case
2868   //
2869   // input : rax,: dividend                         min_int
2870   //         reg: divisor   (may not be rax,/rdx)   -1
2871   //
2872   // output: rax,: quotient  (= rax, idiv reg)       min_int
2873   //         rdx: remainder (= rax, irem reg)       0
2874   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2875   const int min_int = 0x80000000;
2876   Label normal_case, special_case;
2877 
2878   // check for special case
2879   cmpl(rax, min_int);
2880   jcc(Assembler::notEqual, normal_case);
2881   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2882   cmpl(reg, -1);
2883   jcc(Assembler::equal, special_case);
2884 
2885   // handle normal case
2886   bind(normal_case);
2887   cdql();
2888   int idivl_offset = offset();
2889   idivl(reg);
2890 
2891   // normal and special case exit
2892   bind(special_case);
2893 
2894   return idivl_offset;
2895 }
2896 
2897 
2898 
2899 void MacroAssembler::decrementl(Register reg, int value) {
2900   if (value == min_jint) {subl(reg, value) ; return; }
2901   if (value <  0) { incrementl(reg, -value); return; }
2902   if (value == 0) {                        ; return; }
2903   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2904   /* else */      { subl(reg, value)       ; return; }
2905 }
2906 
2907 void MacroAssembler::decrementl(Address dst, int value) {
2908   if (value == min_jint) {subl(dst, value) ; return; }
2909   if (value <  0) { incrementl(dst, -value); return; }
2910   if (value == 0) {                        ; return; }
2911   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2912   /* else */      { subl(dst, value)       ; return; }
2913 }
2914 
2915 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2916   assert (shift_value > 0, "illegal shift value");
2917   Label _is_positive;
2918   testl (reg, reg);
2919   jcc (Assembler::positive, _is_positive);
2920   int offset = (1 << shift_value) - 1 ;
2921 
2922   if (offset == 1) {
2923     incrementl(reg);
2924   } else {
2925     addl(reg, offset);
2926   }
2927 
2928   bind (_is_positive);
2929   sarl(reg, shift_value);
2930 }
2931 
2932 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2933   if (reachable(src)) {
2934     Assembler::divsd(dst, as_Address(src));
2935   } else {
2936     lea(rscratch1, src);
2937     Assembler::divsd(dst, Address(rscratch1, 0));
2938   }
2939 }
2940 
2941 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2942   if (reachable(src)) {
2943     Assembler::divss(dst, as_Address(src));
2944   } else {
2945     lea(rscratch1, src);
2946     Assembler::divss(dst, Address(rscratch1, 0));
2947   }
2948 }
2949 
2950 // !defined(COMPILER2) is because of stupid core builds
2951 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2952 void MacroAssembler::empty_FPU_stack() {
2953   if (VM_Version::supports_mmx()) {
2954     emms();
2955   } else {
2956     for (int i = 8; i-- > 0; ) ffree(i);
2957   }
2958 }
2959 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2960 
2961 
2962 void MacroAssembler::enter() {
2963   push(rbp);
2964   mov(rbp, rsp);
2965 }
2966 
2967 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2968 void MacroAssembler::fat_nop() {
2969   if (UseAddressNop) {
2970     addr_nop_5();
2971   } else {
2972     emit_int8(0x26); // es:
2973     emit_int8(0x2e); // cs:
2974     emit_int8(0x64); // fs:
2975     emit_int8(0x65); // gs:
2976     emit_int8((unsigned char)0x90);
2977   }
2978 }
2979 
2980 void MacroAssembler::fcmp(Register tmp) {
2981   fcmp(tmp, 1, true, true);
2982 }
2983 
2984 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2985   assert(!pop_right || pop_left, "usage error");
2986   if (VM_Version::supports_cmov()) {
2987     assert(tmp == noreg, "unneeded temp");
2988     if (pop_left) {
2989       fucomip(index);
2990     } else {
2991       fucomi(index);
2992     }
2993     if (pop_right) {
2994       fpop();
2995     }
2996   } else {
2997     assert(tmp != noreg, "need temp");
2998     if (pop_left) {
2999       if (pop_right) {
3000         fcompp();
3001       } else {
3002         fcomp(index);
3003       }
3004     } else {
3005       fcom(index);
3006     }
3007     // convert FPU condition into eflags condition via rax,
3008     save_rax(tmp);
3009     fwait(); fnstsw_ax();
3010     sahf();
3011     restore_rax(tmp);
3012   }
3013   // condition codes set as follows:
3014   //
3015   // CF (corresponds to C0) if x < y
3016   // PF (corresponds to C2) if unordered
3017   // ZF (corresponds to C3) if x = y
3018 }
3019 
3020 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3021   fcmp2int(dst, unordered_is_less, 1, true, true);
3022 }
3023 
3024 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3025   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3026   Label L;
3027   if (unordered_is_less) {
3028     movl(dst, -1);
3029     jcc(Assembler::parity, L);
3030     jcc(Assembler::below , L);
3031     movl(dst, 0);
3032     jcc(Assembler::equal , L);
3033     increment(dst);
3034   } else { // unordered is greater
3035     movl(dst, 1);
3036     jcc(Assembler::parity, L);
3037     jcc(Assembler::above , L);
3038     movl(dst, 0);
3039     jcc(Assembler::equal , L);
3040     decrementl(dst);
3041   }
3042   bind(L);
3043 }
3044 
3045 void MacroAssembler::fld_d(AddressLiteral src) {
3046   fld_d(as_Address(src));
3047 }
3048 
3049 void MacroAssembler::fld_s(AddressLiteral src) {
3050   fld_s(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fld_x(AddressLiteral src) {
3054   Assembler::fld_x(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fldcw(AddressLiteral src) {
3058   Assembler::fldcw(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3062   if (reachable(src)) {
3063     Assembler::mulpd(dst, as_Address(src));
3064   } else {
3065     lea(rscratch1, src);
3066     Assembler::mulpd(dst, Address(rscratch1, 0));
3067   }
3068 }
3069 
3070 void MacroAssembler::increase_precision() {
3071   subptr(rsp, BytesPerWord);
3072   fnstcw(Address(rsp, 0));
3073   movl(rax, Address(rsp, 0));
3074   orl(rax, 0x300);
3075   push(rax);
3076   fldcw(Address(rsp, 0));
3077   pop(rax);
3078 }
3079 
3080 void MacroAssembler::restore_precision() {
3081   fldcw(Address(rsp, 0));
3082   addptr(rsp, BytesPerWord);
3083 }
3084 
3085 void MacroAssembler::fpop() {
3086   ffree();
3087   fincstp();
3088 }
3089 
3090 void MacroAssembler::load_float(Address src) {
3091   if (UseSSE >= 1) {
3092     movflt(xmm0, src);
3093   } else {
3094     LP64_ONLY(ShouldNotReachHere());
3095     NOT_LP64(fld_s(src));
3096   }
3097 }
3098 
3099 void MacroAssembler::store_float(Address dst) {
3100   if (UseSSE >= 1) {
3101     movflt(dst, xmm0);
3102   } else {
3103     LP64_ONLY(ShouldNotReachHere());
3104     NOT_LP64(fstp_s(dst));
3105   }
3106 }
3107 
3108 void MacroAssembler::load_double(Address src) {
3109   if (UseSSE >= 2) {
3110     movdbl(xmm0, src);
3111   } else {
3112     LP64_ONLY(ShouldNotReachHere());
3113     NOT_LP64(fld_d(src));
3114   }
3115 }
3116 
3117 void MacroAssembler::store_double(Address dst) {
3118   if (UseSSE >= 2) {
3119     movdbl(dst, xmm0);
3120   } else {
3121     LP64_ONLY(ShouldNotReachHere());
3122     NOT_LP64(fstp_d(dst));
3123   }
3124 }
3125 
3126 void MacroAssembler::push_zmm(XMMRegister reg) {
3127   lea(rsp, Address(rsp, -64)); // Use lea to not affect flags
3128   evmovdqul(Address(rsp, 0), reg, Assembler::AVX_512bit);
3129 }
3130 
3131 void MacroAssembler::pop_zmm(XMMRegister reg) {
3132   evmovdqul(reg, Address(rsp, 0), Assembler::AVX_512bit);
3133   lea(rsp, Address(rsp, 64)); // Use lea to not affect flags
3134 }
3135 
3136 void MacroAssembler::fremr(Register tmp) {
3137   save_rax(tmp);
3138   { Label L;
3139     bind(L);
3140     fprem();
3141     fwait(); fnstsw_ax();
3142 #ifdef _LP64
3143     testl(rax, 0x400);
3144     jcc(Assembler::notEqual, L);
3145 #else
3146     sahf();
3147     jcc(Assembler::parity, L);
3148 #endif // _LP64
3149   }
3150   restore_rax(tmp);
3151   // Result is in ST0.
3152   // Note: fxch & fpop to get rid of ST1
3153   // (otherwise FPU stack could overflow eventually)
3154   fxch(1);
3155   fpop();
3156 }
3157 
3158 // dst = c = a * b + c
3159 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3160   Assembler::vfmadd231sd(c, a, b);
3161   if (dst != c) {
3162     movdbl(dst, c);
3163   }
3164 }
3165 
3166 // dst = c = a * b + c
3167 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3168   Assembler::vfmadd231ss(c, a, b);
3169   if (dst != c) {
3170     movflt(dst, c);
3171   }
3172 }
3173 
3174 // dst = c = a * b + c
3175 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3176   Assembler::vfmadd231pd(c, a, b, vector_len);
3177   if (dst != c) {
3178     vmovdqu(dst, c);
3179   }
3180 }
3181 
3182 // dst = c = a * b + c
3183 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3184   Assembler::vfmadd231ps(c, a, b, vector_len);
3185   if (dst != c) {
3186     vmovdqu(dst, c);
3187   }
3188 }
3189 
3190 // dst = c = a * b + c
3191 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3192   Assembler::vfmadd231pd(c, a, b, vector_len);
3193   if (dst != c) {
3194     vmovdqu(dst, c);
3195   }
3196 }
3197 
3198 // dst = c = a * b + c
3199 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3200   Assembler::vfmadd231ps(c, a, b, vector_len);
3201   if (dst != c) {
3202     vmovdqu(dst, c);
3203   }
3204 }
3205 
3206 void MacroAssembler::incrementl(AddressLiteral dst) {
3207   if (reachable(dst)) {
3208     incrementl(as_Address(dst));
3209   } else {
3210     lea(rscratch1, dst);
3211     incrementl(Address(rscratch1, 0));
3212   }
3213 }
3214 
3215 void MacroAssembler::incrementl(ArrayAddress dst) {
3216   incrementl(as_Address(dst));
3217 }
3218 
3219 void MacroAssembler::incrementl(Register reg, int value) {
3220   if (value == min_jint) {addl(reg, value) ; return; }
3221   if (value <  0) { decrementl(reg, -value); return; }
3222   if (value == 0) {                        ; return; }
3223   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3224   /* else */      { addl(reg, value)       ; return; }
3225 }
3226 
3227 void MacroAssembler::incrementl(Address dst, int value) {
3228   if (value == min_jint) {addl(dst, value) ; return; }
3229   if (value <  0) { decrementl(dst, -value); return; }
3230   if (value == 0) {                        ; return; }
3231   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3232   /* else */      { addl(dst, value)       ; return; }
3233 }
3234 
3235 void MacroAssembler::jump(AddressLiteral dst) {
3236   if (reachable(dst)) {
3237     jmp_literal(dst.target(), dst.rspec());
3238   } else {
3239     lea(rscratch1, dst);
3240     jmp(rscratch1);
3241   }
3242 }
3243 
3244 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3245   if (reachable(dst)) {
3246     InstructionMark im(this);
3247     relocate(dst.reloc());
3248     const int short_size = 2;
3249     const int long_size = 6;
3250     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3251     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3252       // 0111 tttn #8-bit disp
3253       emit_int8(0x70 | cc);
3254       emit_int8((offs - short_size) & 0xFF);
3255     } else {
3256       // 0000 1111 1000 tttn #32-bit disp
3257       emit_int8(0x0F);
3258       emit_int8((unsigned char)(0x80 | cc));
3259       emit_int32(offs - long_size);
3260     }
3261   } else {
3262 #ifdef ASSERT
3263     warning("reversing conditional branch");
3264 #endif /* ASSERT */
3265     Label skip;
3266     jccb(reverse[cc], skip);
3267     lea(rscratch1, dst);
3268     Assembler::jmp(rscratch1);
3269     bind(skip);
3270   }
3271 }
3272 
3273 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3274   if (reachable(src)) {
3275     Assembler::ldmxcsr(as_Address(src));
3276   } else {
3277     lea(rscratch1, src);
3278     Assembler::ldmxcsr(Address(rscratch1, 0));
3279   }
3280 }
3281 
3282 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3283   int off;
3284   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3285     off = offset();
3286     movsbl(dst, src); // movsxb
3287   } else {
3288     off = load_unsigned_byte(dst, src);
3289     shll(dst, 24);
3290     sarl(dst, 24);
3291   }
3292   return off;
3293 }
3294 
3295 // Note: load_signed_short used to be called load_signed_word.
3296 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3297 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3298 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3299 int MacroAssembler::load_signed_short(Register dst, Address src) {
3300   int off;
3301   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3302     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3303     // version but this is what 64bit has always done. This seems to imply
3304     // that users are only using 32bits worth.
3305     off = offset();
3306     movswl(dst, src); // movsxw
3307   } else {
3308     off = load_unsigned_short(dst, src);
3309     shll(dst, 16);
3310     sarl(dst, 16);
3311   }
3312   return off;
3313 }
3314 
3315 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3316   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3317   // and "3.9 Partial Register Penalties", p. 22).
3318   int off;
3319   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3320     off = offset();
3321     movzbl(dst, src); // movzxb
3322   } else {
3323     xorl(dst, dst);
3324     off = offset();
3325     movb(dst, src);
3326   }
3327   return off;
3328 }
3329 
3330 // Note: load_unsigned_short used to be called load_unsigned_word.
3331 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3332   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3333   // and "3.9 Partial Register Penalties", p. 22).
3334   int off;
3335   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3336     off = offset();
3337     movzwl(dst, src); // movzxw
3338   } else {
3339     xorl(dst, dst);
3340     off = offset();
3341     movw(dst, src);
3342   }
3343   return off;
3344 }
3345 
3346 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3347   switch (size_in_bytes) {
3348 #ifndef _LP64
3349   case  8:
3350     assert(dst2 != noreg, "second dest register required");
3351     movl(dst,  src);
3352     movl(dst2, src.plus_disp(BytesPerInt));
3353     break;
3354 #else
3355   case  8:  movq(dst, src); break;
3356 #endif
3357   case  4:  movl(dst, src); break;
3358   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3359   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3360   default:  ShouldNotReachHere();
3361   }
3362 }
3363 
3364 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3365   switch (size_in_bytes) {
3366 #ifndef _LP64
3367   case  8:
3368     assert(src2 != noreg, "second source register required");
3369     movl(dst,                        src);
3370     movl(dst.plus_disp(BytesPerInt), src2);
3371     break;
3372 #else
3373   case  8:  movq(dst, src); break;
3374 #endif
3375   case  4:  movl(dst, src); break;
3376   case  2:  movw(dst, src); break;
3377   case  1:  movb(dst, src); break;
3378   default:  ShouldNotReachHere();
3379   }
3380 }
3381 
3382 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3383   if (reachable(dst)) {
3384     movl(as_Address(dst), src);
3385   } else {
3386     lea(rscratch1, dst);
3387     movl(Address(rscratch1, 0), src);
3388   }
3389 }
3390 
3391 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3392   if (reachable(src)) {
3393     movl(dst, as_Address(src));
3394   } else {
3395     lea(rscratch1, src);
3396     movl(dst, Address(rscratch1, 0));
3397   }
3398 }
3399 
3400 // C++ bool manipulation
3401 
3402 void MacroAssembler::movbool(Register dst, Address src) {
3403   if(sizeof(bool) == 1)
3404     movb(dst, src);
3405   else if(sizeof(bool) == 2)
3406     movw(dst, src);
3407   else if(sizeof(bool) == 4)
3408     movl(dst, src);
3409   else
3410     // unsupported
3411     ShouldNotReachHere();
3412 }
3413 
3414 void MacroAssembler::movbool(Address dst, bool boolconst) {
3415   if(sizeof(bool) == 1)
3416     movb(dst, (int) boolconst);
3417   else if(sizeof(bool) == 2)
3418     movw(dst, (int) boolconst);
3419   else if(sizeof(bool) == 4)
3420     movl(dst, (int) boolconst);
3421   else
3422     // unsupported
3423     ShouldNotReachHere();
3424 }
3425 
3426 void MacroAssembler::movbool(Address dst, Register src) {
3427   if(sizeof(bool) == 1)
3428     movb(dst, src);
3429   else if(sizeof(bool) == 2)
3430     movw(dst, src);
3431   else if(sizeof(bool) == 4)
3432     movl(dst, src);
3433   else
3434     // unsupported
3435     ShouldNotReachHere();
3436 }
3437 
3438 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3439   movb(as_Address(dst), src);
3440 }
3441 
3442 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3443   if (reachable(src)) {
3444     movdl(dst, as_Address(src));
3445   } else {
3446     lea(rscratch1, src);
3447     movdl(dst, Address(rscratch1, 0));
3448   }
3449 }
3450 
3451 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3452   if (reachable(src)) {
3453     movq(dst, as_Address(src));
3454   } else {
3455     lea(rscratch1, src);
3456     movq(dst, Address(rscratch1, 0));
3457   }
3458 }
3459 
3460 void MacroAssembler::setvectmask(Register dst, Register src) {
3461   Assembler::movl(dst, 1);
3462   Assembler::shlxl(dst, dst, src);
3463   Assembler::decl(dst);
3464   Assembler::kmovdl(k1, dst);
3465   Assembler::movl(dst, src);
3466 }
3467 
3468 void MacroAssembler::restorevectmask() {
3469   Assembler::knotwl(k1, k0);
3470 }
3471 
3472 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3473   if (reachable(src)) {
3474     if (UseXmmLoadAndClearUpper) {
3475       movsd (dst, as_Address(src));
3476     } else {
3477       movlpd(dst, as_Address(src));
3478     }
3479   } else {
3480     lea(rscratch1, src);
3481     if (UseXmmLoadAndClearUpper) {
3482       movsd (dst, Address(rscratch1, 0));
3483     } else {
3484       movlpd(dst, Address(rscratch1, 0));
3485     }
3486   }
3487 }
3488 
3489 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3490   if (reachable(src)) {
3491     movss(dst, as_Address(src));
3492   } else {
3493     lea(rscratch1, src);
3494     movss(dst, Address(rscratch1, 0));
3495   }
3496 }
3497 
3498 void MacroAssembler::movptr(Register dst, Register src) {
3499   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3500 }
3501 
3502 void MacroAssembler::movptr(Register dst, Address src) {
3503   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3504 }
3505 
3506 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3507 void MacroAssembler::movptr(Register dst, intptr_t src) {
3508   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3509 }
3510 
3511 void MacroAssembler::movptr(Address dst, Register src) {
3512   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3513 }
3514 
3515 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3516   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3517     Assembler::vextractf32x4(dst, src, 0);
3518   } else {
3519     Assembler::movdqu(dst, src);
3520   }
3521 }
3522 
3523 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3524   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3525     Assembler::vinsertf32x4(dst, dst, src, 0);
3526   } else {
3527     Assembler::movdqu(dst, src);
3528   }
3529 }
3530 
3531 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3532   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3533     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3534   } else {
3535     Assembler::movdqu(dst, src);
3536   }
3537 }
3538 
3539 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3540   if (reachable(src)) {
3541     movdqu(dst, as_Address(src));
3542   } else {
3543     lea(scratchReg, src);
3544     movdqu(dst, Address(scratchReg, 0));
3545   }
3546 }
3547 
3548 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3549   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3550     vextractf64x4_low(dst, src);
3551   } else {
3552     Assembler::vmovdqu(dst, src);
3553   }
3554 }
3555 
3556 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3557   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3558     vinsertf64x4_low(dst, src);
3559   } else {
3560     Assembler::vmovdqu(dst, src);
3561   }
3562 }
3563 
3564 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3565   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3566     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3567   }
3568   else {
3569     Assembler::vmovdqu(dst, src);
3570   }
3571 }
3572 
3573 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3574   if (reachable(src)) {
3575     vmovdqu(dst, as_Address(src));
3576   }
3577   else {
3578     lea(rscratch1, src);
3579     vmovdqu(dst, Address(rscratch1, 0));
3580   }
3581 }
3582 
3583 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3584   if (reachable(src)) {
3585     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3586   } else {
3587     lea(rscratch, src);
3588     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3589   }
3590 }
3591 
3592 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3593   if (reachable(src)) {
3594     Assembler::movdqa(dst, as_Address(src));
3595   } else {
3596     lea(rscratch1, src);
3597     Assembler::movdqa(dst, Address(rscratch1, 0));
3598   }
3599 }
3600 
3601 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3602   if (reachable(src)) {
3603     Assembler::movsd(dst, as_Address(src));
3604   } else {
3605     lea(rscratch1, src);
3606     Assembler::movsd(dst, Address(rscratch1, 0));
3607   }
3608 }
3609 
3610 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3611   if (reachable(src)) {
3612     Assembler::movss(dst, as_Address(src));
3613   } else {
3614     lea(rscratch1, src);
3615     Assembler::movss(dst, Address(rscratch1, 0));
3616   }
3617 }
3618 
3619 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3620   if (reachable(src)) {
3621     Assembler::mulsd(dst, as_Address(src));
3622   } else {
3623     lea(rscratch1, src);
3624     Assembler::mulsd(dst, Address(rscratch1, 0));
3625   }
3626 }
3627 
3628 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3629   if (reachable(src)) {
3630     Assembler::mulss(dst, as_Address(src));
3631   } else {
3632     lea(rscratch1, src);
3633     Assembler::mulss(dst, Address(rscratch1, 0));
3634   }
3635 }
3636 
3637 void MacroAssembler::null_check(Register reg, int offset) {
3638   if (needs_explicit_null_check(offset)) {
3639     // provoke OS NULL exception if reg = NULL by
3640     // accessing M[reg] w/o changing any (non-CC) registers
3641     // NOTE: cmpl is plenty here to provoke a segv
3642     cmpptr(rax, Address(reg, 0));
3643     // Note: should probably use testl(rax, Address(reg, 0));
3644     //       may be shorter code (however, this version of
3645     //       testl needs to be implemented first)
3646   } else {
3647     // nothing to do, (later) access of M[reg + offset]
3648     // will provoke OS NULL exception if reg = NULL
3649   }
3650 }
3651 
3652 void MacroAssembler::os_breakpoint() {
3653   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3654   // (e.g., MSVC can't call ps() otherwise)
3655   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3656 }
3657 
3658 void MacroAssembler::unimplemented(const char* what) {
3659   const char* buf = NULL;
3660   {
3661     ResourceMark rm;
3662     stringStream ss;
3663     ss.print("unimplemented: %s", what);
3664     buf = code_string(ss.as_string());
3665   }
3666   stop(buf);
3667 }
3668 
3669 #ifdef _LP64
3670 #define XSTATE_BV 0x200
3671 #endif
3672 
3673 void MacroAssembler::pop_CPU_state() {
3674   pop_FPU_state();
3675   pop_IU_state();
3676 }
3677 
3678 void MacroAssembler::pop_FPU_state() {
3679 #ifndef _LP64
3680   frstor(Address(rsp, 0));
3681 #else
3682   fxrstor(Address(rsp, 0));
3683 #endif
3684   addptr(rsp, FPUStateSizeInWords * wordSize);
3685 }
3686 
3687 void MacroAssembler::pop_IU_state() {
3688   popa();
3689   LP64_ONLY(addq(rsp, 8));
3690   popf();
3691 }
3692 
3693 // Save Integer and Float state
3694 // Warning: Stack must be 16 byte aligned (64bit)
3695 void MacroAssembler::push_CPU_state() {
3696   push_IU_state();
3697   push_FPU_state();
3698 }
3699 
3700 void MacroAssembler::push_FPU_state() {
3701   subptr(rsp, FPUStateSizeInWords * wordSize);
3702 #ifndef _LP64
3703   fnsave(Address(rsp, 0));
3704   fwait();
3705 #else
3706   fxsave(Address(rsp, 0));
3707 #endif // LP64
3708 }
3709 
3710 void MacroAssembler::push_IU_state() {
3711   // Push flags first because pusha kills them
3712   pushf();
3713   // Make sure rsp stays 16-byte aligned
3714   LP64_ONLY(subq(rsp, 8));
3715   pusha();
3716 }
3717 
3718 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3719   if (!java_thread->is_valid()) {
3720     java_thread = rdi;
3721     get_thread(java_thread);
3722   }
3723   // we must set sp to zero to clear frame
3724   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3725   if (clear_fp) {
3726     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3727   }
3728 
3729   // Always clear the pc because it could have been set by make_walkable()
3730   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3731 
3732   vzeroupper();
3733 }
3734 
3735 void MacroAssembler::restore_rax(Register tmp) {
3736   if (tmp == noreg) pop(rax);
3737   else if (tmp != rax) mov(rax, tmp);
3738 }
3739 
3740 void MacroAssembler::round_to(Register reg, int modulus) {
3741   addptr(reg, modulus - 1);
3742   andptr(reg, -modulus);
3743 }
3744 
3745 void MacroAssembler::save_rax(Register tmp) {
3746   if (tmp == noreg) push(rax);
3747   else if (tmp != rax) mov(tmp, rax);
3748 }
3749 
3750 // Write serialization page so VM thread can do a pseudo remote membar.
3751 // We use the current thread pointer to calculate a thread specific
3752 // offset to write to within the page. This minimizes bus traffic
3753 // due to cache line collision.
3754 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3755   movl(tmp, thread);
3756   shrl(tmp, os::get_serialize_page_shift_count());
3757   andl(tmp, (os::vm_page_size() - sizeof(int)));
3758 
3759   Address index(noreg, tmp, Address::times_1);
3760   ExternalAddress page(os::get_memory_serialize_page());
3761 
3762   // Size of store must match masking code above
3763   movl(as_Address(ArrayAddress(page, index)), tmp);
3764 }
3765 
3766 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3767   if (SafepointMechanism::uses_thread_local_poll()) {
3768 #ifdef _LP64
3769     assert(thread_reg == r15_thread, "should be");
3770 #else
3771     if (thread_reg == noreg) {
3772       thread_reg = temp_reg;
3773       get_thread(thread_reg);
3774     }
3775 #endif
3776     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3777     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3778   } else {
3779     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3780         SafepointSynchronize::_not_synchronized);
3781     jcc(Assembler::notEqual, slow_path);
3782   }
3783 }
3784 
3785 // Calls to C land
3786 //
3787 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3788 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3789 // has to be reset to 0. This is required to allow proper stack traversal.
3790 void MacroAssembler::set_last_Java_frame(Register java_thread,
3791                                          Register last_java_sp,
3792                                          Register last_java_fp,
3793                                          address  last_java_pc) {
3794   vzeroupper();
3795   // determine java_thread register
3796   if (!java_thread->is_valid()) {
3797     java_thread = rdi;
3798     get_thread(java_thread);
3799   }
3800   // determine last_java_sp register
3801   if (!last_java_sp->is_valid()) {
3802     last_java_sp = rsp;
3803   }
3804 
3805   // last_java_fp is optional
3806 
3807   if (last_java_fp->is_valid()) {
3808     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3809   }
3810 
3811   // last_java_pc is optional
3812 
3813   if (last_java_pc != NULL) {
3814     lea(Address(java_thread,
3815                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3816         InternalAddress(last_java_pc));
3817 
3818   }
3819   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3820 }
3821 
3822 void MacroAssembler::shlptr(Register dst, int imm8) {
3823   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3824 }
3825 
3826 void MacroAssembler::shrptr(Register dst, int imm8) {
3827   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3828 }
3829 
3830 void MacroAssembler::sign_extend_byte(Register reg) {
3831   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3832     movsbl(reg, reg); // movsxb
3833   } else {
3834     shll(reg, 24);
3835     sarl(reg, 24);
3836   }
3837 }
3838 
3839 void MacroAssembler::sign_extend_short(Register reg) {
3840   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3841     movswl(reg, reg); // movsxw
3842   } else {
3843     shll(reg, 16);
3844     sarl(reg, 16);
3845   }
3846 }
3847 
3848 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3849   assert(reachable(src), "Address should be reachable");
3850   testl(dst, as_Address(src));
3851 }
3852 
3853 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3854   int dst_enc = dst->encoding();
3855   int src_enc = src->encoding();
3856   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3857     Assembler::pcmpeqb(dst, src);
3858   } else if ((dst_enc < 16) && (src_enc < 16)) {
3859     Assembler::pcmpeqb(dst, src);
3860   } else if (src_enc < 16) {
3861     push_zmm(xmm0);
3862     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3863     Assembler::pcmpeqb(xmm0, src);
3864     movdqu(dst, xmm0);
3865     pop_zmm(xmm0);
3866   } else if (dst_enc < 16) {
3867     push_zmm(xmm0);
3868     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3869     Assembler::pcmpeqb(dst, xmm0);
3870     pop_zmm(xmm0);
3871   } else {
3872     push_zmm(xmm0);
3873     push_zmm(xmm1);
3874     movdqu(xmm0, src);
3875     movdqu(xmm1, dst);
3876     Assembler::pcmpeqb(xmm1, xmm0);
3877     movdqu(dst, xmm1);
3878     pop_zmm(xmm1);
3879     pop_zmm(xmm0);
3880   }
3881 }
3882 
3883 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3884   int dst_enc = dst->encoding();
3885   int src_enc = src->encoding();
3886   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3887     Assembler::pcmpeqw(dst, src);
3888   } else if ((dst_enc < 16) && (src_enc < 16)) {
3889     Assembler::pcmpeqw(dst, src);
3890   } else if (src_enc < 16) {
3891     push_zmm(xmm0);
3892     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3893     Assembler::pcmpeqw(xmm0, src);
3894     movdqu(dst, xmm0);
3895     pop_zmm(xmm0);
3896   } else if (dst_enc < 16) {
3897     push_zmm(xmm0);
3898     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3899     Assembler::pcmpeqw(dst, xmm0);
3900     pop_zmm(xmm0);
3901   } else {
3902     push_zmm(xmm0);
3903     push_zmm(xmm1);
3904     movdqu(xmm0, src);
3905     movdqu(xmm1, dst);
3906     Assembler::pcmpeqw(xmm1, xmm0);
3907     movdqu(dst, xmm1);
3908     pop_zmm(xmm1);
3909     pop_zmm(xmm0);
3910   }
3911 }
3912 
3913 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3914   int dst_enc = dst->encoding();
3915   if (dst_enc < 16) {
3916     Assembler::pcmpestri(dst, src, imm8);
3917   } else {
3918     push_zmm(xmm0);
3919     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3920     Assembler::pcmpestri(xmm0, src, imm8);
3921     movdqu(dst, xmm0);
3922     pop_zmm(xmm0);
3923   }
3924 }
3925 
3926 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3927   int dst_enc = dst->encoding();
3928   int src_enc = src->encoding();
3929   if ((dst_enc < 16) && (src_enc < 16)) {
3930     Assembler::pcmpestri(dst, src, imm8);
3931   } else if (src_enc < 16) {
3932     push_zmm(xmm0);
3933     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3934     Assembler::pcmpestri(xmm0, src, imm8);
3935     movdqu(dst, xmm0);
3936     pop_zmm(xmm0);
3937   } else if (dst_enc < 16) {
3938     push_zmm(xmm0);
3939     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3940     Assembler::pcmpestri(dst, xmm0, imm8);
3941     pop_zmm(xmm0);
3942   } else {
3943     push_zmm(xmm0);
3944     push_zmm(xmm1);
3945     movdqu(xmm0, src);
3946     movdqu(xmm1, dst);
3947     Assembler::pcmpestri(xmm1, xmm0, imm8);
3948     movdqu(dst, xmm1);
3949     pop_zmm(xmm1);
3950     pop_zmm(xmm0);
3951   }
3952 }
3953 
3954 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3955   int dst_enc = dst->encoding();
3956   int src_enc = src->encoding();
3957   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3958     Assembler::pmovzxbw(dst, src);
3959   } else if ((dst_enc < 16) && (src_enc < 16)) {
3960     Assembler::pmovzxbw(dst, src);
3961   } else if (src_enc < 16) {
3962     push_zmm(xmm0);
3963     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3964     Assembler::pmovzxbw(xmm0, src);
3965     movdqu(dst, xmm0);
3966     pop_zmm(xmm0);
3967   } else if (dst_enc < 16) {
3968     push_zmm(xmm0);
3969     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3970     Assembler::pmovzxbw(dst, xmm0);
3971     pop_zmm(xmm0);
3972   } else {
3973     push_zmm(xmm0);
3974     push_zmm(xmm1);
3975     movdqu(xmm0, src);
3976     movdqu(xmm1, dst);
3977     Assembler::pmovzxbw(xmm1, xmm0);
3978     movdqu(dst, xmm1);
3979     pop_zmm(xmm1);
3980     pop_zmm(xmm0);
3981   }
3982 }
3983 
3984 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3985   int dst_enc = dst->encoding();
3986   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3987     Assembler::pmovzxbw(dst, src);
3988   } else if (dst_enc < 16) {
3989     Assembler::pmovzxbw(dst, src);
3990   } else {
3991     push_zmm(xmm0);
3992     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3993     Assembler::pmovzxbw(xmm0, src);
3994     movdqu(dst, xmm0);
3995     pop_zmm(xmm0);
3996   }
3997 }
3998 
3999 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
4000   int src_enc = src->encoding();
4001   if (src_enc < 16) {
4002     Assembler::pmovmskb(dst, src);
4003   } else {
4004     push_zmm(xmm0);
4005     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4006     Assembler::pmovmskb(dst, xmm0);
4007     pop_zmm(xmm0);
4008   }
4009 }
4010 
4011 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
4012   int dst_enc = dst->encoding();
4013   int src_enc = src->encoding();
4014   if ((dst_enc < 16) && (src_enc < 16)) {
4015     Assembler::ptest(dst, src);
4016   } else if (src_enc < 16) {
4017     push_zmm(xmm0);
4018     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4019     Assembler::ptest(xmm0, src);
4020     pop_zmm(xmm0);
4021   } else if (dst_enc < 16) {
4022     push_zmm(xmm0);
4023     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4024     Assembler::ptest(dst, xmm0);
4025     pop_zmm(xmm0);
4026   } else {
4027     push_zmm(xmm0);
4028     push_zmm(xmm1);
4029     movdqu(xmm0, src);
4030     movdqu(xmm1, dst);
4031     Assembler::ptest(xmm1, xmm0);
4032     pop_zmm(xmm1);
4033     pop_zmm(xmm0);
4034   }
4035 }
4036 
4037 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4038   if (reachable(src)) {
4039     Assembler::sqrtsd(dst, as_Address(src));
4040   } else {
4041     lea(rscratch1, src);
4042     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4043   }
4044 }
4045 
4046 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4047   if (reachable(src)) {
4048     Assembler::sqrtss(dst, as_Address(src));
4049   } else {
4050     lea(rscratch1, src);
4051     Assembler::sqrtss(dst, Address(rscratch1, 0));
4052   }
4053 }
4054 
4055 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4056   if (reachable(src)) {
4057     Assembler::subsd(dst, as_Address(src));
4058   } else {
4059     lea(rscratch1, src);
4060     Assembler::subsd(dst, Address(rscratch1, 0));
4061   }
4062 }
4063 
4064 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4065   if (reachable(src)) {
4066     Assembler::subss(dst, as_Address(src));
4067   } else {
4068     lea(rscratch1, src);
4069     Assembler::subss(dst, Address(rscratch1, 0));
4070   }
4071 }
4072 
4073 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4074   if (reachable(src)) {
4075     Assembler::ucomisd(dst, as_Address(src));
4076   } else {
4077     lea(rscratch1, src);
4078     Assembler::ucomisd(dst, Address(rscratch1, 0));
4079   }
4080 }
4081 
4082 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4083   if (reachable(src)) {
4084     Assembler::ucomiss(dst, as_Address(src));
4085   } else {
4086     lea(rscratch1, src);
4087     Assembler::ucomiss(dst, Address(rscratch1, 0));
4088   }
4089 }
4090 
4091 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4092   // Used in sign-bit flipping with aligned address.
4093   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4094   if (reachable(src)) {
4095     Assembler::xorpd(dst, as_Address(src));
4096   } else {
4097     lea(rscratch1, src);
4098     Assembler::xorpd(dst, Address(rscratch1, 0));
4099   }
4100 }
4101 
4102 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4103   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4104     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4105   }
4106   else {
4107     Assembler::xorpd(dst, src);
4108   }
4109 }
4110 
4111 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4112   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4113     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4114   } else {
4115     Assembler::xorps(dst, src);
4116   }
4117 }
4118 
4119 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4120   // Used in sign-bit flipping with aligned address.
4121   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4122   if (reachable(src)) {
4123     Assembler::xorps(dst, as_Address(src));
4124   } else {
4125     lea(rscratch1, src);
4126     Assembler::xorps(dst, Address(rscratch1, 0));
4127   }
4128 }
4129 
4130 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4131   // Used in sign-bit flipping with aligned address.
4132   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4133   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4134   if (reachable(src)) {
4135     Assembler::pshufb(dst, as_Address(src));
4136   } else {
4137     lea(rscratch1, src);
4138     Assembler::pshufb(dst, Address(rscratch1, 0));
4139   }
4140 }
4141 
4142 // AVX 3-operands instructions
4143 
4144 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4145   if (reachable(src)) {
4146     vaddsd(dst, nds, as_Address(src));
4147   } else {
4148     lea(rscratch1, src);
4149     vaddsd(dst, nds, Address(rscratch1, 0));
4150   }
4151 }
4152 
4153 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4154   if (reachable(src)) {
4155     vaddss(dst, nds, as_Address(src));
4156   } else {
4157     lea(rscratch1, src);
4158     vaddss(dst, nds, Address(rscratch1, 0));
4159   }
4160 }
4161 
4162 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4163   int dst_enc = dst->encoding();
4164   int nds_enc = nds->encoding();
4165   int src_enc = src->encoding();
4166   if ((dst_enc < 16) && (nds_enc < 16)) {
4167     vandps(dst, nds, negate_field, vector_len);
4168   } else if ((src_enc < 16) && (dst_enc < 16)) {
4169     // Use src scratch register
4170     evmovdqul(src, nds, Assembler::AVX_512bit);
4171     vandps(dst, src, negate_field, vector_len);
4172   } else if (dst_enc < 16) {
4173     evmovdqul(dst, nds, Assembler::AVX_512bit);
4174     vandps(dst, dst, negate_field, vector_len);
4175   } else if (nds_enc < 16) {
4176     vandps(nds, nds, negate_field, vector_len);
4177     evmovdqul(dst, nds, Assembler::AVX_512bit);
4178   } else if (src_enc < 16) {
4179     evmovdqul(src, nds, Assembler::AVX_512bit);
4180     vandps(src, src, negate_field, vector_len);
4181     evmovdqul(dst, src, Assembler::AVX_512bit);
4182   } else {
4183     if (src_enc != dst_enc) {
4184       // Use src scratch register
4185       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4186       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4187       vandps(xmm0, xmm0, negate_field, vector_len);
4188       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4189       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4190     } else {
4191       push_zmm(xmm0);
4192       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4193       vandps(xmm0, xmm0, negate_field, vector_len);
4194       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4195       pop_zmm(xmm0);
4196     }
4197   }
4198 }
4199 
4200 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4201   int dst_enc = dst->encoding();
4202   int nds_enc = nds->encoding();
4203   int src_enc = src->encoding();
4204   if ((dst_enc < 16) && (nds_enc < 16)) {
4205     vandpd(dst, nds, negate_field, vector_len);
4206   } else if ((src_enc < 16) && (dst_enc < 16)) {
4207     // Use src scratch register
4208     evmovdqul(src, nds, Assembler::AVX_512bit);
4209     vandpd(dst, src, negate_field, vector_len);
4210   } else if (dst_enc < 16) {
4211     evmovdqul(dst, nds, Assembler::AVX_512bit);
4212     vandpd(dst, dst, negate_field, vector_len);
4213   } else if (nds_enc < 16) {
4214     vandpd(nds, nds, negate_field, vector_len);
4215     evmovdqul(dst, nds, Assembler::AVX_512bit);
4216   } else if (src_enc < 16) {
4217     evmovdqul(src, nds, Assembler::AVX_512bit);
4218     vandpd(src, src, negate_field, vector_len);
4219     evmovdqul(dst, src, Assembler::AVX_512bit);
4220   } else {
4221     if (src_enc != dst_enc) {
4222       evmovdqul(src, xmm0, Assembler::AVX_512bit);
4223       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4224       vandpd(xmm0, xmm0, negate_field, vector_len);
4225       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4226       evmovdqul(xmm0, src, Assembler::AVX_512bit);
4227     } else {
4228       push_zmm(xmm0);
4229       evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4230       vandpd(xmm0, xmm0, negate_field, vector_len);
4231       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4232       pop_zmm(xmm0);
4233     }
4234   }
4235 }
4236 
4237 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4238   int dst_enc = dst->encoding();
4239   int nds_enc = nds->encoding();
4240   int src_enc = src->encoding();
4241   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4242     Assembler::vpaddb(dst, nds, src, vector_len);
4243   } else if ((dst_enc < 16) && (src_enc < 16)) {
4244     Assembler::vpaddb(dst, dst, src, vector_len);
4245   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4246     // use nds as scratch for src
4247     evmovdqul(nds, src, Assembler::AVX_512bit);
4248     Assembler::vpaddb(dst, dst, nds, vector_len);
4249   } else if ((src_enc < 16) && (nds_enc < 16)) {
4250     // use nds as scratch for dst
4251     evmovdqul(nds, dst, Assembler::AVX_512bit);
4252     Assembler::vpaddb(nds, nds, src, vector_len);
4253     evmovdqul(dst, nds, Assembler::AVX_512bit);
4254   } else if (dst_enc < 16) {
4255     // use nds as scatch for xmm0 to hold src
4256     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4257     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4258     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4259     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4260   } else {
4261     // worse case scenario, all regs are in the upper bank
4262     push_zmm(xmm1);
4263     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4264     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4265     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4266     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4267     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4268     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4269     pop_zmm(xmm1);
4270   }
4271 }
4272 
4273 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4274   int dst_enc = dst->encoding();
4275   int nds_enc = nds->encoding();
4276   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4277     Assembler::vpaddb(dst, nds, src, vector_len);
4278   } else if (dst_enc < 16) {
4279     Assembler::vpaddb(dst, dst, src, vector_len);
4280   } else if (nds_enc < 16) {
4281     // implies dst_enc in upper bank with src as scratch
4282     evmovdqul(nds, dst, Assembler::AVX_512bit);
4283     Assembler::vpaddb(nds, nds, src, vector_len);
4284     evmovdqul(dst, nds, Assembler::AVX_512bit);
4285   } else {
4286     // worse case scenario, all regs in upper bank
4287     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4288     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4289     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4290     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4291     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4292   }
4293 }
4294 
4295 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4296   int dst_enc = dst->encoding();
4297   int nds_enc = nds->encoding();
4298   int src_enc = src->encoding();
4299   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4300     Assembler::vpaddw(dst, nds, src, vector_len);
4301   } else if ((dst_enc < 16) && (src_enc < 16)) {
4302     Assembler::vpaddw(dst, dst, src, vector_len);
4303   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4304     // use nds as scratch for src
4305     evmovdqul(nds, src, Assembler::AVX_512bit);
4306     Assembler::vpaddw(dst, dst, nds, vector_len);
4307   } else if ((src_enc < 16) && (nds_enc < 16)) {
4308     // use nds as scratch for dst
4309     evmovdqul(nds, dst, Assembler::AVX_512bit);
4310     Assembler::vpaddw(nds, nds, src, vector_len);
4311     evmovdqul(dst, nds, Assembler::AVX_512bit);
4312   } else if (dst_enc < 16) {
4313     // use nds as scatch for xmm0 to hold src
4314     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4315     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4316     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4317     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4318   } else {
4319     // worse case scenario, all regs are in the upper bank
4320     push_zmm(xmm1);
4321     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4322     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4323     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4324     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4325     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4326     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4327     pop_zmm(xmm1);
4328   }
4329 }
4330 
4331 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4332   int dst_enc = dst->encoding();
4333   int nds_enc = nds->encoding();
4334   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4335     Assembler::vpaddw(dst, nds, src, vector_len);
4336   } else if (dst_enc < 16) {
4337     Assembler::vpaddw(dst, dst, src, vector_len);
4338   } else if (nds_enc < 16) {
4339     // implies dst_enc in upper bank with nds as scratch
4340     evmovdqul(nds, dst, Assembler::AVX_512bit);
4341     Assembler::vpaddw(nds, nds, src, vector_len);
4342     evmovdqul(dst, nds, Assembler::AVX_512bit);
4343   } else {
4344     // worse case scenario, all regs in upper bank
4345     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4346     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4347     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4348     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4349     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4350   }
4351 }
4352 
4353 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4354   if (reachable(src)) {
4355     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4356   } else {
4357     lea(rscratch1, src);
4358     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4359   }
4360 }
4361 
4362 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4363   int dst_enc = dst->encoding();
4364   int src_enc = src->encoding();
4365   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4366     Assembler::vpbroadcastw(dst, src);
4367   } else if ((dst_enc < 16) && (src_enc < 16)) {
4368     Assembler::vpbroadcastw(dst, src);
4369   } else if (src_enc < 16) {
4370     push_zmm(xmm0);
4371     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4372     Assembler::vpbroadcastw(xmm0, src);
4373     movdqu(dst, xmm0);
4374     pop_zmm(xmm0);
4375   } else if (dst_enc < 16) {
4376     push_zmm(xmm0);
4377     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4378     Assembler::vpbroadcastw(dst, xmm0);
4379     pop_zmm(xmm0);
4380   } else {
4381     push_zmm(xmm0);
4382     push_zmm(xmm1);
4383     movdqu(xmm0, src);
4384     movdqu(xmm1, dst);
4385     Assembler::vpbroadcastw(xmm1, xmm0);
4386     movdqu(dst, xmm1);
4387     pop_zmm(xmm1);
4388     pop_zmm(xmm0);
4389   }
4390 }
4391 
4392 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4393   int dst_enc = dst->encoding();
4394   int nds_enc = nds->encoding();
4395   int src_enc = src->encoding();
4396   assert(dst_enc == nds_enc, "");
4397   if ((dst_enc < 16) && (src_enc < 16)) {
4398     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4399   } else if (src_enc < 16) {
4400     push_zmm(xmm0);
4401     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4402     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4403     movdqu(dst, xmm0);
4404     pop_zmm(xmm0);
4405   } else if (dst_enc < 16) {
4406     push_zmm(xmm0);
4407     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4408     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4409     pop_zmm(xmm0);
4410   } else {
4411     push_zmm(xmm0);
4412     push_zmm(xmm1);
4413     movdqu(xmm0, src);
4414     movdqu(xmm1, dst);
4415     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4416     movdqu(dst, xmm1);
4417     pop_zmm(xmm1);
4418     pop_zmm(xmm0);
4419   }
4420 }
4421 
4422 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4423   int dst_enc = dst->encoding();
4424   int nds_enc = nds->encoding();
4425   int src_enc = src->encoding();
4426   assert(dst_enc == nds_enc, "");
4427   if ((dst_enc < 16) && (src_enc < 16)) {
4428     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4429   } else if (src_enc < 16) {
4430     push_zmm(xmm0);
4431     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4432     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4433     movdqu(dst, xmm0);
4434     pop_zmm(xmm0);
4435   } else if (dst_enc < 16) {
4436     push_zmm(xmm0);
4437     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4438     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4439     pop_zmm(xmm0);
4440   } else {
4441     push_zmm(xmm0);
4442     push_zmm(xmm1);
4443     movdqu(xmm0, src);
4444     movdqu(xmm1, dst);
4445     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4446     movdqu(dst, xmm1);
4447     pop_zmm(xmm1);
4448     pop_zmm(xmm0);
4449   }
4450 }
4451 
4452 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4453   int dst_enc = dst->encoding();
4454   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4455     Assembler::vpmovzxbw(dst, src, vector_len);
4456   } else if (dst_enc < 16) {
4457     Assembler::vpmovzxbw(dst, src, vector_len);
4458   } else {
4459     push_zmm(xmm0);
4460     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4461     Assembler::vpmovzxbw(xmm0, src, vector_len);
4462     movdqu(dst, xmm0);
4463     pop_zmm(xmm0);
4464   }
4465 }
4466 
4467 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4468   int src_enc = src->encoding();
4469   if (src_enc < 16) {
4470     Assembler::vpmovmskb(dst, src);
4471   } else {
4472     push_zmm(xmm0);
4473     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4474     Assembler::vpmovmskb(dst, xmm0);
4475     pop_zmm(xmm0);
4476   }
4477 }
4478 
4479 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4480   int dst_enc = dst->encoding();
4481   int nds_enc = nds->encoding();
4482   int src_enc = src->encoding();
4483   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4484     Assembler::vpmullw(dst, nds, src, vector_len);
4485   } else if ((dst_enc < 16) && (src_enc < 16)) {
4486     Assembler::vpmullw(dst, dst, src, vector_len);
4487   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4488     // use nds as scratch for src
4489     evmovdqul(nds, src, Assembler::AVX_512bit);
4490     Assembler::vpmullw(dst, dst, nds, vector_len);
4491   } else if ((src_enc < 16) && (nds_enc < 16)) {
4492     // use nds as scratch for dst
4493     evmovdqul(nds, dst, Assembler::AVX_512bit);
4494     Assembler::vpmullw(nds, nds, src, vector_len);
4495     evmovdqul(dst, nds, Assembler::AVX_512bit);
4496   } else if (dst_enc < 16) {
4497     // use nds as scatch for xmm0 to hold src
4498     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4499     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4500     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4501     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4502   } else {
4503     // worse case scenario, all regs are in the upper bank
4504     push_zmm(xmm1);
4505     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4506     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4507     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4508     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4509     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4510     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4511     pop_zmm(xmm1);
4512   }
4513 }
4514 
4515 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4516   int dst_enc = dst->encoding();
4517   int nds_enc = nds->encoding();
4518   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4519     Assembler::vpmullw(dst, nds, src, vector_len);
4520   } else if (dst_enc < 16) {
4521     Assembler::vpmullw(dst, dst, src, vector_len);
4522   } else if (nds_enc < 16) {
4523     // implies dst_enc in upper bank with src as scratch
4524     evmovdqul(nds, dst, Assembler::AVX_512bit);
4525     Assembler::vpmullw(nds, nds, src, vector_len);
4526     evmovdqul(dst, nds, Assembler::AVX_512bit);
4527   } else {
4528     // worse case scenario, all regs in upper bank
4529     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4530     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4531     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4532     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4533     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4534   }
4535 }
4536 
4537 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4538   int dst_enc = dst->encoding();
4539   int nds_enc = nds->encoding();
4540   int src_enc = src->encoding();
4541   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4542     Assembler::vpsubb(dst, nds, src, vector_len);
4543   } else if ((dst_enc < 16) && (src_enc < 16)) {
4544     Assembler::vpsubb(dst, dst, src, vector_len);
4545   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4546     // use nds as scratch for src
4547     evmovdqul(nds, src, Assembler::AVX_512bit);
4548     Assembler::vpsubb(dst, dst, nds, vector_len);
4549   } else if ((src_enc < 16) && (nds_enc < 16)) {
4550     // use nds as scratch for dst
4551     evmovdqul(nds, dst, Assembler::AVX_512bit);
4552     Assembler::vpsubb(nds, nds, src, vector_len);
4553     evmovdqul(dst, nds, Assembler::AVX_512bit);
4554   } else if (dst_enc < 16) {
4555     // use nds as scatch for xmm0 to hold src
4556     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4557     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4558     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4559     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4560   } else {
4561     // worse case scenario, all regs are in the upper bank
4562     push_zmm(xmm1);
4563     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4564     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4565     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4566     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4567     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4568     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4569     pop_zmm(xmm1);
4570   }
4571 }
4572 
4573 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4574   int dst_enc = dst->encoding();
4575   int nds_enc = nds->encoding();
4576   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4577     Assembler::vpsubb(dst, nds, src, vector_len);
4578   } else if (dst_enc < 16) {
4579     Assembler::vpsubb(dst, dst, src, vector_len);
4580   } else if (nds_enc < 16) {
4581     // implies dst_enc in upper bank with src as scratch
4582     evmovdqul(nds, dst, Assembler::AVX_512bit);
4583     Assembler::vpsubb(nds, nds, src, vector_len);
4584     evmovdqul(dst, nds, Assembler::AVX_512bit);
4585   } else {
4586     // worse case scenario, all regs in upper bank
4587     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4588     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4589     Assembler::vpsubb(xmm0, xmm0, src, vector_len);
4590     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4591     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4592   }
4593 }
4594 
4595 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4596   int dst_enc = dst->encoding();
4597   int nds_enc = nds->encoding();
4598   int src_enc = src->encoding();
4599   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4600     Assembler::vpsubw(dst, nds, src, vector_len);
4601   } else if ((dst_enc < 16) && (src_enc < 16)) {
4602     Assembler::vpsubw(dst, dst, src, vector_len);
4603   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4604     // use nds as scratch for src
4605     evmovdqul(nds, src, Assembler::AVX_512bit);
4606     Assembler::vpsubw(dst, dst, nds, vector_len);
4607   } else if ((src_enc < 16) && (nds_enc < 16)) {
4608     // use nds as scratch for dst
4609     evmovdqul(nds, dst, Assembler::AVX_512bit);
4610     Assembler::vpsubw(nds, nds, src, vector_len);
4611     evmovdqul(dst, nds, Assembler::AVX_512bit);
4612   } else if (dst_enc < 16) {
4613     // use nds as scatch for xmm0 to hold src
4614     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4615     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4616     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4617     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4618   } else {
4619     // worse case scenario, all regs are in the upper bank
4620     push_zmm(xmm1);
4621     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4622     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4623     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4624     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4625     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4626     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4627     pop_zmm(xmm1);
4628   }
4629 }
4630 
4631 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4632   int dst_enc = dst->encoding();
4633   int nds_enc = nds->encoding();
4634   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4635     Assembler::vpsubw(dst, nds, src, vector_len);
4636   } else if (dst_enc < 16) {
4637     Assembler::vpsubw(dst, dst, src, vector_len);
4638   } else if (nds_enc < 16) {
4639     // implies dst_enc in upper bank with src as scratch
4640     evmovdqul(nds, dst, Assembler::AVX_512bit);
4641     Assembler::vpsubw(nds, nds, src, vector_len);
4642     evmovdqul(dst, nds, Assembler::AVX_512bit);
4643   } else {
4644     // worse case scenario, all regs in upper bank
4645     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4646     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4647     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4648     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4649     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4650   }
4651 }
4652 
4653 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4654   int dst_enc = dst->encoding();
4655   int nds_enc = nds->encoding();
4656   int shift_enc = shift->encoding();
4657   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4658     Assembler::vpsraw(dst, nds, shift, vector_len);
4659   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4660     Assembler::vpsraw(dst, dst, shift, vector_len);
4661   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4662     // use nds as scratch with shift
4663     evmovdqul(nds, shift, Assembler::AVX_512bit);
4664     Assembler::vpsraw(dst, dst, nds, vector_len);
4665   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4666     // use nds as scratch with dst
4667     evmovdqul(nds, dst, Assembler::AVX_512bit);
4668     Assembler::vpsraw(nds, nds, shift, vector_len);
4669     evmovdqul(dst, nds, Assembler::AVX_512bit);
4670   } else if (dst_enc < 16) {
4671     // use nds to save a copy of xmm0 and hold shift
4672     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4673     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4674     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4675     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4676   } else if (nds_enc < 16) {
4677     // use nds and dst as temps
4678     evmovdqul(nds, dst, Assembler::AVX_512bit);
4679     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4680     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4681     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4682     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4683     evmovdqul(dst, nds, Assembler::AVX_512bit);
4684   } else {
4685     // worse case scenario, all regs are in the upper bank
4686     push_zmm(xmm1);
4687     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4688     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4689     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4690     Assembler::vpsraw(xmm0, xmm0, xmm1, vector_len);
4691     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4692     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4693     pop_zmm(xmm1);
4694   }
4695 }
4696 
4697 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4698   int dst_enc = dst->encoding();
4699   int nds_enc = nds->encoding();
4700   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4701     Assembler::vpsraw(dst, nds, shift, vector_len);
4702   } else if (dst_enc < 16) {
4703     Assembler::vpsraw(dst, dst, shift, vector_len);
4704   } else if (nds_enc < 16) {
4705     // use nds as scratch
4706     evmovdqul(nds, dst, Assembler::AVX_512bit);
4707     Assembler::vpsraw(nds, nds, shift, vector_len);
4708     evmovdqul(dst, nds, Assembler::AVX_512bit);
4709   } else {
4710     // use nds as scratch for xmm0
4711     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4712     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4713     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4714     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4715     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4716   }
4717 }
4718 
4719 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4720   int dst_enc = dst->encoding();
4721   int nds_enc = nds->encoding();
4722   int shift_enc = shift->encoding();
4723   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4724     Assembler::vpsrlw(dst, nds, shift, vector_len);
4725   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4726     Assembler::vpsrlw(dst, dst, shift, vector_len);
4727   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4728     // use nds as scratch with shift
4729     evmovdqul(nds, shift, Assembler::AVX_512bit);
4730     Assembler::vpsrlw(dst, dst, nds, vector_len);
4731   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4732     // use nds as scratch with dst
4733     evmovdqul(nds, dst, Assembler::AVX_512bit);
4734     Assembler::vpsrlw(nds, nds, shift, vector_len);
4735     evmovdqul(dst, nds, Assembler::AVX_512bit);
4736   } else if (dst_enc < 16) {
4737     // use nds to save a copy of xmm0 and hold shift
4738     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4739     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4740     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4741     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4742   } else if (nds_enc < 16) {
4743     // use nds and dst as temps
4744     evmovdqul(nds, dst, Assembler::AVX_512bit);
4745     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4746     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4747     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4748     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4749     evmovdqul(dst, nds, Assembler::AVX_512bit);
4750   } else {
4751     // worse case scenario, all regs are in the upper bank
4752     push_zmm(xmm1);
4753     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4754     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4755     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4756     Assembler::vpsrlw(xmm0, xmm0, xmm1, vector_len);
4757     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4758     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4759     pop_zmm(xmm1);
4760   }
4761 }
4762 
4763 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4764   int dst_enc = dst->encoding();
4765   int nds_enc = nds->encoding();
4766   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4767     Assembler::vpsrlw(dst, nds, shift, vector_len);
4768   } else if (dst_enc < 16) {
4769     Assembler::vpsrlw(dst, dst, shift, vector_len);
4770   } else if (nds_enc < 16) {
4771     // use nds as scratch
4772     evmovdqul(nds, dst, Assembler::AVX_512bit);
4773     Assembler::vpsrlw(nds, nds, shift, vector_len);
4774     evmovdqul(dst, nds, Assembler::AVX_512bit);
4775   } else {
4776     // use nds as scratch for xmm0
4777     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4778     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4779     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4780     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4781     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4782   }
4783 }
4784 
4785 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4786   int dst_enc = dst->encoding();
4787   int nds_enc = nds->encoding();
4788   int shift_enc = shift->encoding();
4789   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4790     Assembler::vpsllw(dst, nds, shift, vector_len);
4791   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4792     Assembler::vpsllw(dst, dst, shift, vector_len);
4793   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4794     // use nds as scratch with shift
4795     evmovdqul(nds, shift, Assembler::AVX_512bit);
4796     Assembler::vpsllw(dst, dst, nds, vector_len);
4797   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4798     // use nds as scratch with dst
4799     evmovdqul(nds, dst, Assembler::AVX_512bit);
4800     Assembler::vpsllw(nds, nds, shift, vector_len);
4801     evmovdqul(dst, nds, Assembler::AVX_512bit);
4802   } else if (dst_enc < 16) {
4803     // use nds to save a copy of xmm0 and hold shift
4804     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4805     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4806     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4807     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4808   } else if (nds_enc < 16) {
4809     // use nds and dst as temps
4810     evmovdqul(nds, dst, Assembler::AVX_512bit);
4811     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4812     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4813     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4814     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4815     evmovdqul(dst, nds, Assembler::AVX_512bit);
4816   } else {
4817     // worse case scenario, all regs are in the upper bank
4818     push_zmm(xmm1);
4819     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4820     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4821     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4822     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4823     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4824     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4825     pop_zmm(xmm1);
4826   }
4827 }
4828 
4829 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4830   int dst_enc = dst->encoding();
4831   int nds_enc = nds->encoding();
4832   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4833     Assembler::vpsllw(dst, nds, shift, vector_len);
4834   } else if (dst_enc < 16) {
4835     Assembler::vpsllw(dst, dst, shift, vector_len);
4836   } else if (nds_enc < 16) {
4837     // use nds as scratch
4838     evmovdqul(nds, dst, Assembler::AVX_512bit);
4839     Assembler::vpsllw(nds, nds, shift, vector_len);
4840     evmovdqul(dst, nds, Assembler::AVX_512bit);
4841   } else {
4842     // use nds as scratch for xmm0
4843     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4844     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4845     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4846     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4847     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4848   }
4849 }
4850 
4851 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4852   int dst_enc = dst->encoding();
4853   int src_enc = src->encoding();
4854   if ((dst_enc < 16) && (src_enc < 16)) {
4855     Assembler::vptest(dst, src);
4856   } else if (src_enc < 16) {
4857     push_zmm(xmm0);
4858     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4859     Assembler::vptest(xmm0, src);
4860     pop_zmm(xmm0);
4861   } else if (dst_enc < 16) {
4862     push_zmm(xmm0);
4863     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4864     Assembler::vptest(dst, xmm0);
4865     pop_zmm(xmm0);
4866   } else {
4867     push_zmm(xmm0);
4868     push_zmm(xmm1);
4869     movdqu(xmm0, src);
4870     movdqu(xmm1, dst);
4871     Assembler::vptest(xmm1, xmm0);
4872     pop_zmm(xmm1);
4873     pop_zmm(xmm0);
4874   }
4875 }
4876 
4877 // This instruction exists within macros, ergo we cannot control its input
4878 // when emitted through those patterns.
4879 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4880   if (VM_Version::supports_avx512nobw()) {
4881     int dst_enc = dst->encoding();
4882     int src_enc = src->encoding();
4883     if (dst_enc == src_enc) {
4884       if (dst_enc < 16) {
4885         Assembler::punpcklbw(dst, src);
4886       } else {
4887         push_zmm(xmm0);
4888         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4889         Assembler::punpcklbw(xmm0, xmm0);
4890         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4891         pop_zmm(xmm0);
4892       }
4893     } else {
4894       if ((src_enc < 16) && (dst_enc < 16)) {
4895         Assembler::punpcklbw(dst, src);
4896       } else if (src_enc < 16) {
4897         push_zmm(xmm0);
4898         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4899         Assembler::punpcklbw(xmm0, src);
4900         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4901         pop_zmm(xmm0);
4902       } else if (dst_enc < 16) {
4903         push_zmm(xmm0);
4904         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4905         Assembler::punpcklbw(dst, xmm0);
4906         pop_zmm(xmm0);
4907       } else {
4908         push_zmm(xmm0);
4909         push_zmm(xmm1);
4910         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4911         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4912         Assembler::punpcklbw(xmm0, xmm1);
4913         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4914         pop_zmm(xmm1);
4915         pop_zmm(xmm0);
4916       }
4917     }
4918   } else {
4919     Assembler::punpcklbw(dst, src);
4920   }
4921 }
4922 
4923 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
4924   if (VM_Version::supports_avx512vl()) {
4925     Assembler::pshufd(dst, src, mode);
4926   } else {
4927     int dst_enc = dst->encoding();
4928     if (dst_enc < 16) {
4929       Assembler::pshufd(dst, src, mode);
4930     } else {
4931       push_zmm(xmm0);
4932       Assembler::pshufd(xmm0, src, mode);
4933       evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4934       pop_zmm(xmm0);
4935     }
4936   }
4937 }
4938 
4939 // This instruction exists within macros, ergo we cannot control its input
4940 // when emitted through those patterns.
4941 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4942   if (VM_Version::supports_avx512nobw()) {
4943     int dst_enc = dst->encoding();
4944     int src_enc = src->encoding();
4945     if (dst_enc == src_enc) {
4946       if (dst_enc < 16) {
4947         Assembler::pshuflw(dst, src, mode);
4948       } else {
4949         push_zmm(xmm0);
4950         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4951         Assembler::pshuflw(xmm0, xmm0, mode);
4952         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4953         pop_zmm(xmm0);
4954       }
4955     } else {
4956       if ((src_enc < 16) && (dst_enc < 16)) {
4957         Assembler::pshuflw(dst, src, mode);
4958       } else if (src_enc < 16) {
4959         push_zmm(xmm0);
4960         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4961         Assembler::pshuflw(xmm0, src, mode);
4962         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4963         pop_zmm(xmm0);
4964       } else if (dst_enc < 16) {
4965         push_zmm(xmm0);
4966         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4967         Assembler::pshuflw(dst, xmm0, mode);
4968         pop_zmm(xmm0);
4969       } else {
4970         push_zmm(xmm0);
4971         push_zmm(xmm1);
4972         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4973         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4974         Assembler::pshuflw(xmm0, xmm1, mode);
4975         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4976         pop_zmm(xmm1);
4977         pop_zmm(xmm0);
4978       }
4979     }
4980   } else {
4981     Assembler::pshuflw(dst, src, mode);
4982   }
4983 }
4984 
4985 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4986   if (reachable(src)) {
4987     vandpd(dst, nds, as_Address(src), vector_len);
4988   } else {
4989     lea(rscratch1, src);
4990     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4991   }
4992 }
4993 
4994 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4995   if (reachable(src)) {
4996     vandps(dst, nds, as_Address(src), vector_len);
4997   } else {
4998     lea(rscratch1, src);
4999     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5000   }
5001 }
5002 
5003 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5004   if (reachable(src)) {
5005     vdivsd(dst, nds, as_Address(src));
5006   } else {
5007     lea(rscratch1, src);
5008     vdivsd(dst, nds, Address(rscratch1, 0));
5009   }
5010 }
5011 
5012 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5013   if (reachable(src)) {
5014     vdivss(dst, nds, as_Address(src));
5015   } else {
5016     lea(rscratch1, src);
5017     vdivss(dst, nds, Address(rscratch1, 0));
5018   }
5019 }
5020 
5021 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5022   if (reachable(src)) {
5023     vmulsd(dst, nds, as_Address(src));
5024   } else {
5025     lea(rscratch1, src);
5026     vmulsd(dst, nds, Address(rscratch1, 0));
5027   }
5028 }
5029 
5030 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5031   if (reachable(src)) {
5032     vmulss(dst, nds, as_Address(src));
5033   } else {
5034     lea(rscratch1, src);
5035     vmulss(dst, nds, Address(rscratch1, 0));
5036   }
5037 }
5038 
5039 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5040   if (reachable(src)) {
5041     vsubsd(dst, nds, as_Address(src));
5042   } else {
5043     lea(rscratch1, src);
5044     vsubsd(dst, nds, Address(rscratch1, 0));
5045   }
5046 }
5047 
5048 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5049   if (reachable(src)) {
5050     vsubss(dst, nds, as_Address(src));
5051   } else {
5052     lea(rscratch1, src);
5053     vsubss(dst, nds, Address(rscratch1, 0));
5054   }
5055 }
5056 
5057 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5058   int nds_enc = nds->encoding();
5059   int dst_enc = dst->encoding();
5060   bool dst_upper_bank = (dst_enc > 15);
5061   bool nds_upper_bank = (nds_enc > 15);
5062   if (VM_Version::supports_avx512novl() &&
5063       (nds_upper_bank || dst_upper_bank)) {
5064     if (dst_upper_bank) {
5065       push_zmm(xmm0);
5066       movflt(xmm0, nds);
5067       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5068       movflt(dst, xmm0);
5069       pop_zmm(xmm0);
5070     } else {
5071       movflt(dst, nds);
5072       vxorps(dst, dst, src, Assembler::AVX_128bit);
5073     }
5074   } else {
5075     vxorps(dst, nds, src, Assembler::AVX_128bit);
5076   }
5077 }
5078 
5079 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5080   int nds_enc = nds->encoding();
5081   int dst_enc = dst->encoding();
5082   bool dst_upper_bank = (dst_enc > 15);
5083   bool nds_upper_bank = (nds_enc > 15);
5084   if (VM_Version::supports_avx512novl() &&
5085       (nds_upper_bank || dst_upper_bank)) {
5086     if (dst_upper_bank) {
5087       push_zmm(xmm0);
5088       movdbl(xmm0, nds);
5089       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5090       movdbl(dst, xmm0);
5091       pop_zmm(xmm0);
5092     } else {
5093       movdbl(dst, nds);
5094       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5095     }
5096   } else {
5097     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5098   }
5099 }
5100 
5101 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5102   if (reachable(src)) {
5103     vxorpd(dst, nds, as_Address(src), vector_len);
5104   } else {
5105     lea(rscratch1, src);
5106     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5107   }
5108 }
5109 
5110 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5111   if (reachable(src)) {
5112     vxorps(dst, nds, as_Address(src), vector_len);
5113   } else {
5114     lea(rscratch1, src);
5115     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5116   }
5117 }
5118 
5119 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5120   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5121   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5122   // The inverted mask is sign-extended
5123   andptr(possibly_jweak, inverted_jweak_mask);
5124 }
5125 
5126 void MacroAssembler::resolve_jobject(Register value,
5127                                      Register thread,
5128                                      Register tmp) {
5129   assert_different_registers(value, thread, tmp);
5130   Label done, not_weak;
5131   testptr(value, value);
5132   jcc(Assembler::zero, done);                // Use NULL as-is.
5133   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5134   jcc(Assembler::zero, not_weak);
5135   // Resolve jweak.
5136   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5137                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
5138   verify_oop(value);
5139   jmp(done);
5140   bind(not_weak);
5141   // Resolve (untagged) jobject.
5142   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
5143   verify_oop(value);
5144   bind(done);
5145 }
5146 
5147 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5148   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5149 }
5150 
5151 // Force generation of a 4 byte immediate value even if it fits into 8bit
5152 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5153   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5154 }
5155 
5156 void MacroAssembler::subptr(Register dst, Register src) {
5157   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5158 }
5159 
5160 // C++ bool manipulation
5161 void MacroAssembler::testbool(Register dst) {
5162   if(sizeof(bool) == 1)
5163     testb(dst, 0xff);
5164   else if(sizeof(bool) == 2) {
5165     // testw implementation needed for two byte bools
5166     ShouldNotReachHere();
5167   } else if(sizeof(bool) == 4)
5168     testl(dst, dst);
5169   else
5170     // unsupported
5171     ShouldNotReachHere();
5172 }
5173 
5174 void MacroAssembler::testptr(Register dst, Register src) {
5175   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5176 }
5177 
5178 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5179 void MacroAssembler::tlab_allocate(Register thread, Register obj,
5180                                    Register var_size_in_bytes,
5181                                    int con_size_in_bytes,
5182                                    Register t1,
5183                                    Register t2,
5184                                    Label& slow_case) {
5185   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5186   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
5187 }
5188 
5189 // Defines obj, preserves var_size_in_bytes
5190 void MacroAssembler::eden_allocate(Register thread, Register obj,
5191                                    Register var_size_in_bytes,
5192                                    int con_size_in_bytes,
5193                                    Register t1,
5194                                    Label& slow_case) {
5195   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5196   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
5197 }
5198 
5199 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5200 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5201   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5202   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5203   Label done;
5204 
5205   testptr(length_in_bytes, length_in_bytes);
5206   jcc(Assembler::zero, done);
5207 
5208   // initialize topmost word, divide index by 2, check if odd and test if zero
5209   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5210 #ifdef ASSERT
5211   {
5212     Label L;
5213     testptr(length_in_bytes, BytesPerWord - 1);
5214     jcc(Assembler::zero, L);
5215     stop("length must be a multiple of BytesPerWord");
5216     bind(L);
5217   }
5218 #endif
5219   Register index = length_in_bytes;
5220   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5221   if (UseIncDec) {
5222     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5223   } else {
5224     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5225     shrptr(index, 1);
5226   }
5227 #ifndef _LP64
5228   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5229   {
5230     Label even;
5231     // note: if index was a multiple of 8, then it cannot
5232     //       be 0 now otherwise it must have been 0 before
5233     //       => if it is even, we don't need to check for 0 again
5234     jcc(Assembler::carryClear, even);
5235     // clear topmost word (no jump would be needed if conditional assignment worked here)
5236     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5237     // index could be 0 now, must check again
5238     jcc(Assembler::zero, done);
5239     bind(even);
5240   }
5241 #endif // !_LP64
5242   // initialize remaining object fields: index is a multiple of 2 now
5243   {
5244     Label loop;
5245     bind(loop);
5246     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5247     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5248     decrement(index);
5249     jcc(Assembler::notZero, loop);
5250   }
5251 
5252   bind(done);
5253 }
5254 
5255 // Look up the method for a megamorphic invokeinterface call.
5256 // The target method is determined by <intf_klass, itable_index>.
5257 // The receiver klass is in recv_klass.
5258 // On success, the result will be in method_result, and execution falls through.
5259 // On failure, execution transfers to the given label.
5260 void MacroAssembler::lookup_interface_method(Register recv_klass,
5261                                              Register intf_klass,
5262                                              RegisterOrConstant itable_index,
5263                                              Register method_result,
5264                                              Register scan_temp,
5265                                              Label& L_no_such_interface,
5266                                              bool return_method) {
5267   assert_different_registers(recv_klass, intf_klass, scan_temp);
5268   assert_different_registers(method_result, intf_klass, scan_temp);
5269   assert(recv_klass != method_result || !return_method,
5270          "recv_klass can be destroyed when method isn't needed");
5271 
5272   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5273          "caller must use same register for non-constant itable index as for method");
5274 
5275   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5276   int vtable_base = in_bytes(Klass::vtable_start_offset());
5277   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5278   int scan_step   = itableOffsetEntry::size() * wordSize;
5279   int vte_size    = vtableEntry::size_in_bytes();
5280   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5281   assert(vte_size == wordSize, "else adjust times_vte_scale");
5282 
5283   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5284 
5285   // %%% Could store the aligned, prescaled offset in the klassoop.
5286   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5287 
5288   if (return_method) {
5289     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5290     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5291     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5292   }
5293 
5294   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5295   //   if (scan->interface() == intf) {
5296   //     result = (klass + scan->offset() + itable_index);
5297   //   }
5298   // }
5299   Label search, found_method;
5300 
5301   for (int peel = 1; peel >= 0; peel--) {
5302     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5303     cmpptr(intf_klass, method_result);
5304 
5305     if (peel) {
5306       jccb(Assembler::equal, found_method);
5307     } else {
5308       jccb(Assembler::notEqual, search);
5309       // (invert the test to fall through to found_method...)
5310     }
5311 
5312     if (!peel)  break;
5313 
5314     bind(search);
5315 
5316     // Check that the previous entry is non-null.  A null entry means that
5317     // the receiver class doesn't implement the interface, and wasn't the
5318     // same as when the caller was compiled.
5319     testptr(method_result, method_result);
5320     jcc(Assembler::zero, L_no_such_interface);
5321     addptr(scan_temp, scan_step);
5322   }
5323 
5324   bind(found_method);
5325 
5326   if (return_method) {
5327     // Got a hit.
5328     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5329     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5330   }
5331 }
5332 
5333 
5334 // virtual method calling
5335 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5336                                            RegisterOrConstant vtable_index,
5337                                            Register method_result) {
5338   const int base = in_bytes(Klass::vtable_start_offset());
5339   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5340   Address vtable_entry_addr(recv_klass,
5341                             vtable_index, Address::times_ptr,
5342                             base + vtableEntry::method_offset_in_bytes());
5343   movptr(method_result, vtable_entry_addr);
5344 }
5345 
5346 
5347 void MacroAssembler::check_klass_subtype(Register sub_klass,
5348                            Register super_klass,
5349                            Register temp_reg,
5350                            Label& L_success) {
5351   Label L_failure;
5352   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5353   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5354   bind(L_failure);
5355 }
5356 
5357 
5358 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5359                                                    Register super_klass,
5360                                                    Register temp_reg,
5361                                                    Label* L_success,
5362                                                    Label* L_failure,
5363                                                    Label* L_slow_path,
5364                                         RegisterOrConstant super_check_offset) {
5365   assert_different_registers(sub_klass, super_klass, temp_reg);
5366   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5367   if (super_check_offset.is_register()) {
5368     assert_different_registers(sub_klass, super_klass,
5369                                super_check_offset.as_register());
5370   } else if (must_load_sco) {
5371     assert(temp_reg != noreg, "supply either a temp or a register offset");
5372   }
5373 
5374   Label L_fallthrough;
5375   int label_nulls = 0;
5376   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5377   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5378   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5379   assert(label_nulls <= 1, "at most one NULL in the batch");
5380 
5381   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5382   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5383   Address super_check_offset_addr(super_klass, sco_offset);
5384 
5385   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5386   // range of a jccb.  If this routine grows larger, reconsider at
5387   // least some of these.
5388 #define local_jcc(assembler_cond, label)                                \
5389   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5390   else                             jcc( assembler_cond, label) /*omit semi*/
5391 
5392   // Hacked jmp, which may only be used just before L_fallthrough.
5393 #define final_jmp(label)                                                \
5394   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5395   else                            jmp(label)                /*omit semi*/
5396 
5397   // If the pointers are equal, we are done (e.g., String[] elements).
5398   // This self-check enables sharing of secondary supertype arrays among
5399   // non-primary types such as array-of-interface.  Otherwise, each such
5400   // type would need its own customized SSA.
5401   // We move this check to the front of the fast path because many
5402   // type checks are in fact trivially successful in this manner,
5403   // so we get a nicely predicted branch right at the start of the check.
5404   cmpptr(sub_klass, super_klass);
5405   local_jcc(Assembler::equal, *L_success);
5406 
5407   // Check the supertype display:
5408   if (must_load_sco) {
5409     // Positive movl does right thing on LP64.
5410     movl(temp_reg, super_check_offset_addr);
5411     super_check_offset = RegisterOrConstant(temp_reg);
5412   }
5413   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5414   cmpptr(super_klass, super_check_addr); // load displayed supertype
5415 
5416   // This check has worked decisively for primary supers.
5417   // Secondary supers are sought in the super_cache ('super_cache_addr').
5418   // (Secondary supers are interfaces and very deeply nested subtypes.)
5419   // This works in the same check above because of a tricky aliasing
5420   // between the super_cache and the primary super display elements.
5421   // (The 'super_check_addr' can address either, as the case requires.)
5422   // Note that the cache is updated below if it does not help us find
5423   // what we need immediately.
5424   // So if it was a primary super, we can just fail immediately.
5425   // Otherwise, it's the slow path for us (no success at this point).
5426 
5427   if (super_check_offset.is_register()) {
5428     local_jcc(Assembler::equal, *L_success);
5429     cmpl(super_check_offset.as_register(), sc_offset);
5430     if (L_failure == &L_fallthrough) {
5431       local_jcc(Assembler::equal, *L_slow_path);
5432     } else {
5433       local_jcc(Assembler::notEqual, *L_failure);
5434       final_jmp(*L_slow_path);
5435     }
5436   } else if (super_check_offset.as_constant() == sc_offset) {
5437     // Need a slow path; fast failure is impossible.
5438     if (L_slow_path == &L_fallthrough) {
5439       local_jcc(Assembler::equal, *L_success);
5440     } else {
5441       local_jcc(Assembler::notEqual, *L_slow_path);
5442       final_jmp(*L_success);
5443     }
5444   } else {
5445     // No slow path; it's a fast decision.
5446     if (L_failure == &L_fallthrough) {
5447       local_jcc(Assembler::equal, *L_success);
5448     } else {
5449       local_jcc(Assembler::notEqual, *L_failure);
5450       final_jmp(*L_success);
5451     }
5452   }
5453 
5454   bind(L_fallthrough);
5455 
5456 #undef local_jcc
5457 #undef final_jmp
5458 }
5459 
5460 
5461 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5462                                                    Register super_klass,
5463                                                    Register temp_reg,
5464                                                    Register temp2_reg,
5465                                                    Label* L_success,
5466                                                    Label* L_failure,
5467                                                    bool set_cond_codes) {
5468   assert_different_registers(sub_klass, super_klass, temp_reg);
5469   if (temp2_reg != noreg)
5470     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5471 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5472 
5473   Label L_fallthrough;
5474   int label_nulls = 0;
5475   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5476   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5477   assert(label_nulls <= 1, "at most one NULL in the batch");
5478 
5479   // a couple of useful fields in sub_klass:
5480   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5481   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5482   Address secondary_supers_addr(sub_klass, ss_offset);
5483   Address super_cache_addr(     sub_klass, sc_offset);
5484 
5485   // Do a linear scan of the secondary super-klass chain.
5486   // This code is rarely used, so simplicity is a virtue here.
5487   // The repne_scan instruction uses fixed registers, which we must spill.
5488   // Don't worry too much about pre-existing connections with the input regs.
5489 
5490   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5491   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5492 
5493   // Get super_klass value into rax (even if it was in rdi or rcx).
5494   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5495   if (super_klass != rax || UseCompressedOops) {
5496     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5497     mov(rax, super_klass);
5498   }
5499   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5500   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5501 
5502 #ifndef PRODUCT
5503   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5504   ExternalAddress pst_counter_addr((address) pst_counter);
5505   NOT_LP64(  incrementl(pst_counter_addr) );
5506   LP64_ONLY( lea(rcx, pst_counter_addr) );
5507   LP64_ONLY( incrementl(Address(rcx, 0)) );
5508 #endif //PRODUCT
5509 
5510   // We will consult the secondary-super array.
5511   movptr(rdi, secondary_supers_addr);
5512   // Load the array length.  (Positive movl does right thing on LP64.)
5513   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5514   // Skip to start of data.
5515   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5516 
5517   // Scan RCX words at [RDI] for an occurrence of RAX.
5518   // Set NZ/Z based on last compare.
5519   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5520   // not change flags (only scas instruction which is repeated sets flags).
5521   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5522 
5523     testptr(rax,rax); // Set Z = 0
5524     repne_scan();
5525 
5526   // Unspill the temp. registers:
5527   if (pushed_rdi)  pop(rdi);
5528   if (pushed_rcx)  pop(rcx);
5529   if (pushed_rax)  pop(rax);
5530 
5531   if (set_cond_codes) {
5532     // Special hack for the AD files:  rdi is guaranteed non-zero.
5533     assert(!pushed_rdi, "rdi must be left non-NULL");
5534     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5535   }
5536 
5537   if (L_failure == &L_fallthrough)
5538         jccb(Assembler::notEqual, *L_failure);
5539   else  jcc(Assembler::notEqual, *L_failure);
5540 
5541   // Success.  Cache the super we found and proceed in triumph.
5542   movptr(super_cache_addr, super_klass);
5543 
5544   if (L_success != &L_fallthrough) {
5545     jmp(*L_success);
5546   }
5547 
5548 #undef IS_A_TEMP
5549 
5550   bind(L_fallthrough);
5551 }
5552 
5553 
5554 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5555   if (VM_Version::supports_cmov()) {
5556     cmovl(cc, dst, src);
5557   } else {
5558     Label L;
5559     jccb(negate_condition(cc), L);
5560     movl(dst, src);
5561     bind(L);
5562   }
5563 }
5564 
5565 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5566   if (VM_Version::supports_cmov()) {
5567     cmovl(cc, dst, src);
5568   } else {
5569     Label L;
5570     jccb(negate_condition(cc), L);
5571     movl(dst, src);
5572     bind(L);
5573   }
5574 }
5575 
5576 void MacroAssembler::verify_oop(Register reg, const char* s) {
5577   if (!VerifyOops) return;
5578 
5579   // Pass register number to verify_oop_subroutine
5580   const char* b = NULL;
5581   {
5582     ResourceMark rm;
5583     stringStream ss;
5584     ss.print("verify_oop: %s: %s", reg->name(), s);
5585     b = code_string(ss.as_string());
5586   }
5587   BLOCK_COMMENT("verify_oop {");
5588 #ifdef _LP64
5589   push(rscratch1);                    // save r10, trashed by movptr()
5590 #endif
5591   push(rax);                          // save rax,
5592   push(reg);                          // pass register argument
5593   ExternalAddress buffer((address) b);
5594   // avoid using pushptr, as it modifies scratch registers
5595   // and our contract is not to modify anything
5596   movptr(rax, buffer.addr());
5597   push(rax);
5598   // call indirectly to solve generation ordering problem
5599   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5600   call(rax);
5601   // Caller pops the arguments (oop, message) and restores rax, r10
5602   BLOCK_COMMENT("} verify_oop");
5603 }
5604 
5605 
5606 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5607                                                       Register tmp,
5608                                                       int offset) {
5609   intptr_t value = *delayed_value_addr;
5610   if (value != 0)
5611     return RegisterOrConstant(value + offset);
5612 
5613   // load indirectly to solve generation ordering problem
5614   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5615 
5616 #ifdef ASSERT
5617   { Label L;
5618     testptr(tmp, tmp);
5619     if (WizardMode) {
5620       const char* buf = NULL;
5621       {
5622         ResourceMark rm;
5623         stringStream ss;
5624         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5625         buf = code_string(ss.as_string());
5626       }
5627       jcc(Assembler::notZero, L);
5628       STOP(buf);
5629     } else {
5630       jccb(Assembler::notZero, L);
5631       hlt();
5632     }
5633     bind(L);
5634   }
5635 #endif
5636 
5637   if (offset != 0)
5638     addptr(tmp, offset);
5639 
5640   return RegisterOrConstant(tmp);
5641 }
5642 
5643 
5644 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5645                                          int extra_slot_offset) {
5646   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5647   int stackElementSize = Interpreter::stackElementSize;
5648   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5649 #ifdef ASSERT
5650   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5651   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5652 #endif
5653   Register             scale_reg    = noreg;
5654   Address::ScaleFactor scale_factor = Address::no_scale;
5655   if (arg_slot.is_constant()) {
5656     offset += arg_slot.as_constant() * stackElementSize;
5657   } else {
5658     scale_reg    = arg_slot.as_register();
5659     scale_factor = Address::times(stackElementSize);
5660   }
5661   offset += wordSize;           // return PC is on stack
5662   return Address(rsp, scale_reg, scale_factor, offset);
5663 }
5664 
5665 
5666 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5667   if (!VerifyOops) return;
5668 
5669   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5670   // Pass register number to verify_oop_subroutine
5671   const char* b = NULL;
5672   {
5673     ResourceMark rm;
5674     stringStream ss;
5675     ss.print("verify_oop_addr: %s", s);
5676     b = code_string(ss.as_string());
5677   }
5678 #ifdef _LP64
5679   push(rscratch1);                    // save r10, trashed by movptr()
5680 #endif
5681   push(rax);                          // save rax,
5682   // addr may contain rsp so we will have to adjust it based on the push
5683   // we just did (and on 64 bit we do two pushes)
5684   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5685   // stores rax into addr which is backwards of what was intended.
5686   if (addr.uses(rsp)) {
5687     lea(rax, addr);
5688     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5689   } else {
5690     pushptr(addr);
5691   }
5692 
5693   ExternalAddress buffer((address) b);
5694   // pass msg argument
5695   // avoid using pushptr, as it modifies scratch registers
5696   // and our contract is not to modify anything
5697   movptr(rax, buffer.addr());
5698   push(rax);
5699 
5700   // call indirectly to solve generation ordering problem
5701   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5702   call(rax);
5703   // Caller pops the arguments (addr, message) and restores rax, r10.
5704 }
5705 
5706 void MacroAssembler::verify_tlab() {
5707 #ifdef ASSERT
5708   if (UseTLAB && VerifyOops) {
5709     Label next, ok;
5710     Register t1 = rsi;
5711     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5712 
5713     push(t1);
5714     NOT_LP64(push(thread_reg));
5715     NOT_LP64(get_thread(thread_reg));
5716 
5717     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5718     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5719     jcc(Assembler::aboveEqual, next);
5720     STOP("assert(top >= start)");
5721     should_not_reach_here();
5722 
5723     bind(next);
5724     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5725     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5726     jcc(Assembler::aboveEqual, ok);
5727     STOP("assert(top <= end)");
5728     should_not_reach_here();
5729 
5730     bind(ok);
5731     NOT_LP64(pop(thread_reg));
5732     pop(t1);
5733   }
5734 #endif
5735 }
5736 
5737 class ControlWord {
5738  public:
5739   int32_t _value;
5740 
5741   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5742   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5743   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5744   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5745   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5746   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5747   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5748   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5749 
5750   void print() const {
5751     // rounding control
5752     const char* rc;
5753     switch (rounding_control()) {
5754       case 0: rc = "round near"; break;
5755       case 1: rc = "round down"; break;
5756       case 2: rc = "round up  "; break;
5757       case 3: rc = "chop      "; break;
5758     };
5759     // precision control
5760     const char* pc;
5761     switch (precision_control()) {
5762       case 0: pc = "24 bits "; break;
5763       case 1: pc = "reserved"; break;
5764       case 2: pc = "53 bits "; break;
5765       case 3: pc = "64 bits "; break;
5766     };
5767     // flags
5768     char f[9];
5769     f[0] = ' ';
5770     f[1] = ' ';
5771     f[2] = (precision   ()) ? 'P' : 'p';
5772     f[3] = (underflow   ()) ? 'U' : 'u';
5773     f[4] = (overflow    ()) ? 'O' : 'o';
5774     f[5] = (zero_divide ()) ? 'Z' : 'z';
5775     f[6] = (denormalized()) ? 'D' : 'd';
5776     f[7] = (invalid     ()) ? 'I' : 'i';
5777     f[8] = '\x0';
5778     // output
5779     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5780   }
5781 
5782 };
5783 
5784 class StatusWord {
5785  public:
5786   int32_t _value;
5787 
5788   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5789   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5790   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5791   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5792   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5793   int  top() const                     { return  (_value >> 11) & 7      ; }
5794   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5795   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5796   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5797   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5798   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5799   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5800   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5801   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5802 
5803   void print() const {
5804     // condition codes
5805     char c[5];
5806     c[0] = (C3()) ? '3' : '-';
5807     c[1] = (C2()) ? '2' : '-';
5808     c[2] = (C1()) ? '1' : '-';
5809     c[3] = (C0()) ? '0' : '-';
5810     c[4] = '\x0';
5811     // flags
5812     char f[9];
5813     f[0] = (error_status()) ? 'E' : '-';
5814     f[1] = (stack_fault ()) ? 'S' : '-';
5815     f[2] = (precision   ()) ? 'P' : '-';
5816     f[3] = (underflow   ()) ? 'U' : '-';
5817     f[4] = (overflow    ()) ? 'O' : '-';
5818     f[5] = (zero_divide ()) ? 'Z' : '-';
5819     f[6] = (denormalized()) ? 'D' : '-';
5820     f[7] = (invalid     ()) ? 'I' : '-';
5821     f[8] = '\x0';
5822     // output
5823     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5824   }
5825 
5826 };
5827 
5828 class TagWord {
5829  public:
5830   int32_t _value;
5831 
5832   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5833 
5834   void print() const {
5835     printf("%04x", _value & 0xFFFF);
5836   }
5837 
5838 };
5839 
5840 class FPU_Register {
5841  public:
5842   int32_t _m0;
5843   int32_t _m1;
5844   int16_t _ex;
5845 
5846   bool is_indefinite() const           {
5847     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5848   }
5849 
5850   void print() const {
5851     char  sign = (_ex < 0) ? '-' : '+';
5852     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5853     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5854   };
5855 
5856 };
5857 
5858 class FPU_State {
5859  public:
5860   enum {
5861     register_size       = 10,
5862     number_of_registers =  8,
5863     register_mask       =  7
5864   };
5865 
5866   ControlWord  _control_word;
5867   StatusWord   _status_word;
5868   TagWord      _tag_word;
5869   int32_t      _error_offset;
5870   int32_t      _error_selector;
5871   int32_t      _data_offset;
5872   int32_t      _data_selector;
5873   int8_t       _register[register_size * number_of_registers];
5874 
5875   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5876   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5877 
5878   const char* tag_as_string(int tag) const {
5879     switch (tag) {
5880       case 0: return "valid";
5881       case 1: return "zero";
5882       case 2: return "special";
5883       case 3: return "empty";
5884     }
5885     ShouldNotReachHere();
5886     return NULL;
5887   }
5888 
5889   void print() const {
5890     // print computation registers
5891     { int t = _status_word.top();
5892       for (int i = 0; i < number_of_registers; i++) {
5893         int j = (i - t) & register_mask;
5894         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5895         st(j)->print();
5896         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5897       }
5898     }
5899     printf("\n");
5900     // print control registers
5901     printf("ctrl = "); _control_word.print(); printf("\n");
5902     printf("stat = "); _status_word .print(); printf("\n");
5903     printf("tags = "); _tag_word    .print(); printf("\n");
5904   }
5905 
5906 };
5907 
5908 class Flag_Register {
5909  public:
5910   int32_t _value;
5911 
5912   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5913   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5914   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5915   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5916   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5917   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5918   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5919 
5920   void print() const {
5921     // flags
5922     char f[8];
5923     f[0] = (overflow       ()) ? 'O' : '-';
5924     f[1] = (direction      ()) ? 'D' : '-';
5925     f[2] = (sign           ()) ? 'S' : '-';
5926     f[3] = (zero           ()) ? 'Z' : '-';
5927     f[4] = (auxiliary_carry()) ? 'A' : '-';
5928     f[5] = (parity         ()) ? 'P' : '-';
5929     f[6] = (carry          ()) ? 'C' : '-';
5930     f[7] = '\x0';
5931     // output
5932     printf("%08x  flags = %s", _value, f);
5933   }
5934 
5935 };
5936 
5937 class IU_Register {
5938  public:
5939   int32_t _value;
5940 
5941   void print() const {
5942     printf("%08x  %11d", _value, _value);
5943   }
5944 
5945 };
5946 
5947 class IU_State {
5948  public:
5949   Flag_Register _eflags;
5950   IU_Register   _rdi;
5951   IU_Register   _rsi;
5952   IU_Register   _rbp;
5953   IU_Register   _rsp;
5954   IU_Register   _rbx;
5955   IU_Register   _rdx;
5956   IU_Register   _rcx;
5957   IU_Register   _rax;
5958 
5959   void print() const {
5960     // computation registers
5961     printf("rax,  = "); _rax.print(); printf("\n");
5962     printf("rbx,  = "); _rbx.print(); printf("\n");
5963     printf("rcx  = "); _rcx.print(); printf("\n");
5964     printf("rdx  = "); _rdx.print(); printf("\n");
5965     printf("rdi  = "); _rdi.print(); printf("\n");
5966     printf("rsi  = "); _rsi.print(); printf("\n");
5967     printf("rbp,  = "); _rbp.print(); printf("\n");
5968     printf("rsp  = "); _rsp.print(); printf("\n");
5969     printf("\n");
5970     // control registers
5971     printf("flgs = "); _eflags.print(); printf("\n");
5972   }
5973 };
5974 
5975 
5976 class CPU_State {
5977  public:
5978   FPU_State _fpu_state;
5979   IU_State  _iu_state;
5980 
5981   void print() const {
5982     printf("--------------------------------------------------\n");
5983     _iu_state .print();
5984     printf("\n");
5985     _fpu_state.print();
5986     printf("--------------------------------------------------\n");
5987   }
5988 
5989 };
5990 
5991 
5992 static void _print_CPU_state(CPU_State* state) {
5993   state->print();
5994 };
5995 
5996 
5997 void MacroAssembler::print_CPU_state() {
5998   push_CPU_state();
5999   push(rsp);                // pass CPU state
6000   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6001   addptr(rsp, wordSize);       // discard argument
6002   pop_CPU_state();
6003 }
6004 
6005 
6006 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6007   static int counter = 0;
6008   FPU_State* fs = &state->_fpu_state;
6009   counter++;
6010   // For leaf calls, only verify that the top few elements remain empty.
6011   // We only need 1 empty at the top for C2 code.
6012   if( stack_depth < 0 ) {
6013     if( fs->tag_for_st(7) != 3 ) {
6014       printf("FPR7 not empty\n");
6015       state->print();
6016       assert(false, "error");
6017       return false;
6018     }
6019     return true;                // All other stack states do not matter
6020   }
6021 
6022   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6023          "bad FPU control word");
6024 
6025   // compute stack depth
6026   int i = 0;
6027   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6028   int d = i;
6029   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6030   // verify findings
6031   if (i != FPU_State::number_of_registers) {
6032     // stack not contiguous
6033     printf("%s: stack not contiguous at ST%d\n", s, i);
6034     state->print();
6035     assert(false, "error");
6036     return false;
6037   }
6038   // check if computed stack depth corresponds to expected stack depth
6039   if (stack_depth < 0) {
6040     // expected stack depth is -stack_depth or less
6041     if (d > -stack_depth) {
6042       // too many elements on the stack
6043       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6044       state->print();
6045       assert(false, "error");
6046       return false;
6047     }
6048   } else {
6049     // expected stack depth is stack_depth
6050     if (d != stack_depth) {
6051       // wrong stack depth
6052       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6053       state->print();
6054       assert(false, "error");
6055       return false;
6056     }
6057   }
6058   // everything is cool
6059   return true;
6060 }
6061 
6062 
6063 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6064   if (!VerifyFPU) return;
6065   push_CPU_state();
6066   push(rsp);                // pass CPU state
6067   ExternalAddress msg((address) s);
6068   // pass message string s
6069   pushptr(msg.addr());
6070   push(stack_depth);        // pass stack depth
6071   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6072   addptr(rsp, 3 * wordSize);   // discard arguments
6073   // check for error
6074   { Label L;
6075     testl(rax, rax);
6076     jcc(Assembler::notZero, L);
6077     int3();                  // break if error condition
6078     bind(L);
6079   }
6080   pop_CPU_state();
6081 }
6082 
6083 void MacroAssembler::restore_cpu_control_state_after_jni() {
6084   // Either restore the MXCSR register after returning from the JNI Call
6085   // or verify that it wasn't changed (with -Xcheck:jni flag).
6086   if (VM_Version::supports_sse()) {
6087     if (RestoreMXCSROnJNICalls) {
6088       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6089     } else if (CheckJNICalls) {
6090       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6091     }
6092   }
6093   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6094   vzeroupper();
6095   // Reset k1 to 0xffff.
6096   if (VM_Version::supports_evex()) {
6097     push(rcx);
6098     movl(rcx, 0xffff);
6099     kmovwl(k1, rcx);
6100     pop(rcx);
6101   }
6102 
6103 #ifndef _LP64
6104   // Either restore the x87 floating pointer control word after returning
6105   // from the JNI call or verify that it wasn't changed.
6106   if (CheckJNICalls) {
6107     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6108   }
6109 #endif // _LP64
6110 }
6111 
6112 // ((OopHandle)result).resolve();
6113 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
6114   assert_different_registers(result, tmp);
6115 
6116   // Only 64 bit platforms support GCs that require a tmp register
6117   // Only IN_HEAP loads require a thread_tmp register
6118   // OopHandle::resolve is an indirection like jobject.
6119   access_load_at(T_OBJECT, IN_NATIVE,
6120                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
6121 }
6122 
6123 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
6124   // get mirror
6125   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6126   movptr(mirror, Address(method, Method::const_offset()));
6127   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6128   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6129   movptr(mirror, Address(mirror, mirror_offset));
6130   resolve_oop_handle(mirror, tmp);
6131 }
6132 
6133 void MacroAssembler::load_klass(Register dst, Register src) {
6134 #ifdef _LP64
6135   if (UseCompressedClassPointers) {
6136     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6137     decode_klass_not_null(dst);
6138   } else
6139 #endif
6140     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6141 }
6142 
6143 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6144   load_klass(dst, src);
6145   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6146 }
6147 
6148 void MacroAssembler::store_klass(Register dst, Register src) {
6149 #ifdef _LP64
6150   if (UseCompressedClassPointers) {
6151     encode_klass_not_null(src);
6152     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6153   } else
6154 #endif
6155     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6156 }
6157 
6158 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
6159                                     Register tmp1, Register thread_tmp) {
6160   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6161   decorators = AccessInternal::decorator_fixup(decorators);
6162   bool as_raw = (decorators & AS_RAW) != 0;
6163   if (as_raw) {
6164     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6165   } else {
6166     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
6167   }
6168 }
6169 
6170 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
6171                                      Register tmp1, Register tmp2) {
6172   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6173   decorators = AccessInternal::decorator_fixup(decorators);
6174   bool as_raw = (decorators & AS_RAW) != 0;
6175   if (as_raw) {
6176     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
6177   } else {
6178     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
6179   }
6180 }
6181 
6182 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
6183   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
6184   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
6185     decorators |= ACCESS_READ | ACCESS_WRITE;
6186   }
6187   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
6188   return bs->resolve(this, decorators, obj);
6189 }
6190 
6191 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
6192                                    Register thread_tmp, DecoratorSet decorators) {
6193   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
6194 }
6195 
6196 // Doesn't do verfication, generates fixed size code
6197 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
6198                                             Register thread_tmp, DecoratorSet decorators) {
6199   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
6200 }
6201 
6202 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
6203                                     Register tmp2, DecoratorSet decorators) {
6204   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
6205 }
6206 
6207 // Used for storing NULLs.
6208 void MacroAssembler::store_heap_oop_null(Address dst) {
6209   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
6210 }
6211 
6212 #ifdef _LP64
6213 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6214   if (UseCompressedClassPointers) {
6215     // Store to klass gap in destination
6216     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6217   }
6218 }
6219 
6220 #ifdef ASSERT
6221 void MacroAssembler::verify_heapbase(const char* msg) {
6222   assert (UseCompressedOops, "should be compressed");
6223   assert (Universe::heap() != NULL, "java heap should be initialized");
6224   if (CheckCompressedOops) {
6225     Label ok;
6226     push(rscratch1); // cmpptr trashes rscratch1
6227     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6228     jcc(Assembler::equal, ok);
6229     STOP(msg);
6230     bind(ok);
6231     pop(rscratch1);
6232   }
6233 }
6234 #endif
6235 
6236 // Algorithm must match oop.inline.hpp encode_heap_oop.
6237 void MacroAssembler::encode_heap_oop(Register r) {
6238 #ifdef ASSERT
6239   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6240 #endif
6241   verify_oop(r, "broken oop in encode_heap_oop");
6242   if (Universe::narrow_oop_base() == NULL) {
6243     if (Universe::narrow_oop_shift() != 0) {
6244       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6245       shrq(r, LogMinObjAlignmentInBytes);
6246     }
6247     return;
6248   }
6249   testq(r, r);
6250   cmovq(Assembler::equal, r, r12_heapbase);
6251   subq(r, r12_heapbase);
6252   shrq(r, LogMinObjAlignmentInBytes);
6253 }
6254 
6255 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6256 #ifdef ASSERT
6257   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6258   if (CheckCompressedOops) {
6259     Label ok;
6260     testq(r, r);
6261     jcc(Assembler::notEqual, ok);
6262     STOP("null oop passed to encode_heap_oop_not_null");
6263     bind(ok);
6264   }
6265 #endif
6266   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6267   if (Universe::narrow_oop_base() != NULL) {
6268     subq(r, r12_heapbase);
6269   }
6270   if (Universe::narrow_oop_shift() != 0) {
6271     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6272     shrq(r, LogMinObjAlignmentInBytes);
6273   }
6274 }
6275 
6276 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6277 #ifdef ASSERT
6278   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6279   if (CheckCompressedOops) {
6280     Label ok;
6281     testq(src, src);
6282     jcc(Assembler::notEqual, ok);
6283     STOP("null oop passed to encode_heap_oop_not_null2");
6284     bind(ok);
6285   }
6286 #endif
6287   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6288   if (dst != src) {
6289     movq(dst, src);
6290   }
6291   if (Universe::narrow_oop_base() != NULL) {
6292     subq(dst, r12_heapbase);
6293   }
6294   if (Universe::narrow_oop_shift() != 0) {
6295     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6296     shrq(dst, LogMinObjAlignmentInBytes);
6297   }
6298 }
6299 
6300 void  MacroAssembler::decode_heap_oop(Register r) {
6301 #ifdef ASSERT
6302   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6303 #endif
6304   if (Universe::narrow_oop_base() == NULL) {
6305     if (Universe::narrow_oop_shift() != 0) {
6306       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6307       shlq(r, LogMinObjAlignmentInBytes);
6308     }
6309   } else {
6310     Label done;
6311     shlq(r, LogMinObjAlignmentInBytes);
6312     jccb(Assembler::equal, done);
6313     addq(r, r12_heapbase);
6314     bind(done);
6315   }
6316   verify_oop(r, "broken oop in decode_heap_oop");
6317 }
6318 
6319 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6320   // Note: it will change flags
6321   assert (UseCompressedOops, "should only be used for compressed headers");
6322   assert (Universe::heap() != NULL, "java heap should be initialized");
6323   // Cannot assert, unverified entry point counts instructions (see .ad file)
6324   // vtableStubs also counts instructions in pd_code_size_limit.
6325   // Also do not verify_oop as this is called by verify_oop.
6326   if (Universe::narrow_oop_shift() != 0) {
6327     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6328     shlq(r, LogMinObjAlignmentInBytes);
6329     if (Universe::narrow_oop_base() != NULL) {
6330       addq(r, r12_heapbase);
6331     }
6332   } else {
6333     assert (Universe::narrow_oop_base() == NULL, "sanity");
6334   }
6335 }
6336 
6337 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6338   // Note: it will change flags
6339   assert (UseCompressedOops, "should only be used for compressed headers");
6340   assert (Universe::heap() != NULL, "java heap should be initialized");
6341   // Cannot assert, unverified entry point counts instructions (see .ad file)
6342   // vtableStubs also counts instructions in pd_code_size_limit.
6343   // Also do not verify_oop as this is called by verify_oop.
6344   if (Universe::narrow_oop_shift() != 0) {
6345     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6346     if (LogMinObjAlignmentInBytes == Address::times_8) {
6347       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6348     } else {
6349       if (dst != src) {
6350         movq(dst, src);
6351       }
6352       shlq(dst, LogMinObjAlignmentInBytes);
6353       if (Universe::narrow_oop_base() != NULL) {
6354         addq(dst, r12_heapbase);
6355       }
6356     }
6357   } else {
6358     assert (Universe::narrow_oop_base() == NULL, "sanity");
6359     if (dst != src) {
6360       movq(dst, src);
6361     }
6362   }
6363 }
6364 
6365 void MacroAssembler::encode_klass_not_null(Register r) {
6366   if (Universe::narrow_klass_base() != NULL) {
6367     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6368     assert(r != r12_heapbase, "Encoding a klass in r12");
6369     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6370     subq(r, r12_heapbase);
6371   }
6372   if (Universe::narrow_klass_shift() != 0) {
6373     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6374     shrq(r, LogKlassAlignmentInBytes);
6375   }
6376   if (Universe::narrow_klass_base() != NULL) {
6377     reinit_heapbase();
6378   }
6379 }
6380 
6381 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6382   if (dst == src) {
6383     encode_klass_not_null(src);
6384   } else {
6385     if (Universe::narrow_klass_base() != NULL) {
6386       mov64(dst, (int64_t)Universe::narrow_klass_base());
6387       negq(dst);
6388       addq(dst, src);
6389     } else {
6390       movptr(dst, src);
6391     }
6392     if (Universe::narrow_klass_shift() != 0) {
6393       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6394       shrq(dst, LogKlassAlignmentInBytes);
6395     }
6396   }
6397 }
6398 
6399 // Function instr_size_for_decode_klass_not_null() counts the instructions
6400 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6401 // when (Universe::heap() != NULL).  Hence, if the instructions they
6402 // generate change, then this method needs to be updated.
6403 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6404   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6405   if (Universe::narrow_klass_base() != NULL) {
6406     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6407     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6408   } else {
6409     // longest load decode klass function, mov64, leaq
6410     return 16;
6411   }
6412 }
6413 
6414 // !!! If the instructions that get generated here change then function
6415 // instr_size_for_decode_klass_not_null() needs to get updated.
6416 void  MacroAssembler::decode_klass_not_null(Register r) {
6417   // Note: it will change flags
6418   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6419   assert(r != r12_heapbase, "Decoding a klass in r12");
6420   // Cannot assert, unverified entry point counts instructions (see .ad file)
6421   // vtableStubs also counts instructions in pd_code_size_limit.
6422   // Also do not verify_oop as this is called by verify_oop.
6423   if (Universe::narrow_klass_shift() != 0) {
6424     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6425     shlq(r, LogKlassAlignmentInBytes);
6426   }
6427   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6428   if (Universe::narrow_klass_base() != NULL) {
6429     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6430     addq(r, r12_heapbase);
6431     reinit_heapbase();
6432   }
6433 }
6434 
6435 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6436   // Note: it will change flags
6437   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6438   if (dst == src) {
6439     decode_klass_not_null(dst);
6440   } else {
6441     // Cannot assert, unverified entry point counts instructions (see .ad file)
6442     // vtableStubs also counts instructions in pd_code_size_limit.
6443     // Also do not verify_oop as this is called by verify_oop.
6444     mov64(dst, (int64_t)Universe::narrow_klass_base());
6445     if (Universe::narrow_klass_shift() != 0) {
6446       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6447       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6448       leaq(dst, Address(dst, src, Address::times_8, 0));
6449     } else {
6450       addq(dst, src);
6451     }
6452   }
6453 }
6454 
6455 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6456   assert (UseCompressedOops, "should only be used for compressed headers");
6457   assert (Universe::heap() != NULL, "java heap should be initialized");
6458   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6459   int oop_index = oop_recorder()->find_index(obj);
6460   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6461   mov_narrow_oop(dst, oop_index, rspec);
6462 }
6463 
6464 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6465   assert (UseCompressedOops, "should only be used for compressed headers");
6466   assert (Universe::heap() != NULL, "java heap should be initialized");
6467   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6468   int oop_index = oop_recorder()->find_index(obj);
6469   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6470   mov_narrow_oop(dst, oop_index, rspec);
6471 }
6472 
6473 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6474   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6475   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6476   int klass_index = oop_recorder()->find_index(k);
6477   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6478   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6479 }
6480 
6481 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6482   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6483   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6484   int klass_index = oop_recorder()->find_index(k);
6485   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6486   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6487 }
6488 
6489 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6490   assert (UseCompressedOops, "should only be used for compressed headers");
6491   assert (Universe::heap() != NULL, "java heap should be initialized");
6492   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6493   int oop_index = oop_recorder()->find_index(obj);
6494   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6495   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6496 }
6497 
6498 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6499   assert (UseCompressedOops, "should only be used for compressed headers");
6500   assert (Universe::heap() != NULL, "java heap should be initialized");
6501   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6502   int oop_index = oop_recorder()->find_index(obj);
6503   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6504   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6505 }
6506 
6507 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6508   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6509   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6510   int klass_index = oop_recorder()->find_index(k);
6511   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6512   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6513 }
6514 
6515 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6516   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6517   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6518   int klass_index = oop_recorder()->find_index(k);
6519   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6520   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6521 }
6522 
6523 void MacroAssembler::reinit_heapbase() {
6524   if (UseCompressedOops || UseCompressedClassPointers) {
6525     if (Universe::heap() != NULL) {
6526       if (Universe::narrow_oop_base() == NULL) {
6527         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6528       } else {
6529         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6530       }
6531     } else {
6532       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6533     }
6534   }
6535 }
6536 
6537 #endif // _LP64
6538 
6539 // C2 compiled method's prolog code.
6540 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6541 
6542   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6543   // NativeJump::patch_verified_entry will be able to patch out the entry
6544   // code safely. The push to verify stack depth is ok at 5 bytes,
6545   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6546   // stack bang then we must use the 6 byte frame allocation even if
6547   // we have no frame. :-(
6548   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6549 
6550   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6551   // Remove word for return addr
6552   framesize -= wordSize;
6553   stack_bang_size -= wordSize;
6554 
6555   // Calls to C2R adapters often do not accept exceptional returns.
6556   // We require that their callers must bang for them.  But be careful, because
6557   // some VM calls (such as call site linkage) can use several kilobytes of
6558   // stack.  But the stack safety zone should account for that.
6559   // See bugs 4446381, 4468289, 4497237.
6560   if (stack_bang_size > 0) {
6561     generate_stack_overflow_check(stack_bang_size);
6562 
6563     // We always push rbp, so that on return to interpreter rbp, will be
6564     // restored correctly and we can correct the stack.
6565     push(rbp);
6566     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6567     if (PreserveFramePointer) {
6568       mov(rbp, rsp);
6569     }
6570     // Remove word for ebp
6571     framesize -= wordSize;
6572 
6573     // Create frame
6574     if (framesize) {
6575       subptr(rsp, framesize);
6576     }
6577   } else {
6578     // Create frame (force generation of a 4 byte immediate value)
6579     subptr_imm32(rsp, framesize);
6580 
6581     // Save RBP register now.
6582     framesize -= wordSize;
6583     movptr(Address(rsp, framesize), rbp);
6584     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6585     if (PreserveFramePointer) {
6586       movptr(rbp, rsp);
6587       if (framesize > 0) {
6588         addptr(rbp, framesize);
6589       }
6590     }
6591   }
6592 
6593   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6594     framesize -= wordSize;
6595     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6596   }
6597 
6598 #ifndef _LP64
6599   // If method sets FPU control word do it now
6600   if (fp_mode_24b) {
6601     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6602   }
6603   if (UseSSE >= 2 && VerifyFPU) {
6604     verify_FPU(0, "FPU stack must be clean on entry");
6605   }
6606 #endif
6607 
6608 #ifdef ASSERT
6609   if (VerifyStackAtCalls) {
6610     Label L;
6611     push(rax);
6612     mov(rax, rsp);
6613     andptr(rax, StackAlignmentInBytes-1);
6614     cmpptr(rax, StackAlignmentInBytes-wordSize);
6615     pop(rax);
6616     jcc(Assembler::equal, L);
6617     STOP("Stack is not properly aligned!");
6618     bind(L);
6619   }
6620 #endif
6621 
6622 }
6623 
6624 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
6625 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
6626   // cnt - number of qwords (8-byte words).
6627   // base - start address, qword aligned.
6628   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
6629   if (UseAVX >= 2) {
6630     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
6631   } else {
6632     pxor(xtmp, xtmp);
6633   }
6634   jmp(L_zero_64_bytes);
6635 
6636   BIND(L_loop);
6637   if (UseAVX >= 2) {
6638     vmovdqu(Address(base,  0), xtmp);
6639     vmovdqu(Address(base, 32), xtmp);
6640   } else {
6641     movdqu(Address(base,  0), xtmp);
6642     movdqu(Address(base, 16), xtmp);
6643     movdqu(Address(base, 32), xtmp);
6644     movdqu(Address(base, 48), xtmp);
6645   }
6646   addptr(base, 64);
6647 
6648   BIND(L_zero_64_bytes);
6649   subptr(cnt, 8);
6650   jccb(Assembler::greaterEqual, L_loop);
6651   addptr(cnt, 4);
6652   jccb(Assembler::less, L_tail);
6653   // Copy trailing 32 bytes
6654   if (UseAVX >= 2) {
6655     vmovdqu(Address(base, 0), xtmp);
6656   } else {
6657     movdqu(Address(base,  0), xtmp);
6658     movdqu(Address(base, 16), xtmp);
6659   }
6660   addptr(base, 32);
6661   subptr(cnt, 4);
6662 
6663   BIND(L_tail);
6664   addptr(cnt, 4);
6665   jccb(Assembler::lessEqual, L_end);
6666   decrement(cnt);
6667 
6668   BIND(L_sloop);
6669   movq(Address(base, 0), xtmp);
6670   addptr(base, 8);
6671   decrement(cnt);
6672   jccb(Assembler::greaterEqual, L_sloop);
6673   BIND(L_end);
6674 }
6675 
6676 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
6677   // cnt - number of qwords (8-byte words).
6678   // base - start address, qword aligned.
6679   // is_large - if optimizers know cnt is larger than InitArrayShortSize
6680   assert(base==rdi, "base register must be edi for rep stos");
6681   assert(tmp==rax,   "tmp register must be eax for rep stos");
6682   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6683   assert(InitArrayShortSize % BytesPerLong == 0,
6684     "InitArrayShortSize should be the multiple of BytesPerLong");
6685 
6686   Label DONE;
6687 
6688   if (!is_large || !UseXMMForObjInit) {
6689     xorptr(tmp, tmp);
6690   }
6691 
6692   if (!is_large) {
6693     Label LOOP, LONG;
6694     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
6695     jccb(Assembler::greater, LONG);
6696 
6697     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6698 
6699     decrement(cnt);
6700     jccb(Assembler::negative, DONE); // Zero length
6701 
6702     // Use individual pointer-sized stores for small counts:
6703     BIND(LOOP);
6704     movptr(Address(base, cnt, Address::times_ptr), tmp);
6705     decrement(cnt);
6706     jccb(Assembler::greaterEqual, LOOP);
6707     jmpb(DONE);
6708 
6709     BIND(LONG);
6710   }
6711 
6712   // Use longer rep-prefixed ops for non-small counts:
6713   if (UseFastStosb) {
6714     shlptr(cnt, 3); // convert to number of bytes
6715     rep_stosb();
6716   } else if (UseXMMForObjInit) {
6717     movptr(tmp, base);
6718     xmm_clear_mem(tmp, cnt, xtmp);
6719   } else {
6720     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
6721     rep_stos();
6722   }
6723 
6724   BIND(DONE);
6725 }
6726 
6727 #ifdef COMPILER2
6728 
6729 // IndexOf for constant substrings with size >= 8 chars
6730 // which don't need to be loaded through stack.
6731 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6732                                       Register cnt1, Register cnt2,
6733                                       int int_cnt2,  Register result,
6734                                       XMMRegister vec, Register tmp,
6735                                       int ae) {
6736   ShortBranchVerifier sbv(this);
6737   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6738   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6739 
6740   // This method uses the pcmpestri instruction with bound registers
6741   //   inputs:
6742   //     xmm - substring
6743   //     rax - substring length (elements count)
6744   //     mem - scanned string
6745   //     rdx - string length (elements count)
6746   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6747   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6748   //   outputs:
6749   //     rcx - matched index in string
6750   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6751   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6752   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6753   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6754   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6755 
6756   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6757         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6758         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6759 
6760   // Note, inline_string_indexOf() generates checks:
6761   // if (substr.count > string.count) return -1;
6762   // if (substr.count == 0) return 0;
6763   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
6764 
6765   // Load substring.
6766   if (ae == StrIntrinsicNode::UL) {
6767     pmovzxbw(vec, Address(str2, 0));
6768   } else {
6769     movdqu(vec, Address(str2, 0));
6770   }
6771   movl(cnt2, int_cnt2);
6772   movptr(result, str1); // string addr
6773 
6774   if (int_cnt2 > stride) {
6775     jmpb(SCAN_TO_SUBSTR);
6776 
6777     // Reload substr for rescan, this code
6778     // is executed only for large substrings (> 8 chars)
6779     bind(RELOAD_SUBSTR);
6780     if (ae == StrIntrinsicNode::UL) {
6781       pmovzxbw(vec, Address(str2, 0));
6782     } else {
6783       movdqu(vec, Address(str2, 0));
6784     }
6785     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6786 
6787     bind(RELOAD_STR);
6788     // We came here after the beginning of the substring was
6789     // matched but the rest of it was not so we need to search
6790     // again. Start from the next element after the previous match.
6791 
6792     // cnt2 is number of substring reminding elements and
6793     // cnt1 is number of string reminding elements when cmp failed.
6794     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6795     subl(cnt1, cnt2);
6796     addl(cnt1, int_cnt2);
6797     movl(cnt2, int_cnt2); // Now restore cnt2
6798 
6799     decrementl(cnt1);     // Shift to next element
6800     cmpl(cnt1, cnt2);
6801     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6802 
6803     addptr(result, (1<<scale1));
6804 
6805   } // (int_cnt2 > 8)
6806 
6807   // Scan string for start of substr in 16-byte vectors
6808   bind(SCAN_TO_SUBSTR);
6809   pcmpestri(vec, Address(result, 0), mode);
6810   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6811   subl(cnt1, stride);
6812   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6813   cmpl(cnt1, cnt2);
6814   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6815   addptr(result, 16);
6816   jmpb(SCAN_TO_SUBSTR);
6817 
6818   // Found a potential substr
6819   bind(FOUND_CANDIDATE);
6820   // Matched whole vector if first element matched (tmp(rcx) == 0).
6821   if (int_cnt2 == stride) {
6822     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6823   } else { // int_cnt2 > 8
6824     jccb(Assembler::overflow, FOUND_SUBSTR);
6825   }
6826   // After pcmpestri tmp(rcx) contains matched element index
6827   // Compute start addr of substr
6828   lea(result, Address(result, tmp, scale1));
6829 
6830   // Make sure string is still long enough
6831   subl(cnt1, tmp);
6832   cmpl(cnt1, cnt2);
6833   if (int_cnt2 == stride) {
6834     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6835   } else { // int_cnt2 > 8
6836     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6837   }
6838   // Left less then substring.
6839 
6840   bind(RET_NOT_FOUND);
6841   movl(result, -1);
6842   jmp(EXIT);
6843 
6844   if (int_cnt2 > stride) {
6845     // This code is optimized for the case when whole substring
6846     // is matched if its head is matched.
6847     bind(MATCH_SUBSTR_HEAD);
6848     pcmpestri(vec, Address(result, 0), mode);
6849     // Reload only string if does not match
6850     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
6851 
6852     Label CONT_SCAN_SUBSTR;
6853     // Compare the rest of substring (> 8 chars).
6854     bind(FOUND_SUBSTR);
6855     // First 8 chars are already matched.
6856     negptr(cnt2);
6857     addptr(cnt2, stride);
6858 
6859     bind(SCAN_SUBSTR);
6860     subl(cnt1, stride);
6861     cmpl(cnt2, -stride); // Do not read beyond substring
6862     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6863     // Back-up strings to avoid reading beyond substring:
6864     // cnt1 = cnt1 - cnt2 + 8
6865     addl(cnt1, cnt2); // cnt2 is negative
6866     addl(cnt1, stride);
6867     movl(cnt2, stride); negptr(cnt2);
6868     bind(CONT_SCAN_SUBSTR);
6869     if (int_cnt2 < (int)G) {
6870       int tail_off1 = int_cnt2<<scale1;
6871       int tail_off2 = int_cnt2<<scale2;
6872       if (ae == StrIntrinsicNode::UL) {
6873         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
6874       } else {
6875         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
6876       }
6877       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6878     } else {
6879       // calculate index in register to avoid integer overflow (int_cnt2*2)
6880       movl(tmp, int_cnt2);
6881       addptr(tmp, cnt2);
6882       if (ae == StrIntrinsicNode::UL) {
6883         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6884       } else {
6885         movdqu(vec, Address(str2, tmp, scale2, 0));
6886       }
6887       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6888     }
6889     // Need to reload strings pointers if not matched whole vector
6890     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6891     addptr(cnt2, stride);
6892     jcc(Assembler::negative, SCAN_SUBSTR);
6893     // Fall through if found full substring
6894 
6895   } // (int_cnt2 > 8)
6896 
6897   bind(RET_FOUND);
6898   // Found result if we matched full small substring.
6899   // Compute substr offset
6900   subptr(result, str1);
6901   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6902     shrl(result, 1); // index
6903   }
6904   bind(EXIT);
6905 
6906 } // string_indexofC8
6907 
6908 // Small strings are loaded through stack if they cross page boundary.
6909 void MacroAssembler::string_indexof(Register str1, Register str2,
6910                                     Register cnt1, Register cnt2,
6911                                     int int_cnt2,  Register result,
6912                                     XMMRegister vec, Register tmp,
6913                                     int ae) {
6914   ShortBranchVerifier sbv(this);
6915   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6916   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6917 
6918   //
6919   // int_cnt2 is length of small (< 8 chars) constant substring
6920   // or (-1) for non constant substring in which case its length
6921   // is in cnt2 register.
6922   //
6923   // Note, inline_string_indexOf() generates checks:
6924   // if (substr.count > string.count) return -1;
6925   // if (substr.count == 0) return 0;
6926   //
6927   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6928   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6929   // This method uses the pcmpestri instruction with bound registers
6930   //   inputs:
6931   //     xmm - substring
6932   //     rax - substring length (elements count)
6933   //     mem - scanned string
6934   //     rdx - string length (elements count)
6935   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6936   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6937   //   outputs:
6938   //     rcx - matched index in string
6939   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6940   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6941   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6942   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6943 
6944   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6945         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6946         FOUND_CANDIDATE;
6947 
6948   { //========================================================
6949     // We don't know where these strings are located
6950     // and we can't read beyond them. Load them through stack.
6951     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6952 
6953     movptr(tmp, rsp); // save old SP
6954 
6955     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6956       if (int_cnt2 == (1>>scale2)) { // One byte
6957         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6958         load_unsigned_byte(result, Address(str2, 0));
6959         movdl(vec, result); // move 32 bits
6960       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6961         // Not enough header space in 32-bit VM: 12+3 = 15.
6962         movl(result, Address(str2, -1));
6963         shrl(result, 8);
6964         movdl(vec, result); // move 32 bits
6965       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6966         load_unsigned_short(result, Address(str2, 0));
6967         movdl(vec, result); // move 32 bits
6968       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6969         movdl(vec, Address(str2, 0)); // move 32 bits
6970       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6971         movq(vec, Address(str2, 0));  // move 64 bits
6972       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6973         // Array header size is 12 bytes in 32-bit VM
6974         // + 6 bytes for 3 chars == 18 bytes,
6975         // enough space to load vec and shift.
6976         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6977         if (ae == StrIntrinsicNode::UL) {
6978           int tail_off = int_cnt2-8;
6979           pmovzxbw(vec, Address(str2, tail_off));
6980           psrldq(vec, -2*tail_off);
6981         }
6982         else {
6983           int tail_off = int_cnt2*(1<<scale2);
6984           movdqu(vec, Address(str2, tail_off-16));
6985           psrldq(vec, 16-tail_off);
6986         }
6987       }
6988     } else { // not constant substring
6989       cmpl(cnt2, stride);
6990       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6991 
6992       // We can read beyond string if srt+16 does not cross page boundary
6993       // since heaps are aligned and mapped by pages.
6994       assert(os::vm_page_size() < (int)G, "default page should be small");
6995       movl(result, str2); // We need only low 32 bits
6996       andl(result, (os::vm_page_size()-1));
6997       cmpl(result, (os::vm_page_size()-16));
6998       jccb(Assembler::belowEqual, CHECK_STR);
6999 
7000       // Move small strings to stack to allow load 16 bytes into vec.
7001       subptr(rsp, 16);
7002       int stk_offset = wordSize-(1<<scale2);
7003       push(cnt2);
7004 
7005       bind(COPY_SUBSTR);
7006       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7007         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7008         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7009       } else if (ae == StrIntrinsicNode::UU) {
7010         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7011         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7012       }
7013       decrement(cnt2);
7014       jccb(Assembler::notZero, COPY_SUBSTR);
7015 
7016       pop(cnt2);
7017       movptr(str2, rsp);  // New substring address
7018     } // non constant
7019 
7020     bind(CHECK_STR);
7021     cmpl(cnt1, stride);
7022     jccb(Assembler::aboveEqual, BIG_STRINGS);
7023 
7024     // Check cross page boundary.
7025     movl(result, str1); // We need only low 32 bits
7026     andl(result, (os::vm_page_size()-1));
7027     cmpl(result, (os::vm_page_size()-16));
7028     jccb(Assembler::belowEqual, BIG_STRINGS);
7029 
7030     subptr(rsp, 16);
7031     int stk_offset = -(1<<scale1);
7032     if (int_cnt2 < 0) { // not constant
7033       push(cnt2);
7034       stk_offset += wordSize;
7035     }
7036     movl(cnt2, cnt1);
7037 
7038     bind(COPY_STR);
7039     if (ae == StrIntrinsicNode::LL) {
7040       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7041       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7042     } else {
7043       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7044       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7045     }
7046     decrement(cnt2);
7047     jccb(Assembler::notZero, COPY_STR);
7048 
7049     if (int_cnt2 < 0) { // not constant
7050       pop(cnt2);
7051     }
7052     movptr(str1, rsp);  // New string address
7053 
7054     bind(BIG_STRINGS);
7055     // Load substring.
7056     if (int_cnt2 < 0) { // -1
7057       if (ae == StrIntrinsicNode::UL) {
7058         pmovzxbw(vec, Address(str2, 0));
7059       } else {
7060         movdqu(vec, Address(str2, 0));
7061       }
7062       push(cnt2);       // substr count
7063       push(str2);       // substr addr
7064       push(str1);       // string addr
7065     } else {
7066       // Small (< 8 chars) constant substrings are loaded already.
7067       movl(cnt2, int_cnt2);
7068     }
7069     push(tmp);  // original SP
7070 
7071   } // Finished loading
7072 
7073   //========================================================
7074   // Start search
7075   //
7076 
7077   movptr(result, str1); // string addr
7078 
7079   if (int_cnt2  < 0) {  // Only for non constant substring
7080     jmpb(SCAN_TO_SUBSTR);
7081 
7082     // SP saved at sp+0
7083     // String saved at sp+1*wordSize
7084     // Substr saved at sp+2*wordSize
7085     // Substr count saved at sp+3*wordSize
7086 
7087     // Reload substr for rescan, this code
7088     // is executed only for large substrings (> 8 chars)
7089     bind(RELOAD_SUBSTR);
7090     movptr(str2, Address(rsp, 2*wordSize));
7091     movl(cnt2, Address(rsp, 3*wordSize));
7092     if (ae == StrIntrinsicNode::UL) {
7093       pmovzxbw(vec, Address(str2, 0));
7094     } else {
7095       movdqu(vec, Address(str2, 0));
7096     }
7097     // We came here after the beginning of the substring was
7098     // matched but the rest of it was not so we need to search
7099     // again. Start from the next element after the previous match.
7100     subptr(str1, result); // Restore counter
7101     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7102       shrl(str1, 1);
7103     }
7104     addl(cnt1, str1);
7105     decrementl(cnt1);   // Shift to next element
7106     cmpl(cnt1, cnt2);
7107     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7108 
7109     addptr(result, (1<<scale1));
7110   } // non constant
7111 
7112   // Scan string for start of substr in 16-byte vectors
7113   bind(SCAN_TO_SUBSTR);
7114   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7115   pcmpestri(vec, Address(result, 0), mode);
7116   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7117   subl(cnt1, stride);
7118   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7119   cmpl(cnt1, cnt2);
7120   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7121   addptr(result, 16);
7122 
7123   bind(ADJUST_STR);
7124   cmpl(cnt1, stride); // Do not read beyond string
7125   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7126   // Back-up string to avoid reading beyond string.
7127   lea(result, Address(result, cnt1, scale1, -16));
7128   movl(cnt1, stride);
7129   jmpb(SCAN_TO_SUBSTR);
7130 
7131   // Found a potential substr
7132   bind(FOUND_CANDIDATE);
7133   // After pcmpestri tmp(rcx) contains matched element index
7134 
7135   // Make sure string is still long enough
7136   subl(cnt1, tmp);
7137   cmpl(cnt1, cnt2);
7138   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7139   // Left less then substring.
7140 
7141   bind(RET_NOT_FOUND);
7142   movl(result, -1);
7143   jmp(CLEANUP);
7144 
7145   bind(FOUND_SUBSTR);
7146   // Compute start addr of substr
7147   lea(result, Address(result, tmp, scale1));
7148   if (int_cnt2 > 0) { // Constant substring
7149     // Repeat search for small substring (< 8 chars)
7150     // from new point without reloading substring.
7151     // Have to check that we don't read beyond string.
7152     cmpl(tmp, stride-int_cnt2);
7153     jccb(Assembler::greater, ADJUST_STR);
7154     // Fall through if matched whole substring.
7155   } else { // non constant
7156     assert(int_cnt2 == -1, "should be != 0");
7157 
7158     addl(tmp, cnt2);
7159     // Found result if we matched whole substring.
7160     cmpl(tmp, stride);
7161     jcc(Assembler::lessEqual, RET_FOUND);
7162 
7163     // Repeat search for small substring (<= 8 chars)
7164     // from new point 'str1' without reloading substring.
7165     cmpl(cnt2, stride);
7166     // Have to check that we don't read beyond string.
7167     jccb(Assembler::lessEqual, ADJUST_STR);
7168 
7169     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7170     // Compare the rest of substring (> 8 chars).
7171     movptr(str1, result);
7172 
7173     cmpl(tmp, cnt2);
7174     // First 8 chars are already matched.
7175     jccb(Assembler::equal, CHECK_NEXT);
7176 
7177     bind(SCAN_SUBSTR);
7178     pcmpestri(vec, Address(str1, 0), mode);
7179     // Need to reload strings pointers if not matched whole vector
7180     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7181 
7182     bind(CHECK_NEXT);
7183     subl(cnt2, stride);
7184     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7185     addptr(str1, 16);
7186     if (ae == StrIntrinsicNode::UL) {
7187       addptr(str2, 8);
7188     } else {
7189       addptr(str2, 16);
7190     }
7191     subl(cnt1, stride);
7192     cmpl(cnt2, stride); // Do not read beyond substring
7193     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7194     // Back-up strings to avoid reading beyond substring.
7195 
7196     if (ae == StrIntrinsicNode::UL) {
7197       lea(str2, Address(str2, cnt2, scale2, -8));
7198       lea(str1, Address(str1, cnt2, scale1, -16));
7199     } else {
7200       lea(str2, Address(str2, cnt2, scale2, -16));
7201       lea(str1, Address(str1, cnt2, scale1, -16));
7202     }
7203     subl(cnt1, cnt2);
7204     movl(cnt2, stride);
7205     addl(cnt1, stride);
7206     bind(CONT_SCAN_SUBSTR);
7207     if (ae == StrIntrinsicNode::UL) {
7208       pmovzxbw(vec, Address(str2, 0));
7209     } else {
7210       movdqu(vec, Address(str2, 0));
7211     }
7212     jmp(SCAN_SUBSTR);
7213 
7214     bind(RET_FOUND_LONG);
7215     movptr(str1, Address(rsp, wordSize));
7216   } // non constant
7217 
7218   bind(RET_FOUND);
7219   // Compute substr offset
7220   subptr(result, str1);
7221   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7222     shrl(result, 1); // index
7223   }
7224   bind(CLEANUP);
7225   pop(rsp); // restore SP
7226 
7227 } // string_indexof
7228 
7229 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7230                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7231   ShortBranchVerifier sbv(this);
7232   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7233 
7234   int stride = 8;
7235 
7236   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7237         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7238         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7239         FOUND_SEQ_CHAR, DONE_LABEL;
7240 
7241   movptr(result, str1);
7242   if (UseAVX >= 2) {
7243     cmpl(cnt1, stride);
7244     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7245     cmpl(cnt1, 2*stride);
7246     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7247     movdl(vec1, ch);
7248     vpbroadcastw(vec1, vec1);
7249     vpxor(vec2, vec2);
7250     movl(tmp, cnt1);
7251     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7252     andl(cnt1,0x0000000F);  //tail count (in chars)
7253 
7254     bind(SCAN_TO_16_CHAR_LOOP);
7255     vmovdqu(vec3, Address(result, 0));
7256     vpcmpeqw(vec3, vec3, vec1, 1);
7257     vptest(vec2, vec3);
7258     jcc(Assembler::carryClear, FOUND_CHAR);
7259     addptr(result, 32);
7260     subl(tmp, 2*stride);
7261     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7262     jmp(SCAN_TO_8_CHAR);
7263     bind(SCAN_TO_8_CHAR_INIT);
7264     movdl(vec1, ch);
7265     pshuflw(vec1, vec1, 0x00);
7266     pshufd(vec1, vec1, 0);
7267     pxor(vec2, vec2);
7268   }
7269   bind(SCAN_TO_8_CHAR);
7270   cmpl(cnt1, stride);
7271   if (UseAVX >= 2) {
7272     jcc(Assembler::less, SCAN_TO_CHAR);
7273   } else {
7274     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7275     movdl(vec1, ch);
7276     pshuflw(vec1, vec1, 0x00);
7277     pshufd(vec1, vec1, 0);
7278     pxor(vec2, vec2);
7279   }
7280   movl(tmp, cnt1);
7281   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7282   andl(cnt1,0x00000007);  //tail count (in chars)
7283 
7284   bind(SCAN_TO_8_CHAR_LOOP);
7285   movdqu(vec3, Address(result, 0));
7286   pcmpeqw(vec3, vec1);
7287   ptest(vec2, vec3);
7288   jcc(Assembler::carryClear, FOUND_CHAR);
7289   addptr(result, 16);
7290   subl(tmp, stride);
7291   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7292   bind(SCAN_TO_CHAR);
7293   testl(cnt1, cnt1);
7294   jcc(Assembler::zero, RET_NOT_FOUND);
7295   bind(SCAN_TO_CHAR_LOOP);
7296   load_unsigned_short(tmp, Address(result, 0));
7297   cmpl(ch, tmp);
7298   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7299   addptr(result, 2);
7300   subl(cnt1, 1);
7301   jccb(Assembler::zero, RET_NOT_FOUND);
7302   jmp(SCAN_TO_CHAR_LOOP);
7303 
7304   bind(RET_NOT_FOUND);
7305   movl(result, -1);
7306   jmpb(DONE_LABEL);
7307 
7308   bind(FOUND_CHAR);
7309   if (UseAVX >= 2) {
7310     vpmovmskb(tmp, vec3);
7311   } else {
7312     pmovmskb(tmp, vec3);
7313   }
7314   bsfl(ch, tmp);
7315   addl(result, ch);
7316 
7317   bind(FOUND_SEQ_CHAR);
7318   subptr(result, str1);
7319   shrl(result, 1);
7320 
7321   bind(DONE_LABEL);
7322 } // string_indexof_char
7323 
7324 // helper function for string_compare
7325 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7326                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7327                                         Address::ScaleFactor scale2, Register index, int ae) {
7328   if (ae == StrIntrinsicNode::LL) {
7329     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7330     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7331   } else if (ae == StrIntrinsicNode::UU) {
7332     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7333     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7334   } else {
7335     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7336     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7337   }
7338 }
7339 
7340 // Compare strings, used for char[] and byte[].
7341 void MacroAssembler::string_compare(Register str1, Register str2,
7342                                     Register cnt1, Register cnt2, Register result,
7343                                     XMMRegister vec1, int ae) {
7344   ShortBranchVerifier sbv(this);
7345   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7346   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7347   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7348   int stride2x2 = 0x40;
7349   Address::ScaleFactor scale = Address::no_scale;
7350   Address::ScaleFactor scale1 = Address::no_scale;
7351   Address::ScaleFactor scale2 = Address::no_scale;
7352 
7353   if (ae != StrIntrinsicNode::LL) {
7354     stride2x2 = 0x20;
7355   }
7356 
7357   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7358     shrl(cnt2, 1);
7359   }
7360   // Compute the minimum of the string lengths and the
7361   // difference of the string lengths (stack).
7362   // Do the conditional move stuff
7363   movl(result, cnt1);
7364   subl(cnt1, cnt2);
7365   push(cnt1);
7366   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7367 
7368   // Is the minimum length zero?
7369   testl(cnt2, cnt2);
7370   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7371   if (ae == StrIntrinsicNode::LL) {
7372     // Load first bytes
7373     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7374     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7375   } else if (ae == StrIntrinsicNode::UU) {
7376     // Load first characters
7377     load_unsigned_short(result, Address(str1, 0));
7378     load_unsigned_short(cnt1, Address(str2, 0));
7379   } else {
7380     load_unsigned_byte(result, Address(str1, 0));
7381     load_unsigned_short(cnt1, Address(str2, 0));
7382   }
7383   subl(result, cnt1);
7384   jcc(Assembler::notZero,  POP_LABEL);
7385 
7386   if (ae == StrIntrinsicNode::UU) {
7387     // Divide length by 2 to get number of chars
7388     shrl(cnt2, 1);
7389   }
7390   cmpl(cnt2, 1);
7391   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7392 
7393   // Check if the strings start at the same location and setup scale and stride
7394   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7395     cmpptr(str1, str2);
7396     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7397     if (ae == StrIntrinsicNode::LL) {
7398       scale = Address::times_1;
7399       stride = 16;
7400     } else {
7401       scale = Address::times_2;
7402       stride = 8;
7403     }
7404   } else {
7405     scale1 = Address::times_1;
7406     scale2 = Address::times_2;
7407     // scale not used
7408     stride = 8;
7409   }
7410 
7411   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7412     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7413     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7414     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7415     Label COMPARE_TAIL_LONG;
7416     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7417 
7418     int pcmpmask = 0x19;
7419     if (ae == StrIntrinsicNode::LL) {
7420       pcmpmask &= ~0x01;
7421     }
7422 
7423     // Setup to compare 16-chars (32-bytes) vectors,
7424     // start from first character again because it has aligned address.
7425     if (ae == StrIntrinsicNode::LL) {
7426       stride2 = 32;
7427     } else {
7428       stride2 = 16;
7429     }
7430     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7431       adr_stride = stride << scale;
7432     } else {
7433       adr_stride1 = 8;  //stride << scale1;
7434       adr_stride2 = 16; //stride << scale2;
7435     }
7436 
7437     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7438     // rax and rdx are used by pcmpestri as elements counters
7439     movl(result, cnt2);
7440     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7441     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7442 
7443     // fast path : compare first 2 8-char vectors.
7444     bind(COMPARE_16_CHARS);
7445     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7446       movdqu(vec1, Address(str1, 0));
7447     } else {
7448       pmovzxbw(vec1, Address(str1, 0));
7449     }
7450     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7451     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7452 
7453     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7454       movdqu(vec1, Address(str1, adr_stride));
7455       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7456     } else {
7457       pmovzxbw(vec1, Address(str1, adr_stride1));
7458       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7459     }
7460     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7461     addl(cnt1, stride);
7462 
7463     // Compare the characters at index in cnt1
7464     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7465     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7466     subl(result, cnt2);
7467     jmp(POP_LABEL);
7468 
7469     // Setup the registers to start vector comparison loop
7470     bind(COMPARE_WIDE_VECTORS);
7471     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7472       lea(str1, Address(str1, result, scale));
7473       lea(str2, Address(str2, result, scale));
7474     } else {
7475       lea(str1, Address(str1, result, scale1));
7476       lea(str2, Address(str2, result, scale2));
7477     }
7478     subl(result, stride2);
7479     subl(cnt2, stride2);
7480     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7481     negptr(result);
7482 
7483     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7484     bind(COMPARE_WIDE_VECTORS_LOOP);
7485 
7486 #ifdef _LP64
7487     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7488       cmpl(cnt2, stride2x2);
7489       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7490       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7491       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7492 
7493       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7494       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7495         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7496         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7497       } else {
7498         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7499         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7500       }
7501       kortestql(k7, k7);
7502       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7503       addptr(result, stride2x2);  // update since we already compared at this addr
7504       subl(cnt2, stride2x2);      // and sub the size too
7505       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7506 
7507       vpxor(vec1, vec1);
7508       jmpb(COMPARE_WIDE_TAIL);
7509     }//if (VM_Version::supports_avx512vlbw())
7510 #endif // _LP64
7511 
7512 
7513     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7514     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7515       vmovdqu(vec1, Address(str1, result, scale));
7516       vpxor(vec1, Address(str2, result, scale));
7517     } else {
7518       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7519       vpxor(vec1, Address(str2, result, scale2));
7520     }
7521     vptest(vec1, vec1);
7522     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7523     addptr(result, stride2);
7524     subl(cnt2, stride2);
7525     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7526     // clean upper bits of YMM registers
7527     vpxor(vec1, vec1);
7528 
7529     // compare wide vectors tail
7530     bind(COMPARE_WIDE_TAIL);
7531     testptr(result, result);
7532     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7533 
7534     movl(result, stride2);
7535     movl(cnt2, result);
7536     negptr(result);
7537     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7538 
7539     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7540     bind(VECTOR_NOT_EQUAL);
7541     // clean upper bits of YMM registers
7542     vpxor(vec1, vec1);
7543     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7544       lea(str1, Address(str1, result, scale));
7545       lea(str2, Address(str2, result, scale));
7546     } else {
7547       lea(str1, Address(str1, result, scale1));
7548       lea(str2, Address(str2, result, scale2));
7549     }
7550     jmp(COMPARE_16_CHARS);
7551 
7552     // Compare tail chars, length between 1 to 15 chars
7553     bind(COMPARE_TAIL_LONG);
7554     movl(cnt2, result);
7555     cmpl(cnt2, stride);
7556     jcc(Assembler::less, COMPARE_SMALL_STR);
7557 
7558     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7559       movdqu(vec1, Address(str1, 0));
7560     } else {
7561       pmovzxbw(vec1, Address(str1, 0));
7562     }
7563     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7564     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7565     subptr(cnt2, stride);
7566     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7567     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7568       lea(str1, Address(str1, result, scale));
7569       lea(str2, Address(str2, result, scale));
7570     } else {
7571       lea(str1, Address(str1, result, scale1));
7572       lea(str2, Address(str2, result, scale2));
7573     }
7574     negptr(cnt2);
7575     jmpb(WHILE_HEAD_LABEL);
7576 
7577     bind(COMPARE_SMALL_STR);
7578   } else if (UseSSE42Intrinsics) {
7579     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7580     int pcmpmask = 0x19;
7581     // Setup to compare 8-char (16-byte) vectors,
7582     // start from first character again because it has aligned address.
7583     movl(result, cnt2);
7584     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7585     if (ae == StrIntrinsicNode::LL) {
7586       pcmpmask &= ~0x01;
7587     }
7588     jcc(Assembler::zero, COMPARE_TAIL);
7589     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7590       lea(str1, Address(str1, result, scale));
7591       lea(str2, Address(str2, result, scale));
7592     } else {
7593       lea(str1, Address(str1, result, scale1));
7594       lea(str2, Address(str2, result, scale2));
7595     }
7596     negptr(result);
7597 
7598     // pcmpestri
7599     //   inputs:
7600     //     vec1- substring
7601     //     rax - negative string length (elements count)
7602     //     mem - scanned string
7603     //     rdx - string length (elements count)
7604     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7605     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7606     //   outputs:
7607     //     rcx - first mismatched element index
7608     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7609 
7610     bind(COMPARE_WIDE_VECTORS);
7611     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7612       movdqu(vec1, Address(str1, result, scale));
7613       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7614     } else {
7615       pmovzxbw(vec1, Address(str1, result, scale1));
7616       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7617     }
7618     // After pcmpestri cnt1(rcx) contains mismatched element index
7619 
7620     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7621     addptr(result, stride);
7622     subptr(cnt2, stride);
7623     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
7624 
7625     // compare wide vectors tail
7626     testptr(result, result);
7627     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7628 
7629     movl(cnt2, stride);
7630     movl(result, stride);
7631     negptr(result);
7632     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7633       movdqu(vec1, Address(str1, result, scale));
7634       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7635     } else {
7636       pmovzxbw(vec1, Address(str1, result, scale1));
7637       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7638     }
7639     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
7640 
7641     // Mismatched characters in the vectors
7642     bind(VECTOR_NOT_EQUAL);
7643     addptr(cnt1, result);
7644     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7645     subl(result, cnt2);
7646     jmpb(POP_LABEL);
7647 
7648     bind(COMPARE_TAIL); // limit is zero
7649     movl(cnt2, result);
7650     // Fallthru to tail compare
7651   }
7652   // Shift str2 and str1 to the end of the arrays, negate min
7653   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7654     lea(str1, Address(str1, cnt2, scale));
7655     lea(str2, Address(str2, cnt2, scale));
7656   } else {
7657     lea(str1, Address(str1, cnt2, scale1));
7658     lea(str2, Address(str2, cnt2, scale2));
7659   }
7660   decrementl(cnt2);  // first character was compared already
7661   negptr(cnt2);
7662 
7663   // Compare the rest of the elements
7664   bind(WHILE_HEAD_LABEL);
7665   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
7666   subl(result, cnt1);
7667   jccb(Assembler::notZero, POP_LABEL);
7668   increment(cnt2);
7669   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
7670 
7671   // Strings are equal up to min length.  Return the length difference.
7672   bind(LENGTH_DIFF_LABEL);
7673   pop(result);
7674   if (ae == StrIntrinsicNode::UU) {
7675     // Divide diff by 2 to get number of chars
7676     sarl(result, 1);
7677   }
7678   jmpb(DONE_LABEL);
7679 
7680 #ifdef _LP64
7681   if (VM_Version::supports_avx512vlbw()) {
7682 
7683     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
7684 
7685     kmovql(cnt1, k7);
7686     notq(cnt1);
7687     bsfq(cnt2, cnt1);
7688     if (ae != StrIntrinsicNode::LL) {
7689       // Divide diff by 2 to get number of chars
7690       sarl(cnt2, 1);
7691     }
7692     addq(result, cnt2);
7693     if (ae == StrIntrinsicNode::LL) {
7694       load_unsigned_byte(cnt1, Address(str2, result));
7695       load_unsigned_byte(result, Address(str1, result));
7696     } else if (ae == StrIntrinsicNode::UU) {
7697       load_unsigned_short(cnt1, Address(str2, result, scale));
7698       load_unsigned_short(result, Address(str1, result, scale));
7699     } else {
7700       load_unsigned_short(cnt1, Address(str2, result, scale2));
7701       load_unsigned_byte(result, Address(str1, result, scale1));
7702     }
7703     subl(result, cnt1);
7704     jmpb(POP_LABEL);
7705   }//if (VM_Version::supports_avx512vlbw())
7706 #endif // _LP64
7707 
7708   // Discard the stored length difference
7709   bind(POP_LABEL);
7710   pop(cnt1);
7711 
7712   // That's it
7713   bind(DONE_LABEL);
7714   if(ae == StrIntrinsicNode::UL) {
7715     negl(result);
7716   }
7717 
7718 }
7719 
7720 // Search for Non-ASCII character (Negative byte value) in a byte array,
7721 // return true if it has any and false otherwise.
7722 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
7723 //   @HotSpotIntrinsicCandidate
7724 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
7725 //     for (int i = off; i < off + len; i++) {
7726 //       if (ba[i] < 0) {
7727 //         return true;
7728 //       }
7729 //     }
7730 //     return false;
7731 //   }
7732 void MacroAssembler::has_negatives(Register ary1, Register len,
7733   Register result, Register tmp1,
7734   XMMRegister vec1, XMMRegister vec2) {
7735   // rsi: byte array
7736   // rcx: len
7737   // rax: result
7738   ShortBranchVerifier sbv(this);
7739   assert_different_registers(ary1, len, result, tmp1);
7740   assert_different_registers(vec1, vec2);
7741   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
7742 
7743   // len == 0
7744   testl(len, len);
7745   jcc(Assembler::zero, FALSE_LABEL);
7746 
7747   if ((UseAVX > 2) && // AVX512
7748     VM_Version::supports_avx512vlbw() &&
7749     VM_Version::supports_bmi2()) {
7750 
7751     set_vector_masking();  // opening of the stub context for programming mask registers
7752 
7753     Label test_64_loop, test_tail;
7754     Register tmp3_aliased = len;
7755 
7756     movl(tmp1, len);
7757     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
7758 
7759     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
7760     andl(len, ~(64 - 1));    // vector count (in chars)
7761     jccb(Assembler::zero, test_tail);
7762 
7763     lea(ary1, Address(ary1, len, Address::times_1));
7764     negptr(len);
7765 
7766     bind(test_64_loop);
7767     // Check whether our 64 elements of size byte contain negatives
7768     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
7769     kortestql(k2, k2);
7770     jcc(Assembler::notZero, TRUE_LABEL);
7771 
7772     addptr(len, 64);
7773     jccb(Assembler::notZero, test_64_loop);
7774 
7775 
7776     bind(test_tail);
7777     // bail out when there is nothing to be done
7778     testl(tmp1, -1);
7779     jcc(Assembler::zero, FALSE_LABEL);
7780 
7781     // Save k1
7782     kmovql(k3, k1);
7783 
7784     // ~(~0 << len) applied up to two times (for 32-bit scenario)
7785 #ifdef _LP64
7786     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
7787     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
7788     notq(tmp3_aliased);
7789     kmovql(k1, tmp3_aliased);
7790 #else
7791     Label k_init;
7792     jmp(k_init);
7793 
7794     // We could not read 64-bits from a general purpose register thus we move
7795     // data required to compose 64 1's to the instruction stream
7796     // We emit 64 byte wide series of elements from 0..63 which later on would
7797     // be used as a compare targets with tail count contained in tmp1 register.
7798     // Result would be a k1 register having tmp1 consecutive number or 1
7799     // counting from least significant bit.
7800     address tmp = pc();
7801     emit_int64(0x0706050403020100);
7802     emit_int64(0x0F0E0D0C0B0A0908);
7803     emit_int64(0x1716151413121110);
7804     emit_int64(0x1F1E1D1C1B1A1918);
7805     emit_int64(0x2726252423222120);
7806     emit_int64(0x2F2E2D2C2B2A2928);
7807     emit_int64(0x3736353433323130);
7808     emit_int64(0x3F3E3D3C3B3A3938);
7809 
7810     bind(k_init);
7811     lea(len, InternalAddress(tmp));
7812     // create mask to test for negative byte inside a vector
7813     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
7814     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
7815 
7816 #endif
7817     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
7818     ktestq(k2, k1);
7819     // Restore k1
7820     kmovql(k1, k3);
7821     jcc(Assembler::notZero, TRUE_LABEL);
7822 
7823     jmp(FALSE_LABEL);
7824 
7825     clear_vector_masking();   // closing of the stub context for programming mask registers
7826   } else {
7827     movl(result, len); // copy
7828 
7829     if (UseAVX == 2 && UseSSE >= 2) {
7830       // With AVX2, use 32-byte vector compare
7831       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7832 
7833       // Compare 32-byte vectors
7834       andl(result, 0x0000001f);  //   tail count (in bytes)
7835       andl(len, 0xffffffe0);   // vector count (in bytes)
7836       jccb(Assembler::zero, COMPARE_TAIL);
7837 
7838       lea(ary1, Address(ary1, len, Address::times_1));
7839       negptr(len);
7840 
7841       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
7842       movdl(vec2, tmp1);
7843       vpbroadcastd(vec2, vec2);
7844 
7845       bind(COMPARE_WIDE_VECTORS);
7846       vmovdqu(vec1, Address(ary1, len, Address::times_1));
7847       vptest(vec1, vec2);
7848       jccb(Assembler::notZero, TRUE_LABEL);
7849       addptr(len, 32);
7850       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7851 
7852       testl(result, result);
7853       jccb(Assembler::zero, FALSE_LABEL);
7854 
7855       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7856       vptest(vec1, vec2);
7857       jccb(Assembler::notZero, TRUE_LABEL);
7858       jmpb(FALSE_LABEL);
7859 
7860       bind(COMPARE_TAIL); // len is zero
7861       movl(len, result);
7862       // Fallthru to tail compare
7863     } else if (UseSSE42Intrinsics) {
7864       // With SSE4.2, use double quad vector compare
7865       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7866 
7867       // Compare 16-byte vectors
7868       andl(result, 0x0000000f);  //   tail count (in bytes)
7869       andl(len, 0xfffffff0);   // vector count (in bytes)
7870       jcc(Assembler::zero, COMPARE_TAIL);
7871 
7872       lea(ary1, Address(ary1, len, Address::times_1));
7873       negptr(len);
7874 
7875       movl(tmp1, 0x80808080);
7876       movdl(vec2, tmp1);
7877       pshufd(vec2, vec2, 0);
7878 
7879       bind(COMPARE_WIDE_VECTORS);
7880       movdqu(vec1, Address(ary1, len, Address::times_1));
7881       ptest(vec1, vec2);
7882       jcc(Assembler::notZero, TRUE_LABEL);
7883       addptr(len, 16);
7884       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7885 
7886       testl(result, result);
7887       jcc(Assembler::zero, FALSE_LABEL);
7888 
7889       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7890       ptest(vec1, vec2);
7891       jccb(Assembler::notZero, TRUE_LABEL);
7892       jmpb(FALSE_LABEL);
7893 
7894       bind(COMPARE_TAIL); // len is zero
7895       movl(len, result);
7896       // Fallthru to tail compare
7897     }
7898   }
7899   // Compare 4-byte vectors
7900   andl(len, 0xfffffffc); // vector count (in bytes)
7901   jccb(Assembler::zero, COMPARE_CHAR);
7902 
7903   lea(ary1, Address(ary1, len, Address::times_1));
7904   negptr(len);
7905 
7906   bind(COMPARE_VECTORS);
7907   movl(tmp1, Address(ary1, len, Address::times_1));
7908   andl(tmp1, 0x80808080);
7909   jccb(Assembler::notZero, TRUE_LABEL);
7910   addptr(len, 4);
7911   jcc(Assembler::notZero, COMPARE_VECTORS);
7912 
7913   // Compare trailing char (final 2 bytes), if any
7914   bind(COMPARE_CHAR);
7915   testl(result, 0x2);   // tail  char
7916   jccb(Assembler::zero, COMPARE_BYTE);
7917   load_unsigned_short(tmp1, Address(ary1, 0));
7918   andl(tmp1, 0x00008080);
7919   jccb(Assembler::notZero, TRUE_LABEL);
7920   subptr(result, 2);
7921   lea(ary1, Address(ary1, 2));
7922 
7923   bind(COMPARE_BYTE);
7924   testl(result, 0x1);   // tail  byte
7925   jccb(Assembler::zero, FALSE_LABEL);
7926   load_unsigned_byte(tmp1, Address(ary1, 0));
7927   andl(tmp1, 0x00000080);
7928   jccb(Assembler::notEqual, TRUE_LABEL);
7929   jmpb(FALSE_LABEL);
7930 
7931   bind(TRUE_LABEL);
7932   movl(result, 1);   // return true
7933   jmpb(DONE);
7934 
7935   bind(FALSE_LABEL);
7936   xorl(result, result); // return false
7937 
7938   // That's it
7939   bind(DONE);
7940   if (UseAVX >= 2 && UseSSE >= 2) {
7941     // clean upper bits of YMM registers
7942     vpxor(vec1, vec1);
7943     vpxor(vec2, vec2);
7944   }
7945 }
7946 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7947 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7948                                    Register limit, Register result, Register chr,
7949                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7950   ShortBranchVerifier sbv(this);
7951   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7952 
7953   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7954   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7955 
7956   if (is_array_equ) {
7957     // Check the input args
7958     cmpoop(ary1, ary2);
7959     jcc(Assembler::equal, TRUE_LABEL);
7960 
7961     // Need additional checks for arrays_equals.
7962     testptr(ary1, ary1);
7963     jcc(Assembler::zero, FALSE_LABEL);
7964     testptr(ary2, ary2);
7965     jcc(Assembler::zero, FALSE_LABEL);
7966 
7967     // Check the lengths
7968     movl(limit, Address(ary1, length_offset));
7969     cmpl(limit, Address(ary2, length_offset));
7970     jcc(Assembler::notEqual, FALSE_LABEL);
7971   }
7972 
7973   // count == 0
7974   testl(limit, limit);
7975   jcc(Assembler::zero, TRUE_LABEL);
7976 
7977   if (is_array_equ) {
7978     // Load array address
7979     lea(ary1, Address(ary1, base_offset));
7980     lea(ary2, Address(ary2, base_offset));
7981   }
7982 
7983   if (is_array_equ && is_char) {
7984     // arrays_equals when used for char[].
7985     shll(limit, 1);      // byte count != 0
7986   }
7987   movl(result, limit); // copy
7988 
7989   if (UseAVX >= 2) {
7990     // With AVX2, use 32-byte vector compare
7991     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7992 
7993     // Compare 32-byte vectors
7994     andl(result, 0x0000001f);  //   tail count (in bytes)
7995     andl(limit, 0xffffffe0);   // vector count (in bytes)
7996     jcc(Assembler::zero, COMPARE_TAIL);
7997 
7998     lea(ary1, Address(ary1, limit, Address::times_1));
7999     lea(ary2, Address(ary2, limit, Address::times_1));
8000     negptr(limit);
8001 
8002     bind(COMPARE_WIDE_VECTORS);
8003 
8004 #ifdef _LP64
8005     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8006       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8007 
8008       cmpl(limit, -64);
8009       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8010 
8011       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8012 
8013       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8014       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8015       kortestql(k7, k7);
8016       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8017       addptr(limit, 64);  // update since we already compared at this addr
8018       cmpl(limit, -64);
8019       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8020 
8021       // At this point we may still need to compare -limit+result bytes.
8022       // We could execute the next two instruction and just continue via non-wide path:
8023       //  cmpl(limit, 0);
8024       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8025       // But since we stopped at the points ary{1,2}+limit which are
8026       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8027       // (|limit| <= 32 and result < 32),
8028       // we may just compare the last 64 bytes.
8029       //
8030       addptr(result, -64);   // it is safe, bc we just came from this area
8031       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8032       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8033       kortestql(k7, k7);
8034       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8035 
8036       jmp(TRUE_LABEL);
8037 
8038       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8039 
8040     }//if (VM_Version::supports_avx512vlbw())
8041 #endif //_LP64
8042 
8043     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8044     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8045     vpxor(vec1, vec2);
8046 
8047     vptest(vec1, vec1);
8048     jcc(Assembler::notZero, FALSE_LABEL);
8049     addptr(limit, 32);
8050     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8051 
8052     testl(result, result);
8053     jcc(Assembler::zero, TRUE_LABEL);
8054 
8055     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8056     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8057     vpxor(vec1, vec2);
8058 
8059     vptest(vec1, vec1);
8060     jccb(Assembler::notZero, FALSE_LABEL);
8061     jmpb(TRUE_LABEL);
8062 
8063     bind(COMPARE_TAIL); // limit is zero
8064     movl(limit, result);
8065     // Fallthru to tail compare
8066   } else if (UseSSE42Intrinsics) {
8067     // With SSE4.2, use double quad vector compare
8068     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8069 
8070     // Compare 16-byte vectors
8071     andl(result, 0x0000000f);  //   tail count (in bytes)
8072     andl(limit, 0xfffffff0);   // vector count (in bytes)
8073     jcc(Assembler::zero, COMPARE_TAIL);
8074 
8075     lea(ary1, Address(ary1, limit, Address::times_1));
8076     lea(ary2, Address(ary2, limit, Address::times_1));
8077     negptr(limit);
8078 
8079     bind(COMPARE_WIDE_VECTORS);
8080     movdqu(vec1, Address(ary1, limit, Address::times_1));
8081     movdqu(vec2, Address(ary2, limit, Address::times_1));
8082     pxor(vec1, vec2);
8083 
8084     ptest(vec1, vec1);
8085     jcc(Assembler::notZero, FALSE_LABEL);
8086     addptr(limit, 16);
8087     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8088 
8089     testl(result, result);
8090     jcc(Assembler::zero, TRUE_LABEL);
8091 
8092     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8093     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8094     pxor(vec1, vec2);
8095 
8096     ptest(vec1, vec1);
8097     jccb(Assembler::notZero, FALSE_LABEL);
8098     jmpb(TRUE_LABEL);
8099 
8100     bind(COMPARE_TAIL); // limit is zero
8101     movl(limit, result);
8102     // Fallthru to tail compare
8103   }
8104 
8105   // Compare 4-byte vectors
8106   andl(limit, 0xfffffffc); // vector count (in bytes)
8107   jccb(Assembler::zero, COMPARE_CHAR);
8108 
8109   lea(ary1, Address(ary1, limit, Address::times_1));
8110   lea(ary2, Address(ary2, limit, Address::times_1));
8111   negptr(limit);
8112 
8113   bind(COMPARE_VECTORS);
8114   movl(chr, Address(ary1, limit, Address::times_1));
8115   cmpl(chr, Address(ary2, limit, Address::times_1));
8116   jccb(Assembler::notEqual, FALSE_LABEL);
8117   addptr(limit, 4);
8118   jcc(Assembler::notZero, COMPARE_VECTORS);
8119 
8120   // Compare trailing char (final 2 bytes), if any
8121   bind(COMPARE_CHAR);
8122   testl(result, 0x2);   // tail  char
8123   jccb(Assembler::zero, COMPARE_BYTE);
8124   load_unsigned_short(chr, Address(ary1, 0));
8125   load_unsigned_short(limit, Address(ary2, 0));
8126   cmpl(chr, limit);
8127   jccb(Assembler::notEqual, FALSE_LABEL);
8128 
8129   if (is_array_equ && is_char) {
8130     bind(COMPARE_BYTE);
8131   } else {
8132     lea(ary1, Address(ary1, 2));
8133     lea(ary2, Address(ary2, 2));
8134 
8135     bind(COMPARE_BYTE);
8136     testl(result, 0x1);   // tail  byte
8137     jccb(Assembler::zero, TRUE_LABEL);
8138     load_unsigned_byte(chr, Address(ary1, 0));
8139     load_unsigned_byte(limit, Address(ary2, 0));
8140     cmpl(chr, limit);
8141     jccb(Assembler::notEqual, FALSE_LABEL);
8142   }
8143   bind(TRUE_LABEL);
8144   movl(result, 1);   // return true
8145   jmpb(DONE);
8146 
8147   bind(FALSE_LABEL);
8148   xorl(result, result); // return false
8149 
8150   // That's it
8151   bind(DONE);
8152   if (UseAVX >= 2) {
8153     // clean upper bits of YMM registers
8154     vpxor(vec1, vec1);
8155     vpxor(vec2, vec2);
8156   }
8157 }
8158 
8159 #endif
8160 
8161 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8162                                    Register to, Register value, Register count,
8163                                    Register rtmp, XMMRegister xtmp) {
8164   ShortBranchVerifier sbv(this);
8165   assert_different_registers(to, value, count, rtmp);
8166   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8167   Label L_fill_2_bytes, L_fill_4_bytes;
8168 
8169   int shift = -1;
8170   switch (t) {
8171     case T_BYTE:
8172       shift = 2;
8173       break;
8174     case T_SHORT:
8175       shift = 1;
8176       break;
8177     case T_INT:
8178       shift = 0;
8179       break;
8180     default: ShouldNotReachHere();
8181   }
8182 
8183   if (t == T_BYTE) {
8184     andl(value, 0xff);
8185     movl(rtmp, value);
8186     shll(rtmp, 8);
8187     orl(value, rtmp);
8188   }
8189   if (t == T_SHORT) {
8190     andl(value, 0xffff);
8191   }
8192   if (t == T_BYTE || t == T_SHORT) {
8193     movl(rtmp, value);
8194     shll(rtmp, 16);
8195     orl(value, rtmp);
8196   }
8197 
8198   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8199   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8200   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8201     // align source address at 4 bytes address boundary
8202     if (t == T_BYTE) {
8203       // One byte misalignment happens only for byte arrays
8204       testptr(to, 1);
8205       jccb(Assembler::zero, L_skip_align1);
8206       movb(Address(to, 0), value);
8207       increment(to);
8208       decrement(count);
8209       BIND(L_skip_align1);
8210     }
8211     // Two bytes misalignment happens only for byte and short (char) arrays
8212     testptr(to, 2);
8213     jccb(Assembler::zero, L_skip_align2);
8214     movw(Address(to, 0), value);
8215     addptr(to, 2);
8216     subl(count, 1<<(shift-1));
8217     BIND(L_skip_align2);
8218   }
8219   if (UseSSE < 2) {
8220     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8221     // Fill 32-byte chunks
8222     subl(count, 8 << shift);
8223     jcc(Assembler::less, L_check_fill_8_bytes);
8224     align(16);
8225 
8226     BIND(L_fill_32_bytes_loop);
8227 
8228     for (int i = 0; i < 32; i += 4) {
8229       movl(Address(to, i), value);
8230     }
8231 
8232     addptr(to, 32);
8233     subl(count, 8 << shift);
8234     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8235     BIND(L_check_fill_8_bytes);
8236     addl(count, 8 << shift);
8237     jccb(Assembler::zero, L_exit);
8238     jmpb(L_fill_8_bytes);
8239 
8240     //
8241     // length is too short, just fill qwords
8242     //
8243     BIND(L_fill_8_bytes_loop);
8244     movl(Address(to, 0), value);
8245     movl(Address(to, 4), value);
8246     addptr(to, 8);
8247     BIND(L_fill_8_bytes);
8248     subl(count, 1 << (shift + 1));
8249     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8250     // fall through to fill 4 bytes
8251   } else {
8252     Label L_fill_32_bytes;
8253     if (!UseUnalignedLoadStores) {
8254       // align to 8 bytes, we know we are 4 byte aligned to start
8255       testptr(to, 4);
8256       jccb(Assembler::zero, L_fill_32_bytes);
8257       movl(Address(to, 0), value);
8258       addptr(to, 4);
8259       subl(count, 1<<shift);
8260     }
8261     BIND(L_fill_32_bytes);
8262     {
8263       assert( UseSSE >= 2, "supported cpu only" );
8264       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8265       if (UseAVX > 2) {
8266         movl(rtmp, 0xffff);
8267         kmovwl(k1, rtmp);
8268       }
8269       movdl(xtmp, value);
8270       if (UseAVX > 2 && UseUnalignedLoadStores) {
8271         // Fill 64-byte chunks
8272         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8273         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8274 
8275         subl(count, 16 << shift);
8276         jcc(Assembler::less, L_check_fill_32_bytes);
8277         align(16);
8278 
8279         BIND(L_fill_64_bytes_loop);
8280         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8281         addptr(to, 64);
8282         subl(count, 16 << shift);
8283         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8284 
8285         BIND(L_check_fill_32_bytes);
8286         addl(count, 8 << shift);
8287         jccb(Assembler::less, L_check_fill_8_bytes);
8288         vmovdqu(Address(to, 0), xtmp);
8289         addptr(to, 32);
8290         subl(count, 8 << shift);
8291 
8292         BIND(L_check_fill_8_bytes);
8293       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8294         // Fill 64-byte chunks
8295         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8296         vpbroadcastd(xtmp, xtmp);
8297 
8298         subl(count, 16 << shift);
8299         jcc(Assembler::less, L_check_fill_32_bytes);
8300         align(16);
8301 
8302         BIND(L_fill_64_bytes_loop);
8303         vmovdqu(Address(to, 0), xtmp);
8304         vmovdqu(Address(to, 32), xtmp);
8305         addptr(to, 64);
8306         subl(count, 16 << shift);
8307         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8308 
8309         BIND(L_check_fill_32_bytes);
8310         addl(count, 8 << shift);
8311         jccb(Assembler::less, L_check_fill_8_bytes);
8312         vmovdqu(Address(to, 0), xtmp);
8313         addptr(to, 32);
8314         subl(count, 8 << shift);
8315 
8316         BIND(L_check_fill_8_bytes);
8317         // clean upper bits of YMM registers
8318         movdl(xtmp, value);
8319         pshufd(xtmp, xtmp, 0);
8320       } else {
8321         // Fill 32-byte chunks
8322         pshufd(xtmp, xtmp, 0);
8323 
8324         subl(count, 8 << shift);
8325         jcc(Assembler::less, L_check_fill_8_bytes);
8326         align(16);
8327 
8328         BIND(L_fill_32_bytes_loop);
8329 
8330         if (UseUnalignedLoadStores) {
8331           movdqu(Address(to, 0), xtmp);
8332           movdqu(Address(to, 16), xtmp);
8333         } else {
8334           movq(Address(to, 0), xtmp);
8335           movq(Address(to, 8), xtmp);
8336           movq(Address(to, 16), xtmp);
8337           movq(Address(to, 24), xtmp);
8338         }
8339 
8340         addptr(to, 32);
8341         subl(count, 8 << shift);
8342         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8343 
8344         BIND(L_check_fill_8_bytes);
8345       }
8346       addl(count, 8 << shift);
8347       jccb(Assembler::zero, L_exit);
8348       jmpb(L_fill_8_bytes);
8349 
8350       //
8351       // length is too short, just fill qwords
8352       //
8353       BIND(L_fill_8_bytes_loop);
8354       movq(Address(to, 0), xtmp);
8355       addptr(to, 8);
8356       BIND(L_fill_8_bytes);
8357       subl(count, 1 << (shift + 1));
8358       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8359     }
8360   }
8361   // fill trailing 4 bytes
8362   BIND(L_fill_4_bytes);
8363   testl(count, 1<<shift);
8364   jccb(Assembler::zero, L_fill_2_bytes);
8365   movl(Address(to, 0), value);
8366   if (t == T_BYTE || t == T_SHORT) {
8367     addptr(to, 4);
8368     BIND(L_fill_2_bytes);
8369     // fill trailing 2 bytes
8370     testl(count, 1<<(shift-1));
8371     jccb(Assembler::zero, L_fill_byte);
8372     movw(Address(to, 0), value);
8373     if (t == T_BYTE) {
8374       addptr(to, 2);
8375       BIND(L_fill_byte);
8376       // fill trailing byte
8377       testl(count, 1);
8378       jccb(Assembler::zero, L_exit);
8379       movb(Address(to, 0), value);
8380     } else {
8381       BIND(L_fill_byte);
8382     }
8383   } else {
8384     BIND(L_fill_2_bytes);
8385   }
8386   BIND(L_exit);
8387 }
8388 
8389 // encode char[] to byte[] in ISO_8859_1
8390    //@HotSpotIntrinsicCandidate
8391    //private static int implEncodeISOArray(byte[] sa, int sp,
8392    //byte[] da, int dp, int len) {
8393    //  int i = 0;
8394    //  for (; i < len; i++) {
8395    //    char c = StringUTF16.getChar(sa, sp++);
8396    //    if (c > '\u00FF')
8397    //      break;
8398    //    da[dp++] = (byte)c;
8399    //  }
8400    //  return i;
8401    //}
8402 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8403   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8404   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8405   Register tmp5, Register result) {
8406 
8407   // rsi: src
8408   // rdi: dst
8409   // rdx: len
8410   // rcx: tmp5
8411   // rax: result
8412   ShortBranchVerifier sbv(this);
8413   assert_different_registers(src, dst, len, tmp5, result);
8414   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8415 
8416   // set result
8417   xorl(result, result);
8418   // check for zero length
8419   testl(len, len);
8420   jcc(Assembler::zero, L_done);
8421 
8422   movl(result, len);
8423 
8424   // Setup pointers
8425   lea(src, Address(src, len, Address::times_2)); // char[]
8426   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8427   negptr(len);
8428 
8429   if (UseSSE42Intrinsics || UseAVX >= 2) {
8430     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8431     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8432 
8433     if (UseAVX >= 2) {
8434       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8435       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8436       movdl(tmp1Reg, tmp5);
8437       vpbroadcastd(tmp1Reg, tmp1Reg);
8438       jmp(L_chars_32_check);
8439 
8440       bind(L_copy_32_chars);
8441       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8442       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8443       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8444       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8445       jccb(Assembler::notZero, L_copy_32_chars_exit);
8446       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8447       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8448       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8449 
8450       bind(L_chars_32_check);
8451       addptr(len, 32);
8452       jcc(Assembler::lessEqual, L_copy_32_chars);
8453 
8454       bind(L_copy_32_chars_exit);
8455       subptr(len, 16);
8456       jccb(Assembler::greater, L_copy_16_chars_exit);
8457 
8458     } else if (UseSSE42Intrinsics) {
8459       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8460       movdl(tmp1Reg, tmp5);
8461       pshufd(tmp1Reg, tmp1Reg, 0);
8462       jmpb(L_chars_16_check);
8463     }
8464 
8465     bind(L_copy_16_chars);
8466     if (UseAVX >= 2) {
8467       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8468       vptest(tmp2Reg, tmp1Reg);
8469       jcc(Assembler::notZero, L_copy_16_chars_exit);
8470       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8471       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8472     } else {
8473       if (UseAVX > 0) {
8474         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8475         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8476         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8477       } else {
8478         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8479         por(tmp2Reg, tmp3Reg);
8480         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8481         por(tmp2Reg, tmp4Reg);
8482       }
8483       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8484       jccb(Assembler::notZero, L_copy_16_chars_exit);
8485       packuswb(tmp3Reg, tmp4Reg);
8486     }
8487     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8488 
8489     bind(L_chars_16_check);
8490     addptr(len, 16);
8491     jcc(Assembler::lessEqual, L_copy_16_chars);
8492 
8493     bind(L_copy_16_chars_exit);
8494     if (UseAVX >= 2) {
8495       // clean upper bits of YMM registers
8496       vpxor(tmp2Reg, tmp2Reg);
8497       vpxor(tmp3Reg, tmp3Reg);
8498       vpxor(tmp4Reg, tmp4Reg);
8499       movdl(tmp1Reg, tmp5);
8500       pshufd(tmp1Reg, tmp1Reg, 0);
8501     }
8502     subptr(len, 8);
8503     jccb(Assembler::greater, L_copy_8_chars_exit);
8504 
8505     bind(L_copy_8_chars);
8506     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8507     ptest(tmp3Reg, tmp1Reg);
8508     jccb(Assembler::notZero, L_copy_8_chars_exit);
8509     packuswb(tmp3Reg, tmp1Reg);
8510     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8511     addptr(len, 8);
8512     jccb(Assembler::lessEqual, L_copy_8_chars);
8513 
8514     bind(L_copy_8_chars_exit);
8515     subptr(len, 8);
8516     jccb(Assembler::zero, L_done);
8517   }
8518 
8519   bind(L_copy_1_char);
8520   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8521   testl(tmp5, 0xff00);      // check if Unicode char
8522   jccb(Assembler::notZero, L_copy_1_char_exit);
8523   movb(Address(dst, len, Address::times_1, 0), tmp5);
8524   addptr(len, 1);
8525   jccb(Assembler::less, L_copy_1_char);
8526 
8527   bind(L_copy_1_char_exit);
8528   addptr(result, len); // len is negative count of not processed elements
8529 
8530   bind(L_done);
8531 }
8532 
8533 #ifdef _LP64
8534 /**
8535  * Helper for multiply_to_len().
8536  */
8537 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8538   addq(dest_lo, src1);
8539   adcq(dest_hi, 0);
8540   addq(dest_lo, src2);
8541   adcq(dest_hi, 0);
8542 }
8543 
8544 /**
8545  * Multiply 64 bit by 64 bit first loop.
8546  */
8547 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8548                                            Register y, Register y_idx, Register z,
8549                                            Register carry, Register product,
8550                                            Register idx, Register kdx) {
8551   //
8552   //  jlong carry, x[], y[], z[];
8553   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8554   //    huge_128 product = y[idx] * x[xstart] + carry;
8555   //    z[kdx] = (jlong)product;
8556   //    carry  = (jlong)(product >>> 64);
8557   //  }
8558   //  z[xstart] = carry;
8559   //
8560 
8561   Label L_first_loop, L_first_loop_exit;
8562   Label L_one_x, L_one_y, L_multiply;
8563 
8564   decrementl(xstart);
8565   jcc(Assembler::negative, L_one_x);
8566 
8567   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8568   rorq(x_xstart, 32); // convert big-endian to little-endian
8569 
8570   bind(L_first_loop);
8571   decrementl(idx);
8572   jcc(Assembler::negative, L_first_loop_exit);
8573   decrementl(idx);
8574   jcc(Assembler::negative, L_one_y);
8575   movq(y_idx, Address(y, idx, Address::times_4,  0));
8576   rorq(y_idx, 32); // convert big-endian to little-endian
8577   bind(L_multiply);
8578   movq(product, x_xstart);
8579   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8580   addq(product, carry);
8581   adcq(rdx, 0);
8582   subl(kdx, 2);
8583   movl(Address(z, kdx, Address::times_4,  4), product);
8584   shrq(product, 32);
8585   movl(Address(z, kdx, Address::times_4,  0), product);
8586   movq(carry, rdx);
8587   jmp(L_first_loop);
8588 
8589   bind(L_one_y);
8590   movl(y_idx, Address(y,  0));
8591   jmp(L_multiply);
8592 
8593   bind(L_one_x);
8594   movl(x_xstart, Address(x,  0));
8595   jmp(L_first_loop);
8596 
8597   bind(L_first_loop_exit);
8598 }
8599 
8600 /**
8601  * Multiply 64 bit by 64 bit and add 128 bit.
8602  */
8603 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8604                                             Register yz_idx, Register idx,
8605                                             Register carry, Register product, int offset) {
8606   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8607   //     z[kdx] = (jlong)product;
8608 
8609   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8610   rorq(yz_idx, 32); // convert big-endian to little-endian
8611   movq(product, x_xstart);
8612   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8613   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8614   rorq(yz_idx, 32); // convert big-endian to little-endian
8615 
8616   add2_with_carry(rdx, product, carry, yz_idx);
8617 
8618   movl(Address(z, idx, Address::times_4,  offset+4), product);
8619   shrq(product, 32);
8620   movl(Address(z, idx, Address::times_4,  offset), product);
8621 
8622 }
8623 
8624 /**
8625  * Multiply 128 bit by 128 bit. Unrolled inner loop.
8626  */
8627 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
8628                                              Register yz_idx, Register idx, Register jdx,
8629                                              Register carry, Register product,
8630                                              Register carry2) {
8631   //   jlong carry, x[], y[], z[];
8632   //   int kdx = ystart+1;
8633   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8634   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
8635   //     z[kdx+idx+1] = (jlong)product;
8636   //     jlong carry2  = (jlong)(product >>> 64);
8637   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
8638   //     z[kdx+idx] = (jlong)product;
8639   //     carry  = (jlong)(product >>> 64);
8640   //   }
8641   //   idx += 2;
8642   //   if (idx > 0) {
8643   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
8644   //     z[kdx+idx] = (jlong)product;
8645   //     carry  = (jlong)(product >>> 64);
8646   //   }
8647   //
8648 
8649   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8650 
8651   movl(jdx, idx);
8652   andl(jdx, 0xFFFFFFFC);
8653   shrl(jdx, 2);
8654 
8655   bind(L_third_loop);
8656   subl(jdx, 1);
8657   jcc(Assembler::negative, L_third_loop_exit);
8658   subl(idx, 4);
8659 
8660   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
8661   movq(carry2, rdx);
8662 
8663   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
8664   movq(carry, rdx);
8665   jmp(L_third_loop);
8666 
8667   bind (L_third_loop_exit);
8668 
8669   andl (idx, 0x3);
8670   jcc(Assembler::zero, L_post_third_loop_done);
8671 
8672   Label L_check_1;
8673   subl(idx, 2);
8674   jcc(Assembler::negative, L_check_1);
8675 
8676   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
8677   movq(carry, rdx);
8678 
8679   bind (L_check_1);
8680   addl (idx, 0x2);
8681   andl (idx, 0x1);
8682   subl(idx, 1);
8683   jcc(Assembler::negative, L_post_third_loop_done);
8684 
8685   movl(yz_idx, Address(y, idx, Address::times_4,  0));
8686   movq(product, x_xstart);
8687   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
8688   movl(yz_idx, Address(z, idx, Address::times_4,  0));
8689 
8690   add2_with_carry(rdx, product, yz_idx, carry);
8691 
8692   movl(Address(z, idx, Address::times_4,  0), product);
8693   shrq(product, 32);
8694 
8695   shlq(rdx, 32);
8696   orq(product, rdx);
8697   movq(carry, product);
8698 
8699   bind(L_post_third_loop_done);
8700 }
8701 
8702 /**
8703  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
8704  *
8705  */
8706 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
8707                                                   Register carry, Register carry2,
8708                                                   Register idx, Register jdx,
8709                                                   Register yz_idx1, Register yz_idx2,
8710                                                   Register tmp, Register tmp3, Register tmp4) {
8711   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
8712 
8713   //   jlong carry, x[], y[], z[];
8714   //   int kdx = ystart+1;
8715   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
8716   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
8717   //     jlong carry2  = (jlong)(tmp3 >>> 64);
8718   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
8719   //     carry  = (jlong)(tmp4 >>> 64);
8720   //     z[kdx+idx+1] = (jlong)tmp3;
8721   //     z[kdx+idx] = (jlong)tmp4;
8722   //   }
8723   //   idx += 2;
8724   //   if (idx > 0) {
8725   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
8726   //     z[kdx+idx] = (jlong)yz_idx1;
8727   //     carry  = (jlong)(yz_idx1 >>> 64);
8728   //   }
8729   //
8730 
8731   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
8732 
8733   movl(jdx, idx);
8734   andl(jdx, 0xFFFFFFFC);
8735   shrl(jdx, 2);
8736 
8737   bind(L_third_loop);
8738   subl(jdx, 1);
8739   jcc(Assembler::negative, L_third_loop_exit);
8740   subl(idx, 4);
8741 
8742   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
8743   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
8744   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
8745   rorxq(yz_idx2, yz_idx2, 32);
8746 
8747   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
8748   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
8749 
8750   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
8751   rorxq(yz_idx1, yz_idx1, 32);
8752   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8753   rorxq(yz_idx2, yz_idx2, 32);
8754 
8755   if (VM_Version::supports_adx()) {
8756     adcxq(tmp3, carry);
8757     adoxq(tmp3, yz_idx1);
8758 
8759     adcxq(tmp4, tmp);
8760     adoxq(tmp4, yz_idx2);
8761 
8762     movl(carry, 0); // does not affect flags
8763     adcxq(carry2, carry);
8764     adoxq(carry2, carry);
8765   } else {
8766     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
8767     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
8768   }
8769   movq(carry, carry2);
8770 
8771   movl(Address(z, idx, Address::times_4, 12), tmp3);
8772   shrq(tmp3, 32);
8773   movl(Address(z, idx, Address::times_4,  8), tmp3);
8774 
8775   movl(Address(z, idx, Address::times_4,  4), tmp4);
8776   shrq(tmp4, 32);
8777   movl(Address(z, idx, Address::times_4,  0), tmp4);
8778 
8779   jmp(L_third_loop);
8780 
8781   bind (L_third_loop_exit);
8782 
8783   andl (idx, 0x3);
8784   jcc(Assembler::zero, L_post_third_loop_done);
8785 
8786   Label L_check_1;
8787   subl(idx, 2);
8788   jcc(Assembler::negative, L_check_1);
8789 
8790   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
8791   rorxq(yz_idx1, yz_idx1, 32);
8792   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
8793   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
8794   rorxq(yz_idx2, yz_idx2, 32);
8795 
8796   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
8797 
8798   movl(Address(z, idx, Address::times_4,  4), tmp3);
8799   shrq(tmp3, 32);
8800   movl(Address(z, idx, Address::times_4,  0), tmp3);
8801   movq(carry, tmp4);
8802 
8803   bind (L_check_1);
8804   addl (idx, 0x2);
8805   andl (idx, 0x1);
8806   subl(idx, 1);
8807   jcc(Assembler::negative, L_post_third_loop_done);
8808   movl(tmp4, Address(y, idx, Address::times_4,  0));
8809   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
8810   movl(tmp4, Address(z, idx, Address::times_4,  0));
8811 
8812   add2_with_carry(carry2, tmp3, tmp4, carry);
8813 
8814   movl(Address(z, idx, Address::times_4,  0), tmp3);
8815   shrq(tmp3, 32);
8816 
8817   shlq(carry2, 32);
8818   orq(tmp3, carry2);
8819   movq(carry, tmp3);
8820 
8821   bind(L_post_third_loop_done);
8822 }
8823 
8824 /**
8825  * Code for BigInteger::multiplyToLen() instrinsic.
8826  *
8827  * rdi: x
8828  * rax: xlen
8829  * rsi: y
8830  * rcx: ylen
8831  * r8:  z
8832  * r11: zlen
8833  * r12: tmp1
8834  * r13: tmp2
8835  * r14: tmp3
8836  * r15: tmp4
8837  * rbx: tmp5
8838  *
8839  */
8840 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
8841                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
8842   ShortBranchVerifier sbv(this);
8843   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
8844 
8845   push(tmp1);
8846   push(tmp2);
8847   push(tmp3);
8848   push(tmp4);
8849   push(tmp5);
8850 
8851   push(xlen);
8852   push(zlen);
8853 
8854   const Register idx = tmp1;
8855   const Register kdx = tmp2;
8856   const Register xstart = tmp3;
8857 
8858   const Register y_idx = tmp4;
8859   const Register carry = tmp5;
8860   const Register product  = xlen;
8861   const Register x_xstart = zlen;  // reuse register
8862 
8863   // First Loop.
8864   //
8865   //  final static long LONG_MASK = 0xffffffffL;
8866   //  int xstart = xlen - 1;
8867   //  int ystart = ylen - 1;
8868   //  long carry = 0;
8869   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8870   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
8871   //    z[kdx] = (int)product;
8872   //    carry = product >>> 32;
8873   //  }
8874   //  z[xstart] = (int)carry;
8875   //
8876 
8877   movl(idx, ylen);      // idx = ylen;
8878   movl(kdx, zlen);      // kdx = xlen+ylen;
8879   xorq(carry, carry);   // carry = 0;
8880 
8881   Label L_done;
8882 
8883   movl(xstart, xlen);
8884   decrementl(xstart);
8885   jcc(Assembler::negative, L_done);
8886 
8887   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
8888 
8889   Label L_second_loop;
8890   testl(kdx, kdx);
8891   jcc(Assembler::zero, L_second_loop);
8892 
8893   Label L_carry;
8894   subl(kdx, 1);
8895   jcc(Assembler::zero, L_carry);
8896 
8897   movl(Address(z, kdx, Address::times_4,  0), carry);
8898   shrq(carry, 32);
8899   subl(kdx, 1);
8900 
8901   bind(L_carry);
8902   movl(Address(z, kdx, Address::times_4,  0), carry);
8903 
8904   // Second and third (nested) loops.
8905   //
8906   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8907   //   carry = 0;
8908   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8909   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8910   //                    (z[k] & LONG_MASK) + carry;
8911   //     z[k] = (int)product;
8912   //     carry = product >>> 32;
8913   //   }
8914   //   z[i] = (int)carry;
8915   // }
8916   //
8917   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8918 
8919   const Register jdx = tmp1;
8920 
8921   bind(L_second_loop);
8922   xorl(carry, carry);    // carry = 0;
8923   movl(jdx, ylen);       // j = ystart+1
8924 
8925   subl(xstart, 1);       // i = xstart-1;
8926   jcc(Assembler::negative, L_done);
8927 
8928   push (z);
8929 
8930   Label L_last_x;
8931   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8932   subl(xstart, 1);       // i = xstart-1;
8933   jcc(Assembler::negative, L_last_x);
8934 
8935   if (UseBMI2Instructions) {
8936     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8937     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8938   } else {
8939     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8940     rorq(x_xstart, 32);  // convert big-endian to little-endian
8941   }
8942 
8943   Label L_third_loop_prologue;
8944   bind(L_third_loop_prologue);
8945 
8946   push (x);
8947   push (xstart);
8948   push (ylen);
8949 
8950 
8951   if (UseBMI2Instructions) {
8952     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8953   } else { // !UseBMI2Instructions
8954     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8955   }
8956 
8957   pop(ylen);
8958   pop(xlen);
8959   pop(x);
8960   pop(z);
8961 
8962   movl(tmp3, xlen);
8963   addl(tmp3, 1);
8964   movl(Address(z, tmp3, Address::times_4,  0), carry);
8965   subl(tmp3, 1);
8966   jccb(Assembler::negative, L_done);
8967 
8968   shrq(carry, 32);
8969   movl(Address(z, tmp3, Address::times_4,  0), carry);
8970   jmp(L_second_loop);
8971 
8972   // Next infrequent code is moved outside loops.
8973   bind(L_last_x);
8974   if (UseBMI2Instructions) {
8975     movl(rdx, Address(x,  0));
8976   } else {
8977     movl(x_xstart, Address(x,  0));
8978   }
8979   jmp(L_third_loop_prologue);
8980 
8981   bind(L_done);
8982 
8983   pop(zlen);
8984   pop(xlen);
8985 
8986   pop(tmp5);
8987   pop(tmp4);
8988   pop(tmp3);
8989   pop(tmp2);
8990   pop(tmp1);
8991 }
8992 
8993 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8994   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8995   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8996   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8997   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8998   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
8999   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9000   Label SAME_TILL_END, DONE;
9001   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9002 
9003   //scale is in rcx in both Win64 and Unix
9004   ShortBranchVerifier sbv(this);
9005 
9006   shlq(length);
9007   xorq(result, result);
9008 
9009   if ((UseAVX > 2) &&
9010       VM_Version::supports_avx512vlbw()) {
9011     set_vector_masking();  // opening of the stub context for programming mask registers
9012     cmpq(length, 64);
9013     jcc(Assembler::less, VECTOR32_TAIL);
9014     movq(tmp1, length);
9015     andq(tmp1, 0x3F);      // tail count
9016     andq(length, ~(0x3F)); //vector count
9017 
9018     bind(VECTOR64_LOOP);
9019     // AVX512 code to compare 64 byte vectors.
9020     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9021     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9022     kortestql(k7, k7);
9023     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9024     addq(result, 64);
9025     subq(length, 64);
9026     jccb(Assembler::notZero, VECTOR64_LOOP);
9027 
9028     //bind(VECTOR64_TAIL);
9029     testq(tmp1, tmp1);
9030     jcc(Assembler::zero, SAME_TILL_END);
9031 
9032     bind(VECTOR64_TAIL);
9033     // AVX512 code to compare upto 63 byte vectors.
9034     // Save k1
9035     kmovql(k3, k1);
9036     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9037     shlxq(tmp2, tmp2, tmp1);
9038     notq(tmp2);
9039     kmovql(k1, tmp2);
9040 
9041     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9042     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9043 
9044     ktestql(k7, k1);
9045     // Restore k1
9046     kmovql(k1, k3);
9047     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9048 
9049     bind(VECTOR64_NOT_EQUAL);
9050     kmovql(tmp1, k7);
9051     notq(tmp1);
9052     tzcntq(tmp1, tmp1);
9053     addq(result, tmp1);
9054     shrq(result);
9055     jmp(DONE);
9056     bind(VECTOR32_TAIL);
9057     clear_vector_masking();   // closing of the stub context for programming mask registers
9058   }
9059 
9060   cmpq(length, 8);
9061   jcc(Assembler::equal, VECTOR8_LOOP);
9062   jcc(Assembler::less, VECTOR4_TAIL);
9063 
9064   if (UseAVX >= 2) {
9065 
9066     cmpq(length, 16);
9067     jcc(Assembler::equal, VECTOR16_LOOP);
9068     jcc(Assembler::less, VECTOR8_LOOP);
9069 
9070     cmpq(length, 32);
9071     jccb(Assembler::less, VECTOR16_TAIL);
9072 
9073     subq(length, 32);
9074     bind(VECTOR32_LOOP);
9075     vmovdqu(rymm0, Address(obja, result));
9076     vmovdqu(rymm1, Address(objb, result));
9077     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9078     vptest(rymm2, rymm2);
9079     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9080     addq(result, 32);
9081     subq(length, 32);
9082     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
9083     addq(length, 32);
9084     jcc(Assembler::equal, SAME_TILL_END);
9085     //falling through if less than 32 bytes left //close the branch here.
9086 
9087     bind(VECTOR16_TAIL);
9088     cmpq(length, 16);
9089     jccb(Assembler::less, VECTOR8_TAIL);
9090     bind(VECTOR16_LOOP);
9091     movdqu(rymm0, Address(obja, result));
9092     movdqu(rymm1, Address(objb, result));
9093     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9094     ptest(rymm2, rymm2);
9095     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9096     addq(result, 16);
9097     subq(length, 16);
9098     jcc(Assembler::equal, SAME_TILL_END);
9099     //falling through if less than 16 bytes left
9100   } else {//regular intrinsics
9101 
9102     cmpq(length, 16);
9103     jccb(Assembler::less, VECTOR8_TAIL);
9104 
9105     subq(length, 16);
9106     bind(VECTOR16_LOOP);
9107     movdqu(rymm0, Address(obja, result));
9108     movdqu(rymm1, Address(objb, result));
9109     pxor(rymm0, rymm1);
9110     ptest(rymm0, rymm0);
9111     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9112     addq(result, 16);
9113     subq(length, 16);
9114     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9115     addq(length, 16);
9116     jcc(Assembler::equal, SAME_TILL_END);
9117     //falling through if less than 16 bytes left
9118   }
9119 
9120   bind(VECTOR8_TAIL);
9121   cmpq(length, 8);
9122   jccb(Assembler::less, VECTOR4_TAIL);
9123   bind(VECTOR8_LOOP);
9124   movq(tmp1, Address(obja, result));
9125   movq(tmp2, Address(objb, result));
9126   xorq(tmp1, tmp2);
9127   testq(tmp1, tmp1);
9128   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9129   addq(result, 8);
9130   subq(length, 8);
9131   jcc(Assembler::equal, SAME_TILL_END);
9132   //falling through if less than 8 bytes left
9133 
9134   bind(VECTOR4_TAIL);
9135   cmpq(length, 4);
9136   jccb(Assembler::less, BYTES_TAIL);
9137   bind(VECTOR4_LOOP);
9138   movl(tmp1, Address(obja, result));
9139   xorl(tmp1, Address(objb, result));
9140   testl(tmp1, tmp1);
9141   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9142   addq(result, 4);
9143   subq(length, 4);
9144   jcc(Assembler::equal, SAME_TILL_END);
9145   //falling through if less than 4 bytes left
9146 
9147   bind(BYTES_TAIL);
9148   bind(BYTES_LOOP);
9149   load_unsigned_byte(tmp1, Address(obja, result));
9150   load_unsigned_byte(tmp2, Address(objb, result));
9151   xorl(tmp1, tmp2);
9152   testl(tmp1, tmp1);
9153   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9154   decq(length);
9155   jcc(Assembler::zero, SAME_TILL_END);
9156   incq(result);
9157   load_unsigned_byte(tmp1, Address(obja, result));
9158   load_unsigned_byte(tmp2, Address(objb, result));
9159   xorl(tmp1, tmp2);
9160   testl(tmp1, tmp1);
9161   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9162   decq(length);
9163   jcc(Assembler::zero, SAME_TILL_END);
9164   incq(result);
9165   load_unsigned_byte(tmp1, Address(obja, result));
9166   load_unsigned_byte(tmp2, Address(objb, result));
9167   xorl(tmp1, tmp2);
9168   testl(tmp1, tmp1);
9169   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9170   jmp(SAME_TILL_END);
9171 
9172   if (UseAVX >= 2) {
9173     bind(VECTOR32_NOT_EQUAL);
9174     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9175     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9176     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9177     vpmovmskb(tmp1, rymm0);
9178     bsfq(tmp1, tmp1);
9179     addq(result, tmp1);
9180     shrq(result);
9181     jmp(DONE);
9182   }
9183 
9184   bind(VECTOR16_NOT_EQUAL);
9185   if (UseAVX >= 2) {
9186     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9187     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9188     pxor(rymm0, rymm2);
9189   } else {
9190     pcmpeqb(rymm2, rymm2);
9191     pxor(rymm0, rymm1);
9192     pcmpeqb(rymm0, rymm1);
9193     pxor(rymm0, rymm2);
9194   }
9195   pmovmskb(tmp1, rymm0);
9196   bsfq(tmp1, tmp1);
9197   addq(result, tmp1);
9198   shrq(result);
9199   jmpb(DONE);
9200 
9201   bind(VECTOR8_NOT_EQUAL);
9202   bind(VECTOR4_NOT_EQUAL);
9203   bsfq(tmp1, tmp1);
9204   shrq(tmp1, 3);
9205   addq(result, tmp1);
9206   bind(BYTES_NOT_EQUAL);
9207   shrq(result);
9208   jmpb(DONE);
9209 
9210   bind(SAME_TILL_END);
9211   mov64(result, -1);
9212 
9213   bind(DONE);
9214 }
9215 
9216 //Helper functions for square_to_len()
9217 
9218 /**
9219  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9220  * Preserves x and z and modifies rest of the registers.
9221  */
9222 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9223   // Perform square and right shift by 1
9224   // Handle odd xlen case first, then for even xlen do the following
9225   // jlong carry = 0;
9226   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9227   //     huge_128 product = x[j:j+1] * x[j:j+1];
9228   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9229   //     z[i+2:i+3] = (jlong)(product >>> 1);
9230   //     carry = (jlong)product;
9231   // }
9232 
9233   xorq(tmp5, tmp5);     // carry
9234   xorq(rdxReg, rdxReg);
9235   xorl(tmp1, tmp1);     // index for x
9236   xorl(tmp4, tmp4);     // index for z
9237 
9238   Label L_first_loop, L_first_loop_exit;
9239 
9240   testl(xlen, 1);
9241   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9242 
9243   // Square and right shift by 1 the odd element using 32 bit multiply
9244   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9245   imulq(raxReg, raxReg);
9246   shrq(raxReg, 1);
9247   adcq(tmp5, 0);
9248   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9249   incrementl(tmp1);
9250   addl(tmp4, 2);
9251 
9252   // Square and  right shift by 1 the rest using 64 bit multiply
9253   bind(L_first_loop);
9254   cmpptr(tmp1, xlen);
9255   jccb(Assembler::equal, L_first_loop_exit);
9256 
9257   // Square
9258   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9259   rorq(raxReg, 32);    // convert big-endian to little-endian
9260   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9261 
9262   // Right shift by 1 and save carry
9263   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9264   rcrq(rdxReg, 1);
9265   rcrq(raxReg, 1);
9266   adcq(tmp5, 0);
9267 
9268   // Store result in z
9269   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9270   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9271 
9272   // Update indices for x and z
9273   addl(tmp1, 2);
9274   addl(tmp4, 4);
9275   jmp(L_first_loop);
9276 
9277   bind(L_first_loop_exit);
9278 }
9279 
9280 
9281 /**
9282  * Perform the following multiply add operation using BMI2 instructions
9283  * carry:sum = sum + op1*op2 + carry
9284  * op2 should be in rdx
9285  * op2 is preserved, all other registers are modified
9286  */
9287 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9288   // assert op2 is rdx
9289   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9290   addq(sum, carry);
9291   adcq(tmp2, 0);
9292   addq(sum, op1);
9293   adcq(tmp2, 0);
9294   movq(carry, tmp2);
9295 }
9296 
9297 /**
9298  * Perform the following multiply add operation:
9299  * carry:sum = sum + op1*op2 + carry
9300  * Preserves op1, op2 and modifies rest of registers
9301  */
9302 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9303   // rdx:rax = op1 * op2
9304   movq(raxReg, op2);
9305   mulq(op1);
9306 
9307   //  rdx:rax = sum + carry + rdx:rax
9308   addq(sum, carry);
9309   adcq(rdxReg, 0);
9310   addq(sum, raxReg);
9311   adcq(rdxReg, 0);
9312 
9313   // carry:sum = rdx:sum
9314   movq(carry, rdxReg);
9315 }
9316 
9317 /**
9318  * Add 64 bit long carry into z[] with carry propogation.
9319  * Preserves z and carry register values and modifies rest of registers.
9320  *
9321  */
9322 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9323   Label L_fourth_loop, L_fourth_loop_exit;
9324 
9325   movl(tmp1, 1);
9326   subl(zlen, 2);
9327   addq(Address(z, zlen, Address::times_4, 0), carry);
9328 
9329   bind(L_fourth_loop);
9330   jccb(Assembler::carryClear, L_fourth_loop_exit);
9331   subl(zlen, 2);
9332   jccb(Assembler::negative, L_fourth_loop_exit);
9333   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9334   jmp(L_fourth_loop);
9335   bind(L_fourth_loop_exit);
9336 }
9337 
9338 /**
9339  * Shift z[] left by 1 bit.
9340  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9341  *
9342  */
9343 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9344 
9345   Label L_fifth_loop, L_fifth_loop_exit;
9346 
9347   // Fifth loop
9348   // Perform primitiveLeftShift(z, zlen, 1)
9349 
9350   const Register prev_carry = tmp1;
9351   const Register new_carry = tmp4;
9352   const Register value = tmp2;
9353   const Register zidx = tmp3;
9354 
9355   // int zidx, carry;
9356   // long value;
9357   // carry = 0;
9358   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9359   //    (carry:value)  = (z[i] << 1) | carry ;
9360   //    z[i] = value;
9361   // }
9362 
9363   movl(zidx, zlen);
9364   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9365 
9366   bind(L_fifth_loop);
9367   decl(zidx);  // Use decl to preserve carry flag
9368   decl(zidx);
9369   jccb(Assembler::negative, L_fifth_loop_exit);
9370 
9371   if (UseBMI2Instructions) {
9372      movq(value, Address(z, zidx, Address::times_4, 0));
9373      rclq(value, 1);
9374      rorxq(value, value, 32);
9375      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9376   }
9377   else {
9378     // clear new_carry
9379     xorl(new_carry, new_carry);
9380 
9381     // Shift z[i] by 1, or in previous carry and save new carry
9382     movq(value, Address(z, zidx, Address::times_4, 0));
9383     shlq(value, 1);
9384     adcl(new_carry, 0);
9385 
9386     orq(value, prev_carry);
9387     rorq(value, 0x20);
9388     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9389 
9390     // Set previous carry = new carry
9391     movl(prev_carry, new_carry);
9392   }
9393   jmp(L_fifth_loop);
9394 
9395   bind(L_fifth_loop_exit);
9396 }
9397 
9398 
9399 /**
9400  * Code for BigInteger::squareToLen() intrinsic
9401  *
9402  * rdi: x
9403  * rsi: len
9404  * r8:  z
9405  * rcx: zlen
9406  * r12: tmp1
9407  * r13: tmp2
9408  * r14: tmp3
9409  * r15: tmp4
9410  * rbx: tmp5
9411  *
9412  */
9413 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9414 
9415   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9416   push(tmp1);
9417   push(tmp2);
9418   push(tmp3);
9419   push(tmp4);
9420   push(tmp5);
9421 
9422   // First loop
9423   // Store the squares, right shifted one bit (i.e., divided by 2).
9424   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9425 
9426   // Add in off-diagonal sums.
9427   //
9428   // Second, third (nested) and fourth loops.
9429   // zlen +=2;
9430   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9431   //    carry = 0;
9432   //    long op2 = x[xidx:xidx+1];
9433   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9434   //       k -= 2;
9435   //       long op1 = x[j:j+1];
9436   //       long sum = z[k:k+1];
9437   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9438   //       z[k:k+1] = sum;
9439   //    }
9440   //    add_one_64(z, k, carry, tmp_regs);
9441   // }
9442 
9443   const Register carry = tmp5;
9444   const Register sum = tmp3;
9445   const Register op1 = tmp4;
9446   Register op2 = tmp2;
9447 
9448   push(zlen);
9449   push(len);
9450   addl(zlen,2);
9451   bind(L_second_loop);
9452   xorq(carry, carry);
9453   subl(zlen, 4);
9454   subl(len, 2);
9455   push(zlen);
9456   push(len);
9457   cmpl(len, 0);
9458   jccb(Assembler::lessEqual, L_second_loop_exit);
9459 
9460   // Multiply an array by one 64 bit long.
9461   if (UseBMI2Instructions) {
9462     op2 = rdxReg;
9463     movq(op2, Address(x, len, Address::times_4,  0));
9464     rorxq(op2, op2, 32);
9465   }
9466   else {
9467     movq(op2, Address(x, len, Address::times_4,  0));
9468     rorq(op2, 32);
9469   }
9470 
9471   bind(L_third_loop);
9472   decrementl(len);
9473   jccb(Assembler::negative, L_third_loop_exit);
9474   decrementl(len);
9475   jccb(Assembler::negative, L_last_x);
9476 
9477   movq(op1, Address(x, len, Address::times_4,  0));
9478   rorq(op1, 32);
9479 
9480   bind(L_multiply);
9481   subl(zlen, 2);
9482   movq(sum, Address(z, zlen, Address::times_4,  0));
9483 
9484   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9485   if (UseBMI2Instructions) {
9486     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9487   }
9488   else {
9489     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9490   }
9491 
9492   movq(Address(z, zlen, Address::times_4, 0), sum);
9493 
9494   jmp(L_third_loop);
9495   bind(L_third_loop_exit);
9496 
9497   // Fourth loop
9498   // Add 64 bit long carry into z with carry propogation.
9499   // Uses offsetted zlen.
9500   add_one_64(z, zlen, carry, tmp1);
9501 
9502   pop(len);
9503   pop(zlen);
9504   jmp(L_second_loop);
9505 
9506   // Next infrequent code is moved outside loops.
9507   bind(L_last_x);
9508   movl(op1, Address(x, 0));
9509   jmp(L_multiply);
9510 
9511   bind(L_second_loop_exit);
9512   pop(len);
9513   pop(zlen);
9514   pop(len);
9515   pop(zlen);
9516 
9517   // Fifth loop
9518   // Shift z left 1 bit.
9519   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9520 
9521   // z[zlen-1] |= x[len-1] & 1;
9522   movl(tmp3, Address(x, len, Address::times_4, -4));
9523   andl(tmp3, 1);
9524   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9525 
9526   pop(tmp5);
9527   pop(tmp4);
9528   pop(tmp3);
9529   pop(tmp2);
9530   pop(tmp1);
9531 }
9532 
9533 /**
9534  * Helper function for mul_add()
9535  * Multiply the in[] by int k and add to out[] starting at offset offs using
9536  * 128 bit by 32 bit multiply and return the carry in tmp5.
9537  * Only quad int aligned length of in[] is operated on in this function.
9538  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9539  * This function preserves out, in and k registers.
9540  * len and offset point to the appropriate index in "in" & "out" correspondingly
9541  * tmp5 has the carry.
9542  * other registers are temporary and are modified.
9543  *
9544  */
9545 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9546   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9547   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9548 
9549   Label L_first_loop, L_first_loop_exit;
9550 
9551   movl(tmp1, len);
9552   shrl(tmp1, 2);
9553 
9554   bind(L_first_loop);
9555   subl(tmp1, 1);
9556   jccb(Assembler::negative, L_first_loop_exit);
9557 
9558   subl(len, 4);
9559   subl(offset, 4);
9560 
9561   Register op2 = tmp2;
9562   const Register sum = tmp3;
9563   const Register op1 = tmp4;
9564   const Register carry = tmp5;
9565 
9566   if (UseBMI2Instructions) {
9567     op2 = rdxReg;
9568   }
9569 
9570   movq(op1, Address(in, len, Address::times_4,  8));
9571   rorq(op1, 32);
9572   movq(sum, Address(out, offset, Address::times_4,  8));
9573   rorq(sum, 32);
9574   if (UseBMI2Instructions) {
9575     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9576   }
9577   else {
9578     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9579   }
9580   // Store back in big endian from little endian
9581   rorq(sum, 0x20);
9582   movq(Address(out, offset, Address::times_4,  8), sum);
9583 
9584   movq(op1, Address(in, len, Address::times_4,  0));
9585   rorq(op1, 32);
9586   movq(sum, Address(out, offset, Address::times_4,  0));
9587   rorq(sum, 32);
9588   if (UseBMI2Instructions) {
9589     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9590   }
9591   else {
9592     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9593   }
9594   // Store back in big endian from little endian
9595   rorq(sum, 0x20);
9596   movq(Address(out, offset, Address::times_4,  0), sum);
9597 
9598   jmp(L_first_loop);
9599   bind(L_first_loop_exit);
9600 }
9601 
9602 /**
9603  * Code for BigInteger::mulAdd() intrinsic
9604  *
9605  * rdi: out
9606  * rsi: in
9607  * r11: offs (out.length - offset)
9608  * rcx: len
9609  * r8:  k
9610  * r12: tmp1
9611  * r13: tmp2
9612  * r14: tmp3
9613  * r15: tmp4
9614  * rbx: tmp5
9615  * Multiply the in[] by word k and add to out[], return the carry in rax
9616  */
9617 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9618    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9619    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9620 
9621   Label L_carry, L_last_in, L_done;
9622 
9623 // carry = 0;
9624 // for (int j=len-1; j >= 0; j--) {
9625 //    long product = (in[j] & LONG_MASK) * kLong +
9626 //                   (out[offs] & LONG_MASK) + carry;
9627 //    out[offs--] = (int)product;
9628 //    carry = product >>> 32;
9629 // }
9630 //
9631   push(tmp1);
9632   push(tmp2);
9633   push(tmp3);
9634   push(tmp4);
9635   push(tmp5);
9636 
9637   Register op2 = tmp2;
9638   const Register sum = tmp3;
9639   const Register op1 = tmp4;
9640   const Register carry =  tmp5;
9641 
9642   if (UseBMI2Instructions) {
9643     op2 = rdxReg;
9644     movl(op2, k);
9645   }
9646   else {
9647     movl(op2, k);
9648   }
9649 
9650   xorq(carry, carry);
9651 
9652   //First loop
9653 
9654   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
9655   //The carry is in tmp5
9656   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
9657 
9658   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
9659   decrementl(len);
9660   jccb(Assembler::negative, L_carry);
9661   decrementl(len);
9662   jccb(Assembler::negative, L_last_in);
9663 
9664   movq(op1, Address(in, len, Address::times_4,  0));
9665   rorq(op1, 32);
9666 
9667   subl(offs, 2);
9668   movq(sum, Address(out, offs, Address::times_4,  0));
9669   rorq(sum, 32);
9670 
9671   if (UseBMI2Instructions) {
9672     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9673   }
9674   else {
9675     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9676   }
9677 
9678   // Store back in big endian from little endian
9679   rorq(sum, 0x20);
9680   movq(Address(out, offs, Address::times_4,  0), sum);
9681 
9682   testl(len, len);
9683   jccb(Assembler::zero, L_carry);
9684 
9685   //Multiply the last in[] entry, if any
9686   bind(L_last_in);
9687   movl(op1, Address(in, 0));
9688   movl(sum, Address(out, offs, Address::times_4,  -4));
9689 
9690   movl(raxReg, k);
9691   mull(op1); //tmp4 * eax -> edx:eax
9692   addl(sum, carry);
9693   adcl(rdxReg, 0);
9694   addl(sum, raxReg);
9695   adcl(rdxReg, 0);
9696   movl(carry, rdxReg);
9697 
9698   movl(Address(out, offs, Address::times_4,  -4), sum);
9699 
9700   bind(L_carry);
9701   //return tmp5/carry as carry in rax
9702   movl(rax, carry);
9703 
9704   bind(L_done);
9705   pop(tmp5);
9706   pop(tmp4);
9707   pop(tmp3);
9708   pop(tmp2);
9709   pop(tmp1);
9710 }
9711 #endif
9712 
9713 /**
9714  * Emits code to update CRC-32 with a byte value according to constants in table
9715  *
9716  * @param [in,out]crc   Register containing the crc.
9717  * @param [in]val       Register containing the byte to fold into the CRC.
9718  * @param [in]table     Register containing the table of crc constants.
9719  *
9720  * uint32_t crc;
9721  * val = crc_table[(val ^ crc) & 0xFF];
9722  * crc = val ^ (crc >> 8);
9723  *
9724  */
9725 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
9726   xorl(val, crc);
9727   andl(val, 0xFF);
9728   shrl(crc, 8); // unsigned shift
9729   xorl(crc, Address(table, val, Address::times_4, 0));
9730 }
9731 
9732 /**
9733 * Fold four 128-bit data chunks
9734 */
9735 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9736   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
9737   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
9738   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
9739   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
9740 }
9741 
9742 /**
9743  * Fold 128-bit data chunk
9744  */
9745 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
9746   if (UseAVX > 0) {
9747     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
9748     vpclmulldq(xcrc, xK, xcrc); // [63:0]
9749     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
9750     pxor(xcrc, xtmp);
9751   } else {
9752     movdqa(xtmp, xcrc);
9753     pclmulhdq(xtmp, xK);   // [123:64]
9754     pclmulldq(xcrc, xK);   // [63:0]
9755     pxor(xcrc, xtmp);
9756     movdqu(xtmp, Address(buf, offset));
9757     pxor(xcrc, xtmp);
9758   }
9759 }
9760 
9761 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
9762   if (UseAVX > 0) {
9763     vpclmulhdq(xtmp, xK, xcrc);
9764     vpclmulldq(xcrc, xK, xcrc);
9765     pxor(xcrc, xbuf);
9766     pxor(xcrc, xtmp);
9767   } else {
9768     movdqa(xtmp, xcrc);
9769     pclmulhdq(xtmp, xK);
9770     pclmulldq(xcrc, xK);
9771     pxor(xcrc, xbuf);
9772     pxor(xcrc, xtmp);
9773   }
9774 }
9775 
9776 /**
9777  * 8-bit folds to compute 32-bit CRC
9778  *
9779  * uint64_t xcrc;
9780  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
9781  */
9782 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
9783   movdl(tmp, xcrc);
9784   andl(tmp, 0xFF);
9785   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
9786   psrldq(xcrc, 1); // unsigned shift one byte
9787   pxor(xcrc, xtmp);
9788 }
9789 
9790 /**
9791  * uint32_t crc;
9792  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
9793  */
9794 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
9795   movl(tmp, crc);
9796   andl(tmp, 0xFF);
9797   shrl(crc, 8);
9798   xorl(crc, Address(table, tmp, Address::times_4, 0));
9799 }
9800 
9801 /**
9802  * @param crc   register containing existing CRC (32-bit)
9803  * @param buf   register pointing to input byte buffer (byte*)
9804  * @param len   register containing number of bytes
9805  * @param table register that will contain address of CRC table
9806  * @param tmp   scratch register
9807  */
9808 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
9809   assert_different_registers(crc, buf, len, table, tmp, rax);
9810 
9811   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
9812   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
9813 
9814   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
9815   // context for the registers used, where all instructions below are using 128-bit mode
9816   // On EVEX without VL and BW, these instructions will all be AVX.
9817   if (VM_Version::supports_avx512vlbw()) {
9818     movl(tmp, 0xffff);
9819     kmovwl(k1, tmp);
9820   }
9821 
9822   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
9823   notl(crc); // ~crc
9824   cmpl(len, 16);
9825   jcc(Assembler::less, L_tail);
9826 
9827   // Align buffer to 16 bytes
9828   movl(tmp, buf);
9829   andl(tmp, 0xF);
9830   jccb(Assembler::zero, L_aligned);
9831   subl(tmp,  16);
9832   addl(len, tmp);
9833 
9834   align(4);
9835   BIND(L_align_loop);
9836   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9837   update_byte_crc32(crc, rax, table);
9838   increment(buf);
9839   incrementl(tmp);
9840   jccb(Assembler::less, L_align_loop);
9841 
9842   BIND(L_aligned);
9843   movl(tmp, len); // save
9844   shrl(len, 4);
9845   jcc(Assembler::zero, L_tail_restore);
9846 
9847   // Fold total 512 bits of polynomial on each iteration
9848   if (VM_Version::supports_vpclmulqdq()) {
9849     Label Parallel_loop, L_No_Parallel;
9850 
9851     cmpl(len, 8);
9852     jccb(Assembler::less, L_No_Parallel);
9853 
9854     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9855     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
9856     movdl(xmm5, crc);
9857     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
9858     addptr(buf, 64);
9859     subl(len, 7);
9860     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
9861 
9862     BIND(Parallel_loop);
9863     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
9864     addptr(buf, 64);
9865     subl(len, 4);
9866     jcc(Assembler::greater, Parallel_loop);
9867 
9868     vextracti64x2(xmm2, xmm1, 0x01);
9869     vextracti64x2(xmm3, xmm1, 0x02);
9870     vextracti64x2(xmm4, xmm1, 0x03);
9871     jmp(L_fold_512b);
9872 
9873     BIND(L_No_Parallel);
9874   }
9875   // Fold crc into first bytes of vector
9876   movdqa(xmm1, Address(buf, 0));
9877   movdl(rax, xmm1);
9878   xorl(crc, rax);
9879   if (VM_Version::supports_sse4_1()) {
9880     pinsrd(xmm1, crc, 0);
9881   } else {
9882     pinsrw(xmm1, crc, 0);
9883     shrl(crc, 16);
9884     pinsrw(xmm1, crc, 1);
9885   }
9886   addptr(buf, 16);
9887   subl(len, 4); // len > 0
9888   jcc(Assembler::less, L_fold_tail);
9889 
9890   movdqa(xmm2, Address(buf,  0));
9891   movdqa(xmm3, Address(buf, 16));
9892   movdqa(xmm4, Address(buf, 32));
9893   addptr(buf, 48);
9894   subl(len, 3);
9895   jcc(Assembler::lessEqual, L_fold_512b);
9896 
9897   // Fold total 512 bits of polynomial on each iteration,
9898   // 128 bits per each of 4 parallel streams.
9899   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9900 
9901   align(32);
9902   BIND(L_fold_512b_loop);
9903   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9904   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
9905   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
9906   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
9907   addptr(buf, 64);
9908   subl(len, 4);
9909   jcc(Assembler::greater, L_fold_512b_loop);
9910 
9911   // Fold 512 bits to 128 bits.
9912   BIND(L_fold_512b);
9913   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9914   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
9915   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
9916   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
9917 
9918   // Fold the rest of 128 bits data chunks
9919   BIND(L_fold_tail);
9920   addl(len, 3);
9921   jccb(Assembler::lessEqual, L_fold_128b);
9922   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9923 
9924   BIND(L_fold_tail_loop);
9925   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9926   addptr(buf, 16);
9927   decrementl(len);
9928   jccb(Assembler::greater, L_fold_tail_loop);
9929 
9930   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9931   BIND(L_fold_128b);
9932   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9933   if (UseAVX > 0) {
9934     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9935     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9936     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9937   } else {
9938     movdqa(xmm2, xmm0);
9939     pclmulqdq(xmm2, xmm1, 0x1);
9940     movdqa(xmm3, xmm0);
9941     pand(xmm3, xmm2);
9942     pclmulqdq(xmm0, xmm3, 0x1);
9943   }
9944   psrldq(xmm1, 8);
9945   psrldq(xmm2, 4);
9946   pxor(xmm0, xmm1);
9947   pxor(xmm0, xmm2);
9948 
9949   // 8 8-bit folds to compute 32-bit CRC.
9950   for (int j = 0; j < 4; j++) {
9951     fold_8bit_crc32(xmm0, table, xmm1, rax);
9952   }
9953   movdl(crc, xmm0); // mov 32 bits to general register
9954   for (int j = 0; j < 4; j++) {
9955     fold_8bit_crc32(crc, table, rax);
9956   }
9957 
9958   BIND(L_tail_restore);
9959   movl(len, tmp); // restore
9960   BIND(L_tail);
9961   andl(len, 0xf);
9962   jccb(Assembler::zero, L_exit);
9963 
9964   // Fold the rest of bytes
9965   align(4);
9966   BIND(L_tail_loop);
9967   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9968   update_byte_crc32(crc, rax, table);
9969   increment(buf);
9970   decrementl(len);
9971   jccb(Assembler::greater, L_tail_loop);
9972 
9973   BIND(L_exit);
9974   notl(crc); // ~c
9975 }
9976 
9977 #ifdef _LP64
9978 // S. Gueron / Information Processing Letters 112 (2012) 184
9979 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9980 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9981 // Output: the 64-bit carry-less product of B * CONST
9982 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9983                                      Register tmp1, Register tmp2, Register tmp3) {
9984   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9985   if (n > 0) {
9986     addq(tmp3, n * 256 * 8);
9987   }
9988   //    Q1 = TABLEExt[n][B & 0xFF];
9989   movl(tmp1, in);
9990   andl(tmp1, 0x000000FF);
9991   shll(tmp1, 3);
9992   addq(tmp1, tmp3);
9993   movq(tmp1, Address(tmp1, 0));
9994 
9995   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9996   movl(tmp2, in);
9997   shrl(tmp2, 8);
9998   andl(tmp2, 0x000000FF);
9999   shll(tmp2, 3);
10000   addq(tmp2, tmp3);
10001   movq(tmp2, Address(tmp2, 0));
10002 
10003   shlq(tmp2, 8);
10004   xorq(tmp1, tmp2);
10005 
10006   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10007   movl(tmp2, in);
10008   shrl(tmp2, 16);
10009   andl(tmp2, 0x000000FF);
10010   shll(tmp2, 3);
10011   addq(tmp2, tmp3);
10012   movq(tmp2, Address(tmp2, 0));
10013 
10014   shlq(tmp2, 16);
10015   xorq(tmp1, tmp2);
10016 
10017   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10018   shrl(in, 24);
10019   andl(in, 0x000000FF);
10020   shll(in, 3);
10021   addq(in, tmp3);
10022   movq(in, Address(in, 0));
10023 
10024   shlq(in, 24);
10025   xorq(in, tmp1);
10026   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10027 }
10028 
10029 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10030                                       Register in_out,
10031                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10032                                       XMMRegister w_xtmp2,
10033                                       Register tmp1,
10034                                       Register n_tmp2, Register n_tmp3) {
10035   if (is_pclmulqdq_supported) {
10036     movdl(w_xtmp1, in_out); // modified blindly
10037 
10038     movl(tmp1, const_or_pre_comp_const_index);
10039     movdl(w_xtmp2, tmp1);
10040     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10041 
10042     movdq(in_out, w_xtmp1);
10043   } else {
10044     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10045   }
10046 }
10047 
10048 // Recombination Alternative 2: No bit-reflections
10049 // T1 = (CRC_A * U1) << 1
10050 // T2 = (CRC_B * U2) << 1
10051 // C1 = T1 >> 32
10052 // C2 = T2 >> 32
10053 // T1 = T1 & 0xFFFFFFFF
10054 // T2 = T2 & 0xFFFFFFFF
10055 // T1 = CRC32(0, T1)
10056 // T2 = CRC32(0, T2)
10057 // C1 = C1 ^ T1
10058 // C2 = C2 ^ T2
10059 // CRC = C1 ^ C2 ^ CRC_C
10060 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10061                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10062                                      Register tmp1, Register tmp2,
10063                                      Register n_tmp3) {
10064   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10065   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10066   shlq(in_out, 1);
10067   movl(tmp1, in_out);
10068   shrq(in_out, 32);
10069   xorl(tmp2, tmp2);
10070   crc32(tmp2, tmp1, 4);
10071   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10072   shlq(in1, 1);
10073   movl(tmp1, in1);
10074   shrq(in1, 32);
10075   xorl(tmp2, tmp2);
10076   crc32(tmp2, tmp1, 4);
10077   xorl(in1, tmp2);
10078   xorl(in_out, in1);
10079   xorl(in_out, in2);
10080 }
10081 
10082 // Set N to predefined value
10083 // Subtract from a lenght of a buffer
10084 // execute in a loop:
10085 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10086 // for i = 1 to N do
10087 //  CRC_A = CRC32(CRC_A, A[i])
10088 //  CRC_B = CRC32(CRC_B, B[i])
10089 //  CRC_C = CRC32(CRC_C, C[i])
10090 // end for
10091 // Recombine
10092 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10093                                        Register in_out1, Register in_out2, Register in_out3,
10094                                        Register tmp1, Register tmp2, Register tmp3,
10095                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10096                                        Register tmp4, Register tmp5,
10097                                        Register n_tmp6) {
10098   Label L_processPartitions;
10099   Label L_processPartition;
10100   Label L_exit;
10101 
10102   bind(L_processPartitions);
10103   cmpl(in_out1, 3 * size);
10104   jcc(Assembler::less, L_exit);
10105     xorl(tmp1, tmp1);
10106     xorl(tmp2, tmp2);
10107     movq(tmp3, in_out2);
10108     addq(tmp3, size);
10109 
10110     bind(L_processPartition);
10111       crc32(in_out3, Address(in_out2, 0), 8);
10112       crc32(tmp1, Address(in_out2, size), 8);
10113       crc32(tmp2, Address(in_out2, size * 2), 8);
10114       addq(in_out2, 8);
10115       cmpq(in_out2, tmp3);
10116       jcc(Assembler::less, L_processPartition);
10117     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10118             w_xtmp1, w_xtmp2, w_xtmp3,
10119             tmp4, tmp5,
10120             n_tmp6);
10121     addq(in_out2, 2 * size);
10122     subl(in_out1, 3 * size);
10123     jmp(L_processPartitions);
10124 
10125   bind(L_exit);
10126 }
10127 #else
10128 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10129                                      Register tmp1, Register tmp2, Register tmp3,
10130                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10131   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10132   if (n > 0) {
10133     addl(tmp3, n * 256 * 8);
10134   }
10135   //    Q1 = TABLEExt[n][B & 0xFF];
10136   movl(tmp1, in_out);
10137   andl(tmp1, 0x000000FF);
10138   shll(tmp1, 3);
10139   addl(tmp1, tmp3);
10140   movq(xtmp1, Address(tmp1, 0));
10141 
10142   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10143   movl(tmp2, in_out);
10144   shrl(tmp2, 8);
10145   andl(tmp2, 0x000000FF);
10146   shll(tmp2, 3);
10147   addl(tmp2, tmp3);
10148   movq(xtmp2, Address(tmp2, 0));
10149 
10150   psllq(xtmp2, 8);
10151   pxor(xtmp1, xtmp2);
10152 
10153   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10154   movl(tmp2, in_out);
10155   shrl(tmp2, 16);
10156   andl(tmp2, 0x000000FF);
10157   shll(tmp2, 3);
10158   addl(tmp2, tmp3);
10159   movq(xtmp2, Address(tmp2, 0));
10160 
10161   psllq(xtmp2, 16);
10162   pxor(xtmp1, xtmp2);
10163 
10164   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10165   shrl(in_out, 24);
10166   andl(in_out, 0x000000FF);
10167   shll(in_out, 3);
10168   addl(in_out, tmp3);
10169   movq(xtmp2, Address(in_out, 0));
10170 
10171   psllq(xtmp2, 24);
10172   pxor(xtmp1, xtmp2); // Result in CXMM
10173   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10174 }
10175 
10176 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10177                                       Register in_out,
10178                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10179                                       XMMRegister w_xtmp2,
10180                                       Register tmp1,
10181                                       Register n_tmp2, Register n_tmp3) {
10182   if (is_pclmulqdq_supported) {
10183     movdl(w_xtmp1, in_out);
10184 
10185     movl(tmp1, const_or_pre_comp_const_index);
10186     movdl(w_xtmp2, tmp1);
10187     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10188     // Keep result in XMM since GPR is 32 bit in length
10189   } else {
10190     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10191   }
10192 }
10193 
10194 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10195                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10196                                      Register tmp1, Register tmp2,
10197                                      Register n_tmp3) {
10198   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10199   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10200 
10201   psllq(w_xtmp1, 1);
10202   movdl(tmp1, w_xtmp1);
10203   psrlq(w_xtmp1, 32);
10204   movdl(in_out, w_xtmp1);
10205 
10206   xorl(tmp2, tmp2);
10207   crc32(tmp2, tmp1, 4);
10208   xorl(in_out, tmp2);
10209 
10210   psllq(w_xtmp2, 1);
10211   movdl(tmp1, w_xtmp2);
10212   psrlq(w_xtmp2, 32);
10213   movdl(in1, w_xtmp2);
10214 
10215   xorl(tmp2, tmp2);
10216   crc32(tmp2, tmp1, 4);
10217   xorl(in1, tmp2);
10218   xorl(in_out, in1);
10219   xorl(in_out, in2);
10220 }
10221 
10222 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10223                                        Register in_out1, Register in_out2, Register in_out3,
10224                                        Register tmp1, Register tmp2, Register tmp3,
10225                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10226                                        Register tmp4, Register tmp5,
10227                                        Register n_tmp6) {
10228   Label L_processPartitions;
10229   Label L_processPartition;
10230   Label L_exit;
10231 
10232   bind(L_processPartitions);
10233   cmpl(in_out1, 3 * size);
10234   jcc(Assembler::less, L_exit);
10235     xorl(tmp1, tmp1);
10236     xorl(tmp2, tmp2);
10237     movl(tmp3, in_out2);
10238     addl(tmp3, size);
10239 
10240     bind(L_processPartition);
10241       crc32(in_out3, Address(in_out2, 0), 4);
10242       crc32(tmp1, Address(in_out2, size), 4);
10243       crc32(tmp2, Address(in_out2, size*2), 4);
10244       crc32(in_out3, Address(in_out2, 0+4), 4);
10245       crc32(tmp1, Address(in_out2, size+4), 4);
10246       crc32(tmp2, Address(in_out2, size*2+4), 4);
10247       addl(in_out2, 8);
10248       cmpl(in_out2, tmp3);
10249       jcc(Assembler::less, L_processPartition);
10250 
10251         push(tmp3);
10252         push(in_out1);
10253         push(in_out2);
10254         tmp4 = tmp3;
10255         tmp5 = in_out1;
10256         n_tmp6 = in_out2;
10257 
10258       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10259             w_xtmp1, w_xtmp2, w_xtmp3,
10260             tmp4, tmp5,
10261             n_tmp6);
10262 
10263         pop(in_out2);
10264         pop(in_out1);
10265         pop(tmp3);
10266 
10267     addl(in_out2, 2 * size);
10268     subl(in_out1, 3 * size);
10269     jmp(L_processPartitions);
10270 
10271   bind(L_exit);
10272 }
10273 #endif //LP64
10274 
10275 #ifdef _LP64
10276 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10277 // Input: A buffer I of L bytes.
10278 // Output: the CRC32C value of the buffer.
10279 // Notations:
10280 // Write L = 24N + r, with N = floor (L/24).
10281 // r = L mod 24 (0 <= r < 24).
10282 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10283 // N quadwords, and R consists of r bytes.
10284 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10285 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10286 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10287 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10288 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10289                                           Register tmp1, Register tmp2, Register tmp3,
10290                                           Register tmp4, Register tmp5, Register tmp6,
10291                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10292                                           bool is_pclmulqdq_supported) {
10293   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10294   Label L_wordByWord;
10295   Label L_byteByByteProlog;
10296   Label L_byteByByte;
10297   Label L_exit;
10298 
10299   if (is_pclmulqdq_supported ) {
10300     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10301     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10302 
10303     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10304     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10305 
10306     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10307     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10308     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10309   } else {
10310     const_or_pre_comp_const_index[0] = 1;
10311     const_or_pre_comp_const_index[1] = 0;
10312 
10313     const_or_pre_comp_const_index[2] = 3;
10314     const_or_pre_comp_const_index[3] = 2;
10315 
10316     const_or_pre_comp_const_index[4] = 5;
10317     const_or_pre_comp_const_index[5] = 4;
10318    }
10319   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10320                     in2, in1, in_out,
10321                     tmp1, tmp2, tmp3,
10322                     w_xtmp1, w_xtmp2, w_xtmp3,
10323                     tmp4, tmp5,
10324                     tmp6);
10325   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10326                     in2, in1, in_out,
10327                     tmp1, tmp2, tmp3,
10328                     w_xtmp1, w_xtmp2, w_xtmp3,
10329                     tmp4, tmp5,
10330                     tmp6);
10331   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10332                     in2, in1, in_out,
10333                     tmp1, tmp2, tmp3,
10334                     w_xtmp1, w_xtmp2, w_xtmp3,
10335                     tmp4, tmp5,
10336                     tmp6);
10337   movl(tmp1, in2);
10338   andl(tmp1, 0x00000007);
10339   negl(tmp1);
10340   addl(tmp1, in2);
10341   addq(tmp1, in1);
10342 
10343   BIND(L_wordByWord);
10344   cmpq(in1, tmp1);
10345   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10346     crc32(in_out, Address(in1, 0), 4);
10347     addq(in1, 4);
10348     jmp(L_wordByWord);
10349 
10350   BIND(L_byteByByteProlog);
10351   andl(in2, 0x00000007);
10352   movl(tmp2, 1);
10353 
10354   BIND(L_byteByByte);
10355   cmpl(tmp2, in2);
10356   jccb(Assembler::greater, L_exit);
10357     crc32(in_out, Address(in1, 0), 1);
10358     incq(in1);
10359     incl(tmp2);
10360     jmp(L_byteByByte);
10361 
10362   BIND(L_exit);
10363 }
10364 #else
10365 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10366                                           Register tmp1, Register  tmp2, Register tmp3,
10367                                           Register tmp4, Register  tmp5, Register tmp6,
10368                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10369                                           bool is_pclmulqdq_supported) {
10370   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10371   Label L_wordByWord;
10372   Label L_byteByByteProlog;
10373   Label L_byteByByte;
10374   Label L_exit;
10375 
10376   if (is_pclmulqdq_supported) {
10377     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10378     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10379 
10380     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10381     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10382 
10383     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10384     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10385   } else {
10386     const_or_pre_comp_const_index[0] = 1;
10387     const_or_pre_comp_const_index[1] = 0;
10388 
10389     const_or_pre_comp_const_index[2] = 3;
10390     const_or_pre_comp_const_index[3] = 2;
10391 
10392     const_or_pre_comp_const_index[4] = 5;
10393     const_or_pre_comp_const_index[5] = 4;
10394   }
10395   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10396                     in2, in1, in_out,
10397                     tmp1, tmp2, tmp3,
10398                     w_xtmp1, w_xtmp2, w_xtmp3,
10399                     tmp4, tmp5,
10400                     tmp6);
10401   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10402                     in2, in1, in_out,
10403                     tmp1, tmp2, tmp3,
10404                     w_xtmp1, w_xtmp2, w_xtmp3,
10405                     tmp4, tmp5,
10406                     tmp6);
10407   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10408                     in2, in1, in_out,
10409                     tmp1, tmp2, tmp3,
10410                     w_xtmp1, w_xtmp2, w_xtmp3,
10411                     tmp4, tmp5,
10412                     tmp6);
10413   movl(tmp1, in2);
10414   andl(tmp1, 0x00000007);
10415   negl(tmp1);
10416   addl(tmp1, in2);
10417   addl(tmp1, in1);
10418 
10419   BIND(L_wordByWord);
10420   cmpl(in1, tmp1);
10421   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10422     crc32(in_out, Address(in1,0), 4);
10423     addl(in1, 4);
10424     jmp(L_wordByWord);
10425 
10426   BIND(L_byteByByteProlog);
10427   andl(in2, 0x00000007);
10428   movl(tmp2, 1);
10429 
10430   BIND(L_byteByByte);
10431   cmpl(tmp2, in2);
10432   jccb(Assembler::greater, L_exit);
10433     movb(tmp1, Address(in1, 0));
10434     crc32(in_out, tmp1, 1);
10435     incl(in1);
10436     incl(tmp2);
10437     jmp(L_byteByByte);
10438 
10439   BIND(L_exit);
10440 }
10441 #endif // LP64
10442 #undef BIND
10443 #undef BLOCK_COMMENT
10444 
10445 // Compress char[] array to byte[].
10446 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10447 //   @HotSpotIntrinsicCandidate
10448 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10449 //     for (int i = 0; i < len; i++) {
10450 //       int c = src[srcOff++];
10451 //       if (c >>> 8 != 0) {
10452 //         return 0;
10453 //       }
10454 //       dst[dstOff++] = (byte)c;
10455 //     }
10456 //     return len;
10457 //   }
10458 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10459   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10460   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10461   Register tmp5, Register result) {
10462   Label copy_chars_loop, return_length, return_zero, done;
10463 
10464   // rsi: src
10465   // rdi: dst
10466   // rdx: len
10467   // rcx: tmp5
10468   // rax: result
10469 
10470   // rsi holds start addr of source char[] to be compressed
10471   // rdi holds start addr of destination byte[]
10472   // rdx holds length
10473 
10474   assert(len != result, "");
10475 
10476   // save length for return
10477   push(len);
10478 
10479   if ((UseAVX > 2) && // AVX512
10480     VM_Version::supports_avx512vlbw() &&
10481     VM_Version::supports_bmi2()) {
10482 
10483     set_vector_masking();  // opening of the stub context for programming mask registers
10484 
10485     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero, below_threshold;
10486 
10487     // alignment
10488     Label post_alignment;
10489 
10490     // if length of the string is less than 16, handle it in an old fashioned way
10491     testl(len, -32);
10492     jcc(Assembler::zero, below_threshold);
10493 
10494     // First check whether a character is compressable ( <= 0xFF).
10495     // Create mask to test for Unicode chars inside zmm vector
10496     movl(result, 0x00FF);
10497     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10498 
10499     // Save k1
10500     kmovql(k3, k1);
10501 
10502     testl(len, -64);
10503     jcc(Assembler::zero, post_alignment);
10504 
10505     movl(tmp5, dst);
10506     andl(tmp5, (32 - 1));
10507     negl(tmp5);
10508     andl(tmp5, (32 - 1));
10509 
10510     // bail out when there is nothing to be done
10511     testl(tmp5, 0xFFFFFFFF);
10512     jcc(Assembler::zero, post_alignment);
10513 
10514     // ~(~0 << len), where len is the # of remaining elements to process
10515     movl(result, 0xFFFFFFFF);
10516     shlxl(result, result, tmp5);
10517     notl(result);
10518     kmovdl(k1, result);
10519 
10520     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10521     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10522     ktestd(k2, k1);
10523     jcc(Assembler::carryClear, restore_k1_return_zero);
10524 
10525     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10526 
10527     addptr(src, tmp5);
10528     addptr(src, tmp5);
10529     addptr(dst, tmp5);
10530     subl(len, tmp5);
10531 
10532     bind(post_alignment);
10533     // end of alignment
10534 
10535     movl(tmp5, len);
10536     andl(tmp5, (32 - 1));    // tail count (in chars)
10537     andl(len, ~(32 - 1));    // vector count (in chars)
10538     jcc(Assembler::zero, copy_loop_tail);
10539 
10540     lea(src, Address(src, len, Address::times_2));
10541     lea(dst, Address(dst, len, Address::times_1));
10542     negptr(len);
10543 
10544     bind(copy_32_loop);
10545     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10546     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10547     kortestdl(k2, k2);
10548     jcc(Assembler::carryClear, restore_k1_return_zero);
10549 
10550     // All elements in current processed chunk are valid candidates for
10551     // compression. Write a truncated byte elements to the memory.
10552     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10553     addptr(len, 32);
10554     jcc(Assembler::notZero, copy_32_loop);
10555 
10556     bind(copy_loop_tail);
10557     // bail out when there is nothing to be done
10558     testl(tmp5, 0xFFFFFFFF);
10559     // Restore k1
10560     kmovql(k1, k3);
10561     jcc(Assembler::zero, return_length);
10562 
10563     movl(len, tmp5);
10564 
10565     // ~(~0 << len), where len is the # of remaining elements to process
10566     movl(result, 0xFFFFFFFF);
10567     shlxl(result, result, len);
10568     notl(result);
10569 
10570     kmovdl(k1, result);
10571 
10572     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10573     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10574     ktestd(k2, k1);
10575     jcc(Assembler::carryClear, restore_k1_return_zero);
10576 
10577     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10578     // Restore k1
10579     kmovql(k1, k3);
10580     jmp(return_length);
10581 
10582     bind(restore_k1_return_zero);
10583     // Restore k1
10584     kmovql(k1, k3);
10585     jmp(return_zero);
10586 
10587     clear_vector_masking();   // closing of the stub context for programming mask registers
10588 
10589     bind(below_threshold);
10590   }
10591 
10592   if (UseSSE42Intrinsics) {
10593     Label copy_32_loop, copy_16, copy_tail;
10594 
10595     movl(result, len);
10596 
10597     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10598 
10599     // vectored compression
10600     andl(len, 0xfffffff0);    // vector count (in chars)
10601     andl(result, 0x0000000f);    // tail count (in chars)
10602     testl(len, len);
10603     jcc(Assembler::zero, copy_16);
10604 
10605     // compress 16 chars per iter
10606     movdl(tmp1Reg, tmp5);
10607     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10608     pxor(tmp4Reg, tmp4Reg);
10609 
10610     lea(src, Address(src, len, Address::times_2));
10611     lea(dst, Address(dst, len, Address::times_1));
10612     negptr(len);
10613 
10614     bind(copy_32_loop);
10615     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10616     por(tmp4Reg, tmp2Reg);
10617     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10618     por(tmp4Reg, tmp3Reg);
10619     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10620     jcc(Assembler::notZero, return_zero);
10621     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10622     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10623     addptr(len, 16);
10624     jcc(Assembler::notZero, copy_32_loop);
10625 
10626     // compress next vector of 8 chars (if any)
10627     bind(copy_16);
10628     movl(len, result);
10629     andl(len, 0xfffffff8);    // vector count (in chars)
10630     andl(result, 0x00000007);    // tail count (in chars)
10631     testl(len, len);
10632     jccb(Assembler::zero, copy_tail);
10633 
10634     movdl(tmp1Reg, tmp5);
10635     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10636     pxor(tmp3Reg, tmp3Reg);
10637 
10638     movdqu(tmp2Reg, Address(src, 0));
10639     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10640     jccb(Assembler::notZero, return_zero);
10641     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10642     movq(Address(dst, 0), tmp2Reg);
10643     addptr(src, 16);
10644     addptr(dst, 8);
10645 
10646     bind(copy_tail);
10647     movl(len, result);
10648   }
10649   // compress 1 char per iter
10650   testl(len, len);
10651   jccb(Assembler::zero, return_length);
10652   lea(src, Address(src, len, Address::times_2));
10653   lea(dst, Address(dst, len, Address::times_1));
10654   negptr(len);
10655 
10656   bind(copy_chars_loop);
10657   load_unsigned_short(result, Address(src, len, Address::times_2));
10658   testl(result, 0xff00);      // check if Unicode char
10659   jccb(Assembler::notZero, return_zero);
10660   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
10661   increment(len);
10662   jcc(Assembler::notZero, copy_chars_loop);
10663 
10664   // if compression succeeded, return length
10665   bind(return_length);
10666   pop(result);
10667   jmpb(done);
10668 
10669   // if compression failed, return 0
10670   bind(return_zero);
10671   xorl(result, result);
10672   addptr(rsp, wordSize);
10673 
10674   bind(done);
10675 }
10676 
10677 // Inflate byte[] array to char[].
10678 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
10679 //   @HotSpotIntrinsicCandidate
10680 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
10681 //     for (int i = 0; i < len; i++) {
10682 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
10683 //     }
10684 //   }
10685 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
10686   XMMRegister tmp1, Register tmp2) {
10687   Label copy_chars_loop, done, below_threshold;
10688   // rsi: src
10689   // rdi: dst
10690   // rdx: len
10691   // rcx: tmp2
10692 
10693   // rsi holds start addr of source byte[] to be inflated
10694   // rdi holds start addr of destination char[]
10695   // rdx holds length
10696   assert_different_registers(src, dst, len, tmp2);
10697 
10698   if ((UseAVX > 2) && // AVX512
10699     VM_Version::supports_avx512vlbw() &&
10700     VM_Version::supports_bmi2()) {
10701 
10702     set_vector_masking();  // opening of the stub context for programming mask registers
10703 
10704     Label copy_32_loop, copy_tail;
10705     Register tmp3_aliased = len;
10706 
10707     // if length of the string is less than 16, handle it in an old fashioned way
10708     testl(len, -16);
10709     jcc(Assembler::zero, below_threshold);
10710 
10711     // In order to use only one arithmetic operation for the main loop we use
10712     // this pre-calculation
10713     movl(tmp2, len);
10714     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
10715     andl(len, -32);     // vector count
10716     jccb(Assembler::zero, copy_tail);
10717 
10718     lea(src, Address(src, len, Address::times_1));
10719     lea(dst, Address(dst, len, Address::times_2));
10720     negptr(len);
10721 
10722 
10723     // inflate 32 chars per iter
10724     bind(copy_32_loop);
10725     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
10726     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
10727     addptr(len, 32);
10728     jcc(Assembler::notZero, copy_32_loop);
10729 
10730     bind(copy_tail);
10731     // bail out when there is nothing to be done
10732     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
10733     jcc(Assembler::zero, done);
10734 
10735     // Save k1
10736     kmovql(k2, k1);
10737 
10738     // ~(~0 << length), where length is the # of remaining elements to process
10739     movl(tmp3_aliased, -1);
10740     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
10741     notl(tmp3_aliased);
10742     kmovdl(k1, tmp3_aliased);
10743     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
10744     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
10745 
10746     // Restore k1
10747     kmovql(k1, k2);
10748     jmp(done);
10749 
10750     clear_vector_masking();   // closing of the stub context for programming mask registers
10751   }
10752   if (UseSSE42Intrinsics) {
10753     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
10754 
10755     movl(tmp2, len);
10756 
10757     if (UseAVX > 1) {
10758       andl(tmp2, (16 - 1));
10759       andl(len, -16);
10760       jccb(Assembler::zero, copy_new_tail);
10761     } else {
10762       andl(tmp2, 0x00000007);   // tail count (in chars)
10763       andl(len, 0xfffffff8);    // vector count (in chars)
10764       jccb(Assembler::zero, copy_tail);
10765     }
10766 
10767     // vectored inflation
10768     lea(src, Address(src, len, Address::times_1));
10769     lea(dst, Address(dst, len, Address::times_2));
10770     negptr(len);
10771 
10772     if (UseAVX > 1) {
10773       bind(copy_16_loop);
10774       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
10775       vmovdqu(Address(dst, len, Address::times_2), tmp1);
10776       addptr(len, 16);
10777       jcc(Assembler::notZero, copy_16_loop);
10778 
10779       bind(below_threshold);
10780       bind(copy_new_tail);
10781       if ((UseAVX > 2) &&
10782         VM_Version::supports_avx512vlbw() &&
10783         VM_Version::supports_bmi2()) {
10784         movl(tmp2, len);
10785       } else {
10786         movl(len, tmp2);
10787       }
10788       andl(tmp2, 0x00000007);
10789       andl(len, 0xFFFFFFF8);
10790       jccb(Assembler::zero, copy_tail);
10791 
10792       pmovzxbw(tmp1, Address(src, 0));
10793       movdqu(Address(dst, 0), tmp1);
10794       addptr(src, 8);
10795       addptr(dst, 2 * 8);
10796 
10797       jmp(copy_tail, true);
10798     }
10799 
10800     // inflate 8 chars per iter
10801     bind(copy_8_loop);
10802     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
10803     movdqu(Address(dst, len, Address::times_2), tmp1);
10804     addptr(len, 8);
10805     jcc(Assembler::notZero, copy_8_loop);
10806 
10807     bind(copy_tail);
10808     movl(len, tmp2);
10809 
10810     cmpl(len, 4);
10811     jccb(Assembler::less, copy_bytes);
10812 
10813     movdl(tmp1, Address(src, 0));  // load 4 byte chars
10814     pmovzxbw(tmp1, tmp1);
10815     movq(Address(dst, 0), tmp1);
10816     subptr(len, 4);
10817     addptr(src, 4);
10818     addptr(dst, 8);
10819 
10820     bind(copy_bytes);
10821   } else {
10822     bind(below_threshold);
10823   }
10824 
10825   testl(len, len);
10826   jccb(Assembler::zero, done);
10827   lea(src, Address(src, len, Address::times_1));
10828   lea(dst, Address(dst, len, Address::times_2));
10829   negptr(len);
10830 
10831   // inflate 1 char per iter
10832   bind(copy_chars_loop);
10833   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
10834   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
10835   increment(len);
10836   jcc(Assembler::notZero, copy_chars_loop);
10837 
10838   bind(done);
10839 }
10840 
10841 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
10842   switch (cond) {
10843     // Note some conditions are synonyms for others
10844     case Assembler::zero:         return Assembler::notZero;
10845     case Assembler::notZero:      return Assembler::zero;
10846     case Assembler::less:         return Assembler::greaterEqual;
10847     case Assembler::lessEqual:    return Assembler::greater;
10848     case Assembler::greater:      return Assembler::lessEqual;
10849     case Assembler::greaterEqual: return Assembler::less;
10850     case Assembler::below:        return Assembler::aboveEqual;
10851     case Assembler::belowEqual:   return Assembler::above;
10852     case Assembler::above:        return Assembler::belowEqual;
10853     case Assembler::aboveEqual:   return Assembler::below;
10854     case Assembler::overflow:     return Assembler::noOverflow;
10855     case Assembler::noOverflow:   return Assembler::overflow;
10856     case Assembler::negative:     return Assembler::positive;
10857     case Assembler::positive:     return Assembler::negative;
10858     case Assembler::parity:       return Assembler::noParity;
10859     case Assembler::noParity:     return Assembler::parity;
10860   }
10861   ShouldNotReachHere(); return Assembler::overflow;
10862 }
10863 
10864 SkipIfEqual::SkipIfEqual(
10865     MacroAssembler* masm, const bool* flag_addr, bool value) {
10866   _masm = masm;
10867   _masm->cmp8(ExternalAddress((address)flag_addr), value);
10868   _masm->jcc(Assembler::equal, _label);
10869 }
10870 
10871 SkipIfEqual::~SkipIfEqual() {
10872   _masm->bind(_label);
10873 }
10874 
10875 // 32-bit Windows has its own fast-path implementation
10876 // of get_thread
10877 #if !defined(WIN32) || defined(_LP64)
10878 
10879 // This is simply a call to Thread::current()
10880 void MacroAssembler::get_thread(Register thread) {
10881   if (thread != rax) {
10882     push(rax);
10883   }
10884   LP64_ONLY(push(rdi);)
10885   LP64_ONLY(push(rsi);)
10886   push(rdx);
10887   push(rcx);
10888 #ifdef _LP64
10889   push(r8);
10890   push(r9);
10891   push(r10);
10892   push(r11);
10893 #endif
10894 
10895   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10896 
10897 #ifdef _LP64
10898   pop(r11);
10899   pop(r10);
10900   pop(r9);
10901   pop(r8);
10902 #endif
10903   pop(rcx);
10904   pop(rdx);
10905   LP64_ONLY(pop(rsi);)
10906   LP64_ONLY(pop(rdi);)
10907   if (thread != rax) {
10908     mov(thread, rax);
10909     pop(rax);
10910   }
10911 }
10912 
10913 #endif