1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/idealKit.hpp"
  36 #include "opto/mathexactnode.hpp"
  37 #include "opto/mulnode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "prims/nativeLookup.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "trace/traceMacros.hpp"
  44 
  45 class LibraryIntrinsic : public InlineCallGenerator {
  46   // Extend the set of intrinsics known to the runtime:
  47  public:
  48  private:
  49   bool             _is_virtual;
  50   bool             _does_virtual_dispatch;
  51   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  52   int8_t           _last_predicate; // Last generated predicate
  53   vmIntrinsics::ID _intrinsic_id;
  54 
  55  public:
  56   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  57     : InlineCallGenerator(m),
  58       _is_virtual(is_virtual),
  59       _does_virtual_dispatch(does_virtual_dispatch),
  60       _predicates_count((int8_t)predicates_count),
  61       _last_predicate((int8_t)-1),
  62       _intrinsic_id(id)
  63   {
  64   }
  65   virtual bool is_intrinsic() const { return true; }
  66   virtual bool is_virtual()   const { return _is_virtual; }
  67   virtual bool is_predicated() const { return _predicates_count > 0; }
  68   virtual int  predicates_count() const { return _predicates_count; }
  69   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  70   virtual JVMState* generate(JVMState* jvms);
  71   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  72   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  73 };
  74 
  75 
  76 // Local helper class for LibraryIntrinsic:
  77 class LibraryCallKit : public GraphKit {
  78  private:
  79   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  80   Node*             _result;        // the result node, if any
  81   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  82 
  83   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  84 
  85  public:
  86   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  87     : GraphKit(jvms),
  88       _intrinsic(intrinsic),
  89       _result(NULL)
  90   {
  91     // Check if this is a root compile.  In that case we don't have a caller.
  92     if (!jvms->has_method()) {
  93       _reexecute_sp = sp();
  94     } else {
  95       // Find out how many arguments the interpreter needs when deoptimizing
  96       // and save the stack pointer value so it can used by uncommon_trap.
  97       // We find the argument count by looking at the declared signature.
  98       bool ignored_will_link;
  99       ciSignature* declared_signature = NULL;
 100       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 101       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 102       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 103     }
 104   }
 105 
 106   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 107 
 108   ciMethod*         caller()    const    { return jvms()->method(); }
 109   int               bci()       const    { return jvms()->bci(); }
 110   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 111   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 112   ciMethod*         callee()    const    { return _intrinsic->method(); }
 113 
 114   bool  try_to_inline(int predicate);
 115   Node* try_to_predicate(int predicate);
 116 
 117   void push_result() {
 118     // Push the result onto the stack.
 119     if (!stopped() && result() != NULL) {
 120       BasicType bt = result()->bottom_type()->basic_type();
 121       push_node(bt, result());
 122     }
 123   }
 124 
 125  private:
 126   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 127     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 128   }
 129 
 130   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 131   void  set_result(RegionNode* region, PhiNode* value);
 132   Node*     result() { return _result; }
 133 
 134   virtual int reexecute_sp() { return _reexecute_sp; }
 135 
 136   // Helper functions to inline natives
 137   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 138   Node* generate_slow_guard(Node* test, RegionNode* region);
 139   Node* generate_fair_guard(Node* test, RegionNode* region);
 140   Node* generate_negative_guard(Node* index, RegionNode* region,
 141                                 // resulting CastII of index:
 142                                 Node* *pos_index = NULL);
 143   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 144                                    // resulting CastII of index:
 145                                    Node* *pos_index = NULL);
 146   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 147                              Node* array_length,
 148                              RegionNode* region);
 149   Node* generate_current_thread(Node* &tls_output);
 150   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 151                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 152   Node* load_mirror_from_klass(Node* klass);
 153   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 154                                       RegionNode* region, int null_path,
 155                                       int offset);
 156   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 157                                RegionNode* region, int null_path) {
 158     int offset = java_lang_Class::klass_offset_in_bytes();
 159     return load_klass_from_mirror_common(mirror, never_see_null,
 160                                          region, null_path,
 161                                          offset);
 162   }
 163   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 164                                      RegionNode* region, int null_path) {
 165     int offset = java_lang_Class::array_klass_offset_in_bytes();
 166     return load_klass_from_mirror_common(mirror, never_see_null,
 167                                          region, null_path,
 168                                          offset);
 169   }
 170   Node* generate_access_flags_guard(Node* kls,
 171                                     int modifier_mask, int modifier_bits,
 172                                     RegionNode* region);
 173   Node* generate_interface_guard(Node* kls, RegionNode* region);
 174   Node* generate_array_guard(Node* kls, RegionNode* region) {
 175     return generate_array_guard_common(kls, region, false, false);
 176   }
 177   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 178     return generate_array_guard_common(kls, region, false, true);
 179   }
 180   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, true, false);
 182   }
 183   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, true, true);
 185   }
 186   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 187                                     bool obj_array, bool not_array);
 188   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 189   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 190                                      bool is_virtual = false, bool is_static = false);
 191   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 192     return generate_method_call(method_id, false, true);
 193   }
 194   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 195     return generate_method_call(method_id, true, false);
 196   }
 197   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 198 
 199   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 200   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 201   bool inline_string_compareTo();
 202   bool inline_string_indexOf();
 203   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 204   bool inline_string_equals();
 205   Node* round_double_node(Node* n);
 206   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 207   bool inline_math_native(vmIntrinsics::ID id);
 208   bool inline_trig(vmIntrinsics::ID id);
 209   bool inline_math(vmIntrinsics::ID id);
 210   template <typename OverflowOp>
 211   bool inline_math_overflow(Node* arg1, Node* arg2);
 212   void inline_math_mathExact(Node* math, Node* test);
 213   bool inline_math_addExactI(bool is_increment);
 214   bool inline_math_addExactL(bool is_increment);
 215   bool inline_math_multiplyExactI();
 216   bool inline_math_multiplyExactL();
 217   bool inline_math_negateExactI();
 218   bool inline_math_negateExactL();
 219   bool inline_math_subtractExactI(bool is_decrement);
 220   bool inline_math_subtractExactL(bool is_decrement);
 221   bool inline_exp();
 222   bool inline_pow();
 223   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 224   bool inline_min_max(vmIntrinsics::ID id);
 225   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 226   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 227   int classify_unsafe_addr(Node* &base, Node* &offset);
 228   Node* make_unsafe_address(Node* base, Node* offset);
 229   // Helper for inline_unsafe_access.
 230   // Generates the guards that check whether the result of
 231   // Unsafe.getObject should be recorded in an SATB log buffer.
 232   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 233   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 234   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 235   static bool klass_needs_init_guard(Node* kls);
 236   bool inline_unsafe_allocate();
 237   bool inline_unsafe_copyMemory();
 238   bool inline_native_currentThread();
 239 #ifdef TRACE_HAVE_INTRINSICS
 240   bool inline_native_classID();
 241   bool inline_native_threadID();
 242 #endif
 243   bool inline_native_time_funcs(address method, const char* funcName);
 244   bool inline_native_isInterrupted();
 245   bool inline_native_Class_query(vmIntrinsics::ID id);
 246   bool inline_native_subtype_check();
 247 
 248   bool inline_native_newArray();
 249   bool inline_native_getLength();
 250   bool inline_array_copyOf(bool is_copyOfRange);
 251   bool inline_array_equals();
 252   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 253   bool inline_native_clone(bool is_virtual);
 254   bool inline_native_Reflection_getCallerClass();
 255   // Helper function for inlining native object hash method
 256   bool inline_native_hashcode(bool is_virtual, bool is_static);
 257   bool inline_native_getClass();
 258 
 259   // Helper functions for inlining arraycopy
 260   bool inline_arraycopy();
 261   void generate_arraycopy(const TypePtr* adr_type,
 262                           BasicType basic_elem_type,
 263                           Node* src,  Node* src_offset,
 264                           Node* dest, Node* dest_offset,
 265                           Node* copy_length,
 266                           bool disjoint_bases = false,
 267                           bool length_never_negative = false,
 268                           RegionNode* slow_region = NULL);
 269   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 270                                                 RegionNode* slow_region);
 271   void generate_clear_array(const TypePtr* adr_type,
 272                             Node* dest,
 273                             BasicType basic_elem_type,
 274                             Node* slice_off,
 275                             Node* slice_len,
 276                             Node* slice_end);
 277   bool generate_block_arraycopy(const TypePtr* adr_type,
 278                                 BasicType basic_elem_type,
 279                                 AllocateNode* alloc,
 280                                 Node* src,  Node* src_offset,
 281                                 Node* dest, Node* dest_offset,
 282                                 Node* dest_size, bool dest_uninitialized);
 283   void generate_slow_arraycopy(const TypePtr* adr_type,
 284                                Node* src,  Node* src_offset,
 285                                Node* dest, Node* dest_offset,
 286                                Node* copy_length, bool dest_uninitialized);
 287   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 288                                      Node* dest_elem_klass,
 289                                      Node* src,  Node* src_offset,
 290                                      Node* dest, Node* dest_offset,
 291                                      Node* copy_length, bool dest_uninitialized);
 292   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 293                                    Node* src,  Node* src_offset,
 294                                    Node* dest, Node* dest_offset,
 295                                    Node* copy_length, bool dest_uninitialized);
 296   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 297                                     BasicType basic_elem_type,
 298                                     bool disjoint_bases,
 299                                     Node* src,  Node* src_offset,
 300                                     Node* dest, Node* dest_offset,
 301                                     Node* copy_length, bool dest_uninitialized);
 302   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 303   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 304   bool inline_unsafe_ordered_store(BasicType type);
 305   bool inline_unsafe_fence(vmIntrinsics::ID id);
 306   bool inline_fp_conversions(vmIntrinsics::ID id);
 307   bool inline_number_methods(vmIntrinsics::ID id);
 308   bool inline_reference_get();
 309   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 310   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 311   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 312   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 313   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 314   bool inline_sha_implCompress(vmIntrinsics::ID id);
 315   bool inline_digestBase_implCompressMB(int predicate);
 316   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 317                                  bool long_state, address stubAddr, const char *stubName,
 318                                  Node* src_start, Node* ofs, Node* limit);
 319   Node* get_state_from_sha_object(Node *sha_object);
 320   Node* get_state_from_sha5_object(Node *sha_object);
 321   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 322   bool inline_encodeISOArray();
 323   bool inline_updateCRC32();
 324   bool inline_updateBytesCRC32();
 325   bool inline_updateByteBufferCRC32();
 326   bool inline_multiplyToLen();
 327 
 328   bool inline_profileBoolean();
 329 };
 330 
 331 
 332 //---------------------------make_vm_intrinsic----------------------------
 333 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 334   vmIntrinsics::ID id = m->intrinsic_id();
 335   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 336 
 337   ccstr disable_intr = NULL;
 338 
 339   if ((DisableIntrinsic[0] != '\0'
 340        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 341       (method_has_option_value("DisableIntrinsic", disable_intr)
 342        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 343     // disabled by a user request on the command line:
 344     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 345     return NULL;
 346   }
 347 
 348   if (!m->is_loaded()) {
 349     // do not attempt to inline unloaded methods
 350     return NULL;
 351   }
 352 
 353   // Only a few intrinsics implement a virtual dispatch.
 354   // They are expensive calls which are also frequently overridden.
 355   if (is_virtual) {
 356     switch (id) {
 357     case vmIntrinsics::_hashCode:
 358     case vmIntrinsics::_clone:
 359       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 360       break;
 361     default:
 362       return NULL;
 363     }
 364   }
 365 
 366   // -XX:-InlineNatives disables nearly all intrinsics:
 367   if (!InlineNatives) {
 368     switch (id) {
 369     case vmIntrinsics::_indexOf:
 370     case vmIntrinsics::_compareTo:
 371     case vmIntrinsics::_equals:
 372     case vmIntrinsics::_equalsC:
 373     case vmIntrinsics::_getAndAddInt:
 374     case vmIntrinsics::_getAndAddLong:
 375     case vmIntrinsics::_getAndSetInt:
 376     case vmIntrinsics::_getAndSetLong:
 377     case vmIntrinsics::_getAndSetObject:
 378     case vmIntrinsics::_loadFence:
 379     case vmIntrinsics::_storeFence:
 380     case vmIntrinsics::_fullFence:
 381       break;  // InlineNatives does not control String.compareTo
 382     case vmIntrinsics::_Reference_get:
 383       break;  // InlineNatives does not control Reference.get
 384     default:
 385       return NULL;
 386     }
 387   }
 388 
 389   int predicates = 0;
 390   bool does_virtual_dispatch = false;
 391 
 392   switch (id) {
 393   case vmIntrinsics::_compareTo:
 394     if (!SpecialStringCompareTo)  return NULL;
 395     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 396     break;
 397   case vmIntrinsics::_indexOf:
 398     if (!SpecialStringIndexOf)  return NULL;
 399     break;
 400   case vmIntrinsics::_equals:
 401     if (!SpecialStringEquals)  return NULL;
 402     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 403     break;
 404   case vmIntrinsics::_equalsC:
 405     if (!SpecialArraysEquals)  return NULL;
 406     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 407     break;
 408   case vmIntrinsics::_arraycopy:
 409     if (!InlineArrayCopy)  return NULL;
 410     break;
 411   case vmIntrinsics::_copyMemory:
 412     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 413     if (!InlineArrayCopy)  return NULL;
 414     break;
 415   case vmIntrinsics::_hashCode:
 416     if (!InlineObjectHash)  return NULL;
 417     does_virtual_dispatch = true;
 418     break;
 419   case vmIntrinsics::_clone:
 420     does_virtual_dispatch = true;
 421   case vmIntrinsics::_copyOf:
 422   case vmIntrinsics::_copyOfRange:
 423     if (!InlineObjectCopy)  return NULL;
 424     // These also use the arraycopy intrinsic mechanism:
 425     if (!InlineArrayCopy)  return NULL;
 426     break;
 427   case vmIntrinsics::_encodeISOArray:
 428     if (!SpecialEncodeISOArray)  return NULL;
 429     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 430     break;
 431   case vmIntrinsics::_checkIndex:
 432     // We do not intrinsify this.  The optimizer does fine with it.
 433     return NULL;
 434 
 435   case vmIntrinsics::_getCallerClass:
 436     if (!UseNewReflection)  return NULL;
 437     if (!InlineReflectionGetCallerClass)  return NULL;
 438     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 439     break;
 440 
 441   case vmIntrinsics::_bitCount_i:
 442     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 443     break;
 444 
 445   case vmIntrinsics::_bitCount_l:
 446     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 447     break;
 448 
 449   case vmIntrinsics::_numberOfLeadingZeros_i:
 450     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 451     break;
 452 
 453   case vmIntrinsics::_numberOfLeadingZeros_l:
 454     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_numberOfTrailingZeros_i:
 458     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_numberOfTrailingZeros_l:
 462     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_reverseBytes_c:
 466     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 467     break;
 468   case vmIntrinsics::_reverseBytes_s:
 469     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 470     break;
 471   case vmIntrinsics::_reverseBytes_i:
 472     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 473     break;
 474   case vmIntrinsics::_reverseBytes_l:
 475     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 476     break;
 477 
 478   case vmIntrinsics::_Reference_get:
 479     // Use the intrinsic version of Reference.get() so that the value in
 480     // the referent field can be registered by the G1 pre-barrier code.
 481     // Also add memory barrier to prevent commoning reads from this field
 482     // across safepoint since GC can change it value.
 483     break;
 484 
 485   case vmIntrinsics::_compareAndSwapObject:
 486 #ifdef _LP64
 487     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 488 #endif
 489     break;
 490 
 491   case vmIntrinsics::_compareAndSwapLong:
 492     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 493     break;
 494 
 495   case vmIntrinsics::_getAndAddInt:
 496     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 497     break;
 498 
 499   case vmIntrinsics::_getAndAddLong:
 500     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 501     break;
 502 
 503   case vmIntrinsics::_getAndSetInt:
 504     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 505     break;
 506 
 507   case vmIntrinsics::_getAndSetLong:
 508     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 509     break;
 510 
 511   case vmIntrinsics::_getAndSetObject:
 512 #ifdef _LP64
 513     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 514     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 515     break;
 516 #else
 517     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 518     break;
 519 #endif
 520 
 521   case vmIntrinsics::_aescrypt_encryptBlock:
 522   case vmIntrinsics::_aescrypt_decryptBlock:
 523     if (!UseAESIntrinsics) return NULL;
 524     break;
 525 
 526   case vmIntrinsics::_multiplyToLen:
 527     if (!UseMultiplyToLenIntrinsic) return NULL;
 528     break;
 529 
 530   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 531   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 532     if (!UseAESIntrinsics) return NULL;
 533     // these two require the predicated logic
 534     predicates = 1;
 535     break;
 536 
 537   case vmIntrinsics::_sha_implCompress:
 538     if (!UseSHA1Intrinsics) return NULL;
 539     break;
 540 
 541   case vmIntrinsics::_sha2_implCompress:
 542     if (!UseSHA256Intrinsics) return NULL;
 543     break;
 544 
 545   case vmIntrinsics::_sha5_implCompress:
 546     if (!UseSHA512Intrinsics) return NULL;
 547     break;
 548 
 549   case vmIntrinsics::_digestBase_implCompressMB:
 550     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 551     predicates = 3;
 552     break;
 553 
 554   case vmIntrinsics::_updateCRC32:
 555   case vmIntrinsics::_updateBytesCRC32:
 556   case vmIntrinsics::_updateByteBufferCRC32:
 557     if (!UseCRC32Intrinsics) return NULL;
 558     break;
 559 
 560   case vmIntrinsics::_incrementExactI:
 561   case vmIntrinsics::_addExactI:
 562     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 563     break;
 564   case vmIntrinsics::_incrementExactL:
 565   case vmIntrinsics::_addExactL:
 566     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 567     break;
 568   case vmIntrinsics::_decrementExactI:
 569   case vmIntrinsics::_subtractExactI:
 570     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 571     break;
 572   case vmIntrinsics::_decrementExactL:
 573   case vmIntrinsics::_subtractExactL:
 574     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 575     break;
 576   case vmIntrinsics::_negateExactI:
 577     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 578     break;
 579   case vmIntrinsics::_negateExactL:
 580     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 581     break;
 582   case vmIntrinsics::_multiplyExactI:
 583     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 584     break;
 585   case vmIntrinsics::_multiplyExactL:
 586     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 587     break;
 588 
 589  default:
 590     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 591     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 592     break;
 593   }
 594 
 595   // -XX:-InlineClassNatives disables natives from the Class class.
 596   // The flag applies to all reflective calls, notably Array.newArray
 597   // (visible to Java programmers as Array.newInstance).
 598   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 599       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 600     if (!InlineClassNatives)  return NULL;
 601   }
 602 
 603   // -XX:-InlineThreadNatives disables natives from the Thread class.
 604   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 605     if (!InlineThreadNatives)  return NULL;
 606   }
 607 
 608   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 609   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 610       m->holder()->name() == ciSymbol::java_lang_Float() ||
 611       m->holder()->name() == ciSymbol::java_lang_Double()) {
 612     if (!InlineMathNatives)  return NULL;
 613   }
 614 
 615   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 616   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 617     if (!InlineUnsafeOps)  return NULL;
 618   }
 619 
 620   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 621 }
 622 
 623 //----------------------register_library_intrinsics-----------------------
 624 // Initialize this file's data structures, for each Compile instance.
 625 void Compile::register_library_intrinsics() {
 626   // Nothing to do here.
 627 }
 628 
 629 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 630   LibraryCallKit kit(jvms, this);
 631   Compile* C = kit.C;
 632   int nodes = C->unique();
 633 #ifndef PRODUCT
 634   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 635     char buf[1000];
 636     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 637     tty->print_cr("Intrinsic %s", str);
 638   }
 639 #endif
 640   ciMethod* callee = kit.callee();
 641   const int bci    = kit.bci();
 642 
 643   // Try to inline the intrinsic.
 644   if (kit.try_to_inline(_last_predicate)) {
 645     if (C->print_intrinsics() || C->print_inlining()) {
 646       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 647     }
 648     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 649     if (C->log()) {
 650       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 651                      vmIntrinsics::name_at(intrinsic_id()),
 652                      (is_virtual() ? " virtual='1'" : ""),
 653                      C->unique() - nodes);
 654     }
 655     // Push the result from the inlined method onto the stack.
 656     kit.push_result();
 657     return kit.transfer_exceptions_into_jvms();
 658   }
 659 
 660   // The intrinsic bailed out
 661   if (C->print_intrinsics() || C->print_inlining()) {
 662     if (jvms->has_method()) {
 663       // Not a root compile.
 664       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 665       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 666     } else {
 667       // Root compile
 668       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 669                vmIntrinsics::name_at(intrinsic_id()),
 670                (is_virtual() ? " (virtual)" : ""), bci);
 671     }
 672   }
 673   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 674   return NULL;
 675 }
 676 
 677 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 678   LibraryCallKit kit(jvms, this);
 679   Compile* C = kit.C;
 680   int nodes = C->unique();
 681   _last_predicate = predicate;
 682 #ifndef PRODUCT
 683   assert(is_predicated() && predicate < predicates_count(), "sanity");
 684   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 685     char buf[1000];
 686     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 687     tty->print_cr("Predicate for intrinsic %s", str);
 688   }
 689 #endif
 690   ciMethod* callee = kit.callee();
 691   const int bci    = kit.bci();
 692 
 693   Node* slow_ctl = kit.try_to_predicate(predicate);
 694   if (!kit.failing()) {
 695     if (C->print_intrinsics() || C->print_inlining()) {
 696       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 697     }
 698     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 699     if (C->log()) {
 700       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 701                      vmIntrinsics::name_at(intrinsic_id()),
 702                      (is_virtual() ? " virtual='1'" : ""),
 703                      C->unique() - nodes);
 704     }
 705     return slow_ctl; // Could be NULL if the check folds.
 706   }
 707 
 708   // The intrinsic bailed out
 709   if (C->print_intrinsics() || C->print_inlining()) {
 710     if (jvms->has_method()) {
 711       // Not a root compile.
 712       const char* msg = "failed to generate predicate for intrinsic";
 713       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 714     } else {
 715       // Root compile
 716       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 717                                         vmIntrinsics::name_at(intrinsic_id()),
 718                                         (is_virtual() ? " (virtual)" : ""), bci);
 719     }
 720   }
 721   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 722   return NULL;
 723 }
 724 
 725 bool LibraryCallKit::try_to_inline(int predicate) {
 726   // Handle symbolic names for otherwise undistinguished boolean switches:
 727   const bool is_store       = true;
 728   const bool is_native_ptr  = true;
 729   const bool is_static      = true;
 730   const bool is_volatile    = true;
 731 
 732   if (!jvms()->has_method()) {
 733     // Root JVMState has a null method.
 734     assert(map()->memory()->Opcode() == Op_Parm, "");
 735     // Insert the memory aliasing node
 736     set_all_memory(reset_memory());
 737   }
 738   assert(merged_memory(), "");
 739 
 740 
 741   switch (intrinsic_id()) {
 742   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 743   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 744   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 745 
 746   case vmIntrinsics::_dsin:
 747   case vmIntrinsics::_dcos:
 748   case vmIntrinsics::_dtan:
 749   case vmIntrinsics::_dabs:
 750   case vmIntrinsics::_datan2:
 751   case vmIntrinsics::_dsqrt:
 752   case vmIntrinsics::_dexp:
 753   case vmIntrinsics::_dlog:
 754   case vmIntrinsics::_dlog10:
 755   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 756 
 757   case vmIntrinsics::_min:
 758   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 759 
 760   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 761   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 762   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 763   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 764   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 765   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 766   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 767   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 768   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 769   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 770   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 771   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 772 
 773   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 774 
 775   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 776   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 777   case vmIntrinsics::_equals:                   return inline_string_equals();
 778 
 779   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 780   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 781   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 782   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 783   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 784   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 785   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 786   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 787   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 788 
 789   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 790   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 791   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 792   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 793   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 794   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 795   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 796   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 797   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 798 
 799   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 800   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 801   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 802   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 803   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 804   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 805   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 806   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 807 
 808   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 809   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 810   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 811   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 812   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 813   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 814   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 815   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 816 
 817   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 818   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 819   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 820   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 821   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 822   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 823   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 824   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 825   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 826 
 827   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 828   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 829   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 830   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 831   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 832   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 833   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 834   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 835   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 836 
 837   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 838   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 839   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 840   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 841 
 842   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 843   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 844   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 845 
 846   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 847   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 848   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 849 
 850   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 851   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 852   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 853   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 854   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 855 
 856   case vmIntrinsics::_loadFence:
 857   case vmIntrinsics::_storeFence:
 858   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 859 
 860   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 861   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 862 
 863 #ifdef TRACE_HAVE_INTRINSICS
 864   case vmIntrinsics::_classID:                  return inline_native_classID();
 865   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 866   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 867 #endif
 868   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 869   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 870   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 871   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 872   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 873   case vmIntrinsics::_getLength:                return inline_native_getLength();
 874   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 875   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 876   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 877   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 878 
 879   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 880 
 881   case vmIntrinsics::_isInstance:
 882   case vmIntrinsics::_getModifiers:
 883   case vmIntrinsics::_isInterface:
 884   case vmIntrinsics::_isArray:
 885   case vmIntrinsics::_isPrimitive:
 886   case vmIntrinsics::_getSuperclass:
 887   case vmIntrinsics::_getComponentType:
 888   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 889 
 890   case vmIntrinsics::_floatToRawIntBits:
 891   case vmIntrinsics::_floatToIntBits:
 892   case vmIntrinsics::_intBitsToFloat:
 893   case vmIntrinsics::_doubleToRawLongBits:
 894   case vmIntrinsics::_doubleToLongBits:
 895   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 896 
 897   case vmIntrinsics::_numberOfLeadingZeros_i:
 898   case vmIntrinsics::_numberOfLeadingZeros_l:
 899   case vmIntrinsics::_numberOfTrailingZeros_i:
 900   case vmIntrinsics::_numberOfTrailingZeros_l:
 901   case vmIntrinsics::_bitCount_i:
 902   case vmIntrinsics::_bitCount_l:
 903   case vmIntrinsics::_reverseBytes_i:
 904   case vmIntrinsics::_reverseBytes_l:
 905   case vmIntrinsics::_reverseBytes_s:
 906   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 907 
 908   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 909 
 910   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 911 
 912   case vmIntrinsics::_aescrypt_encryptBlock:
 913   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 914 
 915   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 916   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 917     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 918 
 919   case vmIntrinsics::_sha_implCompress:
 920   case vmIntrinsics::_sha2_implCompress:
 921   case vmIntrinsics::_sha5_implCompress:
 922     return inline_sha_implCompress(intrinsic_id());
 923 
 924   case vmIntrinsics::_digestBase_implCompressMB:
 925     return inline_digestBase_implCompressMB(predicate);
 926 
 927   case vmIntrinsics::_multiplyToLen:
 928     return inline_multiplyToLen();
 929 
 930   case vmIntrinsics::_encodeISOArray:
 931     return inline_encodeISOArray();
 932 
 933   case vmIntrinsics::_updateCRC32:
 934     return inline_updateCRC32();
 935   case vmIntrinsics::_updateBytesCRC32:
 936     return inline_updateBytesCRC32();
 937   case vmIntrinsics::_updateByteBufferCRC32:
 938     return inline_updateByteBufferCRC32();
 939 
 940   case vmIntrinsics::_profileBoolean:
 941     return inline_profileBoolean();
 942 
 943   default:
 944     // If you get here, it may be that someone has added a new intrinsic
 945     // to the list in vmSymbols.hpp without implementing it here.
 946 #ifndef PRODUCT
 947     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 948       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 949                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 950     }
 951 #endif
 952     return false;
 953   }
 954 }
 955 
 956 Node* LibraryCallKit::try_to_predicate(int predicate) {
 957   if (!jvms()->has_method()) {
 958     // Root JVMState has a null method.
 959     assert(map()->memory()->Opcode() == Op_Parm, "");
 960     // Insert the memory aliasing node
 961     set_all_memory(reset_memory());
 962   }
 963   assert(merged_memory(), "");
 964 
 965   switch (intrinsic_id()) {
 966   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 967     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 968   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 969     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 970   case vmIntrinsics::_digestBase_implCompressMB:
 971     return inline_digestBase_implCompressMB_predicate(predicate);
 972 
 973   default:
 974     // If you get here, it may be that someone has added a new intrinsic
 975     // to the list in vmSymbols.hpp without implementing it here.
 976 #ifndef PRODUCT
 977     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 978       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 979                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 980     }
 981 #endif
 982     Node* slow_ctl = control();
 983     set_control(top()); // No fast path instrinsic
 984     return slow_ctl;
 985   }
 986 }
 987 
 988 //------------------------------set_result-------------------------------
 989 // Helper function for finishing intrinsics.
 990 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 991   record_for_igvn(region);
 992   set_control(_gvn.transform(region));
 993   set_result( _gvn.transform(value));
 994   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 995 }
 996 
 997 //------------------------------generate_guard---------------------------
 998 // Helper function for generating guarded fast-slow graph structures.
 999 // The given 'test', if true, guards a slow path.  If the test fails
1000 // then a fast path can be taken.  (We generally hope it fails.)
1001 // In all cases, GraphKit::control() is updated to the fast path.
1002 // The returned value represents the control for the slow path.
1003 // The return value is never 'top'; it is either a valid control
1004 // or NULL if it is obvious that the slow path can never be taken.
1005 // Also, if region and the slow control are not NULL, the slow edge
1006 // is appended to the region.
1007 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1008   if (stopped()) {
1009     // Already short circuited.
1010     return NULL;
1011   }
1012 
1013   // Build an if node and its projections.
1014   // If test is true we take the slow path, which we assume is uncommon.
1015   if (_gvn.type(test) == TypeInt::ZERO) {
1016     // The slow branch is never taken.  No need to build this guard.
1017     return NULL;
1018   }
1019 
1020   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1021 
1022   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
1023   if (if_slow == top()) {
1024     // The slow branch is never taken.  No need to build this guard.
1025     return NULL;
1026   }
1027 
1028   if (region != NULL)
1029     region->add_req(if_slow);
1030 
1031   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
1032   set_control(if_fast);
1033 
1034   return if_slow;
1035 }
1036 
1037 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1038   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1039 }
1040 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1041   return generate_guard(test, region, PROB_FAIR);
1042 }
1043 
1044 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1045                                                      Node* *pos_index) {
1046   if (stopped())
1047     return NULL;                // already stopped
1048   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1049     return NULL;                // index is already adequately typed
1050   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1051   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1052   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1053   if (is_neg != NULL && pos_index != NULL) {
1054     // Emulate effect of Parse::adjust_map_after_if.
1055     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1056     ccast->set_req(0, control());
1057     (*pos_index) = _gvn.transform(ccast);
1058   }
1059   return is_neg;
1060 }
1061 
1062 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1063                                                         Node* *pos_index) {
1064   if (stopped())
1065     return NULL;                // already stopped
1066   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1067     return NULL;                // index is already adequately typed
1068   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1069   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1070   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1071   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1072   if (is_notp != NULL && pos_index != NULL) {
1073     // Emulate effect of Parse::adjust_map_after_if.
1074     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1075     ccast->set_req(0, control());
1076     (*pos_index) = _gvn.transform(ccast);
1077   }
1078   return is_notp;
1079 }
1080 
1081 // Make sure that 'position' is a valid limit index, in [0..length].
1082 // There are two equivalent plans for checking this:
1083 //   A. (offset + copyLength)  unsigned<=  arrayLength
1084 //   B. offset  <=  (arrayLength - copyLength)
1085 // We require that all of the values above, except for the sum and
1086 // difference, are already known to be non-negative.
1087 // Plan A is robust in the face of overflow, if offset and copyLength
1088 // are both hugely positive.
1089 //
1090 // Plan B is less direct and intuitive, but it does not overflow at
1091 // all, since the difference of two non-negatives is always
1092 // representable.  Whenever Java methods must perform the equivalent
1093 // check they generally use Plan B instead of Plan A.
1094 // For the moment we use Plan A.
1095 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1096                                                   Node* subseq_length,
1097                                                   Node* array_length,
1098                                                   RegionNode* region) {
1099   if (stopped())
1100     return NULL;                // already stopped
1101   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1102   if (zero_offset && subseq_length->eqv_uncast(array_length))
1103     return NULL;                // common case of whole-array copy
1104   Node* last = subseq_length;
1105   if (!zero_offset)             // last += offset
1106     last = _gvn.transform(new (C) AddINode(last, offset));
1107   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1108   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1109   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1110   return is_over;
1111 }
1112 
1113 
1114 //--------------------------generate_current_thread--------------------
1115 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1116   ciKlass*    thread_klass = env()->Thread_klass();
1117   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1118   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1119   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1120   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1121   tls_output = thread;
1122   return threadObj;
1123 }
1124 
1125 
1126 //------------------------------make_string_method_node------------------------
1127 // Helper method for String intrinsic functions. This version is called
1128 // with str1 and str2 pointing to String object nodes.
1129 //
1130 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1131   Node* no_ctrl = NULL;
1132 
1133   // Get start addr of string
1134   Node* str1_value   = load_String_value(no_ctrl, str1);
1135   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1136   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1137 
1138   // Get length of string 1
1139   Node* str1_len  = load_String_length(no_ctrl, str1);
1140 
1141   Node* str2_value   = load_String_value(no_ctrl, str2);
1142   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1143   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1144 
1145   Node* str2_len = NULL;
1146   Node* result = NULL;
1147 
1148   switch (opcode) {
1149   case Op_StrIndexOf:
1150     // Get length of string 2
1151     str2_len = load_String_length(no_ctrl, str2);
1152 
1153     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1154                                  str1_start, str1_len, str2_start, str2_len);
1155     break;
1156   case Op_StrComp:
1157     // Get length of string 2
1158     str2_len = load_String_length(no_ctrl, str2);
1159 
1160     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1161                                  str1_start, str1_len, str2_start, str2_len);
1162     break;
1163   case Op_StrEquals:
1164     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1165                                str1_start, str2_start, str1_len);
1166     break;
1167   default:
1168     ShouldNotReachHere();
1169     return NULL;
1170   }
1171 
1172   // All these intrinsics have checks.
1173   C->set_has_split_ifs(true); // Has chance for split-if optimization
1174 
1175   return _gvn.transform(result);
1176 }
1177 
1178 // Helper method for String intrinsic functions. This version is called
1179 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1180 // to Int nodes containing the lenghts of str1 and str2.
1181 //
1182 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1183   Node* result = NULL;
1184   switch (opcode) {
1185   case Op_StrIndexOf:
1186     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1187                                  str1_start, cnt1, str2_start, cnt2);
1188     break;
1189   case Op_StrComp:
1190     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1191                                  str1_start, cnt1, str2_start, cnt2);
1192     break;
1193   case Op_StrEquals:
1194     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1195                                  str1_start, str2_start, cnt1);
1196     break;
1197   default:
1198     ShouldNotReachHere();
1199     return NULL;
1200   }
1201 
1202   // All these intrinsics have checks.
1203   C->set_has_split_ifs(true); // Has chance for split-if optimization
1204 
1205   return _gvn.transform(result);
1206 }
1207 
1208 //------------------------------inline_string_compareTo------------------------
1209 // public int java.lang.String.compareTo(String anotherString);
1210 bool LibraryCallKit::inline_string_compareTo() {
1211   Node* receiver = null_check(argument(0));
1212   Node* arg      = null_check(argument(1));
1213   if (stopped()) {
1214     return true;
1215   }
1216   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1217   return true;
1218 }
1219 
1220 //------------------------------inline_string_equals------------------------
1221 bool LibraryCallKit::inline_string_equals() {
1222   Node* receiver = null_check_receiver();
1223   // NOTE: Do not null check argument for String.equals() because spec
1224   // allows to specify NULL as argument.
1225   Node* argument = this->argument(1);
1226   if (stopped()) {
1227     return true;
1228   }
1229 
1230   // paths (plus control) merge
1231   RegionNode* region = new (C) RegionNode(5);
1232   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1233 
1234   // does source == target string?
1235   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1236   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1237 
1238   Node* if_eq = generate_slow_guard(bol, NULL);
1239   if (if_eq != NULL) {
1240     // receiver == argument
1241     phi->init_req(2, intcon(1));
1242     region->init_req(2, if_eq);
1243   }
1244 
1245   // get String klass for instanceOf
1246   ciInstanceKlass* klass = env()->String_klass();
1247 
1248   if (!stopped()) {
1249     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1250     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1251     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1252 
1253     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1254     //instanceOf == true, fallthrough
1255 
1256     if (inst_false != NULL) {
1257       phi->init_req(3, intcon(0));
1258       region->init_req(3, inst_false);
1259     }
1260   }
1261 
1262   if (!stopped()) {
1263     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1264 
1265     // Properly cast the argument to String
1266     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1267     // This path is taken only when argument's type is String:NotNull.
1268     argument = cast_not_null(argument, false);
1269 
1270     Node* no_ctrl = NULL;
1271 
1272     // Get start addr of receiver
1273     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1274     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1275     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1276 
1277     // Get length of receiver
1278     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1279 
1280     // Get start addr of argument
1281     Node* argument_val    = load_String_value(no_ctrl, argument);
1282     Node* argument_offset = load_String_offset(no_ctrl, argument);
1283     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1284 
1285     // Get length of argument
1286     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1287 
1288     // Check for receiver count != argument count
1289     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1290     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1291     Node* if_ne = generate_slow_guard(bol, NULL);
1292     if (if_ne != NULL) {
1293       phi->init_req(4, intcon(0));
1294       region->init_req(4, if_ne);
1295     }
1296 
1297     // Check for count == 0 is done by assembler code for StrEquals.
1298 
1299     if (!stopped()) {
1300       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1301       phi->init_req(1, equals);
1302       region->init_req(1, control());
1303     }
1304   }
1305 
1306   // post merge
1307   set_control(_gvn.transform(region));
1308   record_for_igvn(region);
1309 
1310   set_result(_gvn.transform(phi));
1311   return true;
1312 }
1313 
1314 //------------------------------inline_array_equals----------------------------
1315 bool LibraryCallKit::inline_array_equals() {
1316   Node* arg1 = argument(0);
1317   Node* arg2 = argument(1);
1318   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1319   return true;
1320 }
1321 
1322 // Java version of String.indexOf(constant string)
1323 // class StringDecl {
1324 //   StringDecl(char[] ca) {
1325 //     offset = 0;
1326 //     count = ca.length;
1327 //     value = ca;
1328 //   }
1329 //   int offset;
1330 //   int count;
1331 //   char[] value;
1332 // }
1333 //
1334 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1335 //                             int targetOffset, int cache_i, int md2) {
1336 //   int cache = cache_i;
1337 //   int sourceOffset = string_object.offset;
1338 //   int sourceCount = string_object.count;
1339 //   int targetCount = target_object.length;
1340 //
1341 //   int targetCountLess1 = targetCount - 1;
1342 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1343 //
1344 //   char[] source = string_object.value;
1345 //   char[] target = target_object;
1346 //   int lastChar = target[targetCountLess1];
1347 //
1348 //  outer_loop:
1349 //   for (int i = sourceOffset; i < sourceEnd; ) {
1350 //     int src = source[i + targetCountLess1];
1351 //     if (src == lastChar) {
1352 //       // With random strings and a 4-character alphabet,
1353 //       // reverse matching at this point sets up 0.8% fewer
1354 //       // frames, but (paradoxically) makes 0.3% more probes.
1355 //       // Since those probes are nearer the lastChar probe,
1356 //       // there is may be a net D$ win with reverse matching.
1357 //       // But, reversing loop inhibits unroll of inner loop
1358 //       // for unknown reason.  So, does running outer loop from
1359 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1360 //       for (int j = 0; j < targetCountLess1; j++) {
1361 //         if (target[targetOffset + j] != source[i+j]) {
1362 //           if ((cache & (1 << source[i+j])) == 0) {
1363 //             if (md2 < j+1) {
1364 //               i += j+1;
1365 //               continue outer_loop;
1366 //             }
1367 //           }
1368 //           i += md2;
1369 //           continue outer_loop;
1370 //         }
1371 //       }
1372 //       return i - sourceOffset;
1373 //     }
1374 //     if ((cache & (1 << src)) == 0) {
1375 //       i += targetCountLess1;
1376 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1377 //     i++;
1378 //   }
1379 //   return -1;
1380 // }
1381 
1382 //------------------------------string_indexOf------------------------
1383 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1384                                      jint cache_i, jint md2_i) {
1385 
1386   Node* no_ctrl  = NULL;
1387   float likely   = PROB_LIKELY(0.9);
1388   float unlikely = PROB_UNLIKELY(0.9);
1389 
1390   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1391 
1392   Node* source        = load_String_value(no_ctrl, string_object);
1393   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1394   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1395 
1396   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1397   jint target_length = target_array->length();
1398   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1399   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1400 
1401   // String.value field is known to be @Stable.
1402   if (UseImplicitStableValues) {
1403     target = cast_array_to_stable(target, target_type);
1404   }
1405 
1406   IdealKit kit(this, false, true);
1407 #define __ kit.
1408   Node* zero             = __ ConI(0);
1409   Node* one              = __ ConI(1);
1410   Node* cache            = __ ConI(cache_i);
1411   Node* md2              = __ ConI(md2_i);
1412   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1413   Node* targetCount      = __ ConI(target_length);
1414   Node* targetCountLess1 = __ ConI(target_length - 1);
1415   Node* targetOffset     = __ ConI(targetOffset_i);
1416   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1417 
1418   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1419   Node* outer_loop = __ make_label(2 /* goto */);
1420   Node* return_    = __ make_label(1);
1421 
1422   __ set(rtn,__ ConI(-1));
1423   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1424        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1425        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1426        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1427        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1428          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1429               Node* tpj = __ AddI(targetOffset, __ value(j));
1430               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1431               Node* ipj  = __ AddI(__ value(i), __ value(j));
1432               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1433               __ if_then(targ, BoolTest::ne, src2); {
1434                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1435                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1436                     __ increment(i, __ AddI(__ value(j), one));
1437                     __ goto_(outer_loop);
1438                   } __ end_if(); __ dead(j);
1439                 }__ end_if(); __ dead(j);
1440                 __ increment(i, md2);
1441                 __ goto_(outer_loop);
1442               }__ end_if();
1443               __ increment(j, one);
1444          }__ end_loop(); __ dead(j);
1445          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1446          __ goto_(return_);
1447        }__ end_if();
1448        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1449          __ increment(i, targetCountLess1);
1450        }__ end_if();
1451        __ increment(i, one);
1452        __ bind(outer_loop);
1453   }__ end_loop(); __ dead(i);
1454   __ bind(return_);
1455 
1456   // Final sync IdealKit and GraphKit.
1457   final_sync(kit);
1458   Node* result = __ value(rtn);
1459 #undef __
1460   C->set_has_loops(true);
1461   return result;
1462 }
1463 
1464 //------------------------------inline_string_indexOf------------------------
1465 bool LibraryCallKit::inline_string_indexOf() {
1466   Node* receiver = argument(0);
1467   Node* arg      = argument(1);
1468 
1469   Node* result;
1470   // Disable the use of pcmpestri until it can be guaranteed that
1471   // the load doesn't cross into the uncommited space.
1472   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1473       UseSSE42Intrinsics) {
1474     // Generate SSE4.2 version of indexOf
1475     // We currently only have match rules that use SSE4.2
1476 
1477     receiver = null_check(receiver);
1478     arg      = null_check(arg);
1479     if (stopped()) {
1480       return true;
1481     }
1482 
1483     ciInstanceKlass* str_klass = env()->String_klass();
1484     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1485 
1486     // Make the merge point
1487     RegionNode* result_rgn = new (C) RegionNode(4);
1488     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1489     Node* no_ctrl  = NULL;
1490 
1491     // Get start addr of source string
1492     Node* source = load_String_value(no_ctrl, receiver);
1493     Node* source_offset = load_String_offset(no_ctrl, receiver);
1494     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1495 
1496     // Get length of source string
1497     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1498 
1499     // Get start addr of substring
1500     Node* substr = load_String_value(no_ctrl, arg);
1501     Node* substr_offset = load_String_offset(no_ctrl, arg);
1502     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1503 
1504     // Get length of source string
1505     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1506 
1507     // Check for substr count > string count
1508     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1509     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1510     Node* if_gt = generate_slow_guard(bol, NULL);
1511     if (if_gt != NULL) {
1512       result_phi->init_req(2, intcon(-1));
1513       result_rgn->init_req(2, if_gt);
1514     }
1515 
1516     if (!stopped()) {
1517       // Check for substr count == 0
1518       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1519       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1520       Node* if_zero = generate_slow_guard(bol, NULL);
1521       if (if_zero != NULL) {
1522         result_phi->init_req(3, intcon(0));
1523         result_rgn->init_req(3, if_zero);
1524       }
1525     }
1526 
1527     if (!stopped()) {
1528       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1529       result_phi->init_req(1, result);
1530       result_rgn->init_req(1, control());
1531     }
1532     set_control(_gvn.transform(result_rgn));
1533     record_for_igvn(result_rgn);
1534     result = _gvn.transform(result_phi);
1535 
1536   } else { // Use LibraryCallKit::string_indexOf
1537     // don't intrinsify if argument isn't a constant string.
1538     if (!arg->is_Con()) {
1539      return false;
1540     }
1541     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1542     if (str_type == NULL) {
1543       return false;
1544     }
1545     ciInstanceKlass* klass = env()->String_klass();
1546     ciObject* str_const = str_type->const_oop();
1547     if (str_const == NULL || str_const->klass() != klass) {
1548       return false;
1549     }
1550     ciInstance* str = str_const->as_instance();
1551     assert(str != NULL, "must be instance");
1552 
1553     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1554     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1555 
1556     int o;
1557     int c;
1558     if (java_lang_String::has_offset_field()) {
1559       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1560       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1561     } else {
1562       o = 0;
1563       c = pat->length();
1564     }
1565 
1566     // constant strings have no offset and count == length which
1567     // simplifies the resulting code somewhat so lets optimize for that.
1568     if (o != 0 || c != pat->length()) {
1569      return false;
1570     }
1571 
1572     receiver = null_check(receiver, T_OBJECT);
1573     // NOTE: No null check on the argument is needed since it's a constant String oop.
1574     if (stopped()) {
1575       return true;
1576     }
1577 
1578     // The null string as a pattern always returns 0 (match at beginning of string)
1579     if (c == 0) {
1580       set_result(intcon(0));
1581       return true;
1582     }
1583 
1584     // Generate default indexOf
1585     jchar lastChar = pat->char_at(o + (c - 1));
1586     int cache = 0;
1587     int i;
1588     for (i = 0; i < c - 1; i++) {
1589       assert(i < pat->length(), "out of range");
1590       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1591     }
1592 
1593     int md2 = c;
1594     for (i = 0; i < c - 1; i++) {
1595       assert(i < pat->length(), "out of range");
1596       if (pat->char_at(o + i) == lastChar) {
1597         md2 = (c - 1) - i;
1598       }
1599     }
1600 
1601     result = string_indexOf(receiver, pat, o, cache, md2);
1602   }
1603   set_result(result);
1604   return true;
1605 }
1606 
1607 //--------------------------round_double_node--------------------------------
1608 // Round a double node if necessary.
1609 Node* LibraryCallKit::round_double_node(Node* n) {
1610   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1611     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1612   return n;
1613 }
1614 
1615 //------------------------------inline_math-----------------------------------
1616 // public static double Math.abs(double)
1617 // public static double Math.sqrt(double)
1618 // public static double Math.log(double)
1619 // public static double Math.log10(double)
1620 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1621   Node* arg = round_double_node(argument(0));
1622   Node* n;
1623   switch (id) {
1624   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1625   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1626   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1627   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1628   default:  fatal_unexpected_iid(id);  break;
1629   }
1630   set_result(_gvn.transform(n));
1631   return true;
1632 }
1633 
1634 //------------------------------inline_trig----------------------------------
1635 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1636 // argument reduction which will turn into a fast/slow diamond.
1637 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1638   Node* arg = round_double_node(argument(0));
1639   Node* n = NULL;
1640 
1641   switch (id) {
1642   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1643   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1644   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1645   default:  fatal_unexpected_iid(id);  break;
1646   }
1647   n = _gvn.transform(n);
1648 
1649   // Rounding required?  Check for argument reduction!
1650   if (Matcher::strict_fp_requires_explicit_rounding) {
1651     static const double     pi_4 =  0.7853981633974483;
1652     static const double neg_pi_4 = -0.7853981633974483;
1653     // pi/2 in 80-bit extended precision
1654     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1655     // -pi/2 in 80-bit extended precision
1656     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1657     // Cutoff value for using this argument reduction technique
1658     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1659     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1660 
1661     // Pseudocode for sin:
1662     // if (x <= Math.PI / 4.0) {
1663     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1664     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1665     // } else {
1666     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1667     // }
1668     // return StrictMath.sin(x);
1669 
1670     // Pseudocode for cos:
1671     // if (x <= Math.PI / 4.0) {
1672     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1673     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1674     // } else {
1675     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1676     // }
1677     // return StrictMath.cos(x);
1678 
1679     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1680     // requires a special machine instruction to load it.  Instead we'll try
1681     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1682     // probably do the math inside the SIN encoding.
1683 
1684     // Make the merge point
1685     RegionNode* r = new (C) RegionNode(3);
1686     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1687 
1688     // Flatten arg so we need only 1 test
1689     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1690     // Node for PI/4 constant
1691     Node *pi4 = makecon(TypeD::make(pi_4));
1692     // Check PI/4 : abs(arg)
1693     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1694     // Check: If PI/4 < abs(arg) then go slow
1695     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1696     // Branch either way
1697     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1698     set_control(opt_iff(r,iff));
1699 
1700     // Set fast path result
1701     phi->init_req(2, n);
1702 
1703     // Slow path - non-blocking leaf call
1704     Node* call = NULL;
1705     switch (id) {
1706     case vmIntrinsics::_dsin:
1707       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1708                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1709                                "Sin", NULL, arg, top());
1710       break;
1711     case vmIntrinsics::_dcos:
1712       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1713                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1714                                "Cos", NULL, arg, top());
1715       break;
1716     case vmIntrinsics::_dtan:
1717       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1718                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1719                                "Tan", NULL, arg, top());
1720       break;
1721     }
1722     assert(control()->in(0) == call, "");
1723     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1724     r->init_req(1, control());
1725     phi->init_req(1, slow_result);
1726 
1727     // Post-merge
1728     set_control(_gvn.transform(r));
1729     record_for_igvn(r);
1730     n = _gvn.transform(phi);
1731 
1732     C->set_has_split_ifs(true); // Has chance for split-if optimization
1733   }
1734   set_result(n);
1735   return true;
1736 }
1737 
1738 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1739   //-------------------
1740   //result=(result.isNaN())? funcAddr():result;
1741   // Check: If isNaN() by checking result!=result? then either trap
1742   // or go to runtime
1743   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1744   // Build the boolean node
1745   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1746 
1747   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1748     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1749       // The pow or exp intrinsic returned a NaN, which requires a call
1750       // to the runtime.  Recompile with the runtime call.
1751       uncommon_trap(Deoptimization::Reason_intrinsic,
1752                     Deoptimization::Action_make_not_entrant);
1753     }
1754     return result;
1755   } else {
1756     // If this inlining ever returned NaN in the past, we compile a call
1757     // to the runtime to properly handle corner cases
1758 
1759     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1760     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1761     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1762 
1763     if (!if_slow->is_top()) {
1764       RegionNode* result_region = new (C) RegionNode(3);
1765       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1766 
1767       result_region->init_req(1, if_fast);
1768       result_val->init_req(1, result);
1769 
1770       set_control(if_slow);
1771 
1772       const TypePtr* no_memory_effects = NULL;
1773       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1774                                    no_memory_effects,
1775                                    x, top(), y, y ? top() : NULL);
1776       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1777 #ifdef ASSERT
1778       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1779       assert(value_top == top(), "second value must be top");
1780 #endif
1781 
1782       result_region->init_req(2, control());
1783       result_val->init_req(2, value);
1784       set_control(_gvn.transform(result_region));
1785       return _gvn.transform(result_val);
1786     } else {
1787       return result;
1788     }
1789   }
1790 }
1791 
1792 //------------------------------inline_exp-------------------------------------
1793 // Inline exp instructions, if possible.  The Intel hardware only misses
1794 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1795 bool LibraryCallKit::inline_exp() {
1796   Node* arg = round_double_node(argument(0));
1797   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1798 
1799   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1800   set_result(n);
1801 
1802   C->set_has_split_ifs(true); // Has chance for split-if optimization
1803   return true;
1804 }
1805 
1806 //------------------------------inline_pow-------------------------------------
1807 // Inline power instructions, if possible.
1808 bool LibraryCallKit::inline_pow() {
1809   // Pseudocode for pow
1810   // if (y == 2) {
1811   //   return x * x;
1812   // } else {
1813   //   if (x <= 0.0) {
1814   //     long longy = (long)y;
1815   //     if ((double)longy == y) { // if y is long
1816   //       if (y + 1 == y) longy = 0; // huge number: even
1817   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1818   //     } else {
1819   //       result = NaN;
1820   //     }
1821   //   } else {
1822   //     result = DPow(x,y);
1823   //   }
1824   //   if (result != result)?  {
1825   //     result = uncommon_trap() or runtime_call();
1826   //   }
1827   //   return result;
1828   // }
1829 
1830   Node* x = round_double_node(argument(0));
1831   Node* y = round_double_node(argument(2));
1832 
1833   Node* result = NULL;
1834 
1835   Node*   const_two_node = makecon(TypeD::make(2.0));
1836   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1837   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1838   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1839   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1840   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1841 
1842   RegionNode* region_node = new (C) RegionNode(3);
1843   region_node->init_req(1, if_true);
1844 
1845   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1846   // special case for x^y where y == 2, we can convert it to x * x
1847   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1848 
1849   // set control to if_false since we will now process the false branch
1850   set_control(if_false);
1851 
1852   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1853     // Short form: skip the fancy tests and just check for NaN result.
1854     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1855   } else {
1856     // If this inlining ever returned NaN in the past, include all
1857     // checks + call to the runtime.
1858 
1859     // Set the merge point for If node with condition of (x <= 0.0)
1860     // There are four possible paths to region node and phi node
1861     RegionNode *r = new (C) RegionNode(4);
1862     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1863 
1864     // Build the first if node: if (x <= 0.0)
1865     // Node for 0 constant
1866     Node *zeronode = makecon(TypeD::ZERO);
1867     // Check x:0
1868     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1869     // Check: If (x<=0) then go complex path
1870     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1871     // Branch either way
1872     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1873     // Fast path taken; set region slot 3
1874     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1875     r->init_req(3,fast_taken); // Capture fast-control
1876 
1877     // Fast path not-taken, i.e. slow path
1878     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1879 
1880     // Set fast path result
1881     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1882     phi->init_req(3, fast_result);
1883 
1884     // Complex path
1885     // Build the second if node (if y is long)
1886     // Node for (long)y
1887     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1888     // Node for (double)((long) y)
1889     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1890     // Check (double)((long) y) : y
1891     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1892     // Check if (y isn't long) then go to slow path
1893 
1894     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1895     // Branch either way
1896     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1897     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1898 
1899     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1900 
1901     // Calculate DPow(abs(x), y)*(1 & (long)y)
1902     // Node for constant 1
1903     Node *conone = longcon(1);
1904     // 1& (long)y
1905     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1906 
1907     // A huge number is always even. Detect a huge number by checking
1908     // if y + 1 == y and set integer to be tested for parity to 0.
1909     // Required for corner case:
1910     // (long)9.223372036854776E18 = max_jlong
1911     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1912     // max_jlong is odd but 9.223372036854776E18 is even
1913     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1914     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1915     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1916     Node* correctedsign = NULL;
1917     if (ConditionalMoveLimit != 0) {
1918       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1919     } else {
1920       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1921       RegionNode *r = new (C) RegionNode(3);
1922       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1923       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1924       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1925       phi->init_req(1, signnode);
1926       phi->init_req(2, longcon(0));
1927       correctedsign = _gvn.transform(phi);
1928       ylong_path = _gvn.transform(r);
1929       record_for_igvn(r);
1930     }
1931 
1932     // zero node
1933     Node *conzero = longcon(0);
1934     // Check (1&(long)y)==0?
1935     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1936     // Check if (1&(long)y)!=0?, if so the result is negative
1937     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1938     // abs(x)
1939     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1940     // abs(x)^y
1941     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1942     // -abs(x)^y
1943     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1944     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1945     Node *signresult = NULL;
1946     if (ConditionalMoveLimit != 0) {
1947       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1948     } else {
1949       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1950       RegionNode *r = new (C) RegionNode(3);
1951       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1952       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1953       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1954       phi->init_req(1, absxpowy);
1955       phi->init_req(2, negabsxpowy);
1956       signresult = _gvn.transform(phi);
1957       ylong_path = _gvn.transform(r);
1958       record_for_igvn(r);
1959     }
1960     // Set complex path fast result
1961     r->init_req(2, ylong_path);
1962     phi->init_req(2, signresult);
1963 
1964     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1965     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1966     r->init_req(1,slow_path);
1967     phi->init_req(1,slow_result);
1968 
1969     // Post merge
1970     set_control(_gvn.transform(r));
1971     record_for_igvn(r);
1972     result = _gvn.transform(phi);
1973   }
1974 
1975   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1976 
1977   // control from finish_pow_exp is now input to the region node
1978   region_node->set_req(2, control());
1979   // the result from finish_pow_exp is now input to the phi node
1980   phi_node->init_req(2, result);
1981   set_control(_gvn.transform(region_node));
1982   record_for_igvn(region_node);
1983   set_result(_gvn.transform(phi_node));
1984 
1985   C->set_has_split_ifs(true); // Has chance for split-if optimization
1986   return true;
1987 }
1988 
1989 //------------------------------runtime_math-----------------------------
1990 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1991   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1992          "must be (DD)D or (D)D type");
1993 
1994   // Inputs
1995   Node* a = round_double_node(argument(0));
1996   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1997 
1998   const TypePtr* no_memory_effects = NULL;
1999   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
2000                                  no_memory_effects,
2001                                  a, top(), b, b ? top() : NULL);
2002   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
2003 #ifdef ASSERT
2004   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
2005   assert(value_top == top(), "second value must be top");
2006 #endif
2007 
2008   set_result(value);
2009   return true;
2010 }
2011 
2012 //------------------------------inline_math_native-----------------------------
2013 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2014 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2015   switch (id) {
2016     // These intrinsics are not properly supported on all hardware
2017   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2018     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2019   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2020     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2021   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2022     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2023 
2024   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2025     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2026   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2027     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2028 
2029     // These intrinsics are supported on all hardware
2030   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2031   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2032 
2033   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2034     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2035   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2036     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2037 #undef FN_PTR
2038 
2039    // These intrinsics are not yet correctly implemented
2040   case vmIntrinsics::_datan2:
2041     return false;
2042 
2043   default:
2044     fatal_unexpected_iid(id);
2045     return false;
2046   }
2047 }
2048 
2049 static bool is_simple_name(Node* n) {
2050   return (n->req() == 1         // constant
2051           || (n->is_Type() && n->as_Type()->type()->singleton())
2052           || n->is_Proj()       // parameter or return value
2053           || n->is_Phi()        // local of some sort
2054           );
2055 }
2056 
2057 //----------------------------inline_min_max-----------------------------------
2058 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2059   set_result(generate_min_max(id, argument(0), argument(1)));
2060   return true;
2061 }
2062 
2063 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2064   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
2065   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2066   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
2067   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
2068 
2069   {
2070     PreserveJVMState pjvms(this);
2071     PreserveReexecuteState preexecs(this);
2072     jvms()->set_should_reexecute(true);
2073 
2074     set_control(slow_path);
2075     set_i_o(i_o());
2076 
2077     uncommon_trap(Deoptimization::Reason_intrinsic,
2078                   Deoptimization::Action_none);
2079   }
2080 
2081   set_control(fast_path);
2082   set_result(math);
2083 }
2084 
2085 template <typename OverflowOp>
2086 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2087   typedef typename OverflowOp::MathOp MathOp;
2088 
2089   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2090   Node* operation = _gvn.transform( mathOp );
2091   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2092   inline_math_mathExact(operation, ofcheck);
2093   return true;
2094 }
2095 
2096 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2097   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2098 }
2099 
2100 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2101   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2102 }
2103 
2104 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2105   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2106 }
2107 
2108 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2109   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2110 }
2111 
2112 bool LibraryCallKit::inline_math_negateExactI() {
2113   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2114 }
2115 
2116 bool LibraryCallKit::inline_math_negateExactL() {
2117   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2118 }
2119 
2120 bool LibraryCallKit::inline_math_multiplyExactI() {
2121   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2122 }
2123 
2124 bool LibraryCallKit::inline_math_multiplyExactL() {
2125   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2126 }
2127 
2128 Node*
2129 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2130   // These are the candidate return value:
2131   Node* xvalue = x0;
2132   Node* yvalue = y0;
2133 
2134   if (xvalue == yvalue) {
2135     return xvalue;
2136   }
2137 
2138   bool want_max = (id == vmIntrinsics::_max);
2139 
2140   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2141   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2142   if (txvalue == NULL || tyvalue == NULL)  return top();
2143   // This is not really necessary, but it is consistent with a
2144   // hypothetical MaxINode::Value method:
2145   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2146 
2147   // %%% This folding logic should (ideally) be in a different place.
2148   // Some should be inside IfNode, and there to be a more reliable
2149   // transformation of ?: style patterns into cmoves.  We also want
2150   // more powerful optimizations around cmove and min/max.
2151 
2152   // Try to find a dominating comparison of these guys.
2153   // It can simplify the index computation for Arrays.copyOf
2154   // and similar uses of System.arraycopy.
2155   // First, compute the normalized version of CmpI(x, y).
2156   int   cmp_op = Op_CmpI;
2157   Node* xkey = xvalue;
2158   Node* ykey = yvalue;
2159   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2160   if (ideal_cmpxy->is_Cmp()) {
2161     // E.g., if we have CmpI(length - offset, count),
2162     // it might idealize to CmpI(length, count + offset)
2163     cmp_op = ideal_cmpxy->Opcode();
2164     xkey = ideal_cmpxy->in(1);
2165     ykey = ideal_cmpxy->in(2);
2166   }
2167 
2168   // Start by locating any relevant comparisons.
2169   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2170   Node* cmpxy = NULL;
2171   Node* cmpyx = NULL;
2172   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2173     Node* cmp = start_from->fast_out(k);
2174     if (cmp->outcnt() > 0 &&            // must have prior uses
2175         cmp->in(0) == NULL &&           // must be context-independent
2176         cmp->Opcode() == cmp_op) {      // right kind of compare
2177       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2178       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2179     }
2180   }
2181 
2182   const int NCMPS = 2;
2183   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2184   int cmpn;
2185   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2186     if (cmps[cmpn] != NULL)  break;     // find a result
2187   }
2188   if (cmpn < NCMPS) {
2189     // Look for a dominating test that tells us the min and max.
2190     int depth = 0;                // Limit search depth for speed
2191     Node* dom = control();
2192     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2193       if (++depth >= 100)  break;
2194       Node* ifproj = dom;
2195       if (!ifproj->is_Proj())  continue;
2196       Node* iff = ifproj->in(0);
2197       if (!iff->is_If())  continue;
2198       Node* bol = iff->in(1);
2199       if (!bol->is_Bool())  continue;
2200       Node* cmp = bol->in(1);
2201       if (cmp == NULL)  continue;
2202       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2203         if (cmps[cmpn] == cmp)  break;
2204       if (cmpn == NCMPS)  continue;
2205       BoolTest::mask btest = bol->as_Bool()->_test._test;
2206       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2207       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2208       // At this point, we know that 'x btest y' is true.
2209       switch (btest) {
2210       case BoolTest::eq:
2211         // They are proven equal, so we can collapse the min/max.
2212         // Either value is the answer.  Choose the simpler.
2213         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2214           return yvalue;
2215         return xvalue;
2216       case BoolTest::lt:          // x < y
2217       case BoolTest::le:          // x <= y
2218         return (want_max ? yvalue : xvalue);
2219       case BoolTest::gt:          // x > y
2220       case BoolTest::ge:          // x >= y
2221         return (want_max ? xvalue : yvalue);
2222       }
2223     }
2224   }
2225 
2226   // We failed to find a dominating test.
2227   // Let's pick a test that might GVN with prior tests.
2228   Node*          best_bol   = NULL;
2229   BoolTest::mask best_btest = BoolTest::illegal;
2230   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2231     Node* cmp = cmps[cmpn];
2232     if (cmp == NULL)  continue;
2233     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2234       Node* bol = cmp->fast_out(j);
2235       if (!bol->is_Bool())  continue;
2236       BoolTest::mask btest = bol->as_Bool()->_test._test;
2237       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2238       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2239       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2240         best_bol   = bol->as_Bool();
2241         best_btest = btest;
2242       }
2243     }
2244   }
2245 
2246   Node* answer_if_true  = NULL;
2247   Node* answer_if_false = NULL;
2248   switch (best_btest) {
2249   default:
2250     if (cmpxy == NULL)
2251       cmpxy = ideal_cmpxy;
2252     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2253     // and fall through:
2254   case BoolTest::lt:          // x < y
2255   case BoolTest::le:          // x <= y
2256     answer_if_true  = (want_max ? yvalue : xvalue);
2257     answer_if_false = (want_max ? xvalue : yvalue);
2258     break;
2259   case BoolTest::gt:          // x > y
2260   case BoolTest::ge:          // x >= y
2261     answer_if_true  = (want_max ? xvalue : yvalue);
2262     answer_if_false = (want_max ? yvalue : xvalue);
2263     break;
2264   }
2265 
2266   jint hi, lo;
2267   if (want_max) {
2268     // We can sharpen the minimum.
2269     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2270     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2271   } else {
2272     // We can sharpen the maximum.
2273     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2274     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2275   }
2276 
2277   // Use a flow-free graph structure, to avoid creating excess control edges
2278   // which could hinder other optimizations.
2279   // Since Math.min/max is often used with arraycopy, we want
2280   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2281   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2282                                answer_if_false, answer_if_true,
2283                                TypeInt::make(lo, hi, widen));
2284 
2285   return _gvn.transform(cmov);
2286 
2287   /*
2288   // This is not as desirable as it may seem, since Min and Max
2289   // nodes do not have a full set of optimizations.
2290   // And they would interfere, anyway, with 'if' optimizations
2291   // and with CMoveI canonical forms.
2292   switch (id) {
2293   case vmIntrinsics::_min:
2294     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2295   case vmIntrinsics::_max:
2296     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2297   default:
2298     ShouldNotReachHere();
2299   }
2300   */
2301 }
2302 
2303 inline int
2304 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2305   const TypePtr* base_type = TypePtr::NULL_PTR;
2306   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2307   if (base_type == NULL) {
2308     // Unknown type.
2309     return Type::AnyPtr;
2310   } else if (base_type == TypePtr::NULL_PTR) {
2311     // Since this is a NULL+long form, we have to switch to a rawptr.
2312     base   = _gvn.transform(new (C) CastX2PNode(offset));
2313     offset = MakeConX(0);
2314     return Type::RawPtr;
2315   } else if (base_type->base() == Type::RawPtr) {
2316     return Type::RawPtr;
2317   } else if (base_type->isa_oopptr()) {
2318     // Base is never null => always a heap address.
2319     if (base_type->ptr() == TypePtr::NotNull) {
2320       return Type::OopPtr;
2321     }
2322     // Offset is small => always a heap address.
2323     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2324     if (offset_type != NULL &&
2325         base_type->offset() == 0 &&     // (should always be?)
2326         offset_type->_lo >= 0 &&
2327         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2328       return Type::OopPtr;
2329     }
2330     // Otherwise, it might either be oop+off or NULL+addr.
2331     return Type::AnyPtr;
2332   } else {
2333     // No information:
2334     return Type::AnyPtr;
2335   }
2336 }
2337 
2338 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2339   int kind = classify_unsafe_addr(base, offset);
2340   if (kind == Type::RawPtr) {
2341     return basic_plus_adr(top(), base, offset);
2342   } else {
2343     return basic_plus_adr(base, offset);
2344   }
2345 }
2346 
2347 //--------------------------inline_number_methods-----------------------------
2348 // inline int     Integer.numberOfLeadingZeros(int)
2349 // inline int        Long.numberOfLeadingZeros(long)
2350 //
2351 // inline int     Integer.numberOfTrailingZeros(int)
2352 // inline int        Long.numberOfTrailingZeros(long)
2353 //
2354 // inline int     Integer.bitCount(int)
2355 // inline int        Long.bitCount(long)
2356 //
2357 // inline char  Character.reverseBytes(char)
2358 // inline short     Short.reverseBytes(short)
2359 // inline int     Integer.reverseBytes(int)
2360 // inline long       Long.reverseBytes(long)
2361 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2362   Node* arg = argument(0);
2363   Node* n;
2364   switch (id) {
2365   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2366   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2367   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2368   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2369   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2370   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2371   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2372   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2373   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2374   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2375   default:  fatal_unexpected_iid(id);  break;
2376   }
2377   set_result(_gvn.transform(n));
2378   return true;
2379 }
2380 
2381 //----------------------------inline_unsafe_access----------------------------
2382 
2383 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2384 
2385 // Helper that guards and inserts a pre-barrier.
2386 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2387                                         Node* pre_val, bool need_mem_bar) {
2388   // We could be accessing the referent field of a reference object. If so, when G1
2389   // is enabled, we need to log the value in the referent field in an SATB buffer.
2390   // This routine performs some compile time filters and generates suitable
2391   // runtime filters that guard the pre-barrier code.
2392   // Also add memory barrier for non volatile load from the referent field
2393   // to prevent commoning of loads across safepoint.
2394   if (!UseG1GC && !need_mem_bar)
2395     return;
2396 
2397   // Some compile time checks.
2398 
2399   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2400   const TypeX* otype = offset->find_intptr_t_type();
2401   if (otype != NULL && otype->is_con() &&
2402       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2403     // Constant offset but not the reference_offset so just return
2404     return;
2405   }
2406 
2407   // We only need to generate the runtime guards for instances.
2408   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2409   if (btype != NULL) {
2410     if (btype->isa_aryptr()) {
2411       // Array type so nothing to do
2412       return;
2413     }
2414 
2415     const TypeInstPtr* itype = btype->isa_instptr();
2416     if (itype != NULL) {
2417       // Can the klass of base_oop be statically determined to be
2418       // _not_ a sub-class of Reference and _not_ Object?
2419       ciKlass* klass = itype->klass();
2420       if ( klass->is_loaded() &&
2421           !klass->is_subtype_of(env()->Reference_klass()) &&
2422           !env()->Object_klass()->is_subtype_of(klass)) {
2423         return;
2424       }
2425     }
2426   }
2427 
2428   // The compile time filters did not reject base_oop/offset so
2429   // we need to generate the following runtime filters
2430   //
2431   // if (offset == java_lang_ref_Reference::_reference_offset) {
2432   //   if (instance_of(base, java.lang.ref.Reference)) {
2433   //     pre_barrier(_, pre_val, ...);
2434   //   }
2435   // }
2436 
2437   float likely   = PROB_LIKELY(  0.999);
2438   float unlikely = PROB_UNLIKELY(0.999);
2439 
2440   IdealKit ideal(this);
2441 #define __ ideal.
2442 
2443   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2444 
2445   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2446       // Update graphKit memory and control from IdealKit.
2447       sync_kit(ideal);
2448 
2449       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2450       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2451 
2452       // Update IdealKit memory and control from graphKit.
2453       __ sync_kit(this);
2454 
2455       Node* one = __ ConI(1);
2456       // is_instof == 0 if base_oop == NULL
2457       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2458 
2459         // Update graphKit from IdeakKit.
2460         sync_kit(ideal);
2461 
2462         // Use the pre-barrier to record the value in the referent field
2463         pre_barrier(false /* do_load */,
2464                     __ ctrl(),
2465                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2466                     pre_val /* pre_val */,
2467                     T_OBJECT);
2468         if (need_mem_bar) {
2469           // Add memory barrier to prevent commoning reads from this field
2470           // across safepoint since GC can change its value.
2471           insert_mem_bar(Op_MemBarCPUOrder);
2472         }
2473         // Update IdealKit from graphKit.
2474         __ sync_kit(this);
2475 
2476       } __ end_if(); // _ref_type != ref_none
2477   } __ end_if(); // offset == referent_offset
2478 
2479   // Final sync IdealKit and GraphKit.
2480   final_sync(ideal);
2481 #undef __
2482 }
2483 
2484 
2485 // Interpret Unsafe.fieldOffset cookies correctly:
2486 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2487 
2488 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2489   // Attempt to infer a sharper value type from the offset and base type.
2490   ciKlass* sharpened_klass = NULL;
2491 
2492   // See if it is an instance field, with an object type.
2493   if (alias_type->field() != NULL) {
2494     assert(!is_native_ptr, "native pointer op cannot use a java address");
2495     if (alias_type->field()->type()->is_klass()) {
2496       sharpened_klass = alias_type->field()->type()->as_klass();
2497     }
2498   }
2499 
2500   // See if it is a narrow oop array.
2501   if (adr_type->isa_aryptr()) {
2502     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2503       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2504       if (elem_type != NULL) {
2505         sharpened_klass = elem_type->klass();
2506       }
2507     }
2508   }
2509 
2510   // The sharpened class might be unloaded if there is no class loader
2511   // contraint in place.
2512   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2513     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2514 
2515 #ifndef PRODUCT
2516     if (C->print_intrinsics() || C->print_inlining()) {
2517       tty->print("  from base type: ");  adr_type->dump();
2518       tty->print("  sharpened value: ");  tjp->dump();
2519     }
2520 #endif
2521     // Sharpen the value type.
2522     return tjp;
2523   }
2524   return NULL;
2525 }
2526 
2527 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2528   if (callee()->is_static())  return false;  // caller must have the capability!
2529 
2530 #ifndef PRODUCT
2531   {
2532     ResourceMark rm;
2533     // Check the signatures.
2534     ciSignature* sig = callee()->signature();
2535 #ifdef ASSERT
2536     if (!is_store) {
2537       // Object getObject(Object base, int/long offset), etc.
2538       BasicType rtype = sig->return_type()->basic_type();
2539       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2540           rtype = T_ADDRESS;  // it is really a C void*
2541       assert(rtype == type, "getter must return the expected value");
2542       if (!is_native_ptr) {
2543         assert(sig->count() == 2, "oop getter has 2 arguments");
2544         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2545         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2546       } else {
2547         assert(sig->count() == 1, "native getter has 1 argument");
2548         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2549       }
2550     } else {
2551       // void putObject(Object base, int/long offset, Object x), etc.
2552       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2553       if (!is_native_ptr) {
2554         assert(sig->count() == 3, "oop putter has 3 arguments");
2555         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2556         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2557       } else {
2558         assert(sig->count() == 2, "native putter has 2 arguments");
2559         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2560       }
2561       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2562       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2563         vtype = T_ADDRESS;  // it is really a C void*
2564       assert(vtype == type, "putter must accept the expected value");
2565     }
2566 #endif // ASSERT
2567  }
2568 #endif //PRODUCT
2569 
2570   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2571 
2572   Node* receiver = argument(0);  // type: oop
2573 
2574   // Build address expression.  See the code in inline_unsafe_prefetch.
2575   Node* adr;
2576   Node* heap_base_oop = top();
2577   Node* offset = top();
2578   Node* val;
2579 
2580   if (!is_native_ptr) {
2581     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2582     Node* base = argument(1);  // type: oop
2583     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2584     offset = argument(2);  // type: long
2585     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2586     // to be plain byte offsets, which are also the same as those accepted
2587     // by oopDesc::field_base.
2588     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2589            "fieldOffset must be byte-scaled");
2590     // 32-bit machines ignore the high half!
2591     offset = ConvL2X(offset);
2592     adr = make_unsafe_address(base, offset);
2593     heap_base_oop = base;
2594     val = is_store ? argument(4) : NULL;
2595   } else {
2596     Node* ptr = argument(1);  // type: long
2597     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2598     adr = make_unsafe_address(NULL, ptr);
2599     val = is_store ? argument(3) : NULL;
2600   }
2601 
2602   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2603 
2604   // First guess at the value type.
2605   const Type *value_type = Type::get_const_basic_type(type);
2606 
2607   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2608   // there was not enough information to nail it down.
2609   Compile::AliasType* alias_type = C->alias_type(adr_type);
2610   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2611 
2612   // We will need memory barriers unless we can determine a unique
2613   // alias category for this reference.  (Note:  If for some reason
2614   // the barriers get omitted and the unsafe reference begins to "pollute"
2615   // the alias analysis of the rest of the graph, either Compile::can_alias
2616   // or Compile::must_alias will throw a diagnostic assert.)
2617   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2618 
2619   // If we are reading the value of the referent field of a Reference
2620   // object (either by using Unsafe directly or through reflection)
2621   // then, if G1 is enabled, we need to record the referent in an
2622   // SATB log buffer using the pre-barrier mechanism.
2623   // Also we need to add memory barrier to prevent commoning reads
2624   // from this field across safepoint since GC can change its value.
2625   bool need_read_barrier = !is_native_ptr && !is_store &&
2626                            offset != top() && heap_base_oop != top();
2627 
2628   if (!is_store && type == T_OBJECT) {
2629     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2630     if (tjp != NULL) {
2631       value_type = tjp;
2632     }
2633   }
2634 
2635   receiver = null_check(receiver);
2636   if (stopped()) {
2637     return true;
2638   }
2639   // Heap pointers get a null-check from the interpreter,
2640   // as a courtesy.  However, this is not guaranteed by Unsafe,
2641   // and it is not possible to fully distinguish unintended nulls
2642   // from intended ones in this API.
2643 
2644   if (is_volatile) {
2645     // We need to emit leading and trailing CPU membars (see below) in
2646     // addition to memory membars when is_volatile. This is a little
2647     // too strong, but avoids the need to insert per-alias-type
2648     // volatile membars (for stores; compare Parse::do_put_xxx), which
2649     // we cannot do effectively here because we probably only have a
2650     // rough approximation of type.
2651     need_mem_bar = true;
2652     // For Stores, place a memory ordering barrier now.
2653     if (is_store) {
2654       insert_mem_bar(Op_MemBarRelease);
2655     } else {
2656       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2657         insert_mem_bar(Op_MemBarVolatile);
2658       }
2659     }
2660   }
2661 
2662   // Memory barrier to prevent normal and 'unsafe' accesses from
2663   // bypassing each other.  Happens after null checks, so the
2664   // exception paths do not take memory state from the memory barrier,
2665   // so there's no problems making a strong assert about mixing users
2666   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2667   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2668   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2669 
2670   if (!is_store) {
2671     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2672     // To be valid, unsafe loads may depend on other conditions than
2673     // the one that guards them: pin the Load node
2674     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
2675     // load value
2676     switch (type) {
2677     case T_BOOLEAN:
2678     case T_CHAR:
2679     case T_BYTE:
2680     case T_SHORT:
2681     case T_INT:
2682     case T_LONG:
2683     case T_FLOAT:
2684     case T_DOUBLE:
2685       break;
2686     case T_OBJECT:
2687       if (need_read_barrier) {
2688         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2689       }
2690       break;
2691     case T_ADDRESS:
2692       // Cast to an int type.
2693       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2694       p = ConvX2UL(p);
2695       break;
2696     default:
2697       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2698       break;
2699     }
2700     // The load node has the control of the preceding MemBarCPUOrder.  All
2701     // following nodes will have the control of the MemBarCPUOrder inserted at
2702     // the end of this method.  So, pushing the load onto the stack at a later
2703     // point is fine.
2704     set_result(p);
2705   } else {
2706     // place effect of store into memory
2707     switch (type) {
2708     case T_DOUBLE:
2709       val = dstore_rounding(val);
2710       break;
2711     case T_ADDRESS:
2712       // Repackage the long as a pointer.
2713       val = ConvL2X(val);
2714       val = _gvn.transform(new (C) CastX2PNode(val));
2715       break;
2716     }
2717 
2718     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2719     if (type != T_OBJECT ) {
2720       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2721     } else {
2722       // Possibly an oop being stored to Java heap or native memory
2723       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2724         // oop to Java heap.
2725         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2726       } else {
2727         // We can't tell at compile time if we are storing in the Java heap or outside
2728         // of it. So we need to emit code to conditionally do the proper type of
2729         // store.
2730 
2731         IdealKit ideal(this);
2732 #define __ ideal.
2733         // QQQ who knows what probability is here??
2734         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2735           // Sync IdealKit and graphKit.
2736           sync_kit(ideal);
2737           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2738           // Update IdealKit memory.
2739           __ sync_kit(this);
2740         } __ else_(); {
2741           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2742         } __ end_if();
2743         // Final sync IdealKit and GraphKit.
2744         final_sync(ideal);
2745 #undef __
2746       }
2747     }
2748   }
2749 
2750   if (is_volatile) {
2751     if (!is_store) {
2752       insert_mem_bar(Op_MemBarAcquire);
2753     } else {
2754       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2755         insert_mem_bar(Op_MemBarVolatile);
2756       }
2757     }
2758   }
2759 
2760   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2761 
2762   return true;
2763 }
2764 
2765 //----------------------------inline_unsafe_prefetch----------------------------
2766 
2767 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2768 #ifndef PRODUCT
2769   {
2770     ResourceMark rm;
2771     // Check the signatures.
2772     ciSignature* sig = callee()->signature();
2773 #ifdef ASSERT
2774     // Object getObject(Object base, int/long offset), etc.
2775     BasicType rtype = sig->return_type()->basic_type();
2776     if (!is_native_ptr) {
2777       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2778       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2779       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2780     } else {
2781       assert(sig->count() == 1, "native prefetch has 1 argument");
2782       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2783     }
2784 #endif // ASSERT
2785   }
2786 #endif // !PRODUCT
2787 
2788   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2789 
2790   const int idx = is_static ? 0 : 1;
2791   if (!is_static) {
2792     null_check_receiver();
2793     if (stopped()) {
2794       return true;
2795     }
2796   }
2797 
2798   // Build address expression.  See the code in inline_unsafe_access.
2799   Node *adr;
2800   if (!is_native_ptr) {
2801     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2802     Node* base   = argument(idx + 0);  // type: oop
2803     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2804     Node* offset = argument(idx + 1);  // type: long
2805     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2806     // to be plain byte offsets, which are also the same as those accepted
2807     // by oopDesc::field_base.
2808     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2809            "fieldOffset must be byte-scaled");
2810     // 32-bit machines ignore the high half!
2811     offset = ConvL2X(offset);
2812     adr = make_unsafe_address(base, offset);
2813   } else {
2814     Node* ptr = argument(idx + 0);  // type: long
2815     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2816     adr = make_unsafe_address(NULL, ptr);
2817   }
2818 
2819   // Generate the read or write prefetch
2820   Node *prefetch;
2821   if (is_store) {
2822     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2823   } else {
2824     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2825   }
2826   prefetch->init_req(0, control());
2827   set_i_o(_gvn.transform(prefetch));
2828 
2829   return true;
2830 }
2831 
2832 //----------------------------inline_unsafe_load_store----------------------------
2833 // This method serves a couple of different customers (depending on LoadStoreKind):
2834 //
2835 // LS_cmpxchg:
2836 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2837 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2838 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2839 //
2840 // LS_xadd:
2841 //   public int  getAndAddInt( Object o, long offset, int  delta)
2842 //   public long getAndAddLong(Object o, long offset, long delta)
2843 //
2844 // LS_xchg:
2845 //   int    getAndSet(Object o, long offset, int    newValue)
2846 //   long   getAndSet(Object o, long offset, long   newValue)
2847 //   Object getAndSet(Object o, long offset, Object newValue)
2848 //
2849 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2850   // This basic scheme here is the same as inline_unsafe_access, but
2851   // differs in enough details that combining them would make the code
2852   // overly confusing.  (This is a true fact! I originally combined
2853   // them, but even I was confused by it!) As much code/comments as
2854   // possible are retained from inline_unsafe_access though to make
2855   // the correspondences clearer. - dl
2856 
2857   if (callee()->is_static())  return false;  // caller must have the capability!
2858 
2859 #ifndef PRODUCT
2860   BasicType rtype;
2861   {
2862     ResourceMark rm;
2863     // Check the signatures.
2864     ciSignature* sig = callee()->signature();
2865     rtype = sig->return_type()->basic_type();
2866     if (kind == LS_xadd || kind == LS_xchg) {
2867       // Check the signatures.
2868 #ifdef ASSERT
2869       assert(rtype == type, "get and set must return the expected type");
2870       assert(sig->count() == 3, "get and set has 3 arguments");
2871       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2872       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2873       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2874 #endif // ASSERT
2875     } else if (kind == LS_cmpxchg) {
2876       // Check the signatures.
2877 #ifdef ASSERT
2878       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2879       assert(sig->count() == 4, "CAS has 4 arguments");
2880       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2881       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2882 #endif // ASSERT
2883     } else {
2884       ShouldNotReachHere();
2885     }
2886   }
2887 #endif //PRODUCT
2888 
2889   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2890 
2891   // Get arguments:
2892   Node* receiver = NULL;
2893   Node* base     = NULL;
2894   Node* offset   = NULL;
2895   Node* oldval   = NULL;
2896   Node* newval   = NULL;
2897   if (kind == LS_cmpxchg) {
2898     const bool two_slot_type = type2size[type] == 2;
2899     receiver = argument(0);  // type: oop
2900     base     = argument(1);  // type: oop
2901     offset   = argument(2);  // type: long
2902     oldval   = argument(4);  // type: oop, int, or long
2903     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2904   } else if (kind == LS_xadd || kind == LS_xchg){
2905     receiver = argument(0);  // type: oop
2906     base     = argument(1);  // type: oop
2907     offset   = argument(2);  // type: long
2908     oldval   = NULL;
2909     newval   = argument(4);  // type: oop, int, or long
2910   }
2911 
2912   // Null check receiver.
2913   receiver = null_check(receiver);
2914   if (stopped()) {
2915     return true;
2916   }
2917 
2918   // Build field offset expression.
2919   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2920   // to be plain byte offsets, which are also the same as those accepted
2921   // by oopDesc::field_base.
2922   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2923   // 32-bit machines ignore the high half of long offsets
2924   offset = ConvL2X(offset);
2925   Node* adr = make_unsafe_address(base, offset);
2926   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2927 
2928   // For CAS, unlike inline_unsafe_access, there seems no point in
2929   // trying to refine types. Just use the coarse types here.
2930   const Type *value_type = Type::get_const_basic_type(type);
2931   Compile::AliasType* alias_type = C->alias_type(adr_type);
2932   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2933 
2934   if (kind == LS_xchg && type == T_OBJECT) {
2935     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2936     if (tjp != NULL) {
2937       value_type = tjp;
2938     }
2939   }
2940 
2941   int alias_idx = C->get_alias_index(adr_type);
2942 
2943   // Memory-model-wise, a LoadStore acts like a little synchronized
2944   // block, so needs barriers on each side.  These don't translate
2945   // into actual barriers on most machines, but we still need rest of
2946   // compiler to respect ordering.
2947 
2948   insert_mem_bar(Op_MemBarRelease);
2949   insert_mem_bar(Op_MemBarCPUOrder);
2950 
2951   // 4984716: MemBars must be inserted before this
2952   //          memory node in order to avoid a false
2953   //          dependency which will confuse the scheduler.
2954   Node *mem = memory(alias_idx);
2955 
2956   // For now, we handle only those cases that actually exist: ints,
2957   // longs, and Object. Adding others should be straightforward.
2958   Node* load_store;
2959   switch(type) {
2960   case T_INT:
2961     if (kind == LS_xadd) {
2962       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2963     } else if (kind == LS_xchg) {
2964       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2965     } else if (kind == LS_cmpxchg) {
2966       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2967     } else {
2968       ShouldNotReachHere();
2969     }
2970     break;
2971   case T_LONG:
2972     if (kind == LS_xadd) {
2973       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2974     } else if (kind == LS_xchg) {
2975       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2976     } else if (kind == LS_cmpxchg) {
2977       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2978     } else {
2979       ShouldNotReachHere();
2980     }
2981     break;
2982   case T_OBJECT:
2983     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2984     // could be delayed during Parse (for example, in adjust_map_after_if()).
2985     // Execute transformation here to avoid barrier generation in such case.
2986     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2987       newval = _gvn.makecon(TypePtr::NULL_PTR);
2988 
2989     // Reference stores need a store barrier.
2990     if (kind == LS_xchg) {
2991       // If pre-barrier must execute before the oop store, old value will require do_load here.
2992       if (!can_move_pre_barrier()) {
2993         pre_barrier(true /* do_load*/,
2994                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2995                     NULL /* pre_val*/,
2996                     T_OBJECT);
2997       } // Else move pre_barrier to use load_store value, see below.
2998     } else if (kind == LS_cmpxchg) {
2999       // Same as for newval above:
3000       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3001         oldval = _gvn.makecon(TypePtr::NULL_PTR);
3002       }
3003       // The only known value which might get overwritten is oldval.
3004       pre_barrier(false /* do_load */,
3005                   control(), NULL, NULL, max_juint, NULL, NULL,
3006                   oldval /* pre_val */,
3007                   T_OBJECT);
3008     } else {
3009       ShouldNotReachHere();
3010     }
3011 
3012 #ifdef _LP64
3013     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3014       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3015       if (kind == LS_xchg) {
3016         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
3017                                                            newval_enc, adr_type, value_type->make_narrowoop()));
3018       } else {
3019         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3020         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3021         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
3022                                                                 newval_enc, oldval_enc));
3023       }
3024     } else
3025 #endif
3026     {
3027       if (kind == LS_xchg) {
3028         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3029       } else {
3030         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3031         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3032       }
3033     }
3034     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3035     break;
3036   default:
3037     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3038     break;
3039   }
3040 
3041   // SCMemProjNodes represent the memory state of a LoadStore. Their
3042   // main role is to prevent LoadStore nodes from being optimized away
3043   // when their results aren't used.
3044   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3045   set_memory(proj, alias_idx);
3046 
3047   if (type == T_OBJECT && kind == LS_xchg) {
3048 #ifdef _LP64
3049     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3050       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3051     }
3052 #endif
3053     if (can_move_pre_barrier()) {
3054       // Don't need to load pre_val. The old value is returned by load_store.
3055       // The pre_barrier can execute after the xchg as long as no safepoint
3056       // gets inserted between them.
3057       pre_barrier(false /* do_load */,
3058                   control(), NULL, NULL, max_juint, NULL, NULL,
3059                   load_store /* pre_val */,
3060                   T_OBJECT);
3061     }
3062   }
3063 
3064   // Add the trailing membar surrounding the access
3065   insert_mem_bar(Op_MemBarCPUOrder);
3066   insert_mem_bar(Op_MemBarAcquire);
3067 
3068   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3069   set_result(load_store);
3070   return true;
3071 }
3072 
3073 //----------------------------inline_unsafe_ordered_store----------------------
3074 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3075 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3076 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3077 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3078   // This is another variant of inline_unsafe_access, differing in
3079   // that it always issues store-store ("release") barrier and ensures
3080   // store-atomicity (which only matters for "long").
3081 
3082   if (callee()->is_static())  return false;  // caller must have the capability!
3083 
3084 #ifndef PRODUCT
3085   {
3086     ResourceMark rm;
3087     // Check the signatures.
3088     ciSignature* sig = callee()->signature();
3089 #ifdef ASSERT
3090     BasicType rtype = sig->return_type()->basic_type();
3091     assert(rtype == T_VOID, "must return void");
3092     assert(sig->count() == 3, "has 3 arguments");
3093     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3094     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3095 #endif // ASSERT
3096   }
3097 #endif //PRODUCT
3098 
3099   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3100 
3101   // Get arguments:
3102   Node* receiver = argument(0);  // type: oop
3103   Node* base     = argument(1);  // type: oop
3104   Node* offset   = argument(2);  // type: long
3105   Node* val      = argument(4);  // type: oop, int, or long
3106 
3107   // Null check receiver.
3108   receiver = null_check(receiver);
3109   if (stopped()) {
3110     return true;
3111   }
3112 
3113   // Build field offset expression.
3114   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3115   // 32-bit machines ignore the high half of long offsets
3116   offset = ConvL2X(offset);
3117   Node* adr = make_unsafe_address(base, offset);
3118   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3119   const Type *value_type = Type::get_const_basic_type(type);
3120   Compile::AliasType* alias_type = C->alias_type(adr_type);
3121 
3122   insert_mem_bar(Op_MemBarRelease);
3123   insert_mem_bar(Op_MemBarCPUOrder);
3124   // Ensure that the store is atomic for longs:
3125   const bool require_atomic_access = true;
3126   Node* store;
3127   if (type == T_OBJECT) // reference stores need a store barrier.
3128     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3129   else {
3130     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3131   }
3132   insert_mem_bar(Op_MemBarCPUOrder);
3133   return true;
3134 }
3135 
3136 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3137   // Regardless of form, don't allow previous ld/st to move down,
3138   // then issue acquire, release, or volatile mem_bar.
3139   insert_mem_bar(Op_MemBarCPUOrder);
3140   switch(id) {
3141     case vmIntrinsics::_loadFence:
3142       insert_mem_bar(Op_LoadFence);
3143       return true;
3144     case vmIntrinsics::_storeFence:
3145       insert_mem_bar(Op_StoreFence);
3146       return true;
3147     case vmIntrinsics::_fullFence:
3148       insert_mem_bar(Op_MemBarVolatile);
3149       return true;
3150     default:
3151       fatal_unexpected_iid(id);
3152       return false;
3153   }
3154 }
3155 
3156 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3157   if (!kls->is_Con()) {
3158     return true;
3159   }
3160   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3161   if (klsptr == NULL) {
3162     return true;
3163   }
3164   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3165   // don't need a guard for a klass that is already initialized
3166   return !ik->is_initialized();
3167 }
3168 
3169 //----------------------------inline_unsafe_allocate---------------------------
3170 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3171 bool LibraryCallKit::inline_unsafe_allocate() {
3172   if (callee()->is_static())  return false;  // caller must have the capability!
3173 
3174   null_check_receiver();  // null-check, then ignore
3175   Node* cls = null_check(argument(1));
3176   if (stopped())  return true;
3177 
3178   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3179   kls = null_check(kls);
3180   if (stopped())  return true;  // argument was like int.class
3181 
3182   Node* test = NULL;
3183   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3184     // Note:  The argument might still be an illegal value like
3185     // Serializable.class or Object[].class.   The runtime will handle it.
3186     // But we must make an explicit check for initialization.
3187     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3188     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3189     // can generate code to load it as unsigned byte.
3190     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3191     Node* bits = intcon(InstanceKlass::fully_initialized);
3192     test = _gvn.transform(new (C) SubINode(inst, bits));
3193     // The 'test' is non-zero if we need to take a slow path.
3194   }
3195 
3196   Node* obj = new_instance(kls, test);
3197   set_result(obj);
3198   return true;
3199 }
3200 
3201 #ifdef TRACE_HAVE_INTRINSICS
3202 /*
3203  * oop -> myklass
3204  * myklass->trace_id |= USED
3205  * return myklass->trace_id & ~0x3
3206  */
3207 bool LibraryCallKit::inline_native_classID() {
3208   null_check_receiver();  // null-check, then ignore
3209   Node* cls = null_check(argument(1), T_OBJECT);
3210   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3211   kls = null_check(kls, T_OBJECT);
3212   ByteSize offset = TRACE_ID_OFFSET;
3213   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3214   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3215   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3216   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3217   Node* clsused = longcon(0x01l); // set the class bit
3218   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3219 
3220   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3221   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3222   set_result(andl);
3223   return true;
3224 }
3225 
3226 bool LibraryCallKit::inline_native_threadID() {
3227   Node* tls_ptr = NULL;
3228   Node* cur_thr = generate_current_thread(tls_ptr);
3229   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3230   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3231   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3232 
3233   Node* threadid = NULL;
3234   size_t thread_id_size = OSThread::thread_id_size();
3235   if (thread_id_size == (size_t) BytesPerLong) {
3236     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3237   } else if (thread_id_size == (size_t) BytesPerInt) {
3238     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3239   } else {
3240     ShouldNotReachHere();
3241   }
3242   set_result(threadid);
3243   return true;
3244 }
3245 #endif
3246 
3247 //------------------------inline_native_time_funcs--------------
3248 // inline code for System.currentTimeMillis() and System.nanoTime()
3249 // these have the same type and signature
3250 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3251   const TypeFunc* tf = OptoRuntime::void_long_Type();
3252   const TypePtr* no_memory_effects = NULL;
3253   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3254   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3255 #ifdef ASSERT
3256   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3257   assert(value_top == top(), "second value must be top");
3258 #endif
3259   set_result(value);
3260   return true;
3261 }
3262 
3263 //------------------------inline_native_currentThread------------------
3264 bool LibraryCallKit::inline_native_currentThread() {
3265   Node* junk = NULL;
3266   set_result(generate_current_thread(junk));
3267   return true;
3268 }
3269 
3270 //------------------------inline_native_isInterrupted------------------
3271 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3272 bool LibraryCallKit::inline_native_isInterrupted() {
3273   // Add a fast path to t.isInterrupted(clear_int):
3274   //   (t == Thread.current() &&
3275   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3276   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3277   // So, in the common case that the interrupt bit is false,
3278   // we avoid making a call into the VM.  Even if the interrupt bit
3279   // is true, if the clear_int argument is false, we avoid the VM call.
3280   // However, if the receiver is not currentThread, we must call the VM,
3281   // because there must be some locking done around the operation.
3282 
3283   // We only go to the fast case code if we pass two guards.
3284   // Paths which do not pass are accumulated in the slow_region.
3285 
3286   enum {
3287     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3288     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3289     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3290     PATH_LIMIT
3291   };
3292 
3293   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3294   // out of the function.
3295   insert_mem_bar(Op_MemBarCPUOrder);
3296 
3297   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3298   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3299 
3300   RegionNode* slow_region = new (C) RegionNode(1);
3301   record_for_igvn(slow_region);
3302 
3303   // (a) Receiving thread must be the current thread.
3304   Node* rec_thr = argument(0);
3305   Node* tls_ptr = NULL;
3306   Node* cur_thr = generate_current_thread(tls_ptr);
3307   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3308   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3309 
3310   generate_slow_guard(bol_thr, slow_region);
3311 
3312   // (b) Interrupt bit on TLS must be false.
3313   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3314   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3315   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3316 
3317   // Set the control input on the field _interrupted read to prevent it floating up.
3318   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3319   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3320   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3321 
3322   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3323 
3324   // First fast path:  if (!TLS._interrupted) return false;
3325   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3326   result_rgn->init_req(no_int_result_path, false_bit);
3327   result_val->init_req(no_int_result_path, intcon(0));
3328 
3329   // drop through to next case
3330   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3331 
3332 #ifndef TARGET_OS_FAMILY_windows
3333   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3334   Node* clr_arg = argument(1);
3335   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3336   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3337   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3338 
3339   // Second fast path:  ... else if (!clear_int) return true;
3340   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3341   result_rgn->init_req(no_clear_result_path, false_arg);
3342   result_val->init_req(no_clear_result_path, intcon(1));
3343 
3344   // drop through to next case
3345   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3346 #else
3347   // To return true on Windows you must read the _interrupted field
3348   // and check the the event state i.e. take the slow path.
3349 #endif // TARGET_OS_FAMILY_windows
3350 
3351   // (d) Otherwise, go to the slow path.
3352   slow_region->add_req(control());
3353   set_control( _gvn.transform(slow_region));
3354 
3355   if (stopped()) {
3356     // There is no slow path.
3357     result_rgn->init_req(slow_result_path, top());
3358     result_val->init_req(slow_result_path, top());
3359   } else {
3360     // non-virtual because it is a private non-static
3361     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3362 
3363     Node* slow_val = set_results_for_java_call(slow_call);
3364     // this->control() comes from set_results_for_java_call
3365 
3366     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3367     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3368 
3369     // These two phis are pre-filled with copies of of the fast IO and Memory
3370     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3371     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3372 
3373     result_rgn->init_req(slow_result_path, control());
3374     result_io ->init_req(slow_result_path, i_o());
3375     result_mem->init_req(slow_result_path, reset_memory());
3376     result_val->init_req(slow_result_path, slow_val);
3377 
3378     set_all_memory(_gvn.transform(result_mem));
3379     set_i_o(       _gvn.transform(result_io));
3380   }
3381 
3382   C->set_has_split_ifs(true); // Has chance for split-if optimization
3383   set_result(result_rgn, result_val);
3384   return true;
3385 }
3386 
3387 //---------------------------load_mirror_from_klass----------------------------
3388 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3389 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3390   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3391   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3392 }
3393 
3394 //-----------------------load_klass_from_mirror_common-------------------------
3395 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3396 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3397 // and branch to the given path on the region.
3398 // If never_see_null, take an uncommon trap on null, so we can optimistically
3399 // compile for the non-null case.
3400 // If the region is NULL, force never_see_null = true.
3401 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3402                                                     bool never_see_null,
3403                                                     RegionNode* region,
3404                                                     int null_path,
3405                                                     int offset) {
3406   if (region == NULL)  never_see_null = true;
3407   Node* p = basic_plus_adr(mirror, offset);
3408   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3409   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3410   Node* null_ctl = top();
3411   kls = null_check_oop(kls, &null_ctl, never_see_null);
3412   if (region != NULL) {
3413     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3414     region->init_req(null_path, null_ctl);
3415   } else {
3416     assert(null_ctl == top(), "no loose ends");
3417   }
3418   return kls;
3419 }
3420 
3421 //--------------------(inline_native_Class_query helpers)---------------------
3422 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3423 // Fall through if (mods & mask) == bits, take the guard otherwise.
3424 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3425   // Branch around if the given klass has the given modifier bit set.
3426   // Like generate_guard, adds a new path onto the region.
3427   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3428   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3429   Node* mask = intcon(modifier_mask);
3430   Node* bits = intcon(modifier_bits);
3431   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3432   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3433   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3434   return generate_fair_guard(bol, region);
3435 }
3436 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3437   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3438 }
3439 
3440 //-------------------------inline_native_Class_query-------------------
3441 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3442   const Type* return_type = TypeInt::BOOL;
3443   Node* prim_return_value = top();  // what happens if it's a primitive class?
3444   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3445   bool expect_prim = false;     // most of these guys expect to work on refs
3446 
3447   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3448 
3449   Node* mirror = argument(0);
3450   Node* obj    = top();
3451 
3452   switch (id) {
3453   case vmIntrinsics::_isInstance:
3454     // nothing is an instance of a primitive type
3455     prim_return_value = intcon(0);
3456     obj = argument(1);
3457     break;
3458   case vmIntrinsics::_getModifiers:
3459     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3460     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3461     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3462     break;
3463   case vmIntrinsics::_isInterface:
3464     prim_return_value = intcon(0);
3465     break;
3466   case vmIntrinsics::_isArray:
3467     prim_return_value = intcon(0);
3468     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3469     break;
3470   case vmIntrinsics::_isPrimitive:
3471     prim_return_value = intcon(1);
3472     expect_prim = true;  // obviously
3473     break;
3474   case vmIntrinsics::_getSuperclass:
3475     prim_return_value = null();
3476     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3477     break;
3478   case vmIntrinsics::_getComponentType:
3479     prim_return_value = null();
3480     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3481     break;
3482   case vmIntrinsics::_getClassAccessFlags:
3483     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3484     return_type = TypeInt::INT;  // not bool!  6297094
3485     break;
3486   default:
3487     fatal_unexpected_iid(id);
3488     break;
3489   }
3490 
3491   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3492   if (mirror_con == NULL)  return false;  // cannot happen?
3493 
3494 #ifndef PRODUCT
3495   if (C->print_intrinsics() || C->print_inlining()) {
3496     ciType* k = mirror_con->java_mirror_type();
3497     if (k) {
3498       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3499       k->print_name();
3500       tty->cr();
3501     }
3502   }
3503 #endif
3504 
3505   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3506   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3507   record_for_igvn(region);
3508   PhiNode* phi = new (C) PhiNode(region, return_type);
3509 
3510   // The mirror will never be null of Reflection.getClassAccessFlags, however
3511   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3512   // if it is. See bug 4774291.
3513 
3514   // For Reflection.getClassAccessFlags(), the null check occurs in
3515   // the wrong place; see inline_unsafe_access(), above, for a similar
3516   // situation.
3517   mirror = null_check(mirror);
3518   // If mirror or obj is dead, only null-path is taken.
3519   if (stopped())  return true;
3520 
3521   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3522 
3523   // Now load the mirror's klass metaobject, and null-check it.
3524   // Side-effects region with the control path if the klass is null.
3525   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3526   // If kls is null, we have a primitive mirror.
3527   phi->init_req(_prim_path, prim_return_value);
3528   if (stopped()) { set_result(region, phi); return true; }
3529   bool safe_for_replace = (region->in(_prim_path) == top());
3530 
3531   Node* p;  // handy temp
3532   Node* null_ctl;
3533 
3534   // Now that we have the non-null klass, we can perform the real query.
3535   // For constant classes, the query will constant-fold in LoadNode::Value.
3536   Node* query_value = top();
3537   switch (id) {
3538   case vmIntrinsics::_isInstance:
3539     // nothing is an instance of a primitive type
3540     query_value = gen_instanceof(obj, kls, safe_for_replace);
3541     break;
3542 
3543   case vmIntrinsics::_getModifiers:
3544     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3545     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3546     break;
3547 
3548   case vmIntrinsics::_isInterface:
3549     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3550     if (generate_interface_guard(kls, region) != NULL)
3551       // A guard was added.  If the guard is taken, it was an interface.
3552       phi->add_req(intcon(1));
3553     // If we fall through, it's a plain class.
3554     query_value = intcon(0);
3555     break;
3556 
3557   case vmIntrinsics::_isArray:
3558     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3559     if (generate_array_guard(kls, region) != NULL)
3560       // A guard was added.  If the guard is taken, it was an array.
3561       phi->add_req(intcon(1));
3562     // If we fall through, it's a plain class.
3563     query_value = intcon(0);
3564     break;
3565 
3566   case vmIntrinsics::_isPrimitive:
3567     query_value = intcon(0); // "normal" path produces false
3568     break;
3569 
3570   case vmIntrinsics::_getSuperclass:
3571     // The rules here are somewhat unfortunate, but we can still do better
3572     // with random logic than with a JNI call.
3573     // Interfaces store null or Object as _super, but must report null.
3574     // Arrays store an intermediate super as _super, but must report Object.
3575     // Other types can report the actual _super.
3576     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3577     if (generate_interface_guard(kls, region) != NULL)
3578       // A guard was added.  If the guard is taken, it was an interface.
3579       phi->add_req(null());
3580     if (generate_array_guard(kls, region) != NULL)
3581       // A guard was added.  If the guard is taken, it was an array.
3582       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3583     // If we fall through, it's a plain class.  Get its _super.
3584     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3585     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3586     null_ctl = top();
3587     kls = null_check_oop(kls, &null_ctl);
3588     if (null_ctl != top()) {
3589       // If the guard is taken, Object.superClass is null (both klass and mirror).
3590       region->add_req(null_ctl);
3591       phi   ->add_req(null());
3592     }
3593     if (!stopped()) {
3594       query_value = load_mirror_from_klass(kls);
3595     }
3596     break;
3597 
3598   case vmIntrinsics::_getComponentType:
3599     if (generate_array_guard(kls, region) != NULL) {
3600       // Be sure to pin the oop load to the guard edge just created:
3601       Node* is_array_ctrl = region->in(region->req()-1);
3602       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3603       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3604       phi->add_req(cmo);
3605     }
3606     query_value = null();  // non-array case is null
3607     break;
3608 
3609   case vmIntrinsics::_getClassAccessFlags:
3610     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3611     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3612     break;
3613 
3614   default:
3615     fatal_unexpected_iid(id);
3616     break;
3617   }
3618 
3619   // Fall-through is the normal case of a query to a real class.
3620   phi->init_req(1, query_value);
3621   region->init_req(1, control());
3622 
3623   C->set_has_split_ifs(true); // Has chance for split-if optimization
3624   set_result(region, phi);
3625   return true;
3626 }
3627 
3628 //--------------------------inline_native_subtype_check------------------------
3629 // This intrinsic takes the JNI calls out of the heart of
3630 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3631 bool LibraryCallKit::inline_native_subtype_check() {
3632   // Pull both arguments off the stack.
3633   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3634   args[0] = argument(0);
3635   args[1] = argument(1);
3636   Node* klasses[2];             // corresponding Klasses: superk, subk
3637   klasses[0] = klasses[1] = top();
3638 
3639   enum {
3640     // A full decision tree on {superc is prim, subc is prim}:
3641     _prim_0_path = 1,           // {P,N} => false
3642                                 // {P,P} & superc!=subc => false
3643     _prim_same_path,            // {P,P} & superc==subc => true
3644     _prim_1_path,               // {N,P} => false
3645     _ref_subtype_path,          // {N,N} & subtype check wins => true
3646     _both_ref_path,             // {N,N} & subtype check loses => false
3647     PATH_LIMIT
3648   };
3649 
3650   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3651   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3652   record_for_igvn(region);
3653 
3654   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3655   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3656   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3657 
3658   // First null-check both mirrors and load each mirror's klass metaobject.
3659   int which_arg;
3660   for (which_arg = 0; which_arg <= 1; which_arg++) {
3661     Node* arg = args[which_arg];
3662     arg = null_check(arg);
3663     if (stopped())  break;
3664     args[which_arg] = arg;
3665 
3666     Node* p = basic_plus_adr(arg, class_klass_offset);
3667     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3668     klasses[which_arg] = _gvn.transform(kls);
3669   }
3670 
3671   // Having loaded both klasses, test each for null.
3672   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3673   for (which_arg = 0; which_arg <= 1; which_arg++) {
3674     Node* kls = klasses[which_arg];
3675     Node* null_ctl = top();
3676     kls = null_check_oop(kls, &null_ctl, never_see_null);
3677     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3678     region->init_req(prim_path, null_ctl);
3679     if (stopped())  break;
3680     klasses[which_arg] = kls;
3681   }
3682 
3683   if (!stopped()) {
3684     // now we have two reference types, in klasses[0..1]
3685     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3686     Node* superk = klasses[0];  // the receiver
3687     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3688     // now we have a successful reference subtype check
3689     region->set_req(_ref_subtype_path, control());
3690   }
3691 
3692   // If both operands are primitive (both klasses null), then
3693   // we must return true when they are identical primitives.
3694   // It is convenient to test this after the first null klass check.
3695   set_control(region->in(_prim_0_path)); // go back to first null check
3696   if (!stopped()) {
3697     // Since superc is primitive, make a guard for the superc==subc case.
3698     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3699     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3700     generate_guard(bol_eq, region, PROB_FAIR);
3701     if (region->req() == PATH_LIMIT+1) {
3702       // A guard was added.  If the added guard is taken, superc==subc.
3703       region->swap_edges(PATH_LIMIT, _prim_same_path);
3704       region->del_req(PATH_LIMIT);
3705     }
3706     region->set_req(_prim_0_path, control()); // Not equal after all.
3707   }
3708 
3709   // these are the only paths that produce 'true':
3710   phi->set_req(_prim_same_path,   intcon(1));
3711   phi->set_req(_ref_subtype_path, intcon(1));
3712 
3713   // pull together the cases:
3714   assert(region->req() == PATH_LIMIT, "sane region");
3715   for (uint i = 1; i < region->req(); i++) {
3716     Node* ctl = region->in(i);
3717     if (ctl == NULL || ctl == top()) {
3718       region->set_req(i, top());
3719       phi   ->set_req(i, top());
3720     } else if (phi->in(i) == NULL) {
3721       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3722     }
3723   }
3724 
3725   set_control(_gvn.transform(region));
3726   set_result(_gvn.transform(phi));
3727   return true;
3728 }
3729 
3730 //---------------------generate_array_guard_common------------------------
3731 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3732                                                   bool obj_array, bool not_array) {
3733   // If obj_array/non_array==false/false:
3734   // Branch around if the given klass is in fact an array (either obj or prim).
3735   // If obj_array/non_array==false/true:
3736   // Branch around if the given klass is not an array klass of any kind.
3737   // If obj_array/non_array==true/true:
3738   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3739   // If obj_array/non_array==true/false:
3740   // Branch around if the kls is an oop array (Object[] or subtype)
3741   //
3742   // Like generate_guard, adds a new path onto the region.
3743   jint  layout_con = 0;
3744   Node* layout_val = get_layout_helper(kls, layout_con);
3745   if (layout_val == NULL) {
3746     bool query = (obj_array
3747                   ? Klass::layout_helper_is_objArray(layout_con)
3748                   : Klass::layout_helper_is_array(layout_con));
3749     if (query == not_array) {
3750       return NULL;                       // never a branch
3751     } else {                             // always a branch
3752       Node* always_branch = control();
3753       if (region != NULL)
3754         region->add_req(always_branch);
3755       set_control(top());
3756       return always_branch;
3757     }
3758   }
3759   // Now test the correct condition.
3760   jint  nval = (obj_array
3761                 ? ((jint)Klass::_lh_array_tag_type_value
3762                    <<    Klass::_lh_array_tag_shift)
3763                 : Klass::_lh_neutral_value);
3764   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3765   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3766   // invert the test if we are looking for a non-array
3767   if (not_array)  btest = BoolTest(btest).negate();
3768   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3769   return generate_fair_guard(bol, region);
3770 }
3771 
3772 
3773 //-----------------------inline_native_newArray--------------------------
3774 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3775 bool LibraryCallKit::inline_native_newArray() {
3776   Node* mirror    = argument(0);
3777   Node* count_val = argument(1);
3778 
3779   mirror = null_check(mirror);
3780   // If mirror or obj is dead, only null-path is taken.
3781   if (stopped())  return true;
3782 
3783   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3784   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3785   PhiNode*    result_val = new(C) PhiNode(result_reg,
3786                                           TypeInstPtr::NOTNULL);
3787   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3788   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3789                                           TypePtr::BOTTOM);
3790 
3791   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3792   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3793                                                   result_reg, _slow_path);
3794   Node* normal_ctl   = control();
3795   Node* no_array_ctl = result_reg->in(_slow_path);
3796 
3797   // Generate code for the slow case.  We make a call to newArray().
3798   set_control(no_array_ctl);
3799   if (!stopped()) {
3800     // Either the input type is void.class, or else the
3801     // array klass has not yet been cached.  Either the
3802     // ensuing call will throw an exception, or else it
3803     // will cache the array klass for next time.
3804     PreserveJVMState pjvms(this);
3805     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3806     Node* slow_result = set_results_for_java_call(slow_call);
3807     // this->control() comes from set_results_for_java_call
3808     result_reg->set_req(_slow_path, control());
3809     result_val->set_req(_slow_path, slow_result);
3810     result_io ->set_req(_slow_path, i_o());
3811     result_mem->set_req(_slow_path, reset_memory());
3812   }
3813 
3814   set_control(normal_ctl);
3815   if (!stopped()) {
3816     // Normal case:  The array type has been cached in the java.lang.Class.
3817     // The following call works fine even if the array type is polymorphic.
3818     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3819     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3820     result_reg->init_req(_normal_path, control());
3821     result_val->init_req(_normal_path, obj);
3822     result_io ->init_req(_normal_path, i_o());
3823     result_mem->init_req(_normal_path, reset_memory());
3824   }
3825 
3826   // Return the combined state.
3827   set_i_o(        _gvn.transform(result_io)  );
3828   set_all_memory( _gvn.transform(result_mem));
3829 
3830   C->set_has_split_ifs(true); // Has chance for split-if optimization
3831   set_result(result_reg, result_val);
3832   return true;
3833 }
3834 
3835 //----------------------inline_native_getLength--------------------------
3836 // public static native int java.lang.reflect.Array.getLength(Object array);
3837 bool LibraryCallKit::inline_native_getLength() {
3838   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3839 
3840   Node* array = null_check(argument(0));
3841   // If array is dead, only null-path is taken.
3842   if (stopped())  return true;
3843 
3844   // Deoptimize if it is a non-array.
3845   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3846 
3847   if (non_array != NULL) {
3848     PreserveJVMState pjvms(this);
3849     set_control(non_array);
3850     uncommon_trap(Deoptimization::Reason_intrinsic,
3851                   Deoptimization::Action_maybe_recompile);
3852   }
3853 
3854   // If control is dead, only non-array-path is taken.
3855   if (stopped())  return true;
3856 
3857   // The works fine even if the array type is polymorphic.
3858   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3859   Node* result = load_array_length(array);
3860 
3861   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3862   set_result(result);
3863   return true;
3864 }
3865 
3866 //------------------------inline_array_copyOf----------------------------
3867 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3868 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3869 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3870   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3871 
3872   // Get the arguments.
3873   Node* original          = argument(0);
3874   Node* start             = is_copyOfRange? argument(1): intcon(0);
3875   Node* end               = is_copyOfRange? argument(2): argument(1);
3876   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3877 
3878   Node* newcopy;
3879 
3880   // Set the original stack and the reexecute bit for the interpreter to reexecute
3881   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3882   { PreserveReexecuteState preexecs(this);
3883     jvms()->set_should_reexecute(true);
3884 
3885     array_type_mirror = null_check(array_type_mirror);
3886     original          = null_check(original);
3887 
3888     // Check if a null path was taken unconditionally.
3889     if (stopped())  return true;
3890 
3891     Node* orig_length = load_array_length(original);
3892 
3893     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3894     klass_node = null_check(klass_node);
3895 
3896     RegionNode* bailout = new (C) RegionNode(1);
3897     record_for_igvn(bailout);
3898 
3899     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3900     // Bail out if that is so.
3901     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3902     if (not_objArray != NULL) {
3903       // Improve the klass node's type from the new optimistic assumption:
3904       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3905       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3906       Node* cast = new (C) CastPPNode(klass_node, akls);
3907       cast->init_req(0, control());
3908       klass_node = _gvn.transform(cast);
3909     }
3910 
3911     // Bail out if either start or end is negative.
3912     generate_negative_guard(start, bailout, &start);
3913     generate_negative_guard(end,   bailout, &end);
3914 
3915     Node* length = end;
3916     if (_gvn.type(start) != TypeInt::ZERO) {
3917       length = _gvn.transform(new (C) SubINode(end, start));
3918     }
3919 
3920     // Bail out if length is negative.
3921     // Without this the new_array would throw
3922     // NegativeArraySizeException but IllegalArgumentException is what
3923     // should be thrown
3924     generate_negative_guard(length, bailout, &length);
3925 
3926     if (bailout->req() > 1) {
3927       PreserveJVMState pjvms(this);
3928       set_control(_gvn.transform(bailout));
3929       uncommon_trap(Deoptimization::Reason_intrinsic,
3930                     Deoptimization::Action_maybe_recompile);
3931     }
3932 
3933     if (!stopped()) {
3934       // How many elements will we copy from the original?
3935       // The answer is MinI(orig_length - start, length).
3936       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3937       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3938 
3939       newcopy = new_array(klass_node, length, 0);  // no argments to push
3940 
3941       // Generate a direct call to the right arraycopy function(s).
3942       // We know the copy is disjoint but we might not know if the
3943       // oop stores need checking.
3944       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3945       // This will fail a store-check if x contains any non-nulls.
3946       bool disjoint_bases = true;
3947       // if start > orig_length then the length of the copy may be
3948       // negative.
3949       bool length_never_negative = !is_copyOfRange;
3950       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3951                          original, start, newcopy, intcon(0), moved,
3952                          disjoint_bases, length_never_negative);
3953     }
3954   } // original reexecute is set back here
3955 
3956   C->set_has_split_ifs(true); // Has chance for split-if optimization
3957   if (!stopped()) {
3958     set_result(newcopy);
3959   }
3960   return true;
3961 }
3962 
3963 
3964 //----------------------generate_virtual_guard---------------------------
3965 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3966 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3967                                              RegionNode* slow_region) {
3968   ciMethod* method = callee();
3969   int vtable_index = method->vtable_index();
3970   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3971          err_msg_res("bad index %d", vtable_index));
3972   // Get the Method* out of the appropriate vtable entry.
3973   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3974                      vtable_index*vtableEntry::size()) * wordSize +
3975                      vtableEntry::method_offset_in_bytes();
3976   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3977   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3978 
3979   // Compare the target method with the expected method (e.g., Object.hashCode).
3980   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3981 
3982   Node* native_call = makecon(native_call_addr);
3983   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3984   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3985 
3986   return generate_slow_guard(test_native, slow_region);
3987 }
3988 
3989 //-----------------------generate_method_call----------------------------
3990 // Use generate_method_call to make a slow-call to the real
3991 // method if the fast path fails.  An alternative would be to
3992 // use a stub like OptoRuntime::slow_arraycopy_Java.
3993 // This only works for expanding the current library call,
3994 // not another intrinsic.  (E.g., don't use this for making an
3995 // arraycopy call inside of the copyOf intrinsic.)
3996 CallJavaNode*
3997 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3998   // When compiling the intrinsic method itself, do not use this technique.
3999   guarantee(callee() != C->method(), "cannot make slow-call to self");
4000 
4001   ciMethod* method = callee();
4002   // ensure the JVMS we have will be correct for this call
4003   guarantee(method_id == method->intrinsic_id(), "must match");
4004 
4005   const TypeFunc* tf = TypeFunc::make(method);
4006   CallJavaNode* slow_call;
4007   if (is_static) {
4008     assert(!is_virtual, "");
4009     slow_call = new(C) CallStaticJavaNode(C, tf,
4010                            SharedRuntime::get_resolve_static_call_stub(),
4011                            method, bci());
4012   } else if (is_virtual) {
4013     null_check_receiver();
4014     int vtable_index = Method::invalid_vtable_index;
4015     if (UseInlineCaches) {
4016       // Suppress the vtable call
4017     } else {
4018       // hashCode and clone are not a miranda methods,
4019       // so the vtable index is fixed.
4020       // No need to use the linkResolver to get it.
4021        vtable_index = method->vtable_index();
4022        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4023               err_msg_res("bad index %d", vtable_index));
4024     }
4025     slow_call = new(C) CallDynamicJavaNode(tf,
4026                           SharedRuntime::get_resolve_virtual_call_stub(),
4027                           method, vtable_index, bci());
4028   } else {  // neither virtual nor static:  opt_virtual
4029     null_check_receiver();
4030     slow_call = new(C) CallStaticJavaNode(C, tf,
4031                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4032                                 method, bci());
4033     slow_call->set_optimized_virtual(true);
4034   }
4035   set_arguments_for_java_call(slow_call);
4036   set_edges_for_java_call(slow_call);
4037   return slow_call;
4038 }
4039 
4040 
4041 /**
4042  * Build special case code for calls to hashCode on an object. This call may
4043  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4044  * slightly different code.
4045  */
4046 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4047   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4048   assert(!(is_virtual && is_static), "either virtual, special, or static");
4049 
4050   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4051 
4052   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4053   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
4054   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4055   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4056   Node* obj = NULL;
4057   if (!is_static) {
4058     // Check for hashing null object
4059     obj = null_check_receiver();
4060     if (stopped())  return true;        // unconditionally null
4061     result_reg->init_req(_null_path, top());
4062     result_val->init_req(_null_path, top());
4063   } else {
4064     // Do a null check, and return zero if null.
4065     // System.identityHashCode(null) == 0
4066     obj = argument(0);
4067     Node* null_ctl = top();
4068     obj = null_check_oop(obj, &null_ctl);
4069     result_reg->init_req(_null_path, null_ctl);
4070     result_val->init_req(_null_path, _gvn.intcon(0));
4071   }
4072 
4073   // Unconditionally null?  Then return right away.
4074   if (stopped()) {
4075     set_control( result_reg->in(_null_path));
4076     if (!stopped())
4077       set_result(result_val->in(_null_path));
4078     return true;
4079   }
4080 
4081   // We only go to the fast case code if we pass a number of guards.  The
4082   // paths which do not pass are accumulated in the slow_region.
4083   RegionNode* slow_region = new (C) RegionNode(1);
4084   record_for_igvn(slow_region);
4085 
4086   // If this is a virtual call, we generate a funny guard.  We pull out
4087   // the vtable entry corresponding to hashCode() from the target object.
4088   // If the target method which we are calling happens to be the native
4089   // Object hashCode() method, we pass the guard.  We do not need this
4090   // guard for non-virtual calls -- the caller is known to be the native
4091   // Object hashCode().
4092   if (is_virtual) {
4093     // After null check, get the object's klass.
4094     Node* obj_klass = load_object_klass(obj);
4095     generate_virtual_guard(obj_klass, slow_region);
4096   }
4097 
4098   // Get the header out of the object, use LoadMarkNode when available
4099   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4100   // The control of the load must be NULL. Otherwise, the load can move before
4101   // the null check after castPP removal.
4102   Node* no_ctrl = NULL;
4103   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4104 
4105   // Test the header to see if it is unlocked.
4106   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4107   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4108   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4109   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4110   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4111 
4112   generate_slow_guard(test_unlocked, slow_region);
4113 
4114   // Get the hash value and check to see that it has been properly assigned.
4115   // We depend on hash_mask being at most 32 bits and avoid the use of
4116   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4117   // vm: see markOop.hpp.
4118   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4119   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4120   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4121   // This hack lets the hash bits live anywhere in the mark object now, as long
4122   // as the shift drops the relevant bits into the low 32 bits.  Note that
4123   // Java spec says that HashCode is an int so there's no point in capturing
4124   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4125   hshifted_header      = ConvX2I(hshifted_header);
4126   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4127 
4128   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4129   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4130   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4131 
4132   generate_slow_guard(test_assigned, slow_region);
4133 
4134   Node* init_mem = reset_memory();
4135   // fill in the rest of the null path:
4136   result_io ->init_req(_null_path, i_o());
4137   result_mem->init_req(_null_path, init_mem);
4138 
4139   result_val->init_req(_fast_path, hash_val);
4140   result_reg->init_req(_fast_path, control());
4141   result_io ->init_req(_fast_path, i_o());
4142   result_mem->init_req(_fast_path, init_mem);
4143 
4144   // Generate code for the slow case.  We make a call to hashCode().
4145   set_control(_gvn.transform(slow_region));
4146   if (!stopped()) {
4147     // No need for PreserveJVMState, because we're using up the present state.
4148     set_all_memory(init_mem);
4149     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4150     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4151     Node* slow_result = set_results_for_java_call(slow_call);
4152     // this->control() comes from set_results_for_java_call
4153     result_reg->init_req(_slow_path, control());
4154     result_val->init_req(_slow_path, slow_result);
4155     result_io  ->set_req(_slow_path, i_o());
4156     result_mem ->set_req(_slow_path, reset_memory());
4157   }
4158 
4159   // Return the combined state.
4160   set_i_o(        _gvn.transform(result_io)  );
4161   set_all_memory( _gvn.transform(result_mem));
4162 
4163   set_result(result_reg, result_val);
4164   return true;
4165 }
4166 
4167 //---------------------------inline_native_getClass----------------------------
4168 // public final native Class<?> java.lang.Object.getClass();
4169 //
4170 // Build special case code for calls to getClass on an object.
4171 bool LibraryCallKit::inline_native_getClass() {
4172   Node* obj = null_check_receiver();
4173   if (stopped())  return true;
4174   set_result(load_mirror_from_klass(load_object_klass(obj)));
4175   return true;
4176 }
4177 
4178 //-----------------inline_native_Reflection_getCallerClass---------------------
4179 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4180 //
4181 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4182 //
4183 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4184 // in that it must skip particular security frames and checks for
4185 // caller sensitive methods.
4186 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4187 #ifndef PRODUCT
4188   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4189     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4190   }
4191 #endif
4192 
4193   if (!jvms()->has_method()) {
4194 #ifndef PRODUCT
4195     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4196       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4197     }
4198 #endif
4199     return false;
4200   }
4201 
4202   // Walk back up the JVM state to find the caller at the required
4203   // depth.
4204   JVMState* caller_jvms = jvms();
4205 
4206   // Cf. JVM_GetCallerClass
4207   // NOTE: Start the loop at depth 1 because the current JVM state does
4208   // not include the Reflection.getCallerClass() frame.
4209   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4210     ciMethod* m = caller_jvms->method();
4211     switch (n) {
4212     case 0:
4213       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4214       break;
4215     case 1:
4216       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4217       if (!m->caller_sensitive()) {
4218 #ifndef PRODUCT
4219         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4220           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4221         }
4222 #endif
4223         return false;  // bail-out; let JVM_GetCallerClass do the work
4224       }
4225       break;
4226     default:
4227       if (!m->is_ignored_by_security_stack_walk()) {
4228         // We have reached the desired frame; return the holder class.
4229         // Acquire method holder as java.lang.Class and push as constant.
4230         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4231         ciInstance* caller_mirror = caller_klass->java_mirror();
4232         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4233 
4234 #ifndef PRODUCT
4235         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4236           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4237           tty->print_cr("  JVM state at this point:");
4238           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4239             ciMethod* m = jvms()->of_depth(i)->method();
4240             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4241           }
4242         }
4243 #endif
4244         return true;
4245       }
4246       break;
4247     }
4248   }
4249 
4250 #ifndef PRODUCT
4251   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4252     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4253     tty->print_cr("  JVM state at this point:");
4254     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4255       ciMethod* m = jvms()->of_depth(i)->method();
4256       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4257     }
4258   }
4259 #endif
4260 
4261   return false;  // bail-out; let JVM_GetCallerClass do the work
4262 }
4263 
4264 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4265   Node* arg = argument(0);
4266   Node* result;
4267 
4268   switch (id) {
4269   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4270   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4271   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4272   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4273 
4274   case vmIntrinsics::_doubleToLongBits: {
4275     // two paths (plus control) merge in a wood
4276     RegionNode *r = new (C) RegionNode(3);
4277     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4278 
4279     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4280     // Build the boolean node
4281     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4282 
4283     // Branch either way.
4284     // NaN case is less traveled, which makes all the difference.
4285     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4286     Node *opt_isnan = _gvn.transform(ifisnan);
4287     assert( opt_isnan->is_If(), "Expect an IfNode");
4288     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4289     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4290 
4291     set_control(iftrue);
4292 
4293     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4294     Node *slow_result = longcon(nan_bits); // return NaN
4295     phi->init_req(1, _gvn.transform( slow_result ));
4296     r->init_req(1, iftrue);
4297 
4298     // Else fall through
4299     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4300     set_control(iffalse);
4301 
4302     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4303     r->init_req(2, iffalse);
4304 
4305     // Post merge
4306     set_control(_gvn.transform(r));
4307     record_for_igvn(r);
4308 
4309     C->set_has_split_ifs(true); // Has chance for split-if optimization
4310     result = phi;
4311     assert(result->bottom_type()->isa_long(), "must be");
4312     break;
4313   }
4314 
4315   case vmIntrinsics::_floatToIntBits: {
4316     // two paths (plus control) merge in a wood
4317     RegionNode *r = new (C) RegionNode(3);
4318     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4319 
4320     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4321     // Build the boolean node
4322     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4323 
4324     // Branch either way.
4325     // NaN case is less traveled, which makes all the difference.
4326     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4327     Node *opt_isnan = _gvn.transform(ifisnan);
4328     assert( opt_isnan->is_If(), "Expect an IfNode");
4329     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4330     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4331 
4332     set_control(iftrue);
4333 
4334     static const jint nan_bits = 0x7fc00000;
4335     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4336     phi->init_req(1, _gvn.transform( slow_result ));
4337     r->init_req(1, iftrue);
4338 
4339     // Else fall through
4340     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4341     set_control(iffalse);
4342 
4343     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4344     r->init_req(2, iffalse);
4345 
4346     // Post merge
4347     set_control(_gvn.transform(r));
4348     record_for_igvn(r);
4349 
4350     C->set_has_split_ifs(true); // Has chance for split-if optimization
4351     result = phi;
4352     assert(result->bottom_type()->isa_int(), "must be");
4353     break;
4354   }
4355 
4356   default:
4357     fatal_unexpected_iid(id);
4358     break;
4359   }
4360   set_result(_gvn.transform(result));
4361   return true;
4362 }
4363 
4364 #ifdef _LP64
4365 #define XTOP ,top() /*additional argument*/
4366 #else  //_LP64
4367 #define XTOP        /*no additional argument*/
4368 #endif //_LP64
4369 
4370 //----------------------inline_unsafe_copyMemory-------------------------
4371 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4372 bool LibraryCallKit::inline_unsafe_copyMemory() {
4373   if (callee()->is_static())  return false;  // caller must have the capability!
4374   null_check_receiver();  // null-check receiver
4375   if (stopped())  return true;
4376 
4377   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4378 
4379   Node* src_ptr =         argument(1);   // type: oop
4380   Node* src_off = ConvL2X(argument(2));  // type: long
4381   Node* dst_ptr =         argument(4);   // type: oop
4382   Node* dst_off = ConvL2X(argument(5));  // type: long
4383   Node* size    = ConvL2X(argument(7));  // type: long
4384 
4385   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4386          "fieldOffset must be byte-scaled");
4387 
4388   Node* src = make_unsafe_address(src_ptr, src_off);
4389   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4390 
4391   // Conservatively insert a memory barrier on all memory slices.
4392   // Do not let writes of the copy source or destination float below the copy.
4393   insert_mem_bar(Op_MemBarCPUOrder);
4394 
4395   // Call it.  Note that the length argument is not scaled.
4396   make_runtime_call(RC_LEAF|RC_NO_FP,
4397                     OptoRuntime::fast_arraycopy_Type(),
4398                     StubRoutines::unsafe_arraycopy(),
4399                     "unsafe_arraycopy",
4400                     TypeRawPtr::BOTTOM,
4401                     src, dst, size XTOP);
4402 
4403   // Do not let reads of the copy destination float above the copy.
4404   insert_mem_bar(Op_MemBarCPUOrder);
4405 
4406   return true;
4407 }
4408 
4409 //------------------------clone_coping-----------------------------------
4410 // Helper function for inline_native_clone.
4411 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4412   assert(obj_size != NULL, "");
4413   Node* raw_obj = alloc_obj->in(1);
4414   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4415 
4416   AllocateNode* alloc = NULL;
4417   if (ReduceBulkZeroing) {
4418     // We will be completely responsible for initializing this object -
4419     // mark Initialize node as complete.
4420     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4421     // The object was just allocated - there should be no any stores!
4422     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4423     // Mark as complete_with_arraycopy so that on AllocateNode
4424     // expansion, we know this AllocateNode is initialized by an array
4425     // copy and a StoreStore barrier exists after the array copy.
4426     alloc->initialization()->set_complete_with_arraycopy();
4427   }
4428 
4429   // Copy the fastest available way.
4430   // TODO: generate fields copies for small objects instead.
4431   Node* src  = obj;
4432   Node* dest = alloc_obj;
4433   Node* size = _gvn.transform(obj_size);
4434 
4435   // Exclude the header but include array length to copy by 8 bytes words.
4436   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4437   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4438                             instanceOopDesc::base_offset_in_bytes();
4439   // base_off:
4440   // 8  - 32-bit VM
4441   // 12 - 64-bit VM, compressed klass
4442   // 16 - 64-bit VM, normal klass
4443   if (base_off % BytesPerLong != 0) {
4444     assert(UseCompressedClassPointers, "");
4445     if (is_array) {
4446       // Exclude length to copy by 8 bytes words.
4447       base_off += sizeof(int);
4448     } else {
4449       // Include klass to copy by 8 bytes words.
4450       base_off = instanceOopDesc::klass_offset_in_bytes();
4451     }
4452     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4453   }
4454   src  = basic_plus_adr(src,  base_off);
4455   dest = basic_plus_adr(dest, base_off);
4456 
4457   // Compute the length also, if needed:
4458   Node* countx = size;
4459   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4460   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4461 
4462   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4463   bool disjoint_bases = true;
4464   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4465                                src, NULL, dest, NULL, countx,
4466                                /*dest_uninitialized*/true);
4467 
4468   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4469   if (card_mark) {
4470     assert(!is_array, "");
4471     // Put in store barrier for any and all oops we are sticking
4472     // into this object.  (We could avoid this if we could prove
4473     // that the object type contains no oop fields at all.)
4474     Node* no_particular_value = NULL;
4475     Node* no_particular_field = NULL;
4476     int raw_adr_idx = Compile::AliasIdxRaw;
4477     post_barrier(control(),
4478                  memory(raw_adr_type),
4479                  alloc_obj,
4480                  no_particular_field,
4481                  raw_adr_idx,
4482                  no_particular_value,
4483                  T_OBJECT,
4484                  false);
4485   }
4486 
4487   // Do not let reads from the cloned object float above the arraycopy.
4488   if (alloc != NULL) {
4489     // Do not let stores that initialize this object be reordered with
4490     // a subsequent store that would make this object accessible by
4491     // other threads.
4492     // Record what AllocateNode this StoreStore protects so that
4493     // escape analysis can go from the MemBarStoreStoreNode to the
4494     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4495     // based on the escape status of the AllocateNode.
4496     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4497   } else {
4498     insert_mem_bar(Op_MemBarCPUOrder);
4499   }
4500 }
4501 
4502 //------------------------inline_native_clone----------------------------
4503 // protected native Object java.lang.Object.clone();
4504 //
4505 // Here are the simple edge cases:
4506 //  null receiver => normal trap
4507 //  virtual and clone was overridden => slow path to out-of-line clone
4508 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4509 //
4510 // The general case has two steps, allocation and copying.
4511 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4512 //
4513 // Copying also has two cases, oop arrays and everything else.
4514 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4515 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4516 //
4517 // These steps fold up nicely if and when the cloned object's klass
4518 // can be sharply typed as an object array, a type array, or an instance.
4519 //
4520 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4521   PhiNode* result_val;
4522 
4523   // Set the reexecute bit for the interpreter to reexecute
4524   // the bytecode that invokes Object.clone if deoptimization happens.
4525   { PreserveReexecuteState preexecs(this);
4526     jvms()->set_should_reexecute(true);
4527 
4528     Node* obj = null_check_receiver();
4529     if (stopped())  return true;
4530 
4531     Node* obj_klass = load_object_klass(obj);
4532     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4533     const TypeOopPtr*   toop   = ((tklass != NULL)
4534                                 ? tklass->as_instance_type()
4535                                 : TypeInstPtr::NOTNULL);
4536 
4537     // Conservatively insert a memory barrier on all memory slices.
4538     // Do not let writes into the original float below the clone.
4539     insert_mem_bar(Op_MemBarCPUOrder);
4540 
4541     // paths into result_reg:
4542     enum {
4543       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4544       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4545       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4546       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4547       PATH_LIMIT
4548     };
4549     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4550     result_val             = new(C) PhiNode(result_reg,
4551                                             TypeInstPtr::NOTNULL);
4552     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4553     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4554                                             TypePtr::BOTTOM);
4555     record_for_igvn(result_reg);
4556 
4557     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4558     int raw_adr_idx = Compile::AliasIdxRaw;
4559 
4560     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4561     if (array_ctl != NULL) {
4562       // It's an array.
4563       PreserveJVMState pjvms(this);
4564       set_control(array_ctl);
4565       Node* obj_length = load_array_length(obj);
4566       Node* obj_size  = NULL;
4567       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4568 
4569       if (!use_ReduceInitialCardMarks()) {
4570         // If it is an oop array, it requires very special treatment,
4571         // because card marking is required on each card of the array.
4572         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4573         if (is_obja != NULL) {
4574           PreserveJVMState pjvms2(this);
4575           set_control(is_obja);
4576           // Generate a direct call to the right arraycopy function(s).
4577           bool disjoint_bases = true;
4578           bool length_never_negative = true;
4579           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4580                              obj, intcon(0), alloc_obj, intcon(0),
4581                              obj_length,
4582                              disjoint_bases, length_never_negative);
4583           result_reg->init_req(_objArray_path, control());
4584           result_val->init_req(_objArray_path, alloc_obj);
4585           result_i_o ->set_req(_objArray_path, i_o());
4586           result_mem ->set_req(_objArray_path, reset_memory());
4587         }
4588       }
4589       // Otherwise, there are no card marks to worry about.
4590       // (We can dispense with card marks if we know the allocation
4591       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4592       //  causes the non-eden paths to take compensating steps to
4593       //  simulate a fresh allocation, so that no further
4594       //  card marks are required in compiled code to initialize
4595       //  the object.)
4596 
4597       if (!stopped()) {
4598         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4599 
4600         // Present the results of the copy.
4601         result_reg->init_req(_array_path, control());
4602         result_val->init_req(_array_path, alloc_obj);
4603         result_i_o ->set_req(_array_path, i_o());
4604         result_mem ->set_req(_array_path, reset_memory());
4605       }
4606     }
4607 
4608     // We only go to the instance fast case code if we pass a number of guards.
4609     // The paths which do not pass are accumulated in the slow_region.
4610     RegionNode* slow_region = new (C) RegionNode(1);
4611     record_for_igvn(slow_region);
4612     if (!stopped()) {
4613       // It's an instance (we did array above).  Make the slow-path tests.
4614       // If this is a virtual call, we generate a funny guard.  We grab
4615       // the vtable entry corresponding to clone() from the target object.
4616       // If the target method which we are calling happens to be the
4617       // Object clone() method, we pass the guard.  We do not need this
4618       // guard for non-virtual calls; the caller is known to be the native
4619       // Object clone().
4620       if (is_virtual) {
4621         generate_virtual_guard(obj_klass, slow_region);
4622       }
4623 
4624       // The object must be cloneable and must not have a finalizer.
4625       // Both of these conditions may be checked in a single test.
4626       // We could optimize the cloneable test further, but we don't care.
4627       generate_access_flags_guard(obj_klass,
4628                                   // Test both conditions:
4629                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4630                                   // Must be cloneable but not finalizer:
4631                                   JVM_ACC_IS_CLONEABLE,
4632                                   slow_region);
4633     }
4634 
4635     if (!stopped()) {
4636       // It's an instance, and it passed the slow-path tests.
4637       PreserveJVMState pjvms(this);
4638       Node* obj_size  = NULL;
4639       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4640       // is reexecuted if deoptimization occurs and there could be problems when merging
4641       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4642       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4643 
4644       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4645 
4646       // Present the results of the slow call.
4647       result_reg->init_req(_instance_path, control());
4648       result_val->init_req(_instance_path, alloc_obj);
4649       result_i_o ->set_req(_instance_path, i_o());
4650       result_mem ->set_req(_instance_path, reset_memory());
4651     }
4652 
4653     // Generate code for the slow case.  We make a call to clone().
4654     set_control(_gvn.transform(slow_region));
4655     if (!stopped()) {
4656       PreserveJVMState pjvms(this);
4657       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4658       Node* slow_result = set_results_for_java_call(slow_call);
4659       // this->control() comes from set_results_for_java_call
4660       result_reg->init_req(_slow_path, control());
4661       result_val->init_req(_slow_path, slow_result);
4662       result_i_o ->set_req(_slow_path, i_o());
4663       result_mem ->set_req(_slow_path, reset_memory());
4664     }
4665 
4666     // Return the combined state.
4667     set_control(    _gvn.transform(result_reg));
4668     set_i_o(        _gvn.transform(result_i_o));
4669     set_all_memory( _gvn.transform(result_mem));
4670   } // original reexecute is set back here
4671 
4672   set_result(_gvn.transform(result_val));
4673   return true;
4674 }
4675 
4676 //------------------------------basictype2arraycopy----------------------------
4677 address LibraryCallKit::basictype2arraycopy(BasicType t,
4678                                             Node* src_offset,
4679                                             Node* dest_offset,
4680                                             bool disjoint_bases,
4681                                             const char* &name,
4682                                             bool dest_uninitialized) {
4683   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4684   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4685 
4686   bool aligned = false;
4687   bool disjoint = disjoint_bases;
4688 
4689   // if the offsets are the same, we can treat the memory regions as
4690   // disjoint, because either the memory regions are in different arrays,
4691   // or they are identical (which we can treat as disjoint.)  We can also
4692   // treat a copy with a destination index  less that the source index
4693   // as disjoint since a low->high copy will work correctly in this case.
4694   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4695       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4696     // both indices are constants
4697     int s_offs = src_offset_inttype->get_con();
4698     int d_offs = dest_offset_inttype->get_con();
4699     int element_size = type2aelembytes(t);
4700     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4701               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4702     if (s_offs >= d_offs)  disjoint = true;
4703   } else if (src_offset == dest_offset && src_offset != NULL) {
4704     // This can occur if the offsets are identical non-constants.
4705     disjoint = true;
4706   }
4707 
4708   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4709 }
4710 
4711 
4712 //------------------------------inline_arraycopy-----------------------
4713 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4714 //                                                      Object dest, int destPos,
4715 //                                                      int length);
4716 bool LibraryCallKit::inline_arraycopy() {
4717   // Get the arguments.
4718   Node* src         = argument(0);  // type: oop
4719   Node* src_offset  = argument(1);  // type: int
4720   Node* dest        = argument(2);  // type: oop
4721   Node* dest_offset = argument(3);  // type: int
4722   Node* length      = argument(4);  // type: int
4723 
4724   // Compile time checks.  If any of these checks cannot be verified at compile time,
4725   // we do not make a fast path for this call.  Instead, we let the call remain as it
4726   // is.  The checks we choose to mandate at compile time are:
4727   //
4728   // (1) src and dest are arrays.
4729   const Type* src_type  = src->Value(&_gvn);
4730   const Type* dest_type = dest->Value(&_gvn);
4731   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4732   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4733 
4734   // Do we have the type of src?
4735   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4736   // Do we have the type of dest?
4737   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4738   // Is the type for src from speculation?
4739   bool src_spec = false;
4740   // Is the type for dest from speculation?
4741   bool dest_spec = false;
4742 
4743   if (!has_src || !has_dest) {
4744     // We don't have sufficient type information, let's see if
4745     // speculative types can help. We need to have types for both src
4746     // and dest so that it pays off.
4747 
4748     // Do we already have or could we have type information for src
4749     bool could_have_src = has_src;
4750     // Do we already have or could we have type information for dest
4751     bool could_have_dest = has_dest;
4752 
4753     ciKlass* src_k = NULL;
4754     if (!has_src) {
4755       src_k = src_type->speculative_type();
4756       if (src_k != NULL && src_k->is_array_klass()) {
4757         could_have_src = true;
4758       }
4759     }
4760 
4761     ciKlass* dest_k = NULL;
4762     if (!has_dest) {
4763       dest_k = dest_type->speculative_type();
4764       if (dest_k != NULL && dest_k->is_array_klass()) {
4765         could_have_dest = true;
4766       }
4767     }
4768 
4769     if (could_have_src && could_have_dest) {
4770       // This is going to pay off so emit the required guards
4771       if (!has_src) {
4772         src = maybe_cast_profiled_obj(src, src_k);
4773         src_type  = _gvn.type(src);
4774         top_src  = src_type->isa_aryptr();
4775         has_src = (top_src != NULL && top_src->klass() != NULL);
4776         src_spec = true;
4777       }
4778       if (!has_dest) {
4779         dest = maybe_cast_profiled_obj(dest, dest_k);
4780         dest_type  = _gvn.type(dest);
4781         top_dest  = dest_type->isa_aryptr();
4782         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4783         dest_spec = true;
4784       }
4785     }
4786   }
4787 
4788   if (!has_src || !has_dest) {
4789     // Conservatively insert a memory barrier on all memory slices.
4790     // Do not let writes into the source float below the arraycopy.
4791     insert_mem_bar(Op_MemBarCPUOrder);
4792 
4793     // Call StubRoutines::generic_arraycopy stub.
4794     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4795                        src, src_offset, dest, dest_offset, length);
4796 
4797     // Do not let reads from the destination float above the arraycopy.
4798     // Since we cannot type the arrays, we don't know which slices
4799     // might be affected.  We could restrict this barrier only to those
4800     // memory slices which pertain to array elements--but don't bother.
4801     if (!InsertMemBarAfterArraycopy)
4802       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4803       insert_mem_bar(Op_MemBarCPUOrder);
4804     return true;
4805   }
4806 
4807   // (2) src and dest arrays must have elements of the same BasicType
4808   // Figure out the size and type of the elements we will be copying.
4809   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4810   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4811   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4812   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4813 
4814   if (src_elem != dest_elem || dest_elem == T_VOID) {
4815     // The component types are not the same or are not recognized.  Punt.
4816     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4817     generate_slow_arraycopy(TypePtr::BOTTOM,
4818                             src, src_offset, dest, dest_offset, length,
4819                             /*dest_uninitialized*/false);
4820     return true;
4821   }
4822 
4823   if (src_elem == T_OBJECT) {
4824     // If both arrays are object arrays then having the exact types
4825     // for both will remove the need for a subtype check at runtime
4826     // before the call and may make it possible to pick a faster copy
4827     // routine (without a subtype check on every element)
4828     // Do we have the exact type of src?
4829     bool could_have_src = src_spec;
4830     // Do we have the exact type of dest?
4831     bool could_have_dest = dest_spec;
4832     ciKlass* src_k = top_src->klass();
4833     ciKlass* dest_k = top_dest->klass();
4834     if (!src_spec) {
4835       src_k = src_type->speculative_type();
4836       if (src_k != NULL && src_k->is_array_klass()) {
4837           could_have_src = true;
4838       }
4839     }
4840     if (!dest_spec) {
4841       dest_k = dest_type->speculative_type();
4842       if (dest_k != NULL && dest_k->is_array_klass()) {
4843         could_have_dest = true;
4844       }
4845     }
4846     if (could_have_src && could_have_dest) {
4847       // If we can have both exact types, emit the missing guards
4848       if (could_have_src && !src_spec) {
4849         src = maybe_cast_profiled_obj(src, src_k);
4850       }
4851       if (could_have_dest && !dest_spec) {
4852         dest = maybe_cast_profiled_obj(dest, dest_k);
4853       }
4854     }
4855   }
4856 
4857   //---------------------------------------------------------------------------
4858   // We will make a fast path for this call to arraycopy.
4859 
4860   // We have the following tests left to perform:
4861   //
4862   // (3) src and dest must not be null.
4863   // (4) src_offset must not be negative.
4864   // (5) dest_offset must not be negative.
4865   // (6) length must not be negative.
4866   // (7) src_offset + length must not exceed length of src.
4867   // (8) dest_offset + length must not exceed length of dest.
4868   // (9) each element of an oop array must be assignable
4869 
4870   RegionNode* slow_region = new (C) RegionNode(1);
4871   record_for_igvn(slow_region);
4872 
4873   // (3) operands must not be null
4874   // We currently perform our null checks with the null_check routine.
4875   // This means that the null exceptions will be reported in the caller
4876   // rather than (correctly) reported inside of the native arraycopy call.
4877   // This should be corrected, given time.  We do our null check with the
4878   // stack pointer restored.
4879   src  = null_check(src,  T_ARRAY);
4880   dest = null_check(dest, T_ARRAY);
4881 
4882   // (4) src_offset must not be negative.
4883   generate_negative_guard(src_offset, slow_region);
4884 
4885   // (5) dest_offset must not be negative.
4886   generate_negative_guard(dest_offset, slow_region);
4887 
4888   // (6) length must not be negative (moved to generate_arraycopy()).
4889   // generate_negative_guard(length, slow_region);
4890 
4891   // (7) src_offset + length must not exceed length of src.
4892   generate_limit_guard(src_offset, length,
4893                        load_array_length(src),
4894                        slow_region);
4895 
4896   // (8) dest_offset + length must not exceed length of dest.
4897   generate_limit_guard(dest_offset, length,
4898                        load_array_length(dest),
4899                        slow_region);
4900 
4901   // (9) each element of an oop array must be assignable
4902   // The generate_arraycopy subroutine checks this.
4903 
4904   // This is where the memory effects are placed:
4905   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4906   generate_arraycopy(adr_type, dest_elem,
4907                      src, src_offset, dest, dest_offset, length,
4908                      false, false, slow_region);
4909 
4910   return true;
4911 }
4912 
4913 //-----------------------------generate_arraycopy----------------------
4914 // Generate an optimized call to arraycopy.
4915 // Caller must guard against non-arrays.
4916 // Caller must determine a common array basic-type for both arrays.
4917 // Caller must validate offsets against array bounds.
4918 // The slow_region has already collected guard failure paths
4919 // (such as out of bounds length or non-conformable array types).
4920 // The generated code has this shape, in general:
4921 //
4922 //     if (length == 0)  return   // via zero_path
4923 //     slowval = -1
4924 //     if (types unknown) {
4925 //       slowval = call generic copy loop
4926 //       if (slowval == 0)  return  // via checked_path
4927 //     } else if (indexes in bounds) {
4928 //       if ((is object array) && !(array type check)) {
4929 //         slowval = call checked copy loop
4930 //         if (slowval == 0)  return  // via checked_path
4931 //       } else {
4932 //         call bulk copy loop
4933 //         return  // via fast_path
4934 //       }
4935 //     }
4936 //     // adjust params for remaining work:
4937 //     if (slowval != -1) {
4938 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4939 //     }
4940 //   slow_region:
4941 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4942 //     return  // via slow_call_path
4943 //
4944 // This routine is used from several intrinsics:  System.arraycopy,
4945 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4946 //
4947 void
4948 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4949                                    BasicType basic_elem_type,
4950                                    Node* src,  Node* src_offset,
4951                                    Node* dest, Node* dest_offset,
4952                                    Node* copy_length,
4953                                    bool disjoint_bases,
4954                                    bool length_never_negative,
4955                                    RegionNode* slow_region) {
4956 
4957   if (slow_region == NULL) {
4958     slow_region = new(C) RegionNode(1);
4959     record_for_igvn(slow_region);
4960   }
4961 
4962   Node* original_dest      = dest;
4963   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4964   bool  dest_uninitialized = false;
4965 
4966   // See if this is the initialization of a newly-allocated array.
4967   // If so, we will take responsibility here for initializing it to zero.
4968   // (Note:  Because tightly_coupled_allocation performs checks on the
4969   // out-edges of the dest, we need to avoid making derived pointers
4970   // from it until we have checked its uses.)
4971   if (ReduceBulkZeroing
4972       && !ZeroTLAB              // pointless if already zeroed
4973       && basic_elem_type != T_CONFLICT // avoid corner case
4974       && !src->eqv_uncast(dest)
4975       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4976           != NULL)
4977       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4978       && alloc->maybe_set_complete(&_gvn)) {
4979     // "You break it, you buy it."
4980     InitializeNode* init = alloc->initialization();
4981     assert(init->is_complete(), "we just did this");
4982     init->set_complete_with_arraycopy();
4983     assert(dest->is_CheckCastPP(), "sanity");
4984     assert(dest->in(0)->in(0) == init, "dest pinned");
4985     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4986     // From this point on, every exit path is responsible for
4987     // initializing any non-copied parts of the object to zero.
4988     // Also, if this flag is set we make sure that arraycopy interacts properly
4989     // with G1, eliding pre-barriers. See CR 6627983.
4990     dest_uninitialized = true;
4991   } else {
4992     // No zeroing elimination here.
4993     alloc             = NULL;
4994     //original_dest   = dest;
4995     //dest_uninitialized = false;
4996   }
4997 
4998   // Results are placed here:
4999   enum { fast_path        = 1,  // normal void-returning assembly stub
5000          checked_path     = 2,  // special assembly stub with cleanup
5001          slow_call_path   = 3,  // something went wrong; call the VM
5002          zero_path        = 4,  // bypass when length of copy is zero
5003          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
5004          PATH_LIMIT       = 6
5005   };
5006   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
5007   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
5008   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
5009   record_for_igvn(result_region);
5010   _gvn.set_type_bottom(result_i_o);
5011   _gvn.set_type_bottom(result_memory);
5012   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
5013 
5014   // The slow_control path:
5015   Node* slow_control;
5016   Node* slow_i_o = i_o();
5017   Node* slow_mem = memory(adr_type);
5018   debug_only(slow_control = (Node*) badAddress);
5019 
5020   // Checked control path:
5021   Node* checked_control = top();
5022   Node* checked_mem     = NULL;
5023   Node* checked_i_o     = NULL;
5024   Node* checked_value   = NULL;
5025 
5026   if (basic_elem_type == T_CONFLICT) {
5027     assert(!dest_uninitialized, "");
5028     Node* cv = generate_generic_arraycopy(adr_type,
5029                                           src, src_offset, dest, dest_offset,
5030                                           copy_length, dest_uninitialized);
5031     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5032     checked_control = control();
5033     checked_i_o     = i_o();
5034     checked_mem     = memory(adr_type);
5035     checked_value   = cv;
5036     set_control(top());         // no fast path
5037   }
5038 
5039   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5040   if (not_pos != NULL) {
5041     PreserveJVMState pjvms(this);
5042     set_control(not_pos);
5043 
5044     // (6) length must not be negative.
5045     if (!length_never_negative) {
5046       generate_negative_guard(copy_length, slow_region);
5047     }
5048 
5049     // copy_length is 0.
5050     if (!stopped() && dest_uninitialized) {
5051       Node* dest_length = alloc->in(AllocateNode::ALength);
5052       if (copy_length->eqv_uncast(dest_length)
5053           || _gvn.find_int_con(dest_length, 1) <= 0) {
5054         // There is no zeroing to do. No need for a secondary raw memory barrier.
5055       } else {
5056         // Clear the whole thing since there are no source elements to copy.
5057         generate_clear_array(adr_type, dest, basic_elem_type,
5058                              intcon(0), NULL,
5059                              alloc->in(AllocateNode::AllocSize));
5060         // Use a secondary InitializeNode as raw memory barrier.
5061         // Currently it is needed only on this path since other
5062         // paths have stub or runtime calls as raw memory barriers.
5063         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5064                                                        Compile::AliasIdxRaw,
5065                                                        top())->as_Initialize();
5066         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5067       }
5068     }
5069 
5070     // Present the results of the fast call.
5071     result_region->init_req(zero_path, control());
5072     result_i_o   ->init_req(zero_path, i_o());
5073     result_memory->init_req(zero_path, memory(adr_type));
5074   }
5075 
5076   if (!stopped() && dest_uninitialized) {
5077     // We have to initialize the *uncopied* part of the array to zero.
5078     // The copy destination is the slice dest[off..off+len].  The other slices
5079     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5080     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5081     Node* dest_length = alloc->in(AllocateNode::ALength);
5082     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5083                                                           copy_length));
5084 
5085     // If there is a head section that needs zeroing, do it now.
5086     if (find_int_con(dest_offset, -1) != 0) {
5087       generate_clear_array(adr_type, dest, basic_elem_type,
5088                            intcon(0), dest_offset,
5089                            NULL);
5090     }
5091 
5092     // Next, perform a dynamic check on the tail length.
5093     // It is often zero, and we can win big if we prove this.
5094     // There are two wins:  Avoid generating the ClearArray
5095     // with its attendant messy index arithmetic, and upgrade
5096     // the copy to a more hardware-friendly word size of 64 bits.
5097     Node* tail_ctl = NULL;
5098     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5099       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5100       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5101       tail_ctl = generate_slow_guard(bol_lt, NULL);
5102       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5103     }
5104 
5105     // At this point, let's assume there is no tail.
5106     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5107       // There is no tail.  Try an upgrade to a 64-bit copy.
5108       bool didit = false;
5109       { PreserveJVMState pjvms(this);
5110         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5111                                          src, src_offset, dest, dest_offset,
5112                                          dest_size, dest_uninitialized);
5113         if (didit) {
5114           // Present the results of the block-copying fast call.
5115           result_region->init_req(bcopy_path, control());
5116           result_i_o   ->init_req(bcopy_path, i_o());
5117           result_memory->init_req(bcopy_path, memory(adr_type));
5118         }
5119       }
5120       if (didit)
5121         set_control(top());     // no regular fast path
5122     }
5123 
5124     // Clear the tail, if any.
5125     if (tail_ctl != NULL) {
5126       Node* notail_ctl = stopped() ? NULL : control();
5127       set_control(tail_ctl);
5128       if (notail_ctl == NULL) {
5129         generate_clear_array(adr_type, dest, basic_elem_type,
5130                              dest_tail, NULL,
5131                              dest_size);
5132       } else {
5133         // Make a local merge.
5134         Node* done_ctl = new(C) RegionNode(3);
5135         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5136         done_ctl->init_req(1, notail_ctl);
5137         done_mem->init_req(1, memory(adr_type));
5138         generate_clear_array(adr_type, dest, basic_elem_type,
5139                              dest_tail, NULL,
5140                              dest_size);
5141         done_ctl->init_req(2, control());
5142         done_mem->init_req(2, memory(adr_type));
5143         set_control( _gvn.transform(done_ctl));
5144         set_memory(  _gvn.transform(done_mem), adr_type );
5145       }
5146     }
5147   }
5148 
5149   BasicType copy_type = basic_elem_type;
5150   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5151   if (!stopped() && copy_type == T_OBJECT) {
5152     // If src and dest have compatible element types, we can copy bits.
5153     // Types S[] and D[] are compatible if D is a supertype of S.
5154     //
5155     // If they are not, we will use checked_oop_disjoint_arraycopy,
5156     // which performs a fast optimistic per-oop check, and backs off
5157     // further to JVM_ArrayCopy on the first per-oop check that fails.
5158     // (Actually, we don't move raw bits only; the GC requires card marks.)
5159 
5160     // Get the Klass* for both src and dest
5161     Node* src_klass  = load_object_klass(src);
5162     Node* dest_klass = load_object_klass(dest);
5163 
5164     // Generate the subtype check.
5165     // This might fold up statically, or then again it might not.
5166     //
5167     // Non-static example:  Copying List<String>.elements to a new String[].
5168     // The backing store for a List<String> is always an Object[],
5169     // but its elements are always type String, if the generic types
5170     // are correct at the source level.
5171     //
5172     // Test S[] against D[], not S against D, because (probably)
5173     // the secondary supertype cache is less busy for S[] than S.
5174     // This usually only matters when D is an interface.
5175     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5176     // Plug failing path into checked_oop_disjoint_arraycopy
5177     if (not_subtype_ctrl != top()) {
5178       PreserveJVMState pjvms(this);
5179       set_control(not_subtype_ctrl);
5180       // (At this point we can assume disjoint_bases, since types differ.)
5181       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5182       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5183       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5184       Node* dest_elem_klass = _gvn.transform(n1);
5185       Node* cv = generate_checkcast_arraycopy(adr_type,
5186                                               dest_elem_klass,
5187                                               src, src_offset, dest, dest_offset,
5188                                               ConvI2X(copy_length), dest_uninitialized);
5189       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5190       checked_control = control();
5191       checked_i_o     = i_o();
5192       checked_mem     = memory(adr_type);
5193       checked_value   = cv;
5194     }
5195     // At this point we know we do not need type checks on oop stores.
5196 
5197     // Let's see if we need card marks:
5198     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5199       // If we do not need card marks, copy using the jint or jlong stub.
5200       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5201       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5202              "sizes agree");
5203     }
5204   }
5205 
5206   if (!stopped()) {
5207     // Generate the fast path, if possible.
5208     PreserveJVMState pjvms(this);
5209     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5210                                  src, src_offset, dest, dest_offset,
5211                                  ConvI2X(copy_length), dest_uninitialized);
5212 
5213     // Present the results of the fast call.
5214     result_region->init_req(fast_path, control());
5215     result_i_o   ->init_req(fast_path, i_o());
5216     result_memory->init_req(fast_path, memory(adr_type));
5217   }
5218 
5219   // Here are all the slow paths up to this point, in one bundle:
5220   slow_control = top();
5221   if (slow_region != NULL)
5222     slow_control = _gvn.transform(slow_region);
5223   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5224 
5225   set_control(checked_control);
5226   if (!stopped()) {
5227     // Clean up after the checked call.
5228     // The returned value is either 0 or -1^K,
5229     // where K = number of partially transferred array elements.
5230     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5231     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5232     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5233 
5234     // If it is 0, we are done, so transfer to the end.
5235     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5236     result_region->init_req(checked_path, checks_done);
5237     result_i_o   ->init_req(checked_path, checked_i_o);
5238     result_memory->init_req(checked_path, checked_mem);
5239 
5240     // If it is not zero, merge into the slow call.
5241     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5242     RegionNode* slow_reg2 = new(C) RegionNode(3);
5243     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5244     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5245     record_for_igvn(slow_reg2);
5246     slow_reg2  ->init_req(1, slow_control);
5247     slow_i_o2  ->init_req(1, slow_i_o);
5248     slow_mem2  ->init_req(1, slow_mem);
5249     slow_reg2  ->init_req(2, control());
5250     slow_i_o2  ->init_req(2, checked_i_o);
5251     slow_mem2  ->init_req(2, checked_mem);
5252 
5253     slow_control = _gvn.transform(slow_reg2);
5254     slow_i_o     = _gvn.transform(slow_i_o2);
5255     slow_mem     = _gvn.transform(slow_mem2);
5256 
5257     if (alloc != NULL) {
5258       // We'll restart from the very beginning, after zeroing the whole thing.
5259       // This can cause double writes, but that's OK since dest is brand new.
5260       // So we ignore the low 31 bits of the value returned from the stub.
5261     } else {
5262       // We must continue the copy exactly where it failed, or else
5263       // another thread might see the wrong number of writes to dest.
5264       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5265       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5266       slow_offset->init_req(1, intcon(0));
5267       slow_offset->init_req(2, checked_offset);
5268       slow_offset  = _gvn.transform(slow_offset);
5269 
5270       // Adjust the arguments by the conditionally incoming offset.
5271       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5272       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5273       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5274 
5275       // Tweak the node variables to adjust the code produced below:
5276       src_offset  = src_off_plus;
5277       dest_offset = dest_off_plus;
5278       copy_length = length_minus;
5279     }
5280   }
5281 
5282   set_control(slow_control);
5283   if (!stopped()) {
5284     // Generate the slow path, if needed.
5285     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5286 
5287     set_memory(slow_mem, adr_type);
5288     set_i_o(slow_i_o);
5289 
5290     if (dest_uninitialized) {
5291       generate_clear_array(adr_type, dest, basic_elem_type,
5292                            intcon(0), NULL,
5293                            alloc->in(AllocateNode::AllocSize));
5294     }
5295 
5296     generate_slow_arraycopy(adr_type,
5297                             src, src_offset, dest, dest_offset,
5298                             copy_length, /*dest_uninitialized*/false);
5299 
5300     result_region->init_req(slow_call_path, control());
5301     result_i_o   ->init_req(slow_call_path, i_o());
5302     result_memory->init_req(slow_call_path, memory(adr_type));
5303   }
5304 
5305   // Remove unused edges.
5306   for (uint i = 1; i < result_region->req(); i++) {
5307     if (result_region->in(i) == NULL)
5308       result_region->init_req(i, top());
5309   }
5310 
5311   // Finished; return the combined state.
5312   set_control( _gvn.transform(result_region));
5313   set_i_o(     _gvn.transform(result_i_o)    );
5314   set_memory(  _gvn.transform(result_memory), adr_type );
5315 
5316   // The memory edges above are precise in order to model effects around
5317   // array copies accurately to allow value numbering of field loads around
5318   // arraycopy.  Such field loads, both before and after, are common in Java
5319   // collections and similar classes involving header/array data structures.
5320   //
5321   // But with low number of register or when some registers are used or killed
5322   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5323   // The next memory barrier is added to avoid it. If the arraycopy can be
5324   // optimized away (which it can, sometimes) then we can manually remove
5325   // the membar also.
5326   //
5327   // Do not let reads from the cloned object float above the arraycopy.
5328   if (alloc != NULL) {
5329     // Do not let stores that initialize this object be reordered with
5330     // a subsequent store that would make this object accessible by
5331     // other threads.
5332     // Record what AllocateNode this StoreStore protects so that
5333     // escape analysis can go from the MemBarStoreStoreNode to the
5334     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5335     // based on the escape status of the AllocateNode.
5336     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5337   } else if (InsertMemBarAfterArraycopy)
5338     insert_mem_bar(Op_MemBarCPUOrder);
5339 }
5340 
5341 
5342 // Helper function which determines if an arraycopy immediately follows
5343 // an allocation, with no intervening tests or other escapes for the object.
5344 AllocateArrayNode*
5345 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5346                                            RegionNode* slow_region) {
5347   if (stopped())             return NULL;  // no fast path
5348   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5349 
5350   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5351   if (alloc == NULL)  return NULL;
5352 
5353   Node* rawmem = memory(Compile::AliasIdxRaw);
5354   // Is the allocation's memory state untouched?
5355   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5356     // Bail out if there have been raw-memory effects since the allocation.
5357     // (Example:  There might have been a call or safepoint.)
5358     return NULL;
5359   }
5360   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5361   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5362     return NULL;
5363   }
5364 
5365   // There must be no unexpected observers of this allocation.
5366   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5367     Node* obs = ptr->fast_out(i);
5368     if (obs != this->map()) {
5369       return NULL;
5370     }
5371   }
5372 
5373   // This arraycopy must unconditionally follow the allocation of the ptr.
5374   Node* alloc_ctl = ptr->in(0);
5375   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5376 
5377   Node* ctl = control();
5378   while (ctl != alloc_ctl) {
5379     // There may be guards which feed into the slow_region.
5380     // Any other control flow means that we might not get a chance
5381     // to finish initializing the allocated object.
5382     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5383       IfNode* iff = ctl->in(0)->as_If();
5384       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5385       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5386       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5387         ctl = iff->in(0);       // This test feeds the known slow_region.
5388         continue;
5389       }
5390       // One more try:  Various low-level checks bottom out in
5391       // uncommon traps.  If the debug-info of the trap omits
5392       // any reference to the allocation, as we've already
5393       // observed, then there can be no objection to the trap.
5394       bool found_trap = false;
5395       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5396         Node* obs = not_ctl->fast_out(j);
5397         if (obs->in(0) == not_ctl && obs->is_Call() &&
5398             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5399           found_trap = true; break;
5400         }
5401       }
5402       if (found_trap) {
5403         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5404         continue;
5405       }
5406     }
5407     return NULL;
5408   }
5409 
5410   // If we get this far, we have an allocation which immediately
5411   // precedes the arraycopy, and we can take over zeroing the new object.
5412   // The arraycopy will finish the initialization, and provide
5413   // a new control state to which we will anchor the destination pointer.
5414 
5415   return alloc;
5416 }
5417 
5418 // Helper for initialization of arrays, creating a ClearArray.
5419 // It writes zero bits in [start..end), within the body of an array object.
5420 // The memory effects are all chained onto the 'adr_type' alias category.
5421 //
5422 // Since the object is otherwise uninitialized, we are free
5423 // to put a little "slop" around the edges of the cleared area,
5424 // as long as it does not go back into the array's header,
5425 // or beyond the array end within the heap.
5426 //
5427 // The lower edge can be rounded down to the nearest jint and the
5428 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5429 //
5430 // Arguments:
5431 //   adr_type           memory slice where writes are generated
5432 //   dest               oop of the destination array
5433 //   basic_elem_type    element type of the destination
5434 //   slice_idx          array index of first element to store
5435 //   slice_len          number of elements to store (or NULL)
5436 //   dest_size          total size in bytes of the array object
5437 //
5438 // Exactly one of slice_len or dest_size must be non-NULL.
5439 // If dest_size is non-NULL, zeroing extends to the end of the object.
5440 // If slice_len is non-NULL, the slice_idx value must be a constant.
5441 void
5442 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5443                                      Node* dest,
5444                                      BasicType basic_elem_type,
5445                                      Node* slice_idx,
5446                                      Node* slice_len,
5447                                      Node* dest_size) {
5448   // one or the other but not both of slice_len and dest_size:
5449   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5450   if (slice_len == NULL)  slice_len = top();
5451   if (dest_size == NULL)  dest_size = top();
5452 
5453   // operate on this memory slice:
5454   Node* mem = memory(adr_type); // memory slice to operate on
5455 
5456   // scaling and rounding of indexes:
5457   int scale = exact_log2(type2aelembytes(basic_elem_type));
5458   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5459   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5460   int bump_bit  = (-1 << scale) & BytesPerInt;
5461 
5462   // determine constant starts and ends
5463   const intptr_t BIG_NEG = -128;
5464   assert(BIG_NEG + 2*abase < 0, "neg enough");
5465   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5466   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5467   if (slice_len_con == 0) {
5468     return;                     // nothing to do here
5469   }
5470   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5471   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5472   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5473     assert(end_con < 0, "not two cons");
5474     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5475                        BytesPerLong);
5476   }
5477 
5478   if (start_con >= 0 && end_con >= 0) {
5479     // Constant start and end.  Simple.
5480     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5481                                        start_con, end_con, &_gvn);
5482   } else if (start_con >= 0 && dest_size != top()) {
5483     // Constant start, pre-rounded end after the tail of the array.
5484     Node* end = dest_size;
5485     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5486                                        start_con, end, &_gvn);
5487   } else if (start_con >= 0 && slice_len != top()) {
5488     // Constant start, non-constant end.  End needs rounding up.
5489     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5490     intptr_t end_base  = abase + (slice_idx_con << scale);
5491     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5492     Node*    end       = ConvI2X(slice_len);
5493     if (scale != 0)
5494       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5495     end_base += end_round;
5496     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5497     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5498     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5499                                        start_con, end, &_gvn);
5500   } else if (start_con < 0 && dest_size != top()) {
5501     // Non-constant start, pre-rounded end after the tail of the array.
5502     // This is almost certainly a "round-to-end" operation.
5503     Node* start = slice_idx;
5504     start = ConvI2X(start);
5505     if (scale != 0)
5506       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5507     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5508     if ((bump_bit | clear_low) != 0) {
5509       int to_clear = (bump_bit | clear_low);
5510       // Align up mod 8, then store a jint zero unconditionally
5511       // just before the mod-8 boundary.
5512       if (((abase + bump_bit) & ~to_clear) - bump_bit
5513           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5514         bump_bit = 0;
5515         assert((abase & to_clear) == 0, "array base must be long-aligned");
5516       } else {
5517         // Bump 'start' up to (or past) the next jint boundary:
5518         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5519         assert((abase & clear_low) == 0, "array base must be int-aligned");
5520       }
5521       // Round bumped 'start' down to jlong boundary in body of array.
5522       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5523       if (bump_bit != 0) {
5524         // Store a zero to the immediately preceding jint:
5525         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5526         Node* p1 = basic_plus_adr(dest, x1);
5527         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5528         mem = _gvn.transform(mem);
5529       }
5530     }
5531     Node* end = dest_size; // pre-rounded
5532     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5533                                        start, end, &_gvn);
5534   } else {
5535     // Non-constant start, unrounded non-constant end.
5536     // (Nobody zeroes a random midsection of an array using this routine.)
5537     ShouldNotReachHere();       // fix caller
5538   }
5539 
5540   // Done.
5541   set_memory(mem, adr_type);
5542 }
5543 
5544 
5545 bool
5546 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5547                                          BasicType basic_elem_type,
5548                                          AllocateNode* alloc,
5549                                          Node* src,  Node* src_offset,
5550                                          Node* dest, Node* dest_offset,
5551                                          Node* dest_size, bool dest_uninitialized) {
5552   // See if there is an advantage from block transfer.
5553   int scale = exact_log2(type2aelembytes(basic_elem_type));
5554   if (scale >= LogBytesPerLong)
5555     return false;               // it is already a block transfer
5556 
5557   // Look at the alignment of the starting offsets.
5558   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5559 
5560   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5561   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5562   if (src_off_con < 0 || dest_off_con < 0)
5563     // At present, we can only understand constants.
5564     return false;
5565 
5566   intptr_t src_off  = abase + (src_off_con  << scale);
5567   intptr_t dest_off = abase + (dest_off_con << scale);
5568 
5569   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5570     // Non-aligned; too bad.
5571     // One more chance:  Pick off an initial 32-bit word.
5572     // This is a common case, since abase can be odd mod 8.
5573     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5574         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5575       Node* sptr = basic_plus_adr(src,  src_off);
5576       Node* dptr = basic_plus_adr(dest, dest_off);
5577       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5578       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5579       src_off += BytesPerInt;
5580       dest_off += BytesPerInt;
5581     } else {
5582       return false;
5583     }
5584   }
5585   assert(src_off % BytesPerLong == 0, "");
5586   assert(dest_off % BytesPerLong == 0, "");
5587 
5588   // Do this copy by giant steps.
5589   Node* sptr  = basic_plus_adr(src,  src_off);
5590   Node* dptr  = basic_plus_adr(dest, dest_off);
5591   Node* countx = dest_size;
5592   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5593   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5594 
5595   bool disjoint_bases = true;   // since alloc != NULL
5596   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5597                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5598 
5599   return true;
5600 }
5601 
5602 
5603 // Helper function; generates code for the slow case.
5604 // We make a call to a runtime method which emulates the native method,
5605 // but without the native wrapper overhead.
5606 void
5607 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5608                                         Node* src,  Node* src_offset,
5609                                         Node* dest, Node* dest_offset,
5610                                         Node* copy_length, bool dest_uninitialized) {
5611   assert(!dest_uninitialized, "Invariant");
5612   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5613                                  OptoRuntime::slow_arraycopy_Type(),
5614                                  OptoRuntime::slow_arraycopy_Java(),
5615                                  "slow_arraycopy", adr_type,
5616                                  src, src_offset, dest, dest_offset,
5617                                  copy_length);
5618 
5619   // Handle exceptions thrown by this fellow:
5620   make_slow_call_ex(call, env()->Throwable_klass(), false);
5621 }
5622 
5623 // Helper function; generates code for cases requiring runtime checks.
5624 Node*
5625 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5626                                              Node* dest_elem_klass,
5627                                              Node* src,  Node* src_offset,
5628                                              Node* dest, Node* dest_offset,
5629                                              Node* copy_length, bool dest_uninitialized) {
5630   if (stopped())  return NULL;
5631 
5632   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5633   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5634     return NULL;
5635   }
5636 
5637   // Pick out the parameters required to perform a store-check
5638   // for the target array.  This is an optimistic check.  It will
5639   // look in each non-null element's class, at the desired klass's
5640   // super_check_offset, for the desired klass.
5641   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5642   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5643   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5644   Node* check_offset = ConvI2X(_gvn.transform(n3));
5645   Node* check_value  = dest_elem_klass;
5646 
5647   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5648   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5649 
5650   // (We know the arrays are never conjoint, because their types differ.)
5651   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5652                                  OptoRuntime::checkcast_arraycopy_Type(),
5653                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5654                                  // five arguments, of which two are
5655                                  // intptr_t (jlong in LP64)
5656                                  src_start, dest_start,
5657                                  copy_length XTOP,
5658                                  check_offset XTOP,
5659                                  check_value);
5660 
5661   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5662 }
5663 
5664 
5665 // Helper function; generates code for cases requiring runtime checks.
5666 Node*
5667 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5668                                            Node* src,  Node* src_offset,
5669                                            Node* dest, Node* dest_offset,
5670                                            Node* copy_length, bool dest_uninitialized) {
5671   assert(!dest_uninitialized, "Invariant");
5672   if (stopped())  return NULL;
5673   address copyfunc_addr = StubRoutines::generic_arraycopy();
5674   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5675     return NULL;
5676   }
5677 
5678   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5679                     OptoRuntime::generic_arraycopy_Type(),
5680                     copyfunc_addr, "generic_arraycopy", adr_type,
5681                     src, src_offset, dest, dest_offset, copy_length);
5682 
5683   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5684 }
5685 
5686 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5687 void
5688 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5689                                              BasicType basic_elem_type,
5690                                              bool disjoint_bases,
5691                                              Node* src,  Node* src_offset,
5692                                              Node* dest, Node* dest_offset,
5693                                              Node* copy_length, bool dest_uninitialized) {
5694   if (stopped())  return;               // nothing to do
5695 
5696   Node* src_start  = src;
5697   Node* dest_start = dest;
5698   if (src_offset != NULL || dest_offset != NULL) {
5699     assert(src_offset != NULL && dest_offset != NULL, "");
5700     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5701     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5702   }
5703 
5704   // Figure out which arraycopy runtime method to call.
5705   const char* copyfunc_name = "arraycopy";
5706   address     copyfunc_addr =
5707       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5708                           disjoint_bases, copyfunc_name, dest_uninitialized);
5709 
5710   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5711   make_runtime_call(RC_LEAF|RC_NO_FP,
5712                     OptoRuntime::fast_arraycopy_Type(),
5713                     copyfunc_addr, copyfunc_name, adr_type,
5714                     src_start, dest_start, copy_length XTOP);
5715 }
5716 
5717 //-------------inline_encodeISOArray-----------------------------------
5718 // encode char[] to byte[] in ISO_8859_1
5719 bool LibraryCallKit::inline_encodeISOArray() {
5720   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5721   // no receiver since it is static method
5722   Node *src         = argument(0);
5723   Node *src_offset  = argument(1);
5724   Node *dst         = argument(2);
5725   Node *dst_offset  = argument(3);
5726   Node *length      = argument(4);
5727 
5728   const Type* src_type = src->Value(&_gvn);
5729   const Type* dst_type = dst->Value(&_gvn);
5730   const TypeAryPtr* top_src = src_type->isa_aryptr();
5731   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5732   if (top_src  == NULL || top_src->klass()  == NULL ||
5733       top_dest == NULL || top_dest->klass() == NULL) {
5734     // failed array check
5735     return false;
5736   }
5737 
5738   // Figure out the size and type of the elements we will be copying.
5739   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5740   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5741   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5742     return false;
5743   }
5744   Node* src_start = array_element_address(src, src_offset, src_elem);
5745   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5746   // 'src_start' points to src array + scaled offset
5747   // 'dst_start' points to dst array + scaled offset
5748 
5749   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5750   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5751   enc = _gvn.transform(enc);
5752   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5753   set_memory(res_mem, mtype);
5754   set_result(enc);
5755   return true;
5756 }
5757 
5758 //-------------inline_multiplyToLen-----------------------------------
5759 bool LibraryCallKit::inline_multiplyToLen() {
5760   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5761 
5762   address stubAddr = StubRoutines::multiplyToLen();
5763   if (stubAddr == NULL) {
5764     return false; // Intrinsic's stub is not implemented on this platform
5765   }
5766   const char* stubName = "multiplyToLen";
5767 
5768   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5769 
5770   Node* x    = argument(1);
5771   Node* xlen = argument(2);
5772   Node* y    = argument(3);
5773   Node* ylen = argument(4);
5774   Node* z    = argument(5);
5775 
5776   const Type* x_type = x->Value(&_gvn);
5777   const Type* y_type = y->Value(&_gvn);
5778   const TypeAryPtr* top_x = x_type->isa_aryptr();
5779   const TypeAryPtr* top_y = y_type->isa_aryptr();
5780   if (top_x  == NULL || top_x->klass()  == NULL ||
5781       top_y == NULL || top_y->klass() == NULL) {
5782     // failed array check
5783     return false;
5784   }
5785 
5786   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5787   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5788   if (x_elem != T_INT || y_elem != T_INT) {
5789     return false;
5790   }
5791 
5792   // Set the original stack and the reexecute bit for the interpreter to reexecute
5793   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5794   // on the return from z array allocation in runtime.
5795   { PreserveReexecuteState preexecs(this);
5796     jvms()->set_should_reexecute(true);
5797 
5798     Node* x_start = array_element_address(x, intcon(0), x_elem);
5799     Node* y_start = array_element_address(y, intcon(0), y_elem);
5800     // 'x_start' points to x array + scaled xlen
5801     // 'y_start' points to y array + scaled ylen
5802 
5803     // Allocate the result array
5804     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
5805     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5806     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5807 
5808     IdealKit ideal(this);
5809 
5810 #define __ ideal.
5811      Node* one = __ ConI(1);
5812      Node* zero = __ ConI(0);
5813      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5814      __ set(need_alloc, zero);
5815      __ set(z_alloc, z);
5816      __ if_then(z, BoolTest::eq, null()); {
5817        __ increment (need_alloc, one);
5818      } __ else_(); {
5819        // Update graphKit memory and control from IdealKit.
5820        sync_kit(ideal);
5821        Node* zlen_arg = load_array_length(z);
5822        // Update IdealKit memory and control from graphKit.
5823        __ sync_kit(this);
5824        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5825          __ increment (need_alloc, one);
5826        } __ end_if();
5827      } __ end_if();
5828 
5829      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5830        // Update graphKit memory and control from IdealKit.
5831        sync_kit(ideal);
5832        Node * narr = new_array(klass_node, zlen, 1);
5833        // Update IdealKit memory and control from graphKit.
5834        __ sync_kit(this);
5835        __ set(z_alloc, narr);
5836      } __ end_if();
5837 
5838      sync_kit(ideal);
5839      z = __ value(z_alloc);
5840      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5841      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5842      // Final sync IdealKit and GraphKit.
5843      final_sync(ideal);
5844 #undef __
5845 
5846     Node* z_start = array_element_address(z, intcon(0), T_INT);
5847 
5848     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5849                                    OptoRuntime::multiplyToLen_Type(),
5850                                    stubAddr, stubName, TypePtr::BOTTOM,
5851                                    x_start, xlen, y_start, ylen, z_start, zlen);
5852   } // original reexecute is set back here
5853 
5854   C->set_has_split_ifs(true); // Has chance for split-if optimization
5855   set_result(z);
5856   return true;
5857 }
5858 
5859 
5860 /**
5861  * Calculate CRC32 for byte.
5862  * int java.util.zip.CRC32.update(int crc, int b)
5863  */
5864 bool LibraryCallKit::inline_updateCRC32() {
5865   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5866   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5867   // no receiver since it is static method
5868   Node* crc  = argument(0); // type: int
5869   Node* b    = argument(1); // type: int
5870 
5871   /*
5872    *    int c = ~ crc;
5873    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5874    *    b = b ^ (c >>> 8);
5875    *    crc = ~b;
5876    */
5877 
5878   Node* M1 = intcon(-1);
5879   crc = _gvn.transform(new (C) XorINode(crc, M1));
5880   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5881   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5882 
5883   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5884   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5885   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5886   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5887 
5888   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5889   result = _gvn.transform(new (C) XorINode(crc, result));
5890   result = _gvn.transform(new (C) XorINode(result, M1));
5891   set_result(result);
5892   return true;
5893 }
5894 
5895 /**
5896  * Calculate CRC32 for byte[] array.
5897  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5898  */
5899 bool LibraryCallKit::inline_updateBytesCRC32() {
5900   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5901   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5902   // no receiver since it is static method
5903   Node* crc     = argument(0); // type: int
5904   Node* src     = argument(1); // type: oop
5905   Node* offset  = argument(2); // type: int
5906   Node* length  = argument(3); // type: int
5907 
5908   const Type* src_type = src->Value(&_gvn);
5909   const TypeAryPtr* top_src = src_type->isa_aryptr();
5910   if (top_src  == NULL || top_src->klass()  == NULL) {
5911     // failed array check
5912     return false;
5913   }
5914 
5915   // Figure out the size and type of the elements we will be copying.
5916   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5917   if (src_elem != T_BYTE) {
5918     return false;
5919   }
5920 
5921   // 'src_start' points to src array + scaled offset
5922   Node* src_start = array_element_address(src, offset, src_elem);
5923 
5924   // We assume that range check is done by caller.
5925   // TODO: generate range check (offset+length < src.length) in debug VM.
5926 
5927   // Call the stub.
5928   address stubAddr = StubRoutines::updateBytesCRC32();
5929   const char *stubName = "updateBytesCRC32";
5930 
5931   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5932                                  stubAddr, stubName, TypePtr::BOTTOM,
5933                                  crc, src_start, length);
5934   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5935   set_result(result);
5936   return true;
5937 }
5938 
5939 /**
5940  * Calculate CRC32 for ByteBuffer.
5941  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5942  */
5943 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5944   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5945   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5946   // no receiver since it is static method
5947   Node* crc     = argument(0); // type: int
5948   Node* src     = argument(1); // type: long
5949   Node* offset  = argument(3); // type: int
5950   Node* length  = argument(4); // type: int
5951 
5952   src = ConvL2X(src);  // adjust Java long to machine word
5953   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5954   offset = ConvI2X(offset);
5955 
5956   // 'src_start' points to src array + scaled offset
5957   Node* src_start = basic_plus_adr(top(), base, offset);
5958 
5959   // Call the stub.
5960   address stubAddr = StubRoutines::updateBytesCRC32();
5961   const char *stubName = "updateBytesCRC32";
5962 
5963   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5964                                  stubAddr, stubName, TypePtr::BOTTOM,
5965                                  crc, src_start, length);
5966   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5967   set_result(result);
5968   return true;
5969 }
5970 
5971 //----------------------------inline_reference_get----------------------------
5972 // public T java.lang.ref.Reference.get();
5973 bool LibraryCallKit::inline_reference_get() {
5974   const int referent_offset = java_lang_ref_Reference::referent_offset;
5975   guarantee(referent_offset > 0, "should have already been set");
5976 
5977   // Get the argument:
5978   Node* reference_obj = null_check_receiver();
5979   if (stopped()) return true;
5980 
5981   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5982 
5983   ciInstanceKlass* klass = env()->Object_klass();
5984   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5985 
5986   Node* no_ctrl = NULL;
5987   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5988 
5989   // Use the pre-barrier to record the value in the referent field
5990   pre_barrier(false /* do_load */,
5991               control(),
5992               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5993               result /* pre_val */,
5994               T_OBJECT);
5995 
5996   // Add memory barrier to prevent commoning reads from this field
5997   // across safepoint since GC can change its value.
5998   insert_mem_bar(Op_MemBarCPUOrder);
5999 
6000   set_result(result);
6001   return true;
6002 }
6003 
6004 
6005 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6006                                               bool is_exact=true, bool is_static=false) {
6007 
6008   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6009   assert(tinst != NULL, "obj is null");
6010   assert(tinst->klass()->is_loaded(), "obj is not loaded");
6011   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6012 
6013   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
6014                                                                           ciSymbol::make(fieldTypeString),
6015                                                                           is_static);
6016   if (field == NULL) return (Node *) NULL;
6017   assert (field != NULL, "undefined field");
6018 
6019   // Next code  copied from Parse::do_get_xxx():
6020 
6021   // Compute address and memory type.
6022   int offset  = field->offset_in_bytes();
6023   bool is_vol = field->is_volatile();
6024   ciType* field_klass = field->type();
6025   assert(field_klass->is_loaded(), "should be loaded");
6026   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6027   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6028   BasicType bt = field->layout_type();
6029 
6030   // Build the resultant type of the load
6031   const Type *type;
6032   if (bt == T_OBJECT) {
6033     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6034   } else {
6035     type = Type::get_const_basic_type(bt);
6036   }
6037 
6038   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6039     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6040   }
6041   // Build the load.
6042   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6043   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6044   // If reference is volatile, prevent following memory ops from
6045   // floating up past the volatile read.  Also prevents commoning
6046   // another volatile read.
6047   if (is_vol) {
6048     // Memory barrier includes bogus read of value to force load BEFORE membar
6049     insert_mem_bar(Op_MemBarAcquire, loadedField);
6050   }
6051   return loadedField;
6052 }
6053 
6054 
6055 //------------------------------inline_aescrypt_Block-----------------------
6056 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6057   address stubAddr;
6058   const char *stubName;
6059   assert(UseAES, "need AES instruction support");
6060 
6061   switch(id) {
6062   case vmIntrinsics::_aescrypt_encryptBlock:
6063     stubAddr = StubRoutines::aescrypt_encryptBlock();
6064     stubName = "aescrypt_encryptBlock";
6065     break;
6066   case vmIntrinsics::_aescrypt_decryptBlock:
6067     stubAddr = StubRoutines::aescrypt_decryptBlock();
6068     stubName = "aescrypt_decryptBlock";
6069     break;
6070   }
6071   if (stubAddr == NULL) return false;
6072 
6073   Node* aescrypt_object = argument(0);
6074   Node* src             = argument(1);
6075   Node* src_offset      = argument(2);
6076   Node* dest            = argument(3);
6077   Node* dest_offset     = argument(4);
6078 
6079   // (1) src and dest are arrays.
6080   const Type* src_type = src->Value(&_gvn);
6081   const Type* dest_type = dest->Value(&_gvn);
6082   const TypeAryPtr* top_src = src_type->isa_aryptr();
6083   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6084   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6085 
6086   // for the quick and dirty code we will skip all the checks.
6087   // we are just trying to get the call to be generated.
6088   Node* src_start  = src;
6089   Node* dest_start = dest;
6090   if (src_offset != NULL || dest_offset != NULL) {
6091     assert(src_offset != NULL && dest_offset != NULL, "");
6092     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6093     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6094   }
6095 
6096   // now need to get the start of its expanded key array
6097   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6098   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6099   if (k_start == NULL) return false;
6100 
6101   if (Matcher::pass_original_key_for_aes()) {
6102     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6103     // compatibility issues between Java key expansion and SPARC crypto instructions
6104     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6105     if (original_k_start == NULL) return false;
6106 
6107     // Call the stub.
6108     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6109                       stubAddr, stubName, TypePtr::BOTTOM,
6110                       src_start, dest_start, k_start, original_k_start);
6111   } else {
6112     // Call the stub.
6113     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6114                       stubAddr, stubName, TypePtr::BOTTOM,
6115                       src_start, dest_start, k_start);
6116   }
6117 
6118   return true;
6119 }
6120 
6121 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6122 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6123   address stubAddr;
6124   const char *stubName;
6125 
6126   assert(UseAES, "need AES instruction support");
6127 
6128   switch(id) {
6129   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6130     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6131     stubName = "cipherBlockChaining_encryptAESCrypt";
6132     break;
6133   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6134     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6135     stubName = "cipherBlockChaining_decryptAESCrypt";
6136     break;
6137   }
6138   if (stubAddr == NULL) return false;
6139 
6140   Node* cipherBlockChaining_object = argument(0);
6141   Node* src                        = argument(1);
6142   Node* src_offset                 = argument(2);
6143   Node* len                        = argument(3);
6144   Node* dest                       = argument(4);
6145   Node* dest_offset                = argument(5);
6146 
6147   // (1) src and dest are arrays.
6148   const Type* src_type = src->Value(&_gvn);
6149   const Type* dest_type = dest->Value(&_gvn);
6150   const TypeAryPtr* top_src = src_type->isa_aryptr();
6151   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6152   assert (top_src  != NULL && top_src->klass()  != NULL
6153           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6154 
6155   // checks are the responsibility of the caller
6156   Node* src_start  = src;
6157   Node* dest_start = dest;
6158   if (src_offset != NULL || dest_offset != NULL) {
6159     assert(src_offset != NULL && dest_offset != NULL, "");
6160     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6161     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6162   }
6163 
6164   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6165   // (because of the predicated logic executed earlier).
6166   // so we cast it here safely.
6167   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6168 
6169   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6170   if (embeddedCipherObj == NULL) return false;
6171 
6172   // cast it to what we know it will be at runtime
6173   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6174   assert(tinst != NULL, "CBC obj is null");
6175   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6176   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6177   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6178 
6179   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6180   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6181   const TypeOopPtr* xtype = aklass->as_instance_type();
6182   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6183   aescrypt_object = _gvn.transform(aescrypt_object);
6184 
6185   // we need to get the start of the aescrypt_object's expanded key array
6186   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6187   if (k_start == NULL) return false;
6188 
6189   // similarly, get the start address of the r vector
6190   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6191   if (objRvec == NULL) return false;
6192   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6193 
6194   Node* cbcCrypt;
6195   if (Matcher::pass_original_key_for_aes()) {
6196     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6197     // compatibility issues between Java key expansion and SPARC crypto instructions
6198     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6199     if (original_k_start == NULL) return false;
6200 
6201     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6202     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6203                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6204                                  stubAddr, stubName, TypePtr::BOTTOM,
6205                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6206   } else {
6207     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6208     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6209                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6210                                  stubAddr, stubName, TypePtr::BOTTOM,
6211                                  src_start, dest_start, k_start, r_start, len);
6212   }
6213 
6214   // return cipher length (int)
6215   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6216   set_result(retvalue);
6217   return true;
6218 }
6219 
6220 //------------------------------get_key_start_from_aescrypt_object-----------------------
6221 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6222   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6223   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6224   if (objAESCryptKey == NULL) return (Node *) NULL;
6225 
6226   // now have the array, need to get the start address of the K array
6227   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6228   return k_start;
6229 }
6230 
6231 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6232 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6233   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6234   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6235   if (objAESCryptKey == NULL) return (Node *) NULL;
6236 
6237   // now have the array, need to get the start address of the lastKey array
6238   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6239   return original_k_start;
6240 }
6241 
6242 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6243 // Return node representing slow path of predicate check.
6244 // the pseudo code we want to emulate with this predicate is:
6245 // for encryption:
6246 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6247 // for decryption:
6248 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6249 //    note cipher==plain is more conservative than the original java code but that's OK
6250 //
6251 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6252   // The receiver was checked for NULL already.
6253   Node* objCBC = argument(0);
6254 
6255   // Load embeddedCipher field of CipherBlockChaining object.
6256   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6257 
6258   // get AESCrypt klass for instanceOf check
6259   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6260   // will have same classloader as CipherBlockChaining object
6261   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6262   assert(tinst != NULL, "CBCobj is null");
6263   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6264 
6265   // we want to do an instanceof comparison against the AESCrypt class
6266   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6267   if (!klass_AESCrypt->is_loaded()) {
6268     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6269     Node* ctrl = control();
6270     set_control(top()); // no regular fast path
6271     return ctrl;
6272   }
6273   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6274 
6275   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6276   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6277   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6278 
6279   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6280 
6281   // for encryption, we are done
6282   if (!decrypting)
6283     return instof_false;  // even if it is NULL
6284 
6285   // for decryption, we need to add a further check to avoid
6286   // taking the intrinsic path when cipher and plain are the same
6287   // see the original java code for why.
6288   RegionNode* region = new(C) RegionNode(3);
6289   region->init_req(1, instof_false);
6290   Node* src = argument(1);
6291   Node* dest = argument(4);
6292   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6293   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6294   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6295   region->init_req(2, src_dest_conjoint);
6296 
6297   record_for_igvn(region);
6298   return _gvn.transform(region);
6299 }
6300 
6301 //------------------------------inline_sha_implCompress-----------------------
6302 //
6303 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6304 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6305 //
6306 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6307 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6308 //
6309 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6310 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6311 //
6312 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6313   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6314 
6315   Node* sha_obj = argument(0);
6316   Node* src     = argument(1); // type oop
6317   Node* ofs     = argument(2); // type int
6318 
6319   const Type* src_type = src->Value(&_gvn);
6320   const TypeAryPtr* top_src = src_type->isa_aryptr();
6321   if (top_src  == NULL || top_src->klass()  == NULL) {
6322     // failed array check
6323     return false;
6324   }
6325   // Figure out the size and type of the elements we will be copying.
6326   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6327   if (src_elem != T_BYTE) {
6328     return false;
6329   }
6330   // 'src_start' points to src array + offset
6331   Node* src_start = array_element_address(src, ofs, src_elem);
6332   Node* state = NULL;
6333   address stubAddr;
6334   const char *stubName;
6335 
6336   switch(id) {
6337   case vmIntrinsics::_sha_implCompress:
6338     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6339     state = get_state_from_sha_object(sha_obj);
6340     stubAddr = StubRoutines::sha1_implCompress();
6341     stubName = "sha1_implCompress";
6342     break;
6343   case vmIntrinsics::_sha2_implCompress:
6344     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6345     state = get_state_from_sha_object(sha_obj);
6346     stubAddr = StubRoutines::sha256_implCompress();
6347     stubName = "sha256_implCompress";
6348     break;
6349   case vmIntrinsics::_sha5_implCompress:
6350     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6351     state = get_state_from_sha5_object(sha_obj);
6352     stubAddr = StubRoutines::sha512_implCompress();
6353     stubName = "sha512_implCompress";
6354     break;
6355   default:
6356     fatal_unexpected_iid(id);
6357     return false;
6358   }
6359   if (state == NULL) return false;
6360 
6361   // Call the stub.
6362   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6363                                  stubAddr, stubName, TypePtr::BOTTOM,
6364                                  src_start, state);
6365 
6366   return true;
6367 }
6368 
6369 //------------------------------inline_digestBase_implCompressMB-----------------------
6370 //
6371 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6372 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6373 //
6374 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6375   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6376          "need SHA1/SHA256/SHA512 instruction support");
6377   assert((uint)predicate < 3, "sanity");
6378   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6379 
6380   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6381   Node* src            = argument(1); // byte[] array
6382   Node* ofs            = argument(2); // type int
6383   Node* limit          = argument(3); // type int
6384 
6385   const Type* src_type = src->Value(&_gvn);
6386   const TypeAryPtr* top_src = src_type->isa_aryptr();
6387   if (top_src  == NULL || top_src->klass()  == NULL) {
6388     // failed array check
6389     return false;
6390   }
6391   // Figure out the size and type of the elements we will be copying.
6392   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6393   if (src_elem != T_BYTE) {
6394     return false;
6395   }
6396   // 'src_start' points to src array + offset
6397   Node* src_start = array_element_address(src, ofs, src_elem);
6398 
6399   const char* klass_SHA_name = NULL;
6400   const char* stub_name = NULL;
6401   address     stub_addr = NULL;
6402   bool        long_state = false;
6403 
6404   switch (predicate) {
6405   case 0:
6406     if (UseSHA1Intrinsics) {
6407       klass_SHA_name = "sun/security/provider/SHA";
6408       stub_name = "sha1_implCompressMB";
6409       stub_addr = StubRoutines::sha1_implCompressMB();
6410     }
6411     break;
6412   case 1:
6413     if (UseSHA256Intrinsics) {
6414       klass_SHA_name = "sun/security/provider/SHA2";
6415       stub_name = "sha256_implCompressMB";
6416       stub_addr = StubRoutines::sha256_implCompressMB();
6417     }
6418     break;
6419   case 2:
6420     if (UseSHA512Intrinsics) {
6421       klass_SHA_name = "sun/security/provider/SHA5";
6422       stub_name = "sha512_implCompressMB";
6423       stub_addr = StubRoutines::sha512_implCompressMB();
6424       long_state = true;
6425     }
6426     break;
6427   default:
6428     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6429   }
6430   if (klass_SHA_name != NULL) {
6431     // get DigestBase klass to lookup for SHA klass
6432     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6433     assert(tinst != NULL, "digestBase_obj is not instance???");
6434     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6435 
6436     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6437     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6438     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6439     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6440   }
6441   return false;
6442 }
6443 //------------------------------inline_sha_implCompressMB-----------------------
6444 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6445                                                bool long_state, address stubAddr, const char *stubName,
6446                                                Node* src_start, Node* ofs, Node* limit) {
6447   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6448   const TypeOopPtr* xtype = aklass->as_instance_type();
6449   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
6450   sha_obj = _gvn.transform(sha_obj);
6451 
6452   Node* state;
6453   if (long_state) {
6454     state = get_state_from_sha5_object(sha_obj);
6455   } else {
6456     state = get_state_from_sha_object(sha_obj);
6457   }
6458   if (state == NULL) return false;
6459 
6460   // Call the stub.
6461   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6462                                  OptoRuntime::digestBase_implCompressMB_Type(),
6463                                  stubAddr, stubName, TypePtr::BOTTOM,
6464                                  src_start, state, ofs, limit);
6465   // return ofs (int)
6466   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6467   set_result(result);
6468 
6469   return true;
6470 }
6471 
6472 //------------------------------get_state_from_sha_object-----------------------
6473 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6474   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6475   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6476   if (sha_state == NULL) return (Node *) NULL;
6477 
6478   // now have the array, need to get the start address of the state array
6479   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6480   return state;
6481 }
6482 
6483 //------------------------------get_state_from_sha5_object-----------------------
6484 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6485   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6486   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6487   if (sha_state == NULL) return (Node *) NULL;
6488 
6489   // now have the array, need to get the start address of the state array
6490   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6491   return state;
6492 }
6493 
6494 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6495 // Return node representing slow path of predicate check.
6496 // the pseudo code we want to emulate with this predicate is:
6497 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6498 //
6499 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6500   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6501          "need SHA1/SHA256/SHA512 instruction support");
6502   assert((uint)predicate < 3, "sanity");
6503 
6504   // The receiver was checked for NULL already.
6505   Node* digestBaseObj = argument(0);
6506 
6507   // get DigestBase klass for instanceOf check
6508   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6509   assert(tinst != NULL, "digestBaseObj is null");
6510   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6511 
6512   const char* klass_SHA_name = NULL;
6513   switch (predicate) {
6514   case 0:
6515     if (UseSHA1Intrinsics) {
6516       // we want to do an instanceof comparison against the SHA class
6517       klass_SHA_name = "sun/security/provider/SHA";
6518     }
6519     break;
6520   case 1:
6521     if (UseSHA256Intrinsics) {
6522       // we want to do an instanceof comparison against the SHA2 class
6523       klass_SHA_name = "sun/security/provider/SHA2";
6524     }
6525     break;
6526   case 2:
6527     if (UseSHA512Intrinsics) {
6528       // we want to do an instanceof comparison against the SHA5 class
6529       klass_SHA_name = "sun/security/provider/SHA5";
6530     }
6531     break;
6532   default:
6533     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6534   }
6535 
6536   ciKlass* klass_SHA = NULL;
6537   if (klass_SHA_name != NULL) {
6538     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6539   }
6540   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6541     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6542     Node* ctrl = control();
6543     set_control(top()); // no intrinsic path
6544     return ctrl;
6545   }
6546   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6547 
6548   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6549   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
6550   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6551   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6552 
6553   return instof_false;  // even if it is NULL
6554 }
6555 
6556 bool LibraryCallKit::inline_profileBoolean() {
6557   Node* counts = argument(1);
6558   const TypeAryPtr* ary = NULL;
6559   ciArray* aobj = NULL;
6560   if (counts->is_Con()
6561       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6562       && (aobj = ary->const_oop()->as_array()) != NULL
6563       && (aobj->length() == 2)) {
6564     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6565     jint false_cnt = aobj->element_value(0).as_int();
6566     jint  true_cnt = aobj->element_value(1).as_int();
6567 
6568     if (C->log() != NULL) {
6569       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6570                      false_cnt, true_cnt);
6571     }
6572 
6573     if (false_cnt + true_cnt == 0) {
6574       // According to profile, never executed.
6575       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6576                           Deoptimization::Action_reinterpret);
6577       return true;
6578     }
6579 
6580     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6581     // is a number of each value occurrences.
6582     Node* result = argument(0);
6583     if (false_cnt == 0 || true_cnt == 0) {
6584       // According to profile, one value has been never seen.
6585       int expected_val = (false_cnt == 0) ? 1 : 0;
6586 
6587       Node* cmp  = _gvn.transform(new (C) CmpINode(result, intcon(expected_val)));
6588       Node* test = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
6589 
6590       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6591       Node* fast_path = _gvn.transform(new (C) IfTrueNode(check));
6592       Node* slow_path = _gvn.transform(new (C) IfFalseNode(check));
6593 
6594       { // Slow path: uncommon trap for never seen value and then reexecute
6595         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6596         // the value has been seen at least once.
6597         PreserveJVMState pjvms(this);
6598         PreserveReexecuteState preexecs(this);
6599         jvms()->set_should_reexecute(true);
6600 
6601         set_control(slow_path);
6602         set_i_o(i_o());
6603 
6604         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6605                             Deoptimization::Action_reinterpret);
6606       }
6607       // The guard for never seen value enables sharpening of the result and
6608       // returning a constant. It allows to eliminate branches on the same value
6609       // later on.
6610       set_control(fast_path);
6611       result = intcon(expected_val);
6612     }
6613     // Stop profiling.
6614     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6615     // By replacing method body with profile data (represented as ProfileBooleanNode
6616     // on IR level) we effectively disable profiling.
6617     // It enables full speed execution once optimized code is generated.
6618     Node* profile = _gvn.transform(new (C) ProfileBooleanNode(result, false_cnt, true_cnt));
6619     C->record_for_igvn(profile);
6620     set_result(profile);
6621     return true;
6622   } else {
6623     // Continue profiling.
6624     // Profile data isn't available at the moment. So, execute method's bytecode version.
6625     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6626     // is compiled and counters aren't available since corresponding MethodHandle
6627     // isn't a compile-time constant.
6628     return false;
6629   }
6630 }