1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #if defined AD_MD_HPP
  72 # include AD_MD_HPP
  73 #elif defined TARGET_ARCH_MODEL_x86_32
  74 # include "adfiles/ad_x86_32.hpp"
  75 #elif defined TARGET_ARCH_MODEL_x86_64
  76 # include "adfiles/ad_x86_64.hpp"
  77 #elif defined TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #elif defined TARGET_ARCH_MODEL_zero
  80 # include "adfiles/ad_zero.hpp"
  81 #elif defined TARGET_ARCH_MODEL_ppc_64
  82 # include "adfiles/ad_ppc_64.hpp"
  83 #endif
  84 
  85 
  86 // For debugging purposes:
  87 //  To force FullGCALot inside a runtime function, add the following two lines
  88 //
  89 //  Universe::release_fullgc_alot_dummy();
  90 //  MarkSweep::invoke(0, "Debugging");
  91 //
  92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  93 
  94 
  95 
  96 
  97 // Compiled code entry points
  98 address OptoRuntime::_new_instance_Java                           = NULL;
  99 address OptoRuntime::_new_array_Java                              = NULL;
 100 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 101 address OptoRuntime::_multianewarray2_Java                        = NULL;
 102 address OptoRuntime::_multianewarray3_Java                        = NULL;
 103 address OptoRuntime::_multianewarray4_Java                        = NULL;
 104 address OptoRuntime::_multianewarray5_Java                        = NULL;
 105 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 106 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 107 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 108 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 109 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 110 address OptoRuntime::_rethrow_Java                                = NULL;
 111 
 112 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 113 address OptoRuntime::_register_finalizer_Java                     = NULL;
 114 
 115 # ifdef ENABLE_ZAP_DEAD_LOCALS
 116 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 117 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 118 # endif
 119 
 120 ExceptionBlob* OptoRuntime::_exception_blob;
 121 
 122 // This should be called in an assertion at the start of OptoRuntime routines
 123 // which are entered from compiled code (all of them)
 124 #ifdef ASSERT
 125 static bool check_compiled_frame(JavaThread* thread) {
 126   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 127   RegisterMap map(thread, false);
 128   frame caller = thread->last_frame().sender(&map);
 129   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 130   return true;
 131 }
 132 #endif // ASSERT
 133 
 134 
 135 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 136   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 137   if (var == NULL) { return false; }
 138 
 139 bool OptoRuntime::generate(ciEnv* env) {
 140 
 141   generate_exception_blob();
 142 
 143   // Note: tls: Means fetching the return oop out of the thread-local storage
 144   //
 145   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 146   // -------------------------------------------------------------------------------------------------------------------------------
 147   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 148   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 149   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 150   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 151   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 152   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 153   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 154   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 155   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 156   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 157   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 158   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 159 
 160   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 161   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 162 
 163 # ifdef ENABLE_ZAP_DEAD_LOCALS
 164   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 165   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 166 # endif
 167   return true;
 168 }
 169 
 170 #undef gen
 171 
 172 
 173 // Helper method to do generation of RunTimeStub's
 174 address OptoRuntime::generate_stub( ciEnv* env,
 175                                     TypeFunc_generator gen, address C_function,
 176                                     const char *name, int is_fancy_jump,
 177                                     bool pass_tls,
 178                                     bool save_argument_registers,
 179                                     bool return_pc ) {
 180   ResourceMark rm;
 181   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 182   return  C.stub_entry_point();
 183 }
 184 
 185 const char* OptoRuntime::stub_name(address entry) {
 186 #ifndef PRODUCT
 187   CodeBlob* cb = CodeCache::find_blob(entry);
 188   RuntimeStub* rs =(RuntimeStub *)cb;
 189   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 190   return rs->name();
 191 #else
 192   // Fast implementation for product mode (maybe it should be inlined too)
 193   return "runtime stub";
 194 #endif
 195 }
 196 
 197 
 198 //=============================================================================
 199 // Opto compiler runtime routines
 200 //=============================================================================
 201 
 202 
 203 //=============================allocation======================================
 204 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 205 // and try allocation again.
 206 
 207 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 208   // After any safepoint, just before going back to compiled code,
 209   // we inform the GC that we will be doing initializing writes to
 210   // this object in the future without emitting card-marks, so
 211   // GC may take any compensating steps.
 212   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 213 
 214   oop new_obj = thread->vm_result();
 215   if (new_obj == NULL)  return;
 216 
 217   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 218          "compiler must check this first");
 219   // GC may decide to give back a safer copy of new_obj.
 220   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 221   thread->set_vm_result(new_obj);
 222 }
 223 
 224 // object allocation
 225 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 226   JRT_BLOCK;
 227 #ifndef PRODUCT
 228   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 229 #endif
 230   assert(check_compiled_frame(thread), "incorrect caller");
 231 
 232   // These checks are cheap to make and support reflective allocation.
 233   int lh = klass->layout_helper();
 234   if (Klass::layout_helper_needs_slow_path(lh)
 235       || !InstanceKlass::cast(klass)->is_initialized()) {
 236     KlassHandle kh(THREAD, klass);
 237     kh->check_valid_for_instantiation(false, THREAD);
 238     if (!HAS_PENDING_EXCEPTION) {
 239       InstanceKlass::cast(kh())->initialize(THREAD);
 240     }
 241     if (!HAS_PENDING_EXCEPTION) {
 242       klass = kh();
 243     } else {
 244       klass = NULL;
 245     }
 246   }
 247 
 248   if (klass != NULL) {
 249     // Scavenge and allocate an instance.
 250     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 251     thread->set_vm_result(result);
 252 
 253     // Pass oops back through thread local storage.  Our apparent type to Java
 254     // is that we return an oop, but we can block on exit from this routine and
 255     // a GC can trash the oop in C's return register.  The generated stub will
 256     // fetch the oop from TLS after any possible GC.
 257   }
 258 
 259   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 260   JRT_BLOCK_END;
 261 
 262   if (GraphKit::use_ReduceInitialCardMarks()) {
 263     // inform GC that we won't do card marks for initializing writes.
 264     new_store_pre_barrier(thread);
 265   }
 266 JRT_END
 267 
 268 
 269 // array allocation
 270 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 271   JRT_BLOCK;
 272 #ifndef PRODUCT
 273   SharedRuntime::_new_array_ctr++;            // new array requires GC
 274 #endif
 275   assert(check_compiled_frame(thread), "incorrect caller");
 276 
 277   // Scavenge and allocate an instance.
 278   oop result;
 279 
 280   if (array_type->oop_is_typeArray()) {
 281     // The oopFactory likes to work with the element type.
 282     // (We could bypass the oopFactory, since it doesn't add much value.)
 283     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 284     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 285   } else {
 286     // Although the oopFactory likes to work with the elem_type,
 287     // the compiler prefers the array_type, since it must already have
 288     // that latter value in hand for the fast path.
 289     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 290     result = oopFactory::new_objArray(elem_type, len, THREAD);
 291   }
 292 
 293   // Pass oops back through thread local storage.  Our apparent type to Java
 294   // is that we return an oop, but we can block on exit from this routine and
 295   // a GC can trash the oop in C's return register.  The generated stub will
 296   // fetch the oop from TLS after any possible GC.
 297   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 298   thread->set_vm_result(result);
 299   JRT_BLOCK_END;
 300 
 301   if (GraphKit::use_ReduceInitialCardMarks()) {
 302     // inform GC that we won't do card marks for initializing writes.
 303     new_store_pre_barrier(thread);
 304   }
 305 JRT_END
 306 
 307 // array allocation without zeroing
 308 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 309   JRT_BLOCK;
 310 #ifndef PRODUCT
 311   SharedRuntime::_new_array_ctr++;            // new array requires GC
 312 #endif
 313   assert(check_compiled_frame(thread), "incorrect caller");
 314 
 315   // Scavenge and allocate an instance.
 316   oop result;
 317 
 318   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 319   // The oopFactory likes to work with the element type.
 320   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 321   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 322 
 323   // Pass oops back through thread local storage.  Our apparent type to Java
 324   // is that we return an oop, but we can block on exit from this routine and
 325   // a GC can trash the oop in C's return register.  The generated stub will
 326   // fetch the oop from TLS after any possible GC.
 327   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 328   thread->set_vm_result(result);
 329   JRT_BLOCK_END;
 330 
 331   if (GraphKit::use_ReduceInitialCardMarks()) {
 332     // inform GC that we won't do card marks for initializing writes.
 333     new_store_pre_barrier(thread);
 334   }
 335 
 336   oop result = thread->vm_result();
 337   if ((len > 0) && (result != NULL) &&
 338       is_deoptimized_caller_frame(thread)) {
 339     // Zero array here if the caller is deoptimized.
 340     int size = ((typeArrayOop)result)->object_size();
 341     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 342     const size_t hs = arrayOopDesc::header_size(elem_type);
 343     // Align to next 8 bytes to avoid trashing arrays's length.
 344     const size_t aligned_hs = align_object_offset(hs);
 345     HeapWord* obj = (HeapWord*)result;
 346     if (aligned_hs > hs) {
 347       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 348     }
 349     // Optimized zeroing.
 350     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 351   }
 352 
 353 JRT_END
 354 
 355 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 356 
 357 // multianewarray for 2 dimensions
 358 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 359 #ifndef PRODUCT
 360   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 361 #endif
 362   assert(check_compiled_frame(thread), "incorrect caller");
 363   assert(elem_type->is_klass(), "not a class");
 364   jint dims[2];
 365   dims[0] = len1;
 366   dims[1] = len2;
 367   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 368   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 369   thread->set_vm_result(obj);
 370 JRT_END
 371 
 372 // multianewarray for 3 dimensions
 373 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 374 #ifndef PRODUCT
 375   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 376 #endif
 377   assert(check_compiled_frame(thread), "incorrect caller");
 378   assert(elem_type->is_klass(), "not a class");
 379   jint dims[3];
 380   dims[0] = len1;
 381   dims[1] = len2;
 382   dims[2] = len3;
 383   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 384   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 385   thread->set_vm_result(obj);
 386 JRT_END
 387 
 388 // multianewarray for 4 dimensions
 389 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 390 #ifndef PRODUCT
 391   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 392 #endif
 393   assert(check_compiled_frame(thread), "incorrect caller");
 394   assert(elem_type->is_klass(), "not a class");
 395   jint dims[4];
 396   dims[0] = len1;
 397   dims[1] = len2;
 398   dims[2] = len3;
 399   dims[3] = len4;
 400   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 401   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 402   thread->set_vm_result(obj);
 403 JRT_END
 404 
 405 // multianewarray for 5 dimensions
 406 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 407 #ifndef PRODUCT
 408   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 409 #endif
 410   assert(check_compiled_frame(thread), "incorrect caller");
 411   assert(elem_type->is_klass(), "not a class");
 412   jint dims[5];
 413   dims[0] = len1;
 414   dims[1] = len2;
 415   dims[2] = len3;
 416   dims[3] = len4;
 417   dims[4] = len5;
 418   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 419   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 420   thread->set_vm_result(obj);
 421 JRT_END
 422 
 423 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 424   assert(check_compiled_frame(thread), "incorrect caller");
 425   assert(elem_type->is_klass(), "not a class");
 426   assert(oop(dims)->is_typeArray(), "not an array");
 427 
 428   ResourceMark rm;
 429   jint len = dims->length();
 430   assert(len > 0, "Dimensions array should contain data");
 431   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 432   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 433   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 434 
 435   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 436   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 437   thread->set_vm_result(obj);
 438 JRT_END
 439 
 440 
 441 const TypeFunc *OptoRuntime::new_instance_Type() {
 442   // create input type (domain)
 443   const Type **fields = TypeTuple::fields(1);
 444   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 445   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 446 
 447   // create result type (range)
 448   fields = TypeTuple::fields(1);
 449   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 450 
 451   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 452 
 453   return TypeFunc::make(domain, range);
 454 }
 455 
 456 
 457 const TypeFunc *OptoRuntime::athrow_Type() {
 458   // create input type (domain)
 459   const Type **fields = TypeTuple::fields(1);
 460   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 461   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 462 
 463   // create result type (range)
 464   fields = TypeTuple::fields(0);
 465 
 466   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 467 
 468   return TypeFunc::make(domain, range);
 469 }
 470 
 471 
 472 const TypeFunc *OptoRuntime::new_array_Type() {
 473   // create input type (domain)
 474   const Type **fields = TypeTuple::fields(2);
 475   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 476   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 477   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 478 
 479   // create result type (range)
 480   fields = TypeTuple::fields(1);
 481   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 482 
 483   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 484 
 485   return TypeFunc::make(domain, range);
 486 }
 487 
 488 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 489   // create input type (domain)
 490   const int nargs = ndim + 1;
 491   const Type **fields = TypeTuple::fields(nargs);
 492   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 493   for( int i = 1; i < nargs; i++ )
 494     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 495   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 496 
 497   // create result type (range)
 498   fields = TypeTuple::fields(1);
 499   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 501 
 502   return TypeFunc::make(domain, range);
 503 }
 504 
 505 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 506   return multianewarray_Type(2);
 507 }
 508 
 509 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 510   return multianewarray_Type(3);
 511 }
 512 
 513 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 514   return multianewarray_Type(4);
 515 }
 516 
 517 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 518   return multianewarray_Type(5);
 519 }
 520 
 521 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 522   // create input type (domain)
 523   const Type **fields = TypeTuple::fields(2);
 524   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 525   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 526   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 527 
 528   // create result type (range)
 529   fields = TypeTuple::fields(1);
 530   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 531   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 532 
 533   return TypeFunc::make(domain, range);
 534 }
 535 
 536 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 537   const Type **fields = TypeTuple::fields(2);
 538   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 539   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 540   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 541 
 542   // create result type (range)
 543   fields = TypeTuple::fields(0);
 544   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 545 
 546   return TypeFunc::make(domain, range);
 547 }
 548 
 549 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 550 
 551   const Type **fields = TypeTuple::fields(2);
 552   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 553   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 554   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 555 
 556   // create result type (range)
 557   fields = TypeTuple::fields(0);
 558   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 559 
 560   return TypeFunc::make(domain, range);
 561 }
 562 
 563 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 564   // create input type (domain)
 565   const Type **fields = TypeTuple::fields(1);
 566   // Symbol* name of class to be loaded
 567   fields[TypeFunc::Parms+0] = TypeInt::INT;
 568   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 569 
 570   // create result type (range)
 571   fields = TypeTuple::fields(0);
 572   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 573 
 574   return TypeFunc::make(domain, range);
 575 }
 576 
 577 # ifdef ENABLE_ZAP_DEAD_LOCALS
 578 // Type used for stub generation for zap_dead_locals.
 579 // No inputs or outputs
 580 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 581   // create input type (domain)
 582   const Type **fields = TypeTuple::fields(0);
 583   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 584 
 585   // create result type (range)
 586   fields = TypeTuple::fields(0);
 587   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 588 
 589   return TypeFunc::make(domain,range);
 590 }
 591 # endif
 592 
 593 
 594 //-----------------------------------------------------------------------------
 595 // Monitor Handling
 596 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 597   // create input type (domain)
 598   const Type **fields = TypeTuple::fields(2);
 599   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 600   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 601   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 602 
 603   // create result type (range)
 604   fields = TypeTuple::fields(0);
 605 
 606   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 607 
 608   return TypeFunc::make(domain,range);
 609 }
 610 
 611 
 612 //-----------------------------------------------------------------------------
 613 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 614   // create input type (domain)
 615   const Type **fields = TypeTuple::fields(2);
 616   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 617   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 619 
 620   // create result type (range)
 621   fields = TypeTuple::fields(0);
 622 
 623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 624 
 625   return TypeFunc::make(domain,range);
 626 }
 627 
 628 const TypeFunc* OptoRuntime::flush_windows_Type() {
 629   // create input type (domain)
 630   const Type** fields = TypeTuple::fields(1);
 631   fields[TypeFunc::Parms+0] = NULL; // void
 632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 633 
 634   // create result type
 635   fields = TypeTuple::fields(1);
 636   fields[TypeFunc::Parms+0] = NULL; // void
 637   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 638 
 639   return TypeFunc::make(domain, range);
 640 }
 641 
 642 const TypeFunc* OptoRuntime::l2f_Type() {
 643   // create input type (domain)
 644   const Type **fields = TypeTuple::fields(2);
 645   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 646   fields[TypeFunc::Parms+1] = Type::HALF;
 647   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 648 
 649   // create result type (range)
 650   fields = TypeTuple::fields(1);
 651   fields[TypeFunc::Parms+0] = Type::FLOAT;
 652   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 653 
 654   return TypeFunc::make(domain, range);
 655 }
 656 
 657 const TypeFunc* OptoRuntime::modf_Type() {
 658   const Type **fields = TypeTuple::fields(2);
 659   fields[TypeFunc::Parms+0] = Type::FLOAT;
 660   fields[TypeFunc::Parms+1] = Type::FLOAT;
 661   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 662 
 663   // create result type (range)
 664   fields = TypeTuple::fields(1);
 665   fields[TypeFunc::Parms+0] = Type::FLOAT;
 666 
 667   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 668 
 669   return TypeFunc::make(domain, range);
 670 }
 671 
 672 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 673   // create input type (domain)
 674   const Type **fields = TypeTuple::fields(2);
 675   // Symbol* name of class to be loaded
 676   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 677   fields[TypeFunc::Parms+1] = Type::HALF;
 678   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 679 
 680   // create result type (range)
 681   fields = TypeTuple::fields(2);
 682   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 683   fields[TypeFunc::Parms+1] = Type::HALF;
 684   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 685 
 686   return TypeFunc::make(domain, range);
 687 }
 688 
 689 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 690   const Type **fields = TypeTuple::fields(4);
 691   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 692   fields[TypeFunc::Parms+1] = Type::HALF;
 693   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 694   fields[TypeFunc::Parms+3] = Type::HALF;
 695   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 696 
 697   // create result type (range)
 698   fields = TypeTuple::fields(2);
 699   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 700   fields[TypeFunc::Parms+1] = Type::HALF;
 701   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 702 
 703   return TypeFunc::make(domain, range);
 704 }
 705 
 706 //-------------- currentTimeMillis, currentTimeNanos, etc
 707 
 708 const TypeFunc* OptoRuntime::void_long_Type() {
 709   // create input type (domain)
 710   const Type **fields = TypeTuple::fields(0);
 711   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 712 
 713   // create result type (range)
 714   fields = TypeTuple::fields(2);
 715   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 716   fields[TypeFunc::Parms+1] = Type::HALF;
 717   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 718 
 719   return TypeFunc::make(domain, range);
 720 }
 721 
 722 // arraycopy stub variations:
 723 enum ArrayCopyType {
 724   ac_fast,                      // void(ptr, ptr, size_t)
 725   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 726   ac_slow,                      // void(ptr, int, ptr, int, int)
 727   ac_generic                    //  int(ptr, int, ptr, int, int)
 728 };
 729 
 730 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 731   // create input type (domain)
 732   int num_args      = (act == ac_fast ? 3 : 5);
 733   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 734   int argcnt = num_args;
 735   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 736   const Type** fields = TypeTuple::fields(argcnt);
 737   int argp = TypeFunc::Parms;
 738   fields[argp++] = TypePtr::NOTNULL;    // src
 739   if (num_size_args == 0) {
 740     fields[argp++] = TypeInt::INT;      // src_pos
 741   }
 742   fields[argp++] = TypePtr::NOTNULL;    // dest
 743   if (num_size_args == 0) {
 744     fields[argp++] = TypeInt::INT;      // dest_pos
 745     fields[argp++] = TypeInt::INT;      // length
 746   }
 747   while (num_size_args-- > 0) {
 748     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 749     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 750   }
 751   if (act == ac_checkcast) {
 752     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 753   }
 754   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 755   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 756 
 757   // create result type if needed
 758   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 759   fields = TypeTuple::fields(1);
 760   if (retcnt == 0)
 761     fields[TypeFunc::Parms+0] = NULL; // void
 762   else
 763     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 764   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 765   return TypeFunc::make(domain, range);
 766 }
 767 
 768 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 769   // This signature is simple:  Two base pointers and a size_t.
 770   return make_arraycopy_Type(ac_fast);
 771 }
 772 
 773 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 774   // An extension of fast_arraycopy_Type which adds type checking.
 775   return make_arraycopy_Type(ac_checkcast);
 776 }
 777 
 778 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 779   // This signature is exactly the same as System.arraycopy.
 780   // There are no intptr_t (int/long) arguments.
 781   return make_arraycopy_Type(ac_slow);
 782 }
 783 
 784 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 785   // This signature is like System.arraycopy, except that it returns status.
 786   return make_arraycopy_Type(ac_generic);
 787 }
 788 
 789 
 790 const TypeFunc* OptoRuntime::array_fill_Type() {
 791   const Type** fields;
 792   int argp = TypeFunc::Parms;
 793   if (CCallingConventionRequiresIntsAsLongs) {
 794   // create input type (domain): pointer, int, size_t
 795     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
 796     fields[argp++] = TypePtr::NOTNULL;
 797     fields[argp++] = TypeLong::LONG;
 798     fields[argp++] = Type::HALF;
 799   } else {
 800     // create input type (domain): pointer, int, size_t
 801     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 802     fields[argp++] = TypePtr::NOTNULL;
 803     fields[argp++] = TypeInt::INT;
 804   }
 805   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 806   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 807   const TypeTuple *domain = TypeTuple::make(argp, fields);
 808 
 809   // create result type
 810   fields = TypeTuple::fields(1);
 811   fields[TypeFunc::Parms+0] = NULL; // void
 812   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 813 
 814   return TypeFunc::make(domain, range);
 815 }
 816 
 817 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 818 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 819   // create input type (domain)
 820   int num_args      = 3;
 821   if (Matcher::pass_original_key_for_aes()) {
 822     num_args = 4;
 823   }
 824   int argcnt = num_args;
 825   const Type** fields = TypeTuple::fields(argcnt);
 826   int argp = TypeFunc::Parms;
 827   fields[argp++] = TypePtr::NOTNULL;    // src
 828   fields[argp++] = TypePtr::NOTNULL;    // dest
 829   fields[argp++] = TypePtr::NOTNULL;    // k array
 830   if (Matcher::pass_original_key_for_aes()) {
 831     fields[argp++] = TypePtr::NOTNULL;    // original k array
 832   }
 833   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 834   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 835 
 836   // no result type needed
 837   fields = TypeTuple::fields(1);
 838   fields[TypeFunc::Parms+0] = NULL; // void
 839   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 840   return TypeFunc::make(domain, range);
 841 }
 842 
 843 /**
 844  * int updateBytesCRC32(int crc, byte* b, int len)
 845  */
 846 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 847   // create input type (domain)
 848   int num_args      = 3;
 849   int argcnt = num_args;
 850   const Type** fields = TypeTuple::fields(argcnt);
 851   int argp = TypeFunc::Parms;
 852   fields[argp++] = TypeInt::INT;        // crc
 853   fields[argp++] = TypePtr::NOTNULL;    // src
 854   fields[argp++] = TypeInt::INT;        // len
 855   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 856   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 857 
 858   // result type needed
 859   fields = TypeTuple::fields(1);
 860   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 861   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 862   return TypeFunc::make(domain, range);
 863 }
 864 
 865 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 866 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 867   // create input type (domain)
 868   int num_args      = 5;
 869   if (Matcher::pass_original_key_for_aes()) {
 870     num_args = 6;
 871   }
 872   int argcnt = num_args;
 873   const Type** fields = TypeTuple::fields(argcnt);
 874   int argp = TypeFunc::Parms;
 875   fields[argp++] = TypePtr::NOTNULL;    // src
 876   fields[argp++] = TypePtr::NOTNULL;    // dest
 877   fields[argp++] = TypePtr::NOTNULL;    // k array
 878   fields[argp++] = TypePtr::NOTNULL;    // r array
 879   fields[argp++] = TypeInt::INT;        // src len
 880   if (Matcher::pass_original_key_for_aes()) {
 881     fields[argp++] = TypePtr::NOTNULL;    // original k array
 882   }
 883   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 884   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 885 
 886   // returning cipher len (int)
 887   fields = TypeTuple::fields(1);
 888   fields[TypeFunc::Parms+0] = TypeInt::INT;
 889   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 890   return TypeFunc::make(domain, range);
 891 }
 892 
 893 /*
 894  * void implCompress(byte[] buf, int ofs)
 895  */
 896 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 897   // create input type (domain)
 898   int num_args = 2;
 899   int argcnt = num_args;
 900   const Type** fields = TypeTuple::fields(argcnt);
 901   int argp = TypeFunc::Parms;
 902   fields[argp++] = TypePtr::NOTNULL; // buf
 903   fields[argp++] = TypePtr::NOTNULL; // state
 904   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 905   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 906 
 907   // no result type needed
 908   fields = TypeTuple::fields(1);
 909   fields[TypeFunc::Parms+0] = NULL; // void
 910   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 911   return TypeFunc::make(domain, range);
 912 }
 913 
 914 /*
 915  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 916  */
 917 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 918   // create input type (domain)
 919   int num_args = 4;
 920   int argcnt = num_args;
 921   const Type** fields = TypeTuple::fields(argcnt);
 922   int argp = TypeFunc::Parms;
 923   fields[argp++] = TypePtr::NOTNULL; // buf
 924   fields[argp++] = TypePtr::NOTNULL; // state
 925   fields[argp++] = TypeInt::INT;     // ofs
 926   fields[argp++] = TypeInt::INT;     // limit
 927   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 928   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 929 
 930   // returning ofs (int)
 931   fields = TypeTuple::fields(1);
 932   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 933   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 934   return TypeFunc::make(domain, range);
 935 }
 936 
 937 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 938   // create input type (domain)
 939   int num_args      = 6;
 940   int argcnt = num_args;
 941   const Type** fields = TypeTuple::fields(argcnt);
 942   int argp = TypeFunc::Parms;
 943   fields[argp++] = TypePtr::NOTNULL;    // x
 944   fields[argp++] = TypeInt::INT;        // xlen
 945   fields[argp++] = TypePtr::NOTNULL;    // y
 946   fields[argp++] = TypeInt::INT;        // ylen
 947   fields[argp++] = TypePtr::NOTNULL;    // z
 948   fields[argp++] = TypeInt::INT;        // zlen
 949   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 950   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 951 
 952   // no result type needed
 953   fields = TypeTuple::fields(1);
 954   fields[TypeFunc::Parms+0] = NULL;
 955   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 956   return TypeFunc::make(domain, range);
 957 }
 958 
 959 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
 960   // create input type (domain)
 961   int num_args      = 7;
 962   int argcnt = num_args;
 963   const Type** fields = TypeTuple::fields(argcnt);
 964   int argp = TypeFunc::Parms;
 965   fields[argp++] = TypePtr::NOTNULL;    // a
 966   fields[argp++] = TypePtr::NOTNULL;    // b
 967   fields[argp++] = TypePtr::NOTNULL;    // n
 968   fields[argp++] = TypeInt::INT;        // len
 969   fields[argp++] = TypeLong::LONG;      // inv
 970   fields[argp++] = Type::HALF;
 971   fields[argp++] = TypePtr::NOTNULL;    // result
 972   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 973   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 974 
 975   // result type needed
 976   fields = TypeTuple::fields(1);
 977   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
 978 
 979   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 980   return TypeFunc::make(domain, range);
 981 }
 982 
 983 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
 984   // create input type (domain)
 985   int num_args      = 6;
 986   int argcnt = num_args;
 987   const Type** fields = TypeTuple::fields(argcnt);
 988   int argp = TypeFunc::Parms;
 989   fields[argp++] = TypePtr::NOTNULL;    // a
 990   fields[argp++] = TypePtr::NOTNULL;    // n
 991   fields[argp++] = TypeInt::INT;        // len
 992   fields[argp++] = TypeLong::LONG;      // inv
 993   fields[argp++] = Type::HALF;
 994   fields[argp++] = TypePtr::NOTNULL;    // result
 995   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 996   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 997 
 998   // result type needed
 999   fields = TypeTuple::fields(1);
1000   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1001 
1002   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1003   return TypeFunc::make(domain, range);
1004 }
1005 
1006 
1007 //------------- Interpreter state access for on stack replacement
1008 const TypeFunc* OptoRuntime::osr_end_Type() {
1009   // create input type (domain)
1010   const Type **fields = TypeTuple::fields(1);
1011   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1012   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1013 
1014   // create result type
1015   fields = TypeTuple::fields(1);
1016   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1017   fields[TypeFunc::Parms+0] = NULL; // void
1018   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1019   return TypeFunc::make(domain, range);
1020 }
1021 
1022 //-------------- methodData update helpers
1023 
1024 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1025   // create input type (domain)
1026   const Type **fields = TypeTuple::fields(2);
1027   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1028   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1029   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1030 
1031   // create result type
1032   fields = TypeTuple::fields(1);
1033   fields[TypeFunc::Parms+0] = NULL; // void
1034   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1035   return TypeFunc::make(domain,range);
1036 }
1037 
1038 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1039   if (receiver == NULL) return;
1040   Klass* receiver_klass = receiver->klass();
1041 
1042   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1043   int empty_row = -1;           // free row, if any is encountered
1044 
1045   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1046   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1047     // if (vc->receiver(row) == receiver_klass)
1048     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1049     intptr_t row_recv = *(mdp + receiver_off);
1050     if (row_recv == (intptr_t) receiver_klass) {
1051       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1052       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1053       *(mdp + count_off) += DataLayout::counter_increment;
1054       return;
1055     } else if (row_recv == 0) {
1056       // else if (vc->receiver(row) == NULL)
1057       empty_row = (int) row;
1058     }
1059   }
1060 
1061   if (empty_row != -1) {
1062     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1063     // vc->set_receiver(empty_row, receiver_klass);
1064     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1065     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1066     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1067     *(mdp + count_off) = DataLayout::counter_increment;
1068   } else {
1069     // Receiver did not match any saved receiver and there is no empty row for it.
1070     // Increment total counter to indicate polymorphic case.
1071     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
1072     *count_p += DataLayout::counter_increment;
1073   }
1074 JRT_END
1075 
1076 //-------------------------------------------------------------------------------------
1077 // register policy
1078 
1079 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1080   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1081   switch (register_save_policy[reg]) {
1082     case 'C': return false; //SOC
1083     case 'E': return true ; //SOE
1084     case 'N': return false; //NS
1085     case 'A': return false; //AS
1086   }
1087   ShouldNotReachHere();
1088   return false;
1089 }
1090 
1091 //-----------------------------------------------------------------------
1092 // Exceptions
1093 //
1094 
1095 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1096 
1097 // The method is an entry that is always called by a C++ method not
1098 // directly from compiled code. Compiled code will call the C++ method following.
1099 // We can't allow async exception to be installed during  exception processing.
1100 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1101 
1102   // Do not confuse exception_oop with pending_exception. The exception_oop
1103   // is only used to pass arguments into the method. Not for general
1104   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1105   // the runtime stubs checks this on exit.
1106   assert(thread->exception_oop() != NULL, "exception oop is found");
1107   address handler_address = NULL;
1108 
1109   Handle exception(thread, thread->exception_oop());
1110   address pc = thread->exception_pc();
1111 
1112   // Clear out the exception oop and pc since looking up an
1113   // exception handler can cause class loading, which might throw an
1114   // exception and those fields are expected to be clear during
1115   // normal bytecode execution.
1116   thread->clear_exception_oop_and_pc();
1117 
1118   if (TraceExceptions) {
1119     trace_exception(exception(), pc, "");
1120   }
1121 
1122   // for AbortVMOnException flag
1123   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
1124 
1125 #ifdef ASSERT
1126   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1127     // should throw an exception here
1128     ShouldNotReachHere();
1129   }
1130 #endif
1131 
1132   // new exception handling: this method is entered only from adapters
1133   // exceptions from compiled java methods are handled in compiled code
1134   // using rethrow node
1135 
1136   nm = CodeCache::find_nmethod(pc);
1137   assert(nm != NULL, "No NMethod found");
1138   if (nm->is_native_method()) {
1139     fatal("Native method should not have path to exception handling");
1140   } else {
1141     // we are switching to old paradigm: search for exception handler in caller_frame
1142     // instead in exception handler of caller_frame.sender()
1143 
1144     if (JvmtiExport::can_post_on_exceptions()) {
1145       // "Full-speed catching" is not necessary here,
1146       // since we're notifying the VM on every catch.
1147       // Force deoptimization and the rest of the lookup
1148       // will be fine.
1149       deoptimize_caller_frame(thread);
1150     }
1151 
1152     // Check the stack guard pages.  If enabled, look for handler in this frame;
1153     // otherwise, forcibly unwind the frame.
1154     //
1155     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1156     bool force_unwind = !thread->reguard_stack();
1157     bool deopting = false;
1158     if (nm->is_deopt_pc(pc)) {
1159       deopting = true;
1160       RegisterMap map(thread, false);
1161       frame deoptee = thread->last_frame().sender(&map);
1162       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1163       // Adjust the pc back to the original throwing pc
1164       pc = deoptee.pc();
1165     }
1166 
1167     // If we are forcing an unwind because of stack overflow then deopt is
1168     // irrelevant since we are throwing the frame away anyway.
1169 
1170     if (deopting && !force_unwind) {
1171       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1172     } else {
1173 
1174       handler_address =
1175         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1176 
1177       if (handler_address == NULL) {
1178         Handle original_exception(thread, exception());
1179         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1180         assert (handler_address != NULL, "must have compiled handler");
1181         // Update the exception cache only when the unwind was not forced
1182         // and there didn't happen another exception during the computation of the
1183         // compiled exception handler.
1184         if (!force_unwind && original_exception() == exception()) {
1185           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1186         }
1187       } else {
1188         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1189       }
1190     }
1191 
1192     thread->set_exception_pc(pc);
1193     thread->set_exception_handler_pc(handler_address);
1194 
1195     // Check if the exception PC is a MethodHandle call site.
1196     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1197   }
1198 
1199   // Restore correct return pc.  Was saved above.
1200   thread->set_exception_oop(exception());
1201   return handler_address;
1202 
1203 JRT_END
1204 
1205 // We are entering here from exception_blob
1206 // If there is a compiled exception handler in this method, we will continue there;
1207 // otherwise we will unwind the stack and continue at the caller of top frame method
1208 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1209 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1210 // we looked up the handler for has been deoptimized in the meantime. If it has been
1211 // we must not use the handler and instead return the deopt blob.
1212 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1213 //
1214 // We are in Java not VM and in debug mode we have a NoHandleMark
1215 //
1216 #ifndef PRODUCT
1217   SharedRuntime::_find_handler_ctr++;          // find exception handler
1218 #endif
1219   debug_only(NoHandleMark __hm;)
1220   nmethod* nm = NULL;
1221   address handler_address = NULL;
1222   {
1223     // Enter the VM
1224 
1225     ResetNoHandleMark rnhm;
1226     handler_address = handle_exception_C_helper(thread, nm);
1227   }
1228 
1229   // Back in java: Use no oops, DON'T safepoint
1230 
1231   // Now check to see if the handler we are returning is in a now
1232   // deoptimized frame
1233 
1234   if (nm != NULL) {
1235     RegisterMap map(thread, false);
1236     frame caller = thread->last_frame().sender(&map);
1237 #ifdef ASSERT
1238     assert(caller.is_compiled_frame(), "must be");
1239 #endif // ASSERT
1240     if (caller.is_deoptimized_frame()) {
1241       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1242     }
1243   }
1244   return handler_address;
1245 }
1246 
1247 //------------------------------rethrow----------------------------------------
1248 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1249 // is either throwing or rethrowing an exception.  The callee-save registers
1250 // have been restored, synchronized objects have been unlocked and the callee
1251 // stack frame has been removed.  The return address was passed in.
1252 // Exception oop is passed as the 1st argument.  This routine is then called
1253 // from the stub.  On exit, we know where to jump in the caller's code.
1254 // After this C code exits, the stub will pop his frame and end in a jump
1255 // (instead of a return).  We enter the caller's default handler.
1256 //
1257 // This must be JRT_LEAF:
1258 //     - caller will not change its state as we cannot block on exit,
1259 //       therefore raw_exception_handler_for_return_address is all it takes
1260 //       to handle deoptimized blobs
1261 //
1262 // However, there needs to be a safepoint check in the middle!  So compiled
1263 // safepoints are completely watertight.
1264 //
1265 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1266 //
1267 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1268 //
1269 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1270 #ifndef PRODUCT
1271   SharedRuntime::_rethrow_ctr++;               // count rethrows
1272 #endif
1273   assert (exception != NULL, "should have thrown a NULLPointerException");
1274 #ifdef ASSERT
1275   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1276     // should throw an exception here
1277     ShouldNotReachHere();
1278   }
1279 #endif
1280 
1281   thread->set_vm_result(exception);
1282   // Frame not compiled (handles deoptimization blob)
1283   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1284 }
1285 
1286 
1287 const TypeFunc *OptoRuntime::rethrow_Type() {
1288   // create input type (domain)
1289   const Type **fields = TypeTuple::fields(1);
1290   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1291   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1292 
1293   // create result type (range)
1294   fields = TypeTuple::fields(1);
1295   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1296   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1297 
1298   return TypeFunc::make(domain, range);
1299 }
1300 
1301 
1302 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1303   // Deoptimize the caller before continuing, as the compiled
1304   // exception handler table may not be valid.
1305   if (!StressCompiledExceptionHandlers && doit) {
1306     deoptimize_caller_frame(thread);
1307   }
1308 }
1309 
1310 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1311   // Called from within the owner thread, so no need for safepoint
1312   RegisterMap reg_map(thread);
1313   frame stub_frame = thread->last_frame();
1314   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1315   frame caller_frame = stub_frame.sender(&reg_map);
1316 
1317   // Deoptimize the caller frame.
1318   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1319 }
1320 
1321 
1322 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1323   // Called from within the owner thread, so no need for safepoint
1324   RegisterMap reg_map(thread);
1325   frame stub_frame = thread->last_frame();
1326   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1327   frame caller_frame = stub_frame.sender(&reg_map);
1328   return caller_frame.is_deoptimized_frame();
1329 }
1330 
1331 
1332 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1333   // create input type (domain)
1334   const Type **fields = TypeTuple::fields(1);
1335   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1336   // // The JavaThread* is passed to each routine as the last argument
1337   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1338   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1339 
1340   // create result type (range)
1341   fields = TypeTuple::fields(0);
1342 
1343   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1344 
1345   return TypeFunc::make(domain,range);
1346 }
1347 
1348 
1349 //-----------------------------------------------------------------------------
1350 // Dtrace support.  entry and exit probes have the same signature
1351 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1352   // create input type (domain)
1353   const Type **fields = TypeTuple::fields(2);
1354   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1355   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1356   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1357 
1358   // create result type (range)
1359   fields = TypeTuple::fields(0);
1360 
1361   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1362 
1363   return TypeFunc::make(domain,range);
1364 }
1365 
1366 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1367   // create input type (domain)
1368   const Type **fields = TypeTuple::fields(2);
1369   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1370   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1371 
1372   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1373 
1374   // create result type (range)
1375   fields = TypeTuple::fields(0);
1376 
1377   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1378 
1379   return TypeFunc::make(domain,range);
1380 }
1381 
1382 
1383 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1384   assert(obj->is_oop(), "must be a valid oop");
1385   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1386   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1387 JRT_END
1388 
1389 //-----------------------------------------------------------------------------
1390 
1391 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1392 
1393 //
1394 // dump the collected NamedCounters.
1395 //
1396 void OptoRuntime::print_named_counters() {
1397   int total_lock_count = 0;
1398   int eliminated_lock_count = 0;
1399 
1400   NamedCounter* c = _named_counters;
1401   while (c) {
1402     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1403       int count = c->count();
1404       if (count > 0) {
1405         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1406         if (Verbose) {
1407           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1408         }
1409         total_lock_count += count;
1410         if (eliminated) {
1411           eliminated_lock_count += count;
1412         }
1413       }
1414     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1415       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1416       if (blc->nonzero()) {
1417         tty->print_cr("%s", c->name());
1418         blc->print_on(tty);
1419       }
1420 #if INCLUDE_RTM_OPT
1421     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1422       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1423       if (rlc->nonzero()) {
1424         tty->print_cr("%s", c->name());
1425         rlc->print_on(tty);
1426       }
1427 #endif
1428     }
1429     c = c->next();
1430   }
1431   if (total_lock_count > 0) {
1432     tty->print_cr("dynamic locks: %d", total_lock_count);
1433     if (eliminated_lock_count) {
1434       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1435                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1436     }
1437   }
1438 }
1439 
1440 //
1441 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1442 //  name which consists of method@line for the inlining tree.
1443 //
1444 
1445 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1446   int max_depth = youngest_jvms->depth();
1447 
1448   // Visit scopes from youngest to oldest.
1449   bool first = true;
1450   stringStream st;
1451   for (int depth = max_depth; depth >= 1; depth--) {
1452     JVMState* jvms = youngest_jvms->of_depth(depth);
1453     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1454     if (!first) {
1455       st.print(" ");
1456     } else {
1457       first = false;
1458     }
1459     int bci = jvms->bci();
1460     if (bci < 0) bci = 0;
1461     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1462     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1463   }
1464   NamedCounter* c;
1465   if (tag == NamedCounter::BiasedLockingCounter) {
1466     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1467   } else if (tag == NamedCounter::RTMLockingCounter) {
1468     c = new RTMLockingNamedCounter(strdup(st.as_string()));
1469   } else {
1470     c = new NamedCounter(strdup(st.as_string()), tag);
1471   }
1472 
1473   // atomically add the new counter to the head of the list.  We only
1474   // add counters so this is safe.
1475   NamedCounter* head;
1476   do {
1477     c->set_next(NULL);
1478     head = _named_counters;
1479     c->set_next(head);
1480   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1481   return c;
1482 }
1483 
1484 //-----------------------------------------------------------------------------
1485 // Non-product code
1486 #ifndef PRODUCT
1487 
1488 int trace_exception_counter = 0;
1489 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1490   ttyLocker ttyl;
1491   trace_exception_counter++;
1492   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1493   exception_oop->print_value();
1494   tty->print(" in ");
1495   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1496   if (blob->is_nmethod()) {
1497     nmethod* nm = blob->as_nmethod_or_null();
1498     nm->method()->print_value();
1499   } else if (blob->is_runtime_stub()) {
1500     tty->print("<runtime-stub>");
1501   } else {
1502     tty->print("<unknown>");
1503   }
1504   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1505   tty->print_cr("]");
1506 }
1507 
1508 #endif  // PRODUCT
1509 
1510 
1511 # ifdef ENABLE_ZAP_DEAD_LOCALS
1512 // Called from call sites in compiled code with oop maps (actually safepoints)
1513 // Zaps dead locals in first java frame.
1514 // Is entry because may need to lock to generate oop maps
1515 // Currently, only used for compiler frames, but someday may be used
1516 // for interpreter frames, too.
1517 
1518 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1519 
1520 // avoid pointers to member funcs with these helpers
1521 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1522 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1523 
1524 
1525 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1526                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1527   assert(JavaThread::current() == thread, "is this needed?");
1528 
1529   if ( !ZapDeadCompiledLocals )  return;
1530 
1531   bool skip = false;
1532 
1533        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1534   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1535   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1536     warning("starting zapping after skipping");
1537 
1538        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1539   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1540   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1541     warning("about to zap last zap");
1542 
1543   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1544 
1545   if ( skip )  return;
1546 
1547   // find java frame and zap it
1548 
1549   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1550     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1551       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1552       return;
1553     }
1554   }
1555   warning("no frame found to zap in zap_dead_Java_locals_C");
1556 }
1557 
1558 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1559   zap_dead_java_or_native_locals(thread, is_java_frame);
1560 JRT_END
1561 
1562 // The following does not work because for one thing, the
1563 // thread state is wrong; it expects java, but it is native.
1564 // Also, the invariants in a native stub are different and
1565 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1566 // in there.
1567 // So for now, we do not zap in native stubs.
1568 
1569 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1570   zap_dead_java_or_native_locals(thread, is_native_frame);
1571 JRT_END
1572 
1573 # endif