1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/klass.inline.hpp"
  38 #include "prims/methodHandles.hpp"
  39 #include "runtime/biasedLocking.hpp"
  40 #include "runtime/flags/flagSetting.hpp"
  41 #include "runtime/interfaceSupport.inline.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/os.hpp"
  44 #include "runtime/safepoint.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/thread.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "crc32c.h"
  51 #ifdef COMPILER2
  52 #include "opto/intrinsicnode.hpp"
  53 #endif
  54 
  55 #ifdef PRODUCT
  56 #define BLOCK_COMMENT(str) /* nothing */
  57 #define STOP(error) stop(error)
  58 #else
  59 #define BLOCK_COMMENT(str) block_comment(str)
  60 #define STOP(error) block_comment(error); stop(error)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 #ifdef ASSERT
  66 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  67 #endif
  68 
  69 static Assembler::Condition reverse[] = {
  70     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  71     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  72     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  73     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  74     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  75     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  76     Assembler::above          /* belowEqual    = 0x6 */ ,
  77     Assembler::belowEqual     /* above         = 0x7 */ ,
  78     Assembler::positive       /* negative      = 0x8 */ ,
  79     Assembler::negative       /* positive      = 0x9 */ ,
  80     Assembler::noParity       /* parity        = 0xa */ ,
  81     Assembler::parity         /* noParity      = 0xb */ ,
  82     Assembler::greaterEqual   /* less          = 0xc */ ,
  83     Assembler::less           /* greaterEqual  = 0xd */ ,
  84     Assembler::greater        /* lessEqual     = 0xe */ ,
  85     Assembler::lessEqual      /* greater       = 0xf, */
  86 
  87 };
  88 
  89 
  90 // Implementation of MacroAssembler
  91 
  92 // First all the versions that have distinct versions depending on 32/64 bit
  93 // Unless the difference is trivial (1 line or so).
  94 
  95 #ifndef _LP64
  96 
  97 // 32bit versions
  98 
  99 Address MacroAssembler::as_Address(AddressLiteral adr) {
 100   return Address(adr.target(), adr.rspec());
 101 }
 102 
 103 Address MacroAssembler::as_Address(ArrayAddress adr) {
 104   return Address::make_array(adr);
 105 }
 106 
 107 void MacroAssembler::call_VM_leaf_base(address entry_point,
 108                                        int number_of_arguments) {
 109   call(RuntimeAddress(entry_point));
 110   increment(rsp, number_of_arguments * wordSize);
 111 }
 112 
 113 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 118   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 126   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 127 }
 128 
 129 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 130   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 131   bs->obj_equals(this, src1, obj);
 132 }
 133 
 134 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 135   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 136   bs->obj_equals(this, src1, obj);
 137 }
 138 
 139 void MacroAssembler::extend_sign(Register hi, Register lo) {
 140   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 141   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 142     cdql();
 143   } else {
 144     movl(hi, lo);
 145     sarl(hi, 31);
 146   }
 147 }
 148 
 149 void MacroAssembler::jC2(Register tmp, Label& L) {
 150   // set parity bit if FPU flag C2 is set (via rax)
 151   save_rax(tmp);
 152   fwait(); fnstsw_ax();
 153   sahf();
 154   restore_rax(tmp);
 155   // branch
 156   jcc(Assembler::parity, L);
 157 }
 158 
 159 void MacroAssembler::jnC2(Register tmp, Label& L) {
 160   // set parity bit if FPU flag C2 is set (via rax)
 161   save_rax(tmp);
 162   fwait(); fnstsw_ax();
 163   sahf();
 164   restore_rax(tmp);
 165   // branch
 166   jcc(Assembler::noParity, L);
 167 }
 168 
 169 // 32bit can do a case table jump in one instruction but we no longer allow the base
 170 // to be installed in the Address class
 171 void MacroAssembler::jump(ArrayAddress entry) {
 172   jmp(as_Address(entry));
 173 }
 174 
 175 // Note: y_lo will be destroyed
 176 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 177   // Long compare for Java (semantics as described in JVM spec.)
 178   Label high, low, done;
 179 
 180   cmpl(x_hi, y_hi);
 181   jcc(Assembler::less, low);
 182   jcc(Assembler::greater, high);
 183   // x_hi is the return register
 184   xorl(x_hi, x_hi);
 185   cmpl(x_lo, y_lo);
 186   jcc(Assembler::below, low);
 187   jcc(Assembler::equal, done);
 188 
 189   bind(high);
 190   xorl(x_hi, x_hi);
 191   increment(x_hi);
 192   jmp(done);
 193 
 194   bind(low);
 195   xorl(x_hi, x_hi);
 196   decrementl(x_hi);
 197 
 198   bind(done);
 199 }
 200 
 201 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 202     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 203 }
 204 
 205 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 206   // leal(dst, as_Address(adr));
 207   // see note in movl as to why we must use a move
 208   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 209 }
 210 
 211 void MacroAssembler::leave() {
 212   mov(rsp, rbp);
 213   pop(rbp);
 214 }
 215 
 216 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 217   // Multiplication of two Java long values stored on the stack
 218   // as illustrated below. Result is in rdx:rax.
 219   //
 220   // rsp ---> [  ??  ] \               \
 221   //            ....    | y_rsp_offset  |
 222   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 223   //          [ y_hi ]                  | (in bytes)
 224   //            ....                    |
 225   //          [ x_lo ]                 /
 226   //          [ x_hi ]
 227   //            ....
 228   //
 229   // Basic idea: lo(result) = lo(x_lo * y_lo)
 230   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 231   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 232   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 233   Label quick;
 234   // load x_hi, y_hi and check if quick
 235   // multiplication is possible
 236   movl(rbx, x_hi);
 237   movl(rcx, y_hi);
 238   movl(rax, rbx);
 239   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 240   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 241   // do full multiplication
 242   // 1st step
 243   mull(y_lo);                                    // x_hi * y_lo
 244   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 245   // 2nd step
 246   movl(rax, x_lo);
 247   mull(rcx);                                     // x_lo * y_hi
 248   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 249   // 3rd step
 250   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 251   movl(rax, x_lo);
 252   mull(y_lo);                                    // x_lo * y_lo
 253   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 254 }
 255 
 256 void MacroAssembler::lneg(Register hi, Register lo) {
 257   negl(lo);
 258   adcl(hi, 0);
 259   negl(hi);
 260 }
 261 
 262 void MacroAssembler::lshl(Register hi, Register lo) {
 263   // Java shift left long support (semantics as described in JVM spec., p.305)
 264   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 265   // shift value is in rcx !
 266   assert(hi != rcx, "must not use rcx");
 267   assert(lo != rcx, "must not use rcx");
 268   const Register s = rcx;                        // shift count
 269   const int      n = BitsPerWord;
 270   Label L;
 271   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 272   cmpl(s, n);                                    // if (s < n)
 273   jcc(Assembler::less, L);                       // else (s >= n)
 274   movl(hi, lo);                                  // x := x << n
 275   xorl(lo, lo);
 276   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 277   bind(L);                                       // s (mod n) < n
 278   shldl(hi, lo);                                 // x := x << s
 279   shll(lo);
 280 }
 281 
 282 
 283 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 284   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 285   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 286   assert(hi != rcx, "must not use rcx");
 287   assert(lo != rcx, "must not use rcx");
 288   const Register s = rcx;                        // shift count
 289   const int      n = BitsPerWord;
 290   Label L;
 291   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 292   cmpl(s, n);                                    // if (s < n)
 293   jcc(Assembler::less, L);                       // else (s >= n)
 294   movl(lo, hi);                                  // x := x >> n
 295   if (sign_extension) sarl(hi, 31);
 296   else                xorl(hi, hi);
 297   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 298   bind(L);                                       // s (mod n) < n
 299   shrdl(lo, hi);                                 // x := x >> s
 300   if (sign_extension) sarl(hi);
 301   else                shrl(hi);
 302 }
 303 
 304 void MacroAssembler::movoop(Register dst, jobject obj) {
 305   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 306 }
 307 
 308 void MacroAssembler::movoop(Address dst, jobject obj) {
 309   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 310 }
 311 
 312 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 313   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 314 }
 315 
 316 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 317   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 321   // scratch register is not used,
 322   // it is defined to match parameters of 64-bit version of this method.
 323   if (src.is_lval()) {
 324     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 325   } else {
 326     movl(dst, as_Address(src));
 327   }
 328 }
 329 
 330 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 331   movl(as_Address(dst), src);
 332 }
 333 
 334 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 335   movl(dst, as_Address(src));
 336 }
 337 
 338 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 339 void MacroAssembler::movptr(Address dst, intptr_t src) {
 340   movl(dst, src);
 341 }
 342 
 343 
 344 void MacroAssembler::pop_callee_saved_registers() {
 345   pop(rcx);
 346   pop(rdx);
 347   pop(rdi);
 348   pop(rsi);
 349 }
 350 
 351 void MacroAssembler::pop_fTOS() {
 352   fld_d(Address(rsp, 0));
 353   addl(rsp, 2 * wordSize);
 354 }
 355 
 356 void MacroAssembler::push_callee_saved_registers() {
 357   push(rsi);
 358   push(rdi);
 359   push(rdx);
 360   push(rcx);
 361 }
 362 
 363 void MacroAssembler::push_fTOS() {
 364   subl(rsp, 2 * wordSize);
 365   fstp_d(Address(rsp, 0));
 366 }
 367 
 368 
 369 void MacroAssembler::pushoop(jobject obj) {
 370   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 371 }
 372 
 373 void MacroAssembler::pushklass(Metadata* obj) {
 374   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 375 }
 376 
 377 void MacroAssembler::pushptr(AddressLiteral src) {
 378   if (src.is_lval()) {
 379     push_literal32((int32_t)src.target(), src.rspec());
 380   } else {
 381     pushl(as_Address(src));
 382   }
 383 }
 384 
 385 void MacroAssembler::set_word_if_not_zero(Register dst) {
 386   xorl(dst, dst);
 387   set_byte_if_not_zero(dst);
 388 }
 389 
 390 static void pass_arg0(MacroAssembler* masm, Register arg) {
 391   masm->push(arg);
 392 }
 393 
 394 static void pass_arg1(MacroAssembler* masm, Register arg) {
 395   masm->push(arg);
 396 }
 397 
 398 static void pass_arg2(MacroAssembler* masm, Register arg) {
 399   masm->push(arg);
 400 }
 401 
 402 static void pass_arg3(MacroAssembler* masm, Register arg) {
 403   masm->push(arg);
 404 }
 405 
 406 #ifndef PRODUCT
 407 extern "C" void findpc(intptr_t x);
 408 #endif
 409 
 410 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 411   // In order to get locks to work, we need to fake a in_VM state
 412   JavaThread* thread = JavaThread::current();
 413   JavaThreadState saved_state = thread->thread_state();
 414   thread->set_thread_state(_thread_in_vm);
 415   if (ShowMessageBoxOnError) {
 416     JavaThread* thread = JavaThread::current();
 417     JavaThreadState saved_state = thread->thread_state();
 418     thread->set_thread_state(_thread_in_vm);
 419     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 420       ttyLocker ttyl;
 421       BytecodeCounter::print();
 422     }
 423     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 424     // This is the value of eip which points to where verify_oop will return.
 425     if (os::message_box(msg, "Execution stopped, print registers?")) {
 426       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 427       BREAKPOINT;
 428     }
 429   } else {
 430     ttyLocker ttyl;
 431     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 432   }
 433   // Don't assert holding the ttyLock
 434     assert(false, "DEBUG MESSAGE: %s", msg);
 435   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 436 }
 437 
 438 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 439   ttyLocker ttyl;
 440   FlagSetting fs(Debugging, true);
 441   tty->print_cr("eip = 0x%08x", eip);
 442 #ifndef PRODUCT
 443   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 444     tty->cr();
 445     findpc(eip);
 446     tty->cr();
 447   }
 448 #endif
 449 #define PRINT_REG(rax) \
 450   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 451   PRINT_REG(rax);
 452   PRINT_REG(rbx);
 453   PRINT_REG(rcx);
 454   PRINT_REG(rdx);
 455   PRINT_REG(rdi);
 456   PRINT_REG(rsi);
 457   PRINT_REG(rbp);
 458   PRINT_REG(rsp);
 459 #undef PRINT_REG
 460   // Print some words near top of staack.
 461   int* dump_sp = (int*) rsp;
 462   for (int col1 = 0; col1 < 8; col1++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     os::print_location(tty, *dump_sp++);
 465   }
 466   for (int row = 0; row < 16; row++) {
 467     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 468     for (int col = 0; col < 8; col++) {
 469       tty->print(" 0x%08x", *dump_sp++);
 470     }
 471     tty->cr();
 472   }
 473   // Print some instructions around pc:
 474   Disassembler::decode((address)eip-64, (address)eip);
 475   tty->print_cr("--------");
 476   Disassembler::decode((address)eip, (address)eip+32);
 477 }
 478 
 479 void MacroAssembler::stop(const char* msg) {
 480   ExternalAddress message((address)msg);
 481   // push address of message
 482   pushptr(message.addr());
 483   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 484   pusha();                                            // push registers
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 486   hlt();
 487 }
 488 
 489 void MacroAssembler::warn(const char* msg) {
 490   push_CPU_state();
 491 
 492   ExternalAddress message((address) msg);
 493   // push address of message
 494   pushptr(message.addr());
 495 
 496   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 497   addl(rsp, wordSize);       // discard argument
 498   pop_CPU_state();
 499 }
 500 
 501 void MacroAssembler::print_state() {
 502   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 503   pusha();                                            // push registers
 504 
 505   push_CPU_state();
 506   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 507   pop_CPU_state();
 508 
 509   popa();
 510   addl(rsp, wordSize);
 511 }
 512 
 513 #else // _LP64
 514 
 515 // 64 bit versions
 516 
 517 Address MacroAssembler::as_Address(AddressLiteral adr) {
 518   // amd64 always does this as a pc-rel
 519   // we can be absolute or disp based on the instruction type
 520   // jmp/call are displacements others are absolute
 521   assert(!adr.is_lval(), "must be rval");
 522   assert(reachable(adr), "must be");
 523   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 524 
 525 }
 526 
 527 Address MacroAssembler::as_Address(ArrayAddress adr) {
 528   AddressLiteral base = adr.base();
 529   lea(rscratch1, base);
 530   Address index = adr.index();
 531   assert(index._disp == 0, "must not have disp"); // maybe it can?
 532   Address array(rscratch1, index._index, index._scale, index._disp);
 533   return array;
 534 }
 535 
 536 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 537   Label L, E;
 538 
 539 #ifdef _WIN64
 540   // Windows always allocates space for it's register args
 541   assert(num_args <= 4, "only register arguments supported");
 542   subq(rsp,  frame::arg_reg_save_area_bytes);
 543 #endif
 544 
 545   // Align stack if necessary
 546   testl(rsp, 15);
 547   jcc(Assembler::zero, L);
 548 
 549   subq(rsp, 8);
 550   {
 551     call(RuntimeAddress(entry_point));
 552   }
 553   addq(rsp, 8);
 554   jmp(E);
 555 
 556   bind(L);
 557   {
 558     call(RuntimeAddress(entry_point));
 559   }
 560 
 561   bind(E);
 562 
 563 #ifdef _WIN64
 564   // restore stack pointer
 565   addq(rsp, frame::arg_reg_save_area_bytes);
 566 #endif
 567 
 568 }
 569 
 570 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 571   assert(!src2.is_lval(), "should use cmpptr");
 572 
 573   if (reachable(src2)) {
 574     cmpq(src1, as_Address(src2));
 575   } else {
 576     lea(rscratch1, src2);
 577     Assembler::cmpq(src1, Address(rscratch1, 0));
 578   }
 579 }
 580 
 581 int MacroAssembler::corrected_idivq(Register reg) {
 582   // Full implementation of Java ldiv and lrem; checks for special
 583   // case as described in JVM spec., p.243 & p.271.  The function
 584   // returns the (pc) offset of the idivl instruction - may be needed
 585   // for implicit exceptions.
 586   //
 587   //         normal case                           special case
 588   //
 589   // input : rax: dividend                         min_long
 590   //         reg: divisor   (may not be eax/edx)   -1
 591   //
 592   // output: rax: quotient  (= rax idiv reg)       min_long
 593   //         rdx: remainder (= rax irem reg)       0
 594   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 595   static const int64_t min_long = 0x8000000000000000;
 596   Label normal_case, special_case;
 597 
 598   // check for special case
 599   cmp64(rax, ExternalAddress((address) &min_long));
 600   jcc(Assembler::notEqual, normal_case);
 601   xorl(rdx, rdx); // prepare rdx for possible special case (where
 602                   // remainder = 0)
 603   cmpq(reg, -1);
 604   jcc(Assembler::equal, special_case);
 605 
 606   // handle normal case
 607   bind(normal_case);
 608   cdqq();
 609   int idivq_offset = offset();
 610   idivq(reg);
 611 
 612   // normal and special case exit
 613   bind(special_case);
 614 
 615   return idivq_offset;
 616 }
 617 
 618 void MacroAssembler::decrementq(Register reg, int value) {
 619   if (value == min_jint) { subq(reg, value); return; }
 620   if (value <  0) { incrementq(reg, -value); return; }
 621   if (value == 0) {                        ; return; }
 622   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 623   /* else */      { subq(reg, value)       ; return; }
 624 }
 625 
 626 void MacroAssembler::decrementq(Address dst, int value) {
 627   if (value == min_jint) { subq(dst, value); return; }
 628   if (value <  0) { incrementq(dst, -value); return; }
 629   if (value == 0) {                        ; return; }
 630   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 631   /* else */      { subq(dst, value)       ; return; }
 632 }
 633 
 634 void MacroAssembler::incrementq(AddressLiteral dst) {
 635   if (reachable(dst)) {
 636     incrementq(as_Address(dst));
 637   } else {
 638     lea(rscratch1, dst);
 639     incrementq(Address(rscratch1, 0));
 640   }
 641 }
 642 
 643 void MacroAssembler::incrementq(Register reg, int value) {
 644   if (value == min_jint) { addq(reg, value); return; }
 645   if (value <  0) { decrementq(reg, -value); return; }
 646   if (value == 0) {                        ; return; }
 647   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 648   /* else */      { addq(reg, value)       ; return; }
 649 }
 650 
 651 void MacroAssembler::incrementq(Address dst, int value) {
 652   if (value == min_jint) { addq(dst, value); return; }
 653   if (value <  0) { decrementq(dst, -value); return; }
 654   if (value == 0) {                        ; return; }
 655   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 656   /* else */      { addq(dst, value)       ; return; }
 657 }
 658 
 659 // 32bit can do a case table jump in one instruction but we no longer allow the base
 660 // to be installed in the Address class
 661 void MacroAssembler::jump(ArrayAddress entry) {
 662   lea(rscratch1, entry.base());
 663   Address dispatch = entry.index();
 664   assert(dispatch._base == noreg, "must be");
 665   dispatch._base = rscratch1;
 666   jmp(dispatch);
 667 }
 668 
 669 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 670   ShouldNotReachHere(); // 64bit doesn't use two regs
 671   cmpq(x_lo, y_lo);
 672 }
 673 
 674 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 675     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 676 }
 677 
 678 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 679   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 680   movptr(dst, rscratch1);
 681 }
 682 
 683 void MacroAssembler::leave() {
 684   // %%% is this really better? Why not on 32bit too?
 685   emit_int8((unsigned char)0xC9); // LEAVE
 686 }
 687 
 688 void MacroAssembler::lneg(Register hi, Register lo) {
 689   ShouldNotReachHere(); // 64bit doesn't use two regs
 690   negq(lo);
 691 }
 692 
 693 void MacroAssembler::movoop(Register dst, jobject obj) {
 694   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695 }
 696 
 697 void MacroAssembler::movoop(Address dst, jobject obj) {
 698   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 699   movq(dst, rscratch1);
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 703   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704 }
 705 
 706 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 707   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 708   movq(dst, rscratch1);
 709 }
 710 
 711 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 712   if (src.is_lval()) {
 713     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 714   } else {
 715     if (reachable(src)) {
 716       movq(dst, as_Address(src));
 717     } else {
 718       lea(scratch, src);
 719       movq(dst, Address(scratch, 0));
 720     }
 721   }
 722 }
 723 
 724 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 725   movq(as_Address(dst), src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 729   movq(dst, as_Address(src));
 730 }
 731 
 732 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 733 void MacroAssembler::movptr(Address dst, intptr_t src) {
 734   mov64(rscratch1, src);
 735   movq(dst, rscratch1);
 736 }
 737 
 738 // These are mostly for initializing NULL
 739 void MacroAssembler::movptr(Address dst, int32_t src) {
 740   movslq(dst, src);
 741 }
 742 
 743 void MacroAssembler::movptr(Register dst, int32_t src) {
 744   mov64(dst, (intptr_t)src);
 745 }
 746 
 747 void MacroAssembler::pushoop(jobject obj) {
 748   movoop(rscratch1, obj);
 749   push(rscratch1);
 750 }
 751 
 752 void MacroAssembler::pushklass(Metadata* obj) {
 753   mov_metadata(rscratch1, obj);
 754   push(rscratch1);
 755 }
 756 
 757 void MacroAssembler::pushptr(AddressLiteral src) {
 758   lea(rscratch1, src);
 759   if (src.is_lval()) {
 760     push(rscratch1);
 761   } else {
 762     pushq(Address(rscratch1, 0));
 763   }
 764 }
 765 
 766 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 767   // we must set sp to zero to clear frame
 768   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 769   // must clear fp, so that compiled frames are not confused; it is
 770   // possible that we need it only for debugging
 771   if (clear_fp) {
 772     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 773   }
 774 
 775   // Always clear the pc because it could have been set by make_walkable()
 776   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 777   vzeroupper();
 778 }
 779 
 780 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 781                                          Register last_java_fp,
 782                                          address  last_java_pc) {
 783   vzeroupper();
 784   // determine last_java_sp register
 785   if (!last_java_sp->is_valid()) {
 786     last_java_sp = rsp;
 787   }
 788 
 789   // last_java_fp is optional
 790   if (last_java_fp->is_valid()) {
 791     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 792            last_java_fp);
 793   }
 794 
 795   // last_java_pc is optional
 796   if (last_java_pc != NULL) {
 797     Address java_pc(r15_thread,
 798                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 799     lea(rscratch1, InternalAddress(last_java_pc));
 800     movptr(java_pc, rscratch1);
 801   }
 802 
 803   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 804 }
 805 
 806 static void pass_arg0(MacroAssembler* masm, Register arg) {
 807   if (c_rarg0 != arg ) {
 808     masm->mov(c_rarg0, arg);
 809   }
 810 }
 811 
 812 static void pass_arg1(MacroAssembler* masm, Register arg) {
 813   if (c_rarg1 != arg ) {
 814     masm->mov(c_rarg1, arg);
 815   }
 816 }
 817 
 818 static void pass_arg2(MacroAssembler* masm, Register arg) {
 819   if (c_rarg2 != arg ) {
 820     masm->mov(c_rarg2, arg);
 821   }
 822 }
 823 
 824 static void pass_arg3(MacroAssembler* masm, Register arg) {
 825   if (c_rarg3 != arg ) {
 826     masm->mov(c_rarg3, arg);
 827   }
 828 }
 829 
 830 void MacroAssembler::stop(const char* msg) {
 831   address rip = pc();
 832   pusha(); // get regs on stack
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   lea(c_rarg1, InternalAddress(rip));
 835   movq(c_rarg2, rsp); // pass pointer to regs array
 836   andq(rsp, -16); // align stack as required by ABI
 837   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 838   hlt();
 839 }
 840 
 841 void MacroAssembler::warn(const char* msg) {
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846   lea(c_rarg0, ExternalAddress((address) msg));
 847   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 848   call(rax);
 849   pop_CPU_state();
 850   mov(rsp, rbp);
 851   pop(rbp);
 852 }
 853 
 854 void MacroAssembler::print_state() {
 855   address rip = pc();
 856   pusha();            // get regs on stack
 857   push(rbp);
 858   movq(rbp, rsp);
 859   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 860   push_CPU_state();   // keeps alignment at 16 bytes
 861 
 862   lea(c_rarg0, InternalAddress(rip));
 863   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 864   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 865 
 866   pop_CPU_state();
 867   mov(rsp, rbp);
 868   pop(rbp);
 869   popa();
 870 }
 871 
 872 #ifndef PRODUCT
 873 extern "C" void findpc(intptr_t x);
 874 #endif
 875 
 876 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 877   // In order to get locks to work, we need to fake a in_VM state
 878   if (ShowMessageBoxOnError) {
 879     JavaThread* thread = JavaThread::current();
 880     JavaThreadState saved_state = thread->thread_state();
 881     thread->set_thread_state(_thread_in_vm);
 882 #ifndef PRODUCT
 883     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 884       ttyLocker ttyl;
 885       BytecodeCounter::print();
 886     }
 887 #endif
 888     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 889     // XXX correct this offset for amd64
 890     // This is the value of eip which points to where verify_oop will return.
 891     if (os::message_box(msg, "Execution stopped, print registers?")) {
 892       print_state64(pc, regs);
 893       BREAKPOINT;
 894       assert(false, "start up GDB");
 895     }
 896     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 897   } else {
 898     ttyLocker ttyl;
 899     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 900                     msg);
 901     assert(false, "DEBUG MESSAGE: %s", msg);
 902   }
 903 }
 904 
 905 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 906   ttyLocker ttyl;
 907   FlagSetting fs(Debugging, true);
 908   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 909 #ifndef PRODUCT
 910   tty->cr();
 911   findpc(pc);
 912   tty->cr();
 913 #endif
 914 #define PRINT_REG(rax, value) \
 915   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 916   PRINT_REG(rax, regs[15]);
 917   PRINT_REG(rbx, regs[12]);
 918   PRINT_REG(rcx, regs[14]);
 919   PRINT_REG(rdx, regs[13]);
 920   PRINT_REG(rdi, regs[8]);
 921   PRINT_REG(rsi, regs[9]);
 922   PRINT_REG(rbp, regs[10]);
 923   PRINT_REG(rsp, regs[11]);
 924   PRINT_REG(r8 , regs[7]);
 925   PRINT_REG(r9 , regs[6]);
 926   PRINT_REG(r10, regs[5]);
 927   PRINT_REG(r11, regs[4]);
 928   PRINT_REG(r12, regs[3]);
 929   PRINT_REG(r13, regs[2]);
 930   PRINT_REG(r14, regs[1]);
 931   PRINT_REG(r15, regs[0]);
 932 #undef PRINT_REG
 933   // Print some words near top of staack.
 934   int64_t* rsp = (int64_t*) regs[11];
 935   int64_t* dump_sp = rsp;
 936   for (int col1 = 0; col1 < 8; col1++) {
 937     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 938     os::print_location(tty, *dump_sp++);
 939   }
 940   for (int row = 0; row < 25; row++) {
 941     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 942     for (int col = 0; col < 4; col++) {
 943       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 944     }
 945     tty->cr();
 946   }
 947   // Print some instructions around pc:
 948   Disassembler::decode((address)pc-64, (address)pc);
 949   tty->print_cr("--------");
 950   Disassembler::decode((address)pc, (address)pc+32);
 951 }
 952 
 953 #endif // _LP64
 954 
 955 // Now versions that are common to 32/64 bit
 956 
 957 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 958   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 959 }
 960 
 961 void MacroAssembler::addptr(Register dst, Register src) {
 962   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 963 }
 964 
 965 void MacroAssembler::addptr(Address dst, Register src) {
 966   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 967 }
 968 
 969 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 970   if (reachable(src)) {
 971     Assembler::addsd(dst, as_Address(src));
 972   } else {
 973     lea(rscratch1, src);
 974     Assembler::addsd(dst, Address(rscratch1, 0));
 975   }
 976 }
 977 
 978 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 979   if (reachable(src)) {
 980     addss(dst, as_Address(src));
 981   } else {
 982     lea(rscratch1, src);
 983     addss(dst, Address(rscratch1, 0));
 984   }
 985 }
 986 
 987 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 988   if (reachable(src)) {
 989     Assembler::addpd(dst, as_Address(src));
 990   } else {
 991     lea(rscratch1, src);
 992     Assembler::addpd(dst, Address(rscratch1, 0));
 993   }
 994 }
 995 
 996 void MacroAssembler::align(int modulus) {
 997   align(modulus, offset());
 998 }
 999 
1000 void MacroAssembler::align(int modulus, int target) {
1001   if (target % modulus != 0) {
1002     nop(modulus - (target % modulus));
1003   }
1004 }
1005 
1006 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
1007   // Used in sign-masking with aligned address.
1008   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1009   if (reachable(src)) {
1010     Assembler::andpd(dst, as_Address(src));
1011   } else {
1012     lea(rscratch1, src);
1013     Assembler::andpd(dst, Address(rscratch1, 0));
1014   }
1015 }
1016 
1017 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1018   // Used in sign-masking with aligned address.
1019   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1020   if (reachable(src)) {
1021     Assembler::andps(dst, as_Address(src));
1022   } else {
1023     lea(rscratch1, src);
1024     Assembler::andps(dst, Address(rscratch1, 0));
1025   }
1026 }
1027 
1028 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1029   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1030 }
1031 
1032 void MacroAssembler::atomic_incl(Address counter_addr) {
1033   if (os::is_MP())
1034     lock();
1035   incrementl(counter_addr);
1036 }
1037 
1038 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1039   if (reachable(counter_addr)) {
1040     atomic_incl(as_Address(counter_addr));
1041   } else {
1042     lea(scr, counter_addr);
1043     atomic_incl(Address(scr, 0));
1044   }
1045 }
1046 
1047 #ifdef _LP64
1048 void MacroAssembler::atomic_incq(Address counter_addr) {
1049   if (os::is_MP())
1050     lock();
1051   incrementq(counter_addr);
1052 }
1053 
1054 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1055   if (reachable(counter_addr)) {
1056     atomic_incq(as_Address(counter_addr));
1057   } else {
1058     lea(scr, counter_addr);
1059     atomic_incq(Address(scr, 0));
1060   }
1061 }
1062 #endif
1063 
1064 // Writes to stack successive pages until offset reached to check for
1065 // stack overflow + shadow pages.  This clobbers tmp.
1066 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1067   movptr(tmp, rsp);
1068   // Bang stack for total size given plus shadow page size.
1069   // Bang one page at a time because large size can bang beyond yellow and
1070   // red zones.
1071   Label loop;
1072   bind(loop);
1073   movl(Address(tmp, (-os::vm_page_size())), size );
1074   subptr(tmp, os::vm_page_size());
1075   subl(size, os::vm_page_size());
1076   jcc(Assembler::greater, loop);
1077 
1078   // Bang down shadow pages too.
1079   // At this point, (tmp-0) is the last address touched, so don't
1080   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1081   // was post-decremented.)  Skip this address by starting at i=1, and
1082   // touch a few more pages below.  N.B.  It is important to touch all
1083   // the way down including all pages in the shadow zone.
1084   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1085     // this could be any sized move but this is can be a debugging crumb
1086     // so the bigger the better.
1087     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1088   }
1089 }
1090 
1091 void MacroAssembler::reserved_stack_check() {
1092     // testing if reserved zone needs to be enabled
1093     Label no_reserved_zone_enabling;
1094     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1095     NOT_LP64(get_thread(rsi);)
1096 
1097     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1098     jcc(Assembler::below, no_reserved_zone_enabling);
1099 
1100     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1101     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1102     should_not_reach_here();
1103 
1104     bind(no_reserved_zone_enabling);
1105 }
1106 
1107 int MacroAssembler::biased_locking_enter(Register lock_reg,
1108                                          Register obj_reg,
1109                                          Register swap_reg,
1110                                          Register tmp_reg,
1111                                          bool swap_reg_contains_mark,
1112                                          Label& done,
1113                                          Label* slow_case,
1114                                          BiasedLockingCounters* counters) {
1115   assert(UseBiasedLocking, "why call this otherwise?");
1116   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1117   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1118   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1119   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1120   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1121   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1122 
1123   if (PrintBiasedLockingStatistics && counters == NULL) {
1124     counters = BiasedLocking::counters();
1125   }
1126   // Biased locking
1127   // See whether the lock is currently biased toward our thread and
1128   // whether the epoch is still valid
1129   // Note that the runtime guarantees sufficient alignment of JavaThread
1130   // pointers to allow age to be placed into low bits
1131   // First check to see whether biasing is even enabled for this object
1132   Label cas_label;
1133   int null_check_offset = -1;
1134   if (!swap_reg_contains_mark) {
1135     null_check_offset = offset();
1136     movptr(swap_reg, mark_addr);
1137   }
1138   movptr(tmp_reg, swap_reg);
1139   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1140   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1141   jcc(Assembler::notEqual, cas_label);
1142   // The bias pattern is present in the object's header. Need to check
1143   // whether the bias owner and the epoch are both still current.
1144 #ifndef _LP64
1145   // Note that because there is no current thread register on x86_32 we
1146   // need to store off the mark word we read out of the object to
1147   // avoid reloading it and needing to recheck invariants below. This
1148   // store is unfortunate but it makes the overall code shorter and
1149   // simpler.
1150   movptr(saved_mark_addr, swap_reg);
1151 #endif
1152   if (swap_reg_contains_mark) {
1153     null_check_offset = offset();
1154   }
1155   load_prototype_header(tmp_reg, obj_reg);
1156 #ifdef _LP64
1157   orptr(tmp_reg, r15_thread);
1158   xorptr(tmp_reg, swap_reg);
1159   Register header_reg = tmp_reg;
1160 #else
1161   xorptr(tmp_reg, swap_reg);
1162   get_thread(swap_reg);
1163   xorptr(swap_reg, tmp_reg);
1164   Register header_reg = swap_reg;
1165 #endif
1166   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1167   if (counters != NULL) {
1168     cond_inc32(Assembler::zero,
1169                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1170   }
1171   jcc(Assembler::equal, done);
1172 
1173   Label try_revoke_bias;
1174   Label try_rebias;
1175 
1176   // At this point we know that the header has the bias pattern and
1177   // that we are not the bias owner in the current epoch. We need to
1178   // figure out more details about the state of the header in order to
1179   // know what operations can be legally performed on the object's
1180   // header.
1181 
1182   // If the low three bits in the xor result aren't clear, that means
1183   // the prototype header is no longer biased and we have to revoke
1184   // the bias on this object.
1185   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1186   jccb(Assembler::notZero, try_revoke_bias);
1187 
1188   // Biasing is still enabled for this data type. See whether the
1189   // epoch of the current bias is still valid, meaning that the epoch
1190   // bits of the mark word are equal to the epoch bits of the
1191   // prototype header. (Note that the prototype header's epoch bits
1192   // only change at a safepoint.) If not, attempt to rebias the object
1193   // toward the current thread. Note that we must be absolutely sure
1194   // that the current epoch is invalid in order to do this because
1195   // otherwise the manipulations it performs on the mark word are
1196   // illegal.
1197   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1198   jccb(Assembler::notZero, try_rebias);
1199 
1200   // The epoch of the current bias is still valid but we know nothing
1201   // about the owner; it might be set or it might be clear. Try to
1202   // acquire the bias of the object using an atomic operation. If this
1203   // fails we will go in to the runtime to revoke the object's bias.
1204   // Note that we first construct the presumed unbiased header so we
1205   // don't accidentally blow away another thread's valid bias.
1206   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1207   andptr(swap_reg,
1208          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1209 #ifdef _LP64
1210   movptr(tmp_reg, swap_reg);
1211   orptr(tmp_reg, r15_thread);
1212 #else
1213   get_thread(tmp_reg);
1214   orptr(tmp_reg, swap_reg);
1215 #endif
1216   if (os::is_MP()) {
1217     lock();
1218   }
1219   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1220   // If the biasing toward our thread failed, this means that
1221   // another thread succeeded in biasing it toward itself and we
1222   // need to revoke that bias. The revocation will occur in the
1223   // interpreter runtime in the slow case.
1224   if (counters != NULL) {
1225     cond_inc32(Assembler::zero,
1226                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1227   }
1228   if (slow_case != NULL) {
1229     jcc(Assembler::notZero, *slow_case);
1230   }
1231   jmp(done);
1232 
1233   bind(try_rebias);
1234   // At this point we know the epoch has expired, meaning that the
1235   // current "bias owner", if any, is actually invalid. Under these
1236   // circumstances _only_, we are allowed to use the current header's
1237   // value as the comparison value when doing the cas to acquire the
1238   // bias in the current epoch. In other words, we allow transfer of
1239   // the bias from one thread to another directly in this situation.
1240   //
1241   // FIXME: due to a lack of registers we currently blow away the age
1242   // bits in this situation. Should attempt to preserve them.
1243   load_prototype_header(tmp_reg, obj_reg);
1244 #ifdef _LP64
1245   orptr(tmp_reg, r15_thread);
1246 #else
1247   get_thread(swap_reg);
1248   orptr(tmp_reg, swap_reg);
1249   movptr(swap_reg, saved_mark_addr);
1250 #endif
1251   if (os::is_MP()) {
1252     lock();
1253   }
1254   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1255   // If the biasing toward our thread failed, then another thread
1256   // succeeded in biasing it toward itself and we need to revoke that
1257   // bias. The revocation will occur in the runtime in the slow case.
1258   if (counters != NULL) {
1259     cond_inc32(Assembler::zero,
1260                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1261   }
1262   if (slow_case != NULL) {
1263     jcc(Assembler::notZero, *slow_case);
1264   }
1265   jmp(done);
1266 
1267   bind(try_revoke_bias);
1268   // The prototype mark in the klass doesn't have the bias bit set any
1269   // more, indicating that objects of this data type are not supposed
1270   // to be biased any more. We are going to try to reset the mark of
1271   // this object to the prototype value and fall through to the
1272   // CAS-based locking scheme. Note that if our CAS fails, it means
1273   // that another thread raced us for the privilege of revoking the
1274   // bias of this particular object, so it's okay to continue in the
1275   // normal locking code.
1276   //
1277   // FIXME: due to a lack of registers we currently blow away the age
1278   // bits in this situation. Should attempt to preserve them.
1279   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1280   load_prototype_header(tmp_reg, obj_reg);
1281   if (os::is_MP()) {
1282     lock();
1283   }
1284   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1285   // Fall through to the normal CAS-based lock, because no matter what
1286   // the result of the above CAS, some thread must have succeeded in
1287   // removing the bias bit from the object's header.
1288   if (counters != NULL) {
1289     cond_inc32(Assembler::zero,
1290                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1291   }
1292 
1293   bind(cas_label);
1294 
1295   return null_check_offset;
1296 }
1297 
1298 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1299   assert(UseBiasedLocking, "why call this otherwise?");
1300 
1301   // Check for biased locking unlock case, which is a no-op
1302   // Note: we do not have to check the thread ID for two reasons.
1303   // First, the interpreter checks for IllegalMonitorStateException at
1304   // a higher level. Second, if the bias was revoked while we held the
1305   // lock, the object could not be rebiased toward another thread, so
1306   // the bias bit would be clear.
1307   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1308   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1309   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1310   jcc(Assembler::equal, done);
1311 }
1312 
1313 #ifdef COMPILER2
1314 
1315 #if INCLUDE_RTM_OPT
1316 
1317 // Update rtm_counters based on abort status
1318 // input: abort_status
1319 //        rtm_counters (RTMLockingCounters*)
1320 // flags are killed
1321 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1322 
1323   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1324   if (PrintPreciseRTMLockingStatistics) {
1325     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1326       Label check_abort;
1327       testl(abort_status, (1<<i));
1328       jccb(Assembler::equal, check_abort);
1329       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1330       bind(check_abort);
1331     }
1332   }
1333 }
1334 
1335 // Branch if (random & (count-1) != 0), count is 2^n
1336 // tmp, scr and flags are killed
1337 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1338   assert(tmp == rax, "");
1339   assert(scr == rdx, "");
1340   rdtsc(); // modifies EDX:EAX
1341   andptr(tmp, count-1);
1342   jccb(Assembler::notZero, brLabel);
1343 }
1344 
1345 // Perform abort ratio calculation, set no_rtm bit if high ratio
1346 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1347 // tmpReg, rtm_counters_Reg and flags are killed
1348 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1349                                                  Register rtm_counters_Reg,
1350                                                  RTMLockingCounters* rtm_counters,
1351                                                  Metadata* method_data) {
1352   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1353 
1354   if (RTMLockingCalculationDelay > 0) {
1355     // Delay calculation
1356     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1357     testptr(tmpReg, tmpReg);
1358     jccb(Assembler::equal, L_done);
1359   }
1360   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1361   //   Aborted transactions = abort_count * 100
1362   //   All transactions = total_count *  RTMTotalCountIncrRate
1363   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1364 
1365   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1366   cmpptr(tmpReg, RTMAbortThreshold);
1367   jccb(Assembler::below, L_check_always_rtm2);
1368   imulptr(tmpReg, tmpReg, 100);
1369 
1370   Register scrReg = rtm_counters_Reg;
1371   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1373   imulptr(scrReg, scrReg, RTMAbortRatio);
1374   cmpptr(tmpReg, scrReg);
1375   jccb(Assembler::below, L_check_always_rtm1);
1376   if (method_data != NULL) {
1377     // set rtm_state to "no rtm" in MDO
1378     mov_metadata(tmpReg, method_data);
1379     if (os::is_MP()) {
1380       lock();
1381     }
1382     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1383   }
1384   jmpb(L_done);
1385   bind(L_check_always_rtm1);
1386   // Reload RTMLockingCounters* address
1387   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1388   bind(L_check_always_rtm2);
1389   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1390   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1391   jccb(Assembler::below, L_done);
1392   if (method_data != NULL) {
1393     // set rtm_state to "always rtm" in MDO
1394     mov_metadata(tmpReg, method_data);
1395     if (os::is_MP()) {
1396       lock();
1397     }
1398     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1399   }
1400   bind(L_done);
1401 }
1402 
1403 // Update counters and perform abort ratio calculation
1404 // input:  abort_status_Reg
1405 // rtm_counters_Reg, flags are killed
1406 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1407                                    Register rtm_counters_Reg,
1408                                    RTMLockingCounters* rtm_counters,
1409                                    Metadata* method_data,
1410                                    bool profile_rtm) {
1411 
1412   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1413   // update rtm counters based on rax value at abort
1414   // reads abort_status_Reg, updates flags
1415   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1416   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1417   if (profile_rtm) {
1418     // Save abort status because abort_status_Reg is used by following code.
1419     if (RTMRetryCount > 0) {
1420       push(abort_status_Reg);
1421     }
1422     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1423     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1424     // restore abort status
1425     if (RTMRetryCount > 0) {
1426       pop(abort_status_Reg);
1427     }
1428   }
1429 }
1430 
1431 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1432 // inputs: retry_count_Reg
1433 //       : abort_status_Reg
1434 // output: retry_count_Reg decremented by 1
1435 // flags are killed
1436 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1437   Label doneRetry;
1438   assert(abort_status_Reg == rax, "");
1439   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1440   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1441   // if reason is in 0x6 and retry count != 0 then retry
1442   andptr(abort_status_Reg, 0x6);
1443   jccb(Assembler::zero, doneRetry);
1444   testl(retry_count_Reg, retry_count_Reg);
1445   jccb(Assembler::zero, doneRetry);
1446   pause();
1447   decrementl(retry_count_Reg);
1448   jmp(retryLabel);
1449   bind(doneRetry);
1450 }
1451 
1452 // Spin and retry if lock is busy,
1453 // inputs: box_Reg (monitor address)
1454 //       : retry_count_Reg
1455 // output: retry_count_Reg decremented by 1
1456 //       : clear z flag if retry count exceeded
1457 // tmp_Reg, scr_Reg, flags are killed
1458 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1459                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1460   Label SpinLoop, SpinExit, doneRetry;
1461   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1462 
1463   testl(retry_count_Reg, retry_count_Reg);
1464   jccb(Assembler::zero, doneRetry);
1465   decrementl(retry_count_Reg);
1466   movptr(scr_Reg, RTMSpinLoopCount);
1467 
1468   bind(SpinLoop);
1469   pause();
1470   decrementl(scr_Reg);
1471   jccb(Assembler::lessEqual, SpinExit);
1472   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1473   testptr(tmp_Reg, tmp_Reg);
1474   jccb(Assembler::notZero, SpinLoop);
1475 
1476   bind(SpinExit);
1477   jmp(retryLabel);
1478   bind(doneRetry);
1479   incrementl(retry_count_Reg); // clear z flag
1480 }
1481 
1482 // Use RTM for normal stack locks
1483 // Input: objReg (object to lock)
1484 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1485                                        Register retry_on_abort_count_Reg,
1486                                        RTMLockingCounters* stack_rtm_counters,
1487                                        Metadata* method_data, bool profile_rtm,
1488                                        Label& DONE_LABEL, Label& IsInflated) {
1489   assert(UseRTMForStackLocks, "why call this otherwise?");
1490   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1491   assert(tmpReg == rax, "");
1492   assert(scrReg == rdx, "");
1493   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1494 
1495   if (RTMRetryCount > 0) {
1496     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1497     bind(L_rtm_retry);
1498   }
1499   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1500   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1501   jcc(Assembler::notZero, IsInflated);
1502 
1503   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1504     Label L_noincrement;
1505     if (RTMTotalCountIncrRate > 1) {
1506       // tmpReg, scrReg and flags are killed
1507       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1508     }
1509     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1510     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1511     bind(L_noincrement);
1512   }
1513   xbegin(L_on_abort);
1514   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1515   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1516   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1517   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1518 
1519   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1520   if (UseRTMXendForLockBusy) {
1521     xend();
1522     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1523     jmp(L_decrement_retry);
1524   }
1525   else {
1526     xabort(0);
1527   }
1528   bind(L_on_abort);
1529   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1530     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1531   }
1532   bind(L_decrement_retry);
1533   if (RTMRetryCount > 0) {
1534     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1535     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1536   }
1537 }
1538 
1539 // Use RTM for inflating locks
1540 // inputs: objReg (object to lock)
1541 //         boxReg (on-stack box address (displaced header location) - KILLED)
1542 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1543 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1544                                           Register scrReg, Register retry_on_busy_count_Reg,
1545                                           Register retry_on_abort_count_Reg,
1546                                           RTMLockingCounters* rtm_counters,
1547                                           Metadata* method_data, bool profile_rtm,
1548                                           Label& DONE_LABEL) {
1549   assert(UseRTMLocking, "why call this otherwise?");
1550   assert(tmpReg == rax, "");
1551   assert(scrReg == rdx, "");
1552   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1553   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1554 
1555   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1556   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1557   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1558 
1559   if (RTMRetryCount > 0) {
1560     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1561     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1562     bind(L_rtm_retry);
1563   }
1564   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1565     Label L_noincrement;
1566     if (RTMTotalCountIncrRate > 1) {
1567       // tmpReg, scrReg and flags are killed
1568       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1569     }
1570     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1571     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1572     bind(L_noincrement);
1573   }
1574   xbegin(L_on_abort);
1575   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1576   movptr(tmpReg, Address(tmpReg, owner_offset));
1577   testptr(tmpReg, tmpReg);
1578   jcc(Assembler::zero, DONE_LABEL);
1579   if (UseRTMXendForLockBusy) {
1580     xend();
1581     jmp(L_decrement_retry);
1582   }
1583   else {
1584     xabort(0);
1585   }
1586   bind(L_on_abort);
1587   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1588   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1589     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1590   }
1591   if (RTMRetryCount > 0) {
1592     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1593     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1594   }
1595 
1596   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1597   testptr(tmpReg, tmpReg) ;
1598   jccb(Assembler::notZero, L_decrement_retry) ;
1599 
1600   // Appears unlocked - try to swing _owner from null to non-null.
1601   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1602 #ifdef _LP64
1603   Register threadReg = r15_thread;
1604 #else
1605   get_thread(scrReg);
1606   Register threadReg = scrReg;
1607 #endif
1608   if (os::is_MP()) {
1609     lock();
1610   }
1611   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1612 
1613   if (RTMRetryCount > 0) {
1614     // success done else retry
1615     jccb(Assembler::equal, DONE_LABEL) ;
1616     bind(L_decrement_retry);
1617     // Spin and retry if lock is busy.
1618     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1619   }
1620   else {
1621     bind(L_decrement_retry);
1622   }
1623 }
1624 
1625 #endif //  INCLUDE_RTM_OPT
1626 
1627 // Fast_Lock and Fast_Unlock used by C2
1628 
1629 // Because the transitions from emitted code to the runtime
1630 // monitorenter/exit helper stubs are so slow it's critical that
1631 // we inline both the stack-locking fast-path and the inflated fast path.
1632 //
1633 // See also: cmpFastLock and cmpFastUnlock.
1634 //
1635 // What follows is a specialized inline transliteration of the code
1636 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1637 // another option would be to emit TrySlowEnter and TrySlowExit methods
1638 // at startup-time.  These methods would accept arguments as
1639 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1640 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1641 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1642 // In practice, however, the # of lock sites is bounded and is usually small.
1643 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1644 // if the processor uses simple bimodal branch predictors keyed by EIP
1645 // Since the helper routines would be called from multiple synchronization
1646 // sites.
1647 //
1648 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1649 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1650 // to those specialized methods.  That'd give us a mostly platform-independent
1651 // implementation that the JITs could optimize and inline at their pleasure.
1652 // Done correctly, the only time we'd need to cross to native could would be
1653 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1654 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1655 // (b) explicit barriers or fence operations.
1656 //
1657 // TODO:
1658 //
1659 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1660 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1661 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1662 //    the lock operators would typically be faster than reifying Self.
1663 //
1664 // *  Ideally I'd define the primitives as:
1665 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1666 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1667 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1668 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1669 //    Furthermore the register assignments are overconstrained, possibly resulting in
1670 //    sub-optimal code near the synchronization site.
1671 //
1672 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1673 //    Alternately, use a better sp-proximity test.
1674 //
1675 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1676 //    Either one is sufficient to uniquely identify a thread.
1677 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1678 //
1679 // *  Intrinsify notify() and notifyAll() for the common cases where the
1680 //    object is locked by the calling thread but the waitlist is empty.
1681 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1682 //
1683 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1684 //    But beware of excessive branch density on AMD Opterons.
1685 //
1686 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1687 //    or failure of the fast-path.  If the fast-path fails then we pass
1688 //    control to the slow-path, typically in C.  In Fast_Lock and
1689 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1690 //    will emit a conditional branch immediately after the node.
1691 //    So we have branches to branches and lots of ICC.ZF games.
1692 //    Instead, it might be better to have C2 pass a "FailureLabel"
1693 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1694 //    will drop through the node.  ICC.ZF is undefined at exit.
1695 //    In the case of failure, the node will branch directly to the
1696 //    FailureLabel
1697 
1698 
1699 // obj: object to lock
1700 // box: on-stack box address (displaced header location) - KILLED
1701 // rax,: tmp -- KILLED
1702 // scr: tmp -- KILLED
1703 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1704                                Register scrReg, Register cx1Reg, Register cx2Reg,
1705                                BiasedLockingCounters* counters,
1706                                RTMLockingCounters* rtm_counters,
1707                                RTMLockingCounters* stack_rtm_counters,
1708                                Metadata* method_data,
1709                                bool use_rtm, bool profile_rtm) {
1710   // Ensure the register assignments are disjoint
1711   assert(tmpReg == rax, "");
1712 
1713   if (use_rtm) {
1714     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1715   } else {
1716     assert(cx1Reg == noreg, "");
1717     assert(cx2Reg == noreg, "");
1718     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1719   }
1720 
1721   if (counters != NULL) {
1722     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1723   }
1724   if (EmitSync & 1) {
1725       // set box->dhw = markOopDesc::unused_mark()
1726       // Force all sync thru slow-path: slow_enter() and slow_exit()
1727       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1728       cmpptr (rsp, (int32_t)NULL_WORD);
1729   } else {
1730     // Possible cases that we'll encounter in fast_lock
1731     // ------------------------------------------------
1732     // * Inflated
1733     //    -- unlocked
1734     //    -- Locked
1735     //       = by self
1736     //       = by other
1737     // * biased
1738     //    -- by Self
1739     //    -- by other
1740     // * neutral
1741     // * stack-locked
1742     //    -- by self
1743     //       = sp-proximity test hits
1744     //       = sp-proximity test generates false-negative
1745     //    -- by other
1746     //
1747 
1748     Label IsInflated, DONE_LABEL;
1749 
1750     // it's stack-locked, biased or neutral
1751     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1752     // order to reduce the number of conditional branches in the most common cases.
1753     // Beware -- there's a subtle invariant that fetch of the markword
1754     // at [FETCH], below, will never observe a biased encoding (*101b).
1755     // If this invariant is not held we risk exclusion (safety) failure.
1756     if (UseBiasedLocking && !UseOptoBiasInlining) {
1757       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1758     }
1759 
1760 #if INCLUDE_RTM_OPT
1761     if (UseRTMForStackLocks && use_rtm) {
1762       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1763                         stack_rtm_counters, method_data, profile_rtm,
1764                         DONE_LABEL, IsInflated);
1765     }
1766 #endif // INCLUDE_RTM_OPT
1767 
1768     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1769     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1770     jccb(Assembler::notZero, IsInflated);
1771 
1772     // Attempt stack-locking ...
1773     orptr (tmpReg, markOopDesc::unlocked_value);
1774     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1775     if (os::is_MP()) {
1776       lock();
1777     }
1778     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1779     if (counters != NULL) {
1780       cond_inc32(Assembler::equal,
1781                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1782     }
1783     jcc(Assembler::equal, DONE_LABEL);           // Success
1784 
1785     // Recursive locking.
1786     // The object is stack-locked: markword contains stack pointer to BasicLock.
1787     // Locked by current thread if difference with current SP is less than one page.
1788     subptr(tmpReg, rsp);
1789     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1790     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1791     movptr(Address(boxReg, 0), tmpReg);
1792     if (counters != NULL) {
1793       cond_inc32(Assembler::equal,
1794                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1795     }
1796     jmp(DONE_LABEL);
1797 
1798     bind(IsInflated);
1799     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1800 
1801 #if INCLUDE_RTM_OPT
1802     // Use the same RTM locking code in 32- and 64-bit VM.
1803     if (use_rtm) {
1804       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1805                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1806     } else {
1807 #endif // INCLUDE_RTM_OPT
1808 
1809 #ifndef _LP64
1810     // The object is inflated.
1811 
1812     // boxReg refers to the on-stack BasicLock in the current frame.
1813     // We'd like to write:
1814     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1815     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1816     // additional latency as we have another ST in the store buffer that must drain.
1817 
1818     if (EmitSync & 8192) {
1819        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1820        get_thread (scrReg);
1821        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1822        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1823        if (os::is_MP()) {
1824          lock();
1825        }
1826        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1827     } else
1828     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1829        // register juggle because we need tmpReg for cmpxchgptr below
1830        movptr(scrReg, boxReg);
1831        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1832 
1833        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1834        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1835           // prefetchw [eax + Offset(_owner)-2]
1836           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1837        }
1838 
1839        if ((EmitSync & 64) == 0) {
1840          // Optimistic form: consider XORL tmpReg,tmpReg
1841          movptr(tmpReg, NULL_WORD);
1842        } else {
1843          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1844          // Test-And-CAS instead of CAS
1845          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1846          testptr(tmpReg, tmpReg);                   // Locked ?
1847          jccb  (Assembler::notZero, DONE_LABEL);
1848        }
1849 
1850        // Appears unlocked - try to swing _owner from null to non-null.
1851        // Ideally, I'd manifest "Self" with get_thread and then attempt
1852        // to CAS the register containing Self into m->Owner.
1853        // But we don't have enough registers, so instead we can either try to CAS
1854        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1855        // we later store "Self" into m->Owner.  Transiently storing a stack address
1856        // (rsp or the address of the box) into  m->owner is harmless.
1857        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1858        if (os::is_MP()) {
1859          lock();
1860        }
1861        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1862        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1863        // If we weren't able to swing _owner from NULL to the BasicLock
1864        // then take the slow path.
1865        jccb  (Assembler::notZero, DONE_LABEL);
1866        // update _owner from BasicLock to thread
1867        get_thread (scrReg);                    // beware: clobbers ICCs
1868        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1869        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1870 
1871        // If the CAS fails we can either retry or pass control to the slow-path.
1872        // We use the latter tactic.
1873        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1874        // If the CAS was successful ...
1875        //   Self has acquired the lock
1876        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1877        // Intentional fall-through into DONE_LABEL ...
1878     } else {
1879        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1880        movptr(boxReg, tmpReg);
1881 
1882        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1883        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1884           // prefetchw [eax + Offset(_owner)-2]
1885           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1886        }
1887 
1888        if ((EmitSync & 64) == 0) {
1889          // Optimistic form
1890          xorptr  (tmpReg, tmpReg);
1891        } else {
1892          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1893          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1894          testptr(tmpReg, tmpReg);                   // Locked ?
1895          jccb  (Assembler::notZero, DONE_LABEL);
1896        }
1897 
1898        // Appears unlocked - try to swing _owner from null to non-null.
1899        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1900        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1901        get_thread (scrReg);
1902        if (os::is_MP()) {
1903          lock();
1904        }
1905        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1906 
1907        // If the CAS fails we can either retry or pass control to the slow-path.
1908        // We use the latter tactic.
1909        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1910        // If the CAS was successful ...
1911        //   Self has acquired the lock
1912        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1913        // Intentional fall-through into DONE_LABEL ...
1914     }
1915 #else // _LP64
1916     // It's inflated
1917     movq(scrReg, tmpReg);
1918     xorq(tmpReg, tmpReg);
1919 
1920     if (os::is_MP()) {
1921       lock();
1922     }
1923     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1924     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1925     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1926     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1927     // Intentional fall-through into DONE_LABEL ...
1928     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1929 #endif // _LP64
1930 #if INCLUDE_RTM_OPT
1931     } // use_rtm()
1932 #endif
1933     // DONE_LABEL is a hot target - we'd really like to place it at the
1934     // start of cache line by padding with NOPs.
1935     // See the AMD and Intel software optimization manuals for the
1936     // most efficient "long" NOP encodings.
1937     // Unfortunately none of our alignment mechanisms suffice.
1938     bind(DONE_LABEL);
1939 
1940     // At DONE_LABEL the icc ZFlag is set as follows ...
1941     // Fast_Unlock uses the same protocol.
1942     // ZFlag == 1 -> Success
1943     // ZFlag == 0 -> Failure - force control through the slow-path
1944   }
1945 }
1946 
1947 // obj: object to unlock
1948 // box: box address (displaced header location), killed.  Must be EAX.
1949 // tmp: killed, cannot be obj nor box.
1950 //
1951 // Some commentary on balanced locking:
1952 //
1953 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1954 // Methods that don't have provably balanced locking are forced to run in the
1955 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1956 // The interpreter provides two properties:
1957 // I1:  At return-time the interpreter automatically and quietly unlocks any
1958 //      objects acquired the current activation (frame).  Recall that the
1959 //      interpreter maintains an on-stack list of locks currently held by
1960 //      a frame.
1961 // I2:  If a method attempts to unlock an object that is not held by the
1962 //      the frame the interpreter throws IMSX.
1963 //
1964 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1965 // B() doesn't have provably balanced locking so it runs in the interpreter.
1966 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1967 // is still locked by A().
1968 //
1969 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1970 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1971 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1972 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1973 // Arguably given that the spec legislates the JNI case as undefined our implementation
1974 // could reasonably *avoid* checking owner in Fast_Unlock().
1975 // In the interest of performance we elide m->Owner==Self check in unlock.
1976 // A perfectly viable alternative is to elide the owner check except when
1977 // Xcheck:jni is enabled.
1978 
1979 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1980   assert(boxReg == rax, "");
1981   assert_different_registers(objReg, boxReg, tmpReg);
1982 
1983   if (EmitSync & 4) {
1984     // Disable - inhibit all inlining.  Force control through the slow-path
1985     cmpptr (rsp, 0);
1986   } else {
1987     Label DONE_LABEL, Stacked, CheckSucc;
1988 
1989     // Critically, the biased locking test must have precedence over
1990     // and appear before the (box->dhw == 0) recursive stack-lock test.
1991     if (UseBiasedLocking && !UseOptoBiasInlining) {
1992        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1993     }
1994 
1995 #if INCLUDE_RTM_OPT
1996     if (UseRTMForStackLocks && use_rtm) {
1997       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1998       Label L_regular_unlock;
1999       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
2000       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2001       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2002       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2003       xend();                                       // otherwise end...
2004       jmp(DONE_LABEL);                              // ... and we're done
2005       bind(L_regular_unlock);
2006     }
2007 #endif
2008 
2009     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2010     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2011     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2012     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2013     jccb  (Assembler::zero, Stacked);
2014 
2015     // It's inflated.
2016 #if INCLUDE_RTM_OPT
2017     if (use_rtm) {
2018       Label L_regular_inflated_unlock;
2019       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2020       movptr(boxReg, Address(tmpReg, owner_offset));
2021       testptr(boxReg, boxReg);
2022       jccb(Assembler::notZero, L_regular_inflated_unlock);
2023       xend();
2024       jmpb(DONE_LABEL);
2025       bind(L_regular_inflated_unlock);
2026     }
2027 #endif
2028 
2029     // Despite our balanced locking property we still check that m->_owner == Self
2030     // as java routines or native JNI code called by this thread might
2031     // have released the lock.
2032     // Refer to the comments in synchronizer.cpp for how we might encode extra
2033     // state in _succ so we can avoid fetching EntryList|cxq.
2034     //
2035     // I'd like to add more cases in fast_lock() and fast_unlock() --
2036     // such as recursive enter and exit -- but we have to be wary of
2037     // I$ bloat, T$ effects and BP$ effects.
2038     //
2039     // If there's no contention try a 1-0 exit.  That is, exit without
2040     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2041     // we detect and recover from the race that the 1-0 exit admits.
2042     //
2043     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2044     // before it STs null into _owner, releasing the lock.  Updates
2045     // to data protected by the critical section must be visible before
2046     // we drop the lock (and thus before any other thread could acquire
2047     // the lock and observe the fields protected by the lock).
2048     // IA32's memory-model is SPO, so STs are ordered with respect to
2049     // each other and there's no need for an explicit barrier (fence).
2050     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2051 #ifndef _LP64
2052     get_thread (boxReg);
2053     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2054       // prefetchw [ebx + Offset(_owner)-2]
2055       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2056     }
2057 
2058     // Note that we could employ various encoding schemes to reduce
2059     // the number of loads below (currently 4) to just 2 or 3.
2060     // Refer to the comments in synchronizer.cpp.
2061     // In practice the chain of fetches doesn't seem to impact performance, however.
2062     xorptr(boxReg, boxReg);
2063     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2064        // Attempt to reduce branch density - AMD's branch predictor.
2065        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2066        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2067        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2068        jccb  (Assembler::notZero, DONE_LABEL);
2069        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2070        jmpb  (DONE_LABEL);
2071     } else {
2072        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2073        jccb  (Assembler::notZero, DONE_LABEL);
2074        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2075        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2076        jccb  (Assembler::notZero, CheckSucc);
2077        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2078        jmpb  (DONE_LABEL);
2079     }
2080 
2081     // The Following code fragment (EmitSync & 65536) improves the performance of
2082     // contended applications and contended synchronization microbenchmarks.
2083     // Unfortunately the emission of the code - even though not executed - causes regressions
2084     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2085     // with an equal number of never-executed NOPs results in the same regression.
2086     // We leave it off by default.
2087 
2088     if ((EmitSync & 65536) != 0) {
2089        Label LSuccess, LGoSlowPath ;
2090 
2091        bind  (CheckSucc);
2092 
2093        // Optional pre-test ... it's safe to elide this
2094        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2095        jccb(Assembler::zero, LGoSlowPath);
2096 
2097        // We have a classic Dekker-style idiom:
2098        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2099        // There are a number of ways to implement the barrier:
2100        // (1) lock:andl &m->_owner, 0
2101        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2102        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2103        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2104        // (2) If supported, an explicit MFENCE is appealing.
2105        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2106        //     particularly if the write-buffer is full as might be the case if
2107        //     if stores closely precede the fence or fence-equivalent instruction.
2108        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2109        //     as the situation has changed with Nehalem and Shanghai.
2110        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2111        //     The $lines underlying the top-of-stack should be in M-state.
2112        //     The locked add instruction is serializing, of course.
2113        // (4) Use xchg, which is serializing
2114        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2115        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2116        //     The integer condition codes will tell us if succ was 0.
2117        //     Since _succ and _owner should reside in the same $line and
2118        //     we just stored into _owner, it's likely that the $line
2119        //     remains in M-state for the lock:orl.
2120        //
2121        // We currently use (3), although it's likely that switching to (2)
2122        // is correct for the future.
2123 
2124        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2125        if (os::is_MP()) {
2126          lock(); addptr(Address(rsp, 0), 0);
2127        }
2128        // Ratify _succ remains non-null
2129        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2130        jccb  (Assembler::notZero, LSuccess);
2131 
2132        xorptr(boxReg, boxReg);                  // box is really EAX
2133        if (os::is_MP()) { lock(); }
2134        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2135        // There's no successor so we tried to regrab the lock with the
2136        // placeholder value. If that didn't work, then another thread
2137        // grabbed the lock so we're done (and exit was a success).
2138        jccb  (Assembler::notEqual, LSuccess);
2139        // Since we're low on registers we installed rsp as a placeholding in _owner.
2140        // Now install Self over rsp.  This is safe as we're transitioning from
2141        // non-null to non=null
2142        get_thread (boxReg);
2143        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2144        // Intentional fall-through into LGoSlowPath ...
2145 
2146        bind  (LGoSlowPath);
2147        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2148        jmpb  (DONE_LABEL);
2149 
2150        bind  (LSuccess);
2151        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2152        jmpb  (DONE_LABEL);
2153     }
2154 
2155     bind (Stacked);
2156     // It's not inflated and it's not recursively stack-locked and it's not biased.
2157     // It must be stack-locked.
2158     // Try to reset the header to displaced header.
2159     // The "box" value on the stack is stable, so we can reload
2160     // and be assured we observe the same value as above.
2161     movptr(tmpReg, Address(boxReg, 0));
2162     if (os::is_MP()) {
2163       lock();
2164     }
2165     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2166     // Intention fall-thru into DONE_LABEL
2167 
2168     // DONE_LABEL is a hot target - we'd really like to place it at the
2169     // start of cache line by padding with NOPs.
2170     // See the AMD and Intel software optimization manuals for the
2171     // most efficient "long" NOP encodings.
2172     // Unfortunately none of our alignment mechanisms suffice.
2173     if ((EmitSync & 65536) == 0) {
2174        bind (CheckSucc);
2175     }
2176 #else // _LP64
2177     // It's inflated
2178     if (EmitSync & 1024) {
2179       // Emit code to check that _owner == Self
2180       // We could fold the _owner test into subsequent code more efficiently
2181       // than using a stand-alone check, but since _owner checking is off by
2182       // default we don't bother. We also might consider predicating the
2183       // _owner==Self check on Xcheck:jni or running on a debug build.
2184       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2185       xorptr(boxReg, r15_thread);
2186     } else {
2187       xorptr(boxReg, boxReg);
2188     }
2189     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2190     jccb  (Assembler::notZero, DONE_LABEL);
2191     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2192     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2193     jccb  (Assembler::notZero, CheckSucc);
2194     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2195     jmpb  (DONE_LABEL);
2196 
2197     if ((EmitSync & 65536) == 0) {
2198       // Try to avoid passing control into the slow_path ...
2199       Label LSuccess, LGoSlowPath ;
2200       bind  (CheckSucc);
2201 
2202       // The following optional optimization can be elided if necessary
2203       // Effectively: if (succ == null) goto SlowPath
2204       // The code reduces the window for a race, however,
2205       // and thus benefits performance.
2206       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2207       jccb  (Assembler::zero, LGoSlowPath);
2208 
2209       xorptr(boxReg, boxReg);
2210       if ((EmitSync & 16) && os::is_MP()) {
2211         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2212       } else {
2213         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2214         if (os::is_MP()) {
2215           // Memory barrier/fence
2216           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2217           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2218           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2219           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2220           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2221           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2222           lock(); addl(Address(rsp, 0), 0);
2223         }
2224       }
2225       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2226       jccb  (Assembler::notZero, LSuccess);
2227 
2228       // Rare inopportune interleaving - race.
2229       // The successor vanished in the small window above.
2230       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2231       // We need to ensure progress and succession.
2232       // Try to reacquire the lock.
2233       // If that fails then the new owner is responsible for succession and this
2234       // thread needs to take no further action and can exit via the fast path (success).
2235       // If the re-acquire succeeds then pass control into the slow path.
2236       // As implemented, this latter mode is horrible because we generated more
2237       // coherence traffic on the lock *and* artifically extended the critical section
2238       // length while by virtue of passing control into the slow path.
2239 
2240       // box is really RAX -- the following CMPXCHG depends on that binding
2241       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2242       if (os::is_MP()) { lock(); }
2243       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2244       // There's no successor so we tried to regrab the lock.
2245       // If that didn't work, then another thread grabbed the
2246       // lock so we're done (and exit was a success).
2247       jccb  (Assembler::notEqual, LSuccess);
2248       // Intentional fall-through into slow-path
2249 
2250       bind  (LGoSlowPath);
2251       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2252       jmpb  (DONE_LABEL);
2253 
2254       bind  (LSuccess);
2255       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2256       jmpb  (DONE_LABEL);
2257     }
2258 
2259     bind  (Stacked);
2260     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2261     if (os::is_MP()) { lock(); }
2262     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2263 
2264     if (EmitSync & 65536) {
2265        bind (CheckSucc);
2266     }
2267 #endif
2268     bind(DONE_LABEL);
2269   }
2270 }
2271 #endif // COMPILER2
2272 
2273 void MacroAssembler::c2bool(Register x) {
2274   // implements x == 0 ? 0 : 1
2275   // note: must only look at least-significant byte of x
2276   //       since C-style booleans are stored in one byte
2277   //       only! (was bug)
2278   andl(x, 0xFF);
2279   setb(Assembler::notZero, x);
2280 }
2281 
2282 // Wouldn't need if AddressLiteral version had new name
2283 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2284   Assembler::call(L, rtype);
2285 }
2286 
2287 void MacroAssembler::call(Register entry) {
2288   Assembler::call(entry);
2289 }
2290 
2291 void MacroAssembler::call(AddressLiteral entry) {
2292   if (reachable(entry)) {
2293     Assembler::call_literal(entry.target(), entry.rspec());
2294   } else {
2295     lea(rscratch1, entry);
2296     Assembler::call(rscratch1);
2297   }
2298 }
2299 
2300 void MacroAssembler::ic_call(address entry, jint method_index) {
2301   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2302   movptr(rax, (intptr_t)Universe::non_oop_word());
2303   call(AddressLiteral(entry, rh));
2304 }
2305 
2306 // Implementation of call_VM versions
2307 
2308 void MacroAssembler::call_VM(Register oop_result,
2309                              address entry_point,
2310                              bool check_exceptions) {
2311   Label C, E;
2312   call(C, relocInfo::none);
2313   jmp(E);
2314 
2315   bind(C);
2316   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2317   ret(0);
2318 
2319   bind(E);
2320 }
2321 
2322 void MacroAssembler::call_VM(Register oop_result,
2323                              address entry_point,
2324                              Register arg_1,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331   pass_arg1(this, arg_1);
2332   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2333   ret(0);
2334 
2335   bind(E);
2336 }
2337 
2338 void MacroAssembler::call_VM(Register oop_result,
2339                              address entry_point,
2340                              Register arg_1,
2341                              Register arg_2,
2342                              bool check_exceptions) {
2343   Label C, E;
2344   call(C, relocInfo::none);
2345   jmp(E);
2346 
2347   bind(C);
2348 
2349   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2350 
2351   pass_arg2(this, arg_2);
2352   pass_arg1(this, arg_1);
2353   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2354   ret(0);
2355 
2356   bind(E);
2357 }
2358 
2359 void MacroAssembler::call_VM(Register oop_result,
2360                              address entry_point,
2361                              Register arg_1,
2362                              Register arg_2,
2363                              Register arg_3,
2364                              bool check_exceptions) {
2365   Label C, E;
2366   call(C, relocInfo::none);
2367   jmp(E);
2368 
2369   bind(C);
2370 
2371   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2372   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2373   pass_arg3(this, arg_3);
2374 
2375   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2376   pass_arg2(this, arg_2);
2377 
2378   pass_arg1(this, arg_1);
2379   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2380   ret(0);
2381 
2382   bind(E);
2383 }
2384 
2385 void MacroAssembler::call_VM(Register oop_result,
2386                              Register last_java_sp,
2387                              address entry_point,
2388                              int number_of_arguments,
2389                              bool check_exceptions) {
2390   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2391   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2392 }
2393 
2394 void MacroAssembler::call_VM(Register oop_result,
2395                              Register last_java_sp,
2396                              address entry_point,
2397                              Register arg_1,
2398                              bool check_exceptions) {
2399   pass_arg1(this, arg_1);
2400   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2401 }
2402 
2403 void MacroAssembler::call_VM(Register oop_result,
2404                              Register last_java_sp,
2405                              address entry_point,
2406                              Register arg_1,
2407                              Register arg_2,
2408                              bool check_exceptions) {
2409 
2410   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2411   pass_arg2(this, arg_2);
2412   pass_arg1(this, arg_1);
2413   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2414 }
2415 
2416 void MacroAssembler::call_VM(Register oop_result,
2417                              Register last_java_sp,
2418                              address entry_point,
2419                              Register arg_1,
2420                              Register arg_2,
2421                              Register arg_3,
2422                              bool check_exceptions) {
2423   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2424   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2425   pass_arg3(this, arg_3);
2426   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2427   pass_arg2(this, arg_2);
2428   pass_arg1(this, arg_1);
2429   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2430 }
2431 
2432 void MacroAssembler::super_call_VM(Register oop_result,
2433                                    Register last_java_sp,
2434                                    address entry_point,
2435                                    int number_of_arguments,
2436                                    bool check_exceptions) {
2437   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2438   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2439 }
2440 
2441 void MacroAssembler::super_call_VM(Register oop_result,
2442                                    Register last_java_sp,
2443                                    address entry_point,
2444                                    Register arg_1,
2445                                    bool check_exceptions) {
2446   pass_arg1(this, arg_1);
2447   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2448 }
2449 
2450 void MacroAssembler::super_call_VM(Register oop_result,
2451                                    Register last_java_sp,
2452                                    address entry_point,
2453                                    Register arg_1,
2454                                    Register arg_2,
2455                                    bool check_exceptions) {
2456 
2457   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2458   pass_arg2(this, arg_2);
2459   pass_arg1(this, arg_1);
2460   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2461 }
2462 
2463 void MacroAssembler::super_call_VM(Register oop_result,
2464                                    Register last_java_sp,
2465                                    address entry_point,
2466                                    Register arg_1,
2467                                    Register arg_2,
2468                                    Register arg_3,
2469                                    bool check_exceptions) {
2470   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2471   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2472   pass_arg3(this, arg_3);
2473   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2474   pass_arg2(this, arg_2);
2475   pass_arg1(this, arg_1);
2476   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2477 }
2478 
2479 void MacroAssembler::call_VM_base(Register oop_result,
2480                                   Register java_thread,
2481                                   Register last_java_sp,
2482                                   address  entry_point,
2483                                   int      number_of_arguments,
2484                                   bool     check_exceptions) {
2485   // determine java_thread register
2486   if (!java_thread->is_valid()) {
2487 #ifdef _LP64
2488     java_thread = r15_thread;
2489 #else
2490     java_thread = rdi;
2491     get_thread(java_thread);
2492 #endif // LP64
2493   }
2494   // determine last_java_sp register
2495   if (!last_java_sp->is_valid()) {
2496     last_java_sp = rsp;
2497   }
2498   // debugging support
2499   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2500   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2501 #ifdef ASSERT
2502   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2503   // r12 is the heapbase.
2504   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2505 #endif // ASSERT
2506 
2507   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2508   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2509 
2510   // push java thread (becomes first argument of C function)
2511 
2512   NOT_LP64(push(java_thread); number_of_arguments++);
2513   LP64_ONLY(mov(c_rarg0, r15_thread));
2514 
2515   // set last Java frame before call
2516   assert(last_java_sp != rbp, "can't use ebp/rbp");
2517 
2518   // Only interpreter should have to set fp
2519   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2520 
2521   // do the call, remove parameters
2522   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2523 
2524   // restore the thread (cannot use the pushed argument since arguments
2525   // may be overwritten by C code generated by an optimizing compiler);
2526   // however can use the register value directly if it is callee saved.
2527   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2528     // rdi & rsi (also r15) are callee saved -> nothing to do
2529 #ifdef ASSERT
2530     guarantee(java_thread != rax, "change this code");
2531     push(rax);
2532     { Label L;
2533       get_thread(rax);
2534       cmpptr(java_thread, rax);
2535       jcc(Assembler::equal, L);
2536       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2537       bind(L);
2538     }
2539     pop(rax);
2540 #endif
2541   } else {
2542     get_thread(java_thread);
2543   }
2544   // reset last Java frame
2545   // Only interpreter should have to clear fp
2546   reset_last_Java_frame(java_thread, true);
2547 
2548    // C++ interp handles this in the interpreter
2549   check_and_handle_popframe(java_thread);
2550   check_and_handle_earlyret(java_thread);
2551 
2552   if (check_exceptions) {
2553     // check for pending exceptions (java_thread is set upon return)
2554     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2555 #ifndef _LP64
2556     jump_cc(Assembler::notEqual,
2557             RuntimeAddress(StubRoutines::forward_exception_entry()));
2558 #else
2559     // This used to conditionally jump to forward_exception however it is
2560     // possible if we relocate that the branch will not reach. So we must jump
2561     // around so we can always reach
2562 
2563     Label ok;
2564     jcc(Assembler::equal, ok);
2565     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2566     bind(ok);
2567 #endif // LP64
2568   }
2569 
2570   // get oop result if there is one and reset the value in the thread
2571   if (oop_result->is_valid()) {
2572     get_vm_result(oop_result, java_thread);
2573   }
2574 }
2575 
2576 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2577 
2578   // Calculate the value for last_Java_sp
2579   // somewhat subtle. call_VM does an intermediate call
2580   // which places a return address on the stack just under the
2581   // stack pointer as the user finsihed with it. This allows
2582   // use to retrieve last_Java_pc from last_Java_sp[-1].
2583   // On 32bit we then have to push additional args on the stack to accomplish
2584   // the actual requested call. On 64bit call_VM only can use register args
2585   // so the only extra space is the return address that call_VM created.
2586   // This hopefully explains the calculations here.
2587 
2588 #ifdef _LP64
2589   // We've pushed one address, correct last_Java_sp
2590   lea(rax, Address(rsp, wordSize));
2591 #else
2592   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2593 #endif // LP64
2594 
2595   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2596 
2597 }
2598 
2599 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2600 void MacroAssembler::call_VM_leaf0(address entry_point) {
2601   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2602 }
2603 
2604 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2605   call_VM_leaf_base(entry_point, number_of_arguments);
2606 }
2607 
2608 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2609   pass_arg0(this, arg_0);
2610   call_VM_leaf(entry_point, 1);
2611 }
2612 
2613 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2614 
2615   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2616   pass_arg1(this, arg_1);
2617   pass_arg0(this, arg_0);
2618   call_VM_leaf(entry_point, 2);
2619 }
2620 
2621 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2622   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2623   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2624   pass_arg2(this, arg_2);
2625   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2626   pass_arg1(this, arg_1);
2627   pass_arg0(this, arg_0);
2628   call_VM_leaf(entry_point, 3);
2629 }
2630 
2631 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2632   pass_arg0(this, arg_0);
2633   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2634 }
2635 
2636 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2637 
2638   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2639   pass_arg1(this, arg_1);
2640   pass_arg0(this, arg_0);
2641   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2642 }
2643 
2644 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2645   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2646   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2647   pass_arg2(this, arg_2);
2648   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2649   pass_arg1(this, arg_1);
2650   pass_arg0(this, arg_0);
2651   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2652 }
2653 
2654 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2655   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2656   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2657   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2658   pass_arg3(this, arg_3);
2659   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2660   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2661   pass_arg2(this, arg_2);
2662   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2663   pass_arg1(this, arg_1);
2664   pass_arg0(this, arg_0);
2665   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2666 }
2667 
2668 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2669   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2670   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2671   verify_oop(oop_result, "broken oop in call_VM_base");
2672 }
2673 
2674 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2675   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2676   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2677 }
2678 
2679 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2680 }
2681 
2682 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2683 }
2684 
2685 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2686   if (reachable(src1)) {
2687     cmpl(as_Address(src1), imm);
2688   } else {
2689     lea(rscratch1, src1);
2690     cmpl(Address(rscratch1, 0), imm);
2691   }
2692 }
2693 
2694 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2695   assert(!src2.is_lval(), "use cmpptr");
2696   if (reachable(src2)) {
2697     cmpl(src1, as_Address(src2));
2698   } else {
2699     lea(rscratch1, src2);
2700     cmpl(src1, Address(rscratch1, 0));
2701   }
2702 }
2703 
2704 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2705   Assembler::cmpl(src1, imm);
2706 }
2707 
2708 void MacroAssembler::cmp32(Register src1, Address src2) {
2709   Assembler::cmpl(src1, src2);
2710 }
2711 
2712 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2713   ucomisd(opr1, opr2);
2714 
2715   Label L;
2716   if (unordered_is_less) {
2717     movl(dst, -1);
2718     jcc(Assembler::parity, L);
2719     jcc(Assembler::below , L);
2720     movl(dst, 0);
2721     jcc(Assembler::equal , L);
2722     increment(dst);
2723   } else { // unordered is greater
2724     movl(dst, 1);
2725     jcc(Assembler::parity, L);
2726     jcc(Assembler::above , L);
2727     movl(dst, 0);
2728     jcc(Assembler::equal , L);
2729     decrementl(dst);
2730   }
2731   bind(L);
2732 }
2733 
2734 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2735   ucomiss(opr1, opr2);
2736 
2737   Label L;
2738   if (unordered_is_less) {
2739     movl(dst, -1);
2740     jcc(Assembler::parity, L);
2741     jcc(Assembler::below , L);
2742     movl(dst, 0);
2743     jcc(Assembler::equal , L);
2744     increment(dst);
2745   } else { // unordered is greater
2746     movl(dst, 1);
2747     jcc(Assembler::parity, L);
2748     jcc(Assembler::above , L);
2749     movl(dst, 0);
2750     jcc(Assembler::equal , L);
2751     decrementl(dst);
2752   }
2753   bind(L);
2754 }
2755 
2756 
2757 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2758   if (reachable(src1)) {
2759     cmpb(as_Address(src1), imm);
2760   } else {
2761     lea(rscratch1, src1);
2762     cmpb(Address(rscratch1, 0), imm);
2763   }
2764 }
2765 
2766 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2767 #ifdef _LP64
2768   if (src2.is_lval()) {
2769     movptr(rscratch1, src2);
2770     Assembler::cmpq(src1, rscratch1);
2771   } else if (reachable(src2)) {
2772     cmpq(src1, as_Address(src2));
2773   } else {
2774     lea(rscratch1, src2);
2775     Assembler::cmpq(src1, Address(rscratch1, 0));
2776   }
2777 #else
2778   if (src2.is_lval()) {
2779     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2780   } else {
2781     cmpl(src1, as_Address(src2));
2782   }
2783 #endif // _LP64
2784 }
2785 
2786 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2787   assert(src2.is_lval(), "not a mem-mem compare");
2788 #ifdef _LP64
2789   // moves src2's literal address
2790   movptr(rscratch1, src2);
2791   Assembler::cmpq(src1, rscratch1);
2792 #else
2793   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2794 #endif // _LP64
2795 }
2796 
2797 void MacroAssembler::cmpoop(Register src1, Register src2) {
2798   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2799   bs->obj_equals(this, src1, src2);
2800 }
2801 
2802 void MacroAssembler::cmpoop(Register src1, Address src2) {
2803   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2804   bs->obj_equals(this, src1, src2);
2805 }
2806 
2807 #ifdef _LP64
2808 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2809   movoop(rscratch1, src2);
2810   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2811   bs->obj_equals(this, src1, rscratch1);
2812 }
2813 #endif
2814 
2815 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2816   if (reachable(adr)) {
2817     if (os::is_MP())
2818       lock();
2819     cmpxchgptr(reg, as_Address(adr));
2820   } else {
2821     lea(rscratch1, adr);
2822     if (os::is_MP())
2823       lock();
2824     cmpxchgptr(reg, Address(rscratch1, 0));
2825   }
2826 }
2827 
2828 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2829   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2830 }
2831 
2832 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2833   if (reachable(src)) {
2834     Assembler::comisd(dst, as_Address(src));
2835   } else {
2836     lea(rscratch1, src);
2837     Assembler::comisd(dst, Address(rscratch1, 0));
2838   }
2839 }
2840 
2841 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2842   if (reachable(src)) {
2843     Assembler::comiss(dst, as_Address(src));
2844   } else {
2845     lea(rscratch1, src);
2846     Assembler::comiss(dst, Address(rscratch1, 0));
2847   }
2848 }
2849 
2850 
2851 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2852   Condition negated_cond = negate_condition(cond);
2853   Label L;
2854   jcc(negated_cond, L);
2855   pushf(); // Preserve flags
2856   atomic_incl(counter_addr);
2857   popf();
2858   bind(L);
2859 }
2860 
2861 int MacroAssembler::corrected_idivl(Register reg) {
2862   // Full implementation of Java idiv and irem; checks for
2863   // special case as described in JVM spec., p.243 & p.271.
2864   // The function returns the (pc) offset of the idivl
2865   // instruction - may be needed for implicit exceptions.
2866   //
2867   //         normal case                           special case
2868   //
2869   // input : rax,: dividend                         min_int
2870   //         reg: divisor   (may not be rax,/rdx)   -1
2871   //
2872   // output: rax,: quotient  (= rax, idiv reg)       min_int
2873   //         rdx: remainder (= rax, irem reg)       0
2874   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2875   const int min_int = 0x80000000;
2876   Label normal_case, special_case;
2877 
2878   // check for special case
2879   cmpl(rax, min_int);
2880   jcc(Assembler::notEqual, normal_case);
2881   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2882   cmpl(reg, -1);
2883   jcc(Assembler::equal, special_case);
2884 
2885   // handle normal case
2886   bind(normal_case);
2887   cdql();
2888   int idivl_offset = offset();
2889   idivl(reg);
2890 
2891   // normal and special case exit
2892   bind(special_case);
2893 
2894   return idivl_offset;
2895 }
2896 
2897 
2898 
2899 void MacroAssembler::decrementl(Register reg, int value) {
2900   if (value == min_jint) {subl(reg, value) ; return; }
2901   if (value <  0) { incrementl(reg, -value); return; }
2902   if (value == 0) {                        ; return; }
2903   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2904   /* else */      { subl(reg, value)       ; return; }
2905 }
2906 
2907 void MacroAssembler::decrementl(Address dst, int value) {
2908   if (value == min_jint) {subl(dst, value) ; return; }
2909   if (value <  0) { incrementl(dst, -value); return; }
2910   if (value == 0) {                        ; return; }
2911   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2912   /* else */      { subl(dst, value)       ; return; }
2913 }
2914 
2915 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2916   assert (shift_value > 0, "illegal shift value");
2917   Label _is_positive;
2918   testl (reg, reg);
2919   jcc (Assembler::positive, _is_positive);
2920   int offset = (1 << shift_value) - 1 ;
2921 
2922   if (offset == 1) {
2923     incrementl(reg);
2924   } else {
2925     addl(reg, offset);
2926   }
2927 
2928   bind (_is_positive);
2929   sarl(reg, shift_value);
2930 }
2931 
2932 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2933   if (reachable(src)) {
2934     Assembler::divsd(dst, as_Address(src));
2935   } else {
2936     lea(rscratch1, src);
2937     Assembler::divsd(dst, Address(rscratch1, 0));
2938   }
2939 }
2940 
2941 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2942   if (reachable(src)) {
2943     Assembler::divss(dst, as_Address(src));
2944   } else {
2945     lea(rscratch1, src);
2946     Assembler::divss(dst, Address(rscratch1, 0));
2947   }
2948 }
2949 
2950 // !defined(COMPILER2) is because of stupid core builds
2951 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2952 void MacroAssembler::empty_FPU_stack() {
2953   if (VM_Version::supports_mmx()) {
2954     emms();
2955   } else {
2956     for (int i = 8; i-- > 0; ) ffree(i);
2957   }
2958 }
2959 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2960 
2961 
2962 void MacroAssembler::enter() {
2963   push(rbp);
2964   mov(rbp, rsp);
2965 }
2966 
2967 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2968 void MacroAssembler::fat_nop() {
2969   if (UseAddressNop) {
2970     addr_nop_5();
2971   } else {
2972     emit_int8(0x26); // es:
2973     emit_int8(0x2e); // cs:
2974     emit_int8(0x64); // fs:
2975     emit_int8(0x65); // gs:
2976     emit_int8((unsigned char)0x90);
2977   }
2978 }
2979 
2980 void MacroAssembler::fcmp(Register tmp) {
2981   fcmp(tmp, 1, true, true);
2982 }
2983 
2984 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2985   assert(!pop_right || pop_left, "usage error");
2986   if (VM_Version::supports_cmov()) {
2987     assert(tmp == noreg, "unneeded temp");
2988     if (pop_left) {
2989       fucomip(index);
2990     } else {
2991       fucomi(index);
2992     }
2993     if (pop_right) {
2994       fpop();
2995     }
2996   } else {
2997     assert(tmp != noreg, "need temp");
2998     if (pop_left) {
2999       if (pop_right) {
3000         fcompp();
3001       } else {
3002         fcomp(index);
3003       }
3004     } else {
3005       fcom(index);
3006     }
3007     // convert FPU condition into eflags condition via rax,
3008     save_rax(tmp);
3009     fwait(); fnstsw_ax();
3010     sahf();
3011     restore_rax(tmp);
3012   }
3013   // condition codes set as follows:
3014   //
3015   // CF (corresponds to C0) if x < y
3016   // PF (corresponds to C2) if unordered
3017   // ZF (corresponds to C3) if x = y
3018 }
3019 
3020 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3021   fcmp2int(dst, unordered_is_less, 1, true, true);
3022 }
3023 
3024 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3025   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3026   Label L;
3027   if (unordered_is_less) {
3028     movl(dst, -1);
3029     jcc(Assembler::parity, L);
3030     jcc(Assembler::below , L);
3031     movl(dst, 0);
3032     jcc(Assembler::equal , L);
3033     increment(dst);
3034   } else { // unordered is greater
3035     movl(dst, 1);
3036     jcc(Assembler::parity, L);
3037     jcc(Assembler::above , L);
3038     movl(dst, 0);
3039     jcc(Assembler::equal , L);
3040     decrementl(dst);
3041   }
3042   bind(L);
3043 }
3044 
3045 void MacroAssembler::fld_d(AddressLiteral src) {
3046   fld_d(as_Address(src));
3047 }
3048 
3049 void MacroAssembler::fld_s(AddressLiteral src) {
3050   fld_s(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fld_x(AddressLiteral src) {
3054   Assembler::fld_x(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fldcw(AddressLiteral src) {
3058   Assembler::fldcw(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3062   if (reachable(src)) {
3063     Assembler::mulpd(dst, as_Address(src));
3064   } else {
3065     lea(rscratch1, src);
3066     Assembler::mulpd(dst, Address(rscratch1, 0));
3067   }
3068 }
3069 
3070 void MacroAssembler::increase_precision() {
3071   subptr(rsp, BytesPerWord);
3072   fnstcw(Address(rsp, 0));
3073   movl(rax, Address(rsp, 0));
3074   orl(rax, 0x300);
3075   push(rax);
3076   fldcw(Address(rsp, 0));
3077   pop(rax);
3078 }
3079 
3080 void MacroAssembler::restore_precision() {
3081   fldcw(Address(rsp, 0));
3082   addptr(rsp, BytesPerWord);
3083 }
3084 
3085 void MacroAssembler::fpop() {
3086   ffree();
3087   fincstp();
3088 }
3089 
3090 void MacroAssembler::load_float(Address src) {
3091   if (UseSSE >= 1) {
3092     movflt(xmm0, src);
3093   } else {
3094     LP64_ONLY(ShouldNotReachHere());
3095     NOT_LP64(fld_s(src));
3096   }
3097 }
3098 
3099 void MacroAssembler::store_float(Address dst) {
3100   if (UseSSE >= 1) {
3101     movflt(dst, xmm0);
3102   } else {
3103     LP64_ONLY(ShouldNotReachHere());
3104     NOT_LP64(fstp_s(dst));
3105   }
3106 }
3107 
3108 void MacroAssembler::load_double(Address src) {
3109   if (UseSSE >= 2) {
3110     movdbl(xmm0, src);
3111   } else {
3112     LP64_ONLY(ShouldNotReachHere());
3113     NOT_LP64(fld_d(src));
3114   }
3115 }
3116 
3117 void MacroAssembler::store_double(Address dst) {
3118   if (UseSSE >= 2) {
3119     movdbl(dst, xmm0);
3120   } else {
3121     LP64_ONLY(ShouldNotReachHere());
3122     NOT_LP64(fstp_d(dst));
3123   }
3124 }
3125 
3126 void MacroAssembler::fremr(Register tmp) {
3127   save_rax(tmp);
3128   { Label L;
3129     bind(L);
3130     fprem();
3131     fwait(); fnstsw_ax();
3132 #ifdef _LP64
3133     testl(rax, 0x400);
3134     jcc(Assembler::notEqual, L);
3135 #else
3136     sahf();
3137     jcc(Assembler::parity, L);
3138 #endif // _LP64
3139   }
3140   restore_rax(tmp);
3141   // Result is in ST0.
3142   // Note: fxch & fpop to get rid of ST1
3143   // (otherwise FPU stack could overflow eventually)
3144   fxch(1);
3145   fpop();
3146 }
3147 
3148 // dst = c = a * b + c
3149 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3150   Assembler::vfmadd231sd(c, a, b);
3151   if (dst != c) {
3152     movdbl(dst, c);
3153   }
3154 }
3155 
3156 // dst = c = a * b + c
3157 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3158   Assembler::vfmadd231ss(c, a, b);
3159   if (dst != c) {
3160     movflt(dst, c);
3161   }
3162 }
3163 
3164 // dst = c = a * b + c
3165 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3166   Assembler::vfmadd231pd(c, a, b, vector_len);
3167   if (dst != c) {
3168     vmovdqu(dst, c);
3169   }
3170 }
3171 
3172 // dst = c = a * b + c
3173 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
3174   Assembler::vfmadd231ps(c, a, b, vector_len);
3175   if (dst != c) {
3176     vmovdqu(dst, c);
3177   }
3178 }
3179 
3180 // dst = c = a * b + c
3181 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3182   Assembler::vfmadd231pd(c, a, b, vector_len);
3183   if (dst != c) {
3184     vmovdqu(dst, c);
3185   }
3186 }
3187 
3188 // dst = c = a * b + c
3189 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
3190   Assembler::vfmadd231ps(c, a, b, vector_len);
3191   if (dst != c) {
3192     vmovdqu(dst, c);
3193   }
3194 }
3195 
3196 void MacroAssembler::incrementl(AddressLiteral dst) {
3197   if (reachable(dst)) {
3198     incrementl(as_Address(dst));
3199   } else {
3200     lea(rscratch1, dst);
3201     incrementl(Address(rscratch1, 0));
3202   }
3203 }
3204 
3205 void MacroAssembler::incrementl(ArrayAddress dst) {
3206   incrementl(as_Address(dst));
3207 }
3208 
3209 void MacroAssembler::incrementl(Register reg, int value) {
3210   if (value == min_jint) {addl(reg, value) ; return; }
3211   if (value <  0) { decrementl(reg, -value); return; }
3212   if (value == 0) {                        ; return; }
3213   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3214   /* else */      { addl(reg, value)       ; return; }
3215 }
3216 
3217 void MacroAssembler::incrementl(Address dst, int value) {
3218   if (value == min_jint) {addl(dst, value) ; return; }
3219   if (value <  0) { decrementl(dst, -value); return; }
3220   if (value == 0) {                        ; return; }
3221   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3222   /* else */      { addl(dst, value)       ; return; }
3223 }
3224 
3225 void MacroAssembler::jump(AddressLiteral dst) {
3226   if (reachable(dst)) {
3227     jmp_literal(dst.target(), dst.rspec());
3228   } else {
3229     lea(rscratch1, dst);
3230     jmp(rscratch1);
3231   }
3232 }
3233 
3234 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3235   if (reachable(dst)) {
3236     InstructionMark im(this);
3237     relocate(dst.reloc());
3238     const int short_size = 2;
3239     const int long_size = 6;
3240     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3241     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3242       // 0111 tttn #8-bit disp
3243       emit_int8(0x70 | cc);
3244       emit_int8((offs - short_size) & 0xFF);
3245     } else {
3246       // 0000 1111 1000 tttn #32-bit disp
3247       emit_int8(0x0F);
3248       emit_int8((unsigned char)(0x80 | cc));
3249       emit_int32(offs - long_size);
3250     }
3251   } else {
3252 #ifdef ASSERT
3253     warning("reversing conditional branch");
3254 #endif /* ASSERT */
3255     Label skip;
3256     jccb(reverse[cc], skip);
3257     lea(rscratch1, dst);
3258     Assembler::jmp(rscratch1);
3259     bind(skip);
3260   }
3261 }
3262 
3263 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3264   if (reachable(src)) {
3265     Assembler::ldmxcsr(as_Address(src));
3266   } else {
3267     lea(rscratch1, src);
3268     Assembler::ldmxcsr(Address(rscratch1, 0));
3269   }
3270 }
3271 
3272 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3273   int off;
3274   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3275     off = offset();
3276     movsbl(dst, src); // movsxb
3277   } else {
3278     off = load_unsigned_byte(dst, src);
3279     shll(dst, 24);
3280     sarl(dst, 24);
3281   }
3282   return off;
3283 }
3284 
3285 // Note: load_signed_short used to be called load_signed_word.
3286 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3287 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3288 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3289 int MacroAssembler::load_signed_short(Register dst, Address src) {
3290   int off;
3291   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3292     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3293     // version but this is what 64bit has always done. This seems to imply
3294     // that users are only using 32bits worth.
3295     off = offset();
3296     movswl(dst, src); // movsxw
3297   } else {
3298     off = load_unsigned_short(dst, src);
3299     shll(dst, 16);
3300     sarl(dst, 16);
3301   }
3302   return off;
3303 }
3304 
3305 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3306   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3307   // and "3.9 Partial Register Penalties", p. 22).
3308   int off;
3309   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3310     off = offset();
3311     movzbl(dst, src); // movzxb
3312   } else {
3313     xorl(dst, dst);
3314     off = offset();
3315     movb(dst, src);
3316   }
3317   return off;
3318 }
3319 
3320 // Note: load_unsigned_short used to be called load_unsigned_word.
3321 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3322   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3323   // and "3.9 Partial Register Penalties", p. 22).
3324   int off;
3325   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3326     off = offset();
3327     movzwl(dst, src); // movzxw
3328   } else {
3329     xorl(dst, dst);
3330     off = offset();
3331     movw(dst, src);
3332   }
3333   return off;
3334 }
3335 
3336 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3337   switch (size_in_bytes) {
3338 #ifndef _LP64
3339   case  8:
3340     assert(dst2 != noreg, "second dest register required");
3341     movl(dst,  src);
3342     movl(dst2, src.plus_disp(BytesPerInt));
3343     break;
3344 #else
3345   case  8:  movq(dst, src); break;
3346 #endif
3347   case  4:  movl(dst, src); break;
3348   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3349   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3350   default:  ShouldNotReachHere();
3351   }
3352 }
3353 
3354 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3355   switch (size_in_bytes) {
3356 #ifndef _LP64
3357   case  8:
3358     assert(src2 != noreg, "second source register required");
3359     movl(dst,                        src);
3360     movl(dst.plus_disp(BytesPerInt), src2);
3361     break;
3362 #else
3363   case  8:  movq(dst, src); break;
3364 #endif
3365   case  4:  movl(dst, src); break;
3366   case  2:  movw(dst, src); break;
3367   case  1:  movb(dst, src); break;
3368   default:  ShouldNotReachHere();
3369   }
3370 }
3371 
3372 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3373   if (reachable(dst)) {
3374     movl(as_Address(dst), src);
3375   } else {
3376     lea(rscratch1, dst);
3377     movl(Address(rscratch1, 0), src);
3378   }
3379 }
3380 
3381 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3382   if (reachable(src)) {
3383     movl(dst, as_Address(src));
3384   } else {
3385     lea(rscratch1, src);
3386     movl(dst, Address(rscratch1, 0));
3387   }
3388 }
3389 
3390 // C++ bool manipulation
3391 
3392 void MacroAssembler::movbool(Register dst, Address src) {
3393   if(sizeof(bool) == 1)
3394     movb(dst, src);
3395   else if(sizeof(bool) == 2)
3396     movw(dst, src);
3397   else if(sizeof(bool) == 4)
3398     movl(dst, src);
3399   else
3400     // unsupported
3401     ShouldNotReachHere();
3402 }
3403 
3404 void MacroAssembler::movbool(Address dst, bool boolconst) {
3405   if(sizeof(bool) == 1)
3406     movb(dst, (int) boolconst);
3407   else if(sizeof(bool) == 2)
3408     movw(dst, (int) boolconst);
3409   else if(sizeof(bool) == 4)
3410     movl(dst, (int) boolconst);
3411   else
3412     // unsupported
3413     ShouldNotReachHere();
3414 }
3415 
3416 void MacroAssembler::movbool(Address dst, Register src) {
3417   if(sizeof(bool) == 1)
3418     movb(dst, src);
3419   else if(sizeof(bool) == 2)
3420     movw(dst, src);
3421   else if(sizeof(bool) == 4)
3422     movl(dst, src);
3423   else
3424     // unsupported
3425     ShouldNotReachHere();
3426 }
3427 
3428 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3429   movb(as_Address(dst), src);
3430 }
3431 
3432 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3433   if (reachable(src)) {
3434     movdl(dst, as_Address(src));
3435   } else {
3436     lea(rscratch1, src);
3437     movdl(dst, Address(rscratch1, 0));
3438   }
3439 }
3440 
3441 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3442   if (reachable(src)) {
3443     movq(dst, as_Address(src));
3444   } else {
3445     lea(rscratch1, src);
3446     movq(dst, Address(rscratch1, 0));
3447   }
3448 }
3449 
3450 void MacroAssembler::setvectmask(Register dst, Register src) {
3451   Assembler::movl(dst, 1);
3452   Assembler::shlxl(dst, dst, src);
3453   Assembler::decl(dst);
3454   Assembler::kmovdl(k1, dst);
3455   Assembler::movl(dst, src);
3456 }
3457 
3458 void MacroAssembler::restorevectmask() {
3459   Assembler::knotwl(k1, k0);
3460 }
3461 
3462 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3463   if (reachable(src)) {
3464     if (UseXmmLoadAndClearUpper) {
3465       movsd (dst, as_Address(src));
3466     } else {
3467       movlpd(dst, as_Address(src));
3468     }
3469   } else {
3470     lea(rscratch1, src);
3471     if (UseXmmLoadAndClearUpper) {
3472       movsd (dst, Address(rscratch1, 0));
3473     } else {
3474       movlpd(dst, Address(rscratch1, 0));
3475     }
3476   }
3477 }
3478 
3479 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3480   if (reachable(src)) {
3481     movss(dst, as_Address(src));
3482   } else {
3483     lea(rscratch1, src);
3484     movss(dst, Address(rscratch1, 0));
3485   }
3486 }
3487 
3488 void MacroAssembler::movptr(Register dst, Register src) {
3489   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3490 }
3491 
3492 void MacroAssembler::movptr(Register dst, Address src) {
3493   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3494 }
3495 
3496 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3497 void MacroAssembler::movptr(Register dst, intptr_t src) {
3498   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3499 }
3500 
3501 void MacroAssembler::movptr(Address dst, Register src) {
3502   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3503 }
3504 
3505 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3506     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3507     Assembler::movdqu(dst, src);
3508 }
3509 
3510 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3511     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3512     Assembler::movdqu(dst, src);
3513 }
3514 
3515 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3516     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3517     Assembler::movdqu(dst, src);
3518 }
3519 
3520 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3521   if (reachable(src)) {
3522     movdqu(dst, as_Address(src));
3523   } else {
3524     lea(scratchReg, src);
3525     movdqu(dst, Address(scratchReg, 0));
3526   }
3527 }
3528 
3529 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3530     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3531     Assembler::vmovdqu(dst, src);
3532 }
3533 
3534 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3535     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3536     Assembler::vmovdqu(dst, src);
3537 }
3538 
3539 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3540     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3541     Assembler::vmovdqu(dst, src);
3542 }
3543 
3544 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3545   if (reachable(src)) {
3546     vmovdqu(dst, as_Address(src));
3547   }
3548   else {
3549     lea(rscratch1, src);
3550     vmovdqu(dst, Address(rscratch1, 0));
3551   }
3552 }
3553 
3554 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3555   if (reachable(src)) {
3556     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3557   } else {
3558     lea(rscratch, src);
3559     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3560   }
3561 }
3562 
3563 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3564   if (reachable(src)) {
3565     Assembler::movdqa(dst, as_Address(src));
3566   } else {
3567     lea(rscratch1, src);
3568     Assembler::movdqa(dst, Address(rscratch1, 0));
3569   }
3570 }
3571 
3572 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3573   if (reachable(src)) {
3574     Assembler::movsd(dst, as_Address(src));
3575   } else {
3576     lea(rscratch1, src);
3577     Assembler::movsd(dst, Address(rscratch1, 0));
3578   }
3579 }
3580 
3581 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3582   if (reachable(src)) {
3583     Assembler::movss(dst, as_Address(src));
3584   } else {
3585     lea(rscratch1, src);
3586     Assembler::movss(dst, Address(rscratch1, 0));
3587   }
3588 }
3589 
3590 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3591   if (reachable(src)) {
3592     Assembler::mulsd(dst, as_Address(src));
3593   } else {
3594     lea(rscratch1, src);
3595     Assembler::mulsd(dst, Address(rscratch1, 0));
3596   }
3597 }
3598 
3599 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3600   if (reachable(src)) {
3601     Assembler::mulss(dst, as_Address(src));
3602   } else {
3603     lea(rscratch1, src);
3604     Assembler::mulss(dst, Address(rscratch1, 0));
3605   }
3606 }
3607 
3608 void MacroAssembler::null_check(Register reg, int offset) {
3609   if (needs_explicit_null_check(offset)) {
3610     // provoke OS NULL exception if reg = NULL by
3611     // accessing M[reg] w/o changing any (non-CC) registers
3612     // NOTE: cmpl is plenty here to provoke a segv
3613     cmpptr(rax, Address(reg, 0));
3614     // Note: should probably use testl(rax, Address(reg, 0));
3615     //       may be shorter code (however, this version of
3616     //       testl needs to be implemented first)
3617   } else {
3618     // nothing to do, (later) access of M[reg + offset]
3619     // will provoke OS NULL exception if reg = NULL
3620   }
3621 }
3622 
3623 void MacroAssembler::os_breakpoint() {
3624   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3625   // (e.g., MSVC can't call ps() otherwise)
3626   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3627 }
3628 
3629 void MacroAssembler::unimplemented(const char* what) {
3630   const char* buf = NULL;
3631   {
3632     ResourceMark rm;
3633     stringStream ss;
3634     ss.print("unimplemented: %s", what);
3635     buf = code_string(ss.as_string());
3636   }
3637   stop(buf);
3638 }
3639 
3640 #ifdef _LP64
3641 #define XSTATE_BV 0x200
3642 #endif
3643 
3644 void MacroAssembler::pop_CPU_state() {
3645   pop_FPU_state();
3646   pop_IU_state();
3647 }
3648 
3649 void MacroAssembler::pop_FPU_state() {
3650 #ifndef _LP64
3651   frstor(Address(rsp, 0));
3652 #else
3653   fxrstor(Address(rsp, 0));
3654 #endif
3655   addptr(rsp, FPUStateSizeInWords * wordSize);
3656 }
3657 
3658 void MacroAssembler::pop_IU_state() {
3659   popa();
3660   LP64_ONLY(addq(rsp, 8));
3661   popf();
3662 }
3663 
3664 // Save Integer and Float state
3665 // Warning: Stack must be 16 byte aligned (64bit)
3666 void MacroAssembler::push_CPU_state() {
3667   push_IU_state();
3668   push_FPU_state();
3669 }
3670 
3671 void MacroAssembler::push_FPU_state() {
3672   subptr(rsp, FPUStateSizeInWords * wordSize);
3673 #ifndef _LP64
3674   fnsave(Address(rsp, 0));
3675   fwait();
3676 #else
3677   fxsave(Address(rsp, 0));
3678 #endif // LP64
3679 }
3680 
3681 void MacroAssembler::push_IU_state() {
3682   // Push flags first because pusha kills them
3683   pushf();
3684   // Make sure rsp stays 16-byte aligned
3685   LP64_ONLY(subq(rsp, 8));
3686   pusha();
3687 }
3688 
3689 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3690   if (!java_thread->is_valid()) {
3691     java_thread = rdi;
3692     get_thread(java_thread);
3693   }
3694   // we must set sp to zero to clear frame
3695   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3696   if (clear_fp) {
3697     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3698   }
3699 
3700   // Always clear the pc because it could have been set by make_walkable()
3701   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3702 
3703   vzeroupper();
3704 }
3705 
3706 void MacroAssembler::restore_rax(Register tmp) {
3707   if (tmp == noreg) pop(rax);
3708   else if (tmp != rax) mov(rax, tmp);
3709 }
3710 
3711 void MacroAssembler::round_to(Register reg, int modulus) {
3712   addptr(reg, modulus - 1);
3713   andptr(reg, -modulus);
3714 }
3715 
3716 void MacroAssembler::save_rax(Register tmp) {
3717   if (tmp == noreg) push(rax);
3718   else if (tmp != rax) mov(tmp, rax);
3719 }
3720 
3721 // Write serialization page so VM thread can do a pseudo remote membar.
3722 // We use the current thread pointer to calculate a thread specific
3723 // offset to write to within the page. This minimizes bus traffic
3724 // due to cache line collision.
3725 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3726   movl(tmp, thread);
3727   shrl(tmp, os::get_serialize_page_shift_count());
3728   andl(tmp, (os::vm_page_size() - sizeof(int)));
3729 
3730   Address index(noreg, tmp, Address::times_1);
3731   ExternalAddress page(os::get_memory_serialize_page());
3732 
3733   // Size of store must match masking code above
3734   movl(as_Address(ArrayAddress(page, index)), tmp);
3735 }
3736 
3737 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3738   if (SafepointMechanism::uses_thread_local_poll()) {
3739 #ifdef _LP64
3740     assert(thread_reg == r15_thread, "should be");
3741 #else
3742     if (thread_reg == noreg) {
3743       thread_reg = temp_reg;
3744       get_thread(thread_reg);
3745     }
3746 #endif
3747     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3748     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3749   } else {
3750     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3751         SafepointSynchronize::_not_synchronized);
3752     jcc(Assembler::notEqual, slow_path);
3753   }
3754 }
3755 
3756 // Calls to C land
3757 //
3758 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3759 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3760 // has to be reset to 0. This is required to allow proper stack traversal.
3761 void MacroAssembler::set_last_Java_frame(Register java_thread,
3762                                          Register last_java_sp,
3763                                          Register last_java_fp,
3764                                          address  last_java_pc) {
3765   vzeroupper();
3766   // determine java_thread register
3767   if (!java_thread->is_valid()) {
3768     java_thread = rdi;
3769     get_thread(java_thread);
3770   }
3771   // determine last_java_sp register
3772   if (!last_java_sp->is_valid()) {
3773     last_java_sp = rsp;
3774   }
3775 
3776   // last_java_fp is optional
3777 
3778   if (last_java_fp->is_valid()) {
3779     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3780   }
3781 
3782   // last_java_pc is optional
3783 
3784   if (last_java_pc != NULL) {
3785     lea(Address(java_thread,
3786                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3787         InternalAddress(last_java_pc));
3788 
3789   }
3790   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3791 }
3792 
3793 void MacroAssembler::shlptr(Register dst, int imm8) {
3794   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3795 }
3796 
3797 void MacroAssembler::shrptr(Register dst, int imm8) {
3798   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3799 }
3800 
3801 void MacroAssembler::sign_extend_byte(Register reg) {
3802   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3803     movsbl(reg, reg); // movsxb
3804   } else {
3805     shll(reg, 24);
3806     sarl(reg, 24);
3807   }
3808 }
3809 
3810 void MacroAssembler::sign_extend_short(Register reg) {
3811   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3812     movswl(reg, reg); // movsxw
3813   } else {
3814     shll(reg, 16);
3815     sarl(reg, 16);
3816   }
3817 }
3818 
3819 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3820   assert(reachable(src), "Address should be reachable");
3821   testl(dst, as_Address(src));
3822 }
3823 
3824 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3825   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3826   Assembler::pcmpeqb(dst, src);
3827 }
3828 
3829 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3830   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3831   Assembler::pcmpeqw(dst, src);
3832 }
3833 
3834 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3835   assert((dst->encoding() < 16),"XMM register should be 0-15");
3836   Assembler::pcmpestri(dst, src, imm8);
3837 }
3838 
3839 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3840   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3841   Assembler::pcmpestri(dst, src, imm8);
3842 }
3843 
3844 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3845   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3846   Assembler::pmovzxbw(dst, src);
3847 }
3848 
3849 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3850   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3851   Assembler::pmovzxbw(dst, src);
3852 }
3853 
3854 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3855   assert((src->encoding() < 16),"XMM register should be 0-15");
3856   Assembler::pmovmskb(dst, src);
3857 }
3858 
3859 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3860   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3861   Assembler::ptest(dst, src);
3862 }
3863 
3864 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3865   if (reachable(src)) {
3866     Assembler::sqrtsd(dst, as_Address(src));
3867   } else {
3868     lea(rscratch1, src);
3869     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3870   }
3871 }
3872 
3873 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3874   if (reachable(src)) {
3875     Assembler::sqrtss(dst, as_Address(src));
3876   } else {
3877     lea(rscratch1, src);
3878     Assembler::sqrtss(dst, Address(rscratch1, 0));
3879   }
3880 }
3881 
3882 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3883   if (reachable(src)) {
3884     Assembler::subsd(dst, as_Address(src));
3885   } else {
3886     lea(rscratch1, src);
3887     Assembler::subsd(dst, Address(rscratch1, 0));
3888   }
3889 }
3890 
3891 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3892   if (reachable(src)) {
3893     Assembler::subss(dst, as_Address(src));
3894   } else {
3895     lea(rscratch1, src);
3896     Assembler::subss(dst, Address(rscratch1, 0));
3897   }
3898 }
3899 
3900 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3901   if (reachable(src)) {
3902     Assembler::ucomisd(dst, as_Address(src));
3903   } else {
3904     lea(rscratch1, src);
3905     Assembler::ucomisd(dst, Address(rscratch1, 0));
3906   }
3907 }
3908 
3909 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3910   if (reachable(src)) {
3911     Assembler::ucomiss(dst, as_Address(src));
3912   } else {
3913     lea(rscratch1, src);
3914     Assembler::ucomiss(dst, Address(rscratch1, 0));
3915   }
3916 }
3917 
3918 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3919   // Used in sign-bit flipping with aligned address.
3920   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3921   if (reachable(src)) {
3922     Assembler::xorpd(dst, as_Address(src));
3923   } else {
3924     lea(rscratch1, src);
3925     Assembler::xorpd(dst, Address(rscratch1, 0));
3926   }
3927 }
3928 
3929 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3930   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3931     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3932   }
3933   else {
3934     Assembler::xorpd(dst, src);
3935   }
3936 }
3937 
3938 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3939   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3940     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3941   } else {
3942     Assembler::xorps(dst, src);
3943   }
3944 }
3945 
3946 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3947   // Used in sign-bit flipping with aligned address.
3948   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3949   if (reachable(src)) {
3950     Assembler::xorps(dst, as_Address(src));
3951   } else {
3952     lea(rscratch1, src);
3953     Assembler::xorps(dst, Address(rscratch1, 0));
3954   }
3955 }
3956 
3957 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3958   // Used in sign-bit flipping with aligned address.
3959   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3960   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3961   if (reachable(src)) {
3962     Assembler::pshufb(dst, as_Address(src));
3963   } else {
3964     lea(rscratch1, src);
3965     Assembler::pshufb(dst, Address(rscratch1, 0));
3966   }
3967 }
3968 
3969 // AVX 3-operands instructions
3970 
3971 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3972   if (reachable(src)) {
3973     vaddsd(dst, nds, as_Address(src));
3974   } else {
3975     lea(rscratch1, src);
3976     vaddsd(dst, nds, Address(rscratch1, 0));
3977   }
3978 }
3979 
3980 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3981   if (reachable(src)) {
3982     vaddss(dst, nds, as_Address(src));
3983   } else {
3984     lea(rscratch1, src);
3985     vaddss(dst, nds, Address(rscratch1, 0));
3986   }
3987 }
3988 
3989 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3990   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3991   vandps(dst, nds, negate_field, vector_len);
3992 }
3993 
3994 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3995   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3996   vandpd(dst, nds, negate_field, vector_len);
3997 }
3998 
3999 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4000   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4001   Assembler::vpaddb(dst, nds, src, vector_len);
4002 }
4003 
4004 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4005   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4006   Assembler::vpaddb(dst, nds, src, vector_len);
4007 }
4008 
4009 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4010   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4011   Assembler::vpaddw(dst, nds, src, vector_len);
4012 }
4013 
4014 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4015   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4016   Assembler::vpaddw(dst, nds, src, vector_len);
4017 }
4018 
4019 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4020   if (reachable(src)) {
4021     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4022   } else {
4023     lea(rscratch1, src);
4024     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4025   }
4026 }
4027 
4028 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
4029   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4030   Assembler::vpbroadcastw(dst, src, vector_len);
4031 }
4032 
4033 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4034   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4035   Assembler::vpcmpeqb(dst, nds, src, vector_len);
4036 }
4037 
4038 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4039   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4040   Assembler::vpcmpeqw(dst, nds, src, vector_len);
4041 }
4042 
4043 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4044   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4045   Assembler::vpmovzxbw(dst, src, vector_len);
4046 }
4047 
4048 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4049   assert((src->encoding() < 16),"XMM register should be 0-15");
4050   Assembler::vpmovmskb(dst, src);
4051 }
4052 
4053 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4054   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4055   Assembler::vpmullw(dst, nds, src, vector_len);
4056 }
4057 
4058 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4059   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4060   Assembler::vpmullw(dst, nds, src, vector_len);
4061 }
4062 
4063 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4064   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4065   Assembler::vpsubb(dst, nds, src, vector_len);
4066 }
4067 
4068 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4069   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4070   Assembler::vpsubb(dst, nds, src, vector_len);
4071 }
4072 
4073 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4074   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4075   Assembler::vpsubw(dst, nds, src, vector_len);
4076 }
4077 
4078 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4079   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4080   Assembler::vpsubw(dst, nds, src, vector_len);
4081 }
4082 
4083 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4084   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4085   Assembler::vpsraw(dst, nds, shift, vector_len);
4086 }
4087 
4088 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4089   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4090   Assembler::vpsraw(dst, nds, shift, vector_len);
4091 }
4092 
4093 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4094   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4095   Assembler::vpsrlw(dst, nds, shift, vector_len);
4096 }
4097 
4098 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4099   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4100   Assembler::vpsrlw(dst, nds, shift, vector_len);
4101 }
4102 
4103 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4104   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4105   Assembler::vpsllw(dst, nds, shift, vector_len);
4106 }
4107 
4108 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4109   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4110   Assembler::vpsllw(dst, nds, shift, vector_len);
4111 }
4112 
4113 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4114   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
4115   Assembler::vptest(dst, src);
4116 }
4117 
4118 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4119   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4120   Assembler::punpcklbw(dst, src);
4121 }
4122 
4123 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
4124   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
4125   Assembler::pshufd(dst, src, mode);
4126 }
4127 
4128 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4129   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
4130   Assembler::pshuflw(dst, src, mode);
4131 }
4132 
4133 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4134   if (reachable(src)) {
4135     vandpd(dst, nds, as_Address(src), vector_len);
4136   } else {
4137     lea(rscratch1, src);
4138     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4139   }
4140 }
4141 
4142 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4143   if (reachable(src)) {
4144     vandps(dst, nds, as_Address(src), vector_len);
4145   } else {
4146     lea(rscratch1, src);
4147     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4148   }
4149 }
4150 
4151 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4152   if (reachable(src)) {
4153     vdivsd(dst, nds, as_Address(src));
4154   } else {
4155     lea(rscratch1, src);
4156     vdivsd(dst, nds, Address(rscratch1, 0));
4157   }
4158 }
4159 
4160 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4161   if (reachable(src)) {
4162     vdivss(dst, nds, as_Address(src));
4163   } else {
4164     lea(rscratch1, src);
4165     vdivss(dst, nds, Address(rscratch1, 0));
4166   }
4167 }
4168 
4169 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4170   if (reachable(src)) {
4171     vmulsd(dst, nds, as_Address(src));
4172   } else {
4173     lea(rscratch1, src);
4174     vmulsd(dst, nds, Address(rscratch1, 0));
4175   }
4176 }
4177 
4178 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4179   if (reachable(src)) {
4180     vmulss(dst, nds, as_Address(src));
4181   } else {
4182     lea(rscratch1, src);
4183     vmulss(dst, nds, Address(rscratch1, 0));
4184   }
4185 }
4186 
4187 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4188   if (reachable(src)) {
4189     vsubsd(dst, nds, as_Address(src));
4190   } else {
4191     lea(rscratch1, src);
4192     vsubsd(dst, nds, Address(rscratch1, 0));
4193   }
4194 }
4195 
4196 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4197   if (reachable(src)) {
4198     vsubss(dst, nds, as_Address(src));
4199   } else {
4200     lea(rscratch1, src);
4201     vsubss(dst, nds, Address(rscratch1, 0));
4202   }
4203 }
4204 
4205 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4206   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4207   vxorps(dst, nds, src, Assembler::AVX_128bit);
4208 }
4209 
4210 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4211   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4212   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4213 }
4214 
4215 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4216   if (reachable(src)) {
4217     vxorpd(dst, nds, as_Address(src), vector_len);
4218   } else {
4219     lea(rscratch1, src);
4220     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
4221   }
4222 }
4223 
4224 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4225   if (reachable(src)) {
4226     vxorps(dst, nds, as_Address(src), vector_len);
4227   } else {
4228     lea(rscratch1, src);
4229     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
4230   }
4231 }
4232 
4233 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4234   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4235   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4236   // The inverted mask is sign-extended
4237   andptr(possibly_jweak, inverted_jweak_mask);
4238 }
4239 
4240 void MacroAssembler::resolve_jobject(Register value,
4241                                      Register thread,
4242                                      Register tmp) {
4243   assert_different_registers(value, thread, tmp);
4244   Label done, not_weak;
4245   testptr(value, value);
4246   jcc(Assembler::zero, done);                // Use NULL as-is.
4247   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4248   jcc(Assembler::zero, not_weak);
4249   // Resolve jweak.
4250   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4251                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4252   verify_oop(value);
4253   jmp(done);
4254   bind(not_weak);
4255   // Resolve (untagged) jobject.
4256   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4257   verify_oop(value);
4258   bind(done);
4259 }
4260 
4261 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4262   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4263 }
4264 
4265 // Force generation of a 4 byte immediate value even if it fits into 8bit
4266 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4267   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4268 }
4269 
4270 void MacroAssembler::subptr(Register dst, Register src) {
4271   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4272 }
4273 
4274 // C++ bool manipulation
4275 void MacroAssembler::testbool(Register dst) {
4276   if(sizeof(bool) == 1)
4277     testb(dst, 0xff);
4278   else if(sizeof(bool) == 2) {
4279     // testw implementation needed for two byte bools
4280     ShouldNotReachHere();
4281   } else if(sizeof(bool) == 4)
4282     testl(dst, dst);
4283   else
4284     // unsupported
4285     ShouldNotReachHere();
4286 }
4287 
4288 void MacroAssembler::testptr(Register dst, Register src) {
4289   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4290 }
4291 
4292 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4293 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4294                                    Register var_size_in_bytes,
4295                                    int con_size_in_bytes,
4296                                    Register t1,
4297                                    Register t2,
4298                                    Label& slow_case) {
4299   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4300   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4301 }
4302 
4303 // Defines obj, preserves var_size_in_bytes
4304 void MacroAssembler::eden_allocate(Register thread, Register obj,
4305                                    Register var_size_in_bytes,
4306                                    int con_size_in_bytes,
4307                                    Register t1,
4308                                    Label& slow_case) {
4309   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4310   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4311 }
4312 
4313 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
4314 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4315   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4316   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4317   Label done;
4318 
4319   testptr(length_in_bytes, length_in_bytes);
4320   jcc(Assembler::zero, done);
4321 
4322   // initialize topmost word, divide index by 2, check if odd and test if zero
4323   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4324 #ifdef ASSERT
4325   {
4326     Label L;
4327     testptr(length_in_bytes, BytesPerWord - 1);
4328     jcc(Assembler::zero, L);
4329     stop("length must be a multiple of BytesPerWord");
4330     bind(L);
4331   }
4332 #endif
4333   Register index = length_in_bytes;
4334   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4335   if (UseIncDec) {
4336     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4337   } else {
4338     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4339     shrptr(index, 1);
4340   }
4341 #ifndef _LP64
4342   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4343   {
4344     Label even;
4345     // note: if index was a multiple of 8, then it cannot
4346     //       be 0 now otherwise it must have been 0 before
4347     //       => if it is even, we don't need to check for 0 again
4348     jcc(Assembler::carryClear, even);
4349     // clear topmost word (no jump would be needed if conditional assignment worked here)
4350     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4351     // index could be 0 now, must check again
4352     jcc(Assembler::zero, done);
4353     bind(even);
4354   }
4355 #endif // !_LP64
4356   // initialize remaining object fields: index is a multiple of 2 now
4357   {
4358     Label loop;
4359     bind(loop);
4360     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4361     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4362     decrement(index);
4363     jcc(Assembler::notZero, loop);
4364   }
4365 
4366   bind(done);
4367 }
4368 
4369 // Look up the method for a megamorphic invokeinterface call.
4370 // The target method is determined by <intf_klass, itable_index>.
4371 // The receiver klass is in recv_klass.
4372 // On success, the result will be in method_result, and execution falls through.
4373 // On failure, execution transfers to the given label.
4374 void MacroAssembler::lookup_interface_method(Register recv_klass,
4375                                              Register intf_klass,
4376                                              RegisterOrConstant itable_index,
4377                                              Register method_result,
4378                                              Register scan_temp,
4379                                              Label& L_no_such_interface,
4380                                              bool return_method) {
4381   assert_different_registers(recv_klass, intf_klass, scan_temp);
4382   assert_different_registers(method_result, intf_klass, scan_temp);
4383   assert(recv_klass != method_result || !return_method,
4384          "recv_klass can be destroyed when method isn't needed");
4385 
4386   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4387          "caller must use same register for non-constant itable index as for method");
4388 
4389   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4390   int vtable_base = in_bytes(Klass::vtable_start_offset());
4391   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4392   int scan_step   = itableOffsetEntry::size() * wordSize;
4393   int vte_size    = vtableEntry::size_in_bytes();
4394   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4395   assert(vte_size == wordSize, "else adjust times_vte_scale");
4396 
4397   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4398 
4399   // %%% Could store the aligned, prescaled offset in the klassoop.
4400   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4401 
4402   if (return_method) {
4403     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4404     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4405     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4406   }
4407 
4408   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4409   //   if (scan->interface() == intf) {
4410   //     result = (klass + scan->offset() + itable_index);
4411   //   }
4412   // }
4413   Label search, found_method;
4414 
4415   for (int peel = 1; peel >= 0; peel--) {
4416     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4417     cmpptr(intf_klass, method_result);
4418 
4419     if (peel) {
4420       jccb(Assembler::equal, found_method);
4421     } else {
4422       jccb(Assembler::notEqual, search);
4423       // (invert the test to fall through to found_method...)
4424     }
4425 
4426     if (!peel)  break;
4427 
4428     bind(search);
4429 
4430     // Check that the previous entry is non-null.  A null entry means that
4431     // the receiver class doesn't implement the interface, and wasn't the
4432     // same as when the caller was compiled.
4433     testptr(method_result, method_result);
4434     jcc(Assembler::zero, L_no_such_interface);
4435     addptr(scan_temp, scan_step);
4436   }
4437 
4438   bind(found_method);
4439 
4440   if (return_method) {
4441     // Got a hit.
4442     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4443     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4444   }
4445 }
4446 
4447 
4448 // virtual method calling
4449 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4450                                            RegisterOrConstant vtable_index,
4451                                            Register method_result) {
4452   const int base = in_bytes(Klass::vtable_start_offset());
4453   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4454   Address vtable_entry_addr(recv_klass,
4455                             vtable_index, Address::times_ptr,
4456                             base + vtableEntry::method_offset_in_bytes());
4457   movptr(method_result, vtable_entry_addr);
4458 }
4459 
4460 
4461 void MacroAssembler::check_klass_subtype(Register sub_klass,
4462                            Register super_klass,
4463                            Register temp_reg,
4464                            Label& L_success) {
4465   Label L_failure;
4466   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4467   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4468   bind(L_failure);
4469 }
4470 
4471 
4472 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4473                                                    Register super_klass,
4474                                                    Register temp_reg,
4475                                                    Label* L_success,
4476                                                    Label* L_failure,
4477                                                    Label* L_slow_path,
4478                                         RegisterOrConstant super_check_offset) {
4479   assert_different_registers(sub_klass, super_klass, temp_reg);
4480   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4481   if (super_check_offset.is_register()) {
4482     assert_different_registers(sub_klass, super_klass,
4483                                super_check_offset.as_register());
4484   } else if (must_load_sco) {
4485     assert(temp_reg != noreg, "supply either a temp or a register offset");
4486   }
4487 
4488   Label L_fallthrough;
4489   int label_nulls = 0;
4490   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4491   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4492   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4493   assert(label_nulls <= 1, "at most one NULL in the batch");
4494 
4495   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4496   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4497   Address super_check_offset_addr(super_klass, sco_offset);
4498 
4499   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4500   // range of a jccb.  If this routine grows larger, reconsider at
4501   // least some of these.
4502 #define local_jcc(assembler_cond, label)                                \
4503   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4504   else                             jcc( assembler_cond, label) /*omit semi*/
4505 
4506   // Hacked jmp, which may only be used just before L_fallthrough.
4507 #define final_jmp(label)                                                \
4508   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4509   else                            jmp(label)                /*omit semi*/
4510 
4511   // If the pointers are equal, we are done (e.g., String[] elements).
4512   // This self-check enables sharing of secondary supertype arrays among
4513   // non-primary types such as array-of-interface.  Otherwise, each such
4514   // type would need its own customized SSA.
4515   // We move this check to the front of the fast path because many
4516   // type checks are in fact trivially successful in this manner,
4517   // so we get a nicely predicted branch right at the start of the check.
4518   cmpptr(sub_klass, super_klass);
4519   local_jcc(Assembler::equal, *L_success);
4520 
4521   // Check the supertype display:
4522   if (must_load_sco) {
4523     // Positive movl does right thing on LP64.
4524     movl(temp_reg, super_check_offset_addr);
4525     super_check_offset = RegisterOrConstant(temp_reg);
4526   }
4527   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4528   cmpptr(super_klass, super_check_addr); // load displayed supertype
4529 
4530   // This check has worked decisively for primary supers.
4531   // Secondary supers are sought in the super_cache ('super_cache_addr').
4532   // (Secondary supers are interfaces and very deeply nested subtypes.)
4533   // This works in the same check above because of a tricky aliasing
4534   // between the super_cache and the primary super display elements.
4535   // (The 'super_check_addr' can address either, as the case requires.)
4536   // Note that the cache is updated below if it does not help us find
4537   // what we need immediately.
4538   // So if it was a primary super, we can just fail immediately.
4539   // Otherwise, it's the slow path for us (no success at this point).
4540 
4541   if (super_check_offset.is_register()) {
4542     local_jcc(Assembler::equal, *L_success);
4543     cmpl(super_check_offset.as_register(), sc_offset);
4544     if (L_failure == &L_fallthrough) {
4545       local_jcc(Assembler::equal, *L_slow_path);
4546     } else {
4547       local_jcc(Assembler::notEqual, *L_failure);
4548       final_jmp(*L_slow_path);
4549     }
4550   } else if (super_check_offset.as_constant() == sc_offset) {
4551     // Need a slow path; fast failure is impossible.
4552     if (L_slow_path == &L_fallthrough) {
4553       local_jcc(Assembler::equal, *L_success);
4554     } else {
4555       local_jcc(Assembler::notEqual, *L_slow_path);
4556       final_jmp(*L_success);
4557     }
4558   } else {
4559     // No slow path; it's a fast decision.
4560     if (L_failure == &L_fallthrough) {
4561       local_jcc(Assembler::equal, *L_success);
4562     } else {
4563       local_jcc(Assembler::notEqual, *L_failure);
4564       final_jmp(*L_success);
4565     }
4566   }
4567 
4568   bind(L_fallthrough);
4569 
4570 #undef local_jcc
4571 #undef final_jmp
4572 }
4573 
4574 
4575 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4576                                                    Register super_klass,
4577                                                    Register temp_reg,
4578                                                    Register temp2_reg,
4579                                                    Label* L_success,
4580                                                    Label* L_failure,
4581                                                    bool set_cond_codes) {
4582   assert_different_registers(sub_klass, super_klass, temp_reg);
4583   if (temp2_reg != noreg)
4584     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4585 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4586 
4587   Label L_fallthrough;
4588   int label_nulls = 0;
4589   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4590   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4591   assert(label_nulls <= 1, "at most one NULL in the batch");
4592 
4593   // a couple of useful fields in sub_klass:
4594   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4595   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4596   Address secondary_supers_addr(sub_klass, ss_offset);
4597   Address super_cache_addr(     sub_klass, sc_offset);
4598 
4599   // Do a linear scan of the secondary super-klass chain.
4600   // This code is rarely used, so simplicity is a virtue here.
4601   // The repne_scan instruction uses fixed registers, which we must spill.
4602   // Don't worry too much about pre-existing connections with the input regs.
4603 
4604   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4605   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4606 
4607   // Get super_klass value into rax (even if it was in rdi or rcx).
4608   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4609   if (super_klass != rax || UseCompressedOops) {
4610     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4611     mov(rax, super_klass);
4612   }
4613   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4614   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4615 
4616 #ifndef PRODUCT
4617   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4618   ExternalAddress pst_counter_addr((address) pst_counter);
4619   NOT_LP64(  incrementl(pst_counter_addr) );
4620   LP64_ONLY( lea(rcx, pst_counter_addr) );
4621   LP64_ONLY( incrementl(Address(rcx, 0)) );
4622 #endif //PRODUCT
4623 
4624   // We will consult the secondary-super array.
4625   movptr(rdi, secondary_supers_addr);
4626   // Load the array length.  (Positive movl does right thing on LP64.)
4627   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4628   // Skip to start of data.
4629   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4630 
4631   // Scan RCX words at [RDI] for an occurrence of RAX.
4632   // Set NZ/Z based on last compare.
4633   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4634   // not change flags (only scas instruction which is repeated sets flags).
4635   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4636 
4637     testptr(rax,rax); // Set Z = 0
4638     repne_scan();
4639 
4640   // Unspill the temp. registers:
4641   if (pushed_rdi)  pop(rdi);
4642   if (pushed_rcx)  pop(rcx);
4643   if (pushed_rax)  pop(rax);
4644 
4645   if (set_cond_codes) {
4646     // Special hack for the AD files:  rdi is guaranteed non-zero.
4647     assert(!pushed_rdi, "rdi must be left non-NULL");
4648     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4649   }
4650 
4651   if (L_failure == &L_fallthrough)
4652         jccb(Assembler::notEqual, *L_failure);
4653   else  jcc(Assembler::notEqual, *L_failure);
4654 
4655   // Success.  Cache the super we found and proceed in triumph.
4656   movptr(super_cache_addr, super_klass);
4657 
4658   if (L_success != &L_fallthrough) {
4659     jmp(*L_success);
4660   }
4661 
4662 #undef IS_A_TEMP
4663 
4664   bind(L_fallthrough);
4665 }
4666 
4667 
4668 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4669   if (VM_Version::supports_cmov()) {
4670     cmovl(cc, dst, src);
4671   } else {
4672     Label L;
4673     jccb(negate_condition(cc), L);
4674     movl(dst, src);
4675     bind(L);
4676   }
4677 }
4678 
4679 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4680   if (VM_Version::supports_cmov()) {
4681     cmovl(cc, dst, src);
4682   } else {
4683     Label L;
4684     jccb(negate_condition(cc), L);
4685     movl(dst, src);
4686     bind(L);
4687   }
4688 }
4689 
4690 void MacroAssembler::verify_oop(Register reg, const char* s) {
4691   if (!VerifyOops) return;
4692 
4693   // Pass register number to verify_oop_subroutine
4694   const char* b = NULL;
4695   {
4696     ResourceMark rm;
4697     stringStream ss;
4698     ss.print("verify_oop: %s: %s", reg->name(), s);
4699     b = code_string(ss.as_string());
4700   }
4701   BLOCK_COMMENT("verify_oop {");
4702 #ifdef _LP64
4703   push(rscratch1);                    // save r10, trashed by movptr()
4704 #endif
4705   push(rax);                          // save rax,
4706   push(reg);                          // pass register argument
4707   ExternalAddress buffer((address) b);
4708   // avoid using pushptr, as it modifies scratch registers
4709   // and our contract is not to modify anything
4710   movptr(rax, buffer.addr());
4711   push(rax);
4712   // call indirectly to solve generation ordering problem
4713   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4714   call(rax);
4715   // Caller pops the arguments (oop, message) and restores rax, r10
4716   BLOCK_COMMENT("} verify_oop");
4717 }
4718 
4719 
4720 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4721                                                       Register tmp,
4722                                                       int offset) {
4723   intptr_t value = *delayed_value_addr;
4724   if (value != 0)
4725     return RegisterOrConstant(value + offset);
4726 
4727   // load indirectly to solve generation ordering problem
4728   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4729 
4730 #ifdef ASSERT
4731   { Label L;
4732     testptr(tmp, tmp);
4733     if (WizardMode) {
4734       const char* buf = NULL;
4735       {
4736         ResourceMark rm;
4737         stringStream ss;
4738         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4739         buf = code_string(ss.as_string());
4740       }
4741       jcc(Assembler::notZero, L);
4742       STOP(buf);
4743     } else {
4744       jccb(Assembler::notZero, L);
4745       hlt();
4746     }
4747     bind(L);
4748   }
4749 #endif
4750 
4751   if (offset != 0)
4752     addptr(tmp, offset);
4753 
4754   return RegisterOrConstant(tmp);
4755 }
4756 
4757 
4758 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4759                                          int extra_slot_offset) {
4760   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4761   int stackElementSize = Interpreter::stackElementSize;
4762   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4763 #ifdef ASSERT
4764   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4765   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4766 #endif
4767   Register             scale_reg    = noreg;
4768   Address::ScaleFactor scale_factor = Address::no_scale;
4769   if (arg_slot.is_constant()) {
4770     offset += arg_slot.as_constant() * stackElementSize;
4771   } else {
4772     scale_reg    = arg_slot.as_register();
4773     scale_factor = Address::times(stackElementSize);
4774   }
4775   offset += wordSize;           // return PC is on stack
4776   return Address(rsp, scale_reg, scale_factor, offset);
4777 }
4778 
4779 
4780 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4781   if (!VerifyOops) return;
4782 
4783   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4784   // Pass register number to verify_oop_subroutine
4785   const char* b = NULL;
4786   {
4787     ResourceMark rm;
4788     stringStream ss;
4789     ss.print("verify_oop_addr: %s", s);
4790     b = code_string(ss.as_string());
4791   }
4792 #ifdef _LP64
4793   push(rscratch1);                    // save r10, trashed by movptr()
4794 #endif
4795   push(rax);                          // save rax,
4796   // addr may contain rsp so we will have to adjust it based on the push
4797   // we just did (and on 64 bit we do two pushes)
4798   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4799   // stores rax into addr which is backwards of what was intended.
4800   if (addr.uses(rsp)) {
4801     lea(rax, addr);
4802     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4803   } else {
4804     pushptr(addr);
4805   }
4806 
4807   ExternalAddress buffer((address) b);
4808   // pass msg argument
4809   // avoid using pushptr, as it modifies scratch registers
4810   // and our contract is not to modify anything
4811   movptr(rax, buffer.addr());
4812   push(rax);
4813 
4814   // call indirectly to solve generation ordering problem
4815   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4816   call(rax);
4817   // Caller pops the arguments (addr, message) and restores rax, r10.
4818 }
4819 
4820 void MacroAssembler::verify_tlab() {
4821 #ifdef ASSERT
4822   if (UseTLAB && VerifyOops) {
4823     Label next, ok;
4824     Register t1 = rsi;
4825     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4826 
4827     push(t1);
4828     NOT_LP64(push(thread_reg));
4829     NOT_LP64(get_thread(thread_reg));
4830 
4831     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4832     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4833     jcc(Assembler::aboveEqual, next);
4834     STOP("assert(top >= start)");
4835     should_not_reach_here();
4836 
4837     bind(next);
4838     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4839     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4840     jcc(Assembler::aboveEqual, ok);
4841     STOP("assert(top <= end)");
4842     should_not_reach_here();
4843 
4844     bind(ok);
4845     NOT_LP64(pop(thread_reg));
4846     pop(t1);
4847   }
4848 #endif
4849 }
4850 
4851 class ControlWord {
4852  public:
4853   int32_t _value;
4854 
4855   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4856   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4857   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4858   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4859   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4860   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4861   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4862   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4863 
4864   void print() const {
4865     // rounding control
4866     const char* rc;
4867     switch (rounding_control()) {
4868       case 0: rc = "round near"; break;
4869       case 1: rc = "round down"; break;
4870       case 2: rc = "round up  "; break;
4871       case 3: rc = "chop      "; break;
4872     };
4873     // precision control
4874     const char* pc;
4875     switch (precision_control()) {
4876       case 0: pc = "24 bits "; break;
4877       case 1: pc = "reserved"; break;
4878       case 2: pc = "53 bits "; break;
4879       case 3: pc = "64 bits "; break;
4880     };
4881     // flags
4882     char f[9];
4883     f[0] = ' ';
4884     f[1] = ' ';
4885     f[2] = (precision   ()) ? 'P' : 'p';
4886     f[3] = (underflow   ()) ? 'U' : 'u';
4887     f[4] = (overflow    ()) ? 'O' : 'o';
4888     f[5] = (zero_divide ()) ? 'Z' : 'z';
4889     f[6] = (denormalized()) ? 'D' : 'd';
4890     f[7] = (invalid     ()) ? 'I' : 'i';
4891     f[8] = '\x0';
4892     // output
4893     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4894   }
4895 
4896 };
4897 
4898 class StatusWord {
4899  public:
4900   int32_t _value;
4901 
4902   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4903   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4904   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4905   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4906   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4907   int  top() const                     { return  (_value >> 11) & 7      ; }
4908   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4909   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4910   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4911   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4912   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4913   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4914   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4915   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4916 
4917   void print() const {
4918     // condition codes
4919     char c[5];
4920     c[0] = (C3()) ? '3' : '-';
4921     c[1] = (C2()) ? '2' : '-';
4922     c[2] = (C1()) ? '1' : '-';
4923     c[3] = (C0()) ? '0' : '-';
4924     c[4] = '\x0';
4925     // flags
4926     char f[9];
4927     f[0] = (error_status()) ? 'E' : '-';
4928     f[1] = (stack_fault ()) ? 'S' : '-';
4929     f[2] = (precision   ()) ? 'P' : '-';
4930     f[3] = (underflow   ()) ? 'U' : '-';
4931     f[4] = (overflow    ()) ? 'O' : '-';
4932     f[5] = (zero_divide ()) ? 'Z' : '-';
4933     f[6] = (denormalized()) ? 'D' : '-';
4934     f[7] = (invalid     ()) ? 'I' : '-';
4935     f[8] = '\x0';
4936     // output
4937     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4938   }
4939 
4940 };
4941 
4942 class TagWord {
4943  public:
4944   int32_t _value;
4945 
4946   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4947 
4948   void print() const {
4949     printf("%04x", _value & 0xFFFF);
4950   }
4951 
4952 };
4953 
4954 class FPU_Register {
4955  public:
4956   int32_t _m0;
4957   int32_t _m1;
4958   int16_t _ex;
4959 
4960   bool is_indefinite() const           {
4961     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4962   }
4963 
4964   void print() const {
4965     char  sign = (_ex < 0) ? '-' : '+';
4966     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4967     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4968   };
4969 
4970 };
4971 
4972 class FPU_State {
4973  public:
4974   enum {
4975     register_size       = 10,
4976     number_of_registers =  8,
4977     register_mask       =  7
4978   };
4979 
4980   ControlWord  _control_word;
4981   StatusWord   _status_word;
4982   TagWord      _tag_word;
4983   int32_t      _error_offset;
4984   int32_t      _error_selector;
4985   int32_t      _data_offset;
4986   int32_t      _data_selector;
4987   int8_t       _register[register_size * number_of_registers];
4988 
4989   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4990   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4991 
4992   const char* tag_as_string(int tag) const {
4993     switch (tag) {
4994       case 0: return "valid";
4995       case 1: return "zero";
4996       case 2: return "special";
4997       case 3: return "empty";
4998     }
4999     ShouldNotReachHere();
5000     return NULL;
5001   }
5002 
5003   void print() const {
5004     // print computation registers
5005     { int t = _status_word.top();
5006       for (int i = 0; i < number_of_registers; i++) {
5007         int j = (i - t) & register_mask;
5008         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5009         st(j)->print();
5010         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5011       }
5012     }
5013     printf("\n");
5014     // print control registers
5015     printf("ctrl = "); _control_word.print(); printf("\n");
5016     printf("stat = "); _status_word .print(); printf("\n");
5017     printf("tags = "); _tag_word    .print(); printf("\n");
5018   }
5019 
5020 };
5021 
5022 class Flag_Register {
5023  public:
5024   int32_t _value;
5025 
5026   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5027   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5028   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5029   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5030   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5031   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5032   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5033 
5034   void print() const {
5035     // flags
5036     char f[8];
5037     f[0] = (overflow       ()) ? 'O' : '-';
5038     f[1] = (direction      ()) ? 'D' : '-';
5039     f[2] = (sign           ()) ? 'S' : '-';
5040     f[3] = (zero           ()) ? 'Z' : '-';
5041     f[4] = (auxiliary_carry()) ? 'A' : '-';
5042     f[5] = (parity         ()) ? 'P' : '-';
5043     f[6] = (carry          ()) ? 'C' : '-';
5044     f[7] = '\x0';
5045     // output
5046     printf("%08x  flags = %s", _value, f);
5047   }
5048 
5049 };
5050 
5051 class IU_Register {
5052  public:
5053   int32_t _value;
5054 
5055   void print() const {
5056     printf("%08x  %11d", _value, _value);
5057   }
5058 
5059 };
5060 
5061 class IU_State {
5062  public:
5063   Flag_Register _eflags;
5064   IU_Register   _rdi;
5065   IU_Register   _rsi;
5066   IU_Register   _rbp;
5067   IU_Register   _rsp;
5068   IU_Register   _rbx;
5069   IU_Register   _rdx;
5070   IU_Register   _rcx;
5071   IU_Register   _rax;
5072 
5073   void print() const {
5074     // computation registers
5075     printf("rax,  = "); _rax.print(); printf("\n");
5076     printf("rbx,  = "); _rbx.print(); printf("\n");
5077     printf("rcx  = "); _rcx.print(); printf("\n");
5078     printf("rdx  = "); _rdx.print(); printf("\n");
5079     printf("rdi  = "); _rdi.print(); printf("\n");
5080     printf("rsi  = "); _rsi.print(); printf("\n");
5081     printf("rbp,  = "); _rbp.print(); printf("\n");
5082     printf("rsp  = "); _rsp.print(); printf("\n");
5083     printf("\n");
5084     // control registers
5085     printf("flgs = "); _eflags.print(); printf("\n");
5086   }
5087 };
5088 
5089 
5090 class CPU_State {
5091  public:
5092   FPU_State _fpu_state;
5093   IU_State  _iu_state;
5094 
5095   void print() const {
5096     printf("--------------------------------------------------\n");
5097     _iu_state .print();
5098     printf("\n");
5099     _fpu_state.print();
5100     printf("--------------------------------------------------\n");
5101   }
5102 
5103 };
5104 
5105 
5106 static void _print_CPU_state(CPU_State* state) {
5107   state->print();
5108 };
5109 
5110 
5111 void MacroAssembler::print_CPU_state() {
5112   push_CPU_state();
5113   push(rsp);                // pass CPU state
5114   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5115   addptr(rsp, wordSize);       // discard argument
5116   pop_CPU_state();
5117 }
5118 
5119 
5120 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5121   static int counter = 0;
5122   FPU_State* fs = &state->_fpu_state;
5123   counter++;
5124   // For leaf calls, only verify that the top few elements remain empty.
5125   // We only need 1 empty at the top for C2 code.
5126   if( stack_depth < 0 ) {
5127     if( fs->tag_for_st(7) != 3 ) {
5128       printf("FPR7 not empty\n");
5129       state->print();
5130       assert(false, "error");
5131       return false;
5132     }
5133     return true;                // All other stack states do not matter
5134   }
5135 
5136   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5137          "bad FPU control word");
5138 
5139   // compute stack depth
5140   int i = 0;
5141   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5142   int d = i;
5143   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5144   // verify findings
5145   if (i != FPU_State::number_of_registers) {
5146     // stack not contiguous
5147     printf("%s: stack not contiguous at ST%d\n", s, i);
5148     state->print();
5149     assert(false, "error");
5150     return false;
5151   }
5152   // check if computed stack depth corresponds to expected stack depth
5153   if (stack_depth < 0) {
5154     // expected stack depth is -stack_depth or less
5155     if (d > -stack_depth) {
5156       // too many elements on the stack
5157       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5158       state->print();
5159       assert(false, "error");
5160       return false;
5161     }
5162   } else {
5163     // expected stack depth is stack_depth
5164     if (d != stack_depth) {
5165       // wrong stack depth
5166       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5167       state->print();
5168       assert(false, "error");
5169       return false;
5170     }
5171   }
5172   // everything is cool
5173   return true;
5174 }
5175 
5176 
5177 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5178   if (!VerifyFPU) return;
5179   push_CPU_state();
5180   push(rsp);                // pass CPU state
5181   ExternalAddress msg((address) s);
5182   // pass message string s
5183   pushptr(msg.addr());
5184   push(stack_depth);        // pass stack depth
5185   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5186   addptr(rsp, 3 * wordSize);   // discard arguments
5187   // check for error
5188   { Label L;
5189     testl(rax, rax);
5190     jcc(Assembler::notZero, L);
5191     int3();                  // break if error condition
5192     bind(L);
5193   }
5194   pop_CPU_state();
5195 }
5196 
5197 void MacroAssembler::restore_cpu_control_state_after_jni() {
5198   // Either restore the MXCSR register after returning from the JNI Call
5199   // or verify that it wasn't changed (with -Xcheck:jni flag).
5200   if (VM_Version::supports_sse()) {
5201     if (RestoreMXCSROnJNICalls) {
5202       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5203     } else if (CheckJNICalls) {
5204       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5205     }
5206   }
5207   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5208   vzeroupper();
5209   // Reset k1 to 0xffff.
5210   if (VM_Version::supports_evex()) {
5211     push(rcx);
5212     movl(rcx, 0xffff);
5213     kmovwl(k1, rcx);
5214     pop(rcx);
5215   }
5216 
5217 #ifndef _LP64
5218   // Either restore the x87 floating pointer control word after returning
5219   // from the JNI call or verify that it wasn't changed.
5220   if (CheckJNICalls) {
5221     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5222   }
5223 #endif // _LP64
5224 }
5225 
5226 // ((OopHandle)result).resolve();
5227 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5228   assert_different_registers(result, tmp);
5229 
5230   // Only 64 bit platforms support GCs that require a tmp register
5231   // Only IN_HEAP loads require a thread_tmp register
5232   // OopHandle::resolve is an indirection like jobject.
5233   access_load_at(T_OBJECT, IN_NATIVE,
5234                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5235 }
5236 
5237 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5238   // get mirror
5239   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5240   movptr(mirror, Address(method, Method::const_offset()));
5241   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
5242   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
5243   movptr(mirror, Address(mirror, mirror_offset));
5244   resolve_oop_handle(mirror, tmp);
5245 }
5246 
5247 void MacroAssembler::load_klass(Register dst, Register src) {
5248 #ifdef _LP64
5249   if (UseCompressedClassPointers) {
5250     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5251     decode_klass_not_null(dst);
5252   } else
5253 #endif
5254     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5255 }
5256 
5257 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5258   load_klass(dst, src);
5259   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5260 }
5261 
5262 void MacroAssembler::store_klass(Register dst, Register src) {
5263 #ifdef _LP64
5264   if (UseCompressedClassPointers) {
5265     encode_klass_not_null(src);
5266     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5267   } else
5268 #endif
5269     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5270 }
5271 
5272 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5273                                     Register tmp1, Register thread_tmp) {
5274   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5275   decorators = AccessInternal::decorator_fixup(decorators);
5276   bool as_raw = (decorators & AS_RAW) != 0;
5277   if (as_raw) {
5278     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5279   } else {
5280     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5281   }
5282 }
5283 
5284 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5285                                      Register tmp1, Register tmp2) {
5286   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5287   decorators = AccessInternal::decorator_fixup(decorators);
5288   bool as_raw = (decorators & AS_RAW) != 0;
5289   if (as_raw) {
5290     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5291   } else {
5292     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5293   }
5294 }
5295 
5296 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5297   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5298   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5299     decorators |= ACCESS_READ | ACCESS_WRITE;
5300   }
5301   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5302   return bs->resolve(this, decorators, obj);
5303 }
5304 
5305 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5306                                    Register thread_tmp, DecoratorSet decorators) {
5307   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5308 }
5309 
5310 // Doesn't do verfication, generates fixed size code
5311 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5312                                             Register thread_tmp, DecoratorSet decorators) {
5313   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5314 }
5315 
5316 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5317                                     Register tmp2, DecoratorSet decorators) {
5318   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5319 }
5320 
5321 // Used for storing NULLs.
5322 void MacroAssembler::store_heap_oop_null(Address dst) {
5323   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5324 }
5325 
5326 #ifdef _LP64
5327 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5328   if (UseCompressedClassPointers) {
5329     // Store to klass gap in destination
5330     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5331   }
5332 }
5333 
5334 #ifdef ASSERT
5335 void MacroAssembler::verify_heapbase(const char* msg) {
5336   assert (UseCompressedOops, "should be compressed");
5337   assert (Universe::heap() != NULL, "java heap should be initialized");
5338   if (CheckCompressedOops) {
5339     Label ok;
5340     push(rscratch1); // cmpptr trashes rscratch1
5341     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5342     jcc(Assembler::equal, ok);
5343     STOP(msg);
5344     bind(ok);
5345     pop(rscratch1);
5346   }
5347 }
5348 #endif
5349 
5350 // Algorithm must match oop.inline.hpp encode_heap_oop.
5351 void MacroAssembler::encode_heap_oop(Register r) {
5352 #ifdef ASSERT
5353   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5354 #endif
5355   verify_oop(r, "broken oop in encode_heap_oop");
5356   if (Universe::narrow_oop_base() == NULL) {
5357     if (Universe::narrow_oop_shift() != 0) {
5358       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5359       shrq(r, LogMinObjAlignmentInBytes);
5360     }
5361     return;
5362   }
5363   testq(r, r);
5364   cmovq(Assembler::equal, r, r12_heapbase);
5365   subq(r, r12_heapbase);
5366   shrq(r, LogMinObjAlignmentInBytes);
5367 }
5368 
5369 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5370 #ifdef ASSERT
5371   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5372   if (CheckCompressedOops) {
5373     Label ok;
5374     testq(r, r);
5375     jcc(Assembler::notEqual, ok);
5376     STOP("null oop passed to encode_heap_oop_not_null");
5377     bind(ok);
5378   }
5379 #endif
5380   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5381   if (Universe::narrow_oop_base() != NULL) {
5382     subq(r, r12_heapbase);
5383   }
5384   if (Universe::narrow_oop_shift() != 0) {
5385     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5386     shrq(r, LogMinObjAlignmentInBytes);
5387   }
5388 }
5389 
5390 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5391 #ifdef ASSERT
5392   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5393   if (CheckCompressedOops) {
5394     Label ok;
5395     testq(src, src);
5396     jcc(Assembler::notEqual, ok);
5397     STOP("null oop passed to encode_heap_oop_not_null2");
5398     bind(ok);
5399   }
5400 #endif
5401   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5402   if (dst != src) {
5403     movq(dst, src);
5404   }
5405   if (Universe::narrow_oop_base() != NULL) {
5406     subq(dst, r12_heapbase);
5407   }
5408   if (Universe::narrow_oop_shift() != 0) {
5409     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5410     shrq(dst, LogMinObjAlignmentInBytes);
5411   }
5412 }
5413 
5414 void  MacroAssembler::decode_heap_oop(Register r) {
5415 #ifdef ASSERT
5416   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5417 #endif
5418   if (Universe::narrow_oop_base() == NULL) {
5419     if (Universe::narrow_oop_shift() != 0) {
5420       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5421       shlq(r, LogMinObjAlignmentInBytes);
5422     }
5423   } else {
5424     Label done;
5425     shlq(r, LogMinObjAlignmentInBytes);
5426     jccb(Assembler::equal, done);
5427     addq(r, r12_heapbase);
5428     bind(done);
5429   }
5430   verify_oop(r, "broken oop in decode_heap_oop");
5431 }
5432 
5433 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5434   // Note: it will change flags
5435   assert (UseCompressedOops, "should only be used for compressed headers");
5436   assert (Universe::heap() != NULL, "java heap should be initialized");
5437   // Cannot assert, unverified entry point counts instructions (see .ad file)
5438   // vtableStubs also counts instructions in pd_code_size_limit.
5439   // Also do not verify_oop as this is called by verify_oop.
5440   if (Universe::narrow_oop_shift() != 0) {
5441     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5442     shlq(r, LogMinObjAlignmentInBytes);
5443     if (Universe::narrow_oop_base() != NULL) {
5444       addq(r, r12_heapbase);
5445     }
5446   } else {
5447     assert (Universe::narrow_oop_base() == NULL, "sanity");
5448   }
5449 }
5450 
5451 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5452   // Note: it will change flags
5453   assert (UseCompressedOops, "should only be used for compressed headers");
5454   assert (Universe::heap() != NULL, "java heap should be initialized");
5455   // Cannot assert, unverified entry point counts instructions (see .ad file)
5456   // vtableStubs also counts instructions in pd_code_size_limit.
5457   // Also do not verify_oop as this is called by verify_oop.
5458   if (Universe::narrow_oop_shift() != 0) {
5459     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5460     if (LogMinObjAlignmentInBytes == Address::times_8) {
5461       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5462     } else {
5463       if (dst != src) {
5464         movq(dst, src);
5465       }
5466       shlq(dst, LogMinObjAlignmentInBytes);
5467       if (Universe::narrow_oop_base() != NULL) {
5468         addq(dst, r12_heapbase);
5469       }
5470     }
5471   } else {
5472     assert (Universe::narrow_oop_base() == NULL, "sanity");
5473     if (dst != src) {
5474       movq(dst, src);
5475     }
5476   }
5477 }
5478 
5479 void MacroAssembler::encode_klass_not_null(Register r) {
5480   if (Universe::narrow_klass_base() != NULL) {
5481     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5482     assert(r != r12_heapbase, "Encoding a klass in r12");
5483     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5484     subq(r, r12_heapbase);
5485   }
5486   if (Universe::narrow_klass_shift() != 0) {
5487     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5488     shrq(r, LogKlassAlignmentInBytes);
5489   }
5490   if (Universe::narrow_klass_base() != NULL) {
5491     reinit_heapbase();
5492   }
5493 }
5494 
5495 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5496   if (dst == src) {
5497     encode_klass_not_null(src);
5498   } else {
5499     if (Universe::narrow_klass_base() != NULL) {
5500       mov64(dst, (int64_t)Universe::narrow_klass_base());
5501       negq(dst);
5502       addq(dst, src);
5503     } else {
5504       movptr(dst, src);
5505     }
5506     if (Universe::narrow_klass_shift() != 0) {
5507       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5508       shrq(dst, LogKlassAlignmentInBytes);
5509     }
5510   }
5511 }
5512 
5513 // Function instr_size_for_decode_klass_not_null() counts the instructions
5514 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5515 // when (Universe::heap() != NULL).  Hence, if the instructions they
5516 // generate change, then this method needs to be updated.
5517 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5518   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5519   if (Universe::narrow_klass_base() != NULL) {
5520     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5521     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5522   } else {
5523     // longest load decode klass function, mov64, leaq
5524     return 16;
5525   }
5526 }
5527 
5528 // !!! If the instructions that get generated here change then function
5529 // instr_size_for_decode_klass_not_null() needs to get updated.
5530 void  MacroAssembler::decode_klass_not_null(Register r) {
5531   // Note: it will change flags
5532   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5533   assert(r != r12_heapbase, "Decoding a klass in r12");
5534   // Cannot assert, unverified entry point counts instructions (see .ad file)
5535   // vtableStubs also counts instructions in pd_code_size_limit.
5536   // Also do not verify_oop as this is called by verify_oop.
5537   if (Universe::narrow_klass_shift() != 0) {
5538     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5539     shlq(r, LogKlassAlignmentInBytes);
5540   }
5541   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5542   if (Universe::narrow_klass_base() != NULL) {
5543     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5544     addq(r, r12_heapbase);
5545     reinit_heapbase();
5546   }
5547 }
5548 
5549 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5550   // Note: it will change flags
5551   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5552   if (dst == src) {
5553     decode_klass_not_null(dst);
5554   } else {
5555     // Cannot assert, unverified entry point counts instructions (see .ad file)
5556     // vtableStubs also counts instructions in pd_code_size_limit.
5557     // Also do not verify_oop as this is called by verify_oop.
5558     mov64(dst, (int64_t)Universe::narrow_klass_base());
5559     if (Universe::narrow_klass_shift() != 0) {
5560       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5561       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5562       leaq(dst, Address(dst, src, Address::times_8, 0));
5563     } else {
5564       addq(dst, src);
5565     }
5566   }
5567 }
5568 
5569 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5570   assert (UseCompressedOops, "should only be used for compressed headers");
5571   assert (Universe::heap() != NULL, "java heap should be initialized");
5572   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5573   int oop_index = oop_recorder()->find_index(obj);
5574   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5575   mov_narrow_oop(dst, oop_index, rspec);
5576 }
5577 
5578 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5579   assert (UseCompressedOops, "should only be used for compressed headers");
5580   assert (Universe::heap() != NULL, "java heap should be initialized");
5581   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5582   int oop_index = oop_recorder()->find_index(obj);
5583   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5584   mov_narrow_oop(dst, oop_index, rspec);
5585 }
5586 
5587 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5588   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5589   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5590   int klass_index = oop_recorder()->find_index(k);
5591   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5592   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
5593 }
5594 
5595 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5596   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5597   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5598   int klass_index = oop_recorder()->find_index(k);
5599   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5600   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
5601 }
5602 
5603 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5604   assert (UseCompressedOops, "should only be used for compressed headers");
5605   assert (Universe::heap() != NULL, "java heap should be initialized");
5606   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5607   int oop_index = oop_recorder()->find_index(obj);
5608   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5609   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5610 }
5611 
5612 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5613   assert (UseCompressedOops, "should only be used for compressed headers");
5614   assert (Universe::heap() != NULL, "java heap should be initialized");
5615   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5616   int oop_index = oop_recorder()->find_index(obj);
5617   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5618   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5619 }
5620 
5621 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5622   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5623   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5624   int klass_index = oop_recorder()->find_index(k);
5625   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5626   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
5627 }
5628 
5629 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5630   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5631   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5632   int klass_index = oop_recorder()->find_index(k);
5633   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5634   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
5635 }
5636 
5637 void MacroAssembler::reinit_heapbase() {
5638   if (UseCompressedOops || UseCompressedClassPointers) {
5639     if (Universe::heap() != NULL) {
5640       if (Universe::narrow_oop_base() == NULL) {
5641         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5642       } else {
5643         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
5644       }
5645     } else {
5646       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5647     }
5648   }
5649 }
5650 
5651 #endif // _LP64
5652 
5653 // C2 compiled method's prolog code.
5654 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
5655 
5656   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5657   // NativeJump::patch_verified_entry will be able to patch out the entry
5658   // code safely. The push to verify stack depth is ok at 5 bytes,
5659   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5660   // stack bang then we must use the 6 byte frame allocation even if
5661   // we have no frame. :-(
5662   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5663 
5664   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5665   // Remove word for return addr
5666   framesize -= wordSize;
5667   stack_bang_size -= wordSize;
5668 
5669   // Calls to C2R adapters often do not accept exceptional returns.
5670   // We require that their callers must bang for them.  But be careful, because
5671   // some VM calls (such as call site linkage) can use several kilobytes of
5672   // stack.  But the stack safety zone should account for that.
5673   // See bugs 4446381, 4468289, 4497237.
5674   if (stack_bang_size > 0) {
5675     generate_stack_overflow_check(stack_bang_size);
5676 
5677     // We always push rbp, so that on return to interpreter rbp, will be
5678     // restored correctly and we can correct the stack.
5679     push(rbp);
5680     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5681     if (PreserveFramePointer) {
5682       mov(rbp, rsp);
5683     }
5684     // Remove word for ebp
5685     framesize -= wordSize;
5686 
5687     // Create frame
5688     if (framesize) {
5689       subptr(rsp, framesize);
5690     }
5691   } else {
5692     // Create frame (force generation of a 4 byte immediate value)
5693     subptr_imm32(rsp, framesize);
5694 
5695     // Save RBP register now.
5696     framesize -= wordSize;
5697     movptr(Address(rsp, framesize), rbp);
5698     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5699     if (PreserveFramePointer) {
5700       movptr(rbp, rsp);
5701       if (framesize > 0) {
5702         addptr(rbp, framesize);
5703       }
5704     }
5705   }
5706 
5707   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5708     framesize -= wordSize;
5709     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5710   }
5711 
5712 #ifndef _LP64
5713   // If method sets FPU control word do it now
5714   if (fp_mode_24b) {
5715     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5716   }
5717   if (UseSSE >= 2 && VerifyFPU) {
5718     verify_FPU(0, "FPU stack must be clean on entry");
5719   }
5720 #endif
5721 
5722 #ifdef ASSERT
5723   if (VerifyStackAtCalls) {
5724     Label L;
5725     push(rax);
5726     mov(rax, rsp);
5727     andptr(rax, StackAlignmentInBytes-1);
5728     cmpptr(rax, StackAlignmentInBytes-wordSize);
5729     pop(rax);
5730     jcc(Assembler::equal, L);
5731     STOP("Stack is not properly aligned!");
5732     bind(L);
5733   }
5734 #endif
5735 
5736 }
5737 
5738 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
5739 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5740   // cnt - number of qwords (8-byte words).
5741   // base - start address, qword aligned.
5742   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5743   if (UseAVX >= 2) {
5744     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5745   } else {
5746     pxor(xtmp, xtmp);
5747   }
5748   jmp(L_zero_64_bytes);
5749 
5750   BIND(L_loop);
5751   if (UseAVX >= 2) {
5752     vmovdqu(Address(base,  0), xtmp);
5753     vmovdqu(Address(base, 32), xtmp);
5754   } else {
5755     movdqu(Address(base,  0), xtmp);
5756     movdqu(Address(base, 16), xtmp);
5757     movdqu(Address(base, 32), xtmp);
5758     movdqu(Address(base, 48), xtmp);
5759   }
5760   addptr(base, 64);
5761 
5762   BIND(L_zero_64_bytes);
5763   subptr(cnt, 8);
5764   jccb(Assembler::greaterEqual, L_loop);
5765   addptr(cnt, 4);
5766   jccb(Assembler::less, L_tail);
5767   // Copy trailing 32 bytes
5768   if (UseAVX >= 2) {
5769     vmovdqu(Address(base, 0), xtmp);
5770   } else {
5771     movdqu(Address(base,  0), xtmp);
5772     movdqu(Address(base, 16), xtmp);
5773   }
5774   addptr(base, 32);
5775   subptr(cnt, 4);
5776 
5777   BIND(L_tail);
5778   addptr(cnt, 4);
5779   jccb(Assembler::lessEqual, L_end);
5780   decrement(cnt);
5781 
5782   BIND(L_sloop);
5783   movq(Address(base, 0), xtmp);
5784   addptr(base, 8);
5785   decrement(cnt);
5786   jccb(Assembler::greaterEqual, L_sloop);
5787   BIND(L_end);
5788 }
5789 
5790 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5791   // cnt - number of qwords (8-byte words).
5792   // base - start address, qword aligned.
5793   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5794   assert(base==rdi, "base register must be edi for rep stos");
5795   assert(tmp==rax,   "tmp register must be eax for rep stos");
5796   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5797   assert(InitArrayShortSize % BytesPerLong == 0,
5798     "InitArrayShortSize should be the multiple of BytesPerLong");
5799 
5800   Label DONE;
5801 
5802   if (!is_large || !UseXMMForObjInit) {
5803     xorptr(tmp, tmp);
5804   }
5805 
5806   if (!is_large) {
5807     Label LOOP, LONG;
5808     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5809     jccb(Assembler::greater, LONG);
5810 
5811     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5812 
5813     decrement(cnt);
5814     jccb(Assembler::negative, DONE); // Zero length
5815 
5816     // Use individual pointer-sized stores for small counts:
5817     BIND(LOOP);
5818     movptr(Address(base, cnt, Address::times_ptr), tmp);
5819     decrement(cnt);
5820     jccb(Assembler::greaterEqual, LOOP);
5821     jmpb(DONE);
5822 
5823     BIND(LONG);
5824   }
5825 
5826   // Use longer rep-prefixed ops for non-small counts:
5827   if (UseFastStosb) {
5828     shlptr(cnt, 3); // convert to number of bytes
5829     rep_stosb();
5830   } else if (UseXMMForObjInit) {
5831     movptr(tmp, base);
5832     xmm_clear_mem(tmp, cnt, xtmp);
5833   } else {
5834     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5835     rep_stos();
5836   }
5837 
5838   BIND(DONE);
5839 }
5840 
5841 #ifdef COMPILER2
5842 
5843 // IndexOf for constant substrings with size >= 8 chars
5844 // which don't need to be loaded through stack.
5845 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5846                                       Register cnt1, Register cnt2,
5847                                       int int_cnt2,  Register result,
5848                                       XMMRegister vec, Register tmp,
5849                                       int ae) {
5850   ShortBranchVerifier sbv(this);
5851   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5852   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5853 
5854   // This method uses the pcmpestri instruction with bound registers
5855   //   inputs:
5856   //     xmm - substring
5857   //     rax - substring length (elements count)
5858   //     mem - scanned string
5859   //     rdx - string length (elements count)
5860   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5861   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5862   //   outputs:
5863   //     rcx - matched index in string
5864   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5865   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5866   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5867   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5868   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5869 
5870   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5871         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5872         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5873 
5874   // Note, inline_string_indexOf() generates checks:
5875   // if (substr.count > string.count) return -1;
5876   // if (substr.count == 0) return 0;
5877   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5878 
5879   // Load substring.
5880   if (ae == StrIntrinsicNode::UL) {
5881     pmovzxbw(vec, Address(str2, 0));
5882   } else {
5883     movdqu(vec, Address(str2, 0));
5884   }
5885   movl(cnt2, int_cnt2);
5886   movptr(result, str1); // string addr
5887 
5888   if (int_cnt2 > stride) {
5889     jmpb(SCAN_TO_SUBSTR);
5890 
5891     // Reload substr for rescan, this code
5892     // is executed only for large substrings (> 8 chars)
5893     bind(RELOAD_SUBSTR);
5894     if (ae == StrIntrinsicNode::UL) {
5895       pmovzxbw(vec, Address(str2, 0));
5896     } else {
5897       movdqu(vec, Address(str2, 0));
5898     }
5899     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5900 
5901     bind(RELOAD_STR);
5902     // We came here after the beginning of the substring was
5903     // matched but the rest of it was not so we need to search
5904     // again. Start from the next element after the previous match.
5905 
5906     // cnt2 is number of substring reminding elements and
5907     // cnt1 is number of string reminding elements when cmp failed.
5908     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5909     subl(cnt1, cnt2);
5910     addl(cnt1, int_cnt2);
5911     movl(cnt2, int_cnt2); // Now restore cnt2
5912 
5913     decrementl(cnt1);     // Shift to next element
5914     cmpl(cnt1, cnt2);
5915     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5916 
5917     addptr(result, (1<<scale1));
5918 
5919   } // (int_cnt2 > 8)
5920 
5921   // Scan string for start of substr in 16-byte vectors
5922   bind(SCAN_TO_SUBSTR);
5923   pcmpestri(vec, Address(result, 0), mode);
5924   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5925   subl(cnt1, stride);
5926   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5927   cmpl(cnt1, cnt2);
5928   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5929   addptr(result, 16);
5930   jmpb(SCAN_TO_SUBSTR);
5931 
5932   // Found a potential substr
5933   bind(FOUND_CANDIDATE);
5934   // Matched whole vector if first element matched (tmp(rcx) == 0).
5935   if (int_cnt2 == stride) {
5936     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5937   } else { // int_cnt2 > 8
5938     jccb(Assembler::overflow, FOUND_SUBSTR);
5939   }
5940   // After pcmpestri tmp(rcx) contains matched element index
5941   // Compute start addr of substr
5942   lea(result, Address(result, tmp, scale1));
5943 
5944   // Make sure string is still long enough
5945   subl(cnt1, tmp);
5946   cmpl(cnt1, cnt2);
5947   if (int_cnt2 == stride) {
5948     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5949   } else { // int_cnt2 > 8
5950     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5951   }
5952   // Left less then substring.
5953 
5954   bind(RET_NOT_FOUND);
5955   movl(result, -1);
5956   jmp(EXIT);
5957 
5958   if (int_cnt2 > stride) {
5959     // This code is optimized for the case when whole substring
5960     // is matched if its head is matched.
5961     bind(MATCH_SUBSTR_HEAD);
5962     pcmpestri(vec, Address(result, 0), mode);
5963     // Reload only string if does not match
5964     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
5965 
5966     Label CONT_SCAN_SUBSTR;
5967     // Compare the rest of substring (> 8 chars).
5968     bind(FOUND_SUBSTR);
5969     // First 8 chars are already matched.
5970     negptr(cnt2);
5971     addptr(cnt2, stride);
5972 
5973     bind(SCAN_SUBSTR);
5974     subl(cnt1, stride);
5975     cmpl(cnt2, -stride); // Do not read beyond substring
5976     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5977     // Back-up strings to avoid reading beyond substring:
5978     // cnt1 = cnt1 - cnt2 + 8
5979     addl(cnt1, cnt2); // cnt2 is negative
5980     addl(cnt1, stride);
5981     movl(cnt2, stride); negptr(cnt2);
5982     bind(CONT_SCAN_SUBSTR);
5983     if (int_cnt2 < (int)G) {
5984       int tail_off1 = int_cnt2<<scale1;
5985       int tail_off2 = int_cnt2<<scale2;
5986       if (ae == StrIntrinsicNode::UL) {
5987         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
5988       } else {
5989         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
5990       }
5991       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
5992     } else {
5993       // calculate index in register to avoid integer overflow (int_cnt2*2)
5994       movl(tmp, int_cnt2);
5995       addptr(tmp, cnt2);
5996       if (ae == StrIntrinsicNode::UL) {
5997         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
5998       } else {
5999         movdqu(vec, Address(str2, tmp, scale2, 0));
6000       }
6001       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6002     }
6003     // Need to reload strings pointers if not matched whole vector
6004     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6005     addptr(cnt2, stride);
6006     jcc(Assembler::negative, SCAN_SUBSTR);
6007     // Fall through if found full substring
6008 
6009   } // (int_cnt2 > 8)
6010 
6011   bind(RET_FOUND);
6012   // Found result if we matched full small substring.
6013   // Compute substr offset
6014   subptr(result, str1);
6015   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6016     shrl(result, 1); // index
6017   }
6018   bind(EXIT);
6019 
6020 } // string_indexofC8
6021 
6022 // Small strings are loaded through stack if they cross page boundary.
6023 void MacroAssembler::string_indexof(Register str1, Register str2,
6024                                     Register cnt1, Register cnt2,
6025                                     int int_cnt2,  Register result,
6026                                     XMMRegister vec, Register tmp,
6027                                     int ae) {
6028   ShortBranchVerifier sbv(this);
6029   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6030   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6031 
6032   //
6033   // int_cnt2 is length of small (< 8 chars) constant substring
6034   // or (-1) for non constant substring in which case its length
6035   // is in cnt2 register.
6036   //
6037   // Note, inline_string_indexOf() generates checks:
6038   // if (substr.count > string.count) return -1;
6039   // if (substr.count == 0) return 0;
6040   //
6041   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6042   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6043   // This method uses the pcmpestri instruction with bound registers
6044   //   inputs:
6045   //     xmm - substring
6046   //     rax - substring length (elements count)
6047   //     mem - scanned string
6048   //     rdx - string length (elements count)
6049   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6050   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6051   //   outputs:
6052   //     rcx - matched index in string
6053   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6054   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6055   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6056   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6057 
6058   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6059         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6060         FOUND_CANDIDATE;
6061 
6062   { //========================================================
6063     // We don't know where these strings are located
6064     // and we can't read beyond them. Load them through stack.
6065     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6066 
6067     movptr(tmp, rsp); // save old SP
6068 
6069     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6070       if (int_cnt2 == (1>>scale2)) { // One byte
6071         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6072         load_unsigned_byte(result, Address(str2, 0));
6073         movdl(vec, result); // move 32 bits
6074       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6075         // Not enough header space in 32-bit VM: 12+3 = 15.
6076         movl(result, Address(str2, -1));
6077         shrl(result, 8);
6078         movdl(vec, result); // move 32 bits
6079       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6080         load_unsigned_short(result, Address(str2, 0));
6081         movdl(vec, result); // move 32 bits
6082       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6083         movdl(vec, Address(str2, 0)); // move 32 bits
6084       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6085         movq(vec, Address(str2, 0));  // move 64 bits
6086       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6087         // Array header size is 12 bytes in 32-bit VM
6088         // + 6 bytes for 3 chars == 18 bytes,
6089         // enough space to load vec and shift.
6090         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6091         if (ae == StrIntrinsicNode::UL) {
6092           int tail_off = int_cnt2-8;
6093           pmovzxbw(vec, Address(str2, tail_off));
6094           psrldq(vec, -2*tail_off);
6095         }
6096         else {
6097           int tail_off = int_cnt2*(1<<scale2);
6098           movdqu(vec, Address(str2, tail_off-16));
6099           psrldq(vec, 16-tail_off);
6100         }
6101       }
6102     } else { // not constant substring
6103       cmpl(cnt2, stride);
6104       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6105 
6106       // We can read beyond string if srt+16 does not cross page boundary
6107       // since heaps are aligned and mapped by pages.
6108       assert(os::vm_page_size() < (int)G, "default page should be small");
6109       movl(result, str2); // We need only low 32 bits
6110       andl(result, (os::vm_page_size()-1));
6111       cmpl(result, (os::vm_page_size()-16));
6112       jccb(Assembler::belowEqual, CHECK_STR);
6113 
6114       // Move small strings to stack to allow load 16 bytes into vec.
6115       subptr(rsp, 16);
6116       int stk_offset = wordSize-(1<<scale2);
6117       push(cnt2);
6118 
6119       bind(COPY_SUBSTR);
6120       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6121         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6122         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6123       } else if (ae == StrIntrinsicNode::UU) {
6124         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
6125         movw(Address(rsp, cnt2, scale2, stk_offset), result);
6126       }
6127       decrement(cnt2);
6128       jccb(Assembler::notZero, COPY_SUBSTR);
6129 
6130       pop(cnt2);
6131       movptr(str2, rsp);  // New substring address
6132     } // non constant
6133 
6134     bind(CHECK_STR);
6135     cmpl(cnt1, stride);
6136     jccb(Assembler::aboveEqual, BIG_STRINGS);
6137 
6138     // Check cross page boundary.
6139     movl(result, str1); // We need only low 32 bits
6140     andl(result, (os::vm_page_size()-1));
6141     cmpl(result, (os::vm_page_size()-16));
6142     jccb(Assembler::belowEqual, BIG_STRINGS);
6143 
6144     subptr(rsp, 16);
6145     int stk_offset = -(1<<scale1);
6146     if (int_cnt2 < 0) { // not constant
6147       push(cnt2);
6148       stk_offset += wordSize;
6149     }
6150     movl(cnt2, cnt1);
6151 
6152     bind(COPY_STR);
6153     if (ae == StrIntrinsicNode::LL) {
6154       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
6155       movb(Address(rsp, cnt2, scale1, stk_offset), result);
6156     } else {
6157       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
6158       movw(Address(rsp, cnt2, scale1, stk_offset), result);
6159     }
6160     decrement(cnt2);
6161     jccb(Assembler::notZero, COPY_STR);
6162 
6163     if (int_cnt2 < 0) { // not constant
6164       pop(cnt2);
6165     }
6166     movptr(str1, rsp);  // New string address
6167 
6168     bind(BIG_STRINGS);
6169     // Load substring.
6170     if (int_cnt2 < 0) { // -1
6171       if (ae == StrIntrinsicNode::UL) {
6172         pmovzxbw(vec, Address(str2, 0));
6173       } else {
6174         movdqu(vec, Address(str2, 0));
6175       }
6176       push(cnt2);       // substr count
6177       push(str2);       // substr addr
6178       push(str1);       // string addr
6179     } else {
6180       // Small (< 8 chars) constant substrings are loaded already.
6181       movl(cnt2, int_cnt2);
6182     }
6183     push(tmp);  // original SP
6184 
6185   } // Finished loading
6186 
6187   //========================================================
6188   // Start search
6189   //
6190 
6191   movptr(result, str1); // string addr
6192 
6193   if (int_cnt2  < 0) {  // Only for non constant substring
6194     jmpb(SCAN_TO_SUBSTR);
6195 
6196     // SP saved at sp+0
6197     // String saved at sp+1*wordSize
6198     // Substr saved at sp+2*wordSize
6199     // Substr count saved at sp+3*wordSize
6200 
6201     // Reload substr for rescan, this code
6202     // is executed only for large substrings (> 8 chars)
6203     bind(RELOAD_SUBSTR);
6204     movptr(str2, Address(rsp, 2*wordSize));
6205     movl(cnt2, Address(rsp, 3*wordSize));
6206     if (ae == StrIntrinsicNode::UL) {
6207       pmovzxbw(vec, Address(str2, 0));
6208     } else {
6209       movdqu(vec, Address(str2, 0));
6210     }
6211     // We came here after the beginning of the substring was
6212     // matched but the rest of it was not so we need to search
6213     // again. Start from the next element after the previous match.
6214     subptr(str1, result); // Restore counter
6215     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6216       shrl(str1, 1);
6217     }
6218     addl(cnt1, str1);
6219     decrementl(cnt1);   // Shift to next element
6220     cmpl(cnt1, cnt2);
6221     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6222 
6223     addptr(result, (1<<scale1));
6224   } // non constant
6225 
6226   // Scan string for start of substr in 16-byte vectors
6227   bind(SCAN_TO_SUBSTR);
6228   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6229   pcmpestri(vec, Address(result, 0), mode);
6230   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6231   subl(cnt1, stride);
6232   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6233   cmpl(cnt1, cnt2);
6234   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6235   addptr(result, 16);
6236 
6237   bind(ADJUST_STR);
6238   cmpl(cnt1, stride); // Do not read beyond string
6239   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6240   // Back-up string to avoid reading beyond string.
6241   lea(result, Address(result, cnt1, scale1, -16));
6242   movl(cnt1, stride);
6243   jmpb(SCAN_TO_SUBSTR);
6244 
6245   // Found a potential substr
6246   bind(FOUND_CANDIDATE);
6247   // After pcmpestri tmp(rcx) contains matched element index
6248 
6249   // Make sure string is still long enough
6250   subl(cnt1, tmp);
6251   cmpl(cnt1, cnt2);
6252   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6253   // Left less then substring.
6254 
6255   bind(RET_NOT_FOUND);
6256   movl(result, -1);
6257   jmp(CLEANUP);
6258 
6259   bind(FOUND_SUBSTR);
6260   // Compute start addr of substr
6261   lea(result, Address(result, tmp, scale1));
6262   if (int_cnt2 > 0) { // Constant substring
6263     // Repeat search for small substring (< 8 chars)
6264     // from new point without reloading substring.
6265     // Have to check that we don't read beyond string.
6266     cmpl(tmp, stride-int_cnt2);
6267     jccb(Assembler::greater, ADJUST_STR);
6268     // Fall through if matched whole substring.
6269   } else { // non constant
6270     assert(int_cnt2 == -1, "should be != 0");
6271 
6272     addl(tmp, cnt2);
6273     // Found result if we matched whole substring.
6274     cmpl(tmp, stride);
6275     jcc(Assembler::lessEqual, RET_FOUND);
6276 
6277     // Repeat search for small substring (<= 8 chars)
6278     // from new point 'str1' without reloading substring.
6279     cmpl(cnt2, stride);
6280     // Have to check that we don't read beyond string.
6281     jccb(Assembler::lessEqual, ADJUST_STR);
6282 
6283     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6284     // Compare the rest of substring (> 8 chars).
6285     movptr(str1, result);
6286 
6287     cmpl(tmp, cnt2);
6288     // First 8 chars are already matched.
6289     jccb(Assembler::equal, CHECK_NEXT);
6290 
6291     bind(SCAN_SUBSTR);
6292     pcmpestri(vec, Address(str1, 0), mode);
6293     // Need to reload strings pointers if not matched whole vector
6294     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6295 
6296     bind(CHECK_NEXT);
6297     subl(cnt2, stride);
6298     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6299     addptr(str1, 16);
6300     if (ae == StrIntrinsicNode::UL) {
6301       addptr(str2, 8);
6302     } else {
6303       addptr(str2, 16);
6304     }
6305     subl(cnt1, stride);
6306     cmpl(cnt2, stride); // Do not read beyond substring
6307     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6308     // Back-up strings to avoid reading beyond substring.
6309 
6310     if (ae == StrIntrinsicNode::UL) {
6311       lea(str2, Address(str2, cnt2, scale2, -8));
6312       lea(str1, Address(str1, cnt2, scale1, -16));
6313     } else {
6314       lea(str2, Address(str2, cnt2, scale2, -16));
6315       lea(str1, Address(str1, cnt2, scale1, -16));
6316     }
6317     subl(cnt1, cnt2);
6318     movl(cnt2, stride);
6319     addl(cnt1, stride);
6320     bind(CONT_SCAN_SUBSTR);
6321     if (ae == StrIntrinsicNode::UL) {
6322       pmovzxbw(vec, Address(str2, 0));
6323     } else {
6324       movdqu(vec, Address(str2, 0));
6325     }
6326     jmp(SCAN_SUBSTR);
6327 
6328     bind(RET_FOUND_LONG);
6329     movptr(str1, Address(rsp, wordSize));
6330   } // non constant
6331 
6332   bind(RET_FOUND);
6333   // Compute substr offset
6334   subptr(result, str1);
6335   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6336     shrl(result, 1); // index
6337   }
6338   bind(CLEANUP);
6339   pop(rsp); // restore SP
6340 
6341 } // string_indexof
6342 
6343 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6344                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6345   ShortBranchVerifier sbv(this);
6346   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6347 
6348   int stride = 8;
6349 
6350   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6351         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6352         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6353         FOUND_SEQ_CHAR, DONE_LABEL;
6354 
6355   movptr(result, str1);
6356   if (UseAVX >= 2) {
6357     cmpl(cnt1, stride);
6358     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
6359     cmpl(cnt1, 2*stride);
6360     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6361     movdl(vec1, ch);
6362     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6363     vpxor(vec2, vec2);
6364     movl(tmp, cnt1);
6365     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6366     andl(cnt1,0x0000000F);  //tail count (in chars)
6367 
6368     bind(SCAN_TO_16_CHAR_LOOP);
6369     vmovdqu(vec3, Address(result, 0));
6370     vpcmpeqw(vec3, vec3, vec1, 1);
6371     vptest(vec2, vec3);
6372     jcc(Assembler::carryClear, FOUND_CHAR);
6373     addptr(result, 32);
6374     subl(tmp, 2*stride);
6375     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6376     jmp(SCAN_TO_8_CHAR);
6377     bind(SCAN_TO_8_CHAR_INIT);
6378     movdl(vec1, ch);
6379     pshuflw(vec1, vec1, 0x00);
6380     pshufd(vec1, vec1, 0);
6381     pxor(vec2, vec2);
6382   }
6383   bind(SCAN_TO_8_CHAR);
6384   cmpl(cnt1, stride);
6385   if (UseAVX >= 2) {
6386     jcc(Assembler::less, SCAN_TO_CHAR);
6387   } else {
6388     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
6389     movdl(vec1, ch);
6390     pshuflw(vec1, vec1, 0x00);
6391     pshufd(vec1, vec1, 0);
6392     pxor(vec2, vec2);
6393   }
6394   movl(tmp, cnt1);
6395   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6396   andl(cnt1,0x00000007);  //tail count (in chars)
6397 
6398   bind(SCAN_TO_8_CHAR_LOOP);
6399   movdqu(vec3, Address(result, 0));
6400   pcmpeqw(vec3, vec1);
6401   ptest(vec2, vec3);
6402   jcc(Assembler::carryClear, FOUND_CHAR);
6403   addptr(result, 16);
6404   subl(tmp, stride);
6405   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6406   bind(SCAN_TO_CHAR);
6407   testl(cnt1, cnt1);
6408   jcc(Assembler::zero, RET_NOT_FOUND);
6409   bind(SCAN_TO_CHAR_LOOP);
6410   load_unsigned_short(tmp, Address(result, 0));
6411   cmpl(ch, tmp);
6412   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6413   addptr(result, 2);
6414   subl(cnt1, 1);
6415   jccb(Assembler::zero, RET_NOT_FOUND);
6416   jmp(SCAN_TO_CHAR_LOOP);
6417 
6418   bind(RET_NOT_FOUND);
6419   movl(result, -1);
6420   jmpb(DONE_LABEL);
6421 
6422   bind(FOUND_CHAR);
6423   if (UseAVX >= 2) {
6424     vpmovmskb(tmp, vec3);
6425   } else {
6426     pmovmskb(tmp, vec3);
6427   }
6428   bsfl(ch, tmp);
6429   addl(result, ch);
6430 
6431   bind(FOUND_SEQ_CHAR);
6432   subptr(result, str1);
6433   shrl(result, 1);
6434 
6435   bind(DONE_LABEL);
6436 } // string_indexof_char
6437 
6438 // helper function for string_compare
6439 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6440                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6441                                         Address::ScaleFactor scale2, Register index, int ae) {
6442   if (ae == StrIntrinsicNode::LL) {
6443     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6444     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6445   } else if (ae == StrIntrinsicNode::UU) {
6446     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6447     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6448   } else {
6449     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6450     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6451   }
6452 }
6453 
6454 // Compare strings, used for char[] and byte[].
6455 void MacroAssembler::string_compare(Register str1, Register str2,
6456                                     Register cnt1, Register cnt2, Register result,
6457                                     XMMRegister vec1, int ae) {
6458   ShortBranchVerifier sbv(this);
6459   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6460   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6461   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6462   int stride2x2 = 0x40;
6463   Address::ScaleFactor scale = Address::no_scale;
6464   Address::ScaleFactor scale1 = Address::no_scale;
6465   Address::ScaleFactor scale2 = Address::no_scale;
6466 
6467   if (ae != StrIntrinsicNode::LL) {
6468     stride2x2 = 0x20;
6469   }
6470 
6471   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6472     shrl(cnt2, 1);
6473   }
6474   // Compute the minimum of the string lengths and the
6475   // difference of the string lengths (stack).
6476   // Do the conditional move stuff
6477   movl(result, cnt1);
6478   subl(cnt1, cnt2);
6479   push(cnt1);
6480   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6481 
6482   // Is the minimum length zero?
6483   testl(cnt2, cnt2);
6484   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6485   if (ae == StrIntrinsicNode::LL) {
6486     // Load first bytes
6487     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6488     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6489   } else if (ae == StrIntrinsicNode::UU) {
6490     // Load first characters
6491     load_unsigned_short(result, Address(str1, 0));
6492     load_unsigned_short(cnt1, Address(str2, 0));
6493   } else {
6494     load_unsigned_byte(result, Address(str1, 0));
6495     load_unsigned_short(cnt1, Address(str2, 0));
6496   }
6497   subl(result, cnt1);
6498   jcc(Assembler::notZero,  POP_LABEL);
6499 
6500   if (ae == StrIntrinsicNode::UU) {
6501     // Divide length by 2 to get number of chars
6502     shrl(cnt2, 1);
6503   }
6504   cmpl(cnt2, 1);
6505   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6506 
6507   // Check if the strings start at the same location and setup scale and stride
6508   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6509     cmpptr(str1, str2);
6510     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6511     if (ae == StrIntrinsicNode::LL) {
6512       scale = Address::times_1;
6513       stride = 16;
6514     } else {
6515       scale = Address::times_2;
6516       stride = 8;
6517     }
6518   } else {
6519     scale1 = Address::times_1;
6520     scale2 = Address::times_2;
6521     // scale not used
6522     stride = 8;
6523   }
6524 
6525   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6526     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6527     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6528     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6529     Label COMPARE_TAIL_LONG;
6530     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6531 
6532     int pcmpmask = 0x19;
6533     if (ae == StrIntrinsicNode::LL) {
6534       pcmpmask &= ~0x01;
6535     }
6536 
6537     // Setup to compare 16-chars (32-bytes) vectors,
6538     // start from first character again because it has aligned address.
6539     if (ae == StrIntrinsicNode::LL) {
6540       stride2 = 32;
6541     } else {
6542       stride2 = 16;
6543     }
6544     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6545       adr_stride = stride << scale;
6546     } else {
6547       adr_stride1 = 8;  //stride << scale1;
6548       adr_stride2 = 16; //stride << scale2;
6549     }
6550 
6551     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6552     // rax and rdx are used by pcmpestri as elements counters
6553     movl(result, cnt2);
6554     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6555     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6556 
6557     // fast path : compare first 2 8-char vectors.
6558     bind(COMPARE_16_CHARS);
6559     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6560       movdqu(vec1, Address(str1, 0));
6561     } else {
6562       pmovzxbw(vec1, Address(str1, 0));
6563     }
6564     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6565     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6566 
6567     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6568       movdqu(vec1, Address(str1, adr_stride));
6569       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6570     } else {
6571       pmovzxbw(vec1, Address(str1, adr_stride1));
6572       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6573     }
6574     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6575     addl(cnt1, stride);
6576 
6577     // Compare the characters at index in cnt1
6578     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6579     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6580     subl(result, cnt2);
6581     jmp(POP_LABEL);
6582 
6583     // Setup the registers to start vector comparison loop
6584     bind(COMPARE_WIDE_VECTORS);
6585     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6586       lea(str1, Address(str1, result, scale));
6587       lea(str2, Address(str2, result, scale));
6588     } else {
6589       lea(str1, Address(str1, result, scale1));
6590       lea(str2, Address(str2, result, scale2));
6591     }
6592     subl(result, stride2);
6593     subl(cnt2, stride2);
6594     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6595     negptr(result);
6596 
6597     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6598     bind(COMPARE_WIDE_VECTORS_LOOP);
6599 
6600 #ifdef _LP64
6601     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6602       cmpl(cnt2, stride2x2);
6603       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6604       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6605       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6606 
6607       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6608       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6609         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6610         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6611       } else {
6612         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6613         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6614       }
6615       kortestql(k7, k7);
6616       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6617       addptr(result, stride2x2);  // update since we already compared at this addr
6618       subl(cnt2, stride2x2);      // and sub the size too
6619       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6620 
6621       vpxor(vec1, vec1);
6622       jmpb(COMPARE_WIDE_TAIL);
6623     }//if (VM_Version::supports_avx512vlbw())
6624 #endif // _LP64
6625 
6626 
6627     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6628     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6629       vmovdqu(vec1, Address(str1, result, scale));
6630       vpxor(vec1, Address(str2, result, scale));
6631     } else {
6632       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6633       vpxor(vec1, Address(str2, result, scale2));
6634     }
6635     vptest(vec1, vec1);
6636     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6637     addptr(result, stride2);
6638     subl(cnt2, stride2);
6639     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6640     // clean upper bits of YMM registers
6641     vpxor(vec1, vec1);
6642 
6643     // compare wide vectors tail
6644     bind(COMPARE_WIDE_TAIL);
6645     testptr(result, result);
6646     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6647 
6648     movl(result, stride2);
6649     movl(cnt2, result);
6650     negptr(result);
6651     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6652 
6653     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6654     bind(VECTOR_NOT_EQUAL);
6655     // clean upper bits of YMM registers
6656     vpxor(vec1, vec1);
6657     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6658       lea(str1, Address(str1, result, scale));
6659       lea(str2, Address(str2, result, scale));
6660     } else {
6661       lea(str1, Address(str1, result, scale1));
6662       lea(str2, Address(str2, result, scale2));
6663     }
6664     jmp(COMPARE_16_CHARS);
6665 
6666     // Compare tail chars, length between 1 to 15 chars
6667     bind(COMPARE_TAIL_LONG);
6668     movl(cnt2, result);
6669     cmpl(cnt2, stride);
6670     jcc(Assembler::less, COMPARE_SMALL_STR);
6671 
6672     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6673       movdqu(vec1, Address(str1, 0));
6674     } else {
6675       pmovzxbw(vec1, Address(str1, 0));
6676     }
6677     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6678     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6679     subptr(cnt2, stride);
6680     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6681     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6682       lea(str1, Address(str1, result, scale));
6683       lea(str2, Address(str2, result, scale));
6684     } else {
6685       lea(str1, Address(str1, result, scale1));
6686       lea(str2, Address(str2, result, scale2));
6687     }
6688     negptr(cnt2);
6689     jmpb(WHILE_HEAD_LABEL);
6690 
6691     bind(COMPARE_SMALL_STR);
6692   } else if (UseSSE42Intrinsics) {
6693     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6694     int pcmpmask = 0x19;
6695     // Setup to compare 8-char (16-byte) vectors,
6696     // start from first character again because it has aligned address.
6697     movl(result, cnt2);
6698     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6699     if (ae == StrIntrinsicNode::LL) {
6700       pcmpmask &= ~0x01;
6701     }
6702     jcc(Assembler::zero, COMPARE_TAIL);
6703     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6704       lea(str1, Address(str1, result, scale));
6705       lea(str2, Address(str2, result, scale));
6706     } else {
6707       lea(str1, Address(str1, result, scale1));
6708       lea(str2, Address(str2, result, scale2));
6709     }
6710     negptr(result);
6711 
6712     // pcmpestri
6713     //   inputs:
6714     //     vec1- substring
6715     //     rax - negative string length (elements count)
6716     //     mem - scanned string
6717     //     rdx - string length (elements count)
6718     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6719     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6720     //   outputs:
6721     //     rcx - first mismatched element index
6722     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6723 
6724     bind(COMPARE_WIDE_VECTORS);
6725     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6726       movdqu(vec1, Address(str1, result, scale));
6727       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6728     } else {
6729       pmovzxbw(vec1, Address(str1, result, scale1));
6730       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6731     }
6732     // After pcmpestri cnt1(rcx) contains mismatched element index
6733 
6734     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6735     addptr(result, stride);
6736     subptr(cnt2, stride);
6737     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6738 
6739     // compare wide vectors tail
6740     testptr(result, result);
6741     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6742 
6743     movl(cnt2, stride);
6744     movl(result, stride);
6745     negptr(result);
6746     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6747       movdqu(vec1, Address(str1, result, scale));
6748       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6749     } else {
6750       pmovzxbw(vec1, Address(str1, result, scale1));
6751       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6752     }
6753     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6754 
6755     // Mismatched characters in the vectors
6756     bind(VECTOR_NOT_EQUAL);
6757     addptr(cnt1, result);
6758     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6759     subl(result, cnt2);
6760     jmpb(POP_LABEL);
6761 
6762     bind(COMPARE_TAIL); // limit is zero
6763     movl(cnt2, result);
6764     // Fallthru to tail compare
6765   }
6766   // Shift str2 and str1 to the end of the arrays, negate min
6767   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6768     lea(str1, Address(str1, cnt2, scale));
6769     lea(str2, Address(str2, cnt2, scale));
6770   } else {
6771     lea(str1, Address(str1, cnt2, scale1));
6772     lea(str2, Address(str2, cnt2, scale2));
6773   }
6774   decrementl(cnt2);  // first character was compared already
6775   negptr(cnt2);
6776 
6777   // Compare the rest of the elements
6778   bind(WHILE_HEAD_LABEL);
6779   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6780   subl(result, cnt1);
6781   jccb(Assembler::notZero, POP_LABEL);
6782   increment(cnt2);
6783   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6784 
6785   // Strings are equal up to min length.  Return the length difference.
6786   bind(LENGTH_DIFF_LABEL);
6787   pop(result);
6788   if (ae == StrIntrinsicNode::UU) {
6789     // Divide diff by 2 to get number of chars
6790     sarl(result, 1);
6791   }
6792   jmpb(DONE_LABEL);
6793 
6794 #ifdef _LP64
6795   if (VM_Version::supports_avx512vlbw()) {
6796 
6797     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6798 
6799     kmovql(cnt1, k7);
6800     notq(cnt1);
6801     bsfq(cnt2, cnt1);
6802     if (ae != StrIntrinsicNode::LL) {
6803       // Divide diff by 2 to get number of chars
6804       sarl(cnt2, 1);
6805     }
6806     addq(result, cnt2);
6807     if (ae == StrIntrinsicNode::LL) {
6808       load_unsigned_byte(cnt1, Address(str2, result));
6809       load_unsigned_byte(result, Address(str1, result));
6810     } else if (ae == StrIntrinsicNode::UU) {
6811       load_unsigned_short(cnt1, Address(str2, result, scale));
6812       load_unsigned_short(result, Address(str1, result, scale));
6813     } else {
6814       load_unsigned_short(cnt1, Address(str2, result, scale2));
6815       load_unsigned_byte(result, Address(str1, result, scale1));
6816     }
6817     subl(result, cnt1);
6818     jmpb(POP_LABEL);
6819   }//if (VM_Version::supports_avx512vlbw())
6820 #endif // _LP64
6821 
6822   // Discard the stored length difference
6823   bind(POP_LABEL);
6824   pop(cnt1);
6825 
6826   // That's it
6827   bind(DONE_LABEL);
6828   if(ae == StrIntrinsicNode::UL) {
6829     negl(result);
6830   }
6831 
6832 }
6833 
6834 // Search for Non-ASCII character (Negative byte value) in a byte array,
6835 // return true if it has any and false otherwise.
6836 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6837 //   @HotSpotIntrinsicCandidate
6838 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6839 //     for (int i = off; i < off + len; i++) {
6840 //       if (ba[i] < 0) {
6841 //         return true;
6842 //       }
6843 //     }
6844 //     return false;
6845 //   }
6846 void MacroAssembler::has_negatives(Register ary1, Register len,
6847   Register result, Register tmp1,
6848   XMMRegister vec1, XMMRegister vec2) {
6849   // rsi: byte array
6850   // rcx: len
6851   // rax: result
6852   ShortBranchVerifier sbv(this);
6853   assert_different_registers(ary1, len, result, tmp1);
6854   assert_different_registers(vec1, vec2);
6855   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6856 
6857   // len == 0
6858   testl(len, len);
6859   jcc(Assembler::zero, FALSE_LABEL);
6860 
6861   if ((UseAVX > 2) && // AVX512
6862     VM_Version::supports_avx512vlbw() &&
6863     VM_Version::supports_bmi2()) {
6864 
6865     set_vector_masking();  // opening of the stub context for programming mask registers
6866 
6867     Label test_64_loop, test_tail;
6868     Register tmp3_aliased = len;
6869 
6870     movl(tmp1, len);
6871     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6872 
6873     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6874     andl(len, ~(64 - 1));    // vector count (in chars)
6875     jccb(Assembler::zero, test_tail);
6876 
6877     lea(ary1, Address(ary1, len, Address::times_1));
6878     negptr(len);
6879 
6880     bind(test_64_loop);
6881     // Check whether our 64 elements of size byte contain negatives
6882     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6883     kortestql(k2, k2);
6884     jcc(Assembler::notZero, TRUE_LABEL);
6885 
6886     addptr(len, 64);
6887     jccb(Assembler::notZero, test_64_loop);
6888 
6889 
6890     bind(test_tail);
6891     // bail out when there is nothing to be done
6892     testl(tmp1, -1);
6893     jcc(Assembler::zero, FALSE_LABEL);
6894 
6895     // Save k1
6896     kmovql(k3, k1);
6897 
6898     // ~(~0 << len) applied up to two times (for 32-bit scenario)
6899 #ifdef _LP64
6900     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
6901     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
6902     notq(tmp3_aliased);
6903     kmovql(k1, tmp3_aliased);
6904 #else
6905     Label k_init;
6906     jmp(k_init);
6907 
6908     // We could not read 64-bits from a general purpose register thus we move
6909     // data required to compose 64 1's to the instruction stream
6910     // We emit 64 byte wide series of elements from 0..63 which later on would
6911     // be used as a compare targets with tail count contained in tmp1 register.
6912     // Result would be a k1 register having tmp1 consecutive number or 1
6913     // counting from least significant bit.
6914     address tmp = pc();
6915     emit_int64(0x0706050403020100);
6916     emit_int64(0x0F0E0D0C0B0A0908);
6917     emit_int64(0x1716151413121110);
6918     emit_int64(0x1F1E1D1C1B1A1918);
6919     emit_int64(0x2726252423222120);
6920     emit_int64(0x2F2E2D2C2B2A2928);
6921     emit_int64(0x3736353433323130);
6922     emit_int64(0x3F3E3D3C3B3A3938);
6923 
6924     bind(k_init);
6925     lea(len, InternalAddress(tmp));
6926     // create mask to test for negative byte inside a vector
6927     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
6928     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
6929 
6930 #endif
6931     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
6932     ktestq(k2, k1);
6933     // Restore k1
6934     kmovql(k1, k3);
6935     jcc(Assembler::notZero, TRUE_LABEL);
6936 
6937     jmp(FALSE_LABEL);
6938 
6939     clear_vector_masking();   // closing of the stub context for programming mask registers
6940   } else {
6941     movl(result, len); // copy
6942 
6943     if (UseAVX == 2 && UseSSE >= 2) {
6944       // With AVX2, use 32-byte vector compare
6945       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6946 
6947       // Compare 32-byte vectors
6948       andl(result, 0x0000001f);  //   tail count (in bytes)
6949       andl(len, 0xffffffe0);   // vector count (in bytes)
6950       jccb(Assembler::zero, COMPARE_TAIL);
6951 
6952       lea(ary1, Address(ary1, len, Address::times_1));
6953       negptr(len);
6954 
6955       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
6956       movdl(vec2, tmp1);
6957       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
6958 
6959       bind(COMPARE_WIDE_VECTORS);
6960       vmovdqu(vec1, Address(ary1, len, Address::times_1));
6961       vptest(vec1, vec2);
6962       jccb(Assembler::notZero, TRUE_LABEL);
6963       addptr(len, 32);
6964       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6965 
6966       testl(result, result);
6967       jccb(Assembler::zero, FALSE_LABEL);
6968 
6969       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6970       vptest(vec1, vec2);
6971       jccb(Assembler::notZero, TRUE_LABEL);
6972       jmpb(FALSE_LABEL);
6973 
6974       bind(COMPARE_TAIL); // len is zero
6975       movl(len, result);
6976       // Fallthru to tail compare
6977     } else if (UseSSE42Intrinsics) {
6978       // With SSE4.2, use double quad vector compare
6979       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6980 
6981       // Compare 16-byte vectors
6982       andl(result, 0x0000000f);  //   tail count (in bytes)
6983       andl(len, 0xfffffff0);   // vector count (in bytes)
6984       jcc(Assembler::zero, COMPARE_TAIL);
6985 
6986       lea(ary1, Address(ary1, len, Address::times_1));
6987       negptr(len);
6988 
6989       movl(tmp1, 0x80808080);
6990       movdl(vec2, tmp1);
6991       pshufd(vec2, vec2, 0);
6992 
6993       bind(COMPARE_WIDE_VECTORS);
6994       movdqu(vec1, Address(ary1, len, Address::times_1));
6995       ptest(vec1, vec2);
6996       jcc(Assembler::notZero, TRUE_LABEL);
6997       addptr(len, 16);
6998       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6999 
7000       testl(result, result);
7001       jcc(Assembler::zero, FALSE_LABEL);
7002 
7003       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7004       ptest(vec1, vec2);
7005       jccb(Assembler::notZero, TRUE_LABEL);
7006       jmpb(FALSE_LABEL);
7007 
7008       bind(COMPARE_TAIL); // len is zero
7009       movl(len, result);
7010       // Fallthru to tail compare
7011     }
7012   }
7013   // Compare 4-byte vectors
7014   andl(len, 0xfffffffc); // vector count (in bytes)
7015   jccb(Assembler::zero, COMPARE_CHAR);
7016 
7017   lea(ary1, Address(ary1, len, Address::times_1));
7018   negptr(len);
7019 
7020   bind(COMPARE_VECTORS);
7021   movl(tmp1, Address(ary1, len, Address::times_1));
7022   andl(tmp1, 0x80808080);
7023   jccb(Assembler::notZero, TRUE_LABEL);
7024   addptr(len, 4);
7025   jcc(Assembler::notZero, COMPARE_VECTORS);
7026 
7027   // Compare trailing char (final 2 bytes), if any
7028   bind(COMPARE_CHAR);
7029   testl(result, 0x2);   // tail  char
7030   jccb(Assembler::zero, COMPARE_BYTE);
7031   load_unsigned_short(tmp1, Address(ary1, 0));
7032   andl(tmp1, 0x00008080);
7033   jccb(Assembler::notZero, TRUE_LABEL);
7034   subptr(result, 2);
7035   lea(ary1, Address(ary1, 2));
7036 
7037   bind(COMPARE_BYTE);
7038   testl(result, 0x1);   // tail  byte
7039   jccb(Assembler::zero, FALSE_LABEL);
7040   load_unsigned_byte(tmp1, Address(ary1, 0));
7041   andl(tmp1, 0x00000080);
7042   jccb(Assembler::notEqual, TRUE_LABEL);
7043   jmpb(FALSE_LABEL);
7044 
7045   bind(TRUE_LABEL);
7046   movl(result, 1);   // return true
7047   jmpb(DONE);
7048 
7049   bind(FALSE_LABEL);
7050   xorl(result, result); // return false
7051 
7052   // That's it
7053   bind(DONE);
7054   if (UseAVX >= 2 && UseSSE >= 2) {
7055     // clean upper bits of YMM registers
7056     vpxor(vec1, vec1);
7057     vpxor(vec2, vec2);
7058   }
7059 }
7060 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7061 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7062                                    Register limit, Register result, Register chr,
7063                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7064   ShortBranchVerifier sbv(this);
7065   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7066 
7067   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7068   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7069 
7070   if (is_array_equ) {
7071     // Check the input args
7072     cmpoop(ary1, ary2);
7073     jcc(Assembler::equal, TRUE_LABEL);
7074 
7075     // Need additional checks for arrays_equals.
7076     testptr(ary1, ary1);
7077     jcc(Assembler::zero, FALSE_LABEL);
7078     testptr(ary2, ary2);
7079     jcc(Assembler::zero, FALSE_LABEL);
7080 
7081     // Check the lengths
7082     movl(limit, Address(ary1, length_offset));
7083     cmpl(limit, Address(ary2, length_offset));
7084     jcc(Assembler::notEqual, FALSE_LABEL);
7085   }
7086 
7087   // count == 0
7088   testl(limit, limit);
7089   jcc(Assembler::zero, TRUE_LABEL);
7090 
7091   if (is_array_equ) {
7092     // Load array address
7093     lea(ary1, Address(ary1, base_offset));
7094     lea(ary2, Address(ary2, base_offset));
7095   }
7096 
7097   if (is_array_equ && is_char) {
7098     // arrays_equals when used for char[].
7099     shll(limit, 1);      // byte count != 0
7100   }
7101   movl(result, limit); // copy
7102 
7103   if (UseAVX >= 2) {
7104     // With AVX2, use 32-byte vector compare
7105     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7106 
7107     // Compare 32-byte vectors
7108     andl(result, 0x0000001f);  //   tail count (in bytes)
7109     andl(limit, 0xffffffe0);   // vector count (in bytes)
7110     jcc(Assembler::zero, COMPARE_TAIL);
7111 
7112     lea(ary1, Address(ary1, limit, Address::times_1));
7113     lea(ary2, Address(ary2, limit, Address::times_1));
7114     negptr(limit);
7115 
7116     bind(COMPARE_WIDE_VECTORS);
7117 
7118 #ifdef _LP64
7119     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7120       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7121 
7122       cmpl(limit, -64);
7123       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7124 
7125       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7126 
7127       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
7128       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
7129       kortestql(k7, k7);
7130       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7131       addptr(limit, 64);  // update since we already compared at this addr
7132       cmpl(limit, -64);
7133       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7134 
7135       // At this point we may still need to compare -limit+result bytes.
7136       // We could execute the next two instruction and just continue via non-wide path:
7137       //  cmpl(limit, 0);
7138       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
7139       // But since we stopped at the points ary{1,2}+limit which are
7140       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
7141       // (|limit| <= 32 and result < 32),
7142       // we may just compare the last 64 bytes.
7143       //
7144       addptr(result, -64);   // it is safe, bc we just came from this area
7145       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
7146       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
7147       kortestql(k7, k7);
7148       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7149 
7150       jmp(TRUE_LABEL);
7151 
7152       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7153 
7154     }//if (VM_Version::supports_avx512vlbw())
7155 #endif //_LP64
7156 
7157     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7158     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7159     vpxor(vec1, vec2);
7160 
7161     vptest(vec1, vec1);
7162     jcc(Assembler::notZero, FALSE_LABEL);
7163     addptr(limit, 32);
7164     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7165 
7166     testl(result, result);
7167     jcc(Assembler::zero, TRUE_LABEL);
7168 
7169     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7170     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7171     vpxor(vec1, vec2);
7172 
7173     vptest(vec1, vec1);
7174     jccb(Assembler::notZero, FALSE_LABEL);
7175     jmpb(TRUE_LABEL);
7176 
7177     bind(COMPARE_TAIL); // limit is zero
7178     movl(limit, result);
7179     // Fallthru to tail compare
7180   } else if (UseSSE42Intrinsics) {
7181     // With SSE4.2, use double quad vector compare
7182     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7183 
7184     // Compare 16-byte vectors
7185     andl(result, 0x0000000f);  //   tail count (in bytes)
7186     andl(limit, 0xfffffff0);   // vector count (in bytes)
7187     jcc(Assembler::zero, COMPARE_TAIL);
7188 
7189     lea(ary1, Address(ary1, limit, Address::times_1));
7190     lea(ary2, Address(ary2, limit, Address::times_1));
7191     negptr(limit);
7192 
7193     bind(COMPARE_WIDE_VECTORS);
7194     movdqu(vec1, Address(ary1, limit, Address::times_1));
7195     movdqu(vec2, Address(ary2, limit, Address::times_1));
7196     pxor(vec1, vec2);
7197 
7198     ptest(vec1, vec1);
7199     jcc(Assembler::notZero, FALSE_LABEL);
7200     addptr(limit, 16);
7201     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7202 
7203     testl(result, result);
7204     jcc(Assembler::zero, TRUE_LABEL);
7205 
7206     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7207     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7208     pxor(vec1, vec2);
7209 
7210     ptest(vec1, vec1);
7211     jccb(Assembler::notZero, FALSE_LABEL);
7212     jmpb(TRUE_LABEL);
7213 
7214     bind(COMPARE_TAIL); // limit is zero
7215     movl(limit, result);
7216     // Fallthru to tail compare
7217   }
7218 
7219   // Compare 4-byte vectors
7220   andl(limit, 0xfffffffc); // vector count (in bytes)
7221   jccb(Assembler::zero, COMPARE_CHAR);
7222 
7223   lea(ary1, Address(ary1, limit, Address::times_1));
7224   lea(ary2, Address(ary2, limit, Address::times_1));
7225   negptr(limit);
7226 
7227   bind(COMPARE_VECTORS);
7228   movl(chr, Address(ary1, limit, Address::times_1));
7229   cmpl(chr, Address(ary2, limit, Address::times_1));
7230   jccb(Assembler::notEqual, FALSE_LABEL);
7231   addptr(limit, 4);
7232   jcc(Assembler::notZero, COMPARE_VECTORS);
7233 
7234   // Compare trailing char (final 2 bytes), if any
7235   bind(COMPARE_CHAR);
7236   testl(result, 0x2);   // tail  char
7237   jccb(Assembler::zero, COMPARE_BYTE);
7238   load_unsigned_short(chr, Address(ary1, 0));
7239   load_unsigned_short(limit, Address(ary2, 0));
7240   cmpl(chr, limit);
7241   jccb(Assembler::notEqual, FALSE_LABEL);
7242 
7243   if (is_array_equ && is_char) {
7244     bind(COMPARE_BYTE);
7245   } else {
7246     lea(ary1, Address(ary1, 2));
7247     lea(ary2, Address(ary2, 2));
7248 
7249     bind(COMPARE_BYTE);
7250     testl(result, 0x1);   // tail  byte
7251     jccb(Assembler::zero, TRUE_LABEL);
7252     load_unsigned_byte(chr, Address(ary1, 0));
7253     load_unsigned_byte(limit, Address(ary2, 0));
7254     cmpl(chr, limit);
7255     jccb(Assembler::notEqual, FALSE_LABEL);
7256   }
7257   bind(TRUE_LABEL);
7258   movl(result, 1);   // return true
7259   jmpb(DONE);
7260 
7261   bind(FALSE_LABEL);
7262   xorl(result, result); // return false
7263 
7264   // That's it
7265   bind(DONE);
7266   if (UseAVX >= 2) {
7267     // clean upper bits of YMM registers
7268     vpxor(vec1, vec1);
7269     vpxor(vec2, vec2);
7270   }
7271 }
7272 
7273 #endif
7274 
7275 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7276                                    Register to, Register value, Register count,
7277                                    Register rtmp, XMMRegister xtmp) {
7278   ShortBranchVerifier sbv(this);
7279   assert_different_registers(to, value, count, rtmp);
7280   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
7281   Label L_fill_2_bytes, L_fill_4_bytes;
7282 
7283   int shift = -1;
7284   switch (t) {
7285     case T_BYTE:
7286       shift = 2;
7287       break;
7288     case T_SHORT:
7289       shift = 1;
7290       break;
7291     case T_INT:
7292       shift = 0;
7293       break;
7294     default: ShouldNotReachHere();
7295   }
7296 
7297   if (t == T_BYTE) {
7298     andl(value, 0xff);
7299     movl(rtmp, value);
7300     shll(rtmp, 8);
7301     orl(value, rtmp);
7302   }
7303   if (t == T_SHORT) {
7304     andl(value, 0xffff);
7305   }
7306   if (t == T_BYTE || t == T_SHORT) {
7307     movl(rtmp, value);
7308     shll(rtmp, 16);
7309     orl(value, rtmp);
7310   }
7311 
7312   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7313   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7314   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7315     // align source address at 4 bytes address boundary
7316     if (t == T_BYTE) {
7317       // One byte misalignment happens only for byte arrays
7318       testptr(to, 1);
7319       jccb(Assembler::zero, L_skip_align1);
7320       movb(Address(to, 0), value);
7321       increment(to);
7322       decrement(count);
7323       BIND(L_skip_align1);
7324     }
7325     // Two bytes misalignment happens only for byte and short (char) arrays
7326     testptr(to, 2);
7327     jccb(Assembler::zero, L_skip_align2);
7328     movw(Address(to, 0), value);
7329     addptr(to, 2);
7330     subl(count, 1<<(shift-1));
7331     BIND(L_skip_align2);
7332   }
7333   if (UseSSE < 2) {
7334     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7335     // Fill 32-byte chunks
7336     subl(count, 8 << shift);
7337     jcc(Assembler::less, L_check_fill_8_bytes);
7338     align(16);
7339 
7340     BIND(L_fill_32_bytes_loop);
7341 
7342     for (int i = 0; i < 32; i += 4) {
7343       movl(Address(to, i), value);
7344     }
7345 
7346     addptr(to, 32);
7347     subl(count, 8 << shift);
7348     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7349     BIND(L_check_fill_8_bytes);
7350     addl(count, 8 << shift);
7351     jccb(Assembler::zero, L_exit);
7352     jmpb(L_fill_8_bytes);
7353 
7354     //
7355     // length is too short, just fill qwords
7356     //
7357     BIND(L_fill_8_bytes_loop);
7358     movl(Address(to, 0), value);
7359     movl(Address(to, 4), value);
7360     addptr(to, 8);
7361     BIND(L_fill_8_bytes);
7362     subl(count, 1 << (shift + 1));
7363     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7364     // fall through to fill 4 bytes
7365   } else {
7366     Label L_fill_32_bytes;
7367     if (!UseUnalignedLoadStores) {
7368       // align to 8 bytes, we know we are 4 byte aligned to start
7369       testptr(to, 4);
7370       jccb(Assembler::zero, L_fill_32_bytes);
7371       movl(Address(to, 0), value);
7372       addptr(to, 4);
7373       subl(count, 1<<shift);
7374     }
7375     BIND(L_fill_32_bytes);
7376     {
7377       assert( UseSSE >= 2, "supported cpu only" );
7378       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7379       if (UseAVX > 2) {
7380         movl(rtmp, 0xffff);
7381         kmovwl(k1, rtmp);
7382       }
7383       movdl(xtmp, value);
7384       if (UseAVX > 2 && UseUnalignedLoadStores) {
7385         // Fill 64-byte chunks
7386         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7387         vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7388 
7389         subl(count, 16 << shift);
7390         jcc(Assembler::less, L_check_fill_32_bytes);
7391         align(16);
7392 
7393         BIND(L_fill_64_bytes_loop);
7394         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7395         addptr(to, 64);
7396         subl(count, 16 << shift);
7397         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7398 
7399         BIND(L_check_fill_32_bytes);
7400         addl(count, 8 << shift);
7401         jccb(Assembler::less, L_check_fill_8_bytes);
7402         vmovdqu(Address(to, 0), xtmp);
7403         addptr(to, 32);
7404         subl(count, 8 << shift);
7405 
7406         BIND(L_check_fill_8_bytes);
7407       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7408         // Fill 64-byte chunks
7409         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7410         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7411 
7412         subl(count, 16 << shift);
7413         jcc(Assembler::less, L_check_fill_32_bytes);
7414         align(16);
7415 
7416         BIND(L_fill_64_bytes_loop);
7417         vmovdqu(Address(to, 0), xtmp);
7418         vmovdqu(Address(to, 32), xtmp);
7419         addptr(to, 64);
7420         subl(count, 16 << shift);
7421         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7422 
7423         BIND(L_check_fill_32_bytes);
7424         addl(count, 8 << shift);
7425         jccb(Assembler::less, L_check_fill_8_bytes);
7426         vmovdqu(Address(to, 0), xtmp);
7427         addptr(to, 32);
7428         subl(count, 8 << shift);
7429 
7430         BIND(L_check_fill_8_bytes);
7431         // clean upper bits of YMM registers
7432         movdl(xtmp, value);
7433         pshufd(xtmp, xtmp, 0);
7434       } else {
7435         // Fill 32-byte chunks
7436         pshufd(xtmp, xtmp, 0);
7437 
7438         subl(count, 8 << shift);
7439         jcc(Assembler::less, L_check_fill_8_bytes);
7440         align(16);
7441 
7442         BIND(L_fill_32_bytes_loop);
7443 
7444         if (UseUnalignedLoadStores) {
7445           movdqu(Address(to, 0), xtmp);
7446           movdqu(Address(to, 16), xtmp);
7447         } else {
7448           movq(Address(to, 0), xtmp);
7449           movq(Address(to, 8), xtmp);
7450           movq(Address(to, 16), xtmp);
7451           movq(Address(to, 24), xtmp);
7452         }
7453 
7454         addptr(to, 32);
7455         subl(count, 8 << shift);
7456         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7457 
7458         BIND(L_check_fill_8_bytes);
7459       }
7460       addl(count, 8 << shift);
7461       jccb(Assembler::zero, L_exit);
7462       jmpb(L_fill_8_bytes);
7463 
7464       //
7465       // length is too short, just fill qwords
7466       //
7467       BIND(L_fill_8_bytes_loop);
7468       movq(Address(to, 0), xtmp);
7469       addptr(to, 8);
7470       BIND(L_fill_8_bytes);
7471       subl(count, 1 << (shift + 1));
7472       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7473     }
7474   }
7475   // fill trailing 4 bytes
7476   BIND(L_fill_4_bytes);
7477   testl(count, 1<<shift);
7478   jccb(Assembler::zero, L_fill_2_bytes);
7479   movl(Address(to, 0), value);
7480   if (t == T_BYTE || t == T_SHORT) {
7481     addptr(to, 4);
7482     BIND(L_fill_2_bytes);
7483     // fill trailing 2 bytes
7484     testl(count, 1<<(shift-1));
7485     jccb(Assembler::zero, L_fill_byte);
7486     movw(Address(to, 0), value);
7487     if (t == T_BYTE) {
7488       addptr(to, 2);
7489       BIND(L_fill_byte);
7490       // fill trailing byte
7491       testl(count, 1);
7492       jccb(Assembler::zero, L_exit);
7493       movb(Address(to, 0), value);
7494     } else {
7495       BIND(L_fill_byte);
7496     }
7497   } else {
7498     BIND(L_fill_2_bytes);
7499   }
7500   BIND(L_exit);
7501 }
7502 
7503 // encode char[] to byte[] in ISO_8859_1
7504    //@HotSpotIntrinsicCandidate
7505    //private static int implEncodeISOArray(byte[] sa, int sp,
7506    //byte[] da, int dp, int len) {
7507    //  int i = 0;
7508    //  for (; i < len; i++) {
7509    //    char c = StringUTF16.getChar(sa, sp++);
7510    //    if (c > '\u00FF')
7511    //      break;
7512    //    da[dp++] = (byte)c;
7513    //  }
7514    //  return i;
7515    //}
7516 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7517   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7518   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7519   Register tmp5, Register result) {
7520 
7521   // rsi: src
7522   // rdi: dst
7523   // rdx: len
7524   // rcx: tmp5
7525   // rax: result
7526   ShortBranchVerifier sbv(this);
7527   assert_different_registers(src, dst, len, tmp5, result);
7528   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7529 
7530   // set result
7531   xorl(result, result);
7532   // check for zero length
7533   testl(len, len);
7534   jcc(Assembler::zero, L_done);
7535 
7536   movl(result, len);
7537 
7538   // Setup pointers
7539   lea(src, Address(src, len, Address::times_2)); // char[]
7540   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7541   negptr(len);
7542 
7543   if (UseSSE42Intrinsics || UseAVX >= 2) {
7544     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7545     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7546 
7547     if (UseAVX >= 2) {
7548       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7549       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7550       movdl(tmp1Reg, tmp5);
7551       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7552       jmp(L_chars_32_check);
7553 
7554       bind(L_copy_32_chars);
7555       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7556       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7557       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7558       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7559       jccb(Assembler::notZero, L_copy_32_chars_exit);
7560       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7561       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7562       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7563 
7564       bind(L_chars_32_check);
7565       addptr(len, 32);
7566       jcc(Assembler::lessEqual, L_copy_32_chars);
7567 
7568       bind(L_copy_32_chars_exit);
7569       subptr(len, 16);
7570       jccb(Assembler::greater, L_copy_16_chars_exit);
7571 
7572     } else if (UseSSE42Intrinsics) {
7573       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7574       movdl(tmp1Reg, tmp5);
7575       pshufd(tmp1Reg, tmp1Reg, 0);
7576       jmpb(L_chars_16_check);
7577     }
7578 
7579     bind(L_copy_16_chars);
7580     if (UseAVX >= 2) {
7581       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7582       vptest(tmp2Reg, tmp1Reg);
7583       jcc(Assembler::notZero, L_copy_16_chars_exit);
7584       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7585       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7586     } else {
7587       if (UseAVX > 0) {
7588         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7589         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7590         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7591       } else {
7592         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7593         por(tmp2Reg, tmp3Reg);
7594         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7595         por(tmp2Reg, tmp4Reg);
7596       }
7597       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7598       jccb(Assembler::notZero, L_copy_16_chars_exit);
7599       packuswb(tmp3Reg, tmp4Reg);
7600     }
7601     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7602 
7603     bind(L_chars_16_check);
7604     addptr(len, 16);
7605     jcc(Assembler::lessEqual, L_copy_16_chars);
7606 
7607     bind(L_copy_16_chars_exit);
7608     if (UseAVX >= 2) {
7609       // clean upper bits of YMM registers
7610       vpxor(tmp2Reg, tmp2Reg);
7611       vpxor(tmp3Reg, tmp3Reg);
7612       vpxor(tmp4Reg, tmp4Reg);
7613       movdl(tmp1Reg, tmp5);
7614       pshufd(tmp1Reg, tmp1Reg, 0);
7615     }
7616     subptr(len, 8);
7617     jccb(Assembler::greater, L_copy_8_chars_exit);
7618 
7619     bind(L_copy_8_chars);
7620     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7621     ptest(tmp3Reg, tmp1Reg);
7622     jccb(Assembler::notZero, L_copy_8_chars_exit);
7623     packuswb(tmp3Reg, tmp1Reg);
7624     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7625     addptr(len, 8);
7626     jccb(Assembler::lessEqual, L_copy_8_chars);
7627 
7628     bind(L_copy_8_chars_exit);
7629     subptr(len, 8);
7630     jccb(Assembler::zero, L_done);
7631   }
7632 
7633   bind(L_copy_1_char);
7634   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7635   testl(tmp5, 0xff00);      // check if Unicode char
7636   jccb(Assembler::notZero, L_copy_1_char_exit);
7637   movb(Address(dst, len, Address::times_1, 0), tmp5);
7638   addptr(len, 1);
7639   jccb(Assembler::less, L_copy_1_char);
7640 
7641   bind(L_copy_1_char_exit);
7642   addptr(result, len); // len is negative count of not processed elements
7643 
7644   bind(L_done);
7645 }
7646 
7647 #ifdef _LP64
7648 /**
7649  * Helper for multiply_to_len().
7650  */
7651 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7652   addq(dest_lo, src1);
7653   adcq(dest_hi, 0);
7654   addq(dest_lo, src2);
7655   adcq(dest_hi, 0);
7656 }
7657 
7658 /**
7659  * Multiply 64 bit by 64 bit first loop.
7660  */
7661 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7662                                            Register y, Register y_idx, Register z,
7663                                            Register carry, Register product,
7664                                            Register idx, Register kdx) {
7665   //
7666   //  jlong carry, x[], y[], z[];
7667   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7668   //    huge_128 product = y[idx] * x[xstart] + carry;
7669   //    z[kdx] = (jlong)product;
7670   //    carry  = (jlong)(product >>> 64);
7671   //  }
7672   //  z[xstart] = carry;
7673   //
7674 
7675   Label L_first_loop, L_first_loop_exit;
7676   Label L_one_x, L_one_y, L_multiply;
7677 
7678   decrementl(xstart);
7679   jcc(Assembler::negative, L_one_x);
7680 
7681   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7682   rorq(x_xstart, 32); // convert big-endian to little-endian
7683 
7684   bind(L_first_loop);
7685   decrementl(idx);
7686   jcc(Assembler::negative, L_first_loop_exit);
7687   decrementl(idx);
7688   jcc(Assembler::negative, L_one_y);
7689   movq(y_idx, Address(y, idx, Address::times_4,  0));
7690   rorq(y_idx, 32); // convert big-endian to little-endian
7691   bind(L_multiply);
7692   movq(product, x_xstart);
7693   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7694   addq(product, carry);
7695   adcq(rdx, 0);
7696   subl(kdx, 2);
7697   movl(Address(z, kdx, Address::times_4,  4), product);
7698   shrq(product, 32);
7699   movl(Address(z, kdx, Address::times_4,  0), product);
7700   movq(carry, rdx);
7701   jmp(L_first_loop);
7702 
7703   bind(L_one_y);
7704   movl(y_idx, Address(y,  0));
7705   jmp(L_multiply);
7706 
7707   bind(L_one_x);
7708   movl(x_xstart, Address(x,  0));
7709   jmp(L_first_loop);
7710 
7711   bind(L_first_loop_exit);
7712 }
7713 
7714 /**
7715  * Multiply 64 bit by 64 bit and add 128 bit.
7716  */
7717 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7718                                             Register yz_idx, Register idx,
7719                                             Register carry, Register product, int offset) {
7720   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7721   //     z[kdx] = (jlong)product;
7722 
7723   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7724   rorq(yz_idx, 32); // convert big-endian to little-endian
7725   movq(product, x_xstart);
7726   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7727   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7728   rorq(yz_idx, 32); // convert big-endian to little-endian
7729 
7730   add2_with_carry(rdx, product, carry, yz_idx);
7731 
7732   movl(Address(z, idx, Address::times_4,  offset+4), product);
7733   shrq(product, 32);
7734   movl(Address(z, idx, Address::times_4,  offset), product);
7735 
7736 }
7737 
7738 /**
7739  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7740  */
7741 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7742                                              Register yz_idx, Register idx, Register jdx,
7743                                              Register carry, Register product,
7744                                              Register carry2) {
7745   //   jlong carry, x[], y[], z[];
7746   //   int kdx = ystart+1;
7747   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7748   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7749   //     z[kdx+idx+1] = (jlong)product;
7750   //     jlong carry2  = (jlong)(product >>> 64);
7751   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7752   //     z[kdx+idx] = (jlong)product;
7753   //     carry  = (jlong)(product >>> 64);
7754   //   }
7755   //   idx += 2;
7756   //   if (idx > 0) {
7757   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7758   //     z[kdx+idx] = (jlong)product;
7759   //     carry  = (jlong)(product >>> 64);
7760   //   }
7761   //
7762 
7763   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7764 
7765   movl(jdx, idx);
7766   andl(jdx, 0xFFFFFFFC);
7767   shrl(jdx, 2);
7768 
7769   bind(L_third_loop);
7770   subl(jdx, 1);
7771   jcc(Assembler::negative, L_third_loop_exit);
7772   subl(idx, 4);
7773 
7774   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7775   movq(carry2, rdx);
7776 
7777   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7778   movq(carry, rdx);
7779   jmp(L_third_loop);
7780 
7781   bind (L_third_loop_exit);
7782 
7783   andl (idx, 0x3);
7784   jcc(Assembler::zero, L_post_third_loop_done);
7785 
7786   Label L_check_1;
7787   subl(idx, 2);
7788   jcc(Assembler::negative, L_check_1);
7789 
7790   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7791   movq(carry, rdx);
7792 
7793   bind (L_check_1);
7794   addl (idx, 0x2);
7795   andl (idx, 0x1);
7796   subl(idx, 1);
7797   jcc(Assembler::negative, L_post_third_loop_done);
7798 
7799   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7800   movq(product, x_xstart);
7801   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7802   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7803 
7804   add2_with_carry(rdx, product, yz_idx, carry);
7805 
7806   movl(Address(z, idx, Address::times_4,  0), product);
7807   shrq(product, 32);
7808 
7809   shlq(rdx, 32);
7810   orq(product, rdx);
7811   movq(carry, product);
7812 
7813   bind(L_post_third_loop_done);
7814 }
7815 
7816 /**
7817  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7818  *
7819  */
7820 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7821                                                   Register carry, Register carry2,
7822                                                   Register idx, Register jdx,
7823                                                   Register yz_idx1, Register yz_idx2,
7824                                                   Register tmp, Register tmp3, Register tmp4) {
7825   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7826 
7827   //   jlong carry, x[], y[], z[];
7828   //   int kdx = ystart+1;
7829   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7830   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7831   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7832   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7833   //     carry  = (jlong)(tmp4 >>> 64);
7834   //     z[kdx+idx+1] = (jlong)tmp3;
7835   //     z[kdx+idx] = (jlong)tmp4;
7836   //   }
7837   //   idx += 2;
7838   //   if (idx > 0) {
7839   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7840   //     z[kdx+idx] = (jlong)yz_idx1;
7841   //     carry  = (jlong)(yz_idx1 >>> 64);
7842   //   }
7843   //
7844 
7845   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7846 
7847   movl(jdx, idx);
7848   andl(jdx, 0xFFFFFFFC);
7849   shrl(jdx, 2);
7850 
7851   bind(L_third_loop);
7852   subl(jdx, 1);
7853   jcc(Assembler::negative, L_third_loop_exit);
7854   subl(idx, 4);
7855 
7856   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7857   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7858   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7859   rorxq(yz_idx2, yz_idx2, 32);
7860 
7861   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7862   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7863 
7864   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7865   rorxq(yz_idx1, yz_idx1, 32);
7866   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7867   rorxq(yz_idx2, yz_idx2, 32);
7868 
7869   if (VM_Version::supports_adx()) {
7870     adcxq(tmp3, carry);
7871     adoxq(tmp3, yz_idx1);
7872 
7873     adcxq(tmp4, tmp);
7874     adoxq(tmp4, yz_idx2);
7875 
7876     movl(carry, 0); // does not affect flags
7877     adcxq(carry2, carry);
7878     adoxq(carry2, carry);
7879   } else {
7880     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7881     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7882   }
7883   movq(carry, carry2);
7884 
7885   movl(Address(z, idx, Address::times_4, 12), tmp3);
7886   shrq(tmp3, 32);
7887   movl(Address(z, idx, Address::times_4,  8), tmp3);
7888 
7889   movl(Address(z, idx, Address::times_4,  4), tmp4);
7890   shrq(tmp4, 32);
7891   movl(Address(z, idx, Address::times_4,  0), tmp4);
7892 
7893   jmp(L_third_loop);
7894 
7895   bind (L_third_loop_exit);
7896 
7897   andl (idx, 0x3);
7898   jcc(Assembler::zero, L_post_third_loop_done);
7899 
7900   Label L_check_1;
7901   subl(idx, 2);
7902   jcc(Assembler::negative, L_check_1);
7903 
7904   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7905   rorxq(yz_idx1, yz_idx1, 32);
7906   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7907   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7908   rorxq(yz_idx2, yz_idx2, 32);
7909 
7910   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7911 
7912   movl(Address(z, idx, Address::times_4,  4), tmp3);
7913   shrq(tmp3, 32);
7914   movl(Address(z, idx, Address::times_4,  0), tmp3);
7915   movq(carry, tmp4);
7916 
7917   bind (L_check_1);
7918   addl (idx, 0x2);
7919   andl (idx, 0x1);
7920   subl(idx, 1);
7921   jcc(Assembler::negative, L_post_third_loop_done);
7922   movl(tmp4, Address(y, idx, Address::times_4,  0));
7923   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7924   movl(tmp4, Address(z, idx, Address::times_4,  0));
7925 
7926   add2_with_carry(carry2, tmp3, tmp4, carry);
7927 
7928   movl(Address(z, idx, Address::times_4,  0), tmp3);
7929   shrq(tmp3, 32);
7930 
7931   shlq(carry2, 32);
7932   orq(tmp3, carry2);
7933   movq(carry, tmp3);
7934 
7935   bind(L_post_third_loop_done);
7936 }
7937 
7938 /**
7939  * Code for BigInteger::multiplyToLen() instrinsic.
7940  *
7941  * rdi: x
7942  * rax: xlen
7943  * rsi: y
7944  * rcx: ylen
7945  * r8:  z
7946  * r11: zlen
7947  * r12: tmp1
7948  * r13: tmp2
7949  * r14: tmp3
7950  * r15: tmp4
7951  * rbx: tmp5
7952  *
7953  */
7954 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7955                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7956   ShortBranchVerifier sbv(this);
7957   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7958 
7959   push(tmp1);
7960   push(tmp2);
7961   push(tmp3);
7962   push(tmp4);
7963   push(tmp5);
7964 
7965   push(xlen);
7966   push(zlen);
7967 
7968   const Register idx = tmp1;
7969   const Register kdx = tmp2;
7970   const Register xstart = tmp3;
7971 
7972   const Register y_idx = tmp4;
7973   const Register carry = tmp5;
7974   const Register product  = xlen;
7975   const Register x_xstart = zlen;  // reuse register
7976 
7977   // First Loop.
7978   //
7979   //  final static long LONG_MASK = 0xffffffffL;
7980   //  int xstart = xlen - 1;
7981   //  int ystart = ylen - 1;
7982   //  long carry = 0;
7983   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7984   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7985   //    z[kdx] = (int)product;
7986   //    carry = product >>> 32;
7987   //  }
7988   //  z[xstart] = (int)carry;
7989   //
7990 
7991   movl(idx, ylen);      // idx = ylen;
7992   movl(kdx, zlen);      // kdx = xlen+ylen;
7993   xorq(carry, carry);   // carry = 0;
7994 
7995   Label L_done;
7996 
7997   movl(xstart, xlen);
7998   decrementl(xstart);
7999   jcc(Assembler::negative, L_done);
8000 
8001   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
8002 
8003   Label L_second_loop;
8004   testl(kdx, kdx);
8005   jcc(Assembler::zero, L_second_loop);
8006 
8007   Label L_carry;
8008   subl(kdx, 1);
8009   jcc(Assembler::zero, L_carry);
8010 
8011   movl(Address(z, kdx, Address::times_4,  0), carry);
8012   shrq(carry, 32);
8013   subl(kdx, 1);
8014 
8015   bind(L_carry);
8016   movl(Address(z, kdx, Address::times_4,  0), carry);
8017 
8018   // Second and third (nested) loops.
8019   //
8020   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8021   //   carry = 0;
8022   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8023   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8024   //                    (z[k] & LONG_MASK) + carry;
8025   //     z[k] = (int)product;
8026   //     carry = product >>> 32;
8027   //   }
8028   //   z[i] = (int)carry;
8029   // }
8030   //
8031   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8032 
8033   const Register jdx = tmp1;
8034 
8035   bind(L_second_loop);
8036   xorl(carry, carry);    // carry = 0;
8037   movl(jdx, ylen);       // j = ystart+1
8038 
8039   subl(xstart, 1);       // i = xstart-1;
8040   jcc(Assembler::negative, L_done);
8041 
8042   push (z);
8043 
8044   Label L_last_x;
8045   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8046   subl(xstart, 1);       // i = xstart-1;
8047   jcc(Assembler::negative, L_last_x);
8048 
8049   if (UseBMI2Instructions) {
8050     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8051     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8052   } else {
8053     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8054     rorq(x_xstart, 32);  // convert big-endian to little-endian
8055   }
8056 
8057   Label L_third_loop_prologue;
8058   bind(L_third_loop_prologue);
8059 
8060   push (x);
8061   push (xstart);
8062   push (ylen);
8063 
8064 
8065   if (UseBMI2Instructions) {
8066     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8067   } else { // !UseBMI2Instructions
8068     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8069   }
8070 
8071   pop(ylen);
8072   pop(xlen);
8073   pop(x);
8074   pop(z);
8075 
8076   movl(tmp3, xlen);
8077   addl(tmp3, 1);
8078   movl(Address(z, tmp3, Address::times_4,  0), carry);
8079   subl(tmp3, 1);
8080   jccb(Assembler::negative, L_done);
8081 
8082   shrq(carry, 32);
8083   movl(Address(z, tmp3, Address::times_4,  0), carry);
8084   jmp(L_second_loop);
8085 
8086   // Next infrequent code is moved outside loops.
8087   bind(L_last_x);
8088   if (UseBMI2Instructions) {
8089     movl(rdx, Address(x,  0));
8090   } else {
8091     movl(x_xstart, Address(x,  0));
8092   }
8093   jmp(L_third_loop_prologue);
8094 
8095   bind(L_done);
8096 
8097   pop(zlen);
8098   pop(xlen);
8099 
8100   pop(tmp5);
8101   pop(tmp4);
8102   pop(tmp3);
8103   pop(tmp2);
8104   pop(tmp1);
8105 }
8106 
8107 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8108   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8109   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8110   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8111   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8112   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
8113   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8114   Label SAME_TILL_END, DONE;
8115   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8116 
8117   //scale is in rcx in both Win64 and Unix
8118   ShortBranchVerifier sbv(this);
8119 
8120   shlq(length);
8121   xorq(result, result);
8122 
8123   if ((UseAVX > 2) &&
8124       VM_Version::supports_avx512vlbw()) {
8125     set_vector_masking();  // opening of the stub context for programming mask registers
8126     cmpq(length, 64);
8127     jcc(Assembler::less, VECTOR32_TAIL);
8128     movq(tmp1, length);
8129     andq(tmp1, 0x3F);      // tail count
8130     andq(length, ~(0x3F)); //vector count
8131 
8132     bind(VECTOR64_LOOP);
8133     // AVX512 code to compare 64 byte vectors.
8134     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
8135     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
8136     kortestql(k7, k7);
8137     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
8138     addq(result, 64);
8139     subq(length, 64);
8140     jccb(Assembler::notZero, VECTOR64_LOOP);
8141 
8142     //bind(VECTOR64_TAIL);
8143     testq(tmp1, tmp1);
8144     jcc(Assembler::zero, SAME_TILL_END);
8145 
8146     bind(VECTOR64_TAIL);
8147     // AVX512 code to compare upto 63 byte vectors.
8148     // Save k1
8149     kmovql(k3, k1);
8150     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
8151     shlxq(tmp2, tmp2, tmp1);
8152     notq(tmp2);
8153     kmovql(k1, tmp2);
8154 
8155     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
8156     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
8157 
8158     ktestql(k7, k1);
8159     // Restore k1
8160     kmovql(k1, k3);
8161     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
8162 
8163     bind(VECTOR64_NOT_EQUAL);
8164     kmovql(tmp1, k7);
8165     notq(tmp1);
8166     tzcntq(tmp1, tmp1);
8167     addq(result, tmp1);
8168     shrq(result);
8169     jmp(DONE);
8170     bind(VECTOR32_TAIL);
8171     clear_vector_masking();   // closing of the stub context for programming mask registers
8172   }
8173 
8174   cmpq(length, 8);
8175   jcc(Assembler::equal, VECTOR8_LOOP);
8176   jcc(Assembler::less, VECTOR4_TAIL);
8177 
8178   if (UseAVX >= 2) {
8179 
8180     cmpq(length, 16);
8181     jcc(Assembler::equal, VECTOR16_LOOP);
8182     jcc(Assembler::less, VECTOR8_LOOP);
8183 
8184     cmpq(length, 32);
8185     jccb(Assembler::less, VECTOR16_TAIL);
8186 
8187     subq(length, 32);
8188     bind(VECTOR32_LOOP);
8189     vmovdqu(rymm0, Address(obja, result));
8190     vmovdqu(rymm1, Address(objb, result));
8191     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
8192     vptest(rymm2, rymm2);
8193     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8194     addq(result, 32);
8195     subq(length, 32);
8196     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8197     addq(length, 32);
8198     jcc(Assembler::equal, SAME_TILL_END);
8199     //falling through if less than 32 bytes left //close the branch here.
8200 
8201     bind(VECTOR16_TAIL);
8202     cmpq(length, 16);
8203     jccb(Assembler::less, VECTOR8_TAIL);
8204     bind(VECTOR16_LOOP);
8205     movdqu(rymm0, Address(obja, result));
8206     movdqu(rymm1, Address(objb, result));
8207     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8208     ptest(rymm2, rymm2);
8209     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8210     addq(result, 16);
8211     subq(length, 16);
8212     jcc(Assembler::equal, SAME_TILL_END);
8213     //falling through if less than 16 bytes left
8214   } else {//regular intrinsics
8215 
8216     cmpq(length, 16);
8217     jccb(Assembler::less, VECTOR8_TAIL);
8218 
8219     subq(length, 16);
8220     bind(VECTOR16_LOOP);
8221     movdqu(rymm0, Address(obja, result));
8222     movdqu(rymm1, Address(objb, result));
8223     pxor(rymm0, rymm1);
8224     ptest(rymm0, rymm0);
8225     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8226     addq(result, 16);
8227     subq(length, 16);
8228     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8229     addq(length, 16);
8230     jcc(Assembler::equal, SAME_TILL_END);
8231     //falling through if less than 16 bytes left
8232   }
8233 
8234   bind(VECTOR8_TAIL);
8235   cmpq(length, 8);
8236   jccb(Assembler::less, VECTOR4_TAIL);
8237   bind(VECTOR8_LOOP);
8238   movq(tmp1, Address(obja, result));
8239   movq(tmp2, Address(objb, result));
8240   xorq(tmp1, tmp2);
8241   testq(tmp1, tmp1);
8242   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8243   addq(result, 8);
8244   subq(length, 8);
8245   jcc(Assembler::equal, SAME_TILL_END);
8246   //falling through if less than 8 bytes left
8247 
8248   bind(VECTOR4_TAIL);
8249   cmpq(length, 4);
8250   jccb(Assembler::less, BYTES_TAIL);
8251   bind(VECTOR4_LOOP);
8252   movl(tmp1, Address(obja, result));
8253   xorl(tmp1, Address(objb, result));
8254   testl(tmp1, tmp1);
8255   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8256   addq(result, 4);
8257   subq(length, 4);
8258   jcc(Assembler::equal, SAME_TILL_END);
8259   //falling through if less than 4 bytes left
8260 
8261   bind(BYTES_TAIL);
8262   bind(BYTES_LOOP);
8263   load_unsigned_byte(tmp1, Address(obja, result));
8264   load_unsigned_byte(tmp2, Address(objb, result));
8265   xorl(tmp1, tmp2);
8266   testl(tmp1, tmp1);
8267   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8268   decq(length);
8269   jcc(Assembler::zero, SAME_TILL_END);
8270   incq(result);
8271   load_unsigned_byte(tmp1, Address(obja, result));
8272   load_unsigned_byte(tmp2, Address(objb, result));
8273   xorl(tmp1, tmp2);
8274   testl(tmp1, tmp1);
8275   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8276   decq(length);
8277   jcc(Assembler::zero, SAME_TILL_END);
8278   incq(result);
8279   load_unsigned_byte(tmp1, Address(obja, result));
8280   load_unsigned_byte(tmp2, Address(objb, result));
8281   xorl(tmp1, tmp2);
8282   testl(tmp1, tmp1);
8283   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8284   jmp(SAME_TILL_END);
8285 
8286   if (UseAVX >= 2) {
8287     bind(VECTOR32_NOT_EQUAL);
8288     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8289     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8290     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8291     vpmovmskb(tmp1, rymm0);
8292     bsfq(tmp1, tmp1);
8293     addq(result, tmp1);
8294     shrq(result);
8295     jmp(DONE);
8296   }
8297 
8298   bind(VECTOR16_NOT_EQUAL);
8299   if (UseAVX >= 2) {
8300     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8301     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8302     pxor(rymm0, rymm2);
8303   } else {
8304     pcmpeqb(rymm2, rymm2);
8305     pxor(rymm0, rymm1);
8306     pcmpeqb(rymm0, rymm1);
8307     pxor(rymm0, rymm2);
8308   }
8309   pmovmskb(tmp1, rymm0);
8310   bsfq(tmp1, tmp1);
8311   addq(result, tmp1);
8312   shrq(result);
8313   jmpb(DONE);
8314 
8315   bind(VECTOR8_NOT_EQUAL);
8316   bind(VECTOR4_NOT_EQUAL);
8317   bsfq(tmp1, tmp1);
8318   shrq(tmp1, 3);
8319   addq(result, tmp1);
8320   bind(BYTES_NOT_EQUAL);
8321   shrq(result);
8322   jmpb(DONE);
8323 
8324   bind(SAME_TILL_END);
8325   mov64(result, -1);
8326 
8327   bind(DONE);
8328 }
8329 
8330 //Helper functions for square_to_len()
8331 
8332 /**
8333  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8334  * Preserves x and z and modifies rest of the registers.
8335  */
8336 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8337   // Perform square and right shift by 1
8338   // Handle odd xlen case first, then for even xlen do the following
8339   // jlong carry = 0;
8340   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8341   //     huge_128 product = x[j:j+1] * x[j:j+1];
8342   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8343   //     z[i+2:i+3] = (jlong)(product >>> 1);
8344   //     carry = (jlong)product;
8345   // }
8346 
8347   xorq(tmp5, tmp5);     // carry
8348   xorq(rdxReg, rdxReg);
8349   xorl(tmp1, tmp1);     // index for x
8350   xorl(tmp4, tmp4);     // index for z
8351 
8352   Label L_first_loop, L_first_loop_exit;
8353 
8354   testl(xlen, 1);
8355   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8356 
8357   // Square and right shift by 1 the odd element using 32 bit multiply
8358   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8359   imulq(raxReg, raxReg);
8360   shrq(raxReg, 1);
8361   adcq(tmp5, 0);
8362   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8363   incrementl(tmp1);
8364   addl(tmp4, 2);
8365 
8366   // Square and  right shift by 1 the rest using 64 bit multiply
8367   bind(L_first_loop);
8368   cmpptr(tmp1, xlen);
8369   jccb(Assembler::equal, L_first_loop_exit);
8370 
8371   // Square
8372   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8373   rorq(raxReg, 32);    // convert big-endian to little-endian
8374   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8375 
8376   // Right shift by 1 and save carry
8377   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8378   rcrq(rdxReg, 1);
8379   rcrq(raxReg, 1);
8380   adcq(tmp5, 0);
8381 
8382   // Store result in z
8383   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8384   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8385 
8386   // Update indices for x and z
8387   addl(tmp1, 2);
8388   addl(tmp4, 4);
8389   jmp(L_first_loop);
8390 
8391   bind(L_first_loop_exit);
8392 }
8393 
8394 
8395 /**
8396  * Perform the following multiply add operation using BMI2 instructions
8397  * carry:sum = sum + op1*op2 + carry
8398  * op2 should be in rdx
8399  * op2 is preserved, all other registers are modified
8400  */
8401 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8402   // assert op2 is rdx
8403   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8404   addq(sum, carry);
8405   adcq(tmp2, 0);
8406   addq(sum, op1);
8407   adcq(tmp2, 0);
8408   movq(carry, tmp2);
8409 }
8410 
8411 /**
8412  * Perform the following multiply add operation:
8413  * carry:sum = sum + op1*op2 + carry
8414  * Preserves op1, op2 and modifies rest of registers
8415  */
8416 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8417   // rdx:rax = op1 * op2
8418   movq(raxReg, op2);
8419   mulq(op1);
8420 
8421   //  rdx:rax = sum + carry + rdx:rax
8422   addq(sum, carry);
8423   adcq(rdxReg, 0);
8424   addq(sum, raxReg);
8425   adcq(rdxReg, 0);
8426 
8427   // carry:sum = rdx:sum
8428   movq(carry, rdxReg);
8429 }
8430 
8431 /**
8432  * Add 64 bit long carry into z[] with carry propogation.
8433  * Preserves z and carry register values and modifies rest of registers.
8434  *
8435  */
8436 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8437   Label L_fourth_loop, L_fourth_loop_exit;
8438 
8439   movl(tmp1, 1);
8440   subl(zlen, 2);
8441   addq(Address(z, zlen, Address::times_4, 0), carry);
8442 
8443   bind(L_fourth_loop);
8444   jccb(Assembler::carryClear, L_fourth_loop_exit);
8445   subl(zlen, 2);
8446   jccb(Assembler::negative, L_fourth_loop_exit);
8447   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8448   jmp(L_fourth_loop);
8449   bind(L_fourth_loop_exit);
8450 }
8451 
8452 /**
8453  * Shift z[] left by 1 bit.
8454  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8455  *
8456  */
8457 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8458 
8459   Label L_fifth_loop, L_fifth_loop_exit;
8460 
8461   // Fifth loop
8462   // Perform primitiveLeftShift(z, zlen, 1)
8463 
8464   const Register prev_carry = tmp1;
8465   const Register new_carry = tmp4;
8466   const Register value = tmp2;
8467   const Register zidx = tmp3;
8468 
8469   // int zidx, carry;
8470   // long value;
8471   // carry = 0;
8472   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8473   //    (carry:value)  = (z[i] << 1) | carry ;
8474   //    z[i] = value;
8475   // }
8476 
8477   movl(zidx, zlen);
8478   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8479 
8480   bind(L_fifth_loop);
8481   decl(zidx);  // Use decl to preserve carry flag
8482   decl(zidx);
8483   jccb(Assembler::negative, L_fifth_loop_exit);
8484 
8485   if (UseBMI2Instructions) {
8486      movq(value, Address(z, zidx, Address::times_4, 0));
8487      rclq(value, 1);
8488      rorxq(value, value, 32);
8489      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8490   }
8491   else {
8492     // clear new_carry
8493     xorl(new_carry, new_carry);
8494 
8495     // Shift z[i] by 1, or in previous carry and save new carry
8496     movq(value, Address(z, zidx, Address::times_4, 0));
8497     shlq(value, 1);
8498     adcl(new_carry, 0);
8499 
8500     orq(value, prev_carry);
8501     rorq(value, 0x20);
8502     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8503 
8504     // Set previous carry = new carry
8505     movl(prev_carry, new_carry);
8506   }
8507   jmp(L_fifth_loop);
8508 
8509   bind(L_fifth_loop_exit);
8510 }
8511 
8512 
8513 /**
8514  * Code for BigInteger::squareToLen() intrinsic
8515  *
8516  * rdi: x
8517  * rsi: len
8518  * r8:  z
8519  * rcx: zlen
8520  * r12: tmp1
8521  * r13: tmp2
8522  * r14: tmp3
8523  * r15: tmp4
8524  * rbx: tmp5
8525  *
8526  */
8527 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8528 
8529   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
8530   push(tmp1);
8531   push(tmp2);
8532   push(tmp3);
8533   push(tmp4);
8534   push(tmp5);
8535 
8536   // First loop
8537   // Store the squares, right shifted one bit (i.e., divided by 2).
8538   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8539 
8540   // Add in off-diagonal sums.
8541   //
8542   // Second, third (nested) and fourth loops.
8543   // zlen +=2;
8544   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8545   //    carry = 0;
8546   //    long op2 = x[xidx:xidx+1];
8547   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8548   //       k -= 2;
8549   //       long op1 = x[j:j+1];
8550   //       long sum = z[k:k+1];
8551   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8552   //       z[k:k+1] = sum;
8553   //    }
8554   //    add_one_64(z, k, carry, tmp_regs);
8555   // }
8556 
8557   const Register carry = tmp5;
8558   const Register sum = tmp3;
8559   const Register op1 = tmp4;
8560   Register op2 = tmp2;
8561 
8562   push(zlen);
8563   push(len);
8564   addl(zlen,2);
8565   bind(L_second_loop);
8566   xorq(carry, carry);
8567   subl(zlen, 4);
8568   subl(len, 2);
8569   push(zlen);
8570   push(len);
8571   cmpl(len, 0);
8572   jccb(Assembler::lessEqual, L_second_loop_exit);
8573 
8574   // Multiply an array by one 64 bit long.
8575   if (UseBMI2Instructions) {
8576     op2 = rdxReg;
8577     movq(op2, Address(x, len, Address::times_4,  0));
8578     rorxq(op2, op2, 32);
8579   }
8580   else {
8581     movq(op2, Address(x, len, Address::times_4,  0));
8582     rorq(op2, 32);
8583   }
8584 
8585   bind(L_third_loop);
8586   decrementl(len);
8587   jccb(Assembler::negative, L_third_loop_exit);
8588   decrementl(len);
8589   jccb(Assembler::negative, L_last_x);
8590 
8591   movq(op1, Address(x, len, Address::times_4,  0));
8592   rorq(op1, 32);
8593 
8594   bind(L_multiply);
8595   subl(zlen, 2);
8596   movq(sum, Address(z, zlen, Address::times_4,  0));
8597 
8598   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8599   if (UseBMI2Instructions) {
8600     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8601   }
8602   else {
8603     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8604   }
8605 
8606   movq(Address(z, zlen, Address::times_4, 0), sum);
8607 
8608   jmp(L_third_loop);
8609   bind(L_third_loop_exit);
8610 
8611   // Fourth loop
8612   // Add 64 bit long carry into z with carry propogation.
8613   // Uses offsetted zlen.
8614   add_one_64(z, zlen, carry, tmp1);
8615 
8616   pop(len);
8617   pop(zlen);
8618   jmp(L_second_loop);
8619 
8620   // Next infrequent code is moved outside loops.
8621   bind(L_last_x);
8622   movl(op1, Address(x, 0));
8623   jmp(L_multiply);
8624 
8625   bind(L_second_loop_exit);
8626   pop(len);
8627   pop(zlen);
8628   pop(len);
8629   pop(zlen);
8630 
8631   // Fifth loop
8632   // Shift z left 1 bit.
8633   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8634 
8635   // z[zlen-1] |= x[len-1] & 1;
8636   movl(tmp3, Address(x, len, Address::times_4, -4));
8637   andl(tmp3, 1);
8638   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8639 
8640   pop(tmp5);
8641   pop(tmp4);
8642   pop(tmp3);
8643   pop(tmp2);
8644   pop(tmp1);
8645 }
8646 
8647 /**
8648  * Helper function for mul_add()
8649  * Multiply the in[] by int k and add to out[] starting at offset offs using
8650  * 128 bit by 32 bit multiply and return the carry in tmp5.
8651  * Only quad int aligned length of in[] is operated on in this function.
8652  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8653  * This function preserves out, in and k registers.
8654  * len and offset point to the appropriate index in "in" & "out" correspondingly
8655  * tmp5 has the carry.
8656  * other registers are temporary and are modified.
8657  *
8658  */
8659 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8660   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8661   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8662 
8663   Label L_first_loop, L_first_loop_exit;
8664 
8665   movl(tmp1, len);
8666   shrl(tmp1, 2);
8667 
8668   bind(L_first_loop);
8669   subl(tmp1, 1);
8670   jccb(Assembler::negative, L_first_loop_exit);
8671 
8672   subl(len, 4);
8673   subl(offset, 4);
8674 
8675   Register op2 = tmp2;
8676   const Register sum = tmp3;
8677   const Register op1 = tmp4;
8678   const Register carry = tmp5;
8679 
8680   if (UseBMI2Instructions) {
8681     op2 = rdxReg;
8682   }
8683 
8684   movq(op1, Address(in, len, Address::times_4,  8));
8685   rorq(op1, 32);
8686   movq(sum, Address(out, offset, Address::times_4,  8));
8687   rorq(sum, 32);
8688   if (UseBMI2Instructions) {
8689     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8690   }
8691   else {
8692     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8693   }
8694   // Store back in big endian from little endian
8695   rorq(sum, 0x20);
8696   movq(Address(out, offset, Address::times_4,  8), sum);
8697 
8698   movq(op1, Address(in, len, Address::times_4,  0));
8699   rorq(op1, 32);
8700   movq(sum, Address(out, offset, Address::times_4,  0));
8701   rorq(sum, 32);
8702   if (UseBMI2Instructions) {
8703     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8704   }
8705   else {
8706     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8707   }
8708   // Store back in big endian from little endian
8709   rorq(sum, 0x20);
8710   movq(Address(out, offset, Address::times_4,  0), sum);
8711 
8712   jmp(L_first_loop);
8713   bind(L_first_loop_exit);
8714 }
8715 
8716 /**
8717  * Code for BigInteger::mulAdd() intrinsic
8718  *
8719  * rdi: out
8720  * rsi: in
8721  * r11: offs (out.length - offset)
8722  * rcx: len
8723  * r8:  k
8724  * r12: tmp1
8725  * r13: tmp2
8726  * r14: tmp3
8727  * r15: tmp4
8728  * rbx: tmp5
8729  * Multiply the in[] by word k and add to out[], return the carry in rax
8730  */
8731 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8732    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8733    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8734 
8735   Label L_carry, L_last_in, L_done;
8736 
8737 // carry = 0;
8738 // for (int j=len-1; j >= 0; j--) {
8739 //    long product = (in[j] & LONG_MASK) * kLong +
8740 //                   (out[offs] & LONG_MASK) + carry;
8741 //    out[offs--] = (int)product;
8742 //    carry = product >>> 32;
8743 // }
8744 //
8745   push(tmp1);
8746   push(tmp2);
8747   push(tmp3);
8748   push(tmp4);
8749   push(tmp5);
8750 
8751   Register op2 = tmp2;
8752   const Register sum = tmp3;
8753   const Register op1 = tmp4;
8754   const Register carry =  tmp5;
8755 
8756   if (UseBMI2Instructions) {
8757     op2 = rdxReg;
8758     movl(op2, k);
8759   }
8760   else {
8761     movl(op2, k);
8762   }
8763 
8764   xorq(carry, carry);
8765 
8766   //First loop
8767 
8768   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8769   //The carry is in tmp5
8770   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8771 
8772   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8773   decrementl(len);
8774   jccb(Assembler::negative, L_carry);
8775   decrementl(len);
8776   jccb(Assembler::negative, L_last_in);
8777 
8778   movq(op1, Address(in, len, Address::times_4,  0));
8779   rorq(op1, 32);
8780 
8781   subl(offs, 2);
8782   movq(sum, Address(out, offs, Address::times_4,  0));
8783   rorq(sum, 32);
8784 
8785   if (UseBMI2Instructions) {
8786     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8787   }
8788   else {
8789     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8790   }
8791 
8792   // Store back in big endian from little endian
8793   rorq(sum, 0x20);
8794   movq(Address(out, offs, Address::times_4,  0), sum);
8795 
8796   testl(len, len);
8797   jccb(Assembler::zero, L_carry);
8798 
8799   //Multiply the last in[] entry, if any
8800   bind(L_last_in);
8801   movl(op1, Address(in, 0));
8802   movl(sum, Address(out, offs, Address::times_4,  -4));
8803 
8804   movl(raxReg, k);
8805   mull(op1); //tmp4 * eax -> edx:eax
8806   addl(sum, carry);
8807   adcl(rdxReg, 0);
8808   addl(sum, raxReg);
8809   adcl(rdxReg, 0);
8810   movl(carry, rdxReg);
8811 
8812   movl(Address(out, offs, Address::times_4,  -4), sum);
8813 
8814   bind(L_carry);
8815   //return tmp5/carry as carry in rax
8816   movl(rax, carry);
8817 
8818   bind(L_done);
8819   pop(tmp5);
8820   pop(tmp4);
8821   pop(tmp3);
8822   pop(tmp2);
8823   pop(tmp1);
8824 }
8825 #endif
8826 
8827 /**
8828  * Emits code to update CRC-32 with a byte value according to constants in table
8829  *
8830  * @param [in,out]crc   Register containing the crc.
8831  * @param [in]val       Register containing the byte to fold into the CRC.
8832  * @param [in]table     Register containing the table of crc constants.
8833  *
8834  * uint32_t crc;
8835  * val = crc_table[(val ^ crc) & 0xFF];
8836  * crc = val ^ (crc >> 8);
8837  *
8838  */
8839 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8840   xorl(val, crc);
8841   andl(val, 0xFF);
8842   shrl(crc, 8); // unsigned shift
8843   xorl(crc, Address(table, val, Address::times_4, 0));
8844 }
8845 
8846 /**
8847 * Fold four 128-bit data chunks
8848 */
8849 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8850   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8851   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8852   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8853   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8854 }
8855 
8856 /**
8857  * Fold 128-bit data chunk
8858  */
8859 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8860   if (UseAVX > 0) {
8861     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8862     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8863     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8864     pxor(xcrc, xtmp);
8865   } else {
8866     movdqa(xtmp, xcrc);
8867     pclmulhdq(xtmp, xK);   // [123:64]
8868     pclmulldq(xcrc, xK);   // [63:0]
8869     pxor(xcrc, xtmp);
8870     movdqu(xtmp, Address(buf, offset));
8871     pxor(xcrc, xtmp);
8872   }
8873 }
8874 
8875 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8876   if (UseAVX > 0) {
8877     vpclmulhdq(xtmp, xK, xcrc);
8878     vpclmulldq(xcrc, xK, xcrc);
8879     pxor(xcrc, xbuf);
8880     pxor(xcrc, xtmp);
8881   } else {
8882     movdqa(xtmp, xcrc);
8883     pclmulhdq(xtmp, xK);
8884     pclmulldq(xcrc, xK);
8885     pxor(xcrc, xbuf);
8886     pxor(xcrc, xtmp);
8887   }
8888 }
8889 
8890 /**
8891  * 8-bit folds to compute 32-bit CRC
8892  *
8893  * uint64_t xcrc;
8894  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8895  */
8896 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8897   movdl(tmp, xcrc);
8898   andl(tmp, 0xFF);
8899   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8900   psrldq(xcrc, 1); // unsigned shift one byte
8901   pxor(xcrc, xtmp);
8902 }
8903 
8904 /**
8905  * uint32_t crc;
8906  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8907  */
8908 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8909   movl(tmp, crc);
8910   andl(tmp, 0xFF);
8911   shrl(crc, 8);
8912   xorl(crc, Address(table, tmp, Address::times_4, 0));
8913 }
8914 
8915 /**
8916  * @param crc   register containing existing CRC (32-bit)
8917  * @param buf   register pointing to input byte buffer (byte*)
8918  * @param len   register containing number of bytes
8919  * @param table register that will contain address of CRC table
8920  * @param tmp   scratch register
8921  */
8922 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8923   assert_different_registers(crc, buf, len, table, tmp, rax);
8924 
8925   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8926   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8927 
8928   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8929   // context for the registers used, where all instructions below are using 128-bit mode
8930   // On EVEX without VL and BW, these instructions will all be AVX.
8931   if (VM_Version::supports_avx512vlbw()) {
8932     movl(tmp, 0xffff);
8933     kmovwl(k1, tmp);
8934   }
8935 
8936   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8937   notl(crc); // ~crc
8938   cmpl(len, 16);
8939   jcc(Assembler::less, L_tail);
8940 
8941   // Align buffer to 16 bytes
8942   movl(tmp, buf);
8943   andl(tmp, 0xF);
8944   jccb(Assembler::zero, L_aligned);
8945   subl(tmp,  16);
8946   addl(len, tmp);
8947 
8948   align(4);
8949   BIND(L_align_loop);
8950   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8951   update_byte_crc32(crc, rax, table);
8952   increment(buf);
8953   incrementl(tmp);
8954   jccb(Assembler::less, L_align_loop);
8955 
8956   BIND(L_aligned);
8957   movl(tmp, len); // save
8958   shrl(len, 4);
8959   jcc(Assembler::zero, L_tail_restore);
8960 
8961   // Fold total 512 bits of polynomial on each iteration
8962   if (VM_Version::supports_vpclmulqdq()) {
8963     Label Parallel_loop, L_No_Parallel;
8964 
8965     cmpl(len, 8);
8966     jccb(Assembler::less, L_No_Parallel);
8967 
8968     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8969     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
8970     movdl(xmm5, crc);
8971     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
8972     addptr(buf, 64);
8973     subl(len, 7);
8974     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
8975 
8976     BIND(Parallel_loop);
8977     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
8978     addptr(buf, 64);
8979     subl(len, 4);
8980     jcc(Assembler::greater, Parallel_loop);
8981 
8982     vextracti64x2(xmm2, xmm1, 0x01);
8983     vextracti64x2(xmm3, xmm1, 0x02);
8984     vextracti64x2(xmm4, xmm1, 0x03);
8985     jmp(L_fold_512b);
8986 
8987     BIND(L_No_Parallel);
8988   }
8989   // Fold crc into first bytes of vector
8990   movdqa(xmm1, Address(buf, 0));
8991   movdl(rax, xmm1);
8992   xorl(crc, rax);
8993   if (VM_Version::supports_sse4_1()) {
8994     pinsrd(xmm1, crc, 0);
8995   } else {
8996     pinsrw(xmm1, crc, 0);
8997     shrl(crc, 16);
8998     pinsrw(xmm1, crc, 1);
8999   }
9000   addptr(buf, 16);
9001   subl(len, 4); // len > 0
9002   jcc(Assembler::less, L_fold_tail);
9003 
9004   movdqa(xmm2, Address(buf,  0));
9005   movdqa(xmm3, Address(buf, 16));
9006   movdqa(xmm4, Address(buf, 32));
9007   addptr(buf, 48);
9008   subl(len, 3);
9009   jcc(Assembler::lessEqual, L_fold_512b);
9010 
9011   // Fold total 512 bits of polynomial on each iteration,
9012   // 128 bits per each of 4 parallel streams.
9013   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9014 
9015   align(32);
9016   BIND(L_fold_512b_loop);
9017   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9018   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
9019   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
9020   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
9021   addptr(buf, 64);
9022   subl(len, 4);
9023   jcc(Assembler::greater, L_fold_512b_loop);
9024 
9025   // Fold 512 bits to 128 bits.
9026   BIND(L_fold_512b);
9027   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9028   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
9029   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
9030   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
9031 
9032   // Fold the rest of 128 bits data chunks
9033   BIND(L_fold_tail);
9034   addl(len, 3);
9035   jccb(Assembler::lessEqual, L_fold_128b);
9036   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9037 
9038   BIND(L_fold_tail_loop);
9039   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9040   addptr(buf, 16);
9041   decrementl(len);
9042   jccb(Assembler::greater, L_fold_tail_loop);
9043 
9044   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9045   BIND(L_fold_128b);
9046   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9047   if (UseAVX > 0) {
9048     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9049     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9050     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9051   } else {
9052     movdqa(xmm2, xmm0);
9053     pclmulqdq(xmm2, xmm1, 0x1);
9054     movdqa(xmm3, xmm0);
9055     pand(xmm3, xmm2);
9056     pclmulqdq(xmm0, xmm3, 0x1);
9057   }
9058   psrldq(xmm1, 8);
9059   psrldq(xmm2, 4);
9060   pxor(xmm0, xmm1);
9061   pxor(xmm0, xmm2);
9062 
9063   // 8 8-bit folds to compute 32-bit CRC.
9064   for (int j = 0; j < 4; j++) {
9065     fold_8bit_crc32(xmm0, table, xmm1, rax);
9066   }
9067   movdl(crc, xmm0); // mov 32 bits to general register
9068   for (int j = 0; j < 4; j++) {
9069     fold_8bit_crc32(crc, table, rax);
9070   }
9071 
9072   BIND(L_tail_restore);
9073   movl(len, tmp); // restore
9074   BIND(L_tail);
9075   andl(len, 0xf);
9076   jccb(Assembler::zero, L_exit);
9077 
9078   // Fold the rest of bytes
9079   align(4);
9080   BIND(L_tail_loop);
9081   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9082   update_byte_crc32(crc, rax, table);
9083   increment(buf);
9084   decrementl(len);
9085   jccb(Assembler::greater, L_tail_loop);
9086 
9087   BIND(L_exit);
9088   notl(crc); // ~c
9089 }
9090 
9091 #ifdef _LP64
9092 // S. Gueron / Information Processing Letters 112 (2012) 184
9093 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9094 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9095 // Output: the 64-bit carry-less product of B * CONST
9096 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9097                                      Register tmp1, Register tmp2, Register tmp3) {
9098   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9099   if (n > 0) {
9100     addq(tmp3, n * 256 * 8);
9101   }
9102   //    Q1 = TABLEExt[n][B & 0xFF];
9103   movl(tmp1, in);
9104   andl(tmp1, 0x000000FF);
9105   shll(tmp1, 3);
9106   addq(tmp1, tmp3);
9107   movq(tmp1, Address(tmp1, 0));
9108 
9109   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9110   movl(tmp2, in);
9111   shrl(tmp2, 8);
9112   andl(tmp2, 0x000000FF);
9113   shll(tmp2, 3);
9114   addq(tmp2, tmp3);
9115   movq(tmp2, Address(tmp2, 0));
9116 
9117   shlq(tmp2, 8);
9118   xorq(tmp1, tmp2);
9119 
9120   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9121   movl(tmp2, in);
9122   shrl(tmp2, 16);
9123   andl(tmp2, 0x000000FF);
9124   shll(tmp2, 3);
9125   addq(tmp2, tmp3);
9126   movq(tmp2, Address(tmp2, 0));
9127 
9128   shlq(tmp2, 16);
9129   xorq(tmp1, tmp2);
9130 
9131   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9132   shrl(in, 24);
9133   andl(in, 0x000000FF);
9134   shll(in, 3);
9135   addq(in, tmp3);
9136   movq(in, Address(in, 0));
9137 
9138   shlq(in, 24);
9139   xorq(in, tmp1);
9140   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9141 }
9142 
9143 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9144                                       Register in_out,
9145                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9146                                       XMMRegister w_xtmp2,
9147                                       Register tmp1,
9148                                       Register n_tmp2, Register n_tmp3) {
9149   if (is_pclmulqdq_supported) {
9150     movdl(w_xtmp1, in_out); // modified blindly
9151 
9152     movl(tmp1, const_or_pre_comp_const_index);
9153     movdl(w_xtmp2, tmp1);
9154     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9155 
9156     movdq(in_out, w_xtmp1);
9157   } else {
9158     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
9159   }
9160 }
9161 
9162 // Recombination Alternative 2: No bit-reflections
9163 // T1 = (CRC_A * U1) << 1
9164 // T2 = (CRC_B * U2) << 1
9165 // C1 = T1 >> 32
9166 // C2 = T2 >> 32
9167 // T1 = T1 & 0xFFFFFFFF
9168 // T2 = T2 & 0xFFFFFFFF
9169 // T1 = CRC32(0, T1)
9170 // T2 = CRC32(0, T2)
9171 // C1 = C1 ^ T1
9172 // C2 = C2 ^ T2
9173 // CRC = C1 ^ C2 ^ CRC_C
9174 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9175                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9176                                      Register tmp1, Register tmp2,
9177                                      Register n_tmp3) {
9178   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9179   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9180   shlq(in_out, 1);
9181   movl(tmp1, in_out);
9182   shrq(in_out, 32);
9183   xorl(tmp2, tmp2);
9184   crc32(tmp2, tmp1, 4);
9185   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
9186   shlq(in1, 1);
9187   movl(tmp1, in1);
9188   shrq(in1, 32);
9189   xorl(tmp2, tmp2);
9190   crc32(tmp2, tmp1, 4);
9191   xorl(in1, tmp2);
9192   xorl(in_out, in1);
9193   xorl(in_out, in2);
9194 }
9195 
9196 // Set N to predefined value
9197 // Subtract from a lenght of a buffer
9198 // execute in a loop:
9199 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9200 // for i = 1 to N do
9201 //  CRC_A = CRC32(CRC_A, A[i])
9202 //  CRC_B = CRC32(CRC_B, B[i])
9203 //  CRC_C = CRC32(CRC_C, C[i])
9204 // end for
9205 // Recombine
9206 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9207                                        Register in_out1, Register in_out2, Register in_out3,
9208                                        Register tmp1, Register tmp2, Register tmp3,
9209                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9210                                        Register tmp4, Register tmp5,
9211                                        Register n_tmp6) {
9212   Label L_processPartitions;
9213   Label L_processPartition;
9214   Label L_exit;
9215 
9216   bind(L_processPartitions);
9217   cmpl(in_out1, 3 * size);
9218   jcc(Assembler::less, L_exit);
9219     xorl(tmp1, tmp1);
9220     xorl(tmp2, tmp2);
9221     movq(tmp3, in_out2);
9222     addq(tmp3, size);
9223 
9224     bind(L_processPartition);
9225       crc32(in_out3, Address(in_out2, 0), 8);
9226       crc32(tmp1, Address(in_out2, size), 8);
9227       crc32(tmp2, Address(in_out2, size * 2), 8);
9228       addq(in_out2, 8);
9229       cmpq(in_out2, tmp3);
9230       jcc(Assembler::less, L_processPartition);
9231     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9232             w_xtmp1, w_xtmp2, w_xtmp3,
9233             tmp4, tmp5,
9234             n_tmp6);
9235     addq(in_out2, 2 * size);
9236     subl(in_out1, 3 * size);
9237     jmp(L_processPartitions);
9238 
9239   bind(L_exit);
9240 }
9241 #else
9242 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9243                                      Register tmp1, Register tmp2, Register tmp3,
9244                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9245   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9246   if (n > 0) {
9247     addl(tmp3, n * 256 * 8);
9248   }
9249   //    Q1 = TABLEExt[n][B & 0xFF];
9250   movl(tmp1, in_out);
9251   andl(tmp1, 0x000000FF);
9252   shll(tmp1, 3);
9253   addl(tmp1, tmp3);
9254   movq(xtmp1, Address(tmp1, 0));
9255 
9256   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9257   movl(tmp2, in_out);
9258   shrl(tmp2, 8);
9259   andl(tmp2, 0x000000FF);
9260   shll(tmp2, 3);
9261   addl(tmp2, tmp3);
9262   movq(xtmp2, Address(tmp2, 0));
9263 
9264   psllq(xtmp2, 8);
9265   pxor(xtmp1, xtmp2);
9266 
9267   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9268   movl(tmp2, in_out);
9269   shrl(tmp2, 16);
9270   andl(tmp2, 0x000000FF);
9271   shll(tmp2, 3);
9272   addl(tmp2, tmp3);
9273   movq(xtmp2, Address(tmp2, 0));
9274 
9275   psllq(xtmp2, 16);
9276   pxor(xtmp1, xtmp2);
9277 
9278   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9279   shrl(in_out, 24);
9280   andl(in_out, 0x000000FF);
9281   shll(in_out, 3);
9282   addl(in_out, tmp3);
9283   movq(xtmp2, Address(in_out, 0));
9284 
9285   psllq(xtmp2, 24);
9286   pxor(xtmp1, xtmp2); // Result in CXMM
9287   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9288 }
9289 
9290 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9291                                       Register in_out,
9292                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9293                                       XMMRegister w_xtmp2,
9294                                       Register tmp1,
9295                                       Register n_tmp2, Register n_tmp3) {
9296   if (is_pclmulqdq_supported) {
9297     movdl(w_xtmp1, in_out);
9298 
9299     movl(tmp1, const_or_pre_comp_const_index);
9300     movdl(w_xtmp2, tmp1);
9301     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9302     // Keep result in XMM since GPR is 32 bit in length
9303   } else {
9304     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9305   }
9306 }
9307 
9308 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9309                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9310                                      Register tmp1, Register tmp2,
9311                                      Register n_tmp3) {
9312   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9313   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9314 
9315   psllq(w_xtmp1, 1);
9316   movdl(tmp1, w_xtmp1);
9317   psrlq(w_xtmp1, 32);
9318   movdl(in_out, w_xtmp1);
9319 
9320   xorl(tmp2, tmp2);
9321   crc32(tmp2, tmp1, 4);
9322   xorl(in_out, tmp2);
9323 
9324   psllq(w_xtmp2, 1);
9325   movdl(tmp1, w_xtmp2);
9326   psrlq(w_xtmp2, 32);
9327   movdl(in1, w_xtmp2);
9328 
9329   xorl(tmp2, tmp2);
9330   crc32(tmp2, tmp1, 4);
9331   xorl(in1, tmp2);
9332   xorl(in_out, in1);
9333   xorl(in_out, in2);
9334 }
9335 
9336 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9337                                        Register in_out1, Register in_out2, Register in_out3,
9338                                        Register tmp1, Register tmp2, Register tmp3,
9339                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9340                                        Register tmp4, Register tmp5,
9341                                        Register n_tmp6) {
9342   Label L_processPartitions;
9343   Label L_processPartition;
9344   Label L_exit;
9345 
9346   bind(L_processPartitions);
9347   cmpl(in_out1, 3 * size);
9348   jcc(Assembler::less, L_exit);
9349     xorl(tmp1, tmp1);
9350     xorl(tmp2, tmp2);
9351     movl(tmp3, in_out2);
9352     addl(tmp3, size);
9353 
9354     bind(L_processPartition);
9355       crc32(in_out3, Address(in_out2, 0), 4);
9356       crc32(tmp1, Address(in_out2, size), 4);
9357       crc32(tmp2, Address(in_out2, size*2), 4);
9358       crc32(in_out3, Address(in_out2, 0+4), 4);
9359       crc32(tmp1, Address(in_out2, size+4), 4);
9360       crc32(tmp2, Address(in_out2, size*2+4), 4);
9361       addl(in_out2, 8);
9362       cmpl(in_out2, tmp3);
9363       jcc(Assembler::less, L_processPartition);
9364 
9365         push(tmp3);
9366         push(in_out1);
9367         push(in_out2);
9368         tmp4 = tmp3;
9369         tmp5 = in_out1;
9370         n_tmp6 = in_out2;
9371 
9372       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9373             w_xtmp1, w_xtmp2, w_xtmp3,
9374             tmp4, tmp5,
9375             n_tmp6);
9376 
9377         pop(in_out2);
9378         pop(in_out1);
9379         pop(tmp3);
9380 
9381     addl(in_out2, 2 * size);
9382     subl(in_out1, 3 * size);
9383     jmp(L_processPartitions);
9384 
9385   bind(L_exit);
9386 }
9387 #endif //LP64
9388 
9389 #ifdef _LP64
9390 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9391 // Input: A buffer I of L bytes.
9392 // Output: the CRC32C value of the buffer.
9393 // Notations:
9394 // Write L = 24N + r, with N = floor (L/24).
9395 // r = L mod 24 (0 <= r < 24).
9396 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9397 // N quadwords, and R consists of r bytes.
9398 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9399 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9400 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9401 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
9402 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9403                                           Register tmp1, Register tmp2, Register tmp3,
9404                                           Register tmp4, Register tmp5, Register tmp6,
9405                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9406                                           bool is_pclmulqdq_supported) {
9407   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9408   Label L_wordByWord;
9409   Label L_byteByByteProlog;
9410   Label L_byteByByte;
9411   Label L_exit;
9412 
9413   if (is_pclmulqdq_supported ) {
9414     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9415     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9416 
9417     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9418     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9419 
9420     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9421     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9422     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9423   } else {
9424     const_or_pre_comp_const_index[0] = 1;
9425     const_or_pre_comp_const_index[1] = 0;
9426 
9427     const_or_pre_comp_const_index[2] = 3;
9428     const_or_pre_comp_const_index[3] = 2;
9429 
9430     const_or_pre_comp_const_index[4] = 5;
9431     const_or_pre_comp_const_index[5] = 4;
9432    }
9433   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9434                     in2, in1, in_out,
9435                     tmp1, tmp2, tmp3,
9436                     w_xtmp1, w_xtmp2, w_xtmp3,
9437                     tmp4, tmp5,
9438                     tmp6);
9439   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9440                     in2, in1, in_out,
9441                     tmp1, tmp2, tmp3,
9442                     w_xtmp1, w_xtmp2, w_xtmp3,
9443                     tmp4, tmp5,
9444                     tmp6);
9445   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9446                     in2, in1, in_out,
9447                     tmp1, tmp2, tmp3,
9448                     w_xtmp1, w_xtmp2, w_xtmp3,
9449                     tmp4, tmp5,
9450                     tmp6);
9451   movl(tmp1, in2);
9452   andl(tmp1, 0x00000007);
9453   negl(tmp1);
9454   addl(tmp1, in2);
9455   addq(tmp1, in1);
9456 
9457   BIND(L_wordByWord);
9458   cmpq(in1, tmp1);
9459   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9460     crc32(in_out, Address(in1, 0), 4);
9461     addq(in1, 4);
9462     jmp(L_wordByWord);
9463 
9464   BIND(L_byteByByteProlog);
9465   andl(in2, 0x00000007);
9466   movl(tmp2, 1);
9467 
9468   BIND(L_byteByByte);
9469   cmpl(tmp2, in2);
9470   jccb(Assembler::greater, L_exit);
9471     crc32(in_out, Address(in1, 0), 1);
9472     incq(in1);
9473     incl(tmp2);
9474     jmp(L_byteByByte);
9475 
9476   BIND(L_exit);
9477 }
9478 #else
9479 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9480                                           Register tmp1, Register  tmp2, Register tmp3,
9481                                           Register tmp4, Register  tmp5, Register tmp6,
9482                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9483                                           bool is_pclmulqdq_supported) {
9484   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9485   Label L_wordByWord;
9486   Label L_byteByByteProlog;
9487   Label L_byteByByte;
9488   Label L_exit;
9489 
9490   if (is_pclmulqdq_supported) {
9491     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9492     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9493 
9494     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9495     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9496 
9497     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9498     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9499   } else {
9500     const_or_pre_comp_const_index[0] = 1;
9501     const_or_pre_comp_const_index[1] = 0;
9502 
9503     const_or_pre_comp_const_index[2] = 3;
9504     const_or_pre_comp_const_index[3] = 2;
9505 
9506     const_or_pre_comp_const_index[4] = 5;
9507     const_or_pre_comp_const_index[5] = 4;
9508   }
9509   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9510                     in2, in1, in_out,
9511                     tmp1, tmp2, tmp3,
9512                     w_xtmp1, w_xtmp2, w_xtmp3,
9513                     tmp4, tmp5,
9514                     tmp6);
9515   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9516                     in2, in1, in_out,
9517                     tmp1, tmp2, tmp3,
9518                     w_xtmp1, w_xtmp2, w_xtmp3,
9519                     tmp4, tmp5,
9520                     tmp6);
9521   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9522                     in2, in1, in_out,
9523                     tmp1, tmp2, tmp3,
9524                     w_xtmp1, w_xtmp2, w_xtmp3,
9525                     tmp4, tmp5,
9526                     tmp6);
9527   movl(tmp1, in2);
9528   andl(tmp1, 0x00000007);
9529   negl(tmp1);
9530   addl(tmp1, in2);
9531   addl(tmp1, in1);
9532 
9533   BIND(L_wordByWord);
9534   cmpl(in1, tmp1);
9535   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9536     crc32(in_out, Address(in1,0), 4);
9537     addl(in1, 4);
9538     jmp(L_wordByWord);
9539 
9540   BIND(L_byteByByteProlog);
9541   andl(in2, 0x00000007);
9542   movl(tmp2, 1);
9543 
9544   BIND(L_byteByByte);
9545   cmpl(tmp2, in2);
9546   jccb(Assembler::greater, L_exit);
9547     movb(tmp1, Address(in1, 0));
9548     crc32(in_out, tmp1, 1);
9549     incl(in1);
9550     incl(tmp2);
9551     jmp(L_byteByByte);
9552 
9553   BIND(L_exit);
9554 }
9555 #endif // LP64
9556 #undef BIND
9557 #undef BLOCK_COMMENT
9558 
9559 // Compress char[] array to byte[].
9560 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9561 //   @HotSpotIntrinsicCandidate
9562 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9563 //     for (int i = 0; i < len; i++) {
9564 //       int c = src[srcOff++];
9565 //       if (c >>> 8 != 0) {
9566 //         return 0;
9567 //       }
9568 //       dst[dstOff++] = (byte)c;
9569 //     }
9570 //     return len;
9571 //   }
9572 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9573   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9574   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9575   Register tmp5, Register result) {
9576   Label copy_chars_loop, return_length, return_zero, done;
9577 
9578   // rsi: src
9579   // rdi: dst
9580   // rdx: len
9581   // rcx: tmp5
9582   // rax: result
9583 
9584   // rsi holds start addr of source char[] to be compressed
9585   // rdi holds start addr of destination byte[]
9586   // rdx holds length
9587 
9588   assert(len != result, "");
9589 
9590   // save length for return
9591   push(len);
9592 
9593   if ((UseAVX > 2) && // AVX512
9594     VM_Version::supports_avx512vlbw() &&
9595     VM_Version::supports_bmi2()) {
9596 
9597     set_vector_masking();  // opening of the stub context for programming mask registers
9598 
9599     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero, below_threshold;
9600 
9601     // alignment
9602     Label post_alignment;
9603 
9604     // if length of the string is less than 16, handle it in an old fashioned way
9605     testl(len, -32);
9606     jcc(Assembler::zero, below_threshold);
9607 
9608     // First check whether a character is compressable ( <= 0xFF).
9609     // Create mask to test for Unicode chars inside zmm vector
9610     movl(result, 0x00FF);
9611     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9612 
9613     // Save k1
9614     kmovql(k3, k1);
9615 
9616     testl(len, -64);
9617     jcc(Assembler::zero, post_alignment);
9618 
9619     movl(tmp5, dst);
9620     andl(tmp5, (32 - 1));
9621     negl(tmp5);
9622     andl(tmp5, (32 - 1));
9623 
9624     // bail out when there is nothing to be done
9625     testl(tmp5, 0xFFFFFFFF);
9626     jcc(Assembler::zero, post_alignment);
9627 
9628     // ~(~0 << len), where len is the # of remaining elements to process
9629     movl(result, 0xFFFFFFFF);
9630     shlxl(result, result, tmp5);
9631     notl(result);
9632     kmovdl(k1, result);
9633 
9634     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
9635     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9636     ktestd(k2, k1);
9637     jcc(Assembler::carryClear, restore_k1_return_zero);
9638 
9639     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
9640 
9641     addptr(src, tmp5);
9642     addptr(src, tmp5);
9643     addptr(dst, tmp5);
9644     subl(len, tmp5);
9645 
9646     bind(post_alignment);
9647     // end of alignment
9648 
9649     movl(tmp5, len);
9650     andl(tmp5, (32 - 1));    // tail count (in chars)
9651     andl(len, ~(32 - 1));    // vector count (in chars)
9652     jcc(Assembler::zero, copy_loop_tail);
9653 
9654     lea(src, Address(src, len, Address::times_2));
9655     lea(dst, Address(dst, len, Address::times_1));
9656     negptr(len);
9657 
9658     bind(copy_32_loop);
9659     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9660     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9661     kortestdl(k2, k2);
9662     jcc(Assembler::carryClear, restore_k1_return_zero);
9663 
9664     // All elements in current processed chunk are valid candidates for
9665     // compression. Write a truncated byte elements to the memory.
9666     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9667     addptr(len, 32);
9668     jcc(Assembler::notZero, copy_32_loop);
9669 
9670     bind(copy_loop_tail);
9671     // bail out when there is nothing to be done
9672     testl(tmp5, 0xFFFFFFFF);
9673     // Restore k1
9674     kmovql(k1, k3);
9675     jcc(Assembler::zero, return_length);
9676 
9677     movl(len, tmp5);
9678 
9679     // ~(~0 << len), where len is the # of remaining elements to process
9680     movl(result, 0xFFFFFFFF);
9681     shlxl(result, result, len);
9682     notl(result);
9683 
9684     kmovdl(k1, result);
9685 
9686     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
9687     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9688     ktestd(k2, k1);
9689     jcc(Assembler::carryClear, restore_k1_return_zero);
9690 
9691     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
9692     // Restore k1
9693     kmovql(k1, k3);
9694     jmp(return_length);
9695 
9696     bind(restore_k1_return_zero);
9697     // Restore k1
9698     kmovql(k1, k3);
9699     jmp(return_zero);
9700 
9701     clear_vector_masking();   // closing of the stub context for programming mask registers
9702 
9703     bind(below_threshold);
9704   }
9705 
9706   if (UseSSE42Intrinsics) {
9707     Label copy_32_loop, copy_16, copy_tail;
9708 
9709     movl(result, len);
9710 
9711     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9712 
9713     // vectored compression
9714     andl(len, 0xfffffff0);    // vector count (in chars)
9715     andl(result, 0x0000000f);    // tail count (in chars)
9716     testl(len, len);
9717     jcc(Assembler::zero, copy_16);
9718 
9719     // compress 16 chars per iter
9720     movdl(tmp1Reg, tmp5);
9721     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9722     pxor(tmp4Reg, tmp4Reg);
9723 
9724     lea(src, Address(src, len, Address::times_2));
9725     lea(dst, Address(dst, len, Address::times_1));
9726     negptr(len);
9727 
9728     bind(copy_32_loop);
9729     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9730     por(tmp4Reg, tmp2Reg);
9731     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9732     por(tmp4Reg, tmp3Reg);
9733     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9734     jcc(Assembler::notZero, return_zero);
9735     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9736     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9737     addptr(len, 16);
9738     jcc(Assembler::notZero, copy_32_loop);
9739 
9740     // compress next vector of 8 chars (if any)
9741     bind(copy_16);
9742     movl(len, result);
9743     andl(len, 0xfffffff8);    // vector count (in chars)
9744     andl(result, 0x00000007);    // tail count (in chars)
9745     testl(len, len);
9746     jccb(Assembler::zero, copy_tail);
9747 
9748     movdl(tmp1Reg, tmp5);
9749     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9750     pxor(tmp3Reg, tmp3Reg);
9751 
9752     movdqu(tmp2Reg, Address(src, 0));
9753     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9754     jccb(Assembler::notZero, return_zero);
9755     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9756     movq(Address(dst, 0), tmp2Reg);
9757     addptr(src, 16);
9758     addptr(dst, 8);
9759 
9760     bind(copy_tail);
9761     movl(len, result);
9762   }
9763   // compress 1 char per iter
9764   testl(len, len);
9765   jccb(Assembler::zero, return_length);
9766   lea(src, Address(src, len, Address::times_2));
9767   lea(dst, Address(dst, len, Address::times_1));
9768   negptr(len);
9769 
9770   bind(copy_chars_loop);
9771   load_unsigned_short(result, Address(src, len, Address::times_2));
9772   testl(result, 0xff00);      // check if Unicode char
9773   jccb(Assembler::notZero, return_zero);
9774   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9775   increment(len);
9776   jcc(Assembler::notZero, copy_chars_loop);
9777 
9778   // if compression succeeded, return length
9779   bind(return_length);
9780   pop(result);
9781   jmpb(done);
9782 
9783   // if compression failed, return 0
9784   bind(return_zero);
9785   xorl(result, result);
9786   addptr(rsp, wordSize);
9787 
9788   bind(done);
9789 }
9790 
9791 // Inflate byte[] array to char[].
9792 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9793 //   @HotSpotIntrinsicCandidate
9794 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9795 //     for (int i = 0; i < len; i++) {
9796 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9797 //     }
9798 //   }
9799 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9800   XMMRegister tmp1, Register tmp2) {
9801   Label copy_chars_loop, done, below_threshold;
9802   // rsi: src
9803   // rdi: dst
9804   // rdx: len
9805   // rcx: tmp2
9806 
9807   // rsi holds start addr of source byte[] to be inflated
9808   // rdi holds start addr of destination char[]
9809   // rdx holds length
9810   assert_different_registers(src, dst, len, tmp2);
9811 
9812   if ((UseAVX > 2) && // AVX512
9813     VM_Version::supports_avx512vlbw() &&
9814     VM_Version::supports_bmi2()) {
9815 
9816     set_vector_masking();  // opening of the stub context for programming mask registers
9817 
9818     Label copy_32_loop, copy_tail;
9819     Register tmp3_aliased = len;
9820 
9821     // if length of the string is less than 16, handle it in an old fashioned way
9822     testl(len, -16);
9823     jcc(Assembler::zero, below_threshold);
9824 
9825     // In order to use only one arithmetic operation for the main loop we use
9826     // this pre-calculation
9827     movl(tmp2, len);
9828     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9829     andl(len, -32);     // vector count
9830     jccb(Assembler::zero, copy_tail);
9831 
9832     lea(src, Address(src, len, Address::times_1));
9833     lea(dst, Address(dst, len, Address::times_2));
9834     negptr(len);
9835 
9836 
9837     // inflate 32 chars per iter
9838     bind(copy_32_loop);
9839     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9840     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9841     addptr(len, 32);
9842     jcc(Assembler::notZero, copy_32_loop);
9843 
9844     bind(copy_tail);
9845     // bail out when there is nothing to be done
9846     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9847     jcc(Assembler::zero, done);
9848 
9849     // Save k1
9850     kmovql(k2, k1);
9851 
9852     // ~(~0 << length), where length is the # of remaining elements to process
9853     movl(tmp3_aliased, -1);
9854     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9855     notl(tmp3_aliased);
9856     kmovdl(k1, tmp3_aliased);
9857     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
9858     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
9859 
9860     // Restore k1
9861     kmovql(k1, k2);
9862     jmp(done);
9863 
9864     clear_vector_masking();   // closing of the stub context for programming mask registers
9865   }
9866   if (UseSSE42Intrinsics) {
9867     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9868 
9869     movl(tmp2, len);
9870 
9871     if (UseAVX > 1) {
9872       andl(tmp2, (16 - 1));
9873       andl(len, -16);
9874       jccb(Assembler::zero, copy_new_tail);
9875     } else {
9876       andl(tmp2, 0x00000007);   // tail count (in chars)
9877       andl(len, 0xfffffff8);    // vector count (in chars)
9878       jccb(Assembler::zero, copy_tail);
9879     }
9880 
9881     // vectored inflation
9882     lea(src, Address(src, len, Address::times_1));
9883     lea(dst, Address(dst, len, Address::times_2));
9884     negptr(len);
9885 
9886     if (UseAVX > 1) {
9887       bind(copy_16_loop);
9888       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9889       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9890       addptr(len, 16);
9891       jcc(Assembler::notZero, copy_16_loop);
9892 
9893       bind(below_threshold);
9894       bind(copy_new_tail);
9895       if ((UseAVX > 2) &&
9896         VM_Version::supports_avx512vlbw() &&
9897         VM_Version::supports_bmi2()) {
9898         movl(tmp2, len);
9899       } else {
9900         movl(len, tmp2);
9901       }
9902       andl(tmp2, 0x00000007);
9903       andl(len, 0xFFFFFFF8);
9904       jccb(Assembler::zero, copy_tail);
9905 
9906       pmovzxbw(tmp1, Address(src, 0));
9907       movdqu(Address(dst, 0), tmp1);
9908       addptr(src, 8);
9909       addptr(dst, 2 * 8);
9910 
9911       jmp(copy_tail, true);
9912     }
9913 
9914     // inflate 8 chars per iter
9915     bind(copy_8_loop);
9916     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9917     movdqu(Address(dst, len, Address::times_2), tmp1);
9918     addptr(len, 8);
9919     jcc(Assembler::notZero, copy_8_loop);
9920 
9921     bind(copy_tail);
9922     movl(len, tmp2);
9923 
9924     cmpl(len, 4);
9925     jccb(Assembler::less, copy_bytes);
9926 
9927     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9928     pmovzxbw(tmp1, tmp1);
9929     movq(Address(dst, 0), tmp1);
9930     subptr(len, 4);
9931     addptr(src, 4);
9932     addptr(dst, 8);
9933 
9934     bind(copy_bytes);
9935   } else {
9936     bind(below_threshold);
9937   }
9938 
9939   testl(len, len);
9940   jccb(Assembler::zero, done);
9941   lea(src, Address(src, len, Address::times_1));
9942   lea(dst, Address(dst, len, Address::times_2));
9943   negptr(len);
9944 
9945   // inflate 1 char per iter
9946   bind(copy_chars_loop);
9947   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
9948   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
9949   increment(len);
9950   jcc(Assembler::notZero, copy_chars_loop);
9951 
9952   bind(done);
9953 }
9954 
9955 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9956   switch (cond) {
9957     // Note some conditions are synonyms for others
9958     case Assembler::zero:         return Assembler::notZero;
9959     case Assembler::notZero:      return Assembler::zero;
9960     case Assembler::less:         return Assembler::greaterEqual;
9961     case Assembler::lessEqual:    return Assembler::greater;
9962     case Assembler::greater:      return Assembler::lessEqual;
9963     case Assembler::greaterEqual: return Assembler::less;
9964     case Assembler::below:        return Assembler::aboveEqual;
9965     case Assembler::belowEqual:   return Assembler::above;
9966     case Assembler::above:        return Assembler::belowEqual;
9967     case Assembler::aboveEqual:   return Assembler::below;
9968     case Assembler::overflow:     return Assembler::noOverflow;
9969     case Assembler::noOverflow:   return Assembler::overflow;
9970     case Assembler::negative:     return Assembler::positive;
9971     case Assembler::positive:     return Assembler::negative;
9972     case Assembler::parity:       return Assembler::noParity;
9973     case Assembler::noParity:     return Assembler::parity;
9974   }
9975   ShouldNotReachHere(); return Assembler::overflow;
9976 }
9977 
9978 SkipIfEqual::SkipIfEqual(
9979     MacroAssembler* masm, const bool* flag_addr, bool value) {
9980   _masm = masm;
9981   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9982   _masm->jcc(Assembler::equal, _label);
9983 }
9984 
9985 SkipIfEqual::~SkipIfEqual() {
9986   _masm->bind(_label);
9987 }
9988 
9989 // 32-bit Windows has its own fast-path implementation
9990 // of get_thread
9991 #if !defined(WIN32) || defined(_LP64)
9992 
9993 // This is simply a call to Thread::current()
9994 void MacroAssembler::get_thread(Register thread) {
9995   if (thread != rax) {
9996     push(rax);
9997   }
9998   LP64_ONLY(push(rdi);)
9999   LP64_ONLY(push(rsi);)
10000   push(rdx);
10001   push(rcx);
10002 #ifdef _LP64
10003   push(r8);
10004   push(r9);
10005   push(r10);
10006   push(r11);
10007 #endif
10008 
10009   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10010 
10011 #ifdef _LP64
10012   pop(r11);
10013   pop(r10);
10014   pop(r9);
10015   pop(r8);
10016 #endif
10017   pop(rcx);
10018   pop(rdx);
10019   LP64_ONLY(pop(rsi);)
10020   LP64_ONLY(pop(rdi);)
10021   if (thread != rax) {
10022     mov(thread, rax);
10023     pop(rax);
10024   }
10025 }
10026 
10027 #endif