1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_SUBNODE_HPP
  26 #define SHARE_VM_OPTO_SUBNODE_HPP
  27 
  28 #include "opto/node.hpp"
  29 #include "opto/opcodes.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 //------------------------------SUBNode----------------------------------------
  35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
  36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
  37 // -float, and -double are all inherited from this class.  The compare
  38 // functions behave like subtract functions, except that all negative answers
  39 // are compressed into -1, and all positive answers compressed to 1.
  40 class SubNode : public Node {
  41 public:
  42   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
  43     init_class_id(Class_Sub);
  44   }
  45 
  46   // Handle algebraic identities here.  If we have an identity, return the Node
  47   // we are equivalent to.  We look for "add of zero" as an identity.
  48   virtual Node *Identity( PhaseTransform *phase );
  49 
  50   // Compute a new Type for this node.  Basically we just do the pre-check,
  51   // then call the virtual add() to set the type.
  52   virtual const Type *Value( PhaseTransform *phase ) const;
  53 
  54   // Supplied function returns the subtractend of the inputs.
  55   // This also type-checks the inputs for sanity.  Guaranteed never to
  56   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
  57   virtual const Type *sub( const Type *, const Type * ) const = 0;
  58 
  59   // Supplied function to return the additive identity type.
  60   // This is returned whenever the subtracts inputs are the same.
  61   virtual const Type *add_id() const = 0;
  62 
  63 };
  64 
  65 
  66 // NOTE: SubINode should be taken away and replaced by add and negate
  67 //------------------------------SubINode---------------------------------------
  68 // Subtract 2 integers
  69 class SubINode : public SubNode {
  70 public:
  71   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  72   virtual int Opcode() const;
  73   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  74   virtual const Type *sub( const Type *, const Type * ) const;
  75   const Type *add_id() const { return TypeInt::ZERO; }
  76   const Type *bottom_type() const { return TypeInt::INT; }
  77   virtual uint ideal_reg() const { return Op_RegI; }
  78 };
  79 
  80 //------------------------------SubLNode---------------------------------------
  81 // Subtract 2 integers
  82 class SubLNode : public SubNode {
  83 public:
  84   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  85   virtual int Opcode() const;
  86   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  87   virtual const Type *sub( const Type *, const Type * ) const;
  88   const Type *add_id() const { return TypeLong::ZERO; }
  89   const Type *bottom_type() const { return TypeLong::LONG; }
  90   virtual uint ideal_reg() const { return Op_RegL; }
  91 };
  92 
  93 // NOTE: SubFPNode should be taken away and replaced by add and negate
  94 //------------------------------SubFPNode--------------------------------------
  95 // Subtract 2 floats or doubles
  96 class SubFPNode : public SubNode {
  97 protected:
  98   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  99 public:
 100   const Type *Value( PhaseTransform *phase ) const;
 101 };
 102 
 103 // NOTE: SubFNode should be taken away and replaced by add and negate
 104 //------------------------------SubFNode---------------------------------------
 105 // Subtract 2 doubles
 106 class SubFNode : public SubFPNode {
 107 public:
 108   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
 109   virtual int Opcode() const;
 110   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 111   virtual const Type *sub( const Type *, const Type * ) const;
 112   const Type   *add_id() const { return TypeF::ZERO; }
 113   const Type   *bottom_type() const { return Type::FLOAT; }
 114   virtual uint  ideal_reg() const { return Op_RegF; }
 115 };
 116 
 117 // NOTE: SubDNode should be taken away and replaced by add and negate
 118 //------------------------------SubDNode---------------------------------------
 119 // Subtract 2 doubles
 120 class SubDNode : public SubFPNode {
 121 public:
 122   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
 123   virtual int Opcode() const;
 124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 125   virtual const Type *sub( const Type *, const Type * ) const;
 126   const Type   *add_id() const { return TypeD::ZERO; }
 127   const Type   *bottom_type() const { return Type::DOUBLE; }
 128   virtual uint  ideal_reg() const { return Op_RegD; }
 129 };
 130 
 131 //------------------------------CmpNode---------------------------------------
 132 // Compare 2 values, returning condition codes (-1, 0 or 1).
 133 class CmpNode : public SubNode {
 134 public:
 135   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
 136     init_class_id(Class_Cmp);
 137   }
 138   virtual Node *Identity( PhaseTransform *phase );
 139   const Type *add_id() const { return TypeInt::ZERO; }
 140   const Type *bottom_type() const { return TypeInt::CC; }
 141   virtual uint ideal_reg() const { return Op_RegFlags; }
 142 };
 143 
 144 //------------------------------CmpINode---------------------------------------
 145 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
 146 class CmpINode : public CmpNode {
 147 public:
 148   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 149   virtual int Opcode() const;
 150   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 151   virtual const Type *sub( const Type *, const Type * ) const;
 152 };
 153 
 154 //------------------------------CmpUNode---------------------------------------
 155 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
 156 class CmpUNode : public CmpNode {
 157 public:
 158   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 159   virtual int Opcode() const;
 160   virtual const Type *sub( const Type *, const Type * ) const;
 161   bool is_index_range_check() const;
 162 };
 163 
 164 //------------------------------CmpPNode---------------------------------------
 165 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
 166 class CmpPNode : public CmpNode {
 167 public:
 168   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 169   virtual int Opcode() const;
 170   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 171   virtual const Type *sub( const Type *, const Type * ) const;
 172 };
 173 
 174 //------------------------------CmpNNode--------------------------------------
 175 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
 176 class CmpNNode : public CmpNode {
 177 public:
 178   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 179   virtual int Opcode() const;
 180   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 181   virtual const Type *sub( const Type *, const Type * ) const;
 182 };
 183 
 184 //------------------------------CmpLNode---------------------------------------
 185 // Compare 2 long values, returning condition codes (-1, 0 or 1).
 186 class CmpLNode : public CmpNode {
 187 public:
 188   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 189   virtual int    Opcode() const;
 190   virtual const Type *sub( const Type *, const Type * ) const;
 191 };
 192 
 193 //------------------------------CmpL3Node--------------------------------------
 194 // Compare 2 long values, returning integer value (-1, 0 or 1).
 195 class CmpL3Node : public CmpLNode {
 196 public:
 197   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
 198     // Since it is not consumed by Bools, it is not really a Cmp.
 199     init_class_id(Class_Sub);
 200   }
 201   virtual int    Opcode() const;
 202   virtual uint ideal_reg() const { return Op_RegI; }
 203 };
 204 
 205 //------------------------------CmpFNode---------------------------------------
 206 // Compare 2 float values, returning condition codes (-1, 0 or 1).
 207 // This implements the Java bytecode fcmpl, so unordered returns -1.
 208 // Operands may not commute.
 209 class CmpFNode : public CmpNode {
 210 public:
 211   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 212   virtual int Opcode() const;
 213   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
 214   const Type *Value( PhaseTransform *phase ) const;
 215 };
 216 
 217 //------------------------------CmpF3Node--------------------------------------
 218 // Compare 2 float values, returning integer value (-1, 0 or 1).
 219 // This implements the Java bytecode fcmpl, so unordered returns -1.
 220 // Operands may not commute.
 221 class CmpF3Node : public CmpFNode {
 222 public:
 223   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
 224     // Since it is not consumed by Bools, it is not really a Cmp.
 225     init_class_id(Class_Sub);
 226   }
 227   virtual int Opcode() const;
 228   // Since it is not consumed by Bools, it is not really a Cmp.
 229   virtual uint ideal_reg() const { return Op_RegI; }
 230 };
 231 
 232 
 233 //------------------------------CmpDNode---------------------------------------
 234 // Compare 2 double values, returning condition codes (-1, 0 or 1).
 235 // This implements the Java bytecode dcmpl, so unordered returns -1.
 236 // Operands may not commute.
 237 class CmpDNode : public CmpNode {
 238 public:
 239   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 240   virtual int Opcode() const;
 241   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
 242   const Type *Value( PhaseTransform *phase ) const;
 243   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
 244 };
 245 
 246 //------------------------------CmpD3Node--------------------------------------
 247 // Compare 2 double values, returning integer value (-1, 0 or 1).
 248 // This implements the Java bytecode dcmpl, so unordered returns -1.
 249 // Operands may not commute.
 250 class CmpD3Node : public CmpDNode {
 251 public:
 252   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
 253     // Since it is not consumed by Bools, it is not really a Cmp.
 254     init_class_id(Class_Sub);
 255   }
 256   virtual int Opcode() const;
 257   virtual uint ideal_reg() const { return Op_RegI; }
 258 };
 259 
 260 
 261 //------------------------------BoolTest---------------------------------------
 262 // Convert condition codes to a boolean test value (0 or -1).
 263 // We pick the values as 3 bits; the low order 2 bits we compare against the
 264 // condition codes, the high bit flips the sense of the result.
 265 struct BoolTest VALUE_OBJ_CLASS_SPEC {
 266   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, illegal = 8 };
 267   mask _test;
 268   BoolTest( mask btm ) : _test(btm) {}
 269   const Type *cc2logical( const Type *CC ) const;
 270   // Commute the test.  I use a small table lookup.  The table is created as
 271   // a simple char array where each element is the ASCII version of a 'mask'
 272   // enum from above.
 273   mask commute( ) const { return mask("038147858"[_test]-'0'); }
 274   mask negate( ) const { return mask(_test^4); }
 275   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le); }
 276 #ifndef PRODUCT
 277   void dump_on(outputStream *st) const;
 278 #endif
 279 };
 280 
 281 //------------------------------BoolNode---------------------------------------
 282 // A Node to convert a Condition Codes to a Logical result.
 283 class BoolNode : public Node {
 284   virtual uint hash() const;
 285   virtual uint cmp( const Node &n ) const;
 286   virtual uint size_of() const;
 287 public:
 288   const BoolTest _test;
 289   BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
 290     init_class_id(Class_Bool);
 291   }
 292   // Convert an arbitrary int value to a Bool or other suitable predicate.
 293   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
 294   // Convert self back to an integer value.
 295   Node* as_int_value(PhaseGVN* phase);
 296   // Invert sense of self, returning new Bool.
 297   BoolNode* negate(PhaseGVN* phase);
 298   virtual int Opcode() const;
 299   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 300   virtual const Type *Value( PhaseTransform *phase ) const;
 301   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
 302   uint match_edge(uint idx) const { return 0; }
 303   virtual uint ideal_reg() const { return Op_RegI; }
 304 
 305   bool is_counted_loop_exit_test();
 306 #ifndef PRODUCT
 307   virtual void dump_spec(outputStream *st) const;
 308 #endif
 309 };
 310 
 311 //------------------------------AbsNode----------------------------------------
 312 // Abstract class for absolute value.  Mostly used to get a handy wrapper
 313 // for finding this pattern in the graph.
 314 class AbsNode : public Node {
 315 public:
 316   AbsNode( Node *value ) : Node(0,value) {}
 317 };
 318 
 319 //------------------------------AbsINode---------------------------------------
 320 // Absolute value an integer.  Since a naive graph involves control flow, we
 321 // "match" it in the ideal world (so the control flow can be removed).
 322 class AbsINode : public AbsNode {
 323 public:
 324   AbsINode( Node *in1 ) : AbsNode(in1) {}
 325   virtual int Opcode() const;
 326   const Type *bottom_type() const { return TypeInt::INT; }
 327   virtual uint ideal_reg() const { return Op_RegI; }
 328 };
 329 
 330 //------------------------------AbsFNode---------------------------------------
 331 // Absolute value a float, a common float-point idiom with a cheap hardware
 332 // implemention on most chips.  Since a naive graph involves control flow, we
 333 // "match" it in the ideal world (so the control flow can be removed).
 334 class AbsFNode : public AbsNode {
 335 public:
 336   AbsFNode( Node *in1 ) : AbsNode(in1) {}
 337   virtual int Opcode() const;
 338   const Type *bottom_type() const { return Type::FLOAT; }
 339   virtual uint ideal_reg() const { return Op_RegF; }
 340 };
 341 
 342 //------------------------------AbsDNode---------------------------------------
 343 // Absolute value a double, a common float-point idiom with a cheap hardware
 344 // implemention on most chips.  Since a naive graph involves control flow, we
 345 // "match" it in the ideal world (so the control flow can be removed).
 346 class AbsDNode : public AbsNode {
 347 public:
 348   AbsDNode( Node *in1 ) : AbsNode(in1) {}
 349   virtual int Opcode() const;
 350   const Type *bottom_type() const { return Type::DOUBLE; }
 351   virtual uint ideal_reg() const { return Op_RegD; }
 352 };
 353 
 354 
 355 //------------------------------CmpLTMaskNode----------------------------------
 356 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
 357 class CmpLTMaskNode : public Node {
 358 public:
 359   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
 360   virtual int Opcode() const;
 361   const Type *bottom_type() const { return TypeInt::INT; }
 362   virtual uint ideal_reg() const { return Op_RegI; }
 363 };
 364 
 365 
 366 //------------------------------NegNode----------------------------------------
 367 class NegNode : public Node {
 368 public:
 369   NegNode( Node *in1 ) : Node(0,in1) {}
 370 };
 371 
 372 //------------------------------NegFNode---------------------------------------
 373 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
 374 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
 375 // cannot be used to replace negation we have to implement negation as ideal
 376 // node; note that negation and addition can replace subtraction.
 377 class NegFNode : public NegNode {
 378 public:
 379   NegFNode( Node *in1 ) : NegNode(in1) {}
 380   virtual int Opcode() const;
 381   const Type *bottom_type() const { return Type::FLOAT; }
 382   virtual uint ideal_reg() const { return Op_RegF; }
 383 };
 384 
 385 //------------------------------NegDNode---------------------------------------
 386 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
 387 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
 388 // cannot be used to replace negation we have to implement negation as ideal
 389 // node; note that negation and addition can replace subtraction.
 390 class NegDNode : public NegNode {
 391 public:
 392   NegDNode( Node *in1 ) : NegNode(in1) {}
 393   virtual int Opcode() const;
 394   const Type *bottom_type() const { return Type::DOUBLE; }
 395   virtual uint ideal_reg() const { return Op_RegD; }
 396 };
 397 
 398 //------------------------------CosDNode---------------------------------------
 399 // Cosinus of a double
 400 class CosDNode : public Node {
 401 public:
 402   CosDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 403     init_flags(Flag_is_expensive);
 404     C->add_expensive_node(this);
 405   }
 406   virtual int Opcode() const;
 407   const Type *bottom_type() const { return Type::DOUBLE; }
 408   virtual uint ideal_reg() const { return Op_RegD; }
 409   virtual const Type *Value( PhaseTransform *phase ) const;
 410 };
 411 
 412 //------------------------------CosDNode---------------------------------------
 413 // Sinus of a double
 414 class SinDNode : public Node {
 415 public:
 416   SinDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 417     init_flags(Flag_is_expensive);
 418     C->add_expensive_node(this);
 419   }
 420   virtual int Opcode() const;
 421   const Type *bottom_type() const { return Type::DOUBLE; }
 422   virtual uint ideal_reg() const { return Op_RegD; }
 423   virtual const Type *Value( PhaseTransform *phase ) const;
 424 };
 425 
 426 
 427 //------------------------------TanDNode---------------------------------------
 428 // tangens of a double
 429 class TanDNode : public Node {
 430 public:
 431   TanDNode(Compile* C, Node *c,Node *in1) : Node(c, in1) {
 432     init_flags(Flag_is_expensive);
 433     C->add_expensive_node(this);
 434   }
 435   virtual int Opcode() const;
 436   const Type *bottom_type() const { return Type::DOUBLE; }
 437   virtual uint ideal_reg() const { return Op_RegD; }
 438   virtual const Type *Value( PhaseTransform *phase ) const;
 439 };
 440 
 441 
 442 //------------------------------AtanDNode--------------------------------------
 443 // arcus tangens of a double
 444 class AtanDNode : public Node {
 445 public:
 446   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
 447   virtual int Opcode() const;
 448   const Type *bottom_type() const { return Type::DOUBLE; }
 449   virtual uint ideal_reg() const { return Op_RegD; }
 450 };
 451 
 452 
 453 //------------------------------SqrtDNode--------------------------------------
 454 // square root a double
 455 class SqrtDNode : public Node {
 456 public:
 457   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 458     init_flags(Flag_is_expensive);
 459     C->add_expensive_node(this);
 460   }
 461   virtual int Opcode() const;
 462   const Type *bottom_type() const { return Type::DOUBLE; }
 463   virtual uint ideal_reg() const { return Op_RegD; }
 464   virtual const Type *Value( PhaseTransform *phase ) const;
 465 };
 466 
 467 //------------------------------ExpDNode---------------------------------------
 468 //  Exponentiate a double
 469 class ExpDNode : public Node {
 470 public:
 471   ExpDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 472     init_flags(Flag_is_expensive);
 473     C->add_expensive_node(this);
 474   }
 475   virtual int Opcode() const;
 476   const Type *bottom_type() const { return Type::DOUBLE; }
 477   virtual uint ideal_reg() const { return Op_RegD; }
 478   virtual const Type *Value( PhaseTransform *phase ) const;
 479 };
 480 
 481 //------------------------------LogDNode---------------------------------------
 482 // Log_e of a double
 483 class LogDNode : public Node {
 484 public:
 485   LogDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 486     init_flags(Flag_is_expensive);
 487     C->add_expensive_node(this);
 488   }
 489   virtual int Opcode() const;
 490   const Type *bottom_type() const { return Type::DOUBLE; }
 491   virtual uint ideal_reg() const { return Op_RegD; }
 492   virtual const Type *Value( PhaseTransform *phase ) const;
 493 };
 494 
 495 //------------------------------Log10DNode---------------------------------------
 496 // Log_10 of a double
 497 class Log10DNode : public Node {
 498 public:
 499   Log10DNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
 500     init_flags(Flag_is_expensive);
 501     C->add_expensive_node(this);
 502   }
 503   virtual int Opcode() const;
 504   const Type *bottom_type() const { return Type::DOUBLE; }
 505   virtual uint ideal_reg() const { return Op_RegD; }
 506   virtual const Type *Value( PhaseTransform *phase ) const;
 507 };
 508 
 509 //------------------------------PowDNode---------------------------------------
 510 // Raise a double to a double power
 511 class PowDNode : public Node {
 512 public:
 513   PowDNode(Compile* C, Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {
 514     init_flags(Flag_is_expensive);
 515     C->add_expensive_node(this);
 516   }
 517   virtual int Opcode() const;
 518   const Type *bottom_type() const { return Type::DOUBLE; }
 519   virtual uint ideal_reg() const { return Op_RegD; }
 520   virtual const Type *Value( PhaseTransform *phase ) const;
 521 };
 522 
 523 //-------------------------------ReverseBytesINode--------------------------------
 524 // reverse bytes of an integer
 525 class ReverseBytesINode : public Node {
 526 public:
 527   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
 528   virtual int Opcode() const;
 529   const Type *bottom_type() const { return TypeInt::INT; }
 530   virtual uint ideal_reg() const { return Op_RegI; }
 531 };
 532 
 533 //-------------------------------ReverseBytesLNode--------------------------------
 534 // reverse bytes of a long
 535 class ReverseBytesLNode : public Node {
 536 public:
 537   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
 538   virtual int Opcode() const;
 539   const Type *bottom_type() const { return TypeLong::LONG; }
 540   virtual uint ideal_reg() const { return Op_RegL; }
 541 };
 542 
 543 //-------------------------------ReverseBytesUSNode--------------------------------
 544 // reverse bytes of an unsigned short / char
 545 class ReverseBytesUSNode : public Node {
 546 public:
 547   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
 548   virtual int Opcode() const;
 549   const Type *bottom_type() const { return TypeInt::CHAR; }
 550   virtual uint ideal_reg() const { return Op_RegI; }
 551 };
 552 
 553 //-------------------------------ReverseBytesSNode--------------------------------
 554 // reverse bytes of a short
 555 class ReverseBytesSNode : public Node {
 556 public:
 557   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
 558   virtual int Opcode() const;
 559   const Type *bottom_type() const { return TypeInt::SHORT; }
 560   virtual uint ideal_reg() const { return Op_RegI; }
 561 };
 562 
 563 #endif // SHARE_VM_OPTO_SUBNODE_HPP