1 //
   2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for no registers (empty set).
 127 reg_class no_reg();
 128 
 129 // Class for all registers
 130 reg_class any_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 131 // Class for all registers (excluding EBP)
 132 reg_class any_reg_no_ebp(EAX, EDX, EDI, ESI, ECX, EBX, ESP);
 133 // Dynamic register class that selects at runtime between register classes
 134 // any_reg and any_no_ebp_reg (depending on the value of the flag PreserveFramePointer). 
 135 // Equivalent to: return PreserveFramePointer ? any_no_ebp_reg : any_reg;
 136 reg_class_dynamic any_reg(any_reg_no_ebp, any_reg_with_ebp, %{ PreserveFramePointer %});
 137 
 138 // Class for general registers
 139 reg_class int_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 140 // Class for general registers (excluding EBP).
 141 // This register class can be used for implicit null checks on win95.
 142 // It is also safe for use by tailjumps (we don't want to allocate in ebp).
 143 // Used also if the PreserveFramePointer flag is true.
 144 reg_class int_reg_no_ebp(EAX, EDX, EDI, ESI, ECX, EBX);
 145 // Dynamic register class that selects between int_reg and int_reg_no_ebp.
 146 reg_class_dynamic int_reg(int_reg_no_ebp, int_reg_with_ebp, %{ PreserveFramePointer %});
 147 
 148 // Class of "X" registers
 149 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 150 
 151 // Class of registers that can appear in an address with no offset.
 152 // EBP and ESP require an extra instruction byte for zero offset.
 153 // Used in fast-unlock
 154 reg_class p_reg(EDX, EDI, ESI, EBX);
 155 
 156 // Class for general registers excluding ECX
 157 reg_class ncx_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, EBX);
 158 // Class for general registers excluding ECX (and EBP)
 159 reg_class ncx_reg_no_ebp(EAX, EDX, EDI, ESI, EBX);
 160 // Dynamic register class that selects between ncx_reg and ncx_reg_no_ebp.
 161 reg_class_dynamic ncx_reg(ncx_reg_no_ebp, ncx_reg_with_ebp, %{ PreserveFramePointer %});
 162 
 163 // Class for general registers excluding EAX
 164 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 165 
 166 // Class for general registers excluding EAX and EBX.
 167 reg_class nabx_reg_with_ebp(EDX, EDI, ESI, ECX, EBP);
 168 // Class for general registers excluding EAX and EBX (and EBP)
 169 reg_class nabx_reg_no_ebp(EDX, EDI, ESI, ECX);
 170 // Dynamic register class that selects between nabx_reg and nabx_reg_no_ebp.
 171 reg_class_dynamic nabx_reg(nabx_reg_no_ebp, nabx_reg_with_ebp, %{ PreserveFramePointer %});
 172 
 173 // Class of EAX (for multiply and divide operations)
 174 reg_class eax_reg(EAX);
 175 
 176 // Class of EBX (for atomic add)
 177 reg_class ebx_reg(EBX);
 178 
 179 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 180 reg_class ecx_reg(ECX);
 181 
 182 // Class of EDX (for multiply and divide operations)
 183 reg_class edx_reg(EDX);
 184 
 185 // Class of EDI (for synchronization)
 186 reg_class edi_reg(EDI);
 187 
 188 // Class of ESI (for synchronization)
 189 reg_class esi_reg(ESI);
 190 
 191 // Singleton class for stack pointer
 192 reg_class sp_reg(ESP);
 193 
 194 // Singleton class for instruction pointer
 195 // reg_class ip_reg(EIP);
 196 
 197 // Class of integer register pairs
 198 reg_class long_reg_with_ebp( EAX,EDX, ECX,EBX, EBP,EDI );
 199 // Class of integer register pairs (excluding EBP and EDI);
 200 reg_class long_reg_no_ebp( EAX,EDX, ECX,EBX );
 201 // Dynamic register class that selects between long_reg and long_reg_no_ebp.
 202 reg_class_dynamic long_reg(long_reg_no_ebp, long_reg_with_ebp, %{ PreserveFramePointer %});
 203 
 204 // Class of integer register pairs that aligns with calling convention
 205 reg_class eadx_reg( EAX,EDX );
 206 reg_class ebcx_reg( ECX,EBX );
 207 
 208 // Not AX or DX, used in divides
 209 reg_class nadx_reg_with_ebp(EBX, ECX, ESI, EDI, EBP);
 210 // Not AX or DX (and neither EBP), used in divides
 211 reg_class nadx_reg_no_ebp(EBX, ECX, ESI, EDI);
 212 // Dynamic register class that selects between nadx_reg and nadx_reg_no_ebp.
 213 reg_class_dynamic nadx_reg(nadx_reg_no_ebp, nadx_reg_with_ebp, %{ PreserveFramePointer %});
 214 
 215 // Floating point registers.  Notice FPR0 is not a choice.
 216 // FPR0 is not ever allocated; we use clever encodings to fake
 217 // a 2-address instructions out of Intels FP stack.
 218 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 219 
 220 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 221                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 222                       FPR7L,FPR7H );
 223 
 224 reg_class fp_flt_reg0( FPR1L );
 225 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 226 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 227 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 228                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 229 
 230 %}
 231 
 232 
 233 //----------SOURCE BLOCK-------------------------------------------------------
 234 // This is a block of C++ code which provides values, functions, and
 235 // definitions necessary in the rest of the architecture description
 236 source_hpp %{
 237 // Must be visible to the DFA in dfa_x86_32.cpp
 238 extern bool is_operand_hi32_zero(Node* n);
 239 %}
 240 
 241 source %{
 242 #define   RELOC_IMM32    Assembler::imm_operand
 243 #define   RELOC_DISP32   Assembler::disp32_operand
 244 
 245 #define __ _masm.
 246 
 247 // How to find the high register of a Long pair, given the low register
 248 #define   HIGH_FROM_LOW(x) ((x)+2)
 249 
 250 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 251 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 252 // fast versions of NegF/NegD and AbsF/AbsD.
 253 
 254 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 255 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 256   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 257   // of 128-bits operands for SSE instructions.
 258   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 259   // Store the value to a 128-bits operand.
 260   operand[0] = lo;
 261   operand[1] = hi;
 262   return operand;
 263 }
 264 
 265 // Buffer for 128-bits masks used by SSE instructions.
 266 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 267 
 268 // Static initialization during VM startup.
 269 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 270 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 271 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 272 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 273 
 274 // Offset hacking within calls.
 275 static int pre_call_resets_size() {
 276   int size = 0;
 277   Compile* C = Compile::current();
 278   if (C->in_24_bit_fp_mode()) {
 279     size += 6; // fldcw
 280   }
 281   if (C->max_vector_size() > 16) {
 282     size += 3; // vzeroupper
 283   }
 284   return size;
 285 }
 286 
 287 // !!!!! Special hack to get all type of calls to specify the byte offset
 288 //       from the start of the call to the point where the return address
 289 //       will point.
 290 int MachCallStaticJavaNode::ret_addr_offset() {
 291   return 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points  
 292 }
 293 
 294 int MachCallDynamicJavaNode::ret_addr_offset() {
 295   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
 296 }
 297 
 298 static int sizeof_FFree_Float_Stack_All = -1;
 299 
 300 int MachCallRuntimeNode::ret_addr_offset() {
 301   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 302   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
 303 }
 304 
 305 // Indicate if the safepoint node needs the polling page as an input.
 306 // Since x86 does have absolute addressing, it doesn't.
 307 bool SafePointNode::needs_polling_address_input() {
 308   return false;
 309 }
 310 
 311 //
 312 // Compute padding required for nodes which need alignment
 313 //
 314 
 315 // The address of the call instruction needs to be 4-byte aligned to
 316 // ensure that it does not span a cache line so that it can be patched.
 317 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 318   current_offset += pre_call_resets_size();  // skip fldcw, if any
 319   current_offset += 1;      // skip call opcode byte
 320   return round_to(current_offset, alignment_required()) - current_offset;
 321 }
 322 
 323 // The address of the call instruction needs to be 4-byte aligned to
 324 // ensure that it does not span a cache line so that it can be patched.
 325 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 326   current_offset += pre_call_resets_size();  // skip fldcw, if any
 327   current_offset += 5;      // skip MOV instruction
 328   current_offset += 1;      // skip call opcode byte
 329   return round_to(current_offset, alignment_required()) - current_offset;
 330 }
 331 
 332 // EMIT_RM()
 333 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 334   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 335   cbuf.insts()->emit_int8(c);
 336 }
 337 
 338 // EMIT_CC()
 339 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 340   unsigned char c = (unsigned char)( f1 | f2 );
 341   cbuf.insts()->emit_int8(c);
 342 }
 343 
 344 // EMIT_OPCODE()
 345 void emit_opcode(CodeBuffer &cbuf, int code) {
 346   cbuf.insts()->emit_int8((unsigned char) code);
 347 }
 348 
 349 // EMIT_OPCODE() w/ relocation information
 350 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 351   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 352   emit_opcode(cbuf, code);
 353 }
 354 
 355 // EMIT_D8()
 356 void emit_d8(CodeBuffer &cbuf, int d8) {
 357   cbuf.insts()->emit_int8((unsigned char) d8);
 358 }
 359 
 360 // EMIT_D16()
 361 void emit_d16(CodeBuffer &cbuf, int d16) {
 362   cbuf.insts()->emit_int16(d16);
 363 }
 364 
 365 // EMIT_D32()
 366 void emit_d32(CodeBuffer &cbuf, int d32) {
 367   cbuf.insts()->emit_int32(d32);
 368 }
 369 
 370 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 371 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 372         int format) {
 373   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 374   cbuf.insts()->emit_int32(d32);
 375 }
 376 
 377 // emit 32 bit value and construct relocation entry from RelocationHolder
 378 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 379         int format) {
 380 #ifdef ASSERT
 381   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 382     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 383   }
 384 #endif
 385   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 386   cbuf.insts()->emit_int32(d32);
 387 }
 388 
 389 // Access stack slot for load or store
 390 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 391   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 392   if( -128 <= disp && disp <= 127 ) {
 393     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 394     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 395     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 396   } else {
 397     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 398     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 399     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 400   }
 401 }
 402 
 403    // rRegI ereg, memory mem) %{    // emit_reg_mem
 404 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
 405   // There is no index & no scale, use form without SIB byte
 406   if ((index == 0x4) &&
 407       (scale == 0) && (base != ESP_enc)) {
 408     // If no displacement, mode is 0x0; unless base is [EBP]
 409     if ( (displace == 0) && (base != EBP_enc) ) {
 410       emit_rm(cbuf, 0x0, reg_encoding, base);
 411     }
 412     else {                    // If 8-bit displacement, mode 0x1
 413       if ((displace >= -128) && (displace <= 127)
 414           && (disp_reloc == relocInfo::none) ) {
 415         emit_rm(cbuf, 0x1, reg_encoding, base);
 416         emit_d8(cbuf, displace);
 417       }
 418       else {                  // If 32-bit displacement
 419         if (base == -1) { // Special flag for absolute address
 420           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 421           // (manual lies; no SIB needed here)
 422           if ( disp_reloc != relocInfo::none ) {
 423             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 424           } else {
 425             emit_d32      (cbuf, displace);
 426           }
 427         }
 428         else {                // Normal base + offset
 429           emit_rm(cbuf, 0x2, reg_encoding, base);
 430           if ( disp_reloc != relocInfo::none ) {
 431             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 432           } else {
 433             emit_d32      (cbuf, displace);
 434           }
 435         }
 436       }
 437     }
 438   }
 439   else {                      // Else, encode with the SIB byte
 440     // If no displacement, mode is 0x0; unless base is [EBP]
 441     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 442       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 443       emit_rm(cbuf, scale, index, base);
 444     }
 445     else {                    // If 8-bit displacement, mode 0x1
 446       if ((displace >= -128) && (displace <= 127)
 447           && (disp_reloc == relocInfo::none) ) {
 448         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 449         emit_rm(cbuf, scale, index, base);
 450         emit_d8(cbuf, displace);
 451       }
 452       else {                  // If 32-bit displacement
 453         if (base == 0x04 ) {
 454           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 455           emit_rm(cbuf, scale, index, 0x04);
 456         } else {
 457           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 458           emit_rm(cbuf, scale, index, base);
 459         }
 460         if ( disp_reloc != relocInfo::none ) {
 461           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 462         } else {
 463           emit_d32      (cbuf, displace);
 464         }
 465       }
 466     }
 467   }
 468 }
 469 
 470 
 471 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 472   if( dst_encoding == src_encoding ) {
 473     // reg-reg copy, use an empty encoding
 474   } else {
 475     emit_opcode( cbuf, 0x8B );
 476     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 477   }
 478 }
 479 
 480 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 481   Label exit;
 482   __ jccb(Assembler::noParity, exit);
 483   __ pushf();
 484   //
 485   // comiss/ucomiss instructions set ZF,PF,CF flags and
 486   // zero OF,AF,SF for NaN values.
 487   // Fixup flags by zeroing ZF,PF so that compare of NaN
 488   // values returns 'less than' result (CF is set).
 489   // Leave the rest of flags unchanged.
 490   //
 491   //    7 6 5 4 3 2 1 0
 492   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 493   //    0 0 1 0 1 0 1 1   (0x2B)
 494   //
 495   __ andl(Address(rsp, 0), 0xffffff2b);
 496   __ popf();
 497   __ bind(exit);
 498 }
 499 
 500 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 501   Label done;
 502   __ movl(dst, -1);
 503   __ jcc(Assembler::parity, done);
 504   __ jcc(Assembler::below, done);
 505   __ setb(Assembler::notEqual, dst);
 506   __ movzbl(dst, dst);
 507   __ bind(done);
 508 }
 509 
 510 
 511 //=============================================================================
 512 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 513 
 514 int Compile::ConstantTable::calculate_table_base_offset() const {
 515   return 0;  // absolute addressing, no offset
 516 }
 517 
 518 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 519 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 520   ShouldNotReachHere();
 521 }
 522 
 523 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 524   // Empty encoding
 525 }
 526 
 527 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 528   return 0;
 529 }
 530 
 531 #ifndef PRODUCT
 532 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 533   st->print("# MachConstantBaseNode (empty encoding)");
 534 }
 535 #endif
 536 
 537 
 538 //=============================================================================
 539 #ifndef PRODUCT
 540 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 541   Compile* C = ra_->C;
 542 
 543   int framesize = C->frame_size_in_bytes();
 544   int bangsize = C->bang_size_in_bytes();
 545   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 546   // Remove wordSize for return addr which is already pushed.
 547   framesize -= wordSize;
 548 
 549   if (C->need_stack_bang(bangsize)) {
 550     framesize -= wordSize;
 551     st->print("# stack bang (%d bytes)", bangsize);
 552     st->print("\n\t");
 553     st->print("PUSH   EBP\t# Save EBP");
 554     if (PreserveFramePointer) {
 555       st->print("\n\t");
 556       st->print("MOV    EBP, ESP\t# Save the caller's SP into EBP");
 557     }
 558     if (framesize) {
 559       st->print("\n\t");
 560       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 561     }
 562   } else {
 563     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 564     st->print("\n\t");
 565     framesize -= wordSize;
 566     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 567     if (PreserveFramePointer) {
 568       st->print("\n\t");
 569       st->print("MOV    EBP, ESP\t# Save the caller's SP into EBP");
 570       if (framesize > 0) {
 571         st->print("\n\t");
 572         st->print("ADD    EBP, #%d", framesize);
 573       }
 574     }
 575   }
 576 
 577   if (VerifyStackAtCalls) {
 578     st->print("\n\t");
 579     framesize -= wordSize;
 580     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 581   }
 582 
 583   if( C->in_24_bit_fp_mode() ) {
 584     st->print("\n\t");
 585     st->print("FLDCW  \t# load 24 bit fpu control word");
 586   }
 587   if (UseSSE >= 2 && VerifyFPU) {
 588     st->print("\n\t");
 589     st->print("# verify FPU stack (must be clean on entry)");
 590   }
 591 
 592 #ifdef ASSERT
 593   if (VerifyStackAtCalls) {
 594     st->print("\n\t");
 595     st->print("# stack alignment check");
 596   }
 597 #endif
 598   st->cr();
 599 }
 600 #endif
 601 
 602 
 603 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 604   Compile* C = ra_->C;
 605   MacroAssembler _masm(&cbuf);
 606 
 607   int framesize = C->frame_size_in_bytes();
 608   int bangsize = C->bang_size_in_bytes();
 609 
 610   __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, C->in_24_bit_fp_mode());
 611 
 612   C->set_frame_complete(cbuf.insts_size());
 613 
 614   if (C->has_mach_constant_base_node()) {
 615     // NOTE: We set the table base offset here because users might be
 616     // emitted before MachConstantBaseNode.
 617     Compile::ConstantTable& constant_table = C->constant_table();
 618     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 619   }
 620 }
 621 
 622 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 623   return MachNode::size(ra_); // too many variables; just compute it the hard way
 624 }
 625 
 626 int MachPrologNode::reloc() const {
 627   return 0; // a large enough number
 628 }
 629 
 630 //=============================================================================
 631 #ifndef PRODUCT
 632 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 633   Compile *C = ra_->C;
 634   int framesize = C->frame_size_in_bytes();
 635   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 636   // Remove two words for return addr and rbp,
 637   framesize -= 2*wordSize;
 638 
 639   if (C->max_vector_size() > 16) {
 640     st->print("VZEROUPPER");
 641     st->cr(); st->print("\t");
 642   }
 643   if (C->in_24_bit_fp_mode()) {
 644     st->print("FLDCW  standard control word");
 645     st->cr(); st->print("\t");
 646   }
 647   if (framesize) {
 648     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 649     st->cr(); st->print("\t");
 650   }
 651   st->print_cr("POPL   EBP"); st->print("\t");
 652   if (do_polling() && C->is_method_compilation()) {
 653     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 654     st->cr(); st->print("\t");
 655   }
 656 }
 657 #endif
 658 
 659 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 660   Compile *C = ra_->C;
 661 
 662   if (C->max_vector_size() > 16) {
 663     // Clear upper bits of YMM registers when current compiled code uses
 664     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 665     MacroAssembler masm(&cbuf);
 666     masm.vzeroupper();
 667   }
 668   // If method set FPU control word, restore to standard control word
 669   if (C->in_24_bit_fp_mode()) {
 670     MacroAssembler masm(&cbuf);
 671     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 672   }
 673 
 674   int framesize = C->frame_size_in_bytes();
 675   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 676   // Remove two words for return addr and rbp,
 677   framesize -= 2*wordSize;
 678 
 679   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 680 
 681   if (framesize >= 128) {
 682     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 683     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 684     emit_d32(cbuf, framesize);
 685   } else if (framesize) {
 686     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 687     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 688     emit_d8(cbuf, framesize);
 689   }
 690 
 691   emit_opcode(cbuf, 0x58 | EBP_enc);
 692 
 693   if (do_polling() && C->is_method_compilation()) {
 694     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 695     emit_opcode(cbuf,0x85);
 696     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 697     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 698   }
 699 }
 700 
 701 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 702   Compile *C = ra_->C;
 703   // If method set FPU control word, restore to standard control word
 704   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 705   if (C->max_vector_size() > 16) size += 3; // vzeroupper
 706   if (do_polling() && C->is_method_compilation()) size += 6;
 707 
 708   int framesize = C->frame_size_in_bytes();
 709   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 710   // Remove two words for return addr and rbp,
 711   framesize -= 2*wordSize;
 712 
 713   size++; // popl rbp,
 714 
 715   if (framesize >= 128) {
 716     size += 6;
 717   } else {
 718     size += framesize ? 3 : 0;
 719   }
 720   return size;
 721 }
 722 
 723 int MachEpilogNode::reloc() const {
 724   return 0; // a large enough number
 725 }
 726 
 727 const Pipeline * MachEpilogNode::pipeline() const {
 728   return MachNode::pipeline_class();
 729 }
 730 
 731 int MachEpilogNode::safepoint_offset() const { return 0; }
 732 
 733 //=============================================================================
 734 
 735 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 736 static enum RC rc_class( OptoReg::Name reg ) {
 737 
 738   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 739   if (OptoReg::is_stack(reg)) return rc_stack;
 740 
 741   VMReg r = OptoReg::as_VMReg(reg);
 742   if (r->is_Register()) return rc_int;
 743   if (r->is_FloatRegister()) {
 744     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 745     return rc_float;
 746   }
 747   assert(r->is_XMMRegister(), "must be");
 748   return rc_xmm;
 749 }
 750 
 751 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 752                         int opcode, const char *op_str, int size, outputStream* st ) {
 753   if( cbuf ) {
 754     emit_opcode  (*cbuf, opcode );
 755     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
 756 #ifndef PRODUCT
 757   } else if( !do_size ) {
 758     if( size != 0 ) st->print("\n\t");
 759     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 760       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 761       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 762     } else { // FLD, FST, PUSH, POP
 763       st->print("%s [ESP + #%d]",op_str,offset);
 764     }
 765 #endif
 766   }
 767   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 768   return size+3+offset_size;
 769 }
 770 
 771 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 772 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 773                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 774   if (cbuf) {
 775     MacroAssembler _masm(cbuf);
 776     if (reg_lo+1 == reg_hi) { // double move?
 777       if (is_load) {
 778         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 779       } else {
 780         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 781       }
 782     } else {
 783       if (is_load) {
 784         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 785       } else {
 786         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 787       }
 788     }
 789 #ifndef PRODUCT
 790   } else if (!do_size) {
 791     if (size != 0) st->print("\n\t");
 792     if (reg_lo+1 == reg_hi) { // double move?
 793       if (is_load) st->print("%s %s,[ESP + #%d]",
 794                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 795                               Matcher::regName[reg_lo], offset);
 796       else         st->print("MOVSD  [ESP + #%d],%s",
 797                               offset, Matcher::regName[reg_lo]);
 798     } else {
 799       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 800                               Matcher::regName[reg_lo], offset);
 801       else         st->print("MOVSS  [ESP + #%d],%s",
 802                               offset, Matcher::regName[reg_lo]);
 803     }
 804 #endif
 805   }
 806   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 807   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 808   return size+5+offset_size;
 809 }
 810 
 811 
 812 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 813                             int src_hi, int dst_hi, int size, outputStream* st ) {
 814   if (cbuf) {
 815     MacroAssembler _masm(cbuf);
 816     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 817       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 818                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 819     } else {
 820       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 821                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 822     }
 823 #ifndef PRODUCT
 824   } else if (!do_size) {
 825     if (size != 0) st->print("\n\t");
 826     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 827       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 828         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 829       } else {
 830         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 831       }
 832     } else {
 833       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 834         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 835       } else {
 836         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 837       }
 838     }
 839 #endif
 840   }
 841   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 842   // Only MOVAPS SSE prefix uses 1 byte.
 843   int sz = 4;
 844   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 845       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 846   return size + sz;
 847 }
 848 
 849 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 850                             int src_hi, int dst_hi, int size, outputStream* st ) {
 851   // 32-bit
 852   if (cbuf) {
 853     MacroAssembler _masm(cbuf);
 854     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 855              as_Register(Matcher::_regEncode[src_lo]));
 856 #ifndef PRODUCT
 857   } else if (!do_size) {
 858     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 859 #endif
 860   }
 861   return 4;
 862 }
 863 
 864 
 865 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 866                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 867   // 32-bit
 868   if (cbuf) {
 869     MacroAssembler _masm(cbuf);
 870     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 871              as_XMMRegister(Matcher::_regEncode[src_lo]));
 872 #ifndef PRODUCT
 873   } else if (!do_size) {
 874     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 875 #endif
 876   }
 877   return 4;
 878 }
 879 
 880 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 881   if( cbuf ) {
 882     emit_opcode(*cbuf, 0x8B );
 883     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 884 #ifndef PRODUCT
 885   } else if( !do_size ) {
 886     if( size != 0 ) st->print("\n\t");
 887     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 888 #endif
 889   }
 890   return size+2;
 891 }
 892 
 893 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 894                                  int offset, int size, outputStream* st ) {
 895   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 896     if( cbuf ) {
 897       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 898       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 899 #ifndef PRODUCT
 900     } else if( !do_size ) {
 901       if( size != 0 ) st->print("\n\t");
 902       st->print("FLD    %s",Matcher::regName[src_lo]);
 903 #endif
 904     }
 905     size += 2;
 906   }
 907 
 908   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 909   const char *op_str;
 910   int op;
 911   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 912     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 913     op = 0xDD;
 914   } else {                   // 32-bit store
 915     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 916     op = 0xD9;
 917     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 918   }
 919 
 920   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 921 }
 922 
 923 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 924 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 925                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 926 
 927 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 928                             int stack_offset, int reg, uint ireg, outputStream* st);
 929 
 930 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 931                                      int dst_offset, uint ireg, outputStream* st) {
 932   int calc_size = 0;
 933   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 934   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 935   switch (ireg) {
 936   case Op_VecS:
 937     calc_size = 3+src_offset_size + 3+dst_offset_size;
 938     break;
 939   case Op_VecD:
 940     calc_size = 3+src_offset_size + 3+dst_offset_size;
 941     src_offset += 4;
 942     dst_offset += 4;
 943     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 944     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 945     calc_size += 3+src_offset_size + 3+dst_offset_size;
 946     break;
 947   case Op_VecX:
 948     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 949     break;
 950   case Op_VecY:
 951     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 952     break;
 953   default:
 954     ShouldNotReachHere();
 955   }
 956   if (cbuf) {
 957     MacroAssembler _masm(cbuf);
 958     int offset = __ offset();
 959     switch (ireg) {
 960     case Op_VecS:
 961       __ pushl(Address(rsp, src_offset));
 962       __ popl (Address(rsp, dst_offset));
 963       break;
 964     case Op_VecD:
 965       __ pushl(Address(rsp, src_offset));
 966       __ popl (Address(rsp, dst_offset));
 967       __ pushl(Address(rsp, src_offset+4));
 968       __ popl (Address(rsp, dst_offset+4));
 969       break;
 970     case Op_VecX:
 971       __ movdqu(Address(rsp, -16), xmm0);
 972       __ movdqu(xmm0, Address(rsp, src_offset));
 973       __ movdqu(Address(rsp, dst_offset), xmm0);
 974       __ movdqu(xmm0, Address(rsp, -16));
 975       break;
 976     case Op_VecY:
 977       __ vmovdqu(Address(rsp, -32), xmm0);
 978       __ vmovdqu(xmm0, Address(rsp, src_offset));
 979       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 980       __ vmovdqu(xmm0, Address(rsp, -32));
 981       break;
 982     default:
 983       ShouldNotReachHere();
 984     }
 985     int size = __ offset() - offset;
 986     assert(size == calc_size, "incorrect size calculattion");
 987     return size;
 988 #ifndef PRODUCT
 989   } else if (!do_size) {
 990     switch (ireg) {
 991     case Op_VecS:
 992       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 993                 "popl    [rsp + #%d]",
 994                 src_offset, dst_offset);
 995       break;
 996     case Op_VecD:
 997       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 998                 "popq    [rsp + #%d]\n\t"
 999                 "pushl   [rsp + #%d]\n\t"
1000                 "popq    [rsp + #%d]",
1001                 src_offset, dst_offset, src_offset+4, dst_offset+4);
1002       break;
1003      case Op_VecX:
1004       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
1005                 "movdqu  xmm0, [rsp + #%d]\n\t"
1006                 "movdqu  [rsp + #%d], xmm0\n\t"
1007                 "movdqu  xmm0, [rsp - #16]",
1008                 src_offset, dst_offset);
1009       break;
1010     case Op_VecY:
1011       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1012                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1013                 "vmovdqu [rsp + #%d], xmm0\n\t"
1014                 "vmovdqu xmm0, [rsp - #32]",
1015                 src_offset, dst_offset);
1016       break;
1017     default:
1018       ShouldNotReachHere();
1019     }
1020 #endif
1021   }
1022   return calc_size;
1023 }
1024 
1025 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
1026   // Get registers to move
1027   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1028   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1029   OptoReg::Name dst_second = ra_->get_reg_second(this );
1030   OptoReg::Name dst_first = ra_->get_reg_first(this );
1031 
1032   enum RC src_second_rc = rc_class(src_second);
1033   enum RC src_first_rc = rc_class(src_first);
1034   enum RC dst_second_rc = rc_class(dst_second);
1035   enum RC dst_first_rc = rc_class(dst_first);
1036 
1037   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1038 
1039   // Generate spill code!
1040   int size = 0;
1041 
1042   if( src_first == dst_first && src_second == dst_second )
1043     return size;            // Self copy, no move
1044 
1045   if (bottom_type()->isa_vect() != NULL) {
1046     uint ireg = ideal_reg();
1047     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1048     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
1049     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1050     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1051       // mem -> mem
1052       int src_offset = ra_->reg2offset(src_first);
1053       int dst_offset = ra_->reg2offset(dst_first);
1054       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
1055     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1056       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
1057     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1058       int stack_offset = ra_->reg2offset(dst_first);
1059       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
1060     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
1061       int stack_offset = ra_->reg2offset(src_first);
1062       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1063     } else {
1064       ShouldNotReachHere();
1065     }
1066   }
1067 
1068   // --------------------------------------
1069   // Check for mem-mem move.  push/pop to move.
1070   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1071     if( src_second == dst_first ) { // overlapping stack copy ranges
1072       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1073       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1074       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1075       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1076     }
1077     // move low bits
1078     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1079     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1080     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1081       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1082       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1083     }
1084     return size;
1085   }
1086 
1087   // --------------------------------------
1088   // Check for integer reg-reg copy
1089   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1090     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1091 
1092   // Check for integer store
1093   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1094     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1095 
1096   // Check for integer load
1097   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1098     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1099 
1100   // Check for integer reg-xmm reg copy
1101   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1102     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1103             "no 64 bit integer-float reg moves" );
1104     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1105   }
1106   // --------------------------------------
1107   // Check for float reg-reg copy
1108   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1109     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1110             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1111     if( cbuf ) {
1112 
1113       // Note the mucking with the register encode to compensate for the 0/1
1114       // indexing issue mentioned in a comment in the reg_def sections
1115       // for FPR registers many lines above here.
1116 
1117       if( src_first != FPR1L_num ) {
1118         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1119         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1120         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1121         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1122      } else {
1123         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1124         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1125      }
1126 #ifndef PRODUCT
1127     } else if( !do_size ) {
1128       if( size != 0 ) st->print("\n\t");
1129       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1130       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1131 #endif
1132     }
1133     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1134   }
1135 
1136   // Check for float store
1137   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1138     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1139   }
1140 
1141   // Check for float load
1142   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1143     int offset = ra_->reg2offset(src_first);
1144     const char *op_str;
1145     int op;
1146     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1147       op_str = "FLD_D";
1148       op = 0xDD;
1149     } else {                   // 32-bit load
1150       op_str = "FLD_S";
1151       op = 0xD9;
1152       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1153     }
1154     if( cbuf ) {
1155       emit_opcode  (*cbuf, op );
1156       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1157       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1158       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1159 #ifndef PRODUCT
1160     } else if( !do_size ) {
1161       if( size != 0 ) st->print("\n\t");
1162       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1163 #endif
1164     }
1165     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1166     return size + 3+offset_size+2;
1167   }
1168 
1169   // Check for xmm reg-reg copy
1170   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1171     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1172             (src_first+1 == src_second && dst_first+1 == dst_second),
1173             "no non-adjacent float-moves" );
1174     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1175   }
1176 
1177   // Check for xmm reg-integer reg copy
1178   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1179     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1180             "no 64 bit float-integer reg moves" );
1181     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1182   }
1183 
1184   // Check for xmm store
1185   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1186     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1187   }
1188 
1189   // Check for float xmm load
1190   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1191     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1192   }
1193 
1194   // Copy from float reg to xmm reg
1195   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1196     // copy to the top of stack from floating point reg
1197     // and use LEA to preserve flags
1198     if( cbuf ) {
1199       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1200       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1201       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1202       emit_d8(*cbuf,0xF8);
1203 #ifndef PRODUCT
1204     } else if( !do_size ) {
1205       if( size != 0 ) st->print("\n\t");
1206       st->print("LEA    ESP,[ESP-8]");
1207 #endif
1208     }
1209     size += 4;
1210 
1211     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1212 
1213     // Copy from the temp memory to the xmm reg.
1214     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1215 
1216     if( cbuf ) {
1217       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1218       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1219       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1220       emit_d8(*cbuf,0x08);
1221 #ifndef PRODUCT
1222     } else if( !do_size ) {
1223       if( size != 0 ) st->print("\n\t");
1224       st->print("LEA    ESP,[ESP+8]");
1225 #endif
1226     }
1227     size += 4;
1228     return size;
1229   }
1230 
1231   assert( size > 0, "missed a case" );
1232 
1233   // --------------------------------------------------------------------
1234   // Check for second bits still needing moving.
1235   if( src_second == dst_second )
1236     return size;               // Self copy; no move
1237   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1238 
1239   // Check for second word int-int move
1240   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1241     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1242 
1243   // Check for second word integer store
1244   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1245     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1246 
1247   // Check for second word integer load
1248   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1249     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1250 
1251 
1252   Unimplemented();
1253 }
1254 
1255 #ifndef PRODUCT
1256 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1257   implementation( NULL, ra_, false, st );
1258 }
1259 #endif
1260 
1261 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1262   implementation( &cbuf, ra_, false, NULL );
1263 }
1264 
1265 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1266   return implementation( NULL, ra_, true, NULL );
1267 }
1268 
1269 
1270 //=============================================================================
1271 #ifndef PRODUCT
1272 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1273   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1274   int reg = ra_->get_reg_first(this);
1275   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1276 }
1277 #endif
1278 
1279 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1280   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1281   int reg = ra_->get_encode(this);
1282   if( offset >= 128 ) {
1283     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1284     emit_rm(cbuf, 0x2, reg, 0x04);
1285     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1286     emit_d32(cbuf, offset);
1287   }
1288   else {
1289     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1290     emit_rm(cbuf, 0x1, reg, 0x04);
1291     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1292     emit_d8(cbuf, offset);
1293   }
1294 }
1295 
1296 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1297   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1298   if( offset >= 128 ) {
1299     return 7;
1300   }
1301   else {
1302     return 4;
1303   }
1304 }
1305 
1306 //=============================================================================
1307 #ifndef PRODUCT
1308 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1309   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1310   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1311   st->print_cr("\tNOP");
1312   st->print_cr("\tNOP");
1313   if( !OptoBreakpoint )
1314     st->print_cr("\tNOP");
1315 }
1316 #endif
1317 
1318 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1319   MacroAssembler masm(&cbuf);
1320 #ifdef ASSERT
1321   uint insts_size = cbuf.insts_size();
1322 #endif
1323   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1324   masm.jump_cc(Assembler::notEqual,
1325                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1326   /* WARNING these NOPs are critical so that verified entry point is properly
1327      aligned for patching by NativeJump::patch_verified_entry() */
1328   int nops_cnt = 2;
1329   if( !OptoBreakpoint ) // Leave space for int3
1330      nops_cnt += 1;
1331   masm.nop(nops_cnt);
1332 
1333   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1334 }
1335 
1336 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1337   return OptoBreakpoint ? 11 : 12;
1338 }
1339 
1340 
1341 //=============================================================================
1342 
1343 int Matcher::regnum_to_fpu_offset(int regnum) {
1344   return regnum - 32; // The FP registers are in the second chunk
1345 }
1346 
1347 // This is UltraSparc specific, true just means we have fast l2f conversion
1348 const bool Matcher::convL2FSupported(void) {
1349   return true;
1350 }
1351 
1352 // Is this branch offset short enough that a short branch can be used?
1353 //
1354 // NOTE: If the platform does not provide any short branch variants, then
1355 //       this method should return false for offset 0.
1356 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1357   // The passed offset is relative to address of the branch.
1358   // On 86 a branch displacement is calculated relative to address
1359   // of a next instruction.
1360   offset -= br_size;
1361 
1362   // the short version of jmpConUCF2 contains multiple branches,
1363   // making the reach slightly less
1364   if (rule == jmpConUCF2_rule)
1365     return (-126 <= offset && offset <= 125);
1366   return (-128 <= offset && offset <= 127);
1367 }
1368 
1369 const bool Matcher::isSimpleConstant64(jlong value) {
1370   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1371   return false;
1372 }
1373 
1374 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1375 const bool Matcher::init_array_count_is_in_bytes = false;
1376 
1377 // Threshold size for cleararray.
1378 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1379 
1380 // Needs 2 CMOV's for longs.
1381 const int Matcher::long_cmove_cost() { return 1; }
1382 
1383 // No CMOVF/CMOVD with SSE/SSE2
1384 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1385 
1386 // Does the CPU require late expand (see block.cpp for description of late expand)?
1387 const bool Matcher::require_postalloc_expand = false;
1388 
1389 // Should the Matcher clone shifts on addressing modes, expecting them to
1390 // be subsumed into complex addressing expressions or compute them into
1391 // registers?  True for Intel but false for most RISCs
1392 const bool Matcher::clone_shift_expressions = true;
1393 
1394 // Do we need to mask the count passed to shift instructions or does
1395 // the cpu only look at the lower 5/6 bits anyway?
1396 const bool Matcher::need_masked_shift_count = false;
1397 
1398 bool Matcher::narrow_oop_use_complex_address() {
1399   ShouldNotCallThis();
1400   return true;
1401 }
1402 
1403 bool Matcher::narrow_klass_use_complex_address() {
1404   ShouldNotCallThis();
1405   return true;
1406 }
1407 
1408 
1409 // Is it better to copy float constants, or load them directly from memory?
1410 // Intel can load a float constant from a direct address, requiring no
1411 // extra registers.  Most RISCs will have to materialize an address into a
1412 // register first, so they would do better to copy the constant from stack.
1413 const bool Matcher::rematerialize_float_constants = true;
1414 
1415 // If CPU can load and store mis-aligned doubles directly then no fixup is
1416 // needed.  Else we split the double into 2 integer pieces and move it
1417 // piece-by-piece.  Only happens when passing doubles into C code as the
1418 // Java calling convention forces doubles to be aligned.
1419 const bool Matcher::misaligned_doubles_ok = true;
1420 
1421 
1422 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1423   // Get the memory operand from the node
1424   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1425   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1426   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1427   uint opcnt     = 1;                 // First operand
1428   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1429   while( idx >= skipped+num_edges ) {
1430     skipped += num_edges;
1431     opcnt++;                          // Bump operand count
1432     assert( opcnt < numopnds, "Accessing non-existent operand" );
1433     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1434   }
1435 
1436   MachOper *memory = node->_opnds[opcnt];
1437   MachOper *new_memory = NULL;
1438   switch (memory->opcode()) {
1439   case DIRECT:
1440   case INDOFFSET32X:
1441     // No transformation necessary.
1442     return;
1443   case INDIRECT:
1444     new_memory = new (C) indirect_win95_safeOper( );
1445     break;
1446   case INDOFFSET8:
1447     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1448     break;
1449   case INDOFFSET32:
1450     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1451     break;
1452   case INDINDEXOFFSET:
1453     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1454     break;
1455   case INDINDEXSCALE:
1456     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1457     break;
1458   case INDINDEXSCALEOFFSET:
1459     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1460     break;
1461   case LOAD_LONG_INDIRECT:
1462   case LOAD_LONG_INDOFFSET32:
1463     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1464     return;
1465   default:
1466     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1467     return;
1468   }
1469   node->_opnds[opcnt] = new_memory;
1470 }
1471 
1472 // Advertise here if the CPU requires explicit rounding operations
1473 // to implement the UseStrictFP mode.
1474 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1475 
1476 // Are floats conerted to double when stored to stack during deoptimization?
1477 // On x32 it is stored with convertion only when FPU is used for floats.
1478 bool Matcher::float_in_double() { return (UseSSE == 0); }
1479 
1480 // Do ints take an entire long register or just half?
1481 const bool Matcher::int_in_long = false;
1482 
1483 // Return whether or not this register is ever used as an argument.  This
1484 // function is used on startup to build the trampoline stubs in generateOptoStub.
1485 // Registers not mentioned will be killed by the VM call in the trampoline, and
1486 // arguments in those registers not be available to the callee.
1487 bool Matcher::can_be_java_arg( int reg ) {
1488   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1489   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1490   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1491   return false;
1492 }
1493 
1494 bool Matcher::is_spillable_arg( int reg ) {
1495   return can_be_java_arg(reg);
1496 }
1497 
1498 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1499   // Use hardware integer DIV instruction when
1500   // it is faster than a code which use multiply.
1501   // Only when constant divisor fits into 32 bit
1502   // (min_jint is excluded to get only correct
1503   // positive 32 bit values from negative).
1504   return VM_Version::has_fast_idiv() &&
1505          (divisor == (int)divisor && divisor != min_jint);
1506 }
1507 
1508 // Register for DIVI projection of divmodI
1509 RegMask Matcher::divI_proj_mask() {
1510   return EAX_REG_mask();
1511 }
1512 
1513 // Register for MODI projection of divmodI
1514 RegMask Matcher::modI_proj_mask() {
1515   return EDX_REG_mask();
1516 }
1517 
1518 // Register for DIVL projection of divmodL
1519 RegMask Matcher::divL_proj_mask() {
1520   ShouldNotReachHere();
1521   return RegMask();
1522 }
1523 
1524 // Register for MODL projection of divmodL
1525 RegMask Matcher::modL_proj_mask() {
1526   ShouldNotReachHere();
1527   return RegMask();
1528 }
1529 
1530 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1531   return NO_REG_mask();
1532 }
1533 
1534 // Returns true if the high 32 bits of the value is known to be zero.
1535 bool is_operand_hi32_zero(Node* n) {
1536   int opc = n->Opcode();
1537   if (opc == Op_AndL) {
1538     Node* o2 = n->in(2);
1539     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1540       return true;
1541     }
1542   }
1543   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1544     return true;
1545   }
1546   return false;
1547 }
1548 
1549 %}
1550 
1551 //----------ENCODING BLOCK-----------------------------------------------------
1552 // This block specifies the encoding classes used by the compiler to output
1553 // byte streams.  Encoding classes generate functions which are called by
1554 // Machine Instruction Nodes in order to generate the bit encoding of the
1555 // instruction.  Operands specify their base encoding interface with the
1556 // interface keyword.  There are currently supported four interfaces,
1557 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1558 // operand to generate a function which returns its register number when
1559 // queried.   CONST_INTER causes an operand to generate a function which
1560 // returns the value of the constant when queried.  MEMORY_INTER causes an
1561 // operand to generate four functions which return the Base Register, the
1562 // Index Register, the Scale Value, and the Offset Value of the operand when
1563 // queried.  COND_INTER causes an operand to generate six functions which
1564 // return the encoding code (ie - encoding bits for the instruction)
1565 // associated with each basic boolean condition for a conditional instruction.
1566 // Instructions specify two basic values for encoding.  They use the
1567 // ins_encode keyword to specify their encoding class (which must be one of
1568 // the class names specified in the encoding block), and they use the
1569 // opcode keyword to specify, in order, their primary, secondary, and
1570 // tertiary opcode.  Only the opcode sections which a particular instruction
1571 // needs for encoding need to be specified.
1572 encode %{
1573   // Build emit functions for each basic byte or larger field in the intel
1574   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1575   // code in the enc_class source block.  Emit functions will live in the
1576   // main source block for now.  In future, we can generalize this by
1577   // adding a syntax that specifies the sizes of fields in an order,
1578   // so that the adlc can build the emit functions automagically
1579 
1580   // Emit primary opcode
1581   enc_class OpcP %{
1582     emit_opcode(cbuf, $primary);
1583   %}
1584 
1585   // Emit secondary opcode
1586   enc_class OpcS %{
1587     emit_opcode(cbuf, $secondary);
1588   %}
1589 
1590   // Emit opcode directly
1591   enc_class Opcode(immI d8) %{
1592     emit_opcode(cbuf, $d8$$constant);
1593   %}
1594 
1595   enc_class SizePrefix %{
1596     emit_opcode(cbuf,0x66);
1597   %}
1598 
1599   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1600     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1601   %}
1602 
1603   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1604     emit_opcode(cbuf,$opcode$$constant);
1605     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1606   %}
1607 
1608   enc_class mov_r32_imm0( rRegI dst ) %{
1609     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1610     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1611   %}
1612 
1613   enc_class cdq_enc %{
1614     // Full implementation of Java idiv and irem; checks for
1615     // special case as described in JVM spec., p.243 & p.271.
1616     //
1617     //         normal case                           special case
1618     //
1619     // input : rax,: dividend                         min_int
1620     //         reg: divisor                          -1
1621     //
1622     // output: rax,: quotient  (= rax, idiv reg)       min_int
1623     //         rdx: remainder (= rax, irem reg)       0
1624     //
1625     //  Code sequnce:
1626     //
1627     //  81 F8 00 00 00 80    cmp         rax,80000000h
1628     //  0F 85 0B 00 00 00    jne         normal_case
1629     //  33 D2                xor         rdx,edx
1630     //  83 F9 FF             cmp         rcx,0FFh
1631     //  0F 84 03 00 00 00    je          done
1632     //                  normal_case:
1633     //  99                   cdq
1634     //  F7 F9                idiv        rax,ecx
1635     //                  done:
1636     //
1637     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1638     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1639     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1640     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1641     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1643     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1644     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1645     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1646     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1647     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1648     // normal_case:
1649     emit_opcode(cbuf,0x99);                                         // cdq
1650     // idiv (note: must be emitted by the user of this rule)
1651     // normal:
1652   %}
1653 
1654   // Dense encoding for older common ops
1655   enc_class Opc_plus(immI opcode, rRegI reg) %{
1656     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1657   %}
1658 
1659 
1660   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1661   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1662     // Check for 8-bit immediate, and set sign extend bit in opcode
1663     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1664       emit_opcode(cbuf, $primary | 0x02);
1665     }
1666     else {                          // If 32-bit immediate
1667       emit_opcode(cbuf, $primary);
1668     }
1669   %}
1670 
1671   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1672     // Emit primary opcode and set sign-extend bit
1673     // Check for 8-bit immediate, and set sign extend bit in opcode
1674     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1675       emit_opcode(cbuf, $primary | 0x02);    }
1676     else {                          // If 32-bit immediate
1677       emit_opcode(cbuf, $primary);
1678     }
1679     // Emit r/m byte with secondary opcode, after primary opcode.
1680     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1681   %}
1682 
1683   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1684     // Check for 8-bit immediate, and set sign extend bit in opcode
1685     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1686       $$$emit8$imm$$constant;
1687     }
1688     else {                          // If 32-bit immediate
1689       // Output immediate
1690       $$$emit32$imm$$constant;
1691     }
1692   %}
1693 
1694   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1695     // Emit primary opcode and set sign-extend bit
1696     // Check for 8-bit immediate, and set sign extend bit in opcode
1697     int con = (int)$imm$$constant; // Throw away top bits
1698     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1699     // Emit r/m byte with secondary opcode, after primary opcode.
1700     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1701     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1702     else                               emit_d32(cbuf,con);
1703   %}
1704 
1705   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1706     // Emit primary opcode and set sign-extend bit
1707     // Check for 8-bit immediate, and set sign extend bit in opcode
1708     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1709     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1710     // Emit r/m byte with tertiary opcode, after primary opcode.
1711     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1712     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1713     else                               emit_d32(cbuf,con);
1714   %}
1715 
1716   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1717     emit_cc(cbuf, $secondary, $dst$$reg );
1718   %}
1719 
1720   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1721     int destlo = $dst$$reg;
1722     int desthi = HIGH_FROM_LOW(destlo);
1723     // bswap lo
1724     emit_opcode(cbuf, 0x0F);
1725     emit_cc(cbuf, 0xC8, destlo);
1726     // bswap hi
1727     emit_opcode(cbuf, 0x0F);
1728     emit_cc(cbuf, 0xC8, desthi);
1729     // xchg lo and hi
1730     emit_opcode(cbuf, 0x87);
1731     emit_rm(cbuf, 0x3, destlo, desthi);
1732   %}
1733 
1734   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1735     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1736   %}
1737 
1738   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1739     $$$emit8$primary;
1740     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1741   %}
1742 
1743   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1744     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1745     emit_d8(cbuf, op >> 8 );
1746     emit_d8(cbuf, op & 255);
1747   %}
1748 
1749   // emulate a CMOV with a conditional branch around a MOV
1750   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1751     // Invert sense of branch from sense of CMOV
1752     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1753     emit_d8( cbuf, $brOffs$$constant );
1754   %}
1755 
1756   enc_class enc_PartialSubtypeCheck( ) %{
1757     Register Redi = as_Register(EDI_enc); // result register
1758     Register Reax = as_Register(EAX_enc); // super class
1759     Register Recx = as_Register(ECX_enc); // killed
1760     Register Resi = as_Register(ESI_enc); // sub class
1761     Label miss;
1762 
1763     MacroAssembler _masm(&cbuf);
1764     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1765                                      NULL, &miss,
1766                                      /*set_cond_codes:*/ true);
1767     if ($primary) {
1768       __ xorptr(Redi, Redi);
1769     }
1770     __ bind(miss);
1771   %}
1772 
1773   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1774     MacroAssembler masm(&cbuf);
1775     int start = masm.offset();
1776     if (UseSSE >= 2) {
1777       if (VerifyFPU) {
1778         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1779       }
1780     } else {
1781       // External c_calling_convention expects the FPU stack to be 'clean'.
1782       // Compiled code leaves it dirty.  Do cleanup now.
1783       masm.empty_FPU_stack();
1784     }
1785     if (sizeof_FFree_Float_Stack_All == -1) {
1786       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1787     } else {
1788       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1789     }
1790   %}
1791 
1792   enc_class Verify_FPU_For_Leaf %{
1793     if( VerifyFPU ) {
1794       MacroAssembler masm(&cbuf);
1795       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1796     }
1797   %}
1798 
1799   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1800     // This is the instruction starting address for relocation info.
1801     cbuf.set_insts_mark();
1802     $$$emit8$primary;
1803     // CALL directly to the runtime
1804     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1805                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1806 
1807     if (UseSSE >= 2) {
1808       MacroAssembler _masm(&cbuf);
1809       BasicType rt = tf()->return_type();
1810 
1811       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1812         // A C runtime call where the return value is unused.  In SSE2+
1813         // mode the result needs to be removed from the FPU stack.  It's
1814         // likely that this function call could be removed by the
1815         // optimizer if the C function is a pure function.
1816         __ ffree(0);
1817       } else if (rt == T_FLOAT) {
1818         __ lea(rsp, Address(rsp, -4));
1819         __ fstp_s(Address(rsp, 0));
1820         __ movflt(xmm0, Address(rsp, 0));
1821         __ lea(rsp, Address(rsp,  4));
1822       } else if (rt == T_DOUBLE) {
1823         __ lea(rsp, Address(rsp, -8));
1824         __ fstp_d(Address(rsp, 0));
1825         __ movdbl(xmm0, Address(rsp, 0));
1826         __ lea(rsp, Address(rsp,  8));
1827       }
1828     }
1829   %}
1830 
1831 
1832   enc_class pre_call_resets %{
1833     // If method sets FPU control word restore it here
1834     debug_only(int off0 = cbuf.insts_size());
1835     if (ra_->C->in_24_bit_fp_mode()) {
1836       MacroAssembler _masm(&cbuf);
1837       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1838     }
1839     if (ra_->C->max_vector_size() > 16) {
1840       // Clear upper bits of YMM registers when current compiled code uses
1841       // wide vectors to avoid AVX <-> SSE transition penalty during call.
1842       MacroAssembler _masm(&cbuf);
1843       __ vzeroupper();
1844     }
1845     debug_only(int off1 = cbuf.insts_size());
1846     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
1847   %}
1848 
1849   enc_class post_call_FPU %{
1850     // If method sets FPU control word do it here also
1851     if (Compile::current()->in_24_bit_fp_mode()) {
1852       MacroAssembler masm(&cbuf);
1853       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1854     }
1855   %}
1856 
1857   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1858     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1859     // who we intended to call.
1860     cbuf.set_insts_mark();
1861     $$$emit8$primary;
1862     if (!_method) {
1863       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1864                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1865     } else if (_optimized_virtual) {
1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1867                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1868     } else {
1869       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1870                      static_call_Relocation::spec(), RELOC_IMM32 );
1871     }
1872     if (_method) {  // Emit stub for static call.
1873       CompiledStaticCall::emit_to_interp_stub(cbuf);
1874     }
1875   %}
1876 
1877   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1878     MacroAssembler _masm(&cbuf);
1879     __ ic_call((address)$meth$$method);
1880   %}
1881 
1882   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1883     int disp = in_bytes(Method::from_compiled_offset());
1884     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1885 
1886     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1887     cbuf.set_insts_mark();
1888     $$$emit8$primary;
1889     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1890     emit_d8(cbuf, disp);             // Displacement
1891 
1892   %}
1893 
1894 //   Following encoding is no longer used, but may be restored if calling
1895 //   convention changes significantly.
1896 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1897 //
1898 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1899 //     // int ic_reg     = Matcher::inline_cache_reg();
1900 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1901 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1902 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1903 //
1904 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1905 //     // // so we load it immediately before the call
1906 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1907 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1908 //
1909 //     // xor rbp,ebp
1910 //     emit_opcode(cbuf, 0x33);
1911 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1912 //
1913 //     // CALL to interpreter.
1914 //     cbuf.set_insts_mark();
1915 //     $$$emit8$primary;
1916 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1917 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1918 //   %}
1919 
1920   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1921     $$$emit8$primary;
1922     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1923     $$$emit8$shift$$constant;
1924   %}
1925 
1926   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1927     // Load immediate does not have a zero or sign extended version
1928     // for 8-bit immediates
1929     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1930     $$$emit32$src$$constant;
1931   %}
1932 
1933   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1934     // Load immediate does not have a zero or sign extended version
1935     // for 8-bit immediates
1936     emit_opcode(cbuf, $primary + $dst$$reg);
1937     $$$emit32$src$$constant;
1938   %}
1939 
1940   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1941     // Load immediate does not have a zero or sign extended version
1942     // for 8-bit immediates
1943     int dst_enc = $dst$$reg;
1944     int src_con = $src$$constant & 0x0FFFFFFFFL;
1945     if (src_con == 0) {
1946       // xor dst, dst
1947       emit_opcode(cbuf, 0x33);
1948       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1949     } else {
1950       emit_opcode(cbuf, $primary + dst_enc);
1951       emit_d32(cbuf, src_con);
1952     }
1953   %}
1954 
1955   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1956     // Load immediate does not have a zero or sign extended version
1957     // for 8-bit immediates
1958     int dst_enc = $dst$$reg + 2;
1959     int src_con = ((julong)($src$$constant)) >> 32;
1960     if (src_con == 0) {
1961       // xor dst, dst
1962       emit_opcode(cbuf, 0x33);
1963       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1964     } else {
1965       emit_opcode(cbuf, $primary + dst_enc);
1966       emit_d32(cbuf, src_con);
1967     }
1968   %}
1969 
1970 
1971   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1972   enc_class enc_Copy( rRegI dst, rRegI src ) %{
1973     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1974   %}
1975 
1976   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
1977     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1978   %}
1979 
1980   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1981     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1982   %}
1983 
1984   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
1985     $$$emit8$primary;
1986     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1987   %}
1988 
1989   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
1990     $$$emit8$secondary;
1991     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
1992   %}
1993 
1994   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
1995     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1996   %}
1997 
1998   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
1999     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2000   %}
2001 
2002   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2003     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2004   %}
2005 
2006   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2007     // Output immediate
2008     $$$emit32$src$$constant;
2009   %}
2010 
2011   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2012     // Output Float immediate bits
2013     jfloat jf = $src$$constant;
2014     int    jf_as_bits = jint_cast( jf );
2015     emit_d32(cbuf, jf_as_bits);
2016   %}
2017 
2018   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2019     // Output Float immediate bits
2020     jfloat jf = $src$$constant;
2021     int    jf_as_bits = jint_cast( jf );
2022     emit_d32(cbuf, jf_as_bits);
2023   %}
2024 
2025   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2026     // Output immediate
2027     $$$emit16$src$$constant;
2028   %}
2029 
2030   enc_class Con_d32(immI src) %{
2031     emit_d32(cbuf,$src$$constant);
2032   %}
2033 
2034   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2035     // Output immediate memory reference
2036     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2037     emit_d32(cbuf, 0x00);
2038   %}
2039 
2040   enc_class lock_prefix( ) %{
2041     if( os::is_MP() )
2042       emit_opcode(cbuf,0xF0);         // [Lock]
2043   %}
2044 
2045   // Cmp-xchg long value.
2046   // Note: we need to swap rbx, and rcx before and after the
2047   //       cmpxchg8 instruction because the instruction uses
2048   //       rcx as the high order word of the new value to store but
2049   //       our register encoding uses rbx,.
2050   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2051 
2052     // XCHG  rbx,ecx
2053     emit_opcode(cbuf,0x87);
2054     emit_opcode(cbuf,0xD9);
2055     // [Lock]
2056     if( os::is_MP() )
2057       emit_opcode(cbuf,0xF0);
2058     // CMPXCHG8 [Eptr]
2059     emit_opcode(cbuf,0x0F);
2060     emit_opcode(cbuf,0xC7);
2061     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2062     // XCHG  rbx,ecx
2063     emit_opcode(cbuf,0x87);
2064     emit_opcode(cbuf,0xD9);
2065   %}
2066 
2067   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2068     // [Lock]
2069     if( os::is_MP() )
2070       emit_opcode(cbuf,0xF0);
2071 
2072     // CMPXCHG [Eptr]
2073     emit_opcode(cbuf,0x0F);
2074     emit_opcode(cbuf,0xB1);
2075     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2076   %}
2077 
2078   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2079     int res_encoding = $res$$reg;
2080 
2081     // MOV  res,0
2082     emit_opcode( cbuf, 0xB8 + res_encoding);
2083     emit_d32( cbuf, 0 );
2084     // JNE,s  fail
2085     emit_opcode(cbuf,0x75);
2086     emit_d8(cbuf, 5 );
2087     // MOV  res,1
2088     emit_opcode( cbuf, 0xB8 + res_encoding);
2089     emit_d32( cbuf, 1 );
2090     // fail:
2091   %}
2092 
2093   enc_class set_instruction_start( ) %{
2094     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2095   %}
2096 
2097   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2098     int reg_encoding = $ereg$$reg;
2099     int base  = $mem$$base;
2100     int index = $mem$$index;
2101     int scale = $mem$$scale;
2102     int displace = $mem$$disp;
2103     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2104     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2105   %}
2106 
2107   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2108     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2109     int base  = $mem$$base;
2110     int index = $mem$$index;
2111     int scale = $mem$$scale;
2112     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2113     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2114     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2115   %}
2116 
2117   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2118     int r1, r2;
2119     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2120     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2121     emit_opcode(cbuf,0x0F);
2122     emit_opcode(cbuf,$tertiary);
2123     emit_rm(cbuf, 0x3, r1, r2);
2124     emit_d8(cbuf,$cnt$$constant);
2125     emit_d8(cbuf,$primary);
2126     emit_rm(cbuf, 0x3, $secondary, r1);
2127     emit_d8(cbuf,$cnt$$constant);
2128   %}
2129 
2130   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2131     emit_opcode( cbuf, 0x8B ); // Move
2132     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2133     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2134       emit_d8(cbuf,$primary);
2135       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2136       emit_d8(cbuf,$cnt$$constant-32);
2137     }
2138     emit_d8(cbuf,$primary);
2139     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2140     emit_d8(cbuf,31);
2141   %}
2142 
2143   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2144     int r1, r2;
2145     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2146     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2147 
2148     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2149     emit_rm(cbuf, 0x3, r1, r2);
2150     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2151       emit_opcode(cbuf,$primary);
2152       emit_rm(cbuf, 0x3, $secondary, r1);
2153       emit_d8(cbuf,$cnt$$constant-32);
2154     }
2155     emit_opcode(cbuf,0x33);  // XOR r2,r2
2156     emit_rm(cbuf, 0x3, r2, r2);
2157   %}
2158 
2159   // Clone of RegMem but accepts an extra parameter to access each
2160   // half of a double in memory; it never needs relocation info.
2161   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2162     emit_opcode(cbuf,$opcode$$constant);
2163     int reg_encoding = $rm_reg$$reg;
2164     int base     = $mem$$base;
2165     int index    = $mem$$index;
2166     int scale    = $mem$$scale;
2167     int displace = $mem$$disp + $disp_for_half$$constant;
2168     relocInfo::relocType disp_reloc = relocInfo::none;
2169     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2170   %}
2171 
2172   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2173   //
2174   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2175   // and it never needs relocation information.
2176   // Frequently used to move data between FPU's Stack Top and memory.
2177   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2178     int rm_byte_opcode = $rm_opcode$$constant;
2179     int base     = $mem$$base;
2180     int index    = $mem$$index;
2181     int scale    = $mem$$scale;
2182     int displace = $mem$$disp;
2183     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2184     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2185   %}
2186 
2187   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2188     int rm_byte_opcode = $rm_opcode$$constant;
2189     int base     = $mem$$base;
2190     int index    = $mem$$index;
2191     int scale    = $mem$$scale;
2192     int displace = $mem$$disp;
2193     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2194     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2195   %}
2196 
2197   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2198     int reg_encoding = $dst$$reg;
2199     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2200     int index        = 0x04;            // 0x04 indicates no index
2201     int scale        = 0x00;            // 0x00 indicates no scale
2202     int displace     = $src1$$constant; // 0x00 indicates no displacement
2203     relocInfo::relocType disp_reloc = relocInfo::none;
2204     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2205   %}
2206 
2207   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2208     // Compare dst,src
2209     emit_opcode(cbuf,0x3B);
2210     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2211     // jmp dst < src around move
2212     emit_opcode(cbuf,0x7C);
2213     emit_d8(cbuf,2);
2214     // move dst,src
2215     emit_opcode(cbuf,0x8B);
2216     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2217   %}
2218 
2219   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2220     // Compare dst,src
2221     emit_opcode(cbuf,0x3B);
2222     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2223     // jmp dst > src around move
2224     emit_opcode(cbuf,0x7F);
2225     emit_d8(cbuf,2);
2226     // move dst,src
2227     emit_opcode(cbuf,0x8B);
2228     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2229   %}
2230 
2231   enc_class enc_FPR_store(memory mem, regDPR src) %{
2232     // If src is FPR1, we can just FST to store it.
2233     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2234     int reg_encoding = 0x2; // Just store
2235     int base  = $mem$$base;
2236     int index = $mem$$index;
2237     int scale = $mem$$scale;
2238     int displace = $mem$$disp;
2239     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2240     if( $src$$reg != FPR1L_enc ) {
2241       reg_encoding = 0x3;  // Store & pop
2242       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2243       emit_d8( cbuf, 0xC0-1+$src$$reg );
2244     }
2245     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2246     emit_opcode(cbuf,$primary);
2247     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2248   %}
2249 
2250   enc_class neg_reg(rRegI dst) %{
2251     // NEG $dst
2252     emit_opcode(cbuf,0xF7);
2253     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2254   %}
2255 
2256   enc_class setLT_reg(eCXRegI dst) %{
2257     // SETLT $dst
2258     emit_opcode(cbuf,0x0F);
2259     emit_opcode(cbuf,0x9C);
2260     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2261   %}
2262 
2263   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2264     int tmpReg = $tmp$$reg;
2265 
2266     // SUB $p,$q
2267     emit_opcode(cbuf,0x2B);
2268     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2269     // SBB $tmp,$tmp
2270     emit_opcode(cbuf,0x1B);
2271     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2272     // AND $tmp,$y
2273     emit_opcode(cbuf,0x23);
2274     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2275     // ADD $p,$tmp
2276     emit_opcode(cbuf,0x03);
2277     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2278   %}
2279 
2280   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2281     // TEST shift,32
2282     emit_opcode(cbuf,0xF7);
2283     emit_rm(cbuf, 0x3, 0, ECX_enc);
2284     emit_d32(cbuf,0x20);
2285     // JEQ,s small
2286     emit_opcode(cbuf, 0x74);
2287     emit_d8(cbuf, 0x04);
2288     // MOV    $dst.hi,$dst.lo
2289     emit_opcode( cbuf, 0x8B );
2290     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2291     // CLR    $dst.lo
2292     emit_opcode(cbuf, 0x33);
2293     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2294 // small:
2295     // SHLD   $dst.hi,$dst.lo,$shift
2296     emit_opcode(cbuf,0x0F);
2297     emit_opcode(cbuf,0xA5);
2298     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2299     // SHL    $dst.lo,$shift"
2300     emit_opcode(cbuf,0xD3);
2301     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2302   %}
2303 
2304   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2305     // TEST shift,32
2306     emit_opcode(cbuf,0xF7);
2307     emit_rm(cbuf, 0x3, 0, ECX_enc);
2308     emit_d32(cbuf,0x20);
2309     // JEQ,s small
2310     emit_opcode(cbuf, 0x74);
2311     emit_d8(cbuf, 0x04);
2312     // MOV    $dst.lo,$dst.hi
2313     emit_opcode( cbuf, 0x8B );
2314     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2315     // CLR    $dst.hi
2316     emit_opcode(cbuf, 0x33);
2317     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2318 // small:
2319     // SHRD   $dst.lo,$dst.hi,$shift
2320     emit_opcode(cbuf,0x0F);
2321     emit_opcode(cbuf,0xAD);
2322     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2323     // SHR    $dst.hi,$shift"
2324     emit_opcode(cbuf,0xD3);
2325     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2326   %}
2327 
2328   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2329     // TEST shift,32
2330     emit_opcode(cbuf,0xF7);
2331     emit_rm(cbuf, 0x3, 0, ECX_enc);
2332     emit_d32(cbuf,0x20);
2333     // JEQ,s small
2334     emit_opcode(cbuf, 0x74);
2335     emit_d8(cbuf, 0x05);
2336     // MOV    $dst.lo,$dst.hi
2337     emit_opcode( cbuf, 0x8B );
2338     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2339     // SAR    $dst.hi,31
2340     emit_opcode(cbuf, 0xC1);
2341     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2342     emit_d8(cbuf, 0x1F );
2343 // small:
2344     // SHRD   $dst.lo,$dst.hi,$shift
2345     emit_opcode(cbuf,0x0F);
2346     emit_opcode(cbuf,0xAD);
2347     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2348     // SAR    $dst.hi,$shift"
2349     emit_opcode(cbuf,0xD3);
2350     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2351   %}
2352 
2353 
2354   // ----------------- Encodings for floating point unit -----------------
2355   // May leave result in FPU-TOS or FPU reg depending on opcodes
2356   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2357     $$$emit8$primary;
2358     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2359   %}
2360 
2361   // Pop argument in FPR0 with FSTP ST(0)
2362   enc_class PopFPU() %{
2363     emit_opcode( cbuf, 0xDD );
2364     emit_d8( cbuf, 0xD8 );
2365   %}
2366 
2367   // !!!!! equivalent to Pop_Reg_F
2368   enc_class Pop_Reg_DPR( regDPR dst ) %{
2369     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2370     emit_d8( cbuf, 0xD8+$dst$$reg );
2371   %}
2372 
2373   enc_class Push_Reg_DPR( regDPR dst ) %{
2374     emit_opcode( cbuf, 0xD9 );
2375     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2376   %}
2377 
2378   enc_class strictfp_bias1( regDPR dst ) %{
2379     emit_opcode( cbuf, 0xDB );           // FLD m80real
2380     emit_opcode( cbuf, 0x2D );
2381     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2382     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2383     emit_opcode( cbuf, 0xC8+$dst$$reg );
2384   %}
2385 
2386   enc_class strictfp_bias2( regDPR dst ) %{
2387     emit_opcode( cbuf, 0xDB );           // FLD m80real
2388     emit_opcode( cbuf, 0x2D );
2389     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2390     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2391     emit_opcode( cbuf, 0xC8+$dst$$reg );
2392   %}
2393 
2394   // Special case for moving an integer register to a stack slot.
2395   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2396     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2397   %}
2398 
2399   // Special case for moving a register to a stack slot.
2400   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2401     // Opcode already emitted
2402     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2403     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2404     emit_d32(cbuf, $dst$$disp);   // Displacement
2405   %}
2406 
2407   // Push the integer in stackSlot 'src' onto FP-stack
2408   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2409     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2410   %}
2411 
2412   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2413   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2414     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2415   %}
2416 
2417   // Same as Pop_Mem_F except for opcode
2418   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2419   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2420     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2421   %}
2422 
2423   enc_class Pop_Reg_FPR( regFPR dst ) %{
2424     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2425     emit_d8( cbuf, 0xD8+$dst$$reg );
2426   %}
2427 
2428   enc_class Push_Reg_FPR( regFPR dst ) %{
2429     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2430     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2431   %}
2432 
2433   // Push FPU's float to a stack-slot, and pop FPU-stack
2434   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2435     int pop = 0x02;
2436     if ($src$$reg != FPR1L_enc) {
2437       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2438       emit_d8( cbuf, 0xC0-1+$src$$reg );
2439       pop = 0x03;
2440     }
2441     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2442   %}
2443 
2444   // Push FPU's double to a stack-slot, and pop FPU-stack
2445   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2446     int pop = 0x02;
2447     if ($src$$reg != FPR1L_enc) {
2448       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2449       emit_d8( cbuf, 0xC0-1+$src$$reg );
2450       pop = 0x03;
2451     }
2452     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2453   %}
2454 
2455   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2456   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2457     int pop = 0xD0 - 1; // -1 since we skip FLD
2458     if ($src$$reg != FPR1L_enc) {
2459       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2460       emit_d8( cbuf, 0xC0-1+$src$$reg );
2461       pop = 0xD8;
2462     }
2463     emit_opcode( cbuf, 0xDD );
2464     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2465   %}
2466 
2467 
2468   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2469     // load dst in FPR0
2470     emit_opcode( cbuf, 0xD9 );
2471     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2472     if ($src$$reg != FPR1L_enc) {
2473       // fincstp
2474       emit_opcode (cbuf, 0xD9);
2475       emit_opcode (cbuf, 0xF7);
2476       // swap src with FPR1:
2477       // FXCH FPR1 with src
2478       emit_opcode(cbuf, 0xD9);
2479       emit_d8(cbuf, 0xC8-1+$src$$reg );
2480       // fdecstp
2481       emit_opcode (cbuf, 0xD9);
2482       emit_opcode (cbuf, 0xF6);
2483     }
2484   %}
2485 
2486   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2487     MacroAssembler _masm(&cbuf);
2488     __ subptr(rsp, 8);
2489     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2490     __ fld_d(Address(rsp, 0));
2491     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2492     __ fld_d(Address(rsp, 0));
2493   %}
2494 
2495   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2496     MacroAssembler _masm(&cbuf);
2497     __ subptr(rsp, 4);
2498     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2499     __ fld_s(Address(rsp, 0));
2500     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2501     __ fld_s(Address(rsp, 0));
2502   %}
2503 
2504   enc_class Push_ResultD(regD dst) %{
2505     MacroAssembler _masm(&cbuf);
2506     __ fstp_d(Address(rsp, 0));
2507     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2508     __ addptr(rsp, 8);
2509   %}
2510 
2511   enc_class Push_ResultF(regF dst, immI d8) %{
2512     MacroAssembler _masm(&cbuf);
2513     __ fstp_s(Address(rsp, 0));
2514     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2515     __ addptr(rsp, $d8$$constant);
2516   %}
2517 
2518   enc_class Push_SrcD(regD src) %{
2519     MacroAssembler _masm(&cbuf);
2520     __ subptr(rsp, 8);
2521     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2522     __ fld_d(Address(rsp, 0));
2523   %}
2524 
2525   enc_class push_stack_temp_qword() %{
2526     MacroAssembler _masm(&cbuf);
2527     __ subptr(rsp, 8);
2528   %}
2529 
2530   enc_class pop_stack_temp_qword() %{
2531     MacroAssembler _masm(&cbuf);
2532     __ addptr(rsp, 8);
2533   %}
2534 
2535   enc_class push_xmm_to_fpr1(regD src) %{
2536     MacroAssembler _masm(&cbuf);
2537     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2538     __ fld_d(Address(rsp, 0));
2539   %}
2540 
2541   enc_class Push_Result_Mod_DPR( regDPR src) %{
2542     if ($src$$reg != FPR1L_enc) {
2543       // fincstp
2544       emit_opcode (cbuf, 0xD9);
2545       emit_opcode (cbuf, 0xF7);
2546       // FXCH FPR1 with src
2547       emit_opcode(cbuf, 0xD9);
2548       emit_d8(cbuf, 0xC8-1+$src$$reg );
2549       // fdecstp
2550       emit_opcode (cbuf, 0xD9);
2551       emit_opcode (cbuf, 0xF6);
2552     }
2553     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2554     // // FSTP   FPR$dst$$reg
2555     // emit_opcode( cbuf, 0xDD );
2556     // emit_d8( cbuf, 0xD8+$dst$$reg );
2557   %}
2558 
2559   enc_class fnstsw_sahf_skip_parity() %{
2560     // fnstsw ax
2561     emit_opcode( cbuf, 0xDF );
2562     emit_opcode( cbuf, 0xE0 );
2563     // sahf
2564     emit_opcode( cbuf, 0x9E );
2565     // jnp  ::skip
2566     emit_opcode( cbuf, 0x7B );
2567     emit_opcode( cbuf, 0x05 );
2568   %}
2569 
2570   enc_class emitModDPR() %{
2571     // fprem must be iterative
2572     // :: loop
2573     // fprem
2574     emit_opcode( cbuf, 0xD9 );
2575     emit_opcode( cbuf, 0xF8 );
2576     // wait
2577     emit_opcode( cbuf, 0x9b );
2578     // fnstsw ax
2579     emit_opcode( cbuf, 0xDF );
2580     emit_opcode( cbuf, 0xE0 );
2581     // sahf
2582     emit_opcode( cbuf, 0x9E );
2583     // jp  ::loop
2584     emit_opcode( cbuf, 0x0F );
2585     emit_opcode( cbuf, 0x8A );
2586     emit_opcode( cbuf, 0xF4 );
2587     emit_opcode( cbuf, 0xFF );
2588     emit_opcode( cbuf, 0xFF );
2589     emit_opcode( cbuf, 0xFF );
2590   %}
2591 
2592   enc_class fpu_flags() %{
2593     // fnstsw_ax
2594     emit_opcode( cbuf, 0xDF);
2595     emit_opcode( cbuf, 0xE0);
2596     // test ax,0x0400
2597     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2598     emit_opcode( cbuf, 0xA9 );
2599     emit_d16   ( cbuf, 0x0400 );
2600     // // // This sequence works, but stalls for 12-16 cycles on PPro
2601     // // test rax,0x0400
2602     // emit_opcode( cbuf, 0xA9 );
2603     // emit_d32   ( cbuf, 0x00000400 );
2604     //
2605     // jz exit (no unordered comparison)
2606     emit_opcode( cbuf, 0x74 );
2607     emit_d8    ( cbuf, 0x02 );
2608     // mov ah,1 - treat as LT case (set carry flag)
2609     emit_opcode( cbuf, 0xB4 );
2610     emit_d8    ( cbuf, 0x01 );
2611     // sahf
2612     emit_opcode( cbuf, 0x9E);
2613   %}
2614 
2615   enc_class cmpF_P6_fixup() %{
2616     // Fixup the integer flags in case comparison involved a NaN
2617     //
2618     // JNP exit (no unordered comparison, P-flag is set by NaN)
2619     emit_opcode( cbuf, 0x7B );
2620     emit_d8    ( cbuf, 0x03 );
2621     // MOV AH,1 - treat as LT case (set carry flag)
2622     emit_opcode( cbuf, 0xB4 );
2623     emit_d8    ( cbuf, 0x01 );
2624     // SAHF
2625     emit_opcode( cbuf, 0x9E);
2626     // NOP     // target for branch to avoid branch to branch
2627     emit_opcode( cbuf, 0x90);
2628   %}
2629 
2630 //     fnstsw_ax();
2631 //     sahf();
2632 //     movl(dst, nan_result);
2633 //     jcc(Assembler::parity, exit);
2634 //     movl(dst, less_result);
2635 //     jcc(Assembler::below, exit);
2636 //     movl(dst, equal_result);
2637 //     jcc(Assembler::equal, exit);
2638 //     movl(dst, greater_result);
2639 
2640 // less_result     =  1;
2641 // greater_result  = -1;
2642 // equal_result    = 0;
2643 // nan_result      = -1;
2644 
2645   enc_class CmpF_Result(rRegI dst) %{
2646     // fnstsw_ax();
2647     emit_opcode( cbuf, 0xDF);
2648     emit_opcode( cbuf, 0xE0);
2649     // sahf
2650     emit_opcode( cbuf, 0x9E);
2651     // movl(dst, nan_result);
2652     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2653     emit_d32( cbuf, -1 );
2654     // jcc(Assembler::parity, exit);
2655     emit_opcode( cbuf, 0x7A );
2656     emit_d8    ( cbuf, 0x13 );
2657     // movl(dst, less_result);
2658     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2659     emit_d32( cbuf, -1 );
2660     // jcc(Assembler::below, exit);
2661     emit_opcode( cbuf, 0x72 );
2662     emit_d8    ( cbuf, 0x0C );
2663     // movl(dst, equal_result);
2664     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2665     emit_d32( cbuf, 0 );
2666     // jcc(Assembler::equal, exit);
2667     emit_opcode( cbuf, 0x74 );
2668     emit_d8    ( cbuf, 0x05 );
2669     // movl(dst, greater_result);
2670     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2671     emit_d32( cbuf, 1 );
2672   %}
2673 
2674 
2675   // Compare the longs and set flags
2676   // BROKEN!  Do Not use as-is
2677   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2678     // CMP    $src1.hi,$src2.hi
2679     emit_opcode( cbuf, 0x3B );
2680     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2681     // JNE,s  done
2682     emit_opcode(cbuf,0x75);
2683     emit_d8(cbuf, 2 );
2684     // CMP    $src1.lo,$src2.lo
2685     emit_opcode( cbuf, 0x3B );
2686     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2687 // done:
2688   %}
2689 
2690   enc_class convert_int_long( regL dst, rRegI src ) %{
2691     // mov $dst.lo,$src
2692     int dst_encoding = $dst$$reg;
2693     int src_encoding = $src$$reg;
2694     encode_Copy( cbuf, dst_encoding  , src_encoding );
2695     // mov $dst.hi,$src
2696     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2697     // sar $dst.hi,31
2698     emit_opcode( cbuf, 0xC1 );
2699     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2700     emit_d8(cbuf, 0x1F );
2701   %}
2702 
2703   enc_class convert_long_double( eRegL src ) %{
2704     // push $src.hi
2705     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2706     // push $src.lo
2707     emit_opcode(cbuf, 0x50+$src$$reg  );
2708     // fild 64-bits at [SP]
2709     emit_opcode(cbuf,0xdf);
2710     emit_d8(cbuf, 0x6C);
2711     emit_d8(cbuf, 0x24);
2712     emit_d8(cbuf, 0x00);
2713     // pop stack
2714     emit_opcode(cbuf, 0x83); // add  SP, #8
2715     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2716     emit_d8(cbuf, 0x8);
2717   %}
2718 
2719   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2720     // IMUL   EDX:EAX,$src1
2721     emit_opcode( cbuf, 0xF7 );
2722     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2723     // SAR    EDX,$cnt-32
2724     int shift_count = ((int)$cnt$$constant) - 32;
2725     if (shift_count > 0) {
2726       emit_opcode(cbuf, 0xC1);
2727       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2728       emit_d8(cbuf, shift_count);
2729     }
2730   %}
2731 
2732   // this version doesn't have add sp, 8
2733   enc_class convert_long_double2( eRegL src ) %{
2734     // push $src.hi
2735     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2736     // push $src.lo
2737     emit_opcode(cbuf, 0x50+$src$$reg  );
2738     // fild 64-bits at [SP]
2739     emit_opcode(cbuf,0xdf);
2740     emit_d8(cbuf, 0x6C);
2741     emit_d8(cbuf, 0x24);
2742     emit_d8(cbuf, 0x00);
2743   %}
2744 
2745   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2746     // Basic idea: long = (long)int * (long)int
2747     // IMUL EDX:EAX, src
2748     emit_opcode( cbuf, 0xF7 );
2749     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2750   %}
2751 
2752   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2753     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2754     // MUL EDX:EAX, src
2755     emit_opcode( cbuf, 0xF7 );
2756     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2757   %}
2758 
2759   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2760     // Basic idea: lo(result) = lo(x_lo * y_lo)
2761     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2762     // MOV    $tmp,$src.lo
2763     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2764     // IMUL   $tmp,EDX
2765     emit_opcode( cbuf, 0x0F );
2766     emit_opcode( cbuf, 0xAF );
2767     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2768     // MOV    EDX,$src.hi
2769     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2770     // IMUL   EDX,EAX
2771     emit_opcode( cbuf, 0x0F );
2772     emit_opcode( cbuf, 0xAF );
2773     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2774     // ADD    $tmp,EDX
2775     emit_opcode( cbuf, 0x03 );
2776     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2777     // MUL   EDX:EAX,$src.lo
2778     emit_opcode( cbuf, 0xF7 );
2779     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2780     // ADD    EDX,ESI
2781     emit_opcode( cbuf, 0x03 );
2782     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2783   %}
2784 
2785   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2786     // Basic idea: lo(result) = lo(src * y_lo)
2787     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2788     // IMUL   $tmp,EDX,$src
2789     emit_opcode( cbuf, 0x6B );
2790     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2791     emit_d8( cbuf, (int)$src$$constant );
2792     // MOV    EDX,$src
2793     emit_opcode(cbuf, 0xB8 + EDX_enc);
2794     emit_d32( cbuf, (int)$src$$constant );
2795     // MUL   EDX:EAX,EDX
2796     emit_opcode( cbuf, 0xF7 );
2797     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2798     // ADD    EDX,ESI
2799     emit_opcode( cbuf, 0x03 );
2800     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2801   %}
2802 
2803   enc_class long_div( eRegL src1, eRegL src2 ) %{
2804     // PUSH src1.hi
2805     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2806     // PUSH src1.lo
2807     emit_opcode(cbuf,               0x50+$src1$$reg  );
2808     // PUSH src2.hi
2809     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2810     // PUSH src2.lo
2811     emit_opcode(cbuf,               0x50+$src2$$reg  );
2812     // CALL directly to the runtime
2813     cbuf.set_insts_mark();
2814     emit_opcode(cbuf,0xE8);       // Call into runtime
2815     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2816     // Restore stack
2817     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2818     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2819     emit_d8(cbuf, 4*4);
2820   %}
2821 
2822   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2823     // PUSH src1.hi
2824     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2825     // PUSH src1.lo
2826     emit_opcode(cbuf,               0x50+$src1$$reg  );
2827     // PUSH src2.hi
2828     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2829     // PUSH src2.lo
2830     emit_opcode(cbuf,               0x50+$src2$$reg  );
2831     // CALL directly to the runtime
2832     cbuf.set_insts_mark();
2833     emit_opcode(cbuf,0xE8);       // Call into runtime
2834     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2835     // Restore stack
2836     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2837     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2838     emit_d8(cbuf, 4*4);
2839   %}
2840 
2841   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2842     // MOV   $tmp,$src.lo
2843     emit_opcode(cbuf, 0x8B);
2844     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2845     // OR    $tmp,$src.hi
2846     emit_opcode(cbuf, 0x0B);
2847     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2848   %}
2849 
2850   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2851     // CMP    $src1.lo,$src2.lo
2852     emit_opcode( cbuf, 0x3B );
2853     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2854     // JNE,s  skip
2855     emit_cc(cbuf, 0x70, 0x5);
2856     emit_d8(cbuf,2);
2857     // CMP    $src1.hi,$src2.hi
2858     emit_opcode( cbuf, 0x3B );
2859     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2860   %}
2861 
2862   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2863     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2864     emit_opcode( cbuf, 0x3B );
2865     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2866     // MOV    $tmp,$src1.hi
2867     emit_opcode( cbuf, 0x8B );
2868     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2869     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2870     emit_opcode( cbuf, 0x1B );
2871     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2872   %}
2873 
2874   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2875     // XOR    $tmp,$tmp
2876     emit_opcode(cbuf,0x33);  // XOR
2877     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2878     // CMP    $tmp,$src.lo
2879     emit_opcode( cbuf, 0x3B );
2880     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2881     // SBB    $tmp,$src.hi
2882     emit_opcode( cbuf, 0x1B );
2883     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2884   %}
2885 
2886  // Sniff, sniff... smells like Gnu Superoptimizer
2887   enc_class neg_long( eRegL dst ) %{
2888     emit_opcode(cbuf,0xF7);    // NEG hi
2889     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2890     emit_opcode(cbuf,0xF7);    // NEG lo
2891     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2892     emit_opcode(cbuf,0x83);    // SBB hi,0
2893     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2894     emit_d8    (cbuf,0 );
2895   %}
2896 
2897   enc_class enc_pop_rdx() %{
2898     emit_opcode(cbuf,0x5A);
2899   %}
2900 
2901   enc_class enc_rethrow() %{
2902     cbuf.set_insts_mark();
2903     emit_opcode(cbuf, 0xE9);        // jmp    entry
2904     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
2905                    runtime_call_Relocation::spec(), RELOC_IMM32 );
2906   %}
2907 
2908 
2909   // Convert a double to an int.  Java semantics require we do complex
2910   // manglelations in the corner cases.  So we set the rounding mode to
2911   // 'zero', store the darned double down as an int, and reset the
2912   // rounding mode to 'nearest'.  The hardware throws an exception which
2913   // patches up the correct value directly to the stack.
2914   enc_class DPR2I_encoding( regDPR src ) %{
2915     // Flip to round-to-zero mode.  We attempted to allow invalid-op
2916     // exceptions here, so that a NAN or other corner-case value will
2917     // thrown an exception (but normal values get converted at full speed).
2918     // However, I2C adapters and other float-stack manglers leave pending
2919     // invalid-op exceptions hanging.  We would have to clear them before
2920     // enabling them and that is more expensive than just testing for the
2921     // invalid value Intel stores down in the corner cases.
2922     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
2923     emit_opcode(cbuf,0x2D);
2924     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
2925     // Allocate a word
2926     emit_opcode(cbuf,0x83);            // SUB ESP,4
2927     emit_opcode(cbuf,0xEC);
2928     emit_d8(cbuf,0x04);
2929     // Encoding assumes a double has been pushed into FPR0.
2930     // Store down the double as an int, popping the FPU stack
2931     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
2932     emit_opcode(cbuf,0x1C);
2933     emit_d8(cbuf,0x24);
2934     // Restore the rounding mode; mask the exception
2935     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
2936     emit_opcode(cbuf,0x2D);
2937     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
2938         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
2939         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
2940 
2941     // Load the converted int; adjust CPU stack
2942     emit_opcode(cbuf,0x58);       // POP EAX
2943     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
2944     emit_d32   (cbuf,0x80000000); //         0x80000000
2945     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2946     emit_d8    (cbuf,0x07);       // Size of slow_call
2947     // Push src onto stack slow-path
2948     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
2949     emit_d8    (cbuf,0xC0-1+$src$$reg );
2950     // CALL directly to the runtime
2951     cbuf.set_insts_mark();
2952     emit_opcode(cbuf,0xE8);       // Call into runtime
2953     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2954     // Carry on here...
2955   %}
2956 
2957   enc_class DPR2L_encoding( regDPR src ) %{
2958     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
2959     emit_opcode(cbuf,0x2D);
2960     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
2961     // Allocate a word
2962     emit_opcode(cbuf,0x83);            // SUB ESP,8
2963     emit_opcode(cbuf,0xEC);
2964     emit_d8(cbuf,0x08);
2965     // Encoding assumes a double has been pushed into FPR0.
2966     // Store down the double as a long, popping the FPU stack
2967     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
2968     emit_opcode(cbuf,0x3C);
2969     emit_d8(cbuf,0x24);
2970     // Restore the rounding mode; mask the exception
2971     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
2972     emit_opcode(cbuf,0x2D);
2973     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
2974         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
2975         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
2976 
2977     // Load the converted int; adjust CPU stack
2978     emit_opcode(cbuf,0x58);       // POP EAX
2979     emit_opcode(cbuf,0x5A);       // POP EDX
2980     emit_opcode(cbuf,0x81);       // CMP EDX,imm
2981     emit_d8    (cbuf,0xFA);       // rdx
2982     emit_d32   (cbuf,0x80000000); //         0x80000000
2983     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2984     emit_d8    (cbuf,0x07+4);     // Size of slow_call
2985     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
2986     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
2987     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2988     emit_d8    (cbuf,0x07);       // Size of slow_call
2989     // Push src onto stack slow-path
2990     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
2991     emit_d8    (cbuf,0xC0-1+$src$$reg );
2992     // CALL directly to the runtime
2993     cbuf.set_insts_mark();
2994     emit_opcode(cbuf,0xE8);       // Call into runtime
2995     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2996     // Carry on here...
2997   %}
2998 
2999   enc_class FMul_ST_reg( eRegFPR src1 ) %{
3000     // Operand was loaded from memory into fp ST (stack top)
3001     // FMUL   ST,$src  /* D8 C8+i */
3002     emit_opcode(cbuf, 0xD8);
3003     emit_opcode(cbuf, 0xC8 + $src1$$reg);
3004   %}
3005 
3006   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3007     // FADDP  ST,src2  /* D8 C0+i */
3008     emit_opcode(cbuf, 0xD8);
3009     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3010     //could use FADDP  src2,fpST  /* DE C0+i */
3011   %}
3012 
3013   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3014     // FADDP  src2,ST  /* DE C0+i */
3015     emit_opcode(cbuf, 0xDE);
3016     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3017   %}
3018 
3019   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3020     // Operand has been loaded into fp ST (stack top)
3021       // FSUB   ST,$src1
3022       emit_opcode(cbuf, 0xD8);
3023       emit_opcode(cbuf, 0xE0 + $src1$$reg);
3024 
3025       // FDIV
3026       emit_opcode(cbuf, 0xD8);
3027       emit_opcode(cbuf, 0xF0 + $src2$$reg);
3028   %}
3029 
3030   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3031     // Operand was loaded from memory into fp ST (stack top)
3032     // FADD   ST,$src  /* D8 C0+i */
3033     emit_opcode(cbuf, 0xD8);
3034     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3035 
3036     // FMUL  ST,src2  /* D8 C*+i */
3037     emit_opcode(cbuf, 0xD8);
3038     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3039   %}
3040 
3041 
3042   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3043     // Operand was loaded from memory into fp ST (stack top)
3044     // FADD   ST,$src  /* D8 C0+i */
3045     emit_opcode(cbuf, 0xD8);
3046     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3047 
3048     // FMULP  src2,ST  /* DE C8+i */
3049     emit_opcode(cbuf, 0xDE);
3050     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3051   %}
3052 
3053   // Atomically load the volatile long
3054   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3055     emit_opcode(cbuf,0xDF);
3056     int rm_byte_opcode = 0x05;
3057     int base     = $mem$$base;
3058     int index    = $mem$$index;
3059     int scale    = $mem$$scale;
3060     int displace = $mem$$disp;
3061     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3062     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3063     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3064   %}
3065 
3066   // Volatile Store Long.  Must be atomic, so move it into
3067   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3068   // target address before the store (for null-ptr checks)
3069   // so the memory operand is used twice in the encoding.
3070   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3071     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3072     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3073     emit_opcode(cbuf,0xDF);
3074     int rm_byte_opcode = 0x07;
3075     int base     = $mem$$base;
3076     int index    = $mem$$index;
3077     int scale    = $mem$$scale;
3078     int displace = $mem$$disp;
3079     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3080     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3081   %}
3082 
3083   // Safepoint Poll.  This polls the safepoint page, and causes an
3084   // exception if it is not readable. Unfortunately, it kills the condition code
3085   // in the process
3086   // We current use TESTL [spp],EDI
3087   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3088 
3089   enc_class Safepoint_Poll() %{
3090     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3091     emit_opcode(cbuf,0x85);
3092     emit_rm (cbuf, 0x0, 0x7, 0x5);
3093     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3094   %}
3095 %}
3096 
3097 
3098 //----------FRAME--------------------------------------------------------------
3099 // Definition of frame structure and management information.
3100 //
3101 //  S T A C K   L A Y O U T    Allocators stack-slot number
3102 //                             |   (to get allocators register number
3103 //  G  Owned by    |        |  v    add OptoReg::stack0())
3104 //  r   CALLER     |        |
3105 //  o     |        +--------+      pad to even-align allocators stack-slot
3106 //  w     V        |  pad0  |        numbers; owned by CALLER
3107 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3108 //  h     ^        |   in   |  5
3109 //        |        |  args  |  4   Holes in incoming args owned by SELF
3110 //  |     |        |        |  3
3111 //  |     |        +--------+
3112 //  V     |        | old out|      Empty on Intel, window on Sparc
3113 //        |    old |preserve|      Must be even aligned.
3114 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3115 //        |        |   in   |  3   area for Intel ret address
3116 //     Owned by    |preserve|      Empty on Sparc.
3117 //       SELF      +--------+
3118 //        |        |  pad2  |  2   pad to align old SP
3119 //        |        +--------+  1
3120 //        |        | locks  |  0
3121 //        |        +--------+----> OptoReg::stack0(), even aligned
3122 //        |        |  pad1  | 11   pad to align new SP
3123 //        |        +--------+
3124 //        |        |        | 10
3125 //        |        | spills |  9   spills
3126 //        V        |        |  8   (pad0 slot for callee)
3127 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3128 //        ^        |  out   |  7
3129 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3130 //     Owned by    +--------+
3131 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3132 //        |    new |preserve|      Must be even-aligned.
3133 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3134 //        |        |        |
3135 //
3136 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3137 //         known from SELF's arguments and the Java calling convention.
3138 //         Region 6-7 is determined per call site.
3139 // Note 2: If the calling convention leaves holes in the incoming argument
3140 //         area, those holes are owned by SELF.  Holes in the outgoing area
3141 //         are owned by the CALLEE.  Holes should not be nessecary in the
3142 //         incoming area, as the Java calling convention is completely under
3143 //         the control of the AD file.  Doubles can be sorted and packed to
3144 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3145 //         varargs C calling conventions.
3146 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3147 //         even aligned with pad0 as needed.
3148 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3149 //         region 6-11 is even aligned; it may be padded out more so that
3150 //         the region from SP to FP meets the minimum stack alignment.
3151 
3152 frame %{
3153   // What direction does stack grow in (assumed to be same for C & Java)
3154   stack_direction(TOWARDS_LOW);
3155 
3156   // These three registers define part of the calling convention
3157   // between compiled code and the interpreter.
3158   inline_cache_reg(EAX);                // Inline Cache Register
3159   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3160 
3161   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3162   cisc_spilling_operand_name(indOffset32);
3163 
3164   // Number of stack slots consumed by locking an object
3165   sync_stack_slots(1);
3166 
3167   // Compiled code's Frame Pointer
3168   frame_pointer(ESP);
3169   // Interpreter stores its frame pointer in a register which is
3170   // stored to the stack by I2CAdaptors.
3171   // I2CAdaptors convert from interpreted java to compiled java.
3172   interpreter_frame_pointer(EBP);
3173 
3174   // Stack alignment requirement
3175   // Alignment size in bytes (128-bit -> 16 bytes)
3176   stack_alignment(StackAlignmentInBytes);
3177 
3178   // Number of stack slots between incoming argument block and the start of
3179   // a new frame.  The PROLOG must add this many slots to the stack.  The
3180   // EPILOG must remove this many slots.  Intel needs one slot for
3181   // return address and one for rbp, (must save rbp)
3182   in_preserve_stack_slots(2+VerifyStackAtCalls);
3183 
3184   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3185   // for calls to C.  Supports the var-args backing area for register parms.
3186   varargs_C_out_slots_killed(0);
3187 
3188   // The after-PROLOG location of the return address.  Location of
3189   // return address specifies a type (REG or STACK) and a number
3190   // representing the register number (i.e. - use a register name) or
3191   // stack slot.
3192   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3193   // Otherwise, it is above the locks and verification slot and alignment word
3194   return_addr(STACK - 1 +
3195               round_to((Compile::current()->in_preserve_stack_slots() +
3196                         Compile::current()->fixed_slots()),
3197                        stack_alignment_in_slots()));
3198 
3199   // Body of function which returns an integer array locating
3200   // arguments either in registers or in stack slots.  Passed an array
3201   // of ideal registers called "sig" and a "length" count.  Stack-slot
3202   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3203   // arguments for a CALLEE.  Incoming stack arguments are
3204   // automatically biased by the preserve_stack_slots field above.
3205   calling_convention %{
3206     // No difference between ingoing/outgoing just pass false
3207     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3208   %}
3209 
3210 
3211   // Body of function which returns an integer array locating
3212   // arguments either in registers or in stack slots.  Passed an array
3213   // of ideal registers called "sig" and a "length" count.  Stack-slot
3214   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3215   // arguments for a CALLEE.  Incoming stack arguments are
3216   // automatically biased by the preserve_stack_slots field above.
3217   c_calling_convention %{
3218     // This is obviously always outgoing
3219     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3220   %}
3221 
3222   // Location of C & interpreter return values
3223   c_return_value %{
3224     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3225     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3226     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3227 
3228     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3229     // that C functions return float and double results in XMM0.
3230     if( ideal_reg == Op_RegD && UseSSE>=2 )
3231       return OptoRegPair(XMM0b_num,XMM0_num);
3232     if( ideal_reg == Op_RegF && UseSSE>=2 )
3233       return OptoRegPair(OptoReg::Bad,XMM0_num);
3234 
3235     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3236   %}
3237 
3238   // Location of return values
3239   return_value %{
3240     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3241     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3242     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3243     if( ideal_reg == Op_RegD && UseSSE>=2 )
3244       return OptoRegPair(XMM0b_num,XMM0_num);
3245     if( ideal_reg == Op_RegF && UseSSE>=1 )
3246       return OptoRegPair(OptoReg::Bad,XMM0_num);
3247     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3248   %}
3249 
3250 %}
3251 
3252 //----------ATTRIBUTES---------------------------------------------------------
3253 //----------Operand Attributes-------------------------------------------------
3254 op_attrib op_cost(0);        // Required cost attribute
3255 
3256 //----------Instruction Attributes---------------------------------------------
3257 ins_attrib ins_cost(100);       // Required cost attribute
3258 ins_attrib ins_size(8);         // Required size attribute (in bits)
3259 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3260                                 // non-matching short branch variant of some
3261                                                             // long branch?
3262 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3263                                 // specifies the alignment that some part of the instruction (not
3264                                 // necessarily the start) requires.  If > 1, a compute_padding()
3265                                 // function must be provided for the instruction
3266 
3267 //----------OPERANDS-----------------------------------------------------------
3268 // Operand definitions must precede instruction definitions for correct parsing
3269 // in the ADLC because operands constitute user defined types which are used in
3270 // instruction definitions.
3271 
3272 //----------Simple Operands----------------------------------------------------
3273 // Immediate Operands
3274 // Integer Immediate
3275 operand immI() %{
3276   match(ConI);
3277 
3278   op_cost(10);
3279   format %{ %}
3280   interface(CONST_INTER);
3281 %}
3282 
3283 // Constant for test vs zero
3284 operand immI0() %{
3285   predicate(n->get_int() == 0);
3286   match(ConI);
3287 
3288   op_cost(0);
3289   format %{ %}
3290   interface(CONST_INTER);
3291 %}
3292 
3293 // Constant for increment
3294 operand immI1() %{
3295   predicate(n->get_int() == 1);
3296   match(ConI);
3297 
3298   op_cost(0);
3299   format %{ %}
3300   interface(CONST_INTER);
3301 %}
3302 
3303 // Constant for decrement
3304 operand immI_M1() %{
3305   predicate(n->get_int() == -1);
3306   match(ConI);
3307 
3308   op_cost(0);
3309   format %{ %}
3310   interface(CONST_INTER);
3311 %}
3312 
3313 // Valid scale values for addressing modes
3314 operand immI2() %{
3315   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3316   match(ConI);
3317 
3318   format %{ %}
3319   interface(CONST_INTER);
3320 %}
3321 
3322 operand immI8() %{
3323   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3324   match(ConI);
3325 
3326   op_cost(5);
3327   format %{ %}
3328   interface(CONST_INTER);
3329 %}
3330 
3331 operand immI16() %{
3332   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3333   match(ConI);
3334 
3335   op_cost(10);
3336   format %{ %}
3337   interface(CONST_INTER);
3338 %}
3339 
3340 // Int Immediate non-negative
3341 operand immU31()
3342 %{
3343   predicate(n->get_int() >= 0);
3344   match(ConI);
3345 
3346   op_cost(0);
3347   format %{ %}
3348   interface(CONST_INTER);
3349 %}
3350 
3351 // Constant for long shifts
3352 operand immI_32() %{
3353   predicate( n->get_int() == 32 );
3354   match(ConI);
3355 
3356   op_cost(0);
3357   format %{ %}
3358   interface(CONST_INTER);
3359 %}
3360 
3361 operand immI_1_31() %{
3362   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3363   match(ConI);
3364 
3365   op_cost(0);
3366   format %{ %}
3367   interface(CONST_INTER);
3368 %}
3369 
3370 operand immI_32_63() %{
3371   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3372   match(ConI);
3373   op_cost(0);
3374 
3375   format %{ %}
3376   interface(CONST_INTER);
3377 %}
3378 
3379 operand immI_1() %{
3380   predicate( n->get_int() == 1 );
3381   match(ConI);
3382 
3383   op_cost(0);
3384   format %{ %}
3385   interface(CONST_INTER);
3386 %}
3387 
3388 operand immI_2() %{
3389   predicate( n->get_int() == 2 );
3390   match(ConI);
3391 
3392   op_cost(0);
3393   format %{ %}
3394   interface(CONST_INTER);
3395 %}
3396 
3397 operand immI_3() %{
3398   predicate( n->get_int() == 3 );
3399   match(ConI);
3400 
3401   op_cost(0);
3402   format %{ %}
3403   interface(CONST_INTER);
3404 %}
3405 
3406 // Pointer Immediate
3407 operand immP() %{
3408   match(ConP);
3409 
3410   op_cost(10);
3411   format %{ %}
3412   interface(CONST_INTER);
3413 %}
3414 
3415 // NULL Pointer Immediate
3416 operand immP0() %{
3417   predicate( n->get_ptr() == 0 );
3418   match(ConP);
3419   op_cost(0);
3420 
3421   format %{ %}
3422   interface(CONST_INTER);
3423 %}
3424 
3425 // Long Immediate
3426 operand immL() %{
3427   match(ConL);
3428 
3429   op_cost(20);
3430   format %{ %}
3431   interface(CONST_INTER);
3432 %}
3433 
3434 // Long Immediate zero
3435 operand immL0() %{
3436   predicate( n->get_long() == 0L );
3437   match(ConL);
3438   op_cost(0);
3439 
3440   format %{ %}
3441   interface(CONST_INTER);
3442 %}
3443 
3444 // Long Immediate zero
3445 operand immL_M1() %{
3446   predicate( n->get_long() == -1L );
3447   match(ConL);
3448   op_cost(0);
3449 
3450   format %{ %}
3451   interface(CONST_INTER);
3452 %}
3453 
3454 // Long immediate from 0 to 127.
3455 // Used for a shorter form of long mul by 10.
3456 operand immL_127() %{
3457   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
3458   match(ConL);
3459   op_cost(0);
3460 
3461   format %{ %}
3462   interface(CONST_INTER);
3463 %}
3464 
3465 // Long Immediate: low 32-bit mask
3466 operand immL_32bits() %{
3467   predicate(n->get_long() == 0xFFFFFFFFL);
3468   match(ConL);
3469   op_cost(0);
3470 
3471   format %{ %}
3472   interface(CONST_INTER);
3473 %}
3474 
3475 // Long Immediate: low 32-bit mask
3476 operand immL32() %{
3477   predicate(n->get_long() == (int)(n->get_long()));
3478   match(ConL);
3479   op_cost(20);
3480 
3481   format %{ %}
3482   interface(CONST_INTER);
3483 %}
3484 
3485 //Double Immediate zero
3486 operand immDPR0() %{
3487   // Do additional (and counter-intuitive) test against NaN to work around VC++
3488   // bug that generates code such that NaNs compare equal to 0.0
3489   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
3490   match(ConD);
3491 
3492   op_cost(5);
3493   format %{ %}
3494   interface(CONST_INTER);
3495 %}
3496 
3497 // Double Immediate one
3498 operand immDPR1() %{
3499   predicate( UseSSE<=1 && n->getd() == 1.0 );
3500   match(ConD);
3501 
3502   op_cost(5);
3503   format %{ %}
3504   interface(CONST_INTER);
3505 %}
3506 
3507 // Double Immediate
3508 operand immDPR() %{
3509   predicate(UseSSE<=1);
3510   match(ConD);
3511 
3512   op_cost(5);
3513   format %{ %}
3514   interface(CONST_INTER);
3515 %}
3516 
3517 operand immD() %{
3518   predicate(UseSSE>=2);
3519   match(ConD);
3520 
3521   op_cost(5);
3522   format %{ %}
3523   interface(CONST_INTER);
3524 %}
3525 
3526 // Double Immediate zero
3527 operand immD0() %{
3528   // Do additional (and counter-intuitive) test against NaN to work around VC++
3529   // bug that generates code such that NaNs compare equal to 0.0 AND do not
3530   // compare equal to -0.0.
3531   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
3532   match(ConD);
3533 
3534   format %{ %}
3535   interface(CONST_INTER);
3536 %}
3537 
3538 // Float Immediate zero
3539 operand immFPR0() %{
3540   predicate(UseSSE == 0 && n->getf() == 0.0F);
3541   match(ConF);
3542 
3543   op_cost(5);
3544   format %{ %}
3545   interface(CONST_INTER);
3546 %}
3547 
3548 // Float Immediate one
3549 operand immFPR1() %{
3550   predicate(UseSSE == 0 && n->getf() == 1.0F);
3551   match(ConF);
3552 
3553   op_cost(5);
3554   format %{ %}
3555   interface(CONST_INTER);
3556 %}
3557 
3558 // Float Immediate
3559 operand immFPR() %{
3560   predicate( UseSSE == 0 );
3561   match(ConF);
3562 
3563   op_cost(5);
3564   format %{ %}
3565   interface(CONST_INTER);
3566 %}
3567 
3568 // Float Immediate
3569 operand immF() %{
3570   predicate(UseSSE >= 1);
3571   match(ConF);
3572 
3573   op_cost(5);
3574   format %{ %}
3575   interface(CONST_INTER);
3576 %}
3577 
3578 // Float Immediate zero.  Zero and not -0.0
3579 operand immF0() %{
3580   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
3581   match(ConF);
3582 
3583   op_cost(5);
3584   format %{ %}
3585   interface(CONST_INTER);
3586 %}
3587 
3588 // Immediates for special shifts (sign extend)
3589 
3590 // Constants for increment
3591 operand immI_16() %{
3592   predicate( n->get_int() == 16 );
3593   match(ConI);
3594 
3595   format %{ %}
3596   interface(CONST_INTER);
3597 %}
3598 
3599 operand immI_24() %{
3600   predicate( n->get_int() == 24 );
3601   match(ConI);
3602 
3603   format %{ %}
3604   interface(CONST_INTER);
3605 %}
3606 
3607 // Constant for byte-wide masking
3608 operand immI_255() %{
3609   predicate( n->get_int() == 255 );
3610   match(ConI);
3611 
3612   format %{ %}
3613   interface(CONST_INTER);
3614 %}
3615 
3616 // Constant for short-wide masking
3617 operand immI_65535() %{
3618   predicate(n->get_int() == 65535);
3619   match(ConI);
3620 
3621   format %{ %}
3622   interface(CONST_INTER);
3623 %}
3624 
3625 // Register Operands
3626 // Integer Register
3627 operand rRegI() %{
3628   constraint(ALLOC_IN_RC(int_reg));
3629   match(RegI);
3630   match(xRegI);
3631   match(eAXRegI);
3632   match(eBXRegI);
3633   match(eCXRegI);
3634   match(eDXRegI);
3635   match(eDIRegI);
3636   match(eSIRegI);
3637 
3638   format %{ %}
3639   interface(REG_INTER);
3640 %}
3641 
3642 // Subset of Integer Register
3643 operand xRegI(rRegI reg) %{
3644   constraint(ALLOC_IN_RC(int_x_reg));
3645   match(reg);
3646   match(eAXRegI);
3647   match(eBXRegI);
3648   match(eCXRegI);
3649   match(eDXRegI);
3650 
3651   format %{ %}
3652   interface(REG_INTER);
3653 %}
3654 
3655 // Special Registers
3656 operand eAXRegI(xRegI reg) %{
3657   constraint(ALLOC_IN_RC(eax_reg));
3658   match(reg);
3659   match(rRegI);
3660 
3661   format %{ "EAX" %}
3662   interface(REG_INTER);
3663 %}
3664 
3665 // Special Registers
3666 operand eBXRegI(xRegI reg) %{
3667   constraint(ALLOC_IN_RC(ebx_reg));
3668   match(reg);
3669   match(rRegI);
3670 
3671   format %{ "EBX" %}
3672   interface(REG_INTER);
3673 %}
3674 
3675 operand eCXRegI(xRegI reg) %{
3676   constraint(ALLOC_IN_RC(ecx_reg));
3677   match(reg);
3678   match(rRegI);
3679 
3680   format %{ "ECX" %}
3681   interface(REG_INTER);
3682 %}
3683 
3684 operand eDXRegI(xRegI reg) %{
3685   constraint(ALLOC_IN_RC(edx_reg));
3686   match(reg);
3687   match(rRegI);
3688 
3689   format %{ "EDX" %}
3690   interface(REG_INTER);
3691 %}
3692 
3693 operand eDIRegI(xRegI reg) %{
3694   constraint(ALLOC_IN_RC(edi_reg));
3695   match(reg);
3696   match(rRegI);
3697 
3698   format %{ "EDI" %}
3699   interface(REG_INTER);
3700 %}
3701 
3702 operand naxRegI() %{
3703   constraint(ALLOC_IN_RC(nax_reg));
3704   match(RegI);
3705   match(eCXRegI);
3706   match(eDXRegI);
3707   match(eSIRegI);
3708   match(eDIRegI);
3709 
3710   format %{ %}
3711   interface(REG_INTER);
3712 %}
3713 
3714 operand nadxRegI() %{
3715   constraint(ALLOC_IN_RC(nadx_reg));
3716   match(RegI);
3717   match(eBXRegI);
3718   match(eCXRegI);
3719   match(eSIRegI);
3720   match(eDIRegI);
3721 
3722   format %{ %}
3723   interface(REG_INTER);
3724 %}
3725 
3726 operand ncxRegI() %{
3727   constraint(ALLOC_IN_RC(ncx_reg));
3728   match(RegI);
3729   match(eAXRegI);
3730   match(eDXRegI);
3731   match(eSIRegI);
3732   match(eDIRegI);
3733 
3734   format %{ %}
3735   interface(REG_INTER);
3736 %}
3737 
3738 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
3739 // //
3740 operand eSIRegI(xRegI reg) %{
3741    constraint(ALLOC_IN_RC(esi_reg));
3742    match(reg);
3743    match(rRegI);
3744 
3745    format %{ "ESI" %}
3746    interface(REG_INTER);
3747 %}
3748 
3749 // Pointer Register
3750 operand anyRegP() %{
3751   constraint(ALLOC_IN_RC(any_reg));
3752   match(RegP);
3753   match(eAXRegP);
3754   match(eBXRegP);
3755   match(eCXRegP);
3756   match(eDIRegP);
3757   match(eRegP);
3758 
3759   format %{ %}
3760   interface(REG_INTER);
3761 %}
3762 
3763 operand eRegP() %{
3764   constraint(ALLOC_IN_RC(int_reg));
3765   match(RegP);
3766   match(eAXRegP);
3767   match(eBXRegP);
3768   match(eCXRegP);
3769   match(eDIRegP);
3770 
3771   format %{ %}
3772   interface(REG_INTER);
3773 %}
3774 
3775 // On windows95, EBP is not safe to use for implicit null tests.
3776 operand eRegP_no_EBP() %{
3777   constraint(ALLOC_IN_RC(int_reg_no_ebp));
3778   match(RegP);
3779   match(eAXRegP);
3780   match(eBXRegP);
3781   match(eCXRegP);
3782   match(eDIRegP);
3783 
3784   op_cost(100);
3785   format %{ %}
3786   interface(REG_INTER);
3787 %}
3788 
3789 operand naxRegP() %{
3790   constraint(ALLOC_IN_RC(nax_reg));
3791   match(RegP);
3792   match(eBXRegP);
3793   match(eDXRegP);
3794   match(eCXRegP);
3795   match(eSIRegP);
3796   match(eDIRegP);
3797 
3798   format %{ %}
3799   interface(REG_INTER);
3800 %}
3801 
3802 operand nabxRegP() %{
3803   constraint(ALLOC_IN_RC(nabx_reg));
3804   match(RegP);
3805   match(eCXRegP);
3806   match(eDXRegP);
3807   match(eSIRegP);
3808   match(eDIRegP);
3809 
3810   format %{ %}
3811   interface(REG_INTER);
3812 %}
3813 
3814 operand pRegP() %{
3815   constraint(ALLOC_IN_RC(p_reg));
3816   match(RegP);
3817   match(eBXRegP);
3818   match(eDXRegP);
3819   match(eSIRegP);
3820   match(eDIRegP);
3821 
3822   format %{ %}
3823   interface(REG_INTER);
3824 %}
3825 
3826 // Special Registers
3827 // Return a pointer value
3828 operand eAXRegP(eRegP reg) %{
3829   constraint(ALLOC_IN_RC(eax_reg));
3830   match(reg);
3831   format %{ "EAX" %}
3832   interface(REG_INTER);
3833 %}
3834 
3835 // Used in AtomicAdd
3836 operand eBXRegP(eRegP reg) %{
3837   constraint(ALLOC_IN_RC(ebx_reg));
3838   match(reg);
3839   format %{ "EBX" %}
3840   interface(REG_INTER);
3841 %}
3842 
3843 // Tail-call (interprocedural jump) to interpreter
3844 operand eCXRegP(eRegP reg) %{
3845   constraint(ALLOC_IN_RC(ecx_reg));
3846   match(reg);
3847   format %{ "ECX" %}
3848   interface(REG_INTER);
3849 %}
3850 
3851 operand eSIRegP(eRegP reg) %{
3852   constraint(ALLOC_IN_RC(esi_reg));
3853   match(reg);
3854   format %{ "ESI" %}
3855   interface(REG_INTER);
3856 %}
3857 
3858 // Used in rep stosw
3859 operand eDIRegP(eRegP reg) %{
3860   constraint(ALLOC_IN_RC(edi_reg));
3861   match(reg);
3862   format %{ "EDI" %}
3863   interface(REG_INTER);
3864 %}
3865 
3866 operand eRegL() %{
3867   constraint(ALLOC_IN_RC(long_reg));
3868   match(RegL);
3869   match(eADXRegL);
3870 
3871   format %{ %}
3872   interface(REG_INTER);
3873 %}
3874 
3875 operand eADXRegL( eRegL reg ) %{
3876   constraint(ALLOC_IN_RC(eadx_reg));
3877   match(reg);
3878 
3879   format %{ "EDX:EAX" %}
3880   interface(REG_INTER);
3881 %}
3882 
3883 operand eBCXRegL( eRegL reg ) %{
3884   constraint(ALLOC_IN_RC(ebcx_reg));
3885   match(reg);
3886 
3887   format %{ "EBX:ECX" %}
3888   interface(REG_INTER);
3889 %}
3890 
3891 // Special case for integer high multiply
3892 operand eADXRegL_low_only() %{
3893   constraint(ALLOC_IN_RC(eadx_reg));
3894   match(RegL);
3895 
3896   format %{ "EAX" %}
3897   interface(REG_INTER);
3898 %}
3899 
3900 // Flags register, used as output of compare instructions
3901 operand eFlagsReg() %{
3902   constraint(ALLOC_IN_RC(int_flags));
3903   match(RegFlags);
3904 
3905   format %{ "EFLAGS" %}
3906   interface(REG_INTER);
3907 %}
3908 
3909 // Flags register, used as output of FLOATING POINT compare instructions
3910 operand eFlagsRegU() %{
3911   constraint(ALLOC_IN_RC(int_flags));
3912   match(RegFlags);
3913 
3914   format %{ "EFLAGS_U" %}
3915   interface(REG_INTER);
3916 %}
3917 
3918 operand eFlagsRegUCF() %{
3919   constraint(ALLOC_IN_RC(int_flags));
3920   match(RegFlags);
3921   predicate(false);
3922 
3923   format %{ "EFLAGS_U_CF" %}
3924   interface(REG_INTER);
3925 %}
3926 
3927 // Condition Code Register used by long compare
3928 operand flagsReg_long_LTGE() %{
3929   constraint(ALLOC_IN_RC(int_flags));
3930   match(RegFlags);
3931   format %{ "FLAGS_LTGE" %}
3932   interface(REG_INTER);
3933 %}
3934 operand flagsReg_long_EQNE() %{
3935   constraint(ALLOC_IN_RC(int_flags));
3936   match(RegFlags);
3937   format %{ "FLAGS_EQNE" %}
3938   interface(REG_INTER);
3939 %}
3940 operand flagsReg_long_LEGT() %{
3941   constraint(ALLOC_IN_RC(int_flags));
3942   match(RegFlags);
3943   format %{ "FLAGS_LEGT" %}
3944   interface(REG_INTER);
3945 %}
3946 
3947 // Float register operands
3948 operand regDPR() %{
3949   predicate( UseSSE < 2 );
3950   constraint(ALLOC_IN_RC(fp_dbl_reg));
3951   match(RegD);
3952   match(regDPR1);
3953   match(regDPR2);
3954   format %{ %}
3955   interface(REG_INTER);
3956 %}
3957 
3958 operand regDPR1(regDPR reg) %{
3959   predicate( UseSSE < 2 );
3960   constraint(ALLOC_IN_RC(fp_dbl_reg0));
3961   match(reg);
3962   format %{ "FPR1" %}
3963   interface(REG_INTER);
3964 %}
3965 
3966 operand regDPR2(regDPR reg) %{
3967   predicate( UseSSE < 2 );
3968   constraint(ALLOC_IN_RC(fp_dbl_reg1));
3969   match(reg);
3970   format %{ "FPR2" %}
3971   interface(REG_INTER);
3972 %}
3973 
3974 operand regnotDPR1(regDPR reg) %{
3975   predicate( UseSSE < 2 );
3976   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
3977   match(reg);
3978   format %{ %}
3979   interface(REG_INTER);
3980 %}
3981 
3982 // Float register operands
3983 operand regFPR() %{
3984   predicate( UseSSE < 2 );
3985   constraint(ALLOC_IN_RC(fp_flt_reg));
3986   match(RegF);
3987   match(regFPR1);
3988   format %{ %}
3989   interface(REG_INTER);
3990 %}
3991 
3992 // Float register operands
3993 operand regFPR1(regFPR reg) %{
3994   predicate( UseSSE < 2 );
3995   constraint(ALLOC_IN_RC(fp_flt_reg0));
3996   match(reg);
3997   format %{ "FPR1" %}
3998   interface(REG_INTER);
3999 %}
4000 
4001 // XMM Float register operands
4002 operand regF() %{
4003   predicate( UseSSE>=1 );
4004   constraint(ALLOC_IN_RC(float_reg));
4005   match(RegF);
4006   format %{ %}
4007   interface(REG_INTER);
4008 %}
4009 
4010 // XMM Double register operands
4011 operand regD() %{
4012   predicate( UseSSE>=2 );
4013   constraint(ALLOC_IN_RC(double_reg));
4014   match(RegD);
4015   format %{ %}
4016   interface(REG_INTER);
4017 %}
4018 
4019 
4020 //----------Memory Operands----------------------------------------------------
4021 // Direct Memory Operand
4022 operand direct(immP addr) %{
4023   match(addr);
4024 
4025   format %{ "[$addr]" %}
4026   interface(MEMORY_INTER) %{
4027     base(0xFFFFFFFF);
4028     index(0x4);
4029     scale(0x0);
4030     disp($addr);
4031   %}
4032 %}
4033 
4034 // Indirect Memory Operand
4035 operand indirect(eRegP reg) %{
4036   constraint(ALLOC_IN_RC(int_reg));
4037   match(reg);
4038 
4039   format %{ "[$reg]" %}
4040   interface(MEMORY_INTER) %{
4041     base($reg);
4042     index(0x4);
4043     scale(0x0);
4044     disp(0x0);
4045   %}
4046 %}
4047 
4048 // Indirect Memory Plus Short Offset Operand
4049 operand indOffset8(eRegP reg, immI8 off) %{
4050   match(AddP reg off);
4051 
4052   format %{ "[$reg + $off]" %}
4053   interface(MEMORY_INTER) %{
4054     base($reg);
4055     index(0x4);
4056     scale(0x0);
4057     disp($off);
4058   %}
4059 %}
4060 
4061 // Indirect Memory Plus Long Offset Operand
4062 operand indOffset32(eRegP reg, immI off) %{
4063   match(AddP reg off);
4064 
4065   format %{ "[$reg + $off]" %}
4066   interface(MEMORY_INTER) %{
4067     base($reg);
4068     index(0x4);
4069     scale(0x0);
4070     disp($off);
4071   %}
4072 %}
4073 
4074 // Indirect Memory Plus Long Offset Operand
4075 operand indOffset32X(rRegI reg, immP off) %{
4076   match(AddP off reg);
4077 
4078   format %{ "[$reg + $off]" %}
4079   interface(MEMORY_INTER) %{
4080     base($reg);
4081     index(0x4);
4082     scale(0x0);
4083     disp($off);
4084   %}
4085 %}
4086 
4087 // Indirect Memory Plus Index Register Plus Offset Operand
4088 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4089   match(AddP (AddP reg ireg) off);
4090 
4091   op_cost(10);
4092   format %{"[$reg + $off + $ireg]" %}
4093   interface(MEMORY_INTER) %{
4094     base($reg);
4095     index($ireg);
4096     scale(0x0);
4097     disp($off);
4098   %}
4099 %}
4100 
4101 // Indirect Memory Plus Index Register Plus Offset Operand
4102 operand indIndex(eRegP reg, rRegI ireg) %{
4103   match(AddP reg ireg);
4104 
4105   op_cost(10);
4106   format %{"[$reg + $ireg]" %}
4107   interface(MEMORY_INTER) %{
4108     base($reg);
4109     index($ireg);
4110     scale(0x0);
4111     disp(0x0);
4112   %}
4113 %}
4114 
4115 // // -------------------------------------------------------------------------
4116 // // 486 architecture doesn't support "scale * index + offset" with out a base
4117 // // -------------------------------------------------------------------------
4118 // // Scaled Memory Operands
4119 // // Indirect Memory Times Scale Plus Offset Operand
4120 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4121 //   match(AddP off (LShiftI ireg scale));
4122 //
4123 //   op_cost(10);
4124 //   format %{"[$off + $ireg << $scale]" %}
4125 //   interface(MEMORY_INTER) %{
4126 //     base(0x4);
4127 //     index($ireg);
4128 //     scale($scale);
4129 //     disp($off);
4130 //   %}
4131 // %}
4132 
4133 // Indirect Memory Times Scale Plus Index Register
4134 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4135   match(AddP reg (LShiftI ireg scale));
4136 
4137   op_cost(10);
4138   format %{"[$reg + $ireg << $scale]" %}
4139   interface(MEMORY_INTER) %{
4140     base($reg);
4141     index($ireg);
4142     scale($scale);
4143     disp(0x0);
4144   %}
4145 %}
4146 
4147 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4148 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4149   match(AddP (AddP reg (LShiftI ireg scale)) off);
4150 
4151   op_cost(10);
4152   format %{"[$reg + $off + $ireg << $scale]" %}
4153   interface(MEMORY_INTER) %{
4154     base($reg);
4155     index($ireg);
4156     scale($scale);
4157     disp($off);
4158   %}
4159 %}
4160 
4161 //----------Load Long Memory Operands------------------------------------------
4162 // The load-long idiom will use it's address expression again after loading
4163 // the first word of the long.  If the load-long destination overlaps with
4164 // registers used in the addressing expression, the 2nd half will be loaded
4165 // from a clobbered address.  Fix this by requiring that load-long use
4166 // address registers that do not overlap with the load-long target.
4167 
4168 // load-long support
4169 operand load_long_RegP() %{
4170   constraint(ALLOC_IN_RC(esi_reg));
4171   match(RegP);
4172   match(eSIRegP);
4173   op_cost(100);
4174   format %{  %}
4175   interface(REG_INTER);
4176 %}
4177 
4178 // Indirect Memory Operand Long
4179 operand load_long_indirect(load_long_RegP reg) %{
4180   constraint(ALLOC_IN_RC(esi_reg));
4181   match(reg);
4182 
4183   format %{ "[$reg]" %}
4184   interface(MEMORY_INTER) %{
4185     base($reg);
4186     index(0x4);
4187     scale(0x0);
4188     disp(0x0);
4189   %}
4190 %}
4191 
4192 // Indirect Memory Plus Long Offset Operand
4193 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4194   match(AddP reg off);
4195 
4196   format %{ "[$reg + $off]" %}
4197   interface(MEMORY_INTER) %{
4198     base($reg);
4199     index(0x4);
4200     scale(0x0);
4201     disp($off);
4202   %}
4203 %}
4204 
4205 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4206 
4207 
4208 //----------Special Memory Operands--------------------------------------------
4209 // Stack Slot Operand - This operand is used for loading and storing temporary
4210 //                      values on the stack where a match requires a value to
4211 //                      flow through memory.
4212 operand stackSlotP(sRegP reg) %{
4213   constraint(ALLOC_IN_RC(stack_slots));
4214   // No match rule because this operand is only generated in matching
4215   format %{ "[$reg]" %}
4216   interface(MEMORY_INTER) %{
4217     base(0x4);   // ESP
4218     index(0x4);  // No Index
4219     scale(0x0);  // No Scale
4220     disp($reg);  // Stack Offset
4221   %}
4222 %}
4223 
4224 operand stackSlotI(sRegI reg) %{
4225   constraint(ALLOC_IN_RC(stack_slots));
4226   // No match rule because this operand is only generated in matching
4227   format %{ "[$reg]" %}
4228   interface(MEMORY_INTER) %{
4229     base(0x4);   // ESP
4230     index(0x4);  // No Index
4231     scale(0x0);  // No Scale
4232     disp($reg);  // Stack Offset
4233   %}
4234 %}
4235 
4236 operand stackSlotF(sRegF reg) %{
4237   constraint(ALLOC_IN_RC(stack_slots));
4238   // No match rule because this operand is only generated in matching
4239   format %{ "[$reg]" %}
4240   interface(MEMORY_INTER) %{
4241     base(0x4);   // ESP
4242     index(0x4);  // No Index
4243     scale(0x0);  // No Scale
4244     disp($reg);  // Stack Offset
4245   %}
4246 %}
4247 
4248 operand stackSlotD(sRegD reg) %{
4249   constraint(ALLOC_IN_RC(stack_slots));
4250   // No match rule because this operand is only generated in matching
4251   format %{ "[$reg]" %}
4252   interface(MEMORY_INTER) %{
4253     base(0x4);   // ESP
4254     index(0x4);  // No Index
4255     scale(0x0);  // No Scale
4256     disp($reg);  // Stack Offset
4257   %}
4258 %}
4259 
4260 operand stackSlotL(sRegL reg) %{
4261   constraint(ALLOC_IN_RC(stack_slots));
4262   // No match rule because this operand is only generated in matching
4263   format %{ "[$reg]" %}
4264   interface(MEMORY_INTER) %{
4265     base(0x4);   // ESP
4266     index(0x4);  // No Index
4267     scale(0x0);  // No Scale
4268     disp($reg);  // Stack Offset
4269   %}
4270 %}
4271 
4272 //----------Memory Operands - Win95 Implicit Null Variants----------------
4273 // Indirect Memory Operand
4274 operand indirect_win95_safe(eRegP_no_EBP reg)
4275 %{
4276   constraint(ALLOC_IN_RC(int_reg));
4277   match(reg);
4278 
4279   op_cost(100);
4280   format %{ "[$reg]" %}
4281   interface(MEMORY_INTER) %{
4282     base($reg);
4283     index(0x4);
4284     scale(0x0);
4285     disp(0x0);
4286   %}
4287 %}
4288 
4289 // Indirect Memory Plus Short Offset Operand
4290 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4291 %{
4292   match(AddP reg off);
4293 
4294   op_cost(100);
4295   format %{ "[$reg + $off]" %}
4296   interface(MEMORY_INTER) %{
4297     base($reg);
4298     index(0x4);
4299     scale(0x0);
4300     disp($off);
4301   %}
4302 %}
4303 
4304 // Indirect Memory Plus Long Offset Operand
4305 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4306 %{
4307   match(AddP reg off);
4308 
4309   op_cost(100);
4310   format %{ "[$reg + $off]" %}
4311   interface(MEMORY_INTER) %{
4312     base($reg);
4313     index(0x4);
4314     scale(0x0);
4315     disp($off);
4316   %}
4317 %}
4318 
4319 // Indirect Memory Plus Index Register Plus Offset Operand
4320 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4321 %{
4322   match(AddP (AddP reg ireg) off);
4323 
4324   op_cost(100);
4325   format %{"[$reg + $off + $ireg]" %}
4326   interface(MEMORY_INTER) %{
4327     base($reg);
4328     index($ireg);
4329     scale(0x0);
4330     disp($off);
4331   %}
4332 %}
4333 
4334 // Indirect Memory Times Scale Plus Index Register
4335 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4336 %{
4337   match(AddP reg (LShiftI ireg scale));
4338 
4339   op_cost(100);
4340   format %{"[$reg + $ireg << $scale]" %}
4341   interface(MEMORY_INTER) %{
4342     base($reg);
4343     index($ireg);
4344     scale($scale);
4345     disp(0x0);
4346   %}
4347 %}
4348 
4349 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4350 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4351 %{
4352   match(AddP (AddP reg (LShiftI ireg scale)) off);
4353 
4354   op_cost(100);
4355   format %{"[$reg + $off + $ireg << $scale]" %}
4356   interface(MEMORY_INTER) %{
4357     base($reg);
4358     index($ireg);
4359     scale($scale);
4360     disp($off);
4361   %}
4362 %}
4363 
4364 //----------Conditional Branch Operands----------------------------------------
4365 // Comparison Op  - This is the operation of the comparison, and is limited to
4366 //                  the following set of codes:
4367 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4368 //
4369 // Other attributes of the comparison, such as unsignedness, are specified
4370 // by the comparison instruction that sets a condition code flags register.
4371 // That result is represented by a flags operand whose subtype is appropriate
4372 // to the unsignedness (etc.) of the comparison.
4373 //
4374 // Later, the instruction which matches both the Comparison Op (a Bool) and
4375 // the flags (produced by the Cmp) specifies the coding of the comparison op
4376 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4377 
4378 // Comparision Code
4379 operand cmpOp() %{
4380   match(Bool);
4381 
4382   format %{ "" %}
4383   interface(COND_INTER) %{
4384     equal(0x4, "e");
4385     not_equal(0x5, "ne");
4386     less(0xC, "l");
4387     greater_equal(0xD, "ge");
4388     less_equal(0xE, "le");
4389     greater(0xF, "g");
4390     overflow(0x0, "o");
4391     no_overflow(0x1, "no");
4392   %}
4393 %}
4394 
4395 // Comparison Code, unsigned compare.  Used by FP also, with
4396 // C2 (unordered) turned into GT or LT already.  The other bits
4397 // C0 and C3 are turned into Carry & Zero flags.
4398 operand cmpOpU() %{
4399   match(Bool);
4400 
4401   format %{ "" %}
4402   interface(COND_INTER) %{
4403     equal(0x4, "e");
4404     not_equal(0x5, "ne");
4405     less(0x2, "b");
4406     greater_equal(0x3, "nb");
4407     less_equal(0x6, "be");
4408     greater(0x7, "nbe");
4409     overflow(0x0, "o");
4410     no_overflow(0x1, "no");
4411   %}
4412 %}
4413 
4414 // Floating comparisons that don't require any fixup for the unordered case
4415 operand cmpOpUCF() %{
4416   match(Bool);
4417   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4418             n->as_Bool()->_test._test == BoolTest::ge ||
4419             n->as_Bool()->_test._test == BoolTest::le ||
4420             n->as_Bool()->_test._test == BoolTest::gt);
4421   format %{ "" %}
4422   interface(COND_INTER) %{
4423     equal(0x4, "e");
4424     not_equal(0x5, "ne");
4425     less(0x2, "b");
4426     greater_equal(0x3, "nb");
4427     less_equal(0x6, "be");
4428     greater(0x7, "nbe");
4429     overflow(0x0, "o");
4430     no_overflow(0x1, "no");
4431   %}
4432 %}
4433 
4434 
4435 // Floating comparisons that can be fixed up with extra conditional jumps
4436 operand cmpOpUCF2() %{
4437   match(Bool);
4438   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4439             n->as_Bool()->_test._test == BoolTest::eq);
4440   format %{ "" %}
4441   interface(COND_INTER) %{
4442     equal(0x4, "e");
4443     not_equal(0x5, "ne");
4444     less(0x2, "b");
4445     greater_equal(0x3, "nb");
4446     less_equal(0x6, "be");
4447     greater(0x7, "nbe");
4448     overflow(0x0, "o");
4449     no_overflow(0x1, "no");
4450   %}
4451 %}
4452 
4453 // Comparison Code for FP conditional move
4454 operand cmpOp_fcmov() %{
4455   match(Bool);
4456 
4457   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4458             n->as_Bool()->_test._test != BoolTest::no_overflow);
4459   format %{ "" %}
4460   interface(COND_INTER) %{
4461     equal        (0x0C8);
4462     not_equal    (0x1C8);
4463     less         (0x0C0);
4464     greater_equal(0x1C0);
4465     less_equal   (0x0D0);
4466     greater      (0x1D0);
4467     overflow(0x0, "o"); // not really supported by the instruction
4468     no_overflow(0x1, "no"); // not really supported by the instruction
4469   %}
4470 %}
4471 
4472 // Comparision Code used in long compares
4473 operand cmpOp_commute() %{
4474   match(Bool);
4475 
4476   format %{ "" %}
4477   interface(COND_INTER) %{
4478     equal(0x4, "e");
4479     not_equal(0x5, "ne");
4480     less(0xF, "g");
4481     greater_equal(0xE, "le");
4482     less_equal(0xD, "ge");
4483     greater(0xC, "l");
4484     overflow(0x0, "o");
4485     no_overflow(0x1, "no");
4486   %}
4487 %}
4488 
4489 //----------OPERAND CLASSES----------------------------------------------------
4490 // Operand Classes are groups of operands that are used as to simplify
4491 // instruction definitions by not requiring the AD writer to specify separate
4492 // instructions for every form of operand when the instruction accepts
4493 // multiple operand types with the same basic encoding and format.  The classic
4494 // case of this is memory operands.
4495 
4496 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
4497                indIndex, indIndexScale, indIndexScaleOffset);
4498 
4499 // Long memory operations are encoded in 2 instructions and a +4 offset.
4500 // This means some kind of offset is always required and you cannot use
4501 // an oop as the offset (done when working on static globals).
4502 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
4503                     indIndex, indIndexScale, indIndexScaleOffset);
4504 
4505 
4506 //----------PIPELINE-----------------------------------------------------------
4507 // Rules which define the behavior of the target architectures pipeline.
4508 pipeline %{
4509 
4510 //----------ATTRIBUTES---------------------------------------------------------
4511 attributes %{
4512   variable_size_instructions;        // Fixed size instructions
4513   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4514   instruction_unit_size = 1;         // An instruction is 1 bytes long
4515   instruction_fetch_unit_size = 16;  // The processor fetches one line
4516   instruction_fetch_units = 1;       // of 16 bytes
4517 
4518   // List of nop instructions
4519   nops( MachNop );
4520 %}
4521 
4522 //----------RESOURCES----------------------------------------------------------
4523 // Resources are the functional units available to the machine
4524 
4525 // Generic P2/P3 pipeline
4526 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4527 // 3 instructions decoded per cycle.
4528 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4529 // 2 ALU op, only ALU0 handles mul/div instructions.
4530 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4531            MS0, MS1, MEM = MS0 | MS1,
4532            BR, FPU,
4533            ALU0, ALU1, ALU = ALU0 | ALU1 );
4534 
4535 //----------PIPELINE DESCRIPTION-----------------------------------------------
4536 // Pipeline Description specifies the stages in the machine's pipeline
4537 
4538 // Generic P2/P3 pipeline
4539 pipe_desc(S0, S1, S2, S3, S4, S5);
4540 
4541 //----------PIPELINE CLASSES---------------------------------------------------
4542 // Pipeline Classes describe the stages in which input and output are
4543 // referenced by the hardware pipeline.
4544 
4545 // Naming convention: ialu or fpu
4546 // Then: _reg
4547 // Then: _reg if there is a 2nd register
4548 // Then: _long if it's a pair of instructions implementing a long
4549 // Then: _fat if it requires the big decoder
4550 //   Or: _mem if it requires the big decoder and a memory unit.
4551 
4552 // Integer ALU reg operation
4553 pipe_class ialu_reg(rRegI dst) %{
4554     single_instruction;
4555     dst    : S4(write);
4556     dst    : S3(read);
4557     DECODE : S0;        // any decoder
4558     ALU    : S3;        // any alu
4559 %}
4560 
4561 // Long ALU reg operation
4562 pipe_class ialu_reg_long(eRegL dst) %{
4563     instruction_count(2);
4564     dst    : S4(write);
4565     dst    : S3(read);
4566     DECODE : S0(2);     // any 2 decoders
4567     ALU    : S3(2);     // both alus
4568 %}
4569 
4570 // Integer ALU reg operation using big decoder
4571 pipe_class ialu_reg_fat(rRegI dst) %{
4572     single_instruction;
4573     dst    : S4(write);
4574     dst    : S3(read);
4575     D0     : S0;        // big decoder only
4576     ALU    : S3;        // any alu
4577 %}
4578 
4579 // Long ALU reg operation using big decoder
4580 pipe_class ialu_reg_long_fat(eRegL dst) %{
4581     instruction_count(2);
4582     dst    : S4(write);
4583     dst    : S3(read);
4584     D0     : S0(2);     // big decoder only; twice
4585     ALU    : S3(2);     // any 2 alus
4586 %}
4587 
4588 // Integer ALU reg-reg operation
4589 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
4590     single_instruction;
4591     dst    : S4(write);
4592     src    : S3(read);
4593     DECODE : S0;        // any decoder
4594     ALU    : S3;        // any alu
4595 %}
4596 
4597 // Long ALU reg-reg operation
4598 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
4599     instruction_count(2);
4600     dst    : S4(write);
4601     src    : S3(read);
4602     DECODE : S0(2);     // any 2 decoders
4603     ALU    : S3(2);     // both alus
4604 %}
4605 
4606 // Integer ALU reg-reg operation
4607 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
4608     single_instruction;
4609     dst    : S4(write);
4610     src    : S3(read);
4611     D0     : S0;        // big decoder only
4612     ALU    : S3;        // any alu
4613 %}
4614 
4615 // Long ALU reg-reg operation
4616 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
4617     instruction_count(2);
4618     dst    : S4(write);
4619     src    : S3(read);
4620     D0     : S0(2);     // big decoder only; twice
4621     ALU    : S3(2);     // both alus
4622 %}
4623 
4624 // Integer ALU reg-mem operation
4625 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
4626     single_instruction;
4627     dst    : S5(write);
4628     mem    : S3(read);
4629     D0     : S0;        // big decoder only
4630     ALU    : S4;        // any alu
4631     MEM    : S3;        // any mem
4632 %}
4633 
4634 // Long ALU reg-mem operation
4635 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
4636     instruction_count(2);
4637     dst    : S5(write);
4638     mem    : S3(read);
4639     D0     : S0(2);     // big decoder only; twice
4640     ALU    : S4(2);     // any 2 alus
4641     MEM    : S3(2);     // both mems
4642 %}
4643 
4644 // Integer mem operation (prefetch)
4645 pipe_class ialu_mem(memory mem)
4646 %{
4647     single_instruction;
4648     mem    : S3(read);
4649     D0     : S0;        // big decoder only
4650     MEM    : S3;        // any mem
4651 %}
4652 
4653 // Integer Store to Memory
4654 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
4655     single_instruction;
4656     mem    : S3(read);
4657     src    : S5(read);
4658     D0     : S0;        // big decoder only
4659     ALU    : S4;        // any alu
4660     MEM    : S3;
4661 %}
4662 
4663 // Long Store to Memory
4664 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
4665     instruction_count(2);
4666     mem    : S3(read);
4667     src    : S5(read);
4668     D0     : S0(2);     // big decoder only; twice
4669     ALU    : S4(2);     // any 2 alus
4670     MEM    : S3(2);     // Both mems
4671 %}
4672 
4673 // Integer Store to Memory
4674 pipe_class ialu_mem_imm(memory mem) %{
4675     single_instruction;
4676     mem    : S3(read);
4677     D0     : S0;        // big decoder only
4678     ALU    : S4;        // any alu
4679     MEM    : S3;
4680 %}
4681 
4682 // Integer ALU0 reg-reg operation
4683 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
4684     single_instruction;
4685     dst    : S4(write);
4686     src    : S3(read);
4687     D0     : S0;        // Big decoder only
4688     ALU0   : S3;        // only alu0
4689 %}
4690 
4691 // Integer ALU0 reg-mem operation
4692 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
4693     single_instruction;
4694     dst    : S5(write);
4695     mem    : S3(read);
4696     D0     : S0;        // big decoder only
4697     ALU0   : S4;        // ALU0 only
4698     MEM    : S3;        // any mem
4699 %}
4700 
4701 // Integer ALU reg-reg operation
4702 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
4703     single_instruction;
4704     cr     : S4(write);
4705     src1   : S3(read);
4706     src2   : S3(read);
4707     DECODE : S0;        // any decoder
4708     ALU    : S3;        // any alu
4709 %}
4710 
4711 // Integer ALU reg-imm operation
4712 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
4713     single_instruction;
4714     cr     : S4(write);
4715     src1   : S3(read);
4716     DECODE : S0;        // any decoder
4717     ALU    : S3;        // any alu
4718 %}
4719 
4720 // Integer ALU reg-mem operation
4721 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
4722     single_instruction;
4723     cr     : S4(write);
4724     src1   : S3(read);
4725     src2   : S3(read);
4726     D0     : S0;        // big decoder only
4727     ALU    : S4;        // any alu
4728     MEM    : S3;
4729 %}
4730 
4731 // Conditional move reg-reg
4732 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
4733     instruction_count(4);
4734     y      : S4(read);
4735     q      : S3(read);
4736     p      : S3(read);
4737     DECODE : S0(4);     // any decoder
4738 %}
4739 
4740 // Conditional move reg-reg
4741 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
4742     single_instruction;
4743     dst    : S4(write);
4744     src    : S3(read);
4745     cr     : S3(read);
4746     DECODE : S0;        // any decoder
4747 %}
4748 
4749 // Conditional move reg-mem
4750 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
4751     single_instruction;
4752     dst    : S4(write);
4753     src    : S3(read);
4754     cr     : S3(read);
4755     DECODE : S0;        // any decoder
4756     MEM    : S3;
4757 %}
4758 
4759 // Conditional move reg-reg long
4760 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
4761     single_instruction;
4762     dst    : S4(write);
4763     src    : S3(read);
4764     cr     : S3(read);
4765     DECODE : S0(2);     // any 2 decoders
4766 %}
4767 
4768 // Conditional move double reg-reg
4769 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
4770     single_instruction;
4771     dst    : S4(write);
4772     src    : S3(read);
4773     cr     : S3(read);
4774     DECODE : S0;        // any decoder
4775 %}
4776 
4777 // Float reg-reg operation
4778 pipe_class fpu_reg(regDPR dst) %{
4779     instruction_count(2);
4780     dst    : S3(read);
4781     DECODE : S0(2);     // any 2 decoders
4782     FPU    : S3;
4783 %}
4784 
4785 // Float reg-reg operation
4786 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
4787     instruction_count(2);
4788     dst    : S4(write);
4789     src    : S3(read);
4790     DECODE : S0(2);     // any 2 decoders
4791     FPU    : S3;
4792 %}
4793 
4794 // Float reg-reg operation
4795 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
4796     instruction_count(3);
4797     dst    : S4(write);
4798     src1   : S3(read);
4799     src2   : S3(read);
4800     DECODE : S0(3);     // any 3 decoders
4801     FPU    : S3(2);
4802 %}
4803 
4804 // Float reg-reg operation
4805 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
4806     instruction_count(4);
4807     dst    : S4(write);
4808     src1   : S3(read);
4809     src2   : S3(read);
4810     src3   : S3(read);
4811     DECODE : S0(4);     // any 3 decoders
4812     FPU    : S3(2);
4813 %}
4814 
4815 // Float reg-reg operation
4816 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
4817     instruction_count(4);
4818     dst    : S4(write);
4819     src1   : S3(read);
4820     src2   : S3(read);
4821     src3   : S3(read);
4822     DECODE : S1(3);     // any 3 decoders
4823     D0     : S0;        // Big decoder only
4824     FPU    : S3(2);
4825     MEM    : S3;
4826 %}
4827 
4828 // Float reg-mem operation
4829 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
4830     instruction_count(2);
4831     dst    : S5(write);
4832     mem    : S3(read);
4833     D0     : S0;        // big decoder only
4834     DECODE : S1;        // any decoder for FPU POP
4835     FPU    : S4;
4836     MEM    : S3;        // any mem
4837 %}
4838 
4839 // Float reg-mem operation
4840 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
4841     instruction_count(3);
4842     dst    : S5(write);
4843     src1   : S3(read);
4844     mem    : S3(read);
4845     D0     : S0;        // big decoder only
4846     DECODE : S1(2);     // any decoder for FPU POP
4847     FPU    : S4;
4848     MEM    : S3;        // any mem
4849 %}
4850 
4851 // Float mem-reg operation
4852 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
4853     instruction_count(2);
4854     src    : S5(read);
4855     mem    : S3(read);
4856     DECODE : S0;        // any decoder for FPU PUSH
4857     D0     : S1;        // big decoder only
4858     FPU    : S4;
4859     MEM    : S3;        // any mem
4860 %}
4861 
4862 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
4863     instruction_count(3);
4864     src1   : S3(read);
4865     src2   : S3(read);
4866     mem    : S3(read);
4867     DECODE : S0(2);     // any decoder for FPU PUSH
4868     D0     : S1;        // big decoder only
4869     FPU    : S4;
4870     MEM    : S3;        // any mem
4871 %}
4872 
4873 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
4874     instruction_count(3);
4875     src1   : S3(read);
4876     src2   : S3(read);
4877     mem    : S4(read);
4878     DECODE : S0;        // any decoder for FPU PUSH
4879     D0     : S0(2);     // big decoder only
4880     FPU    : S4;
4881     MEM    : S3(2);     // any mem
4882 %}
4883 
4884 pipe_class fpu_mem_mem(memory dst, memory src1) %{
4885     instruction_count(2);
4886     src1   : S3(read);
4887     dst    : S4(read);
4888     D0     : S0(2);     // big decoder only
4889     MEM    : S3(2);     // any mem
4890 %}
4891 
4892 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
4893     instruction_count(3);
4894     src1   : S3(read);
4895     src2   : S3(read);
4896     dst    : S4(read);
4897     D0     : S0(3);     // big decoder only
4898     FPU    : S4;
4899     MEM    : S3(3);     // any mem
4900 %}
4901 
4902 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
4903     instruction_count(3);
4904     src1   : S4(read);
4905     mem    : S4(read);
4906     DECODE : S0;        // any decoder for FPU PUSH
4907     D0     : S0(2);     // big decoder only
4908     FPU    : S4;
4909     MEM    : S3(2);     // any mem
4910 %}
4911 
4912 // Float load constant
4913 pipe_class fpu_reg_con(regDPR dst) %{
4914     instruction_count(2);
4915     dst    : S5(write);
4916     D0     : S0;        // big decoder only for the load
4917     DECODE : S1;        // any decoder for FPU POP
4918     FPU    : S4;
4919     MEM    : S3;        // any mem
4920 %}
4921 
4922 // Float load constant
4923 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
4924     instruction_count(3);
4925     dst    : S5(write);
4926     src    : S3(read);
4927     D0     : S0;        // big decoder only for the load
4928     DECODE : S1(2);     // any decoder for FPU POP
4929     FPU    : S4;
4930     MEM    : S3;        // any mem
4931 %}
4932 
4933 // UnConditional branch
4934 pipe_class pipe_jmp( label labl ) %{
4935     single_instruction;
4936     BR   : S3;
4937 %}
4938 
4939 // Conditional branch
4940 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
4941     single_instruction;
4942     cr    : S1(read);
4943     BR    : S3;
4944 %}
4945 
4946 // Allocation idiom
4947 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
4948     instruction_count(1); force_serialization;
4949     fixed_latency(6);
4950     heap_ptr : S3(read);
4951     DECODE   : S0(3);
4952     D0       : S2;
4953     MEM      : S3;
4954     ALU      : S3(2);
4955     dst      : S5(write);
4956     BR       : S5;
4957 %}
4958 
4959 // Generic big/slow expanded idiom
4960 pipe_class pipe_slow(  ) %{
4961     instruction_count(10); multiple_bundles; force_serialization;
4962     fixed_latency(100);
4963     D0  : S0(2);
4964     MEM : S3(2);
4965 %}
4966 
4967 // The real do-nothing guy
4968 pipe_class empty( ) %{
4969     instruction_count(0);
4970 %}
4971 
4972 // Define the class for the Nop node
4973 define %{
4974    MachNop = empty;
4975 %}
4976 
4977 %}
4978 
4979 //----------INSTRUCTIONS-------------------------------------------------------
4980 //
4981 // match      -- States which machine-independent subtree may be replaced
4982 //               by this instruction.
4983 // ins_cost   -- The estimated cost of this instruction is used by instruction
4984 //               selection to identify a minimum cost tree of machine
4985 //               instructions that matches a tree of machine-independent
4986 //               instructions.
4987 // format     -- A string providing the disassembly for this instruction.
4988 //               The value of an instruction's operand may be inserted
4989 //               by referring to it with a '$' prefix.
4990 // opcode     -- Three instruction opcodes may be provided.  These are referred
4991 //               to within an encode class as $primary, $secondary, and $tertiary
4992 //               respectively.  The primary opcode is commonly used to
4993 //               indicate the type of machine instruction, while secondary
4994 //               and tertiary are often used for prefix options or addressing
4995 //               modes.
4996 // ins_encode -- A list of encode classes with parameters. The encode class
4997 //               name must have been defined in an 'enc_class' specification
4998 //               in the encode section of the architecture description.
4999 
5000 //----------BSWAP-Instruction--------------------------------------------------
5001 instruct bytes_reverse_int(rRegI dst) %{
5002   match(Set dst (ReverseBytesI dst));
5003 
5004   format %{ "BSWAP  $dst" %}
5005   opcode(0x0F, 0xC8);
5006   ins_encode( OpcP, OpcSReg(dst) );
5007   ins_pipe( ialu_reg );
5008 %}
5009 
5010 instruct bytes_reverse_long(eRegL dst) %{
5011   match(Set dst (ReverseBytesL dst));
5012 
5013   format %{ "BSWAP  $dst.lo\n\t"
5014             "BSWAP  $dst.hi\n\t"
5015             "XCHG   $dst.lo $dst.hi" %}
5016 
5017   ins_cost(125);
5018   ins_encode( bswap_long_bytes(dst) );
5019   ins_pipe( ialu_reg_reg);
5020 %}
5021 
5022 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5023   match(Set dst (ReverseBytesUS dst));
5024   effect(KILL cr);
5025 
5026   format %{ "BSWAP  $dst\n\t" 
5027             "SHR    $dst,16\n\t" %}
5028   ins_encode %{
5029     __ bswapl($dst$$Register);
5030     __ shrl($dst$$Register, 16); 
5031   %}
5032   ins_pipe( ialu_reg );
5033 %}
5034 
5035 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5036   match(Set dst (ReverseBytesS dst));
5037   effect(KILL cr);
5038 
5039   format %{ "BSWAP  $dst\n\t" 
5040             "SAR    $dst,16\n\t" %}
5041   ins_encode %{
5042     __ bswapl($dst$$Register);
5043     __ sarl($dst$$Register, 16); 
5044   %}
5045   ins_pipe( ialu_reg );
5046 %}
5047 
5048 
5049 //---------- Zeros Count Instructions ------------------------------------------
5050 
5051 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5052   predicate(UseCountLeadingZerosInstruction);
5053   match(Set dst (CountLeadingZerosI src));
5054   effect(KILL cr);
5055 
5056   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5057   ins_encode %{
5058     __ lzcntl($dst$$Register, $src$$Register);
5059   %}
5060   ins_pipe(ialu_reg);
5061 %}
5062 
5063 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5064   predicate(!UseCountLeadingZerosInstruction);
5065   match(Set dst (CountLeadingZerosI src));
5066   effect(KILL cr);
5067 
5068   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5069             "JNZ    skip\n\t"
5070             "MOV    $dst, -1\n"
5071       "skip:\n\t"
5072             "NEG    $dst\n\t"
5073             "ADD    $dst, 31" %}
5074   ins_encode %{
5075     Register Rdst = $dst$$Register;
5076     Register Rsrc = $src$$Register;
5077     Label skip;
5078     __ bsrl(Rdst, Rsrc);
5079     __ jccb(Assembler::notZero, skip);
5080     __ movl(Rdst, -1);
5081     __ bind(skip);
5082     __ negl(Rdst);
5083     __ addl(Rdst, BitsPerInt - 1);
5084   %}
5085   ins_pipe(ialu_reg);
5086 %}
5087 
5088 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5089   predicate(UseCountLeadingZerosInstruction);
5090   match(Set dst (CountLeadingZerosL src));
5091   effect(TEMP dst, KILL cr);
5092 
5093   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5094             "JNC    done\n\t"
5095             "LZCNT  $dst, $src.lo\n\t"
5096             "ADD    $dst, 32\n"
5097       "done:" %}
5098   ins_encode %{
5099     Register Rdst = $dst$$Register;
5100     Register Rsrc = $src$$Register;
5101     Label done;
5102     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5103     __ jccb(Assembler::carryClear, done);
5104     __ lzcntl(Rdst, Rsrc);
5105     __ addl(Rdst, BitsPerInt);
5106     __ bind(done);
5107   %}
5108   ins_pipe(ialu_reg);
5109 %}
5110 
5111 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5112   predicate(!UseCountLeadingZerosInstruction);
5113   match(Set dst (CountLeadingZerosL src));
5114   effect(TEMP dst, KILL cr);
5115 
5116   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5117             "JZ     msw_is_zero\n\t"
5118             "ADD    $dst, 32\n\t"
5119             "JMP    not_zero\n"
5120       "msw_is_zero:\n\t"
5121             "BSR    $dst, $src.lo\n\t"
5122             "JNZ    not_zero\n\t"
5123             "MOV    $dst, -1\n"
5124       "not_zero:\n\t"
5125             "NEG    $dst\n\t"
5126             "ADD    $dst, 63\n" %}
5127  ins_encode %{
5128     Register Rdst = $dst$$Register;
5129     Register Rsrc = $src$$Register;
5130     Label msw_is_zero;
5131     Label not_zero;
5132     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5133     __ jccb(Assembler::zero, msw_is_zero);
5134     __ addl(Rdst, BitsPerInt);
5135     __ jmpb(not_zero);
5136     __ bind(msw_is_zero);
5137     __ bsrl(Rdst, Rsrc);
5138     __ jccb(Assembler::notZero, not_zero);
5139     __ movl(Rdst, -1);
5140     __ bind(not_zero);
5141     __ negl(Rdst);
5142     __ addl(Rdst, BitsPerLong - 1);
5143   %}
5144   ins_pipe(ialu_reg);
5145 %}
5146 
5147 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5148   predicate(UseCountTrailingZerosInstruction);
5149   match(Set dst (CountTrailingZerosI src));
5150   effect(KILL cr);
5151 
5152   format %{ "TZCNT    $dst, $src\t# count trailing zeros (int)" %}
5153   ins_encode %{
5154     __ tzcntl($dst$$Register, $src$$Register);
5155   %}
5156   ins_pipe(ialu_reg);
5157 %}
5158 
5159 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, eFlagsReg cr) %{
5160   predicate(!UseCountTrailingZerosInstruction);
5161   match(Set dst (CountTrailingZerosI src));
5162   effect(KILL cr);
5163 
5164   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5165             "JNZ    done\n\t"
5166             "MOV    $dst, 32\n"
5167       "done:" %}
5168   ins_encode %{
5169     Register Rdst = $dst$$Register;
5170     Label done;
5171     __ bsfl(Rdst, $src$$Register);
5172     __ jccb(Assembler::notZero, done);
5173     __ movl(Rdst, BitsPerInt);
5174     __ bind(done);
5175   %}
5176   ins_pipe(ialu_reg);
5177 %}
5178 
5179 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5180   predicate(UseCountTrailingZerosInstruction);
5181   match(Set dst (CountTrailingZerosL src));
5182   effect(TEMP dst, KILL cr);
5183 
5184   format %{ "TZCNT  $dst, $src.lo\t# count trailing zeros (long) \n\t"
5185             "JNC    done\n\t"
5186             "TZCNT  $dst, $src.hi\n\t"
5187             "ADD    $dst, 32\n"
5188             "done:" %}
5189   ins_encode %{
5190     Register Rdst = $dst$$Register;
5191     Register Rsrc = $src$$Register;
5192     Label done;
5193     __ tzcntl(Rdst, Rsrc);
5194     __ jccb(Assembler::carryClear, done);
5195     __ tzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5196     __ addl(Rdst, BitsPerInt);
5197     __ bind(done);
5198   %}
5199   ins_pipe(ialu_reg);
5200 %}
5201 
5202 instruct countTrailingZerosL_bsf(rRegI dst, eRegL src, eFlagsReg cr) %{
5203   predicate(!UseCountTrailingZerosInstruction);
5204   match(Set dst (CountTrailingZerosL src));
5205   effect(TEMP dst, KILL cr);
5206 
5207   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5208             "JNZ    done\n\t"
5209             "BSF    $dst, $src.hi\n\t"
5210             "JNZ    msw_not_zero\n\t"
5211             "MOV    $dst, 32\n"
5212       "msw_not_zero:\n\t"
5213             "ADD    $dst, 32\n"
5214       "done:" %}
5215   ins_encode %{
5216     Register Rdst = $dst$$Register;
5217     Register Rsrc = $src$$Register;
5218     Label msw_not_zero;
5219     Label done;
5220     __ bsfl(Rdst, Rsrc);
5221     __ jccb(Assembler::notZero, done);
5222     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5223     __ jccb(Assembler::notZero, msw_not_zero);
5224     __ movl(Rdst, BitsPerInt);
5225     __ bind(msw_not_zero);
5226     __ addl(Rdst, BitsPerInt);
5227     __ bind(done);
5228   %}
5229   ins_pipe(ialu_reg);
5230 %}
5231 
5232 
5233 //---------- Population Count Instructions -------------------------------------
5234 
5235 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5236   predicate(UsePopCountInstruction);
5237   match(Set dst (PopCountI src));
5238   effect(KILL cr);
5239 
5240   format %{ "POPCNT $dst, $src" %}
5241   ins_encode %{
5242     __ popcntl($dst$$Register, $src$$Register);
5243   %}
5244   ins_pipe(ialu_reg);
5245 %}
5246 
5247 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5248   predicate(UsePopCountInstruction);
5249   match(Set dst (PopCountI (LoadI mem)));
5250   effect(KILL cr);
5251 
5252   format %{ "POPCNT $dst, $mem" %}
5253   ins_encode %{
5254     __ popcntl($dst$$Register, $mem$$Address);
5255   %}
5256   ins_pipe(ialu_reg);
5257 %}
5258 
5259 // Note: Long.bitCount(long) returns an int.
5260 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5261   predicate(UsePopCountInstruction);
5262   match(Set dst (PopCountL src));
5263   effect(KILL cr, TEMP tmp, TEMP dst);
5264 
5265   format %{ "POPCNT $dst, $src.lo\n\t"
5266             "POPCNT $tmp, $src.hi\n\t"
5267             "ADD    $dst, $tmp" %}
5268   ins_encode %{
5269     __ popcntl($dst$$Register, $src$$Register);
5270     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5271     __ addl($dst$$Register, $tmp$$Register);
5272   %}
5273   ins_pipe(ialu_reg);
5274 %}
5275 
5276 // Note: Long.bitCount(long) returns an int.
5277 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5278   predicate(UsePopCountInstruction);
5279   match(Set dst (PopCountL (LoadL mem)));
5280   effect(KILL cr, TEMP tmp, TEMP dst);
5281 
5282   format %{ "POPCNT $dst, $mem\n\t"
5283             "POPCNT $tmp, $mem+4\n\t"
5284             "ADD    $dst, $tmp" %}
5285   ins_encode %{
5286     //__ popcntl($dst$$Register, $mem$$Address$$first);
5287     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5288     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5289     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5290     __ addl($dst$$Register, $tmp$$Register);
5291   %}
5292   ins_pipe(ialu_reg);
5293 %}
5294 
5295 
5296 //----------Load/Store/Move Instructions---------------------------------------
5297 //----------Load Instructions--------------------------------------------------
5298 // Load Byte (8bit signed)
5299 instruct loadB(xRegI dst, memory mem) %{
5300   match(Set dst (LoadB mem));
5301 
5302   ins_cost(125);
5303   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5304 
5305   ins_encode %{
5306     __ movsbl($dst$$Register, $mem$$Address);
5307   %}
5308 
5309   ins_pipe(ialu_reg_mem);
5310 %}
5311 
5312 // Load Byte (8bit signed) into Long Register
5313 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5314   match(Set dst (ConvI2L (LoadB mem)));
5315   effect(KILL cr);
5316 
5317   ins_cost(375);
5318   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5319             "MOV    $dst.hi,$dst.lo\n\t"
5320             "SAR    $dst.hi,7" %}
5321 
5322   ins_encode %{
5323     __ movsbl($dst$$Register, $mem$$Address);
5324     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5325     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5326   %}
5327 
5328   ins_pipe(ialu_reg_mem);
5329 %}
5330 
5331 // Load Unsigned Byte (8bit UNsigned)
5332 instruct loadUB(xRegI dst, memory mem) %{
5333   match(Set dst (LoadUB mem));
5334 
5335   ins_cost(125);
5336   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5337 
5338   ins_encode %{
5339     __ movzbl($dst$$Register, $mem$$Address);
5340   %}
5341 
5342   ins_pipe(ialu_reg_mem);
5343 %}
5344 
5345 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5346 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5347   match(Set dst (ConvI2L (LoadUB mem)));
5348   effect(KILL cr);
5349 
5350   ins_cost(250);
5351   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5352             "XOR    $dst.hi,$dst.hi" %}
5353 
5354   ins_encode %{
5355     Register Rdst = $dst$$Register;
5356     __ movzbl(Rdst, $mem$$Address);
5357     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5358   %}
5359 
5360   ins_pipe(ialu_reg_mem);
5361 %}
5362 
5363 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5364 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5365   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5366   effect(KILL cr);
5367 
5368   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5369             "XOR    $dst.hi,$dst.hi\n\t"
5370             "AND    $dst.lo,$mask" %}
5371   ins_encode %{
5372     Register Rdst = $dst$$Register;
5373     __ movzbl(Rdst, $mem$$Address);
5374     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5375     __ andl(Rdst, $mask$$constant);
5376   %}
5377   ins_pipe(ialu_reg_mem);
5378 %}
5379 
5380 // Load Short (16bit signed)
5381 instruct loadS(rRegI dst, memory mem) %{
5382   match(Set dst (LoadS mem));
5383 
5384   ins_cost(125);
5385   format %{ "MOVSX  $dst,$mem\t# short" %}
5386 
5387   ins_encode %{
5388     __ movswl($dst$$Register, $mem$$Address);
5389   %}
5390 
5391   ins_pipe(ialu_reg_mem);
5392 %}
5393 
5394 // Load Short (16 bit signed) to Byte (8 bit signed)
5395 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5396   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5397 
5398   ins_cost(125);
5399   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5400   ins_encode %{
5401     __ movsbl($dst$$Register, $mem$$Address);
5402   %}
5403   ins_pipe(ialu_reg_mem);
5404 %}
5405 
5406 // Load Short (16bit signed) into Long Register
5407 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5408   match(Set dst (ConvI2L (LoadS mem)));
5409   effect(KILL cr);
5410 
5411   ins_cost(375);
5412   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5413             "MOV    $dst.hi,$dst.lo\n\t"
5414             "SAR    $dst.hi,15" %}
5415 
5416   ins_encode %{
5417     __ movswl($dst$$Register, $mem$$Address);
5418     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5419     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5420   %}
5421 
5422   ins_pipe(ialu_reg_mem);
5423 %}
5424 
5425 // Load Unsigned Short/Char (16bit unsigned)
5426 instruct loadUS(rRegI dst, memory mem) %{
5427   match(Set dst (LoadUS mem));
5428 
5429   ins_cost(125);
5430   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5431 
5432   ins_encode %{
5433     __ movzwl($dst$$Register, $mem$$Address);
5434   %}
5435 
5436   ins_pipe(ialu_reg_mem);
5437 %}
5438 
5439 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5440 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5441   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5442 
5443   ins_cost(125);
5444   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5445   ins_encode %{
5446     __ movsbl($dst$$Register, $mem$$Address);
5447   %}
5448   ins_pipe(ialu_reg_mem);
5449 %}
5450 
5451 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5452 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5453   match(Set dst (ConvI2L (LoadUS mem)));
5454   effect(KILL cr);
5455 
5456   ins_cost(250);
5457   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
5458             "XOR    $dst.hi,$dst.hi" %}
5459 
5460   ins_encode %{
5461     __ movzwl($dst$$Register, $mem$$Address);
5462     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5463   %}
5464 
5465   ins_pipe(ialu_reg_mem);
5466 %}
5467 
5468 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5469 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5470   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5471   effect(KILL cr);
5472 
5473   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
5474             "XOR    $dst.hi,$dst.hi" %}
5475   ins_encode %{
5476     Register Rdst = $dst$$Register;
5477     __ movzbl(Rdst, $mem$$Address);
5478     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5479   %}
5480   ins_pipe(ialu_reg_mem);
5481 %}
5482 
5483 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
5484 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
5485   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5486   effect(KILL cr);
5487 
5488   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
5489             "XOR    $dst.hi,$dst.hi\n\t"
5490             "AND    $dst.lo,$mask" %}
5491   ins_encode %{
5492     Register Rdst = $dst$$Register;
5493     __ movzwl(Rdst, $mem$$Address);
5494     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5495     __ andl(Rdst, $mask$$constant);
5496   %}
5497   ins_pipe(ialu_reg_mem);
5498 %}
5499 
5500 // Load Integer
5501 instruct loadI(rRegI dst, memory mem) %{
5502   match(Set dst (LoadI mem));
5503 
5504   ins_cost(125);
5505   format %{ "MOV    $dst,$mem\t# int" %}
5506 
5507   ins_encode %{
5508     __ movl($dst$$Register, $mem$$Address);
5509   %}
5510 
5511   ins_pipe(ialu_reg_mem);
5512 %}
5513 
5514 // Load Integer (32 bit signed) to Byte (8 bit signed)
5515 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5516   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5517 
5518   ins_cost(125);
5519   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
5520   ins_encode %{
5521     __ movsbl($dst$$Register, $mem$$Address);
5522   %}
5523   ins_pipe(ialu_reg_mem);
5524 %}
5525 
5526 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
5527 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
5528   match(Set dst (AndI (LoadI mem) mask));
5529 
5530   ins_cost(125);
5531   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
5532   ins_encode %{
5533     __ movzbl($dst$$Register, $mem$$Address);
5534   %}
5535   ins_pipe(ialu_reg_mem);
5536 %}
5537 
5538 // Load Integer (32 bit signed) to Short (16 bit signed)
5539 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
5540   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5541 
5542   ins_cost(125);
5543   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
5544   ins_encode %{
5545     __ movswl($dst$$Register, $mem$$Address);
5546   %}
5547   ins_pipe(ialu_reg_mem);
5548 %}
5549 
5550 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
5551 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
5552   match(Set dst (AndI (LoadI mem) mask));
5553 
5554   ins_cost(125);
5555   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
5556   ins_encode %{
5557     __ movzwl($dst$$Register, $mem$$Address);
5558   %}
5559   ins_pipe(ialu_reg_mem);
5560 %}
5561 
5562 // Load Integer into Long Register
5563 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
5564   match(Set dst (ConvI2L (LoadI mem)));
5565   effect(KILL cr);
5566 
5567   ins_cost(375);
5568   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
5569             "MOV    $dst.hi,$dst.lo\n\t"
5570             "SAR    $dst.hi,31" %}
5571 
5572   ins_encode %{
5573     __ movl($dst$$Register, $mem$$Address);
5574     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5575     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
5576   %}
5577 
5578   ins_pipe(ialu_reg_mem);
5579 %}
5580 
5581 // Load Integer with mask 0xFF into Long Register
5582 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5583   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5584   effect(KILL cr);
5585 
5586   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
5587             "XOR    $dst.hi,$dst.hi" %}
5588   ins_encode %{
5589     Register Rdst = $dst$$Register;
5590     __ movzbl(Rdst, $mem$$Address);
5591     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5592   %}
5593   ins_pipe(ialu_reg_mem);
5594 %}
5595 
5596 // Load Integer with mask 0xFFFF into Long Register
5597 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
5598   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5599   effect(KILL cr);
5600 
5601   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
5602             "XOR    $dst.hi,$dst.hi" %}
5603   ins_encode %{
5604     Register Rdst = $dst$$Register;
5605     __ movzwl(Rdst, $mem$$Address);
5606     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5607   %}
5608   ins_pipe(ialu_reg_mem);
5609 %}
5610 
5611 // Load Integer with 31-bit mask into Long Register
5612 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
5613   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5614   effect(KILL cr);
5615 
5616   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
5617             "XOR    $dst.hi,$dst.hi\n\t"
5618             "AND    $dst.lo,$mask" %}
5619   ins_encode %{
5620     Register Rdst = $dst$$Register;
5621     __ movl(Rdst, $mem$$Address);
5622     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5623     __ andl(Rdst, $mask$$constant);
5624   %}
5625   ins_pipe(ialu_reg_mem);
5626 %}
5627 
5628 // Load Unsigned Integer into Long Register
5629 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
5630   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5631   effect(KILL cr);
5632 
5633   ins_cost(250);
5634   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
5635             "XOR    $dst.hi,$dst.hi" %}
5636 
5637   ins_encode %{
5638     __ movl($dst$$Register, $mem$$Address);
5639     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5640   %}
5641 
5642   ins_pipe(ialu_reg_mem);
5643 %}
5644 
5645 // Load Long.  Cannot clobber address while loading, so restrict address
5646 // register to ESI
5647 instruct loadL(eRegL dst, load_long_memory mem) %{
5648   predicate(!((LoadLNode*)n)->require_atomic_access());
5649   match(Set dst (LoadL mem));
5650 
5651   ins_cost(250);
5652   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
5653             "MOV    $dst.hi,$mem+4" %}
5654 
5655   ins_encode %{
5656     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
5657     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
5658     __ movl($dst$$Register, Amemlo);
5659     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
5660   %}
5661 
5662   ins_pipe(ialu_reg_long_mem);
5663 %}
5664 
5665 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
5666 // then store it down to the stack and reload on the int
5667 // side.
5668 instruct loadL_volatile(stackSlotL dst, memory mem) %{
5669   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
5670   match(Set dst (LoadL mem));
5671 
5672   ins_cost(200);
5673   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
5674             "FISTp  $dst" %}
5675   ins_encode(enc_loadL_volatile(mem,dst));
5676   ins_pipe( fpu_reg_mem );
5677 %}
5678 
5679 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
5680   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
5681   match(Set dst (LoadL mem));
5682   effect(TEMP tmp);
5683   ins_cost(180);
5684   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
5685             "MOVSD  $dst,$tmp" %}
5686   ins_encode %{
5687     __ movdbl($tmp$$XMMRegister, $mem$$Address);
5688     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
5689   %}
5690   ins_pipe( pipe_slow );
5691 %}
5692 
5693 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
5694   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
5695   match(Set dst (LoadL mem));
5696   effect(TEMP tmp);
5697   ins_cost(160);
5698   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
5699             "MOVD   $dst.lo,$tmp\n\t"
5700             "PSRLQ  $tmp,32\n\t"
5701             "MOVD   $dst.hi,$tmp" %}
5702   ins_encode %{
5703     __ movdbl($tmp$$XMMRegister, $mem$$Address);
5704     __ movdl($dst$$Register, $tmp$$XMMRegister);
5705     __ psrlq($tmp$$XMMRegister, 32);
5706     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
5707   %}
5708   ins_pipe( pipe_slow );
5709 %}
5710 
5711 // Load Range
5712 instruct loadRange(rRegI dst, memory mem) %{
5713   match(Set dst (LoadRange mem));
5714 
5715   ins_cost(125);
5716   format %{ "MOV    $dst,$mem" %}
5717   opcode(0x8B);
5718   ins_encode( OpcP, RegMem(dst,mem));
5719   ins_pipe( ialu_reg_mem );
5720 %}
5721 
5722 
5723 // Load Pointer
5724 instruct loadP(eRegP dst, memory mem) %{
5725   match(Set dst (LoadP mem));
5726 
5727   ins_cost(125);
5728   format %{ "MOV    $dst,$mem" %}
5729   opcode(0x8B);
5730   ins_encode( OpcP, RegMem(dst,mem));
5731   ins_pipe( ialu_reg_mem );
5732 %}
5733 
5734 // Load Klass Pointer
5735 instruct loadKlass(eRegP dst, memory mem) %{
5736   match(Set dst (LoadKlass mem));
5737 
5738   ins_cost(125);
5739   format %{ "MOV    $dst,$mem" %}
5740   opcode(0x8B);
5741   ins_encode( OpcP, RegMem(dst,mem));
5742   ins_pipe( ialu_reg_mem );
5743 %}
5744 
5745 // Load Double
5746 instruct loadDPR(regDPR dst, memory mem) %{
5747   predicate(UseSSE<=1);
5748   match(Set dst (LoadD mem));
5749 
5750   ins_cost(150);
5751   format %{ "FLD_D  ST,$mem\n\t"
5752             "FSTP   $dst" %}
5753   opcode(0xDD);               /* DD /0 */
5754   ins_encode( OpcP, RMopc_Mem(0x00,mem),
5755               Pop_Reg_DPR(dst) );
5756   ins_pipe( fpu_reg_mem );
5757 %}
5758 
5759 // Load Double to XMM
5760 instruct loadD(regD dst, memory mem) %{
5761   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
5762   match(Set dst (LoadD mem));
5763   ins_cost(145);
5764   format %{ "MOVSD  $dst,$mem" %}
5765   ins_encode %{
5766     __ movdbl ($dst$$XMMRegister, $mem$$Address);
5767   %}
5768   ins_pipe( pipe_slow );
5769 %}
5770 
5771 instruct loadD_partial(regD dst, memory mem) %{
5772   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
5773   match(Set dst (LoadD mem));
5774   ins_cost(145);
5775   format %{ "MOVLPD $dst,$mem" %}
5776   ins_encode %{
5777     __ movdbl ($dst$$XMMRegister, $mem$$Address);
5778   %}
5779   ins_pipe( pipe_slow );
5780 %}
5781 
5782 // Load to XMM register (single-precision floating point)
5783 // MOVSS instruction
5784 instruct loadF(regF dst, memory mem) %{
5785   predicate(UseSSE>=1);
5786   match(Set dst (LoadF mem));
5787   ins_cost(145);
5788   format %{ "MOVSS  $dst,$mem" %}
5789   ins_encode %{
5790     __ movflt ($dst$$XMMRegister, $mem$$Address);
5791   %}
5792   ins_pipe( pipe_slow );
5793 %}
5794 
5795 // Load Float
5796 instruct loadFPR(regFPR dst, memory mem) %{
5797   predicate(UseSSE==0);
5798   match(Set dst (LoadF mem));
5799 
5800   ins_cost(150);
5801   format %{ "FLD_S  ST,$mem\n\t"
5802             "FSTP   $dst" %}
5803   opcode(0xD9);               /* D9 /0 */
5804   ins_encode( OpcP, RMopc_Mem(0x00,mem),
5805               Pop_Reg_FPR(dst) );
5806   ins_pipe( fpu_reg_mem );
5807 %}
5808 
5809 // Load Effective Address
5810 instruct leaP8(eRegP dst, indOffset8 mem) %{
5811   match(Set dst mem);
5812 
5813   ins_cost(110);
5814   format %{ "LEA    $dst,$mem" %}
5815   opcode(0x8D);
5816   ins_encode( OpcP, RegMem(dst,mem));
5817   ins_pipe( ialu_reg_reg_fat );
5818 %}
5819 
5820 instruct leaP32(eRegP dst, indOffset32 mem) %{
5821   match(Set dst mem);
5822 
5823   ins_cost(110);
5824   format %{ "LEA    $dst,$mem" %}
5825   opcode(0x8D);
5826   ins_encode( OpcP, RegMem(dst,mem));
5827   ins_pipe( ialu_reg_reg_fat );
5828 %}
5829 
5830 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
5831   match(Set dst mem);
5832 
5833   ins_cost(110);
5834   format %{ "LEA    $dst,$mem" %}
5835   opcode(0x8D);
5836   ins_encode( OpcP, RegMem(dst,mem));
5837   ins_pipe( ialu_reg_reg_fat );
5838 %}
5839 
5840 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
5841   match(Set dst mem);
5842 
5843   ins_cost(110);
5844   format %{ "LEA    $dst,$mem" %}
5845   opcode(0x8D);
5846   ins_encode( OpcP, RegMem(dst,mem));
5847   ins_pipe( ialu_reg_reg_fat );
5848 %}
5849 
5850 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
5851   match(Set dst mem);
5852 
5853   ins_cost(110);
5854   format %{ "LEA    $dst,$mem" %}
5855   opcode(0x8D);
5856   ins_encode( OpcP, RegMem(dst,mem));
5857   ins_pipe( ialu_reg_reg_fat );
5858 %}
5859 
5860 // Load Constant
5861 instruct loadConI(rRegI dst, immI src) %{
5862   match(Set dst src);
5863 
5864   format %{ "MOV    $dst,$src" %}
5865   ins_encode( LdImmI(dst, src) );
5866   ins_pipe( ialu_reg_fat );
5867 %}
5868 
5869 // Load Constant zero
5870 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
5871   match(Set dst src);
5872   effect(KILL cr);
5873 
5874   ins_cost(50);
5875   format %{ "XOR    $dst,$dst" %}
5876   opcode(0x33);  /* + rd */
5877   ins_encode( OpcP, RegReg( dst, dst ) );
5878   ins_pipe( ialu_reg );
5879 %}
5880 
5881 instruct loadConP(eRegP dst, immP src) %{
5882   match(Set dst src);
5883 
5884   format %{ "MOV    $dst,$src" %}
5885   opcode(0xB8);  /* + rd */
5886   ins_encode( LdImmP(dst, src) );
5887   ins_pipe( ialu_reg_fat );
5888 %}
5889 
5890 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
5891   match(Set dst src);
5892   effect(KILL cr);
5893   ins_cost(200);
5894   format %{ "MOV    $dst.lo,$src.lo\n\t"
5895             "MOV    $dst.hi,$src.hi" %}
5896   opcode(0xB8);
5897   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
5898   ins_pipe( ialu_reg_long_fat );
5899 %}
5900 
5901 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
5902   match(Set dst src);
5903   effect(KILL cr);
5904   ins_cost(150);
5905   format %{ "XOR    $dst.lo,$dst.lo\n\t"
5906             "XOR    $dst.hi,$dst.hi" %}
5907   opcode(0x33,0x33);
5908   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
5909   ins_pipe( ialu_reg_long );
5910 %}
5911 
5912 // The instruction usage is guarded by predicate in operand immFPR().
5913 instruct loadConFPR(regFPR dst, immFPR con) %{
5914   match(Set dst con);
5915   ins_cost(125);
5916   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
5917             "FSTP   $dst" %}
5918   ins_encode %{
5919     __ fld_s($constantaddress($con));
5920     __ fstp_d($dst$$reg);
5921   %}
5922   ins_pipe(fpu_reg_con);
5923 %}
5924 
5925 // The instruction usage is guarded by predicate in operand immFPR0().
5926 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
5927   match(Set dst con);
5928   ins_cost(125);
5929   format %{ "FLDZ   ST\n\t"
5930             "FSTP   $dst" %}
5931   ins_encode %{
5932     __ fldz();
5933     __ fstp_d($dst$$reg);
5934   %}
5935   ins_pipe(fpu_reg_con);
5936 %}
5937 
5938 // The instruction usage is guarded by predicate in operand immFPR1().
5939 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
5940   match(Set dst con);
5941   ins_cost(125);
5942   format %{ "FLD1   ST\n\t"
5943             "FSTP   $dst" %}
5944   ins_encode %{
5945     __ fld1();
5946     __ fstp_d($dst$$reg);
5947   %}
5948   ins_pipe(fpu_reg_con);
5949 %}
5950 
5951 // The instruction usage is guarded by predicate in operand immF().
5952 instruct loadConF(regF dst, immF con) %{
5953   match(Set dst con);
5954   ins_cost(125);
5955   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
5956   ins_encode %{
5957     __ movflt($dst$$XMMRegister, $constantaddress($con));
5958   %}
5959   ins_pipe(pipe_slow);
5960 %}
5961 
5962 // The instruction usage is guarded by predicate in operand immF0().
5963 instruct loadConF0(regF dst, immF0 src) %{
5964   match(Set dst src);
5965   ins_cost(100);
5966   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
5967   ins_encode %{
5968     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5969   %}
5970   ins_pipe(pipe_slow);
5971 %}
5972 
5973 // The instruction usage is guarded by predicate in operand immDPR().
5974 instruct loadConDPR(regDPR dst, immDPR con) %{
5975   match(Set dst con);
5976   ins_cost(125);
5977 
5978   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
5979             "FSTP   $dst" %}
5980   ins_encode %{
5981     __ fld_d($constantaddress($con));
5982     __ fstp_d($dst$$reg);
5983   %}
5984   ins_pipe(fpu_reg_con);
5985 %}
5986 
5987 // The instruction usage is guarded by predicate in operand immDPR0().
5988 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
5989   match(Set dst con);
5990   ins_cost(125);
5991 
5992   format %{ "FLDZ   ST\n\t"
5993             "FSTP   $dst" %}
5994   ins_encode %{
5995     __ fldz();
5996     __ fstp_d($dst$$reg);
5997   %}
5998   ins_pipe(fpu_reg_con);
5999 %}
6000 
6001 // The instruction usage is guarded by predicate in operand immDPR1().
6002 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6003   match(Set dst con);
6004   ins_cost(125);
6005 
6006   format %{ "FLD1   ST\n\t"
6007             "FSTP   $dst" %}
6008   ins_encode %{
6009     __ fld1();
6010     __ fstp_d($dst$$reg);
6011   %}
6012   ins_pipe(fpu_reg_con);
6013 %}
6014 
6015 // The instruction usage is guarded by predicate in operand immD().
6016 instruct loadConD(regD dst, immD con) %{
6017   match(Set dst con);
6018   ins_cost(125);
6019   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6020   ins_encode %{
6021     __ movdbl($dst$$XMMRegister, $constantaddress($con));
6022   %}
6023   ins_pipe(pipe_slow);
6024 %}
6025 
6026 // The instruction usage is guarded by predicate in operand immD0().
6027 instruct loadConD0(regD dst, immD0 src) %{
6028   match(Set dst src);
6029   ins_cost(100);
6030   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6031   ins_encode %{
6032     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6033   %}
6034   ins_pipe( pipe_slow );
6035 %}
6036 
6037 // Load Stack Slot
6038 instruct loadSSI(rRegI dst, stackSlotI src) %{
6039   match(Set dst src);
6040   ins_cost(125);
6041 
6042   format %{ "MOV    $dst,$src" %}
6043   opcode(0x8B);
6044   ins_encode( OpcP, RegMem(dst,src));
6045   ins_pipe( ialu_reg_mem );
6046 %}
6047 
6048 instruct loadSSL(eRegL dst, stackSlotL src) %{
6049   match(Set dst src);
6050 
6051   ins_cost(200);
6052   format %{ "MOV    $dst,$src.lo\n\t"
6053             "MOV    $dst+4,$src.hi" %}
6054   opcode(0x8B, 0x8B);
6055   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6056   ins_pipe( ialu_mem_long_reg );
6057 %}
6058 
6059 // Load Stack Slot
6060 instruct loadSSP(eRegP dst, stackSlotP src) %{
6061   match(Set dst src);
6062   ins_cost(125);
6063 
6064   format %{ "MOV    $dst,$src" %}
6065   opcode(0x8B);
6066   ins_encode( OpcP, RegMem(dst,src));
6067   ins_pipe( ialu_reg_mem );
6068 %}
6069 
6070 // Load Stack Slot
6071 instruct loadSSF(regFPR dst, stackSlotF src) %{
6072   match(Set dst src);
6073   ins_cost(125);
6074 
6075   format %{ "FLD_S  $src\n\t"
6076             "FSTP   $dst" %}
6077   opcode(0xD9);               /* D9 /0, FLD m32real */
6078   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6079               Pop_Reg_FPR(dst) );
6080   ins_pipe( fpu_reg_mem );
6081 %}
6082 
6083 // Load Stack Slot
6084 instruct loadSSD(regDPR dst, stackSlotD src) %{
6085   match(Set dst src);
6086   ins_cost(125);
6087 
6088   format %{ "FLD_D  $src\n\t"
6089             "FSTP   $dst" %}
6090   opcode(0xDD);               /* DD /0, FLD m64real */
6091   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6092               Pop_Reg_DPR(dst) );
6093   ins_pipe( fpu_reg_mem );
6094 %}
6095 
6096 // Prefetch instructions.
6097 // Must be safe to execute with invalid address (cannot fault).
6098 
6099 instruct prefetchr0( memory mem ) %{
6100   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6101   match(PrefetchRead mem);
6102   ins_cost(0);
6103   size(0);
6104   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6105   ins_encode();
6106   ins_pipe(empty);
6107 %}
6108 
6109 instruct prefetchr( memory mem ) %{
6110   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6111   match(PrefetchRead mem);
6112   ins_cost(100);
6113 
6114   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6115   ins_encode %{
6116     __ prefetchr($mem$$Address);
6117   %}
6118   ins_pipe(ialu_mem);
6119 %}
6120 
6121 instruct prefetchrNTA( memory mem ) %{
6122   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6123   match(PrefetchRead mem);
6124   ins_cost(100);
6125 
6126   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6127   ins_encode %{
6128     __ prefetchnta($mem$$Address);
6129   %}
6130   ins_pipe(ialu_mem);
6131 %}
6132 
6133 instruct prefetchrT0( memory mem ) %{
6134   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6135   match(PrefetchRead mem);
6136   ins_cost(100);
6137 
6138   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6139   ins_encode %{
6140     __ prefetcht0($mem$$Address);
6141   %}
6142   ins_pipe(ialu_mem);
6143 %}
6144 
6145 instruct prefetchrT2( memory mem ) %{
6146   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6147   match(PrefetchRead mem);
6148   ins_cost(100);
6149 
6150   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6151   ins_encode %{
6152     __ prefetcht2($mem$$Address);
6153   %}
6154   ins_pipe(ialu_mem);
6155 %}
6156 
6157 instruct prefetchw0( memory mem ) %{
6158   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6159   match(PrefetchWrite mem);
6160   ins_cost(0);
6161   size(0);
6162   format %{ "Prefetch (non-SSE is empty encoding)" %}
6163   ins_encode();
6164   ins_pipe(empty);
6165 %}
6166 
6167 instruct prefetchw( memory mem ) %{
6168   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6169   match( PrefetchWrite mem );
6170   ins_cost(100);
6171 
6172   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6173   ins_encode %{
6174     __ prefetchw($mem$$Address);
6175   %}
6176   ins_pipe(ialu_mem);
6177 %}
6178 
6179 instruct prefetchwNTA( memory mem ) %{
6180   predicate(UseSSE>=1);
6181   match(PrefetchWrite mem);
6182   ins_cost(100);
6183 
6184   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6185   ins_encode %{
6186     __ prefetchnta($mem$$Address);
6187   %}
6188   ins_pipe(ialu_mem);
6189 %}
6190 
6191 // Prefetch instructions for allocation.
6192 
6193 instruct prefetchAlloc0( memory mem ) %{
6194   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6195   match(PrefetchAllocation mem);
6196   ins_cost(0);
6197   size(0);
6198   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6199   ins_encode();
6200   ins_pipe(empty);
6201 %}
6202 
6203 instruct prefetchAlloc( memory mem ) %{
6204   predicate(AllocatePrefetchInstr==3);
6205   match( PrefetchAllocation mem );
6206   ins_cost(100);
6207 
6208   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6209   ins_encode %{
6210     __ prefetchw($mem$$Address);
6211   %}
6212   ins_pipe(ialu_mem);
6213 %}
6214 
6215 instruct prefetchAllocNTA( memory mem ) %{
6216   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6217   match(PrefetchAllocation mem);
6218   ins_cost(100);
6219 
6220   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6221   ins_encode %{
6222     __ prefetchnta($mem$$Address);
6223   %}
6224   ins_pipe(ialu_mem);
6225 %}
6226 
6227 instruct prefetchAllocT0( memory mem ) %{
6228   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6229   match(PrefetchAllocation mem);
6230   ins_cost(100);
6231 
6232   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6233   ins_encode %{
6234     __ prefetcht0($mem$$Address);
6235   %}
6236   ins_pipe(ialu_mem);
6237 %}
6238 
6239 instruct prefetchAllocT2( memory mem ) %{
6240   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6241   match(PrefetchAllocation mem);
6242   ins_cost(100);
6243 
6244   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6245   ins_encode %{
6246     __ prefetcht2($mem$$Address);
6247   %}
6248   ins_pipe(ialu_mem);
6249 %}
6250 
6251 //----------Store Instructions-------------------------------------------------
6252 
6253 // Store Byte
6254 instruct storeB(memory mem, xRegI src) %{
6255   match(Set mem (StoreB mem src));
6256 
6257   ins_cost(125);
6258   format %{ "MOV8   $mem,$src" %}
6259   opcode(0x88);
6260   ins_encode( OpcP, RegMem( src, mem ) );
6261   ins_pipe( ialu_mem_reg );
6262 %}
6263 
6264 // Store Char/Short
6265 instruct storeC(memory mem, rRegI src) %{
6266   match(Set mem (StoreC mem src));
6267 
6268   ins_cost(125);
6269   format %{ "MOV16  $mem,$src" %}
6270   opcode(0x89, 0x66);
6271   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6272   ins_pipe( ialu_mem_reg );
6273 %}
6274 
6275 // Store Integer
6276 instruct storeI(memory mem, rRegI src) %{
6277   match(Set mem (StoreI mem src));
6278 
6279   ins_cost(125);
6280   format %{ "MOV    $mem,$src" %}
6281   opcode(0x89);
6282   ins_encode( OpcP, RegMem( src, mem ) );
6283   ins_pipe( ialu_mem_reg );
6284 %}
6285 
6286 // Store Long
6287 instruct storeL(long_memory mem, eRegL src) %{
6288   predicate(!((StoreLNode*)n)->require_atomic_access());
6289   match(Set mem (StoreL mem src));
6290 
6291   ins_cost(200);
6292   format %{ "MOV    $mem,$src.lo\n\t"
6293             "MOV    $mem+4,$src.hi" %}
6294   opcode(0x89, 0x89);
6295   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6296   ins_pipe( ialu_mem_long_reg );
6297 %}
6298 
6299 // Store Long to Integer
6300 instruct storeL2I(memory mem, eRegL src) %{
6301   match(Set mem (StoreI mem (ConvL2I src)));
6302 
6303   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6304   ins_encode %{
6305     __ movl($mem$$Address, $src$$Register);
6306   %}
6307   ins_pipe(ialu_mem_reg);
6308 %}
6309 
6310 // Volatile Store Long.  Must be atomic, so move it into
6311 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6312 // target address before the store (for null-ptr checks)
6313 // so the memory operand is used twice in the encoding.
6314 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6315   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6316   match(Set mem (StoreL mem src));
6317   effect( KILL cr );
6318   ins_cost(400);
6319   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6320             "FILD   $src\n\t"
6321             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6322   opcode(0x3B);
6323   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6324   ins_pipe( fpu_reg_mem );
6325 %}
6326 
6327 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6328   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6329   match(Set mem (StoreL mem src));
6330   effect( TEMP tmp, KILL cr );
6331   ins_cost(380);
6332   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6333             "MOVSD  $tmp,$src\n\t"
6334             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6335   ins_encode %{
6336     __ cmpl(rax, $mem$$Address);
6337     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6338     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6339   %}
6340   ins_pipe( pipe_slow );
6341 %}
6342 
6343 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6344   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6345   match(Set mem (StoreL mem src));
6346   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6347   ins_cost(360);
6348   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6349             "MOVD   $tmp,$src.lo\n\t"
6350             "MOVD   $tmp2,$src.hi\n\t"
6351             "PUNPCKLDQ $tmp,$tmp2\n\t"
6352             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6353   ins_encode %{
6354     __ cmpl(rax, $mem$$Address);
6355     __ movdl($tmp$$XMMRegister, $src$$Register);
6356     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6357     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6358     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6359   %}
6360   ins_pipe( pipe_slow );
6361 %}
6362 
6363 // Store Pointer; for storing unknown oops and raw pointers
6364 instruct storeP(memory mem, anyRegP src) %{
6365   match(Set mem (StoreP mem src));
6366 
6367   ins_cost(125);
6368   format %{ "MOV    $mem,$src" %}
6369   opcode(0x89);
6370   ins_encode( OpcP, RegMem( src, mem ) );
6371   ins_pipe( ialu_mem_reg );
6372 %}
6373 
6374 // Store Integer Immediate
6375 instruct storeImmI(memory mem, immI src) %{
6376   match(Set mem (StoreI mem src));
6377 
6378   ins_cost(150);
6379   format %{ "MOV    $mem,$src" %}
6380   opcode(0xC7);               /* C7 /0 */
6381   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6382   ins_pipe( ialu_mem_imm );
6383 %}
6384 
6385 // Store Short/Char Immediate
6386 instruct storeImmI16(memory mem, immI16 src) %{
6387   predicate(UseStoreImmI16);
6388   match(Set mem (StoreC mem src));
6389 
6390   ins_cost(150);
6391   format %{ "MOV16  $mem,$src" %}
6392   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6393   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6394   ins_pipe( ialu_mem_imm );
6395 %}
6396 
6397 // Store Pointer Immediate; null pointers or constant oops that do not
6398 // need card-mark barriers.
6399 instruct storeImmP(memory mem, immP src) %{
6400   match(Set mem (StoreP mem src));
6401 
6402   ins_cost(150);
6403   format %{ "MOV    $mem,$src" %}
6404   opcode(0xC7);               /* C7 /0 */
6405   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6406   ins_pipe( ialu_mem_imm );
6407 %}
6408 
6409 // Store Byte Immediate
6410 instruct storeImmB(memory mem, immI8 src) %{
6411   match(Set mem (StoreB mem src));
6412 
6413   ins_cost(150);
6414   format %{ "MOV8   $mem,$src" %}
6415   opcode(0xC6);               /* C6 /0 */
6416   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6417   ins_pipe( ialu_mem_imm );
6418 %}
6419 
6420 // Store CMS card-mark Immediate
6421 instruct storeImmCM(memory mem, immI8 src) %{
6422   match(Set mem (StoreCM mem src));
6423 
6424   ins_cost(150);
6425   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6426   opcode(0xC6);               /* C6 /0 */
6427   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6428   ins_pipe( ialu_mem_imm );
6429 %}
6430 
6431 // Store Double
6432 instruct storeDPR( memory mem, regDPR1 src) %{
6433   predicate(UseSSE<=1);
6434   match(Set mem (StoreD mem src));
6435 
6436   ins_cost(100);
6437   format %{ "FST_D  $mem,$src" %}
6438   opcode(0xDD);       /* DD /2 */
6439   ins_encode( enc_FPR_store(mem,src) );
6440   ins_pipe( fpu_mem_reg );
6441 %}
6442 
6443 // Store double does rounding on x86
6444 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6445   predicate(UseSSE<=1);
6446   match(Set mem (StoreD mem (RoundDouble src)));
6447 
6448   ins_cost(100);
6449   format %{ "FST_D  $mem,$src\t# round" %}
6450   opcode(0xDD);       /* DD /2 */
6451   ins_encode( enc_FPR_store(mem,src) );
6452   ins_pipe( fpu_mem_reg );
6453 %}
6454 
6455 // Store XMM register to memory (double-precision floating points)
6456 // MOVSD instruction
6457 instruct storeD(memory mem, regD src) %{
6458   predicate(UseSSE>=2);
6459   match(Set mem (StoreD mem src));
6460   ins_cost(95);
6461   format %{ "MOVSD  $mem,$src" %}
6462   ins_encode %{
6463     __ movdbl($mem$$Address, $src$$XMMRegister);
6464   %}
6465   ins_pipe( pipe_slow );
6466 %}
6467 
6468 // Store XMM register to memory (single-precision floating point)
6469 // MOVSS instruction
6470 instruct storeF(memory mem, regF src) %{
6471   predicate(UseSSE>=1);
6472   match(Set mem (StoreF mem src));
6473   ins_cost(95);
6474   format %{ "MOVSS  $mem,$src" %}
6475   ins_encode %{
6476     __ movflt($mem$$Address, $src$$XMMRegister);
6477   %}
6478   ins_pipe( pipe_slow );
6479 %}
6480 
6481 // Store Float
6482 instruct storeFPR( memory mem, regFPR1 src) %{
6483   predicate(UseSSE==0);
6484   match(Set mem (StoreF mem src));
6485 
6486   ins_cost(100);
6487   format %{ "FST_S  $mem,$src" %}
6488   opcode(0xD9);       /* D9 /2 */
6489   ins_encode( enc_FPR_store(mem,src) );
6490   ins_pipe( fpu_mem_reg );
6491 %}
6492 
6493 // Store Float does rounding on x86
6494 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
6495   predicate(UseSSE==0);
6496   match(Set mem (StoreF mem (RoundFloat src)));
6497 
6498   ins_cost(100);
6499   format %{ "FST_S  $mem,$src\t# round" %}
6500   opcode(0xD9);       /* D9 /2 */
6501   ins_encode( enc_FPR_store(mem,src) );
6502   ins_pipe( fpu_mem_reg );
6503 %}
6504 
6505 // Store Float does rounding on x86
6506 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
6507   predicate(UseSSE<=1);
6508   match(Set mem (StoreF mem (ConvD2F src)));
6509 
6510   ins_cost(100);
6511   format %{ "FST_S  $mem,$src\t# D-round" %}
6512   opcode(0xD9);       /* D9 /2 */
6513   ins_encode( enc_FPR_store(mem,src) );
6514   ins_pipe( fpu_mem_reg );
6515 %}
6516 
6517 // Store immediate Float value (it is faster than store from FPU register)
6518 // The instruction usage is guarded by predicate in operand immFPR().
6519 instruct storeFPR_imm( memory mem, immFPR src) %{
6520   match(Set mem (StoreF mem src));
6521 
6522   ins_cost(50);
6523   format %{ "MOV    $mem,$src\t# store float" %}
6524   opcode(0xC7);               /* C7 /0 */
6525   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
6526   ins_pipe( ialu_mem_imm );
6527 %}
6528 
6529 // Store immediate Float value (it is faster than store from XMM register)
6530 // The instruction usage is guarded by predicate in operand immF().
6531 instruct storeF_imm( memory mem, immF src) %{
6532   match(Set mem (StoreF mem src));
6533 
6534   ins_cost(50);
6535   format %{ "MOV    $mem,$src\t# store float" %}
6536   opcode(0xC7);               /* C7 /0 */
6537   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
6538   ins_pipe( ialu_mem_imm );
6539 %}
6540 
6541 // Store Integer to stack slot
6542 instruct storeSSI(stackSlotI dst, rRegI src) %{
6543   match(Set dst src);
6544 
6545   ins_cost(100);
6546   format %{ "MOV    $dst,$src" %}
6547   opcode(0x89);
6548   ins_encode( OpcPRegSS( dst, src ) );
6549   ins_pipe( ialu_mem_reg );
6550 %}
6551 
6552 // Store Integer to stack slot
6553 instruct storeSSP(stackSlotP dst, eRegP src) %{
6554   match(Set dst src);
6555 
6556   ins_cost(100);
6557   format %{ "MOV    $dst,$src" %}
6558   opcode(0x89);
6559   ins_encode( OpcPRegSS( dst, src ) );
6560   ins_pipe( ialu_mem_reg );
6561 %}
6562 
6563 // Store Long to stack slot
6564 instruct storeSSL(stackSlotL dst, eRegL src) %{
6565   match(Set dst src);
6566 
6567   ins_cost(200);
6568   format %{ "MOV    $dst,$src.lo\n\t"
6569             "MOV    $dst+4,$src.hi" %}
6570   opcode(0x89, 0x89);
6571   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
6572   ins_pipe( ialu_mem_long_reg );
6573 %}
6574 
6575 //----------MemBar Instructions-----------------------------------------------
6576 // Memory barrier flavors
6577 
6578 instruct membar_acquire() %{
6579   match(MemBarAcquire);
6580   match(LoadFence);
6581   ins_cost(400);
6582 
6583   size(0);
6584   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6585   ins_encode();
6586   ins_pipe(empty);
6587 %}
6588 
6589 instruct membar_acquire_lock() %{
6590   match(MemBarAcquireLock);
6591   ins_cost(0);
6592 
6593   size(0);
6594   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6595   ins_encode( );
6596   ins_pipe(empty);
6597 %}
6598 
6599 instruct membar_release() %{
6600   match(MemBarRelease);
6601   match(StoreFence);
6602   ins_cost(400);
6603 
6604   size(0);
6605   format %{ "MEMBAR-release ! (empty encoding)" %}
6606   ins_encode( );
6607   ins_pipe(empty);
6608 %}
6609 
6610 instruct membar_release_lock() %{
6611   match(MemBarReleaseLock);
6612   ins_cost(0);
6613 
6614   size(0);
6615   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6616   ins_encode( );
6617   ins_pipe(empty);
6618 %}
6619 
6620 instruct membar_volatile(eFlagsReg cr) %{
6621   match(MemBarVolatile);
6622   effect(KILL cr);
6623   ins_cost(400);
6624 
6625   format %{ 
6626     $$template
6627     if (os::is_MP()) {
6628       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
6629     } else {
6630       $$emit$$"MEMBAR-volatile ! (empty encoding)"
6631     }
6632   %}
6633   ins_encode %{
6634     __ membar(Assembler::StoreLoad);
6635   %}
6636   ins_pipe(pipe_slow);
6637 %}
6638 
6639 instruct unnecessary_membar_volatile() %{
6640   match(MemBarVolatile);
6641   predicate(Matcher::post_store_load_barrier(n));
6642   ins_cost(0);
6643 
6644   size(0);
6645   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6646   ins_encode( );
6647   ins_pipe(empty);
6648 %}
6649 
6650 instruct membar_storestore() %{
6651   match(MemBarStoreStore);
6652   ins_cost(0);
6653 
6654   size(0);
6655   format %{ "MEMBAR-storestore (empty encoding)" %}
6656   ins_encode( );
6657   ins_pipe(empty);
6658 %}
6659 
6660 //----------Move Instructions--------------------------------------------------
6661 instruct castX2P(eAXRegP dst, eAXRegI src) %{
6662   match(Set dst (CastX2P src));
6663   format %{ "# X2P  $dst, $src" %}
6664   ins_encode( /*empty encoding*/ );
6665   ins_cost(0);
6666   ins_pipe(empty);
6667 %}
6668 
6669 instruct castP2X(rRegI dst, eRegP src ) %{
6670   match(Set dst (CastP2X src));
6671   ins_cost(50);
6672   format %{ "MOV    $dst, $src\t# CastP2X" %}
6673   ins_encode( enc_Copy( dst, src) );
6674   ins_pipe( ialu_reg_reg );
6675 %}
6676 
6677 //----------Conditional Move---------------------------------------------------
6678 // Conditional move
6679 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
6680   predicate(!VM_Version::supports_cmov() );
6681   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6682   ins_cost(200);
6683   format %{ "J$cop,us skip\t# signed cmove\n\t"
6684             "MOV    $dst,$src\n"
6685       "skip:" %}
6686   ins_encode %{
6687     Label Lskip;
6688     // Invert sense of branch from sense of CMOV
6689     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6690     __ movl($dst$$Register, $src$$Register);
6691     __ bind(Lskip);
6692   %}
6693   ins_pipe( pipe_cmov_reg );
6694 %}
6695 
6696 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
6697   predicate(!VM_Version::supports_cmov() );
6698   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6699   ins_cost(200);
6700   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
6701             "MOV    $dst,$src\n"
6702       "skip:" %}
6703   ins_encode %{
6704     Label Lskip;
6705     // Invert sense of branch from sense of CMOV
6706     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6707     __ movl($dst$$Register, $src$$Register);
6708     __ bind(Lskip);
6709   %}
6710   ins_pipe( pipe_cmov_reg );
6711 %}
6712 
6713 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
6714   predicate(VM_Version::supports_cmov() );
6715   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6716   ins_cost(200);
6717   format %{ "CMOV$cop $dst,$src" %}
6718   opcode(0x0F,0x40);
6719   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6720   ins_pipe( pipe_cmov_reg );
6721 %}
6722 
6723 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
6724   predicate(VM_Version::supports_cmov() );
6725   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6726   ins_cost(200);
6727   format %{ "CMOV$cop $dst,$src" %}
6728   opcode(0x0F,0x40);
6729   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6730   ins_pipe( pipe_cmov_reg );
6731 %}
6732 
6733 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
6734   predicate(VM_Version::supports_cmov() );
6735   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6736   ins_cost(200);
6737   expand %{
6738     cmovI_regU(cop, cr, dst, src);
6739   %}
6740 %}
6741 
6742 // Conditional move
6743 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
6744   predicate(VM_Version::supports_cmov() );
6745   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6746   ins_cost(250);
6747   format %{ "CMOV$cop $dst,$src" %}
6748   opcode(0x0F,0x40);
6749   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6750   ins_pipe( pipe_cmov_mem );
6751 %}
6752 
6753 // Conditional move
6754 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
6755   predicate(VM_Version::supports_cmov() );
6756   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6757   ins_cost(250);
6758   format %{ "CMOV$cop $dst,$src" %}
6759   opcode(0x0F,0x40);
6760   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6761   ins_pipe( pipe_cmov_mem );
6762 %}
6763 
6764 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
6765   predicate(VM_Version::supports_cmov() );
6766   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6767   ins_cost(250);
6768   expand %{
6769     cmovI_memU(cop, cr, dst, src);
6770   %}
6771 %}
6772 
6773 // Conditional move
6774 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
6775   predicate(VM_Version::supports_cmov() );
6776   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6777   ins_cost(200);
6778   format %{ "CMOV$cop $dst,$src\t# ptr" %}
6779   opcode(0x0F,0x40);
6780   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6781   ins_pipe( pipe_cmov_reg );
6782 %}
6783 
6784 // Conditional move (non-P6 version)
6785 // Note:  a CMoveP is generated for  stubs and native wrappers
6786 //        regardless of whether we are on a P6, so we
6787 //        emulate a cmov here
6788 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
6789   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6790   ins_cost(300);
6791   format %{ "Jn$cop   skip\n\t"
6792           "MOV    $dst,$src\t# pointer\n"
6793       "skip:" %}
6794   opcode(0x8b);
6795   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
6796   ins_pipe( pipe_cmov_reg );
6797 %}
6798 
6799 // Conditional move
6800 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
6801   predicate(VM_Version::supports_cmov() );
6802   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6803   ins_cost(200);
6804   format %{ "CMOV$cop $dst,$src\t# ptr" %}
6805   opcode(0x0F,0x40);
6806   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6807   ins_pipe( pipe_cmov_reg );
6808 %}
6809 
6810 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
6811   predicate(VM_Version::supports_cmov() );
6812   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6813   ins_cost(200);
6814   expand %{
6815     cmovP_regU(cop, cr, dst, src);
6816   %}
6817 %}
6818 
6819 // DISABLED: Requires the ADLC to emit a bottom_type call that
6820 // correctly meets the two pointer arguments; one is an incoming
6821 // register but the other is a memory operand.  ALSO appears to
6822 // be buggy with implicit null checks.
6823 //
6824 //// Conditional move
6825 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
6826 //  predicate(VM_Version::supports_cmov() );
6827 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6828 //  ins_cost(250);
6829 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6830 //  opcode(0x0F,0x40);
6831 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6832 //  ins_pipe( pipe_cmov_mem );
6833 //%}
6834 //
6835 //// Conditional move
6836 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
6837 //  predicate(VM_Version::supports_cmov() );
6838 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6839 //  ins_cost(250);
6840 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6841 //  opcode(0x0F,0x40);
6842 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6843 //  ins_pipe( pipe_cmov_mem );
6844 //%}
6845 
6846 // Conditional move
6847 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
6848   predicate(UseSSE<=1);
6849   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6850   ins_cost(200);
6851   format %{ "FCMOV$cop $dst,$src\t# double" %}
6852   opcode(0xDA);
6853   ins_encode( enc_cmov_dpr(cop,src) );
6854   ins_pipe( pipe_cmovDPR_reg );
6855 %}
6856 
6857 // Conditional move
6858 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
6859   predicate(UseSSE==0);
6860   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6861   ins_cost(200);
6862   format %{ "FCMOV$cop $dst,$src\t# float" %}
6863   opcode(0xDA);
6864   ins_encode( enc_cmov_dpr(cop,src) );
6865   ins_pipe( pipe_cmovDPR_reg );
6866 %}
6867 
6868 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
6869 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
6870   predicate(UseSSE<=1);
6871   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6872   ins_cost(200);
6873   format %{ "Jn$cop   skip\n\t"
6874             "MOV    $dst,$src\t# double\n"
6875       "skip:" %}
6876   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
6877   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
6878   ins_pipe( pipe_cmovDPR_reg );
6879 %}
6880 
6881 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
6882 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
6883   predicate(UseSSE==0);
6884   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6885   ins_cost(200);
6886   format %{ "Jn$cop    skip\n\t"
6887             "MOV    $dst,$src\t# float\n"
6888       "skip:" %}
6889   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
6890   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
6891   ins_pipe( pipe_cmovDPR_reg );
6892 %}
6893 
6894 // No CMOVE with SSE/SSE2
6895 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
6896   predicate (UseSSE>=1);
6897   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6898   ins_cost(200);
6899   format %{ "Jn$cop   skip\n\t"
6900             "MOVSS  $dst,$src\t# float\n"
6901       "skip:" %}
6902   ins_encode %{
6903     Label skip;
6904     // Invert sense of branch from sense of CMOV
6905     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6906     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6907     __ bind(skip);
6908   %}
6909   ins_pipe( pipe_slow );
6910 %}
6911 
6912 // No CMOVE with SSE/SSE2
6913 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
6914   predicate (UseSSE>=2);
6915   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6916   ins_cost(200);
6917   format %{ "Jn$cop   skip\n\t"
6918             "MOVSD  $dst,$src\t# float\n"
6919       "skip:" %}
6920   ins_encode %{
6921     Label skip;
6922     // Invert sense of branch from sense of CMOV
6923     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6924     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6925     __ bind(skip);
6926   %}
6927   ins_pipe( pipe_slow );
6928 %}
6929 
6930 // unsigned version
6931 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
6932   predicate (UseSSE>=1);
6933   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6934   ins_cost(200);
6935   format %{ "Jn$cop   skip\n\t"
6936             "MOVSS  $dst,$src\t# float\n"
6937       "skip:" %}
6938   ins_encode %{
6939     Label skip;
6940     // Invert sense of branch from sense of CMOV
6941     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6942     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6943     __ bind(skip);
6944   %}
6945   ins_pipe( pipe_slow );
6946 %}
6947 
6948 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
6949   predicate (UseSSE>=1);
6950   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6951   ins_cost(200);
6952   expand %{
6953     fcmovF_regU(cop, cr, dst, src);
6954   %}
6955 %}
6956 
6957 // unsigned version
6958 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
6959   predicate (UseSSE>=2);
6960   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6961   ins_cost(200);
6962   format %{ "Jn$cop   skip\n\t"
6963             "MOVSD  $dst,$src\t# float\n"
6964       "skip:" %}
6965   ins_encode %{
6966     Label skip;
6967     // Invert sense of branch from sense of CMOV
6968     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6969     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6970     __ bind(skip);
6971   %}
6972   ins_pipe( pipe_slow );
6973 %}
6974 
6975 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
6976   predicate (UseSSE>=2);
6977   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6978   ins_cost(200);
6979   expand %{
6980     fcmovD_regU(cop, cr, dst, src);
6981   %}
6982 %}
6983 
6984 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
6985   predicate(VM_Version::supports_cmov() );
6986   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6987   ins_cost(200);
6988   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
6989             "CMOV$cop $dst.hi,$src.hi" %}
6990   opcode(0x0F,0x40);
6991   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
6992   ins_pipe( pipe_cmov_reg_long );
6993 %}
6994 
6995 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
6996   predicate(VM_Version::supports_cmov() );
6997   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6998   ins_cost(200);
6999   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7000             "CMOV$cop $dst.hi,$src.hi" %}
7001   opcode(0x0F,0x40);
7002   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7003   ins_pipe( pipe_cmov_reg_long );
7004 %}
7005 
7006 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7007   predicate(VM_Version::supports_cmov() );
7008   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7009   ins_cost(200);
7010   expand %{
7011     cmovL_regU(cop, cr, dst, src);
7012   %}
7013 %}
7014 
7015 //----------Arithmetic Instructions--------------------------------------------
7016 //----------Addition Instructions----------------------------------------------
7017 
7018 // Integer Addition Instructions
7019 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7020   match(Set dst (AddI dst src));
7021   effect(KILL cr);
7022 
7023   size(2);
7024   format %{ "ADD    $dst,$src" %}
7025   opcode(0x03);
7026   ins_encode( OpcP, RegReg( dst, src) );
7027   ins_pipe( ialu_reg_reg );
7028 %}
7029 
7030 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7031   match(Set dst (AddI dst src));
7032   effect(KILL cr);
7033 
7034   format %{ "ADD    $dst,$src" %}
7035   opcode(0x81, 0x00); /* /0 id */
7036   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7037   ins_pipe( ialu_reg );
7038 %}
7039 
7040 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7041   predicate(UseIncDec);
7042   match(Set dst (AddI dst src));
7043   effect(KILL cr);
7044 
7045   size(1);
7046   format %{ "INC    $dst" %}
7047   opcode(0x40); /*  */
7048   ins_encode( Opc_plus( primary, dst ) );
7049   ins_pipe( ialu_reg );
7050 %}
7051 
7052 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7053   match(Set dst (AddI src0 src1));
7054   ins_cost(110);
7055 
7056   format %{ "LEA    $dst,[$src0 + $src1]" %}
7057   opcode(0x8D); /* 0x8D /r */
7058   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7059   ins_pipe( ialu_reg_reg );
7060 %}
7061 
7062 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7063   match(Set dst (AddP src0 src1));
7064   ins_cost(110);
7065 
7066   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7067   opcode(0x8D); /* 0x8D /r */
7068   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7069   ins_pipe( ialu_reg_reg );
7070 %}
7071 
7072 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7073   predicate(UseIncDec);
7074   match(Set dst (AddI dst src));
7075   effect(KILL cr);
7076 
7077   size(1);
7078   format %{ "DEC    $dst" %}
7079   opcode(0x48); /*  */
7080   ins_encode( Opc_plus( primary, dst ) );
7081   ins_pipe( ialu_reg );
7082 %}
7083 
7084 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7085   match(Set dst (AddP dst src));
7086   effect(KILL cr);
7087 
7088   size(2);
7089   format %{ "ADD    $dst,$src" %}
7090   opcode(0x03);
7091   ins_encode( OpcP, RegReg( dst, src) );
7092   ins_pipe( ialu_reg_reg );
7093 %}
7094 
7095 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7096   match(Set dst (AddP dst src));
7097   effect(KILL cr);
7098 
7099   format %{ "ADD    $dst,$src" %}
7100   opcode(0x81,0x00); /* Opcode 81 /0 id */
7101   // ins_encode( RegImm( dst, src) );
7102   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7103   ins_pipe( ialu_reg );
7104 %}
7105 
7106 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7107   match(Set dst (AddI dst (LoadI src)));
7108   effect(KILL cr);
7109 
7110   ins_cost(125);
7111   format %{ "ADD    $dst,$src" %}
7112   opcode(0x03);
7113   ins_encode( OpcP, RegMem( dst, src) );
7114   ins_pipe( ialu_reg_mem );
7115 %}
7116 
7117 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7118   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7119   effect(KILL cr);
7120 
7121   ins_cost(150);
7122   format %{ "ADD    $dst,$src" %}
7123   opcode(0x01);  /* Opcode 01 /r */
7124   ins_encode( OpcP, RegMem( src, dst ) );
7125   ins_pipe( ialu_mem_reg );
7126 %}
7127 
7128 // Add Memory with Immediate
7129 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7130   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7131   effect(KILL cr);
7132 
7133   ins_cost(125);
7134   format %{ "ADD    $dst,$src" %}
7135   opcode(0x81);               /* Opcode 81 /0 id */
7136   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7137   ins_pipe( ialu_mem_imm );
7138 %}
7139 
7140 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7141   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7142   effect(KILL cr);
7143 
7144   ins_cost(125);
7145   format %{ "INC    $dst" %}
7146   opcode(0xFF);               /* Opcode FF /0 */
7147   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7148   ins_pipe( ialu_mem_imm );
7149 %}
7150 
7151 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7152   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7153   effect(KILL cr);
7154 
7155   ins_cost(125);
7156   format %{ "DEC    $dst" %}
7157   opcode(0xFF);               /* Opcode FF /1 */
7158   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7159   ins_pipe( ialu_mem_imm );
7160 %}
7161 
7162 
7163 instruct checkCastPP( eRegP dst ) %{
7164   match(Set dst (CheckCastPP dst));
7165 
7166   size(0);
7167   format %{ "#checkcastPP of $dst" %}
7168   ins_encode( /*empty encoding*/ );
7169   ins_pipe( empty );
7170 %}
7171 
7172 instruct castPP( eRegP dst ) %{
7173   match(Set dst (CastPP dst));
7174   format %{ "#castPP of $dst" %}
7175   ins_encode( /*empty encoding*/ );
7176   ins_pipe( empty );
7177 %}
7178 
7179 instruct castII( rRegI dst ) %{
7180   match(Set dst (CastII dst));
7181   format %{ "#castII of $dst" %}
7182   ins_encode( /*empty encoding*/ );
7183   ins_cost(0);
7184   ins_pipe( empty );
7185 %}
7186 
7187 
7188 // Load-locked - same as a regular pointer load when used with compare-swap
7189 instruct loadPLocked(eRegP dst, memory mem) %{
7190   match(Set dst (LoadPLocked mem));
7191 
7192   ins_cost(125);
7193   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7194   opcode(0x8B);
7195   ins_encode( OpcP, RegMem(dst,mem));
7196   ins_pipe( ialu_reg_mem );
7197 %}
7198 
7199 // Conditional-store of the updated heap-top.
7200 // Used during allocation of the shared heap.
7201 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7202 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7203   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7204   // EAX is killed if there is contention, but then it's also unused.
7205   // In the common case of no contention, EAX holds the new oop address.
7206   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7207   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7208   ins_pipe( pipe_cmpxchg );
7209 %}
7210 
7211 // Conditional-store of an int value.
7212 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7213 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7214   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7215   effect(KILL oldval);
7216   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7217   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7218   ins_pipe( pipe_cmpxchg );
7219 %}
7220 
7221 // Conditional-store of a long value.
7222 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7223 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7224   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7225   effect(KILL oldval);
7226   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7227             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7228             "XCHG   EBX,ECX"
7229   %}
7230   ins_encode %{
7231     // Note: we need to swap rbx, and rcx before and after the
7232     //       cmpxchg8 instruction because the instruction uses
7233     //       rcx as the high order word of the new value to store but
7234     //       our register encoding uses rbx.
7235     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7236     if( os::is_MP() )
7237       __ lock();
7238     __ cmpxchg8($mem$$Address);
7239     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7240   %}
7241   ins_pipe( pipe_cmpxchg );
7242 %}
7243 
7244 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7245 
7246 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7247   predicate(VM_Version::supports_cx8());
7248   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7249   effect(KILL cr, KILL oldval);
7250   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7251             "MOV    $res,0\n\t"
7252             "JNE,s  fail\n\t"
7253             "MOV    $res,1\n"
7254           "fail:" %}
7255   ins_encode( enc_cmpxchg8(mem_ptr),
7256               enc_flags_ne_to_boolean(res) );
7257   ins_pipe( pipe_cmpxchg );
7258 %}
7259 
7260 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7261   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7262   effect(KILL cr, KILL oldval);
7263   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7264             "MOV    $res,0\n\t"
7265             "JNE,s  fail\n\t"
7266             "MOV    $res,1\n"
7267           "fail:" %}
7268   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7269   ins_pipe( pipe_cmpxchg );
7270 %}
7271 
7272 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7273   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7274   effect(KILL cr, KILL oldval);
7275   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7276             "MOV    $res,0\n\t"
7277             "JNE,s  fail\n\t"
7278             "MOV    $res,1\n"
7279           "fail:" %}
7280   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7281   ins_pipe( pipe_cmpxchg );
7282 %}
7283 
7284 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7285   predicate(n->as_LoadStore()->result_not_used());
7286   match(Set dummy (GetAndAddI mem add));
7287   effect(KILL cr);
7288   format %{ "ADDL  [$mem],$add" %}
7289   ins_encode %{
7290     if (os::is_MP()) { __ lock(); }
7291     __ addl($mem$$Address, $add$$constant);
7292   %}
7293   ins_pipe( pipe_cmpxchg );
7294 %}
7295 
7296 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7297   match(Set newval (GetAndAddI mem newval));
7298   effect(KILL cr);
7299   format %{ "XADDL  [$mem],$newval" %}
7300   ins_encode %{
7301     if (os::is_MP()) { __ lock(); }
7302     __ xaddl($mem$$Address, $newval$$Register);
7303   %}
7304   ins_pipe( pipe_cmpxchg );
7305 %}
7306 
7307 instruct xchgI( memory mem, rRegI newval) %{
7308   match(Set newval (GetAndSetI mem newval));
7309   format %{ "XCHGL  $newval,[$mem]" %}
7310   ins_encode %{
7311     __ xchgl($newval$$Register, $mem$$Address);
7312   %}
7313   ins_pipe( pipe_cmpxchg );
7314 %}
7315 
7316 instruct xchgP( memory mem, pRegP newval) %{
7317   match(Set newval (GetAndSetP mem newval));
7318   format %{ "XCHGL  $newval,[$mem]" %}
7319   ins_encode %{
7320     __ xchgl($newval$$Register, $mem$$Address);
7321   %}
7322   ins_pipe( pipe_cmpxchg );
7323 %}
7324 
7325 //----------Subtraction Instructions-------------------------------------------
7326 
7327 // Integer Subtraction Instructions
7328 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7329   match(Set dst (SubI dst src));
7330   effect(KILL cr);
7331 
7332   size(2);
7333   format %{ "SUB    $dst,$src" %}
7334   opcode(0x2B);
7335   ins_encode( OpcP, RegReg( dst, src) );
7336   ins_pipe( ialu_reg_reg );
7337 %}
7338 
7339 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7340   match(Set dst (SubI dst src));
7341   effect(KILL cr);
7342 
7343   format %{ "SUB    $dst,$src" %}
7344   opcode(0x81,0x05);  /* Opcode 81 /5 */
7345   // ins_encode( RegImm( dst, src) );
7346   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7347   ins_pipe( ialu_reg );
7348 %}
7349 
7350 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7351   match(Set dst (SubI dst (LoadI src)));
7352   effect(KILL cr);
7353 
7354   ins_cost(125);
7355   format %{ "SUB    $dst,$src" %}
7356   opcode(0x2B);
7357   ins_encode( OpcP, RegMem( dst, src) );
7358   ins_pipe( ialu_reg_mem );
7359 %}
7360 
7361 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7362   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7363   effect(KILL cr);
7364 
7365   ins_cost(150);
7366   format %{ "SUB    $dst,$src" %}
7367   opcode(0x29);  /* Opcode 29 /r */
7368   ins_encode( OpcP, RegMem( src, dst ) );
7369   ins_pipe( ialu_mem_reg );
7370 %}
7371 
7372 // Subtract from a pointer
7373 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7374   match(Set dst (AddP dst (SubI zero src)));
7375   effect(KILL cr);
7376 
7377   size(2);
7378   format %{ "SUB    $dst,$src" %}
7379   opcode(0x2B);
7380   ins_encode( OpcP, RegReg( dst, src) );
7381   ins_pipe( ialu_reg_reg );
7382 %}
7383 
7384 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7385   match(Set dst (SubI zero dst));
7386   effect(KILL cr);
7387 
7388   size(2);
7389   format %{ "NEG    $dst" %}
7390   opcode(0xF7,0x03);  // Opcode F7 /3
7391   ins_encode( OpcP, RegOpc( dst ) );
7392   ins_pipe( ialu_reg );
7393 %}
7394 
7395 //----------Multiplication/Division Instructions-------------------------------
7396 // Integer Multiplication Instructions
7397 // Multiply Register
7398 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7399   match(Set dst (MulI dst src));
7400   effect(KILL cr);
7401 
7402   size(3);
7403   ins_cost(300);
7404   format %{ "IMUL   $dst,$src" %}
7405   opcode(0xAF, 0x0F);
7406   ins_encode( OpcS, OpcP, RegReg( dst, src) );
7407   ins_pipe( ialu_reg_reg_alu0 );
7408 %}
7409 
7410 // Multiply 32-bit Immediate
7411 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
7412   match(Set dst (MulI src imm));
7413   effect(KILL cr);
7414 
7415   ins_cost(300);
7416   format %{ "IMUL   $dst,$src,$imm" %}
7417   opcode(0x69);  /* 69 /r id */
7418   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7419   ins_pipe( ialu_reg_reg_alu0 );
7420 %}
7421 
7422 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7423   match(Set dst src);
7424   effect(KILL cr);
7425 
7426   // Note that this is artificially increased to make it more expensive than loadConL
7427   ins_cost(250);
7428   format %{ "MOV    EAX,$src\t// low word only" %}
7429   opcode(0xB8);
7430   ins_encode( LdImmL_Lo(dst, src) );
7431   ins_pipe( ialu_reg_fat );
7432 %}
7433 
7434 // Multiply by 32-bit Immediate, taking the shifted high order results
7435 //  (special case for shift by 32)
7436 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7437   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7438   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7439              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7440              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7441   effect(USE src1, KILL cr);
7442 
7443   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7444   ins_cost(0*100 + 1*400 - 150);
7445   format %{ "IMUL   EDX:EAX,$src1" %}
7446   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7447   ins_pipe( pipe_slow );
7448 %}
7449 
7450 // Multiply by 32-bit Immediate, taking the shifted high order results
7451 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7452   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7453   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7454              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7455              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7456   effect(USE src1, KILL cr);
7457 
7458   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7459   ins_cost(1*100 + 1*400 - 150);
7460   format %{ "IMUL   EDX:EAX,$src1\n\t"
7461             "SAR    EDX,$cnt-32" %}
7462   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7463   ins_pipe( pipe_slow );
7464 %}
7465 
7466 // Multiply Memory 32-bit Immediate
7467 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
7468   match(Set dst (MulI (LoadI src) imm));
7469   effect(KILL cr);
7470 
7471   ins_cost(300);
7472   format %{ "IMUL   $dst,$src,$imm" %}
7473   opcode(0x69);  /* 69 /r id */
7474   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
7475   ins_pipe( ialu_reg_mem_alu0 );
7476 %}
7477 
7478 // Multiply Memory
7479 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
7480   match(Set dst (MulI dst (LoadI src)));
7481   effect(KILL cr);
7482 
7483   ins_cost(350);
7484   format %{ "IMUL   $dst,$src" %}
7485   opcode(0xAF, 0x0F);
7486   ins_encode( OpcS, OpcP, RegMem( dst, src) );
7487   ins_pipe( ialu_reg_mem_alu0 );
7488 %}
7489 
7490 // Multiply Register Int to Long
7491 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
7492   // Basic Idea: long = (long)int * (long)int
7493   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
7494   effect(DEF dst, USE src, USE src1, KILL flags);
7495 
7496   ins_cost(300);
7497   format %{ "IMUL   $dst,$src1" %}
7498 
7499   ins_encode( long_int_multiply( dst, src1 ) );
7500   ins_pipe( ialu_reg_reg_alu0 );
7501 %}
7502 
7503 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
7504   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
7505   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
7506   effect(KILL flags);
7507 
7508   ins_cost(300);
7509   format %{ "MUL    $dst,$src1" %}
7510 
7511   ins_encode( long_uint_multiply(dst, src1) );
7512   ins_pipe( ialu_reg_reg_alu0 );
7513 %}
7514 
7515 // Multiply Register Long
7516 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7517   match(Set dst (MulL dst src));
7518   effect(KILL cr, TEMP tmp);
7519   ins_cost(4*100+3*400);
7520 // Basic idea: lo(result) = lo(x_lo * y_lo)
7521 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
7522   format %{ "MOV    $tmp,$src.lo\n\t"
7523             "IMUL   $tmp,EDX\n\t"
7524             "MOV    EDX,$src.hi\n\t"
7525             "IMUL   EDX,EAX\n\t"
7526             "ADD    $tmp,EDX\n\t"
7527             "MUL    EDX:EAX,$src.lo\n\t"
7528             "ADD    EDX,$tmp" %}
7529   ins_encode( long_multiply( dst, src, tmp ) );
7530   ins_pipe( pipe_slow );
7531 %}
7532 
7533 // Multiply Register Long where the left operand's high 32 bits are zero
7534 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7535   predicate(is_operand_hi32_zero(n->in(1)));
7536   match(Set dst (MulL dst src));
7537   effect(KILL cr, TEMP tmp);
7538   ins_cost(2*100+2*400);
7539 // Basic idea: lo(result) = lo(x_lo * y_lo)
7540 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
7541   format %{ "MOV    $tmp,$src.hi\n\t"
7542             "IMUL   $tmp,EAX\n\t"
7543             "MUL    EDX:EAX,$src.lo\n\t"
7544             "ADD    EDX,$tmp" %}
7545   ins_encode %{
7546     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
7547     __ imull($tmp$$Register, rax);
7548     __ mull($src$$Register);
7549     __ addl(rdx, $tmp$$Register);
7550   %}
7551   ins_pipe( pipe_slow );
7552 %}
7553 
7554 // Multiply Register Long where the right operand's high 32 bits are zero
7555 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7556   predicate(is_operand_hi32_zero(n->in(2)));
7557   match(Set dst (MulL dst src));
7558   effect(KILL cr, TEMP tmp);
7559   ins_cost(2*100+2*400);
7560 // Basic idea: lo(result) = lo(x_lo * y_lo)
7561 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
7562   format %{ "MOV    $tmp,$src.lo\n\t"
7563             "IMUL   $tmp,EDX\n\t"
7564             "MUL    EDX:EAX,$src.lo\n\t"
7565             "ADD    EDX,$tmp" %}
7566   ins_encode %{
7567     __ movl($tmp$$Register, $src$$Register);
7568     __ imull($tmp$$Register, rdx);
7569     __ mull($src$$Register);
7570     __ addl(rdx, $tmp$$Register);
7571   %}
7572   ins_pipe( pipe_slow );
7573 %}
7574 
7575 // Multiply Register Long where the left and the right operands' high 32 bits are zero
7576 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
7577   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
7578   match(Set dst (MulL dst src));
7579   effect(KILL cr);
7580   ins_cost(1*400);
7581 // Basic idea: lo(result) = lo(x_lo * y_lo)
7582 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
7583   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
7584   ins_encode %{
7585     __ mull($src$$Register);
7586   %}
7587   ins_pipe( pipe_slow );
7588 %}
7589 
7590 // Multiply Register Long by small constant
7591 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
7592   match(Set dst (MulL dst src));
7593   effect(KILL cr, TEMP tmp);
7594   ins_cost(2*100+2*400);
7595   size(12);
7596 // Basic idea: lo(result) = lo(src * EAX)
7597 //             hi(result) = hi(src * EAX) + lo(src * EDX)
7598   format %{ "IMUL   $tmp,EDX,$src\n\t"
7599             "MOV    EDX,$src\n\t"
7600             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
7601             "ADD    EDX,$tmp" %}
7602   ins_encode( long_multiply_con( dst, src, tmp ) );
7603   ins_pipe( pipe_slow );
7604 %}
7605 
7606 // Integer DIV with Register
7607 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
7608   match(Set rax (DivI rax div));
7609   effect(KILL rdx, KILL cr);
7610   size(26);
7611   ins_cost(30*100+10*100);
7612   format %{ "CMP    EAX,0x80000000\n\t"
7613             "JNE,s  normal\n\t"
7614             "XOR    EDX,EDX\n\t"
7615             "CMP    ECX,-1\n\t"
7616             "JE,s   done\n"
7617     "normal: CDQ\n\t"
7618             "IDIV   $div\n\t"
7619     "done:"        %}
7620   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7621   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7622   ins_pipe( ialu_reg_reg_alu0 );
7623 %}
7624 
7625 // Divide Register Long
7626 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
7627   match(Set dst (DivL src1 src2));
7628   effect( KILL cr, KILL cx, KILL bx );
7629   ins_cost(10000);
7630   format %{ "PUSH   $src1.hi\n\t"
7631             "PUSH   $src1.lo\n\t"
7632             "PUSH   $src2.hi\n\t"
7633             "PUSH   $src2.lo\n\t"
7634             "CALL   SharedRuntime::ldiv\n\t"
7635             "ADD    ESP,16" %}
7636   ins_encode( long_div(src1,src2) );
7637   ins_pipe( pipe_slow );
7638 %}
7639 
7640 // Integer DIVMOD with Register, both quotient and mod results
7641 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
7642   match(DivModI rax div);
7643   effect(KILL cr);
7644   size(26);
7645   ins_cost(30*100+10*100);
7646   format %{ "CMP    EAX,0x80000000\n\t"
7647             "JNE,s  normal\n\t"
7648             "XOR    EDX,EDX\n\t"
7649             "CMP    ECX,-1\n\t"
7650             "JE,s   done\n"
7651     "normal: CDQ\n\t"
7652             "IDIV   $div\n\t"
7653     "done:"        %}
7654   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7655   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7656   ins_pipe( pipe_slow );
7657 %}
7658 
7659 // Integer MOD with Register
7660 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
7661   match(Set rdx (ModI rax div));
7662   effect(KILL rax, KILL cr);
7663 
7664   size(26);
7665   ins_cost(300);
7666   format %{ "CDQ\n\t"
7667             "IDIV   $div" %}
7668   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7669   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7670   ins_pipe( ialu_reg_reg_alu0 );
7671 %}
7672 
7673 // Remainder Register Long
7674 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
7675   match(Set dst (ModL src1 src2));
7676   effect( KILL cr, KILL cx, KILL bx );
7677   ins_cost(10000);
7678   format %{ "PUSH   $src1.hi\n\t"
7679             "PUSH   $src1.lo\n\t"
7680             "PUSH   $src2.hi\n\t"
7681             "PUSH   $src2.lo\n\t"
7682             "CALL   SharedRuntime::lrem\n\t"
7683             "ADD    ESP,16" %}
7684   ins_encode( long_mod(src1,src2) );
7685   ins_pipe( pipe_slow );
7686 %}
7687 
7688 // Divide Register Long (no special case since divisor != -1)
7689 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
7690   match(Set dst (DivL dst imm));
7691   effect( TEMP tmp, TEMP tmp2, KILL cr );
7692   ins_cost(1000);
7693   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
7694             "XOR    $tmp2,$tmp2\n\t"
7695             "CMP    $tmp,EDX\n\t"
7696             "JA,s   fast\n\t"
7697             "MOV    $tmp2,EAX\n\t"
7698             "MOV    EAX,EDX\n\t"
7699             "MOV    EDX,0\n\t"
7700             "JLE,s  pos\n\t"
7701             "LNEG   EAX : $tmp2\n\t"
7702             "DIV    $tmp # unsigned division\n\t"
7703             "XCHG   EAX,$tmp2\n\t"
7704             "DIV    $tmp\n\t"
7705             "LNEG   $tmp2 : EAX\n\t"
7706             "JMP,s  done\n"
7707     "pos:\n\t"
7708             "DIV    $tmp\n\t"
7709             "XCHG   EAX,$tmp2\n"
7710     "fast:\n\t"
7711             "DIV    $tmp\n"
7712     "done:\n\t"
7713             "MOV    EDX,$tmp2\n\t"
7714             "NEG    EDX:EAX # if $imm < 0" %}
7715   ins_encode %{
7716     int con = (int)$imm$$constant;
7717     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
7718     int pcon = (con > 0) ? con : -con;
7719     Label Lfast, Lpos, Ldone;
7720 
7721     __ movl($tmp$$Register, pcon);
7722     __ xorl($tmp2$$Register,$tmp2$$Register);
7723     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
7724     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
7725 
7726     __ movl($tmp2$$Register, $dst$$Register); // save
7727     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7728     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
7729     __ jccb(Assembler::lessEqual, Lpos); // result is positive
7730 
7731     // Negative dividend.
7732     // convert value to positive to use unsigned division
7733     __ lneg($dst$$Register, $tmp2$$Register);
7734     __ divl($tmp$$Register);
7735     __ xchgl($dst$$Register, $tmp2$$Register);
7736     __ divl($tmp$$Register);
7737     // revert result back to negative
7738     __ lneg($tmp2$$Register, $dst$$Register);
7739     __ jmpb(Ldone);
7740 
7741     __ bind(Lpos);
7742     __ divl($tmp$$Register); // Use unsigned division
7743     __ xchgl($dst$$Register, $tmp2$$Register);
7744     // Fallthrow for final divide, tmp2 has 32 bit hi result
7745 
7746     __ bind(Lfast);
7747     // fast path: src is positive
7748     __ divl($tmp$$Register); // Use unsigned division
7749 
7750     __ bind(Ldone);
7751     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
7752     if (con < 0) {
7753       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
7754     }
7755   %}
7756   ins_pipe( pipe_slow );
7757 %}
7758 
7759 // Remainder Register Long (remainder fit into 32 bits)
7760 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
7761   match(Set dst (ModL dst imm));
7762   effect( TEMP tmp, TEMP tmp2, KILL cr );
7763   ins_cost(1000);
7764   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
7765             "CMP    $tmp,EDX\n\t"
7766             "JA,s   fast\n\t"
7767             "MOV    $tmp2,EAX\n\t"
7768             "MOV    EAX,EDX\n\t"
7769             "MOV    EDX,0\n\t"
7770             "JLE,s  pos\n\t"
7771             "LNEG   EAX : $tmp2\n\t"
7772             "DIV    $tmp # unsigned division\n\t"
7773             "MOV    EAX,$tmp2\n\t"
7774             "DIV    $tmp\n\t"
7775             "NEG    EDX\n\t"
7776             "JMP,s  done\n"
7777     "pos:\n\t"
7778             "DIV    $tmp\n\t"
7779             "MOV    EAX,$tmp2\n"
7780     "fast:\n\t"
7781             "DIV    $tmp\n"
7782     "done:\n\t"
7783             "MOV    EAX,EDX\n\t"
7784             "SAR    EDX,31\n\t" %}
7785   ins_encode %{
7786     int con = (int)$imm$$constant;
7787     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
7788     int pcon = (con > 0) ? con : -con;
7789     Label  Lfast, Lpos, Ldone;
7790 
7791     __ movl($tmp$$Register, pcon);
7792     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
7793     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
7794 
7795     __ movl($tmp2$$Register, $dst$$Register); // save
7796     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7797     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
7798     __ jccb(Assembler::lessEqual, Lpos); // result is positive
7799 
7800     // Negative dividend.
7801     // convert value to positive to use unsigned division
7802     __ lneg($dst$$Register, $tmp2$$Register);
7803     __ divl($tmp$$Register);
7804     __ movl($dst$$Register, $tmp2$$Register);
7805     __ divl($tmp$$Register);
7806     // revert remainder back to negative
7807     __ negl(HIGH_FROM_LOW($dst$$Register));
7808     __ jmpb(Ldone);
7809 
7810     __ bind(Lpos);
7811     __ divl($tmp$$Register);
7812     __ movl($dst$$Register, $tmp2$$Register);
7813 
7814     __ bind(Lfast);
7815     // fast path: src is positive
7816     __ divl($tmp$$Register);
7817 
7818     __ bind(Ldone);
7819     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7820     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
7821 
7822   %}
7823   ins_pipe( pipe_slow );
7824 %}
7825 
7826 // Integer Shift Instructions
7827 // Shift Left by one
7828 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7829   match(Set dst (LShiftI dst shift));
7830   effect(KILL cr);
7831 
7832   size(2);
7833   format %{ "SHL    $dst,$shift" %}
7834   opcode(0xD1, 0x4);  /* D1 /4 */
7835   ins_encode( OpcP, RegOpc( dst ) );
7836   ins_pipe( ialu_reg );
7837 %}
7838 
7839 // Shift Left by 8-bit immediate
7840 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7841   match(Set dst (LShiftI dst shift));
7842   effect(KILL cr);
7843 
7844   size(3);
7845   format %{ "SHL    $dst,$shift" %}
7846   opcode(0xC1, 0x4);  /* C1 /4 ib */
7847   ins_encode( RegOpcImm( dst, shift) );
7848   ins_pipe( ialu_reg );
7849 %}
7850 
7851 // Shift Left by variable
7852 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7853   match(Set dst (LShiftI dst shift));
7854   effect(KILL cr);
7855 
7856   size(2);
7857   format %{ "SHL    $dst,$shift" %}
7858   opcode(0xD3, 0x4);  /* D3 /4 */
7859   ins_encode( OpcP, RegOpc( dst ) );
7860   ins_pipe( ialu_reg_reg );
7861 %}
7862 
7863 // Arithmetic shift right by one
7864 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7865   match(Set dst (RShiftI dst shift));
7866   effect(KILL cr);
7867 
7868   size(2);
7869   format %{ "SAR    $dst,$shift" %}
7870   opcode(0xD1, 0x7);  /* D1 /7 */
7871   ins_encode( OpcP, RegOpc( dst ) );
7872   ins_pipe( ialu_reg );
7873 %}
7874 
7875 // Arithmetic shift right by one
7876 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
7877   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7878   effect(KILL cr);
7879   format %{ "SAR    $dst,$shift" %}
7880   opcode(0xD1, 0x7);  /* D1 /7 */
7881   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
7882   ins_pipe( ialu_mem_imm );
7883 %}
7884 
7885 // Arithmetic Shift Right by 8-bit immediate
7886 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7887   match(Set dst (RShiftI dst shift));
7888   effect(KILL cr);
7889 
7890   size(3);
7891   format %{ "SAR    $dst,$shift" %}
7892   opcode(0xC1, 0x7);  /* C1 /7 ib */
7893   ins_encode( RegOpcImm( dst, shift ) );
7894   ins_pipe( ialu_mem_imm );
7895 %}
7896 
7897 // Arithmetic Shift Right by 8-bit immediate
7898 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
7899   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7900   effect(KILL cr);
7901 
7902   format %{ "SAR    $dst,$shift" %}
7903   opcode(0xC1, 0x7);  /* C1 /7 ib */
7904   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
7905   ins_pipe( ialu_mem_imm );
7906 %}
7907 
7908 // Arithmetic Shift Right by variable
7909 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7910   match(Set dst (RShiftI dst shift));
7911   effect(KILL cr);
7912 
7913   size(2);
7914   format %{ "SAR    $dst,$shift" %}
7915   opcode(0xD3, 0x7);  /* D3 /7 */
7916   ins_encode( OpcP, RegOpc( dst ) );
7917   ins_pipe( ialu_reg_reg );
7918 %}
7919 
7920 // Logical shift right by one
7921 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7922   match(Set dst (URShiftI dst shift));
7923   effect(KILL cr);
7924 
7925   size(2);
7926   format %{ "SHR    $dst,$shift" %}
7927   opcode(0xD1, 0x5);  /* D1 /5 */
7928   ins_encode( OpcP, RegOpc( dst ) );
7929   ins_pipe( ialu_reg );
7930 %}
7931 
7932 // Logical Shift Right by 8-bit immediate
7933 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7934   match(Set dst (URShiftI dst shift));
7935   effect(KILL cr);
7936 
7937   size(3);
7938   format %{ "SHR    $dst,$shift" %}
7939   opcode(0xC1, 0x5);  /* C1 /5 ib */
7940   ins_encode( RegOpcImm( dst, shift) );
7941   ins_pipe( ialu_reg );
7942 %}
7943 
7944 
7945 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
7946 // This idiom is used by the compiler for the i2b bytecode.
7947 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
7948   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
7949 
7950   size(3);
7951   format %{ "MOVSX  $dst,$src :8" %}
7952   ins_encode %{
7953     __ movsbl($dst$$Register, $src$$Register);
7954   %}
7955   ins_pipe(ialu_reg_reg);
7956 %}
7957 
7958 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
7959 // This idiom is used by the compiler the i2s bytecode.
7960 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
7961   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
7962 
7963   size(3);
7964   format %{ "MOVSX  $dst,$src :16" %}
7965   ins_encode %{
7966     __ movswl($dst$$Register, $src$$Register);
7967   %}
7968   ins_pipe(ialu_reg_reg);
7969 %}
7970 
7971 
7972 // Logical Shift Right by variable
7973 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7974   match(Set dst (URShiftI dst shift));
7975   effect(KILL cr);
7976 
7977   size(2);
7978   format %{ "SHR    $dst,$shift" %}
7979   opcode(0xD3, 0x5);  /* D3 /5 */
7980   ins_encode( OpcP, RegOpc( dst ) );
7981   ins_pipe( ialu_reg_reg );
7982 %}
7983 
7984 
7985 //----------Logical Instructions-----------------------------------------------
7986 //----------Integer Logical Instructions---------------------------------------
7987 // And Instructions
7988 // And Register with Register
7989 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7990   match(Set dst (AndI dst src));
7991   effect(KILL cr);
7992 
7993   size(2);
7994   format %{ "AND    $dst,$src" %}
7995   opcode(0x23);
7996   ins_encode( OpcP, RegReg( dst, src) );
7997   ins_pipe( ialu_reg_reg );
7998 %}
7999 
8000 // And Register with Immediate
8001 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8002   match(Set dst (AndI dst src));
8003   effect(KILL cr);
8004 
8005   format %{ "AND    $dst,$src" %}
8006   opcode(0x81,0x04);  /* Opcode 81 /4 */
8007   // ins_encode( RegImm( dst, src) );
8008   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8009   ins_pipe( ialu_reg );
8010 %}
8011 
8012 // And Register with Memory
8013 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8014   match(Set dst (AndI dst (LoadI src)));
8015   effect(KILL cr);
8016 
8017   ins_cost(125);
8018   format %{ "AND    $dst,$src" %}
8019   opcode(0x23);
8020   ins_encode( OpcP, RegMem( dst, src) );
8021   ins_pipe( ialu_reg_mem );
8022 %}
8023 
8024 // And Memory with Register
8025 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8026   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8027   effect(KILL cr);
8028 
8029   ins_cost(150);
8030   format %{ "AND    $dst,$src" %}
8031   opcode(0x21);  /* Opcode 21 /r */
8032   ins_encode( OpcP, RegMem( src, dst ) );
8033   ins_pipe( ialu_mem_reg );
8034 %}
8035 
8036 // And Memory with Immediate
8037 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8038   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8039   effect(KILL cr);
8040 
8041   ins_cost(125);
8042   format %{ "AND    $dst,$src" %}
8043   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8044   // ins_encode( MemImm( dst, src) );
8045   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8046   ins_pipe( ialu_mem_imm );
8047 %}
8048 
8049 // BMI1 instructions
8050 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, eFlagsReg cr) %{
8051   match(Set dst (AndI (XorI src1 minus_1) src2));
8052   predicate(UseBMI1Instructions);
8053   effect(KILL cr);
8054 
8055   format %{ "ANDNL  $dst, $src1, $src2" %}
8056 
8057   ins_encode %{
8058     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
8059   %}
8060   ins_pipe(ialu_reg);
8061 %}
8062 
8063 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, eFlagsReg cr) %{
8064   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2) ));
8065   predicate(UseBMI1Instructions);
8066   effect(KILL cr);
8067 
8068   ins_cost(125);
8069   format %{ "ANDNL  $dst, $src1, $src2" %}
8070 
8071   ins_encode %{
8072     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
8073   %}
8074   ins_pipe(ialu_reg_mem);
8075 %}
8076 
8077 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, eFlagsReg cr) %{
8078   match(Set dst (AndI (SubI imm_zero src) src));
8079   predicate(UseBMI1Instructions);
8080   effect(KILL cr);
8081 
8082   format %{ "BLSIL  $dst, $src" %}
8083 
8084   ins_encode %{
8085     __ blsil($dst$$Register, $src$$Register);
8086   %}
8087   ins_pipe(ialu_reg);
8088 %}
8089 
8090 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, eFlagsReg cr) %{
8091   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
8092   predicate(UseBMI1Instructions);
8093   effect(KILL cr);
8094 
8095   ins_cost(125);
8096   format %{ "BLSIL  $dst, $src" %}
8097 
8098   ins_encode %{
8099     __ blsil($dst$$Register, $src$$Address);
8100   %}
8101   ins_pipe(ialu_reg_mem);
8102 %}
8103 
8104 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
8105 %{
8106   match(Set dst (XorI (AddI src minus_1) src));
8107   predicate(UseBMI1Instructions);
8108   effect(KILL cr);
8109 
8110   format %{ "BLSMSKL $dst, $src" %}
8111 
8112   ins_encode %{
8113     __ blsmskl($dst$$Register, $src$$Register);
8114   %}
8115 
8116   ins_pipe(ialu_reg);
8117 %}
8118 
8119 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
8120 %{
8121   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ));
8122   predicate(UseBMI1Instructions);
8123   effect(KILL cr);
8124 
8125   ins_cost(125);
8126   format %{ "BLSMSKL $dst, $src" %}
8127 
8128   ins_encode %{
8129     __ blsmskl($dst$$Register, $src$$Address);
8130   %}
8131 
8132   ins_pipe(ialu_reg_mem);
8133 %}
8134 
8135 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
8136 %{
8137   match(Set dst (AndI (AddI src minus_1) src) );
8138   predicate(UseBMI1Instructions);
8139   effect(KILL cr);
8140 
8141   format %{ "BLSRL  $dst, $src" %}
8142 
8143   ins_encode %{
8144     __ blsrl($dst$$Register, $src$$Register);
8145   %}
8146 
8147   ins_pipe(ialu_reg);
8148 %}
8149 
8150 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
8151 %{
8152   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ));
8153   predicate(UseBMI1Instructions);
8154   effect(KILL cr);
8155 
8156   ins_cost(125);
8157   format %{ "BLSRL  $dst, $src" %}
8158 
8159   ins_encode %{
8160     __ blsrl($dst$$Register, $src$$Address);
8161   %}
8162 
8163   ins_pipe(ialu_reg_mem);
8164 %}
8165 
8166 // Or Instructions
8167 // Or Register with Register
8168 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8169   match(Set dst (OrI dst src));
8170   effect(KILL cr);
8171 
8172   size(2);
8173   format %{ "OR     $dst,$src" %}
8174   opcode(0x0B);
8175   ins_encode( OpcP, RegReg( dst, src) );
8176   ins_pipe( ialu_reg_reg );
8177 %}
8178 
8179 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8180   match(Set dst (OrI dst (CastP2X src)));
8181   effect(KILL cr);
8182 
8183   size(2);
8184   format %{ "OR     $dst,$src" %}
8185   opcode(0x0B);
8186   ins_encode( OpcP, RegReg( dst, src) );
8187   ins_pipe( ialu_reg_reg );
8188 %}
8189 
8190 
8191 // Or Register with Immediate
8192 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8193   match(Set dst (OrI dst src));
8194   effect(KILL cr);
8195 
8196   format %{ "OR     $dst,$src" %}
8197   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8198   // ins_encode( RegImm( dst, src) );
8199   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8200   ins_pipe( ialu_reg );
8201 %}
8202 
8203 // Or Register with Memory
8204 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8205   match(Set dst (OrI dst (LoadI src)));
8206   effect(KILL cr);
8207 
8208   ins_cost(125);
8209   format %{ "OR     $dst,$src" %}
8210   opcode(0x0B);
8211   ins_encode( OpcP, RegMem( dst, src) );
8212   ins_pipe( ialu_reg_mem );
8213 %}
8214 
8215 // Or Memory with Register
8216 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8217   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8218   effect(KILL cr);
8219 
8220   ins_cost(150);
8221   format %{ "OR     $dst,$src" %}
8222   opcode(0x09);  /* Opcode 09 /r */
8223   ins_encode( OpcP, RegMem( src, dst ) );
8224   ins_pipe( ialu_mem_reg );
8225 %}
8226 
8227 // Or Memory with Immediate
8228 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8229   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8230   effect(KILL cr);
8231 
8232   ins_cost(125);
8233   format %{ "OR     $dst,$src" %}
8234   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8235   // ins_encode( MemImm( dst, src) );
8236   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8237   ins_pipe( ialu_mem_imm );
8238 %}
8239 
8240 // ROL/ROR
8241 // ROL expand
8242 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8243   effect(USE_DEF dst, USE shift, KILL cr);
8244 
8245   format %{ "ROL    $dst, $shift" %}
8246   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8247   ins_encode( OpcP, RegOpc( dst ));
8248   ins_pipe( ialu_reg );
8249 %}
8250 
8251 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8252   effect(USE_DEF dst, USE shift, KILL cr);
8253 
8254   format %{ "ROL    $dst, $shift" %}
8255   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8256   ins_encode( RegOpcImm(dst, shift) );
8257   ins_pipe(ialu_reg);
8258 %}
8259 
8260 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8261   effect(USE_DEF dst, USE shift, KILL cr);
8262 
8263   format %{ "ROL    $dst, $shift" %}
8264   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8265   ins_encode(OpcP, RegOpc(dst));
8266   ins_pipe( ialu_reg_reg );
8267 %}
8268 // end of ROL expand
8269 
8270 // ROL 32bit by one once
8271 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8272   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8273 
8274   expand %{
8275     rolI_eReg_imm1(dst, lshift, cr);
8276   %}
8277 %}
8278 
8279 // ROL 32bit var by imm8 once
8280 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8281   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8282   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8283 
8284   expand %{
8285     rolI_eReg_imm8(dst, lshift, cr);
8286   %}
8287 %}
8288 
8289 // ROL 32bit var by var once
8290 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8291   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8292 
8293   expand %{
8294     rolI_eReg_CL(dst, shift, cr);
8295   %}
8296 %}
8297 
8298 // ROL 32bit var by var once
8299 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8300   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8301 
8302   expand %{
8303     rolI_eReg_CL(dst, shift, cr);
8304   %}
8305 %}
8306 
8307 // ROR expand
8308 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8309   effect(USE_DEF dst, USE shift, KILL cr);
8310 
8311   format %{ "ROR    $dst, $shift" %}
8312   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8313   ins_encode( OpcP, RegOpc( dst ) );
8314   ins_pipe( ialu_reg );
8315 %}
8316 
8317 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8318   effect (USE_DEF dst, USE shift, KILL cr);
8319 
8320   format %{ "ROR    $dst, $shift" %}
8321   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8322   ins_encode( RegOpcImm(dst, shift) );
8323   ins_pipe( ialu_reg );
8324 %}
8325 
8326 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8327   effect(USE_DEF dst, USE shift, KILL cr);
8328 
8329   format %{ "ROR    $dst, $shift" %}
8330   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8331   ins_encode(OpcP, RegOpc(dst));
8332   ins_pipe( ialu_reg_reg );
8333 %}
8334 // end of ROR expand
8335 
8336 // ROR right once
8337 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8338   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8339 
8340   expand %{
8341     rorI_eReg_imm1(dst, rshift, cr);
8342   %}
8343 %}
8344 
8345 // ROR 32bit by immI8 once
8346 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8347   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8348   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8349 
8350   expand %{
8351     rorI_eReg_imm8(dst, rshift, cr);
8352   %}
8353 %}
8354 
8355 // ROR 32bit var by var once
8356 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8357   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8358 
8359   expand %{
8360     rorI_eReg_CL(dst, shift, cr);
8361   %}
8362 %}
8363 
8364 // ROR 32bit var by var once
8365 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8366   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8367 
8368   expand %{
8369     rorI_eReg_CL(dst, shift, cr);
8370   %}
8371 %}
8372 
8373 // Xor Instructions
8374 // Xor Register with Register
8375 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8376   match(Set dst (XorI dst src));
8377   effect(KILL cr);
8378 
8379   size(2);
8380   format %{ "XOR    $dst,$src" %}
8381   opcode(0x33);
8382   ins_encode( OpcP, RegReg( dst, src) );
8383   ins_pipe( ialu_reg_reg );
8384 %}
8385 
8386 // Xor Register with Immediate -1
8387 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8388   match(Set dst (XorI dst imm));  
8389 
8390   size(2);
8391   format %{ "NOT    $dst" %}  
8392   ins_encode %{
8393      __ notl($dst$$Register);
8394   %}
8395   ins_pipe( ialu_reg );
8396 %}
8397 
8398 // Xor Register with Immediate
8399 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8400   match(Set dst (XorI dst src));
8401   effect(KILL cr);
8402 
8403   format %{ "XOR    $dst,$src" %}
8404   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8405   // ins_encode( RegImm( dst, src) );
8406   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8407   ins_pipe( ialu_reg );
8408 %}
8409 
8410 // Xor Register with Memory
8411 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8412   match(Set dst (XorI dst (LoadI src)));
8413   effect(KILL cr);
8414 
8415   ins_cost(125);
8416   format %{ "XOR    $dst,$src" %}
8417   opcode(0x33);
8418   ins_encode( OpcP, RegMem(dst, src) );
8419   ins_pipe( ialu_reg_mem );
8420 %}
8421 
8422 // Xor Memory with Register
8423 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8424   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8425   effect(KILL cr);
8426 
8427   ins_cost(150);
8428   format %{ "XOR    $dst,$src" %}
8429   opcode(0x31);  /* Opcode 31 /r */
8430   ins_encode( OpcP, RegMem( src, dst ) );
8431   ins_pipe( ialu_mem_reg );
8432 %}
8433 
8434 // Xor Memory with Immediate
8435 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8436   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8437   effect(KILL cr);
8438 
8439   ins_cost(125);
8440   format %{ "XOR    $dst,$src" %}
8441   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8442   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8443   ins_pipe( ialu_mem_imm );
8444 %}
8445 
8446 //----------Convert Int to Boolean---------------------------------------------
8447 
8448 instruct movI_nocopy(rRegI dst, rRegI src) %{
8449   effect( DEF dst, USE src );
8450   format %{ "MOV    $dst,$src" %}
8451   ins_encode( enc_Copy( dst, src) );
8452   ins_pipe( ialu_reg_reg );
8453 %}
8454 
8455 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8456   effect( USE_DEF dst, USE src, KILL cr );
8457 
8458   size(4);
8459   format %{ "NEG    $dst\n\t"
8460             "ADC    $dst,$src" %}
8461   ins_encode( neg_reg(dst),
8462               OpcRegReg(0x13,dst,src) );
8463   ins_pipe( ialu_reg_reg_long );
8464 %}
8465 
8466 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8467   match(Set dst (Conv2B src));
8468 
8469   expand %{
8470     movI_nocopy(dst,src);
8471     ci2b(dst,src,cr);
8472   %}
8473 %}
8474 
8475 instruct movP_nocopy(rRegI dst, eRegP src) %{
8476   effect( DEF dst, USE src );
8477   format %{ "MOV    $dst,$src" %}
8478   ins_encode( enc_Copy( dst, src) );
8479   ins_pipe( ialu_reg_reg );
8480 %}
8481 
8482 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
8483   effect( USE_DEF dst, USE src, KILL cr );
8484   format %{ "NEG    $dst\n\t"
8485             "ADC    $dst,$src" %}
8486   ins_encode( neg_reg(dst),
8487               OpcRegReg(0x13,dst,src) );
8488   ins_pipe( ialu_reg_reg_long );
8489 %}
8490 
8491 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
8492   match(Set dst (Conv2B src));
8493 
8494   expand %{
8495     movP_nocopy(dst,src);
8496     cp2b(dst,src,cr);
8497   %}
8498 %}
8499 
8500 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
8501   match(Set dst (CmpLTMask p q));
8502   effect(KILL cr);
8503   ins_cost(400);
8504 
8505   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8506   format %{ "XOR    $dst,$dst\n\t"
8507             "CMP    $p,$q\n\t"
8508             "SETlt  $dst\n\t"
8509             "NEG    $dst" %}
8510   ins_encode %{
8511     Register Rp = $p$$Register;
8512     Register Rq = $q$$Register;
8513     Register Rd = $dst$$Register;
8514     Label done;
8515     __ xorl(Rd, Rd);
8516     __ cmpl(Rp, Rq);
8517     __ setb(Assembler::less, Rd);
8518     __ negl(Rd);
8519   %}
8520 
8521   ins_pipe(pipe_slow);
8522 %}
8523 
8524 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
8525   match(Set dst (CmpLTMask dst zero));
8526   effect(DEF dst, KILL cr);
8527   ins_cost(100);
8528 
8529   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
8530   ins_encode %{
8531   __ sarl($dst$$Register, 31);
8532   %}
8533   ins_pipe(ialu_reg);
8534 %}
8535 
8536 /* better to save a register than avoid a branch */
8537 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
8538   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8539   effect(KILL cr);
8540   ins_cost(400);
8541   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
8542             "JGE    done\n\t"
8543             "ADD    $p,$y\n"
8544             "done:  " %}
8545   ins_encode %{
8546     Register Rp = $p$$Register;
8547     Register Rq = $q$$Register;
8548     Register Ry = $y$$Register;
8549     Label done;
8550     __ subl(Rp, Rq);
8551     __ jccb(Assembler::greaterEqual, done);
8552     __ addl(Rp, Ry);
8553     __ bind(done);
8554   %}
8555 
8556   ins_pipe(pipe_cmplt);
8557 %}
8558 
8559 /* better to save a register than avoid a branch */
8560 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
8561   match(Set y (AndI (CmpLTMask p q) y));
8562   effect(KILL cr);
8563 
8564   ins_cost(300);
8565 
8566   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
8567             "JLT      done\n\t"
8568             "XORL     $y, $y\n"
8569             "done:  " %}
8570   ins_encode %{
8571     Register Rp = $p$$Register;
8572     Register Rq = $q$$Register;
8573     Register Ry = $y$$Register;
8574     Label done;
8575     __ cmpl(Rp, Rq);
8576     __ jccb(Assembler::less, done);
8577     __ xorl(Ry, Ry);
8578     __ bind(done);
8579   %}
8580 
8581   ins_pipe(pipe_cmplt);
8582 %}
8583 
8584 /* If I enable this, I encourage spilling in the inner loop of compress.
8585 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
8586   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8587 */
8588 //----------Overflow Math Instructions-----------------------------------------
8589 
8590 instruct overflowAddI_eReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
8591 %{
8592   match(Set cr (OverflowAddI op1 op2));
8593   effect(DEF cr, USE_KILL op1, USE op2);
8594 
8595   format %{ "ADD    $op1, $op2\t# overflow check int" %}
8596 
8597   ins_encode %{
8598     __ addl($op1$$Register, $op2$$Register);
8599   %}
8600   ins_pipe(ialu_reg_reg);
8601 %}
8602 
8603 instruct overflowAddI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
8604 %{
8605   match(Set cr (OverflowAddI op1 op2));
8606   effect(DEF cr, USE_KILL op1, USE op2);
8607 
8608   format %{ "ADD    $op1, $op2\t# overflow check int" %}
8609 
8610   ins_encode %{
8611     __ addl($op1$$Register, $op2$$constant);
8612   %}
8613   ins_pipe(ialu_reg_reg);
8614 %}
8615 
8616 instruct overflowSubI_rReg(eFlagsReg cr, rRegI op1, rRegI op2)
8617 %{
8618   match(Set cr (OverflowSubI op1 op2));
8619 
8620   format %{ "CMP    $op1, $op2\t# overflow check int" %}
8621   ins_encode %{
8622     __ cmpl($op1$$Register, $op2$$Register);
8623   %}
8624   ins_pipe(ialu_reg_reg);
8625 %}
8626 
8627 instruct overflowSubI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2)
8628 %{
8629   match(Set cr (OverflowSubI op1 op2));
8630 
8631   format %{ "CMP    $op1, $op2\t# overflow check int" %}
8632   ins_encode %{
8633     __ cmpl($op1$$Register, $op2$$constant);
8634   %}
8635   ins_pipe(ialu_reg_reg);
8636 %}
8637 
8638 instruct overflowNegI_rReg(eFlagsReg cr, immI0 zero, eAXRegI op2)
8639 %{
8640   match(Set cr (OverflowSubI zero op2));
8641   effect(DEF cr, USE_KILL op2);
8642 
8643   format %{ "NEG    $op2\t# overflow check int" %}
8644   ins_encode %{
8645     __ negl($op2$$Register);
8646   %}
8647   ins_pipe(ialu_reg_reg);
8648 %}
8649 
8650 instruct overflowMulI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
8651 %{
8652   match(Set cr (OverflowMulI op1 op2));
8653   effect(DEF cr, USE_KILL op1, USE op2);
8654 
8655   format %{ "IMUL    $op1, $op2\t# overflow check int" %}
8656   ins_encode %{
8657     __ imull($op1$$Register, $op2$$Register);
8658   %}
8659   ins_pipe(ialu_reg_reg_alu0);
8660 %}
8661 
8662 instruct overflowMulI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
8663 %{
8664   match(Set cr (OverflowMulI op1 op2));
8665   effect(DEF cr, TEMP tmp, USE op1, USE op2);
8666 
8667   format %{ "IMUL    $tmp, $op1, $op2\t# overflow check int" %}
8668   ins_encode %{
8669     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
8670   %}
8671   ins_pipe(ialu_reg_reg_alu0);
8672 %}
8673 
8674 //----------Long Instructions------------------------------------------------
8675 // Add Long Register with Register
8676 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8677   match(Set dst (AddL dst src));
8678   effect(KILL cr);
8679   ins_cost(200);
8680   format %{ "ADD    $dst.lo,$src.lo\n\t"
8681             "ADC    $dst.hi,$src.hi" %}
8682   opcode(0x03, 0x13);
8683   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8684   ins_pipe( ialu_reg_reg_long );
8685 %}
8686 
8687 // Add Long Register with Immediate
8688 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8689   match(Set dst (AddL dst src));
8690   effect(KILL cr);
8691   format %{ "ADD    $dst.lo,$src.lo\n\t"
8692             "ADC    $dst.hi,$src.hi" %}
8693   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8694   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8695   ins_pipe( ialu_reg_long );
8696 %}
8697 
8698 // Add Long Register with Memory
8699 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8700   match(Set dst (AddL dst (LoadL mem)));
8701   effect(KILL cr);
8702   ins_cost(125);
8703   format %{ "ADD    $dst.lo,$mem\n\t"
8704             "ADC    $dst.hi,$mem+4" %}
8705   opcode(0x03, 0x13);
8706   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8707   ins_pipe( ialu_reg_long_mem );
8708 %}
8709 
8710 // Subtract Long Register with Register.
8711 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8712   match(Set dst (SubL dst src));
8713   effect(KILL cr);
8714   ins_cost(200);
8715   format %{ "SUB    $dst.lo,$src.lo\n\t"
8716             "SBB    $dst.hi,$src.hi" %}
8717   opcode(0x2B, 0x1B);
8718   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8719   ins_pipe( ialu_reg_reg_long );
8720 %}
8721 
8722 // Subtract Long Register with Immediate
8723 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8724   match(Set dst (SubL dst src));
8725   effect(KILL cr);
8726   format %{ "SUB    $dst.lo,$src.lo\n\t"
8727             "SBB    $dst.hi,$src.hi" %}
8728   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
8729   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8730   ins_pipe( ialu_reg_long );
8731 %}
8732 
8733 // Subtract Long Register with Memory
8734 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8735   match(Set dst (SubL dst (LoadL mem)));
8736   effect(KILL cr);
8737   ins_cost(125);
8738   format %{ "SUB    $dst.lo,$mem\n\t"
8739             "SBB    $dst.hi,$mem+4" %}
8740   opcode(0x2B, 0x1B);
8741   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8742   ins_pipe( ialu_reg_long_mem );
8743 %}
8744 
8745 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
8746   match(Set dst (SubL zero dst));
8747   effect(KILL cr);
8748   ins_cost(300);
8749   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
8750   ins_encode( neg_long(dst) );
8751   ins_pipe( ialu_reg_reg_long );
8752 %}
8753 
8754 // And Long Register with Register
8755 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8756   match(Set dst (AndL dst src));
8757   effect(KILL cr);
8758   format %{ "AND    $dst.lo,$src.lo\n\t"
8759             "AND    $dst.hi,$src.hi" %}
8760   opcode(0x23,0x23);
8761   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8762   ins_pipe( ialu_reg_reg_long );
8763 %}
8764 
8765 // And Long Register with Immediate
8766 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8767   match(Set dst (AndL dst src));
8768   effect(KILL cr);
8769   format %{ "AND    $dst.lo,$src.lo\n\t"
8770             "AND    $dst.hi,$src.hi" %}
8771   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
8772   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8773   ins_pipe( ialu_reg_long );
8774 %}
8775 
8776 // And Long Register with Memory
8777 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8778   match(Set dst (AndL dst (LoadL mem)));
8779   effect(KILL cr);
8780   ins_cost(125);
8781   format %{ "AND    $dst.lo,$mem\n\t"
8782             "AND    $dst.hi,$mem+4" %}
8783   opcode(0x23, 0x23);
8784   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8785   ins_pipe( ialu_reg_long_mem );
8786 %}
8787 
8788 // BMI1 instructions
8789 instruct andnL_eReg_eReg_eReg(eRegL dst, eRegL src1, eRegL src2, immL_M1 minus_1, eFlagsReg cr) %{
8790   match(Set dst (AndL (XorL src1 minus_1) src2));
8791   predicate(UseBMI1Instructions);
8792   effect(KILL cr, TEMP dst);
8793 
8794   format %{ "ANDNL  $dst.lo, $src1.lo, $src2.lo\n\t"
8795             "ANDNL  $dst.hi, $src1.hi, $src2.hi"
8796          %}
8797 
8798   ins_encode %{
8799     Register Rdst = $dst$$Register;
8800     Register Rsrc1 = $src1$$Register;
8801     Register Rsrc2 = $src2$$Register;
8802     __ andnl(Rdst, Rsrc1, Rsrc2);
8803     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), HIGH_FROM_LOW(Rsrc2));
8804   %}
8805   ins_pipe(ialu_reg_reg_long);
8806 %}
8807 
8808 instruct andnL_eReg_eReg_mem(eRegL dst, eRegL src1, memory src2, immL_M1 minus_1, eFlagsReg cr) %{
8809   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2) ));
8810   predicate(UseBMI1Instructions);
8811   effect(KILL cr, TEMP dst);
8812 
8813   ins_cost(125);
8814   format %{ "ANDNL  $dst.lo, $src1.lo, $src2\n\t"
8815             "ANDNL  $dst.hi, $src1.hi, $src2+4"
8816          %}
8817 
8818   ins_encode %{
8819     Register Rdst = $dst$$Register;
8820     Register Rsrc1 = $src1$$Register;
8821     Address src2_hi = Address::make_raw($src2$$base, $src2$$index, $src2$$scale, $src2$$disp + 4, relocInfo::none);
8822 
8823     __ andnl(Rdst, Rsrc1, $src2$$Address);
8824     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), src2_hi);
8825   %}
8826   ins_pipe(ialu_reg_mem);
8827 %}
8828 
8829 instruct blsiL_eReg_eReg(eRegL dst, eRegL src, immL0 imm_zero, eFlagsReg cr) %{
8830   match(Set dst (AndL (SubL imm_zero src) src));
8831   predicate(UseBMI1Instructions);
8832   effect(KILL cr, TEMP dst);
8833 
8834   format %{ "MOVL   $dst.hi, 0\n\t"
8835             "BLSIL  $dst.lo, $src.lo\n\t"
8836             "JNZ    done\n\t"
8837             "BLSIL  $dst.hi, $src.hi\n"
8838             "done:"
8839          %}
8840 
8841   ins_encode %{
8842     Label done;
8843     Register Rdst = $dst$$Register;
8844     Register Rsrc = $src$$Register;
8845     __ movl(HIGH_FROM_LOW(Rdst), 0);
8846     __ blsil(Rdst, Rsrc);
8847     __ jccb(Assembler::notZero, done);
8848     __ blsil(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8849     __ bind(done);
8850   %}
8851   ins_pipe(ialu_reg);
8852 %}
8853 
8854 instruct blsiL_eReg_mem(eRegL dst, memory src, immL0 imm_zero, eFlagsReg cr) %{
8855   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
8856   predicate(UseBMI1Instructions);
8857   effect(KILL cr, TEMP dst);
8858 
8859   ins_cost(125);
8860   format %{ "MOVL   $dst.hi, 0\n\t"
8861             "BLSIL  $dst.lo, $src\n\t"
8862             "JNZ    done\n\t"
8863             "BLSIL  $dst.hi, $src+4\n"
8864             "done:"
8865          %}
8866 
8867   ins_encode %{
8868     Label done;
8869     Register Rdst = $dst$$Register;
8870     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8871 
8872     __ movl(HIGH_FROM_LOW(Rdst), 0);
8873     __ blsil(Rdst, $src$$Address);
8874     __ jccb(Assembler::notZero, done);
8875     __ blsil(HIGH_FROM_LOW(Rdst), src_hi);
8876     __ bind(done);
8877   %}
8878   ins_pipe(ialu_reg_mem);
8879 %}
8880 
8881 instruct blsmskL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
8882 %{
8883   match(Set dst (XorL (AddL src minus_1) src));
8884   predicate(UseBMI1Instructions);
8885   effect(KILL cr, TEMP dst);
8886 
8887   format %{ "MOVL    $dst.hi, 0\n\t"
8888             "BLSMSKL $dst.lo, $src.lo\n\t"
8889             "JNC     done\n\t"
8890             "BLSMSKL $dst.hi, $src.hi\n"
8891             "done:"
8892          %}
8893 
8894   ins_encode %{
8895     Label done;
8896     Register Rdst = $dst$$Register;
8897     Register Rsrc = $src$$Register;
8898     __ movl(HIGH_FROM_LOW(Rdst), 0);
8899     __ blsmskl(Rdst, Rsrc);
8900     __ jccb(Assembler::carryClear, done);
8901     __ blsmskl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8902     __ bind(done);
8903   %}
8904 
8905   ins_pipe(ialu_reg);
8906 %}
8907 
8908 instruct blsmskL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
8909 %{
8910   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ));
8911   predicate(UseBMI1Instructions);
8912   effect(KILL cr, TEMP dst);
8913 
8914   ins_cost(125);
8915   format %{ "MOVL    $dst.hi, 0\n\t"
8916             "BLSMSKL $dst.lo, $src\n\t"
8917             "JNC     done\n\t"
8918             "BLSMSKL $dst.hi, $src+4\n"
8919             "done:"
8920          %}
8921 
8922   ins_encode %{
8923     Label done;
8924     Register Rdst = $dst$$Register;
8925     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8926 
8927     __ movl(HIGH_FROM_LOW(Rdst), 0);
8928     __ blsmskl(Rdst, $src$$Address);
8929     __ jccb(Assembler::carryClear, done);
8930     __ blsmskl(HIGH_FROM_LOW(Rdst), src_hi);
8931     __ bind(done);
8932   %}
8933 
8934   ins_pipe(ialu_reg_mem);
8935 %}
8936 
8937 instruct blsrL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
8938 %{
8939   match(Set dst (AndL (AddL src minus_1) src) );
8940   predicate(UseBMI1Instructions);
8941   effect(KILL cr, TEMP dst);
8942 
8943   format %{ "MOVL   $dst.hi, $src.hi\n\t"
8944             "BLSRL  $dst.lo, $src.lo\n\t"
8945             "JNC    done\n\t"
8946             "BLSRL  $dst.hi, $src.hi\n"
8947             "done:"
8948   %}
8949 
8950   ins_encode %{
8951     Label done;
8952     Register Rdst = $dst$$Register;
8953     Register Rsrc = $src$$Register;
8954     __ movl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8955     __ blsrl(Rdst, Rsrc);
8956     __ jccb(Assembler::carryClear, done);
8957     __ blsrl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8958     __ bind(done);
8959   %}
8960 
8961   ins_pipe(ialu_reg);
8962 %}
8963 
8964 instruct blsrL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
8965 %{
8966   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src) ));
8967   predicate(UseBMI1Instructions);
8968   effect(KILL cr, TEMP dst);
8969 
8970   ins_cost(125);
8971   format %{ "MOVL   $dst.hi, $src+4\n\t"
8972             "BLSRL  $dst.lo, $src\n\t"
8973             "JNC    done\n\t"
8974             "BLSRL  $dst.hi, $src+4\n"
8975             "done:"
8976   %}
8977 
8978   ins_encode %{
8979     Label done;
8980     Register Rdst = $dst$$Register;
8981     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8982     __ movl(HIGH_FROM_LOW(Rdst), src_hi);
8983     __ blsrl(Rdst, $src$$Address);
8984     __ jccb(Assembler::carryClear, done);
8985     __ blsrl(HIGH_FROM_LOW(Rdst), src_hi);
8986     __ bind(done);
8987   %}
8988 
8989   ins_pipe(ialu_reg_mem);
8990 %}
8991 
8992 // Or Long Register with Register
8993 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8994   match(Set dst (OrL dst src));
8995   effect(KILL cr);
8996   format %{ "OR     $dst.lo,$src.lo\n\t"
8997             "OR     $dst.hi,$src.hi" %}
8998   opcode(0x0B,0x0B);
8999   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9000   ins_pipe( ialu_reg_reg_long );
9001 %}
9002 
9003 // Or Long Register with Immediate
9004 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9005   match(Set dst (OrL dst src));
9006   effect(KILL cr);
9007   format %{ "OR     $dst.lo,$src.lo\n\t"
9008             "OR     $dst.hi,$src.hi" %}
9009   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9010   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9011   ins_pipe( ialu_reg_long );
9012 %}
9013 
9014 // Or Long Register with Memory
9015 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9016   match(Set dst (OrL dst (LoadL mem)));
9017   effect(KILL cr);
9018   ins_cost(125);
9019   format %{ "OR     $dst.lo,$mem\n\t"
9020             "OR     $dst.hi,$mem+4" %}
9021   opcode(0x0B,0x0B);
9022   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9023   ins_pipe( ialu_reg_long_mem );
9024 %}
9025 
9026 // Xor Long Register with Register
9027 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9028   match(Set dst (XorL dst src));
9029   effect(KILL cr);
9030   format %{ "XOR    $dst.lo,$src.lo\n\t"
9031             "XOR    $dst.hi,$src.hi" %}
9032   opcode(0x33,0x33);
9033   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9034   ins_pipe( ialu_reg_reg_long );
9035 %}
9036 
9037 // Xor Long Register with Immediate -1
9038 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9039   match(Set dst (XorL dst imm));  
9040   format %{ "NOT    $dst.lo\n\t"
9041             "NOT    $dst.hi" %}
9042   ins_encode %{
9043      __ notl($dst$$Register);
9044      __ notl(HIGH_FROM_LOW($dst$$Register));
9045   %}
9046   ins_pipe( ialu_reg_long );
9047 %}
9048 
9049 // Xor Long Register with Immediate
9050 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9051   match(Set dst (XorL dst src));
9052   effect(KILL cr);
9053   format %{ "XOR    $dst.lo,$src.lo\n\t"
9054             "XOR    $dst.hi,$src.hi" %}
9055   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9056   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9057   ins_pipe( ialu_reg_long );
9058 %}
9059 
9060 // Xor Long Register with Memory
9061 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9062   match(Set dst (XorL dst (LoadL mem)));
9063   effect(KILL cr);
9064   ins_cost(125);
9065   format %{ "XOR    $dst.lo,$mem\n\t"
9066             "XOR    $dst.hi,$mem+4" %}
9067   opcode(0x33,0x33);
9068   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9069   ins_pipe( ialu_reg_long_mem );
9070 %}
9071 
9072 // Shift Left Long by 1
9073 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9074   predicate(UseNewLongLShift);
9075   match(Set dst (LShiftL dst cnt));
9076   effect(KILL cr);
9077   ins_cost(100);
9078   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9079             "ADC    $dst.hi,$dst.hi" %}
9080   ins_encode %{
9081     __ addl($dst$$Register,$dst$$Register);
9082     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9083   %}
9084   ins_pipe( ialu_reg_long );
9085 %}
9086 
9087 // Shift Left Long by 2
9088 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9089   predicate(UseNewLongLShift);
9090   match(Set dst (LShiftL dst cnt));
9091   effect(KILL cr);
9092   ins_cost(100);
9093   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9094             "ADC    $dst.hi,$dst.hi\n\t" 
9095             "ADD    $dst.lo,$dst.lo\n\t"
9096             "ADC    $dst.hi,$dst.hi" %}
9097   ins_encode %{
9098     __ addl($dst$$Register,$dst$$Register);
9099     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9100     __ addl($dst$$Register,$dst$$Register);
9101     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9102   %}
9103   ins_pipe( ialu_reg_long );
9104 %}
9105 
9106 // Shift Left Long by 3
9107 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9108   predicate(UseNewLongLShift);
9109   match(Set dst (LShiftL dst cnt));
9110   effect(KILL cr);
9111   ins_cost(100);
9112   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9113             "ADC    $dst.hi,$dst.hi\n\t" 
9114             "ADD    $dst.lo,$dst.lo\n\t"
9115             "ADC    $dst.hi,$dst.hi\n\t" 
9116             "ADD    $dst.lo,$dst.lo\n\t"
9117             "ADC    $dst.hi,$dst.hi" %}
9118   ins_encode %{
9119     __ addl($dst$$Register,$dst$$Register);
9120     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9121     __ addl($dst$$Register,$dst$$Register);
9122     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9123     __ addl($dst$$Register,$dst$$Register);
9124     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9125   %}
9126   ins_pipe( ialu_reg_long );
9127 %}
9128 
9129 // Shift Left Long by 1-31
9130 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9131   match(Set dst (LShiftL dst cnt));
9132   effect(KILL cr);
9133   ins_cost(200);
9134   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9135             "SHL    $dst.lo,$cnt" %}
9136   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9137   ins_encode( move_long_small_shift(dst,cnt) );
9138   ins_pipe( ialu_reg_long );
9139 %}
9140 
9141 // Shift Left Long by 32-63
9142 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9143   match(Set dst (LShiftL dst cnt));
9144   effect(KILL cr);
9145   ins_cost(300);
9146   format %{ "MOV    $dst.hi,$dst.lo\n"
9147           "\tSHL    $dst.hi,$cnt-32\n"
9148           "\tXOR    $dst.lo,$dst.lo" %}
9149   opcode(0xC1, 0x4);  /* C1 /4 ib */
9150   ins_encode( move_long_big_shift_clr(dst,cnt) );
9151   ins_pipe( ialu_reg_long );
9152 %}
9153 
9154 // Shift Left Long by variable
9155 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9156   match(Set dst (LShiftL dst shift));
9157   effect(KILL cr);
9158   ins_cost(500+200);
9159   size(17);
9160   format %{ "TEST   $shift,32\n\t"
9161             "JEQ,s  small\n\t"
9162             "MOV    $dst.hi,$dst.lo\n\t"
9163             "XOR    $dst.lo,$dst.lo\n"
9164     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9165             "SHL    $dst.lo,$shift" %}
9166   ins_encode( shift_left_long( dst, shift ) );
9167   ins_pipe( pipe_slow );
9168 %}
9169 
9170 // Shift Right Long by 1-31
9171 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9172   match(Set dst (URShiftL dst cnt));
9173   effect(KILL cr);
9174   ins_cost(200);
9175   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9176             "SHR    $dst.hi,$cnt" %}
9177   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9178   ins_encode( move_long_small_shift(dst,cnt) );
9179   ins_pipe( ialu_reg_long );
9180 %}
9181 
9182 // Shift Right Long by 32-63
9183 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9184   match(Set dst (URShiftL dst cnt));
9185   effect(KILL cr);
9186   ins_cost(300);
9187   format %{ "MOV    $dst.lo,$dst.hi\n"
9188           "\tSHR    $dst.lo,$cnt-32\n"
9189           "\tXOR    $dst.hi,$dst.hi" %}
9190   opcode(0xC1, 0x5);  /* C1 /5 ib */
9191   ins_encode( move_long_big_shift_clr(dst,cnt) );
9192   ins_pipe( ialu_reg_long );
9193 %}
9194 
9195 // Shift Right Long by variable
9196 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9197   match(Set dst (URShiftL dst shift));
9198   effect(KILL cr);
9199   ins_cost(600);
9200   size(17);
9201   format %{ "TEST   $shift,32\n\t"
9202             "JEQ,s  small\n\t"
9203             "MOV    $dst.lo,$dst.hi\n\t"
9204             "XOR    $dst.hi,$dst.hi\n"
9205     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9206             "SHR    $dst.hi,$shift" %}
9207   ins_encode( shift_right_long( dst, shift ) );
9208   ins_pipe( pipe_slow );
9209 %}
9210 
9211 // Shift Right Long by 1-31
9212 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9213   match(Set dst (RShiftL dst cnt));
9214   effect(KILL cr);
9215   ins_cost(200);
9216   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9217             "SAR    $dst.hi,$cnt" %}
9218   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9219   ins_encode( move_long_small_shift(dst,cnt) );
9220   ins_pipe( ialu_reg_long );
9221 %}
9222 
9223 // Shift Right Long by 32-63
9224 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9225   match(Set dst (RShiftL dst cnt));
9226   effect(KILL cr);
9227   ins_cost(300);
9228   format %{ "MOV    $dst.lo,$dst.hi\n"
9229           "\tSAR    $dst.lo,$cnt-32\n"
9230           "\tSAR    $dst.hi,31" %}
9231   opcode(0xC1, 0x7);  /* C1 /7 ib */
9232   ins_encode( move_long_big_shift_sign(dst,cnt) );
9233   ins_pipe( ialu_reg_long );
9234 %}
9235 
9236 // Shift Right arithmetic Long by variable
9237 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9238   match(Set dst (RShiftL dst shift));
9239   effect(KILL cr);
9240   ins_cost(600);
9241   size(18);
9242   format %{ "TEST   $shift,32\n\t"
9243             "JEQ,s  small\n\t"
9244             "MOV    $dst.lo,$dst.hi\n\t"
9245             "SAR    $dst.hi,31\n"
9246     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9247             "SAR    $dst.hi,$shift" %}
9248   ins_encode( shift_right_arith_long( dst, shift ) );
9249   ins_pipe( pipe_slow );
9250 %}
9251 
9252 
9253 //----------Double Instructions------------------------------------------------
9254 // Double Math
9255 
9256 // Compare & branch
9257 
9258 // P6 version of float compare, sets condition codes in EFLAGS
9259 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9260   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9261   match(Set cr (CmpD src1 src2));
9262   effect(KILL rax);
9263   ins_cost(150);
9264   format %{ "FLD    $src1\n\t"
9265             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9266             "JNP    exit\n\t"
9267             "MOV    ah,1       // saw a NaN, set CF\n\t"
9268             "SAHF\n"
9269      "exit:\tNOP               // avoid branch to branch" %}
9270   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9271   ins_encode( Push_Reg_DPR(src1),
9272               OpcP, RegOpc(src2),
9273               cmpF_P6_fixup );
9274   ins_pipe( pipe_slow );
9275 %}
9276 
9277 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9278   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9279   match(Set cr (CmpD src1 src2));
9280   ins_cost(150);
9281   format %{ "FLD    $src1\n\t"
9282             "FUCOMIP ST,$src2  // P6 instruction" %}
9283   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9284   ins_encode( Push_Reg_DPR(src1),
9285               OpcP, RegOpc(src2));
9286   ins_pipe( pipe_slow );
9287 %}
9288 
9289 // Compare & branch
9290 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9291   predicate(UseSSE<=1);
9292   match(Set cr (CmpD src1 src2));
9293   effect(KILL rax);
9294   ins_cost(200);
9295   format %{ "FLD    $src1\n\t"
9296             "FCOMp  $src2\n\t"
9297             "FNSTSW AX\n\t"
9298             "TEST   AX,0x400\n\t"
9299             "JZ,s   flags\n\t"
9300             "MOV    AH,1\t# unordered treat as LT\n"
9301     "flags:\tSAHF" %}
9302   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9303   ins_encode( Push_Reg_DPR(src1),
9304               OpcP, RegOpc(src2),
9305               fpu_flags);
9306   ins_pipe( pipe_slow );
9307 %}
9308 
9309 // Compare vs zero into -1,0,1
9310 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9311   predicate(UseSSE<=1);
9312   match(Set dst (CmpD3 src1 zero));
9313   effect(KILL cr, KILL rax);
9314   ins_cost(280);
9315   format %{ "FTSTD  $dst,$src1" %}
9316   opcode(0xE4, 0xD9);
9317   ins_encode( Push_Reg_DPR(src1),
9318               OpcS, OpcP, PopFPU,
9319               CmpF_Result(dst));
9320   ins_pipe( pipe_slow );
9321 %}
9322 
9323 // Compare into -1,0,1
9324 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9325   predicate(UseSSE<=1);
9326   match(Set dst (CmpD3 src1 src2));
9327   effect(KILL cr, KILL rax);
9328   ins_cost(300);
9329   format %{ "FCMPD  $dst,$src1,$src2" %}
9330   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9331   ins_encode( Push_Reg_DPR(src1),
9332               OpcP, RegOpc(src2),
9333               CmpF_Result(dst));
9334   ins_pipe( pipe_slow );
9335 %}
9336 
9337 // float compare and set condition codes in EFLAGS by XMM regs
9338 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9339   predicate(UseSSE>=2);
9340   match(Set cr (CmpD src1 src2));
9341   ins_cost(145);
9342   format %{ "UCOMISD $src1,$src2\n\t"
9343             "JNP,s   exit\n\t"
9344             "PUSHF\t# saw NaN, set CF\n\t"
9345             "AND     [rsp], #0xffffff2b\n\t"
9346             "POPF\n"
9347     "exit:" %}
9348   ins_encode %{
9349     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9350     emit_cmpfp_fixup(_masm);
9351   %}
9352   ins_pipe( pipe_slow );
9353 %}
9354 
9355 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9356   predicate(UseSSE>=2);
9357   match(Set cr (CmpD src1 src2));
9358   ins_cost(100);
9359   format %{ "UCOMISD $src1,$src2" %}
9360   ins_encode %{
9361     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9362   %}
9363   ins_pipe( pipe_slow );
9364 %}
9365 
9366 // float compare and set condition codes in EFLAGS by XMM regs
9367 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9368   predicate(UseSSE>=2);
9369   match(Set cr (CmpD src1 (LoadD src2)));
9370   ins_cost(145);
9371   format %{ "UCOMISD $src1,$src2\n\t"
9372             "JNP,s   exit\n\t"
9373             "PUSHF\t# saw NaN, set CF\n\t"
9374             "AND     [rsp], #0xffffff2b\n\t"
9375             "POPF\n"
9376     "exit:" %}
9377   ins_encode %{
9378     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9379     emit_cmpfp_fixup(_masm);
9380   %}
9381   ins_pipe( pipe_slow );
9382 %}
9383 
9384 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9385   predicate(UseSSE>=2);
9386   match(Set cr (CmpD src1 (LoadD src2)));
9387   ins_cost(100);
9388   format %{ "UCOMISD $src1,$src2" %}
9389   ins_encode %{
9390     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9391   %}
9392   ins_pipe( pipe_slow );
9393 %}
9394 
9395 // Compare into -1,0,1 in XMM
9396 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9397   predicate(UseSSE>=2);
9398   match(Set dst (CmpD3 src1 src2));
9399   effect(KILL cr);
9400   ins_cost(255);
9401   format %{ "UCOMISD $src1, $src2\n\t"
9402             "MOV     $dst, #-1\n\t"
9403             "JP,s    done\n\t"
9404             "JB,s    done\n\t"
9405             "SETNE   $dst\n\t"
9406             "MOVZB   $dst, $dst\n"
9407     "done:" %}
9408   ins_encode %{
9409     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9410     emit_cmpfp3(_masm, $dst$$Register);
9411   %}
9412   ins_pipe( pipe_slow );
9413 %}
9414 
9415 // Compare into -1,0,1 in XMM and memory
9416 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9417   predicate(UseSSE>=2);
9418   match(Set dst (CmpD3 src1 (LoadD src2)));
9419   effect(KILL cr);
9420   ins_cost(275);
9421   format %{ "UCOMISD $src1, $src2\n\t"
9422             "MOV     $dst, #-1\n\t"
9423             "JP,s    done\n\t"
9424             "JB,s    done\n\t"
9425             "SETNE   $dst\n\t"
9426             "MOVZB   $dst, $dst\n"
9427     "done:" %}
9428   ins_encode %{
9429     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9430     emit_cmpfp3(_masm, $dst$$Register);
9431   %}
9432   ins_pipe( pipe_slow );
9433 %}
9434 
9435 
9436 instruct subDPR_reg(regDPR dst, regDPR src) %{
9437   predicate (UseSSE <=1);
9438   match(Set dst (SubD dst src));
9439 
9440   format %{ "FLD    $src\n\t"
9441             "DSUBp  $dst,ST" %}
9442   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9443   ins_cost(150);
9444   ins_encode( Push_Reg_DPR(src),
9445               OpcP, RegOpc(dst) );
9446   ins_pipe( fpu_reg_reg );
9447 %}
9448 
9449 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9450   predicate (UseSSE <=1);
9451   match(Set dst (RoundDouble (SubD src1 src2)));
9452   ins_cost(250);
9453 
9454   format %{ "FLD    $src2\n\t"
9455             "DSUB   ST,$src1\n\t"
9456             "FSTP_D $dst\t# D-round" %}
9457   opcode(0xD8, 0x5);
9458   ins_encode( Push_Reg_DPR(src2),
9459               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9460   ins_pipe( fpu_mem_reg_reg );
9461 %}
9462 
9463 
9464 instruct subDPR_reg_mem(regDPR dst, memory src) %{
9465   predicate (UseSSE <=1);
9466   match(Set dst (SubD dst (LoadD src)));
9467   ins_cost(150);
9468 
9469   format %{ "FLD    $src\n\t"
9470             "DSUBp  $dst,ST" %}
9471   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9472   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9473               OpcP, RegOpc(dst) );
9474   ins_pipe( fpu_reg_mem );
9475 %}
9476 
9477 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9478   predicate (UseSSE<=1);
9479   match(Set dst (AbsD src));
9480   ins_cost(100);
9481   format %{ "FABS" %}
9482   opcode(0xE1, 0xD9);
9483   ins_encode( OpcS, OpcP );
9484   ins_pipe( fpu_reg_reg );
9485 %}
9486 
9487 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9488   predicate(UseSSE<=1);
9489   match(Set dst (NegD src));
9490   ins_cost(100);
9491   format %{ "FCHS" %}
9492   opcode(0xE0, 0xD9);
9493   ins_encode( OpcS, OpcP );
9494   ins_pipe( fpu_reg_reg );
9495 %}
9496 
9497 instruct addDPR_reg(regDPR dst, regDPR src) %{
9498   predicate(UseSSE<=1);
9499   match(Set dst (AddD dst src));
9500   format %{ "FLD    $src\n\t"
9501             "DADD   $dst,ST" %}
9502   size(4);
9503   ins_cost(150);
9504   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9505   ins_encode( Push_Reg_DPR(src),
9506               OpcP, RegOpc(dst) );
9507   ins_pipe( fpu_reg_reg );
9508 %}
9509 
9510 
9511 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9512   predicate(UseSSE<=1);
9513   match(Set dst (RoundDouble (AddD src1 src2)));
9514   ins_cost(250);
9515 
9516   format %{ "FLD    $src2\n\t"
9517             "DADD   ST,$src1\n\t"
9518             "FSTP_D $dst\t# D-round" %}
9519   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9520   ins_encode( Push_Reg_DPR(src2),
9521               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9522   ins_pipe( fpu_mem_reg_reg );
9523 %}
9524 
9525 
9526 instruct addDPR_reg_mem(regDPR dst, memory src) %{
9527   predicate(UseSSE<=1);
9528   match(Set dst (AddD dst (LoadD src)));
9529   ins_cost(150);
9530 
9531   format %{ "FLD    $src\n\t"
9532             "DADDp  $dst,ST" %}
9533   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9534   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9535               OpcP, RegOpc(dst) );
9536   ins_pipe( fpu_reg_mem );
9537 %}
9538 
9539 // add-to-memory
9540 instruct addDPR_mem_reg(memory dst, regDPR src) %{
9541   predicate(UseSSE<=1);
9542   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9543   ins_cost(150);
9544 
9545   format %{ "FLD_D  $dst\n\t"
9546             "DADD   ST,$src\n\t"
9547             "FST_D  $dst" %}
9548   opcode(0xDD, 0x0);
9549   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9550               Opcode(0xD8), RegOpc(src),
9551               set_instruction_start,
9552               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9553   ins_pipe( fpu_reg_mem );
9554 %}
9555 
9556 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9557   predicate(UseSSE<=1);
9558   match(Set dst (AddD dst con));
9559   ins_cost(125);
9560   format %{ "FLD1\n\t"
9561             "DADDp  $dst,ST" %}
9562   ins_encode %{
9563     __ fld1();
9564     __ faddp($dst$$reg);
9565   %}
9566   ins_pipe(fpu_reg);
9567 %}
9568 
9569 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9570   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9571   match(Set dst (AddD dst con));
9572   ins_cost(200);
9573   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9574             "DADDp  $dst,ST" %}
9575   ins_encode %{
9576     __ fld_d($constantaddress($con));
9577     __ faddp($dst$$reg);
9578   %}
9579   ins_pipe(fpu_reg_mem);
9580 %}
9581 
9582 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9583   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9584   match(Set dst (RoundDouble (AddD src con)));
9585   ins_cost(200);
9586   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9587             "DADD   ST,$src\n\t"
9588             "FSTP_D $dst\t# D-round" %}
9589   ins_encode %{
9590     __ fld_d($constantaddress($con));
9591     __ fadd($src$$reg);
9592     __ fstp_d(Address(rsp, $dst$$disp));
9593   %}
9594   ins_pipe(fpu_mem_reg_con);
9595 %}
9596 
9597 instruct mulDPR_reg(regDPR dst, regDPR src) %{
9598   predicate(UseSSE<=1);
9599   match(Set dst (MulD dst src));
9600   format %{ "FLD    $src\n\t"
9601             "DMULp  $dst,ST" %}
9602   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9603   ins_cost(150);
9604   ins_encode( Push_Reg_DPR(src),
9605               OpcP, RegOpc(dst) );
9606   ins_pipe( fpu_reg_reg );
9607 %}
9608 
9609 // Strict FP instruction biases argument before multiply then
9610 // biases result to avoid double rounding of subnormals.
9611 //
9612 // scale arg1 by multiplying arg1 by 2^(-15360)
9613 // load arg2
9614 // multiply scaled arg1 by arg2
9615 // rescale product by 2^(15360)
9616 //
9617 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9618   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9619   match(Set dst (MulD dst src));
9620   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9621 
9622   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9623             "DMULp  $dst,ST\n\t"
9624             "FLD    $src\n\t"
9625             "DMULp  $dst,ST\n\t"
9626             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9627             "DMULp  $dst,ST\n\t" %}
9628   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9629   ins_encode( strictfp_bias1(dst),
9630               Push_Reg_DPR(src),
9631               OpcP, RegOpc(dst),
9632               strictfp_bias2(dst) );
9633   ins_pipe( fpu_reg_reg );
9634 %}
9635 
9636 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9637   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9638   match(Set dst (MulD dst con));
9639   ins_cost(200);
9640   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9641             "DMULp  $dst,ST" %}
9642   ins_encode %{
9643     __ fld_d($constantaddress($con));
9644     __ fmulp($dst$$reg);
9645   %}
9646   ins_pipe(fpu_reg_mem);
9647 %}
9648 
9649 
9650 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9651   predicate( UseSSE<=1 );
9652   match(Set dst (MulD dst (LoadD src)));
9653   ins_cost(200);
9654   format %{ "FLD_D  $src\n\t"
9655             "DMULp  $dst,ST" %}
9656   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9657   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9658               OpcP, RegOpc(dst) );
9659   ins_pipe( fpu_reg_mem );
9660 %}
9661 
9662 //
9663 // Cisc-alternate to reg-reg multiply
9664 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9665   predicate( UseSSE<=1 );
9666   match(Set dst (MulD src (LoadD mem)));
9667   ins_cost(250);
9668   format %{ "FLD_D  $mem\n\t"
9669             "DMUL   ST,$src\n\t"
9670             "FSTP_D $dst" %}
9671   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9672   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9673               OpcReg_FPR(src),
9674               Pop_Reg_DPR(dst) );
9675   ins_pipe( fpu_reg_reg_mem );
9676 %}
9677 
9678 
9679 // MACRO3 -- addDPR a mulDPR
9680 // This instruction is a '2-address' instruction in that the result goes
9681 // back to src2.  This eliminates a move from the macro; possibly the
9682 // register allocator will have to add it back (and maybe not).
9683 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9684   predicate( UseSSE<=1 );
9685   match(Set src2 (AddD (MulD src0 src1) src2));
9686   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9687             "DMUL   ST,$src1\n\t"
9688             "DADDp  $src2,ST" %}
9689   ins_cost(250);
9690   opcode(0xDD); /* LoadD DD /0 */
9691   ins_encode( Push_Reg_FPR(src0),
9692               FMul_ST_reg(src1),
9693               FAddP_reg_ST(src2) );
9694   ins_pipe( fpu_reg_reg_reg );
9695 %}
9696 
9697 
9698 // MACRO3 -- subDPR a mulDPR
9699 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9700   predicate( UseSSE<=1 );
9701   match(Set src2 (SubD (MulD src0 src1) src2));
9702   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9703             "DMUL   ST,$src1\n\t"
9704             "DSUBRp $src2,ST" %}
9705   ins_cost(250);
9706   ins_encode( Push_Reg_FPR(src0),
9707               FMul_ST_reg(src1),
9708               Opcode(0xDE), Opc_plus(0xE0,src2));
9709   ins_pipe( fpu_reg_reg_reg );
9710 %}
9711 
9712 
9713 instruct divDPR_reg(regDPR dst, regDPR src) %{
9714   predicate( UseSSE<=1 );
9715   match(Set dst (DivD dst src));
9716 
9717   format %{ "FLD    $src\n\t"
9718             "FDIVp  $dst,ST" %}
9719   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9720   ins_cost(150);
9721   ins_encode( Push_Reg_DPR(src),
9722               OpcP, RegOpc(dst) );
9723   ins_pipe( fpu_reg_reg );
9724 %}
9725 
9726 // Strict FP instruction biases argument before division then
9727 // biases result, to avoid double rounding of subnormals.
9728 //
9729 // scale dividend by multiplying dividend by 2^(-15360)
9730 // load divisor
9731 // divide scaled dividend by divisor
9732 // rescale quotient by 2^(15360)
9733 //
9734 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9735   predicate (UseSSE<=1);
9736   match(Set dst (DivD dst src));
9737   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9738   ins_cost(01);
9739 
9740   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9741             "DMULp  $dst,ST\n\t"
9742             "FLD    $src\n\t"
9743             "FDIVp  $dst,ST\n\t"
9744             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9745             "DMULp  $dst,ST\n\t" %}
9746   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9747   ins_encode( strictfp_bias1(dst),
9748               Push_Reg_DPR(src),
9749               OpcP, RegOpc(dst),
9750               strictfp_bias2(dst) );
9751   ins_pipe( fpu_reg_reg );
9752 %}
9753 
9754 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9755   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9756   match(Set dst (RoundDouble (DivD src1 src2)));
9757 
9758   format %{ "FLD    $src1\n\t"
9759             "FDIV   ST,$src2\n\t"
9760             "FSTP_D $dst\t# D-round" %}
9761   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9762   ins_encode( Push_Reg_DPR(src1),
9763               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
9764   ins_pipe( fpu_mem_reg_reg );
9765 %}
9766 
9767 
9768 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
9769   predicate(UseSSE<=1);
9770   match(Set dst (ModD dst src));
9771   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
9772 
9773   format %{ "DMOD   $dst,$src" %}
9774   ins_cost(250);
9775   ins_encode(Push_Reg_Mod_DPR(dst, src),
9776               emitModDPR(),
9777               Push_Result_Mod_DPR(src),
9778               Pop_Reg_DPR(dst));
9779   ins_pipe( pipe_slow );
9780 %}
9781 
9782 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
9783   predicate(UseSSE>=2);
9784   match(Set dst (ModD src0 src1));
9785   effect(KILL rax, KILL cr);
9786 
9787   format %{ "SUB    ESP,8\t # DMOD\n"
9788           "\tMOVSD  [ESP+0],$src1\n"
9789           "\tFLD_D  [ESP+0]\n"
9790           "\tMOVSD  [ESP+0],$src0\n"
9791           "\tFLD_D  [ESP+0]\n"
9792      "loop:\tFPREM\n"
9793           "\tFWAIT\n"
9794           "\tFNSTSW AX\n"
9795           "\tSAHF\n"
9796           "\tJP     loop\n"
9797           "\tFSTP_D [ESP+0]\n"
9798           "\tMOVSD  $dst,[ESP+0]\n"
9799           "\tADD    ESP,8\n"
9800           "\tFSTP   ST0\t # Restore FPU Stack"
9801     %}
9802   ins_cost(250);
9803   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
9804   ins_pipe( pipe_slow );
9805 %}
9806 
9807 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
9808   predicate (UseSSE<=1);
9809   match(Set dst (SinD src));
9810   ins_cost(1800);
9811   format %{ "DSIN   $dst" %}
9812   opcode(0xD9, 0xFE);
9813   ins_encode( OpcP, OpcS );
9814   ins_pipe( pipe_slow );
9815 %}
9816 
9817 instruct sinD_reg(regD dst, eFlagsReg cr) %{
9818   predicate (UseSSE>=2);
9819   match(Set dst (SinD dst));
9820   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9821   ins_cost(1800);
9822   format %{ "DSIN   $dst" %}
9823   opcode(0xD9, 0xFE);
9824   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9825   ins_pipe( pipe_slow );
9826 %}
9827 
9828 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
9829   predicate (UseSSE<=1);
9830   match(Set dst (CosD src));
9831   ins_cost(1800);
9832   format %{ "DCOS   $dst" %}
9833   opcode(0xD9, 0xFF);
9834   ins_encode( OpcP, OpcS );
9835   ins_pipe( pipe_slow );
9836 %}
9837 
9838 instruct cosD_reg(regD dst, eFlagsReg cr) %{
9839   predicate (UseSSE>=2);
9840   match(Set dst (CosD dst));
9841   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9842   ins_cost(1800);
9843   format %{ "DCOS   $dst" %}
9844   opcode(0xD9, 0xFF);
9845   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9846   ins_pipe( pipe_slow );
9847 %}
9848 
9849 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
9850   predicate (UseSSE<=1);
9851   match(Set dst(TanD src));
9852   format %{ "DTAN   $dst" %}
9853   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9854               Opcode(0xDD), Opcode(0xD8));   // fstp st
9855   ins_pipe( pipe_slow );
9856 %}
9857 
9858 instruct tanD_reg(regD dst, eFlagsReg cr) %{
9859   predicate (UseSSE>=2);
9860   match(Set dst(TanD dst));
9861   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9862   format %{ "DTAN   $dst" %}
9863   ins_encode( Push_SrcD(dst),
9864               Opcode(0xD9), Opcode(0xF2),    // fptan
9865               Opcode(0xDD), Opcode(0xD8),   // fstp st
9866               Push_ResultD(dst) );
9867   ins_pipe( pipe_slow );
9868 %}
9869 
9870 instruct atanDPR_reg(regDPR dst, regDPR src) %{
9871   predicate (UseSSE<=1);
9872   match(Set dst(AtanD dst src));
9873   format %{ "DATA   $dst,$src" %}
9874   opcode(0xD9, 0xF3);
9875   ins_encode( Push_Reg_DPR(src),
9876               OpcP, OpcS, RegOpc(dst) );
9877   ins_pipe( pipe_slow );
9878 %}
9879 
9880 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
9881   predicate (UseSSE>=2);
9882   match(Set dst(AtanD dst src));
9883   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9884   format %{ "DATA   $dst,$src" %}
9885   opcode(0xD9, 0xF3);
9886   ins_encode( Push_SrcD(src),
9887               OpcP, OpcS, Push_ResultD(dst) );
9888   ins_pipe( pipe_slow );
9889 %}
9890 
9891 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
9892   predicate (UseSSE<=1);
9893   match(Set dst (SqrtD src));
9894   format %{ "DSQRT  $dst,$src" %}
9895   opcode(0xFA, 0xD9);
9896   ins_encode( Push_Reg_DPR(src),
9897               OpcS, OpcP, Pop_Reg_DPR(dst) );
9898   ins_pipe( pipe_slow );
9899 %}
9900 
9901 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9902   predicate (UseSSE<=1);
9903   match(Set Y (PowD X Y));  // Raise X to the Yth power
9904   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9905   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
9906   ins_encode %{
9907     __ subptr(rsp, 8);
9908     __ fld_s($X$$reg - 1);
9909     __ fast_pow();
9910     __ addptr(rsp, 8);
9911   %}
9912   ins_pipe( pipe_slow );
9913 %}
9914 
9915 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9916   predicate (UseSSE>=2);
9917   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9918   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9919   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
9920   ins_encode %{
9921     __ subptr(rsp, 8);
9922     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
9923     __ fld_d(Address(rsp, 0));
9924     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
9925     __ fld_d(Address(rsp, 0));
9926     __ fast_pow();
9927     __ fstp_d(Address(rsp, 0));
9928     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9929     __ addptr(rsp, 8);
9930   %}
9931   ins_pipe( pipe_slow );
9932 %}
9933 
9934 
9935 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9936   predicate (UseSSE<=1);
9937   match(Set dpr1 (ExpD dpr1));
9938   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9939   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
9940   ins_encode %{
9941     __ fast_exp();
9942   %}
9943   ins_pipe( pipe_slow );
9944 %}
9945 
9946 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9947   predicate (UseSSE>=2);
9948   match(Set dst (ExpD src));
9949   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9950   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
9951   ins_encode %{
9952     __ subptr(rsp, 8);
9953     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9954     __ fld_d(Address(rsp, 0));
9955     __ fast_exp();
9956     __ fstp_d(Address(rsp, 0));
9957     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9958     __ addptr(rsp, 8);
9959   %}
9960   ins_pipe( pipe_slow );
9961 %}
9962 
9963 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
9964   predicate (UseSSE<=1);
9965   // The source Double operand on FPU stack
9966   match(Set dst (Log10D src));
9967   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9968   // fxch         ; swap ST(0) with ST(1)
9969   // fyl2x        ; compute log_10(2) * log_2(x)
9970   format %{ "FLDLG2 \t\t\t#Log10\n\t"
9971             "FXCH   \n\t"
9972             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
9973          %}
9974   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
9975               Opcode(0xD9), Opcode(0xC9),   // fxch
9976               Opcode(0xD9), Opcode(0xF1));  // fyl2x
9977 
9978   ins_pipe( pipe_slow );
9979 %}
9980 
9981 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
9982   predicate (UseSSE>=2);
9983   effect(KILL cr);
9984   match(Set dst (Log10D src));
9985   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9986   // fyl2x        ; compute log_10(2) * log_2(x)
9987   format %{ "FLDLG2 \t\t\t#Log10\n\t"
9988             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
9989          %}
9990   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
9991               Push_SrcD(src),
9992               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9993               Push_ResultD(dst));
9994 
9995   ins_pipe( pipe_slow );
9996 %}
9997 
9998 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
9999   predicate (UseSSE<=1);
10000   // The source Double operand on FPU stack
10001   match(Set dst (LogD src));
10002   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10003   // fxch         ; swap ST(0) with ST(1)
10004   // fyl2x        ; compute log_e(2) * log_2(x)
10005   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10006             "FXCH   \n\t"
10007             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10008          %}
10009   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10010               Opcode(0xD9), Opcode(0xC9),   // fxch
10011               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10012 
10013   ins_pipe( pipe_slow );
10014 %}
10015 
10016 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10017   predicate (UseSSE>=2);
10018   effect(KILL cr);
10019   // The source and result Double operands in XMM registers
10020   match(Set dst (LogD src));
10021   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10022   // fyl2x        ; compute log_e(2) * log_2(x)
10023   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10024             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10025          %}
10026   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10027               Push_SrcD(src),
10028               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10029               Push_ResultD(dst));
10030   ins_pipe( pipe_slow );
10031 %}
10032 
10033 //-------------Float Instructions-------------------------------
10034 // Float Math
10035 
10036 // Code for float compare:
10037 //     fcompp();
10038 //     fwait(); fnstsw_ax();
10039 //     sahf();
10040 //     movl(dst, unordered_result);
10041 //     jcc(Assembler::parity, exit);
10042 //     movl(dst, less_result);
10043 //     jcc(Assembler::below, exit);
10044 //     movl(dst, equal_result);
10045 //     jcc(Assembler::equal, exit);
10046 //     movl(dst, greater_result);
10047 //   exit:
10048 
10049 // P6 version of float compare, sets condition codes in EFLAGS
10050 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10051   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10052   match(Set cr (CmpF src1 src2));
10053   effect(KILL rax);
10054   ins_cost(150);
10055   format %{ "FLD    $src1\n\t"
10056             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10057             "JNP    exit\n\t"
10058             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10059             "SAHF\n"
10060      "exit:\tNOP               // avoid branch to branch" %}
10061   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10062   ins_encode( Push_Reg_DPR(src1),
10063               OpcP, RegOpc(src2),
10064               cmpF_P6_fixup );
10065   ins_pipe( pipe_slow );
10066 %}
10067 
10068 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10069   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10070   match(Set cr (CmpF src1 src2));
10071   ins_cost(100);
10072   format %{ "FLD    $src1\n\t"
10073             "FUCOMIP ST,$src2  // P6 instruction" %}
10074   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10075   ins_encode( Push_Reg_DPR(src1),
10076               OpcP, RegOpc(src2));
10077   ins_pipe( pipe_slow );
10078 %}
10079 
10080 
10081 // Compare & branch
10082 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10083   predicate(UseSSE == 0);
10084   match(Set cr (CmpF src1 src2));
10085   effect(KILL rax);
10086   ins_cost(200);
10087   format %{ "FLD    $src1\n\t"
10088             "FCOMp  $src2\n\t"
10089             "FNSTSW AX\n\t"
10090             "TEST   AX,0x400\n\t"
10091             "JZ,s   flags\n\t"
10092             "MOV    AH,1\t# unordered treat as LT\n"
10093     "flags:\tSAHF" %}
10094   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10095   ins_encode( Push_Reg_DPR(src1),
10096               OpcP, RegOpc(src2),
10097               fpu_flags);
10098   ins_pipe( pipe_slow );
10099 %}
10100 
10101 // Compare vs zero into -1,0,1
10102 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10103   predicate(UseSSE == 0);
10104   match(Set dst (CmpF3 src1 zero));
10105   effect(KILL cr, KILL rax);
10106   ins_cost(280);
10107   format %{ "FTSTF  $dst,$src1" %}
10108   opcode(0xE4, 0xD9);
10109   ins_encode( Push_Reg_DPR(src1),
10110               OpcS, OpcP, PopFPU,
10111               CmpF_Result(dst));
10112   ins_pipe( pipe_slow );
10113 %}
10114 
10115 // Compare into -1,0,1
10116 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10117   predicate(UseSSE == 0);
10118   match(Set dst (CmpF3 src1 src2));
10119   effect(KILL cr, KILL rax);
10120   ins_cost(300);
10121   format %{ "FCMPF  $dst,$src1,$src2" %}
10122   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10123   ins_encode( Push_Reg_DPR(src1),
10124               OpcP, RegOpc(src2),
10125               CmpF_Result(dst));
10126   ins_pipe( pipe_slow );
10127 %}
10128 
10129 // float compare and set condition codes in EFLAGS by XMM regs
10130 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10131   predicate(UseSSE>=1);
10132   match(Set cr (CmpF src1 src2));
10133   ins_cost(145);
10134   format %{ "UCOMISS $src1,$src2\n\t"
10135             "JNP,s   exit\n\t"
10136             "PUSHF\t# saw NaN, set CF\n\t"
10137             "AND     [rsp], #0xffffff2b\n\t"
10138             "POPF\n"
10139     "exit:" %}
10140   ins_encode %{
10141     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10142     emit_cmpfp_fixup(_masm);
10143   %}
10144   ins_pipe( pipe_slow );
10145 %}
10146 
10147 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10148   predicate(UseSSE>=1);
10149   match(Set cr (CmpF src1 src2));
10150   ins_cost(100);
10151   format %{ "UCOMISS $src1,$src2" %}
10152   ins_encode %{
10153     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10154   %}
10155   ins_pipe( pipe_slow );
10156 %}
10157 
10158 // float compare and set condition codes in EFLAGS by XMM regs
10159 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10160   predicate(UseSSE>=1);
10161   match(Set cr (CmpF src1 (LoadF src2)));
10162   ins_cost(165);
10163   format %{ "UCOMISS $src1,$src2\n\t"
10164             "JNP,s   exit\n\t"
10165             "PUSHF\t# saw NaN, set CF\n\t"
10166             "AND     [rsp], #0xffffff2b\n\t"
10167             "POPF\n"
10168     "exit:" %}
10169   ins_encode %{
10170     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10171     emit_cmpfp_fixup(_masm);
10172   %}
10173   ins_pipe( pipe_slow );
10174 %}
10175 
10176 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10177   predicate(UseSSE>=1);
10178   match(Set cr (CmpF src1 (LoadF src2)));
10179   ins_cost(100);
10180   format %{ "UCOMISS $src1,$src2" %}
10181   ins_encode %{
10182     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10183   %}
10184   ins_pipe( pipe_slow );
10185 %}
10186 
10187 // Compare into -1,0,1 in XMM
10188 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10189   predicate(UseSSE>=1);
10190   match(Set dst (CmpF3 src1 src2));
10191   effect(KILL cr);
10192   ins_cost(255);
10193   format %{ "UCOMISS $src1, $src2\n\t"
10194             "MOV     $dst, #-1\n\t"
10195             "JP,s    done\n\t"
10196             "JB,s    done\n\t"
10197             "SETNE   $dst\n\t"
10198             "MOVZB   $dst, $dst\n"
10199     "done:" %}
10200   ins_encode %{
10201     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10202     emit_cmpfp3(_masm, $dst$$Register);
10203   %}
10204   ins_pipe( pipe_slow );
10205 %}
10206 
10207 // Compare into -1,0,1 in XMM and memory
10208 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10209   predicate(UseSSE>=1);
10210   match(Set dst (CmpF3 src1 (LoadF src2)));
10211   effect(KILL cr);
10212   ins_cost(275);
10213   format %{ "UCOMISS $src1, $src2\n\t"
10214             "MOV     $dst, #-1\n\t"
10215             "JP,s    done\n\t"
10216             "JB,s    done\n\t"
10217             "SETNE   $dst\n\t"
10218             "MOVZB   $dst, $dst\n"
10219     "done:" %}
10220   ins_encode %{
10221     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10222     emit_cmpfp3(_masm, $dst$$Register);
10223   %}
10224   ins_pipe( pipe_slow );
10225 %}
10226 
10227 // Spill to obtain 24-bit precision
10228 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10229   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10230   match(Set dst (SubF src1 src2));
10231 
10232   format %{ "FSUB   $dst,$src1 - $src2" %}
10233   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10234   ins_encode( Push_Reg_FPR(src1),
10235               OpcReg_FPR(src2),
10236               Pop_Mem_FPR(dst) );
10237   ins_pipe( fpu_mem_reg_reg );
10238 %}
10239 //
10240 // This instruction does not round to 24-bits
10241 instruct subFPR_reg(regFPR dst, regFPR src) %{
10242   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10243   match(Set dst (SubF dst src));
10244 
10245   format %{ "FSUB   $dst,$src" %}
10246   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10247   ins_encode( Push_Reg_FPR(src),
10248               OpcP, RegOpc(dst) );
10249   ins_pipe( fpu_reg_reg );
10250 %}
10251 
10252 // Spill to obtain 24-bit precision
10253 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10254   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10255   match(Set dst (AddF src1 src2));
10256 
10257   format %{ "FADD   $dst,$src1,$src2" %}
10258   opcode(0xD8, 0x0); /* D8 C0+i */
10259   ins_encode( Push_Reg_FPR(src2),
10260               OpcReg_FPR(src1),
10261               Pop_Mem_FPR(dst) );
10262   ins_pipe( fpu_mem_reg_reg );
10263 %}
10264 //
10265 // This instruction does not round to 24-bits
10266 instruct addFPR_reg(regFPR dst, regFPR src) %{
10267   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10268   match(Set dst (AddF dst src));
10269 
10270   format %{ "FLD    $src\n\t"
10271             "FADDp  $dst,ST" %}
10272   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10273   ins_encode( Push_Reg_FPR(src),
10274               OpcP, RegOpc(dst) );
10275   ins_pipe( fpu_reg_reg );
10276 %}
10277 
10278 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10279   predicate(UseSSE==0);
10280   match(Set dst (AbsF src));
10281   ins_cost(100);
10282   format %{ "FABS" %}
10283   opcode(0xE1, 0xD9);
10284   ins_encode( OpcS, OpcP );
10285   ins_pipe( fpu_reg_reg );
10286 %}
10287 
10288 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10289   predicate(UseSSE==0);
10290   match(Set dst (NegF src));
10291   ins_cost(100);
10292   format %{ "FCHS" %}
10293   opcode(0xE0, 0xD9);
10294   ins_encode( OpcS, OpcP );
10295   ins_pipe( fpu_reg_reg );
10296 %}
10297 
10298 // Cisc-alternate to addFPR_reg
10299 // Spill to obtain 24-bit precision
10300 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10301   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10302   match(Set dst (AddF src1 (LoadF src2)));
10303 
10304   format %{ "FLD    $src2\n\t"
10305             "FADD   ST,$src1\n\t"
10306             "FSTP_S $dst" %}
10307   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10308   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10309               OpcReg_FPR(src1),
10310               Pop_Mem_FPR(dst) );
10311   ins_pipe( fpu_mem_reg_mem );
10312 %}
10313 //
10314 // Cisc-alternate to addFPR_reg
10315 // This instruction does not round to 24-bits
10316 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10317   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10318   match(Set dst (AddF dst (LoadF src)));
10319 
10320   format %{ "FADD   $dst,$src" %}
10321   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10322   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10323               OpcP, RegOpc(dst) );
10324   ins_pipe( fpu_reg_mem );
10325 %}
10326 
10327 // // Following two instructions for _222_mpegaudio
10328 // Spill to obtain 24-bit precision
10329 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10330   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10331   match(Set dst (AddF src1 src2));
10332 
10333   format %{ "FADD   $dst,$src1,$src2" %}
10334   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10335   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10336               OpcReg_FPR(src2),
10337               Pop_Mem_FPR(dst) );
10338   ins_pipe( fpu_mem_reg_mem );
10339 %}
10340 
10341 // Cisc-spill variant
10342 // Spill to obtain 24-bit precision
10343 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10344   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10345   match(Set dst (AddF src1 (LoadF src2)));
10346 
10347   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10348   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10349   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10350               set_instruction_start,
10351               OpcP, RMopc_Mem(secondary,src1),
10352               Pop_Mem_FPR(dst) );
10353   ins_pipe( fpu_mem_mem_mem );
10354 %}
10355 
10356 // Spill to obtain 24-bit precision
10357 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10358   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10359   match(Set dst (AddF src1 src2));
10360 
10361   format %{ "FADD   $dst,$src1,$src2" %}
10362   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10363   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10364               set_instruction_start,
10365               OpcP, RMopc_Mem(secondary,src1),
10366               Pop_Mem_FPR(dst) );
10367   ins_pipe( fpu_mem_mem_mem );
10368 %}
10369 
10370 
10371 // Spill to obtain 24-bit precision
10372 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10373   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10374   match(Set dst (AddF src con));
10375   format %{ "FLD    $src\n\t"
10376             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10377             "FSTP_S $dst"  %}
10378   ins_encode %{
10379     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10380     __ fadd_s($constantaddress($con));
10381     __ fstp_s(Address(rsp, $dst$$disp));
10382   %}
10383   ins_pipe(fpu_mem_reg_con);
10384 %}
10385 //
10386 // This instruction does not round to 24-bits
10387 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10388   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10389   match(Set dst (AddF src con));
10390   format %{ "FLD    $src\n\t"
10391             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10392             "FSTP   $dst"  %}
10393   ins_encode %{
10394     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10395     __ fadd_s($constantaddress($con));
10396     __ fstp_d($dst$$reg);
10397   %}
10398   ins_pipe(fpu_reg_reg_con);
10399 %}
10400 
10401 // Spill to obtain 24-bit precision
10402 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10403   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10404   match(Set dst (MulF src1 src2));
10405 
10406   format %{ "FLD    $src1\n\t"
10407             "FMUL   $src2\n\t"
10408             "FSTP_S $dst"  %}
10409   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10410   ins_encode( Push_Reg_FPR(src1),
10411               OpcReg_FPR(src2),
10412               Pop_Mem_FPR(dst) );
10413   ins_pipe( fpu_mem_reg_reg );
10414 %}
10415 //
10416 // This instruction does not round to 24-bits
10417 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10418   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10419   match(Set dst (MulF src1 src2));
10420 
10421   format %{ "FLD    $src1\n\t"
10422             "FMUL   $src2\n\t"
10423             "FSTP_S $dst"  %}
10424   opcode(0xD8, 0x1); /* D8 C8+i */
10425   ins_encode( Push_Reg_FPR(src2),
10426               OpcReg_FPR(src1),
10427               Pop_Reg_FPR(dst) );
10428   ins_pipe( fpu_reg_reg_reg );
10429 %}
10430 
10431 
10432 // Spill to obtain 24-bit precision
10433 // Cisc-alternate to reg-reg multiply
10434 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10435   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10436   match(Set dst (MulF src1 (LoadF src2)));
10437 
10438   format %{ "FLD_S  $src2\n\t"
10439             "FMUL   $src1\n\t"
10440             "FSTP_S $dst"  %}
10441   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10442   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10443               OpcReg_FPR(src1),
10444               Pop_Mem_FPR(dst) );
10445   ins_pipe( fpu_mem_reg_mem );
10446 %}
10447 //
10448 // This instruction does not round to 24-bits
10449 // Cisc-alternate to reg-reg multiply
10450 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10451   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10452   match(Set dst (MulF src1 (LoadF src2)));
10453 
10454   format %{ "FMUL   $dst,$src1,$src2" %}
10455   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10456   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10457               OpcReg_FPR(src1),
10458               Pop_Reg_FPR(dst) );
10459   ins_pipe( fpu_reg_reg_mem );
10460 %}
10461 
10462 // Spill to obtain 24-bit precision
10463 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10464   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10465   match(Set dst (MulF src1 src2));
10466 
10467   format %{ "FMUL   $dst,$src1,$src2" %}
10468   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10469   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10470               set_instruction_start,
10471               OpcP, RMopc_Mem(secondary,src1),
10472               Pop_Mem_FPR(dst) );
10473   ins_pipe( fpu_mem_mem_mem );
10474 %}
10475 
10476 // Spill to obtain 24-bit precision
10477 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10478   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10479   match(Set dst (MulF src con));
10480 
10481   format %{ "FLD    $src\n\t"
10482             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10483             "FSTP_S $dst"  %}
10484   ins_encode %{
10485     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10486     __ fmul_s($constantaddress($con));
10487     __ fstp_s(Address(rsp, $dst$$disp));
10488   %}
10489   ins_pipe(fpu_mem_reg_con);
10490 %}
10491 //
10492 // This instruction does not round to 24-bits
10493 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10494   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10495   match(Set dst (MulF src con));
10496 
10497   format %{ "FLD    $src\n\t"
10498             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10499             "FSTP   $dst"  %}
10500   ins_encode %{
10501     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10502     __ fmul_s($constantaddress($con));
10503     __ fstp_d($dst$$reg);
10504   %}
10505   ins_pipe(fpu_reg_reg_con);
10506 %}
10507 
10508 
10509 //
10510 // MACRO1 -- subsume unshared load into mulFPR
10511 // This instruction does not round to 24-bits
10512 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10513   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10514   match(Set dst (MulF (LoadF mem1) src));
10515 
10516   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10517             "FMUL   ST,$src\n\t"
10518             "FSTP   $dst" %}
10519   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10520   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10521               OpcReg_FPR(src),
10522               Pop_Reg_FPR(dst) );
10523   ins_pipe( fpu_reg_reg_mem );
10524 %}
10525 //
10526 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10527 // This instruction does not round to 24-bits
10528 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10529   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10530   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10531   ins_cost(95);
10532 
10533   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10534             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10535             "FADD   ST,$src2\n\t"
10536             "FSTP   $dst" %}
10537   opcode(0xD9); /* LoadF D9 /0 */
10538   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10539               FMul_ST_reg(src1),
10540               FAdd_ST_reg(src2),
10541               Pop_Reg_FPR(dst) );
10542   ins_pipe( fpu_reg_mem_reg_reg );
10543 %}
10544 
10545 // MACRO3 -- addFPR a mulFPR
10546 // This instruction does not round to 24-bits.  It is a '2-address'
10547 // instruction in that the result goes back to src2.  This eliminates
10548 // a move from the macro; possibly the register allocator will have
10549 // to add it back (and maybe not).
10550 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10551   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10552   match(Set src2 (AddF (MulF src0 src1) src2));
10553 
10554   format %{ "FLD    $src0     ===MACRO3===\n\t"
10555             "FMUL   ST,$src1\n\t"
10556             "FADDP  $src2,ST" %}
10557   opcode(0xD9); /* LoadF D9 /0 */
10558   ins_encode( Push_Reg_FPR(src0),
10559               FMul_ST_reg(src1),
10560               FAddP_reg_ST(src2) );
10561   ins_pipe( fpu_reg_reg_reg );
10562 %}
10563 
10564 // MACRO4 -- divFPR subFPR
10565 // This instruction does not round to 24-bits
10566 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10567   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10568   match(Set dst (DivF (SubF src2 src1) src3));
10569 
10570   format %{ "FLD    $src2   ===MACRO4===\n\t"
10571             "FSUB   ST,$src1\n\t"
10572             "FDIV   ST,$src3\n\t"
10573             "FSTP  $dst" %}
10574   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10575   ins_encode( Push_Reg_FPR(src2),
10576               subFPR_divFPR_encode(src1,src3),
10577               Pop_Reg_FPR(dst) );
10578   ins_pipe( fpu_reg_reg_reg_reg );
10579 %}
10580 
10581 // Spill to obtain 24-bit precision
10582 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10583   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10584   match(Set dst (DivF src1 src2));
10585 
10586   format %{ "FDIV   $dst,$src1,$src2" %}
10587   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10588   ins_encode( Push_Reg_FPR(src1),
10589               OpcReg_FPR(src2),
10590               Pop_Mem_FPR(dst) );
10591   ins_pipe( fpu_mem_reg_reg );
10592 %}
10593 //
10594 // This instruction does not round to 24-bits
10595 instruct divFPR_reg(regFPR dst, regFPR src) %{
10596   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10597   match(Set dst (DivF dst src));
10598 
10599   format %{ "FDIV   $dst,$src" %}
10600   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10601   ins_encode( Push_Reg_FPR(src),
10602               OpcP, RegOpc(dst) );
10603   ins_pipe( fpu_reg_reg );
10604 %}
10605 
10606 
10607 // Spill to obtain 24-bit precision
10608 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10609   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10610   match(Set dst (ModF src1 src2));
10611   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10612 
10613   format %{ "FMOD   $dst,$src1,$src2" %}
10614   ins_encode( Push_Reg_Mod_DPR(src1, src2),
10615               emitModDPR(),
10616               Push_Result_Mod_DPR(src2),
10617               Pop_Mem_FPR(dst));
10618   ins_pipe( pipe_slow );
10619 %}
10620 //
10621 // This instruction does not round to 24-bits
10622 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10623   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10624   match(Set dst (ModF dst src));
10625   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10626 
10627   format %{ "FMOD   $dst,$src" %}
10628   ins_encode(Push_Reg_Mod_DPR(dst, src),
10629               emitModDPR(),
10630               Push_Result_Mod_DPR(src),
10631               Pop_Reg_FPR(dst));
10632   ins_pipe( pipe_slow );
10633 %}
10634 
10635 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10636   predicate(UseSSE>=1);
10637   match(Set dst (ModF src0 src1));
10638   effect(KILL rax, KILL cr);
10639   format %{ "SUB    ESP,4\t # FMOD\n"
10640           "\tMOVSS  [ESP+0],$src1\n"
10641           "\tFLD_S  [ESP+0]\n"
10642           "\tMOVSS  [ESP+0],$src0\n"
10643           "\tFLD_S  [ESP+0]\n"
10644      "loop:\tFPREM\n"
10645           "\tFWAIT\n"
10646           "\tFNSTSW AX\n"
10647           "\tSAHF\n"
10648           "\tJP     loop\n"
10649           "\tFSTP_S [ESP+0]\n"
10650           "\tMOVSS  $dst,[ESP+0]\n"
10651           "\tADD    ESP,4\n"
10652           "\tFSTP   ST0\t # Restore FPU Stack"
10653     %}
10654   ins_cost(250);
10655   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10656   ins_pipe( pipe_slow );
10657 %}
10658 
10659 
10660 //----------Arithmetic Conversion Instructions---------------------------------
10661 // The conversions operations are all Alpha sorted.  Please keep it that way!
10662 
10663 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10664   predicate(UseSSE==0);
10665   match(Set dst (RoundFloat src));
10666   ins_cost(125);
10667   format %{ "FST_S  $dst,$src\t# F-round" %}
10668   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10669   ins_pipe( fpu_mem_reg );
10670 %}
10671 
10672 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10673   predicate(UseSSE<=1);
10674   match(Set dst (RoundDouble src));
10675   ins_cost(125);
10676   format %{ "FST_D  $dst,$src\t# D-round" %}
10677   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10678   ins_pipe( fpu_mem_reg );
10679 %}
10680 
10681 // Force rounding to 24-bit precision and 6-bit exponent
10682 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10683   predicate(UseSSE==0);
10684   match(Set dst (ConvD2F src));
10685   format %{ "FST_S  $dst,$src\t# F-round" %}
10686   expand %{
10687     roundFloat_mem_reg(dst,src);
10688   %}
10689 %}
10690 
10691 // Force rounding to 24-bit precision and 6-bit exponent
10692 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10693   predicate(UseSSE==1);
10694   match(Set dst (ConvD2F src));
10695   effect( KILL cr );
10696   format %{ "SUB    ESP,4\n\t"
10697             "FST_S  [ESP],$src\t# F-round\n\t"
10698             "MOVSS  $dst,[ESP]\n\t"
10699             "ADD ESP,4" %}
10700   ins_encode %{
10701     __ subptr(rsp, 4);
10702     if ($src$$reg != FPR1L_enc) {
10703       __ fld_s($src$$reg-1);
10704       __ fstp_s(Address(rsp, 0));
10705     } else {
10706       __ fst_s(Address(rsp, 0));
10707     }
10708     __ movflt($dst$$XMMRegister, Address(rsp, 0));
10709     __ addptr(rsp, 4);
10710   %}
10711   ins_pipe( pipe_slow );
10712 %}
10713 
10714 // Force rounding double precision to single precision
10715 instruct convD2F_reg(regF dst, regD src) %{
10716   predicate(UseSSE>=2);
10717   match(Set dst (ConvD2F src));
10718   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10719   ins_encode %{
10720     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10721   %}
10722   ins_pipe( pipe_slow );
10723 %}
10724 
10725 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10726   predicate(UseSSE==0);
10727   match(Set dst (ConvF2D src));
10728   format %{ "FST_S  $dst,$src\t# D-round" %}
10729   ins_encode( Pop_Reg_Reg_DPR(dst, src));
10730   ins_pipe( fpu_reg_reg );
10731 %}
10732 
10733 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10734   predicate(UseSSE==1);
10735   match(Set dst (ConvF2D src));
10736   format %{ "FST_D  $dst,$src\t# D-round" %}
10737   expand %{
10738     roundDouble_mem_reg(dst,src);
10739   %}
10740 %}
10741 
10742 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10743   predicate(UseSSE==1);
10744   match(Set dst (ConvF2D src));
10745   effect( KILL cr );
10746   format %{ "SUB    ESP,4\n\t"
10747             "MOVSS  [ESP] $src\n\t"
10748             "FLD_S  [ESP]\n\t"
10749             "ADD    ESP,4\n\t"
10750             "FSTP   $dst\t# D-round" %}
10751   ins_encode %{
10752     __ subptr(rsp, 4);
10753     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10754     __ fld_s(Address(rsp, 0));
10755     __ addptr(rsp, 4);
10756     __ fstp_d($dst$$reg);
10757   %}
10758   ins_pipe( pipe_slow );
10759 %}
10760 
10761 instruct convF2D_reg(regD dst, regF src) %{
10762   predicate(UseSSE>=2);
10763   match(Set dst (ConvF2D src));
10764   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10765   ins_encode %{
10766     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10767   %}
10768   ins_pipe( pipe_slow );
10769 %}
10770 
10771 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10772 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
10773   predicate(UseSSE<=1);
10774   match(Set dst (ConvD2I src));
10775   effect( KILL tmp, KILL cr );
10776   format %{ "FLD    $src\t# Convert double to int \n\t"
10777             "FLDCW  trunc mode\n\t"
10778             "SUB    ESP,4\n\t"
10779             "FISTp  [ESP + #0]\n\t"
10780             "FLDCW  std/24-bit mode\n\t"
10781             "POP    EAX\n\t"
10782             "CMP    EAX,0x80000000\n\t"
10783             "JNE,s  fast\n\t"
10784             "FLD_D  $src\n\t"
10785             "CALL   d2i_wrapper\n"
10786       "fast:" %}
10787   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
10788   ins_pipe( pipe_slow );
10789 %}
10790 
10791 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10792 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10793   predicate(UseSSE>=2);
10794   match(Set dst (ConvD2I src));
10795   effect( KILL tmp, KILL cr );
10796   format %{ "CVTTSD2SI $dst, $src\n\t"
10797             "CMP    $dst,0x80000000\n\t"
10798             "JNE,s  fast\n\t"
10799             "SUB    ESP, 8\n\t"
10800             "MOVSD  [ESP], $src\n\t"
10801             "FLD_D  [ESP]\n\t"
10802             "ADD    ESP, 8\n\t"
10803             "CALL   d2i_wrapper\n"
10804       "fast:" %}
10805   ins_encode %{
10806     Label fast;
10807     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10808     __ cmpl($dst$$Register, 0x80000000);
10809     __ jccb(Assembler::notEqual, fast);
10810     __ subptr(rsp, 8);
10811     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10812     __ fld_d(Address(rsp, 0));
10813     __ addptr(rsp, 8);
10814     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10815     __ bind(fast);
10816   %}
10817   ins_pipe( pipe_slow );
10818 %}
10819 
10820 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
10821   predicate(UseSSE<=1);
10822   match(Set dst (ConvD2L src));
10823   effect( KILL cr );
10824   format %{ "FLD    $src\t# Convert double to long\n\t"
10825             "FLDCW  trunc mode\n\t"
10826             "SUB    ESP,8\n\t"
10827             "FISTp  [ESP + #0]\n\t"
10828             "FLDCW  std/24-bit mode\n\t"
10829             "POP    EAX\n\t"
10830             "POP    EDX\n\t"
10831             "CMP    EDX,0x80000000\n\t"
10832             "JNE,s  fast\n\t"
10833             "TEST   EAX,EAX\n\t"
10834             "JNE,s  fast\n\t"
10835             "FLD    $src\n\t"
10836             "CALL   d2l_wrapper\n"
10837       "fast:" %}
10838   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
10839   ins_pipe( pipe_slow );
10840 %}
10841 
10842 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10843 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10844   predicate (UseSSE>=2);
10845   match(Set dst (ConvD2L src));
10846   effect( KILL cr );
10847   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10848             "MOVSD  [ESP],$src\n\t"
10849             "FLD_D  [ESP]\n\t"
10850             "FLDCW  trunc mode\n\t"
10851             "FISTp  [ESP + #0]\n\t"
10852             "FLDCW  std/24-bit mode\n\t"
10853             "POP    EAX\n\t"
10854             "POP    EDX\n\t"
10855             "CMP    EDX,0x80000000\n\t"
10856             "JNE,s  fast\n\t"
10857             "TEST   EAX,EAX\n\t"
10858             "JNE,s  fast\n\t"
10859             "SUB    ESP,8\n\t"
10860             "MOVSD  [ESP],$src\n\t"
10861             "FLD_D  [ESP]\n\t"
10862             "ADD    ESP,8\n\t"
10863             "CALL   d2l_wrapper\n"
10864       "fast:" %}
10865   ins_encode %{
10866     Label fast;
10867     __ subptr(rsp, 8);
10868     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10869     __ fld_d(Address(rsp, 0));
10870     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
10871     __ fistp_d(Address(rsp, 0));
10872     // Restore the rounding mode, mask the exception
10873     if (Compile::current()->in_24_bit_fp_mode()) {
10874       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
10875     } else {
10876       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
10877     }
10878     // Load the converted long, adjust CPU stack
10879     __ pop(rax);
10880     __ pop(rdx);
10881     __ cmpl(rdx, 0x80000000);
10882     __ jccb(Assembler::notEqual, fast);
10883     __ testl(rax, rax);
10884     __ jccb(Assembler::notEqual, fast);
10885     __ subptr(rsp, 8);
10886     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10887     __ fld_d(Address(rsp, 0));
10888     __ addptr(rsp, 8);
10889     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
10890     __ bind(fast);
10891   %}
10892   ins_pipe( pipe_slow );
10893 %}
10894 
10895 // Convert a double to an int.  Java semantics require we do complex
10896 // manglations in the corner cases.  So we set the rounding mode to
10897 // 'zero', store the darned double down as an int, and reset the
10898 // rounding mode to 'nearest'.  The hardware stores a flag value down
10899 // if we would overflow or converted a NAN; we check for this and
10900 // and go the slow path if needed.
10901 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
10902   predicate(UseSSE==0);
10903   match(Set dst (ConvF2I src));
10904   effect( KILL tmp, KILL cr );
10905   format %{ "FLD    $src\t# Convert float to int \n\t"
10906             "FLDCW  trunc mode\n\t"
10907             "SUB    ESP,4\n\t"
10908             "FISTp  [ESP + #0]\n\t"
10909             "FLDCW  std/24-bit mode\n\t"
10910             "POP    EAX\n\t"
10911             "CMP    EAX,0x80000000\n\t"
10912             "JNE,s  fast\n\t"
10913             "FLD    $src\n\t"
10914             "CALL   d2i_wrapper\n"
10915       "fast:" %}
10916   // DPR2I_encoding works for FPR2I
10917   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
10918   ins_pipe( pipe_slow );
10919 %}
10920 
10921 // Convert a float in xmm to an int reg.
10922 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
10923   predicate(UseSSE>=1);
10924   match(Set dst (ConvF2I src));
10925   effect( KILL tmp, KILL cr );
10926   format %{ "CVTTSS2SI $dst, $src\n\t"
10927             "CMP    $dst,0x80000000\n\t"
10928             "JNE,s  fast\n\t"
10929             "SUB    ESP, 4\n\t"
10930             "MOVSS  [ESP], $src\n\t"
10931             "FLD    [ESP]\n\t"
10932             "ADD    ESP, 4\n\t"
10933             "CALL   d2i_wrapper\n"
10934       "fast:" %}
10935   ins_encode %{
10936     Label fast;
10937     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
10938     __ cmpl($dst$$Register, 0x80000000);
10939     __ jccb(Assembler::notEqual, fast);
10940     __ subptr(rsp, 4);
10941     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10942     __ fld_s(Address(rsp, 0));
10943     __ addptr(rsp, 4);
10944     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10945     __ bind(fast);
10946   %}
10947   ins_pipe( pipe_slow );
10948 %}
10949 
10950 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
10951   predicate(UseSSE==0);
10952   match(Set dst (ConvF2L src));
10953   effect( KILL cr );
10954   format %{ "FLD    $src\t# Convert float to long\n\t"
10955             "FLDCW  trunc mode\n\t"
10956             "SUB    ESP,8\n\t"
10957             "FISTp  [ESP + #0]\n\t"
10958             "FLDCW  std/24-bit mode\n\t"
10959             "POP    EAX\n\t"
10960             "POP    EDX\n\t"
10961             "CMP    EDX,0x80000000\n\t"
10962             "JNE,s  fast\n\t"
10963             "TEST   EAX,EAX\n\t"
10964             "JNE,s  fast\n\t"
10965             "FLD    $src\n\t"
10966             "CALL   d2l_wrapper\n"
10967       "fast:" %}
10968   // DPR2L_encoding works for FPR2L
10969   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
10970   ins_pipe( pipe_slow );
10971 %}
10972 
10973 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10974 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
10975   predicate (UseSSE>=1);
10976   match(Set dst (ConvF2L src));
10977   effect( KILL cr );
10978   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
10979             "MOVSS  [ESP],$src\n\t"
10980             "FLD_S  [ESP]\n\t"
10981             "FLDCW  trunc mode\n\t"
10982             "FISTp  [ESP + #0]\n\t"
10983             "FLDCW  std/24-bit mode\n\t"
10984             "POP    EAX\n\t"
10985             "POP    EDX\n\t"
10986             "CMP    EDX,0x80000000\n\t"
10987             "JNE,s  fast\n\t"
10988             "TEST   EAX,EAX\n\t"
10989             "JNE,s  fast\n\t"
10990             "SUB    ESP,4\t# Convert float to long\n\t"
10991             "MOVSS  [ESP],$src\n\t"
10992             "FLD_S  [ESP]\n\t"
10993             "ADD    ESP,4\n\t"
10994             "CALL   d2l_wrapper\n"
10995       "fast:" %}
10996   ins_encode %{
10997     Label fast;
10998     __ subptr(rsp, 8);
10999     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11000     __ fld_s(Address(rsp, 0));
11001     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11002     __ fistp_d(Address(rsp, 0));
11003     // Restore the rounding mode, mask the exception
11004     if (Compile::current()->in_24_bit_fp_mode()) {
11005       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11006     } else {
11007       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11008     }
11009     // Load the converted long, adjust CPU stack
11010     __ pop(rax);
11011     __ pop(rdx);
11012     __ cmpl(rdx, 0x80000000);
11013     __ jccb(Assembler::notEqual, fast);
11014     __ testl(rax, rax);
11015     __ jccb(Assembler::notEqual, fast);
11016     __ subptr(rsp, 4);
11017     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11018     __ fld_s(Address(rsp, 0));
11019     __ addptr(rsp, 4);
11020     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11021     __ bind(fast);
11022   %}
11023   ins_pipe( pipe_slow );
11024 %}
11025 
11026 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11027   predicate( UseSSE<=1 );
11028   match(Set dst (ConvI2D src));
11029   format %{ "FILD   $src\n\t"
11030             "FSTP   $dst" %}
11031   opcode(0xDB, 0x0);  /* DB /0 */
11032   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11033   ins_pipe( fpu_reg_mem );
11034 %}
11035 
11036 instruct convI2D_reg(regD dst, rRegI src) %{
11037   predicate( UseSSE>=2 && !UseXmmI2D );
11038   match(Set dst (ConvI2D src));
11039   format %{ "CVTSI2SD $dst,$src" %}
11040   ins_encode %{
11041     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11042   %}
11043   ins_pipe( pipe_slow );
11044 %}
11045 
11046 instruct convI2D_mem(regD dst, memory mem) %{
11047   predicate( UseSSE>=2 );
11048   match(Set dst (ConvI2D (LoadI mem)));
11049   format %{ "CVTSI2SD $dst,$mem" %}
11050   ins_encode %{
11051     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11052   %}
11053   ins_pipe( pipe_slow );
11054 %}
11055 
11056 instruct convXI2D_reg(regD dst, rRegI src)
11057 %{
11058   predicate( UseSSE>=2 && UseXmmI2D );
11059   match(Set dst (ConvI2D src));
11060 
11061   format %{ "MOVD  $dst,$src\n\t"
11062             "CVTDQ2PD $dst,$dst\t# i2d" %}
11063   ins_encode %{
11064     __ movdl($dst$$XMMRegister, $src$$Register);
11065     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11066   %}
11067   ins_pipe(pipe_slow); // XXX
11068 %}
11069 
11070 instruct convI2DPR_mem(regDPR dst, memory mem) %{
11071   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11072   match(Set dst (ConvI2D (LoadI mem)));
11073   format %{ "FILD   $mem\n\t"
11074             "FSTP   $dst" %}
11075   opcode(0xDB);      /* DB /0 */
11076   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11077               Pop_Reg_DPR(dst));
11078   ins_pipe( fpu_reg_mem );
11079 %}
11080 
11081 // Convert a byte to a float; no rounding step needed.
11082 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11083   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11084   match(Set dst (ConvI2F src));
11085   format %{ "FILD   $src\n\t"
11086             "FSTP   $dst" %}
11087 
11088   opcode(0xDB, 0x0);  /* DB /0 */
11089   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11090   ins_pipe( fpu_reg_mem );
11091 %}
11092 
11093 // In 24-bit mode, force exponent rounding by storing back out
11094 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11095   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11096   match(Set dst (ConvI2F src));
11097   ins_cost(200);
11098   format %{ "FILD   $src\n\t"
11099             "FSTP_S $dst" %}
11100   opcode(0xDB, 0x0);  /* DB /0 */
11101   ins_encode( Push_Mem_I(src),
11102               Pop_Mem_FPR(dst));
11103   ins_pipe( fpu_mem_mem );
11104 %}
11105 
11106 // In 24-bit mode, force exponent rounding by storing back out
11107 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11108   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11109   match(Set dst (ConvI2F (LoadI mem)));
11110   ins_cost(200);
11111   format %{ "FILD   $mem\n\t"
11112             "FSTP_S $dst" %}
11113   opcode(0xDB);  /* DB /0 */
11114   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11115               Pop_Mem_FPR(dst));
11116   ins_pipe( fpu_mem_mem );
11117 %}
11118 
11119 // This instruction does not round to 24-bits
11120 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11121   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11122   match(Set dst (ConvI2F src));
11123   format %{ "FILD   $src\n\t"
11124             "FSTP   $dst" %}
11125   opcode(0xDB, 0x0);  /* DB /0 */
11126   ins_encode( Push_Mem_I(src),
11127               Pop_Reg_FPR(dst));
11128   ins_pipe( fpu_reg_mem );
11129 %}
11130 
11131 // This instruction does not round to 24-bits
11132 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11133   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11134   match(Set dst (ConvI2F (LoadI mem)));
11135   format %{ "FILD   $mem\n\t"
11136             "FSTP   $dst" %}
11137   opcode(0xDB);      /* DB /0 */
11138   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11139               Pop_Reg_FPR(dst));
11140   ins_pipe( fpu_reg_mem );
11141 %}
11142 
11143 // Convert an int to a float in xmm; no rounding step needed.
11144 instruct convI2F_reg(regF dst, rRegI src) %{
11145   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11146   match(Set dst (ConvI2F src));
11147   format %{ "CVTSI2SS $dst, $src" %}
11148   ins_encode %{
11149     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11150   %}
11151   ins_pipe( pipe_slow );
11152 %}
11153 
11154  instruct convXI2F_reg(regF dst, rRegI src)
11155 %{
11156   predicate( UseSSE>=2 && UseXmmI2F );
11157   match(Set dst (ConvI2F src));
11158 
11159   format %{ "MOVD  $dst,$src\n\t"
11160             "CVTDQ2PS $dst,$dst\t# i2f" %}
11161   ins_encode %{
11162     __ movdl($dst$$XMMRegister, $src$$Register);
11163     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11164   %}
11165   ins_pipe(pipe_slow); // XXX
11166 %}
11167 
11168 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11169   match(Set dst (ConvI2L src));
11170   effect(KILL cr);
11171   ins_cost(375);
11172   format %{ "MOV    $dst.lo,$src\n\t"
11173             "MOV    $dst.hi,$src\n\t"
11174             "SAR    $dst.hi,31" %}
11175   ins_encode(convert_int_long(dst,src));
11176   ins_pipe( ialu_reg_reg_long );
11177 %}
11178 
11179 // Zero-extend convert int to long
11180 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11181   match(Set dst (AndL (ConvI2L src) mask) );
11182   effect( KILL flags );
11183   ins_cost(250);
11184   format %{ "MOV    $dst.lo,$src\n\t"
11185             "XOR    $dst.hi,$dst.hi" %}
11186   opcode(0x33); // XOR
11187   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11188   ins_pipe( ialu_reg_reg_long );
11189 %}
11190 
11191 // Zero-extend long
11192 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11193   match(Set dst (AndL src mask) );
11194   effect( KILL flags );
11195   ins_cost(250);
11196   format %{ "MOV    $dst.lo,$src.lo\n\t"
11197             "XOR    $dst.hi,$dst.hi\n\t" %}
11198   opcode(0x33); // XOR
11199   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11200   ins_pipe( ialu_reg_reg_long );
11201 %}
11202 
11203 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11204   predicate (UseSSE<=1);
11205   match(Set dst (ConvL2D src));
11206   effect( KILL cr );
11207   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11208             "PUSH   $src.lo\n\t"
11209             "FILD   ST,[ESP + #0]\n\t"
11210             "ADD    ESP,8\n\t"
11211             "FSTP_D $dst\t# D-round" %}
11212   opcode(0xDF, 0x5);  /* DF /5 */
11213   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11214   ins_pipe( pipe_slow );
11215 %}
11216 
11217 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11218   predicate (UseSSE>=2);
11219   match(Set dst (ConvL2D src));
11220   effect( KILL cr );
11221   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11222             "PUSH   $src.lo\n\t"
11223             "FILD_D [ESP]\n\t"
11224             "FSTP_D [ESP]\n\t"
11225             "MOVSD  $dst,[ESP]\n\t"
11226             "ADD    ESP,8" %}
11227   opcode(0xDF, 0x5);  /* DF /5 */
11228   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11229   ins_pipe( pipe_slow );
11230 %}
11231 
11232 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11233   predicate (UseSSE>=1);
11234   match(Set dst (ConvL2F src));
11235   effect( KILL cr );
11236   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11237             "PUSH   $src.lo\n\t"
11238             "FILD_D [ESP]\n\t"
11239             "FSTP_S [ESP]\n\t"
11240             "MOVSS  $dst,[ESP]\n\t"
11241             "ADD    ESP,8" %}
11242   opcode(0xDF, 0x5);  /* DF /5 */
11243   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11244   ins_pipe( pipe_slow );
11245 %}
11246 
11247 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11248   match(Set dst (ConvL2F src));
11249   effect( KILL cr );
11250   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11251             "PUSH   $src.lo\n\t"
11252             "FILD   ST,[ESP + #0]\n\t"
11253             "ADD    ESP,8\n\t"
11254             "FSTP_S $dst\t# F-round" %}
11255   opcode(0xDF, 0x5);  /* DF /5 */
11256   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11257   ins_pipe( pipe_slow );
11258 %}
11259 
11260 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11261   match(Set dst (ConvL2I src));
11262   effect( DEF dst, USE src );
11263   format %{ "MOV    $dst,$src.lo" %}
11264   ins_encode(enc_CopyL_Lo(dst,src));
11265   ins_pipe( ialu_reg_reg );
11266 %}
11267 
11268 
11269 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11270   match(Set dst (MoveF2I src));
11271   effect( DEF dst, USE src );
11272   ins_cost(100);
11273   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11274   ins_encode %{
11275     __ movl($dst$$Register, Address(rsp, $src$$disp));
11276   %}
11277   ins_pipe( ialu_reg_mem );
11278 %}
11279 
11280 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11281   predicate(UseSSE==0);
11282   match(Set dst (MoveF2I src));
11283   effect( DEF dst, USE src );
11284 
11285   ins_cost(125);
11286   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11287   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11288   ins_pipe( fpu_mem_reg );
11289 %}
11290 
11291 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11292   predicate(UseSSE>=1);
11293   match(Set dst (MoveF2I src));
11294   effect( DEF dst, USE src );
11295 
11296   ins_cost(95);
11297   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11298   ins_encode %{
11299     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11300   %}
11301   ins_pipe( pipe_slow );
11302 %}
11303 
11304 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11305   predicate(UseSSE>=2);
11306   match(Set dst (MoveF2I src));
11307   effect( DEF dst, USE src );
11308   ins_cost(85);
11309   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11310   ins_encode %{
11311     __ movdl($dst$$Register, $src$$XMMRegister);
11312   %}
11313   ins_pipe( pipe_slow );
11314 %}
11315 
11316 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11317   match(Set dst (MoveI2F src));
11318   effect( DEF dst, USE src );
11319 
11320   ins_cost(100);
11321   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11322   ins_encode %{
11323     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11324   %}
11325   ins_pipe( ialu_mem_reg );
11326 %}
11327 
11328 
11329 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11330   predicate(UseSSE==0);
11331   match(Set dst (MoveI2F src));
11332   effect(DEF dst, USE src);
11333 
11334   ins_cost(125);
11335   format %{ "FLD_S  $src\n\t"
11336             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11337   opcode(0xD9);               /* D9 /0, FLD m32real */
11338   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11339               Pop_Reg_FPR(dst) );
11340   ins_pipe( fpu_reg_mem );
11341 %}
11342 
11343 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11344   predicate(UseSSE>=1);
11345   match(Set dst (MoveI2F src));
11346   effect( DEF dst, USE src );
11347 
11348   ins_cost(95);
11349   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11350   ins_encode %{
11351     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11352   %}
11353   ins_pipe( pipe_slow );
11354 %}
11355 
11356 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11357   predicate(UseSSE>=2);
11358   match(Set dst (MoveI2F src));
11359   effect( DEF dst, USE src );
11360 
11361   ins_cost(85);
11362   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11363   ins_encode %{
11364     __ movdl($dst$$XMMRegister, $src$$Register);
11365   %}
11366   ins_pipe( pipe_slow );
11367 %}
11368 
11369 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11370   match(Set dst (MoveD2L src));
11371   effect(DEF dst, USE src);
11372 
11373   ins_cost(250);
11374   format %{ "MOV    $dst.lo,$src\n\t"
11375             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11376   opcode(0x8B, 0x8B);
11377   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11378   ins_pipe( ialu_mem_long_reg );
11379 %}
11380 
11381 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11382   predicate(UseSSE<=1);
11383   match(Set dst (MoveD2L src));
11384   effect(DEF dst, USE src);
11385 
11386   ins_cost(125);
11387   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11388   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11389   ins_pipe( fpu_mem_reg );
11390 %}
11391 
11392 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11393   predicate(UseSSE>=2);
11394   match(Set dst (MoveD2L src));
11395   effect(DEF dst, USE src);
11396   ins_cost(95);
11397   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11398   ins_encode %{
11399     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11400   %}
11401   ins_pipe( pipe_slow );
11402 %}
11403 
11404 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11405   predicate(UseSSE>=2);
11406   match(Set dst (MoveD2L src));
11407   effect(DEF dst, USE src, TEMP tmp);
11408   ins_cost(85);
11409   format %{ "MOVD   $dst.lo,$src\n\t"
11410             "PSHUFLW $tmp,$src,0x4E\n\t"
11411             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11412   ins_encode %{
11413     __ movdl($dst$$Register, $src$$XMMRegister);
11414     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11415     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11416   %}
11417   ins_pipe( pipe_slow );
11418 %}
11419 
11420 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11421   match(Set dst (MoveL2D src));
11422   effect(DEF dst, USE src);
11423 
11424   ins_cost(200);
11425   format %{ "MOV    $dst,$src.lo\n\t"
11426             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11427   opcode(0x89, 0x89);
11428   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11429   ins_pipe( ialu_mem_long_reg );
11430 %}
11431 
11432 
11433 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11434   predicate(UseSSE<=1);
11435   match(Set dst (MoveL2D src));
11436   effect(DEF dst, USE src);
11437   ins_cost(125);
11438 
11439   format %{ "FLD_D  $src\n\t"
11440             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11441   opcode(0xDD);               /* DD /0, FLD m64real */
11442   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11443               Pop_Reg_DPR(dst) );
11444   ins_pipe( fpu_reg_mem );
11445 %}
11446 
11447 
11448 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11449   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11450   match(Set dst (MoveL2D src));
11451   effect(DEF dst, USE src);
11452 
11453   ins_cost(95);
11454   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11455   ins_encode %{
11456     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11457   %}
11458   ins_pipe( pipe_slow );
11459 %}
11460 
11461 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11462   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11463   match(Set dst (MoveL2D src));
11464   effect(DEF dst, USE src);
11465 
11466   ins_cost(95);
11467   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11468   ins_encode %{
11469     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11470   %}
11471   ins_pipe( pipe_slow );
11472 %}
11473 
11474 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11475   predicate(UseSSE>=2);
11476   match(Set dst (MoveL2D src));
11477   effect(TEMP dst, USE src, TEMP tmp);
11478   ins_cost(85);
11479   format %{ "MOVD   $dst,$src.lo\n\t"
11480             "MOVD   $tmp,$src.hi\n\t"
11481             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11482   ins_encode %{
11483     __ movdl($dst$$XMMRegister, $src$$Register);
11484     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11485     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11486   %}
11487   ins_pipe( pipe_slow );
11488 %}
11489 
11490 
11491 // =======================================================================
11492 // fast clearing of an array
11493 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11494   predicate(!UseFastStosb);
11495   match(Set dummy (ClearArray cnt base));
11496   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11497   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11498             "SHL    ECX,1\t# Convert doublewords to words\n\t"
11499             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11500   ins_encode %{ 
11501     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11502   %}
11503   ins_pipe( pipe_slow );
11504 %}
11505 
11506 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11507   predicate(UseFastStosb);
11508   match(Set dummy (ClearArray cnt base));
11509   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11510   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11511             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
11512             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
11513   ins_encode %{ 
11514     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11515   %}
11516   ins_pipe( pipe_slow );
11517 %}
11518 
11519 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11520                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
11521   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11522   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11523 
11524   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11525   ins_encode %{
11526     __ string_compare($str1$$Register, $str2$$Register,
11527                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11528                       $tmp1$$XMMRegister);
11529   %}
11530   ins_pipe( pipe_slow );
11531 %}
11532 
11533 // fast string equals
11534 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11535                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11536   match(Set result (StrEquals (Binary str1 str2) cnt));
11537   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11538 
11539   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11540   ins_encode %{
11541     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11542                           $cnt$$Register, $result$$Register, $tmp3$$Register,
11543                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11544   %}
11545   ins_pipe( pipe_slow );
11546 %}
11547 
11548 // fast search of substring with known size.
11549 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11550                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11551   predicate(UseSSE42Intrinsics);
11552   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11553   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11554 
11555   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11556   ins_encode %{
11557     int icnt2 = (int)$int_cnt2$$constant;
11558     if (icnt2 >= 8) {
11559       // IndexOf for constant substrings with size >= 8 elements
11560       // which don't need to be loaded through stack.
11561       __ string_indexofC8($str1$$Register, $str2$$Register,
11562                           $cnt1$$Register, $cnt2$$Register,
11563                           icnt2, $result$$Register,
11564                           $vec$$XMMRegister, $tmp$$Register);
11565     } else {
11566       // Small strings are loaded through stack if they cross page boundary.
11567       __ string_indexof($str1$$Register, $str2$$Register,
11568                         $cnt1$$Register, $cnt2$$Register,
11569                         icnt2, $result$$Register,
11570                         $vec$$XMMRegister, $tmp$$Register);
11571     }
11572   %}
11573   ins_pipe( pipe_slow );
11574 %}
11575 
11576 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11577                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11578   predicate(UseSSE42Intrinsics);
11579   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11580   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11581 
11582   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11583   ins_encode %{
11584     __ string_indexof($str1$$Register, $str2$$Register,
11585                       $cnt1$$Register, $cnt2$$Register,
11586                       (-1), $result$$Register,
11587                       $vec$$XMMRegister, $tmp$$Register);
11588   %}
11589   ins_pipe( pipe_slow );
11590 %}
11591 
11592 // fast array equals
11593 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11594                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11595 %{
11596   match(Set result (AryEq ary1 ary2));
11597   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11598   //ins_cost(300);
11599 
11600   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11601   ins_encode %{
11602     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11603                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
11604                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11605   %}
11606   ins_pipe( pipe_slow );
11607 %}
11608 
11609 // encode char[] to byte[] in ISO_8859_1
11610 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
11611                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11612                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
11613   match(Set result (EncodeISOArray src (Binary dst len)));
11614   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11615 
11616   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
11617   ins_encode %{
11618     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11619                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11620                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11621   %}
11622   ins_pipe( pipe_slow );
11623 %}
11624 
11625 
11626 //----------Control Flow Instructions------------------------------------------
11627 // Signed compare Instructions
11628 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11629   match(Set cr (CmpI op1 op2));
11630   effect( DEF cr, USE op1, USE op2 );
11631   format %{ "CMP    $op1,$op2" %}
11632   opcode(0x3B);  /* Opcode 3B /r */
11633   ins_encode( OpcP, RegReg( op1, op2) );
11634   ins_pipe( ialu_cr_reg_reg );
11635 %}
11636 
11637 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11638   match(Set cr (CmpI op1 op2));
11639   effect( DEF cr, USE op1 );
11640   format %{ "CMP    $op1,$op2" %}
11641   opcode(0x81,0x07);  /* Opcode 81 /7 */
11642   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11643   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11644   ins_pipe( ialu_cr_reg_imm );
11645 %}
11646 
11647 // Cisc-spilled version of cmpI_eReg
11648 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11649   match(Set cr (CmpI op1 (LoadI op2)));
11650 
11651   format %{ "CMP    $op1,$op2" %}
11652   ins_cost(500);
11653   opcode(0x3B);  /* Opcode 3B /r */
11654   ins_encode( OpcP, RegMem( op1, op2) );
11655   ins_pipe( ialu_cr_reg_mem );
11656 %}
11657 
11658 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11659   match(Set cr (CmpI src zero));
11660   effect( DEF cr, USE src );
11661 
11662   format %{ "TEST   $src,$src" %}
11663   opcode(0x85);
11664   ins_encode( OpcP, RegReg( src, src ) );
11665   ins_pipe( ialu_cr_reg_imm );
11666 %}
11667 
11668 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11669   match(Set cr (CmpI (AndI src con) zero));
11670 
11671   format %{ "TEST   $src,$con" %}
11672   opcode(0xF7,0x00);
11673   ins_encode( OpcP, RegOpc(src), Con32(con) );
11674   ins_pipe( ialu_cr_reg_imm );
11675 %}
11676 
11677 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11678   match(Set cr (CmpI (AndI src mem) zero));
11679 
11680   format %{ "TEST   $src,$mem" %}
11681   opcode(0x85);
11682   ins_encode( OpcP, RegMem( src, mem ) );
11683   ins_pipe( ialu_cr_reg_mem );
11684 %}
11685 
11686 // Unsigned compare Instructions; really, same as signed except they
11687 // produce an eFlagsRegU instead of eFlagsReg.
11688 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11689   match(Set cr (CmpU op1 op2));
11690 
11691   format %{ "CMPu   $op1,$op2" %}
11692   opcode(0x3B);  /* Opcode 3B /r */
11693   ins_encode( OpcP, RegReg( op1, op2) );
11694   ins_pipe( ialu_cr_reg_reg );
11695 %}
11696 
11697 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11698   match(Set cr (CmpU op1 op2));
11699 
11700   format %{ "CMPu   $op1,$op2" %}
11701   opcode(0x81,0x07);  /* Opcode 81 /7 */
11702   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11703   ins_pipe( ialu_cr_reg_imm );
11704 %}
11705 
11706 // // Cisc-spilled version of cmpU_eReg
11707 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11708   match(Set cr (CmpU op1 (LoadI op2)));
11709 
11710   format %{ "CMPu   $op1,$op2" %}
11711   ins_cost(500);
11712   opcode(0x3B);  /* Opcode 3B /r */
11713   ins_encode( OpcP, RegMem( op1, op2) );
11714   ins_pipe( ialu_cr_reg_mem );
11715 %}
11716 
11717 // // Cisc-spilled version of cmpU_eReg
11718 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11719 //  match(Set cr (CmpU (LoadI op1) op2));
11720 //
11721 //  format %{ "CMPu   $op1,$op2" %}
11722 //  ins_cost(500);
11723 //  opcode(0x39);  /* Opcode 39 /r */
11724 //  ins_encode( OpcP, RegMem( op1, op2) );
11725 //%}
11726 
11727 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11728   match(Set cr (CmpU src zero));
11729 
11730   format %{ "TESTu  $src,$src" %}
11731   opcode(0x85);
11732   ins_encode( OpcP, RegReg( src, src ) );
11733   ins_pipe( ialu_cr_reg_imm );
11734 %}
11735 
11736 // Unsigned pointer compare Instructions
11737 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11738   match(Set cr (CmpP op1 op2));
11739 
11740   format %{ "CMPu   $op1,$op2" %}
11741   opcode(0x3B);  /* Opcode 3B /r */
11742   ins_encode( OpcP, RegReg( op1, op2) );
11743   ins_pipe( ialu_cr_reg_reg );
11744 %}
11745 
11746 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11747   match(Set cr (CmpP op1 op2));
11748 
11749   format %{ "CMPu   $op1,$op2" %}
11750   opcode(0x81,0x07);  /* Opcode 81 /7 */
11751   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11752   ins_pipe( ialu_cr_reg_imm );
11753 %}
11754 
11755 // // Cisc-spilled version of cmpP_eReg
11756 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11757   match(Set cr (CmpP op1 (LoadP op2)));
11758 
11759   format %{ "CMPu   $op1,$op2" %}
11760   ins_cost(500);
11761   opcode(0x3B);  /* Opcode 3B /r */
11762   ins_encode( OpcP, RegMem( op1, op2) );
11763   ins_pipe( ialu_cr_reg_mem );
11764 %}
11765 
11766 // // Cisc-spilled version of cmpP_eReg
11767 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11768 //  match(Set cr (CmpP (LoadP op1) op2));
11769 //
11770 //  format %{ "CMPu   $op1,$op2" %}
11771 //  ins_cost(500);
11772 //  opcode(0x39);  /* Opcode 39 /r */
11773 //  ins_encode( OpcP, RegMem( op1, op2) );
11774 //%}
11775 
11776 // Compare raw pointer (used in out-of-heap check).
11777 // Only works because non-oop pointers must be raw pointers
11778 // and raw pointers have no anti-dependencies.
11779 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11780   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
11781   match(Set cr (CmpP op1 (LoadP op2)));
11782 
11783   format %{ "CMPu   $op1,$op2" %}
11784   opcode(0x3B);  /* Opcode 3B /r */
11785   ins_encode( OpcP, RegMem( op1, op2) );
11786   ins_pipe( ialu_cr_reg_mem );
11787 %}
11788 
11789 //
11790 // This will generate a signed flags result. This should be ok
11791 // since any compare to a zero should be eq/neq.
11792 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11793   match(Set cr (CmpP src zero));
11794 
11795   format %{ "TEST   $src,$src" %}
11796   opcode(0x85);
11797   ins_encode( OpcP, RegReg( src, src ) );
11798   ins_pipe( ialu_cr_reg_imm );
11799 %}
11800 
11801 // Cisc-spilled version of testP_reg
11802 // This will generate a signed flags result. This should be ok
11803 // since any compare to a zero should be eq/neq.
11804 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11805   match(Set cr (CmpP (LoadP op) zero));
11806 
11807   format %{ "TEST   $op,0xFFFFFFFF" %}
11808   ins_cost(500);
11809   opcode(0xF7);               /* Opcode F7 /0 */
11810   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11811   ins_pipe( ialu_cr_reg_imm );
11812 %}
11813 
11814 // Yanked all unsigned pointer compare operations.
11815 // Pointer compares are done with CmpP which is already unsigned.
11816 
11817 //----------Max and Min--------------------------------------------------------
11818 // Min Instructions
11819 ////
11820 //   *** Min and Max using the conditional move are slower than the
11821 //   *** branch version on a Pentium III.
11822 // // Conditional move for min
11823 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11824 //  effect( USE_DEF op2, USE op1, USE cr );
11825 //  format %{ "CMOVlt $op2,$op1\t! min" %}
11826 //  opcode(0x4C,0x0F);
11827 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11828 //  ins_pipe( pipe_cmov_reg );
11829 //%}
11830 //
11831 //// Min Register with Register (P6 version)
11832 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
11833 //  predicate(VM_Version::supports_cmov() );
11834 //  match(Set op2 (MinI op1 op2));
11835 //  ins_cost(200);
11836 //  expand %{
11837 //    eFlagsReg cr;
11838 //    compI_eReg(cr,op1,op2);
11839 //    cmovI_reg_lt(op2,op1,cr);
11840 //  %}
11841 //%}
11842 
11843 // Min Register with Register (generic version)
11844 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11845   match(Set dst (MinI dst src));
11846   effect(KILL flags);
11847   ins_cost(300);
11848 
11849   format %{ "MIN    $dst,$src" %}
11850   opcode(0xCC);
11851   ins_encode( min_enc(dst,src) );
11852   ins_pipe( pipe_slow );
11853 %}
11854 
11855 // Max Register with Register
11856 //   *** Min and Max using the conditional move are slower than the
11857 //   *** branch version on a Pentium III.
11858 // // Conditional move for max
11859 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11860 //  effect( USE_DEF op2, USE op1, USE cr );
11861 //  format %{ "CMOVgt $op2,$op1\t! max" %}
11862 //  opcode(0x4F,0x0F);
11863 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11864 //  ins_pipe( pipe_cmov_reg );
11865 //%}
11866 //
11867 // // Max Register with Register (P6 version)
11868 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
11869 //  predicate(VM_Version::supports_cmov() );
11870 //  match(Set op2 (MaxI op1 op2));
11871 //  ins_cost(200);
11872 //  expand %{
11873 //    eFlagsReg cr;
11874 //    compI_eReg(cr,op1,op2);
11875 //    cmovI_reg_gt(op2,op1,cr);
11876 //  %}
11877 //%}
11878 
11879 // Max Register with Register (generic version)
11880 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11881   match(Set dst (MaxI dst src));
11882   effect(KILL flags);
11883   ins_cost(300);
11884 
11885   format %{ "MAX    $dst,$src" %}
11886   opcode(0xCC);
11887   ins_encode( max_enc(dst,src) );
11888   ins_pipe( pipe_slow );
11889 %}
11890 
11891 // ============================================================================
11892 // Counted Loop limit node which represents exact final iterator value.
11893 // Note: the resulting value should fit into integer range since
11894 // counted loops have limit check on overflow.
11895 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
11896   match(Set limit (LoopLimit (Binary init limit) stride));
11897   effect(TEMP limit_hi, TEMP tmp, KILL flags);
11898   ins_cost(300);
11899 
11900   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
11901   ins_encode %{
11902     int strd = (int)$stride$$constant;
11903     assert(strd != 1 && strd != -1, "sanity");
11904     int m1 = (strd > 0) ? 1 : -1;
11905     // Convert limit to long (EAX:EDX)
11906     __ cdql();
11907     // Convert init to long (init:tmp)
11908     __ movl($tmp$$Register, $init$$Register);
11909     __ sarl($tmp$$Register, 31);
11910     // $limit - $init
11911     __ subl($limit$$Register, $init$$Register);
11912     __ sbbl($limit_hi$$Register, $tmp$$Register);
11913     // + ($stride - 1)
11914     if (strd > 0) {
11915       __ addl($limit$$Register, (strd - 1));
11916       __ adcl($limit_hi$$Register, 0);
11917       __ movl($tmp$$Register, strd);
11918     } else {
11919       __ addl($limit$$Register, (strd + 1));
11920       __ adcl($limit_hi$$Register, -1);
11921       __ lneg($limit_hi$$Register, $limit$$Register);
11922       __ movl($tmp$$Register, -strd);
11923     }
11924     // signed devision: (EAX:EDX) / pos_stride
11925     __ idivl($tmp$$Register);
11926     if (strd < 0) {
11927       // restore sign
11928       __ negl($tmp$$Register);
11929     }
11930     // (EAX) * stride
11931     __ mull($tmp$$Register);
11932     // + init (ignore upper bits)
11933     __ addl($limit$$Register, $init$$Register);
11934   %}
11935   ins_pipe( pipe_slow );
11936 %}
11937 
11938 // ============================================================================
11939 // Branch Instructions
11940 // Jump Table
11941 instruct jumpXtnd(rRegI switch_val) %{
11942   match(Jump switch_val);
11943   ins_cost(350);
11944   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
11945   ins_encode %{
11946     // Jump to Address(table_base + switch_reg)
11947     Address index(noreg, $switch_val$$Register, Address::times_1);
11948     __ jump(ArrayAddress($constantaddress, index));
11949   %}
11950   ins_pipe(pipe_jmp);
11951 %}
11952 
11953 // Jump Direct - Label defines a relative address from JMP+1
11954 instruct jmpDir(label labl) %{
11955   match(Goto);
11956   effect(USE labl);
11957 
11958   ins_cost(300);
11959   format %{ "JMP    $labl" %}
11960   size(5);
11961   ins_encode %{
11962     Label* L = $labl$$label;
11963     __ jmp(*L, false); // Always long jump
11964   %}
11965   ins_pipe( pipe_jmp );
11966 %}
11967 
11968 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11969 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
11970   match(If cop cr);
11971   effect(USE labl);
11972 
11973   ins_cost(300);
11974   format %{ "J$cop    $labl" %}
11975   size(6);
11976   ins_encode %{
11977     Label* L = $labl$$label;
11978     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11979   %}
11980   ins_pipe( pipe_jcc );
11981 %}
11982 
11983 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11984 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
11985   match(CountedLoopEnd cop cr);
11986   effect(USE labl);
11987 
11988   ins_cost(300);
11989   format %{ "J$cop    $labl\t# Loop end" %}
11990   size(6);
11991   ins_encode %{
11992     Label* L = $labl$$label;
11993     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11994   %}
11995   ins_pipe( pipe_jcc );
11996 %}
11997 
11998 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11999 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12000   match(CountedLoopEnd cop cmp);
12001   effect(USE labl);
12002 
12003   ins_cost(300);
12004   format %{ "J$cop,u  $labl\t# Loop end" %}
12005   size(6);
12006   ins_encode %{
12007     Label* L = $labl$$label;
12008     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12009   %}
12010   ins_pipe( pipe_jcc );
12011 %}
12012 
12013 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12014   match(CountedLoopEnd cop cmp);
12015   effect(USE labl);
12016 
12017   ins_cost(200);
12018   format %{ "J$cop,u  $labl\t# Loop end" %}
12019   size(6);
12020   ins_encode %{
12021     Label* L = $labl$$label;
12022     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12023   %}
12024   ins_pipe( pipe_jcc );
12025 %}
12026 
12027 // Jump Direct Conditional - using unsigned comparison
12028 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12029   match(If cop cmp);
12030   effect(USE labl);
12031 
12032   ins_cost(300);
12033   format %{ "J$cop,u  $labl" %}
12034   size(6);
12035   ins_encode %{
12036     Label* L = $labl$$label;
12037     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12038   %}
12039   ins_pipe(pipe_jcc);
12040 %}
12041 
12042 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12043   match(If cop cmp);
12044   effect(USE labl);
12045 
12046   ins_cost(200);
12047   format %{ "J$cop,u  $labl" %}
12048   size(6);
12049   ins_encode %{
12050     Label* L = $labl$$label;
12051     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12052   %}
12053   ins_pipe(pipe_jcc);
12054 %}
12055 
12056 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12057   match(If cop cmp);
12058   effect(USE labl);
12059 
12060   ins_cost(200);
12061   format %{ $$template
12062     if ($cop$$cmpcode == Assembler::notEqual) {
12063       $$emit$$"JP,u   $labl\n\t"
12064       $$emit$$"J$cop,u   $labl"
12065     } else {
12066       $$emit$$"JP,u   done\n\t"
12067       $$emit$$"J$cop,u   $labl\n\t"
12068       $$emit$$"done:"
12069     }
12070   %}
12071   ins_encode %{
12072     Label* l = $labl$$label;
12073     if ($cop$$cmpcode == Assembler::notEqual) {
12074       __ jcc(Assembler::parity, *l, false);
12075       __ jcc(Assembler::notEqual, *l, false);
12076     } else if ($cop$$cmpcode == Assembler::equal) {
12077       Label done;
12078       __ jccb(Assembler::parity, done);
12079       __ jcc(Assembler::equal, *l, false);
12080       __ bind(done);
12081     } else {
12082        ShouldNotReachHere();
12083     }
12084   %}
12085   ins_pipe(pipe_jcc);
12086 %}
12087 
12088 // ============================================================================
12089 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12090 // array for an instance of the superklass.  Set a hidden internal cache on a
12091 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12092 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12093 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12094   match(Set result (PartialSubtypeCheck sub super));
12095   effect( KILL rcx, KILL cr );
12096 
12097   ins_cost(1100);  // slightly larger than the next version
12098   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12099             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12100             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12101             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12102             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12103             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12104             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12105      "miss:\t" %}
12106 
12107   opcode(0x1); // Force a XOR of EDI
12108   ins_encode( enc_PartialSubtypeCheck() );
12109   ins_pipe( pipe_slow );
12110 %}
12111 
12112 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12113   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12114   effect( KILL rcx, KILL result );
12115 
12116   ins_cost(1000);
12117   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12118             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12119             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12120             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12121             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12122             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12123      "miss:\t" %}
12124 
12125   opcode(0x0);  // No need to XOR EDI
12126   ins_encode( enc_PartialSubtypeCheck() );
12127   ins_pipe( pipe_slow );
12128 %}
12129 
12130 // ============================================================================
12131 // Branch Instructions -- short offset versions
12132 //
12133 // These instructions are used to replace jumps of a long offset (the default
12134 // match) with jumps of a shorter offset.  These instructions are all tagged
12135 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12136 // match rules in general matching.  Instead, the ADLC generates a conversion
12137 // method in the MachNode which can be used to do in-place replacement of the
12138 // long variant with the shorter variant.  The compiler will determine if a
12139 // branch can be taken by the is_short_branch_offset() predicate in the machine
12140 // specific code section of the file.
12141 
12142 // Jump Direct - Label defines a relative address from JMP+1
12143 instruct jmpDir_short(label labl) %{
12144   match(Goto);
12145   effect(USE labl);
12146 
12147   ins_cost(300);
12148   format %{ "JMP,s  $labl" %}
12149   size(2);
12150   ins_encode %{
12151     Label* L = $labl$$label;
12152     __ jmpb(*L);
12153   %}
12154   ins_pipe( pipe_jmp );
12155   ins_short_branch(1);
12156 %}
12157 
12158 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12159 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12160   match(If cop cr);
12161   effect(USE labl);
12162 
12163   ins_cost(300);
12164   format %{ "J$cop,s  $labl" %}
12165   size(2);
12166   ins_encode %{
12167     Label* L = $labl$$label;
12168     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12169   %}
12170   ins_pipe( pipe_jcc );
12171   ins_short_branch(1);
12172 %}
12173 
12174 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12175 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12176   match(CountedLoopEnd cop cr);
12177   effect(USE labl);
12178 
12179   ins_cost(300);
12180   format %{ "J$cop,s  $labl\t# Loop end" %}
12181   size(2);
12182   ins_encode %{
12183     Label* L = $labl$$label;
12184     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12185   %}
12186   ins_pipe( pipe_jcc );
12187   ins_short_branch(1);
12188 %}
12189 
12190 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12191 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12192   match(CountedLoopEnd cop cmp);
12193   effect(USE labl);
12194 
12195   ins_cost(300);
12196   format %{ "J$cop,us $labl\t# Loop end" %}
12197   size(2);
12198   ins_encode %{
12199     Label* L = $labl$$label;
12200     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12201   %}
12202   ins_pipe( pipe_jcc );
12203   ins_short_branch(1);
12204 %}
12205 
12206 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12207   match(CountedLoopEnd cop cmp);
12208   effect(USE labl);
12209 
12210   ins_cost(300);
12211   format %{ "J$cop,us $labl\t# Loop end" %}
12212   size(2);
12213   ins_encode %{
12214     Label* L = $labl$$label;
12215     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12216   %}
12217   ins_pipe( pipe_jcc );
12218   ins_short_branch(1);
12219 %}
12220 
12221 // Jump Direct Conditional - using unsigned comparison
12222 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12223   match(If cop cmp);
12224   effect(USE labl);
12225 
12226   ins_cost(300);
12227   format %{ "J$cop,us $labl" %}
12228   size(2);
12229   ins_encode %{
12230     Label* L = $labl$$label;
12231     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12232   %}
12233   ins_pipe( pipe_jcc );
12234   ins_short_branch(1);
12235 %}
12236 
12237 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12238   match(If cop cmp);
12239   effect(USE labl);
12240 
12241   ins_cost(300);
12242   format %{ "J$cop,us $labl" %}
12243   size(2);
12244   ins_encode %{
12245     Label* L = $labl$$label;
12246     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12247   %}
12248   ins_pipe( pipe_jcc );
12249   ins_short_branch(1);
12250 %}
12251 
12252 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12253   match(If cop cmp);
12254   effect(USE labl);
12255 
12256   ins_cost(300);
12257   format %{ $$template
12258     if ($cop$$cmpcode == Assembler::notEqual) {
12259       $$emit$$"JP,u,s   $labl\n\t"
12260       $$emit$$"J$cop,u,s   $labl"
12261     } else {
12262       $$emit$$"JP,u,s   done\n\t"
12263       $$emit$$"J$cop,u,s  $labl\n\t"
12264       $$emit$$"done:"
12265     }
12266   %}
12267   size(4);
12268   ins_encode %{
12269     Label* l = $labl$$label;
12270     if ($cop$$cmpcode == Assembler::notEqual) {
12271       __ jccb(Assembler::parity, *l);
12272       __ jccb(Assembler::notEqual, *l);
12273     } else if ($cop$$cmpcode == Assembler::equal) {
12274       Label done;
12275       __ jccb(Assembler::parity, done);
12276       __ jccb(Assembler::equal, *l);
12277       __ bind(done);
12278     } else {
12279        ShouldNotReachHere();
12280     }
12281   %}
12282   ins_pipe(pipe_jcc);
12283   ins_short_branch(1);
12284 %}
12285 
12286 // ============================================================================
12287 // Long Compare
12288 //
12289 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12290 // is tricky.  The flavor of compare used depends on whether we are testing
12291 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12292 // The GE test is the negated LT test.  The LE test can be had by commuting
12293 // the operands (yielding a GE test) and then negating; negate again for the
12294 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12295 // NE test is negated from that.
12296 
12297 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12298 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12299 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12300 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12301 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12302 // foo match ends up with the wrong leaf.  One fix is to not match both
12303 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12304 // both forms beat the trinary form of long-compare and both are very useful
12305 // on Intel which has so few registers.
12306 
12307 // Manifest a CmpL result in an integer register.  Very painful.
12308 // This is the test to avoid.
12309 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12310   match(Set dst (CmpL3 src1 src2));
12311   effect( KILL flags );
12312   ins_cost(1000);
12313   format %{ "XOR    $dst,$dst\n\t"
12314             "CMP    $src1.hi,$src2.hi\n\t"
12315             "JLT,s  m_one\n\t"
12316             "JGT,s  p_one\n\t"
12317             "CMP    $src1.lo,$src2.lo\n\t"
12318             "JB,s   m_one\n\t"
12319             "JEQ,s  done\n"
12320     "p_one:\tINC    $dst\n\t"
12321             "JMP,s  done\n"
12322     "m_one:\tDEC    $dst\n"
12323      "done:" %}
12324   ins_encode %{
12325     Label p_one, m_one, done;
12326     __ xorptr($dst$$Register, $dst$$Register);
12327     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12328     __ jccb(Assembler::less,    m_one);
12329     __ jccb(Assembler::greater, p_one);
12330     __ cmpl($src1$$Register, $src2$$Register);
12331     __ jccb(Assembler::below,   m_one);
12332     __ jccb(Assembler::equal,   done);
12333     __ bind(p_one);
12334     __ incrementl($dst$$Register);
12335     __ jmpb(done);
12336     __ bind(m_one);
12337     __ decrementl($dst$$Register);
12338     __ bind(done);
12339   %}
12340   ins_pipe( pipe_slow );
12341 %}
12342 
12343 //======
12344 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12345 // compares.  Can be used for LE or GT compares by reversing arguments.
12346 // NOT GOOD FOR EQ/NE tests.
12347 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12348   match( Set flags (CmpL src zero ));
12349   ins_cost(100);
12350   format %{ "TEST   $src.hi,$src.hi" %}
12351   opcode(0x85);
12352   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12353   ins_pipe( ialu_cr_reg_reg );
12354 %}
12355 
12356 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12357 // compares.  Can be used for LE or GT compares by reversing arguments.
12358 // NOT GOOD FOR EQ/NE tests.
12359 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12360   match( Set flags (CmpL src1 src2 ));
12361   effect( TEMP tmp );
12362   ins_cost(300);
12363   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12364             "MOV    $tmp,$src1.hi\n\t"
12365             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12366   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12367   ins_pipe( ialu_cr_reg_reg );
12368 %}
12369 
12370 // Long compares reg < zero/req OR reg >= zero/req.
12371 // Just a wrapper for a normal branch, plus the predicate test.
12372 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12373   match(If cmp flags);
12374   effect(USE labl);
12375   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12376   expand %{
12377     jmpCon(cmp,flags,labl);    // JLT or JGE...
12378   %}
12379 %}
12380 
12381 // Compare 2 longs and CMOVE longs.
12382 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12383   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12384   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12385   ins_cost(400);
12386   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12387             "CMOV$cmp $dst.hi,$src.hi" %}
12388   opcode(0x0F,0x40);
12389   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12390   ins_pipe( pipe_cmov_reg_long );
12391 %}
12392 
12393 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12394   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12395   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12396   ins_cost(500);
12397   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12398             "CMOV$cmp $dst.hi,$src.hi" %}
12399   opcode(0x0F,0x40);
12400   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12401   ins_pipe( pipe_cmov_reg_long );
12402 %}
12403 
12404 // Compare 2 longs and CMOVE ints.
12405 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12406   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12407   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12408   ins_cost(200);
12409   format %{ "CMOV$cmp $dst,$src" %}
12410   opcode(0x0F,0x40);
12411   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12412   ins_pipe( pipe_cmov_reg );
12413 %}
12414 
12415 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12416   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12417   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12418   ins_cost(250);
12419   format %{ "CMOV$cmp $dst,$src" %}
12420   opcode(0x0F,0x40);
12421   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12422   ins_pipe( pipe_cmov_mem );
12423 %}
12424 
12425 // Compare 2 longs and CMOVE ints.
12426 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12427   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12428   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12429   ins_cost(200);
12430   format %{ "CMOV$cmp $dst,$src" %}
12431   opcode(0x0F,0x40);
12432   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12433   ins_pipe( pipe_cmov_reg );
12434 %}
12435 
12436 // Compare 2 longs and CMOVE doubles
12437 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12438   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12439   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12440   ins_cost(200);
12441   expand %{
12442     fcmovDPR_regS(cmp,flags,dst,src);
12443   %}
12444 %}
12445 
12446 // Compare 2 longs and CMOVE doubles
12447 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12448   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12449   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12450   ins_cost(200);
12451   expand %{
12452     fcmovD_regS(cmp,flags,dst,src);
12453   %}
12454 %}
12455 
12456 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12457   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12458   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12459   ins_cost(200);
12460   expand %{
12461     fcmovFPR_regS(cmp,flags,dst,src);
12462   %}
12463 %}
12464 
12465 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12466   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12467   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12468   ins_cost(200);
12469   expand %{
12470     fcmovF_regS(cmp,flags,dst,src);
12471   %}
12472 %}
12473 
12474 //======
12475 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12476 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12477   match( Set flags (CmpL src zero ));
12478   effect(TEMP tmp);
12479   ins_cost(200);
12480   format %{ "MOV    $tmp,$src.lo\n\t"
12481             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12482   ins_encode( long_cmp_flags0( src, tmp ) );
12483   ins_pipe( ialu_reg_reg_long );
12484 %}
12485 
12486 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12487 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12488   match( Set flags (CmpL src1 src2 ));
12489   ins_cost(200+300);
12490   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12491             "JNE,s  skip\n\t"
12492             "CMP    $src1.hi,$src2.hi\n\t"
12493      "skip:\t" %}
12494   ins_encode( long_cmp_flags1( src1, src2 ) );
12495   ins_pipe( ialu_cr_reg_reg );
12496 %}
12497 
12498 // Long compare reg == zero/reg OR reg != zero/reg
12499 // Just a wrapper for a normal branch, plus the predicate test.
12500 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12501   match(If cmp flags);
12502   effect(USE labl);
12503   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12504   expand %{
12505     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12506   %}
12507 %}
12508 
12509 // Compare 2 longs and CMOVE longs.
12510 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12511   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12512   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12513   ins_cost(400);
12514   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12515             "CMOV$cmp $dst.hi,$src.hi" %}
12516   opcode(0x0F,0x40);
12517   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12518   ins_pipe( pipe_cmov_reg_long );
12519 %}
12520 
12521 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12522   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12523   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12524   ins_cost(500);
12525   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12526             "CMOV$cmp $dst.hi,$src.hi" %}
12527   opcode(0x0F,0x40);
12528   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12529   ins_pipe( pipe_cmov_reg_long );
12530 %}
12531 
12532 // Compare 2 longs and CMOVE ints.
12533 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12534   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12535   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12536   ins_cost(200);
12537   format %{ "CMOV$cmp $dst,$src" %}
12538   opcode(0x0F,0x40);
12539   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12540   ins_pipe( pipe_cmov_reg );
12541 %}
12542 
12543 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12544   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12545   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12546   ins_cost(250);
12547   format %{ "CMOV$cmp $dst,$src" %}
12548   opcode(0x0F,0x40);
12549   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12550   ins_pipe( pipe_cmov_mem );
12551 %}
12552 
12553 // Compare 2 longs and CMOVE ints.
12554 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12555   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12556   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12557   ins_cost(200);
12558   format %{ "CMOV$cmp $dst,$src" %}
12559   opcode(0x0F,0x40);
12560   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12561   ins_pipe( pipe_cmov_reg );
12562 %}
12563 
12564 // Compare 2 longs and CMOVE doubles
12565 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12566   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12567   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12568   ins_cost(200);
12569   expand %{
12570     fcmovDPR_regS(cmp,flags,dst,src);
12571   %}
12572 %}
12573 
12574 // Compare 2 longs and CMOVE doubles
12575 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12576   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12577   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12578   ins_cost(200);
12579   expand %{
12580     fcmovD_regS(cmp,flags,dst,src);
12581   %}
12582 %}
12583 
12584 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12585   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12586   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12587   ins_cost(200);
12588   expand %{
12589     fcmovFPR_regS(cmp,flags,dst,src);
12590   %}
12591 %}
12592 
12593 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12594   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12595   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12596   ins_cost(200);
12597   expand %{
12598     fcmovF_regS(cmp,flags,dst,src);
12599   %}
12600 %}
12601 
12602 //======
12603 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12604 // Same as cmpL_reg_flags_LEGT except must negate src
12605 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12606   match( Set flags (CmpL src zero ));
12607   effect( TEMP tmp );
12608   ins_cost(300);
12609   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12610             "CMP    $tmp,$src.lo\n\t"
12611             "SBB    $tmp,$src.hi\n\t" %}
12612   ins_encode( long_cmp_flags3(src, tmp) );
12613   ins_pipe( ialu_reg_reg_long );
12614 %}
12615 
12616 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12617 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12618 // requires a commuted test to get the same result.
12619 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12620   match( Set flags (CmpL src1 src2 ));
12621   effect( TEMP tmp );
12622   ins_cost(300);
12623   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12624             "MOV    $tmp,$src2.hi\n\t"
12625             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12626   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12627   ins_pipe( ialu_cr_reg_reg );
12628 %}
12629 
12630 // Long compares reg < zero/req OR reg >= zero/req.
12631 // Just a wrapper for a normal branch, plus the predicate test
12632 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12633   match(If cmp flags);
12634   effect(USE labl);
12635   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12636   ins_cost(300);
12637   expand %{
12638     jmpCon(cmp,flags,labl);    // JGT or JLE...
12639   %}
12640 %}
12641 
12642 // Compare 2 longs and CMOVE longs.
12643 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12644   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12645   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12646   ins_cost(400);
12647   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12648             "CMOV$cmp $dst.hi,$src.hi" %}
12649   opcode(0x0F,0x40);
12650   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12651   ins_pipe( pipe_cmov_reg_long );
12652 %}
12653 
12654 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12655   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12656   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12657   ins_cost(500);
12658   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12659             "CMOV$cmp $dst.hi,$src.hi+4" %}
12660   opcode(0x0F,0x40);
12661   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12662   ins_pipe( pipe_cmov_reg_long );
12663 %}
12664 
12665 // Compare 2 longs and CMOVE ints.
12666 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12667   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12668   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12669   ins_cost(200);
12670   format %{ "CMOV$cmp $dst,$src" %}
12671   opcode(0x0F,0x40);
12672   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12673   ins_pipe( pipe_cmov_reg );
12674 %}
12675 
12676 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12677   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12678   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12679   ins_cost(250);
12680   format %{ "CMOV$cmp $dst,$src" %}
12681   opcode(0x0F,0x40);
12682   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12683   ins_pipe( pipe_cmov_mem );
12684 %}
12685 
12686 // Compare 2 longs and CMOVE ptrs.
12687 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12688   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12689   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12690   ins_cost(200);
12691   format %{ "CMOV$cmp $dst,$src" %}
12692   opcode(0x0F,0x40);
12693   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12694   ins_pipe( pipe_cmov_reg );
12695 %}
12696 
12697 // Compare 2 longs and CMOVE doubles
12698 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12699   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12700   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12701   ins_cost(200);
12702   expand %{
12703     fcmovDPR_regS(cmp,flags,dst,src);
12704   %}
12705 %}
12706 
12707 // Compare 2 longs and CMOVE doubles
12708 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12709   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12710   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12711   ins_cost(200);
12712   expand %{
12713     fcmovD_regS(cmp,flags,dst,src);
12714   %}
12715 %}
12716 
12717 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12718   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12719   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12720   ins_cost(200);
12721   expand %{
12722     fcmovFPR_regS(cmp,flags,dst,src);
12723   %}
12724 %}
12725 
12726 
12727 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12728   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12729   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12730   ins_cost(200);
12731   expand %{
12732     fcmovF_regS(cmp,flags,dst,src);
12733   %}
12734 %}
12735 
12736 
12737 // ============================================================================
12738 // Procedure Call/Return Instructions
12739 // Call Java Static Instruction
12740 // Note: If this code changes, the corresponding ret_addr_offset() and
12741 //       compute_padding() functions will have to be adjusted.
12742 instruct CallStaticJavaDirect(method meth) %{
12743   match(CallStaticJava);
12744   effect(USE meth);
12745 
12746   ins_cost(300);
12747   format %{ "CALL,static " %}
12748   opcode(0xE8); /* E8 cd */
12749   ins_encode( pre_call_resets,
12750               Java_Static_Call( meth ),
12751               call_epilog,
12752               post_call_FPU );
12753   ins_pipe( pipe_slow );
12754   ins_alignment(4);
12755 %}
12756 
12757 // Call Java Dynamic Instruction
12758 // Note: If this code changes, the corresponding ret_addr_offset() and
12759 //       compute_padding() functions will have to be adjusted.
12760 instruct CallDynamicJavaDirect(method meth) %{
12761   match(CallDynamicJava);
12762   effect(USE meth);
12763 
12764   ins_cost(300);
12765   format %{ "MOV    EAX,(oop)-1\n\t"
12766             "CALL,dynamic" %}
12767   opcode(0xE8); /* E8 cd */
12768   ins_encode( pre_call_resets,
12769               Java_Dynamic_Call( meth ),
12770               call_epilog,
12771               post_call_FPU );
12772   ins_pipe( pipe_slow );
12773   ins_alignment(4);
12774 %}
12775 
12776 // Call Runtime Instruction
12777 instruct CallRuntimeDirect(method meth) %{
12778   match(CallRuntime );
12779   effect(USE meth);
12780 
12781   ins_cost(300);
12782   format %{ "CALL,runtime " %}
12783   opcode(0xE8); /* E8 cd */
12784   // Use FFREEs to clear entries in float stack
12785   ins_encode( pre_call_resets,
12786               FFree_Float_Stack_All,
12787               Java_To_Runtime( meth ),
12788               post_call_FPU );
12789   ins_pipe( pipe_slow );
12790 %}
12791 
12792 // Call runtime without safepoint
12793 instruct CallLeafDirect(method meth) %{
12794   match(CallLeaf);
12795   effect(USE meth);
12796 
12797   ins_cost(300);
12798   format %{ "CALL_LEAF,runtime " %}
12799   opcode(0xE8); /* E8 cd */
12800   ins_encode( pre_call_resets,
12801               FFree_Float_Stack_All,
12802               Java_To_Runtime( meth ),
12803               Verify_FPU_For_Leaf, post_call_FPU );
12804   ins_pipe( pipe_slow );
12805 %}
12806 
12807 instruct CallLeafNoFPDirect(method meth) %{
12808   match(CallLeafNoFP);
12809   effect(USE meth);
12810 
12811   ins_cost(300);
12812   format %{ "CALL_LEAF_NOFP,runtime " %}
12813   opcode(0xE8); /* E8 cd */
12814   ins_encode(Java_To_Runtime(meth));
12815   ins_pipe( pipe_slow );
12816 %}
12817 
12818 
12819 // Return Instruction
12820 // Remove the return address & jump to it.
12821 instruct Ret() %{
12822   match(Return);
12823   format %{ "RET" %}
12824   opcode(0xC3);
12825   ins_encode(OpcP);
12826   ins_pipe( pipe_jmp );
12827 %}
12828 
12829 // Tail Call; Jump from runtime stub to Java code.
12830 // Also known as an 'interprocedural jump'.
12831 // Target of jump will eventually return to caller.
12832 // TailJump below removes the return address.
12833 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12834   match(TailCall jump_target method_oop );
12835   ins_cost(300);
12836   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12837   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12838   ins_encode( OpcP, RegOpc(jump_target) );
12839   ins_pipe( pipe_jmp );
12840 %}
12841 
12842 
12843 // Tail Jump; remove the return address; jump to target.
12844 // TailCall above leaves the return address around.
12845 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12846   match( TailJump jump_target ex_oop );
12847   ins_cost(300);
12848   format %{ "POP    EDX\t# pop return address into dummy\n\t"
12849             "JMP    $jump_target " %}
12850   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12851   ins_encode( enc_pop_rdx,
12852               OpcP, RegOpc(jump_target) );
12853   ins_pipe( pipe_jmp );
12854 %}
12855 
12856 // Create exception oop: created by stack-crawling runtime code.
12857 // Created exception is now available to this handler, and is setup
12858 // just prior to jumping to this handler.  No code emitted.
12859 instruct CreateException( eAXRegP ex_oop )
12860 %{
12861   match(Set ex_oop (CreateEx));
12862 
12863   size(0);
12864   // use the following format syntax
12865   format %{ "# exception oop is in EAX; no code emitted" %}
12866   ins_encode();
12867   ins_pipe( empty );
12868 %}
12869 
12870 
12871 // Rethrow exception:
12872 // The exception oop will come in the first argument position.
12873 // Then JUMP (not call) to the rethrow stub code.
12874 instruct RethrowException()
12875 %{
12876   match(Rethrow);
12877 
12878   // use the following format syntax
12879   format %{ "JMP    rethrow_stub" %}
12880   ins_encode(enc_rethrow);
12881   ins_pipe( pipe_jmp );
12882 %}
12883 
12884 // inlined locking and unlocking
12885 
12886 instruct cmpFastLockRTM(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eDXRegI scr, rRegI cx1, rRegI cx2) %{
12887   predicate(Compile::current()->use_rtm());
12888   match(Set cr (FastLock object box));
12889   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12890   ins_cost(300);
12891   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12892   ins_encode %{
12893     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12894                  $scr$$Register, $cx1$$Register, $cx2$$Register,
12895                  _counters, _rtm_counters, _stack_rtm_counters,
12896                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12897                  true, ra_->C->profile_rtm());
12898   %}
12899   ins_pipe(pipe_slow);
12900 %}
12901 
12902 instruct cmpFastLock(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
12903   predicate(!Compile::current()->use_rtm());
12904   match(Set cr (FastLock object box));
12905   effect(TEMP tmp, TEMP scr, USE_KILL box);
12906   ins_cost(300);
12907   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
12908   ins_encode %{
12909     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12910                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
12911   %}
12912   ins_pipe(pipe_slow);
12913 %}
12914 
12915 instruct cmpFastUnlock(eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
12916   match(Set cr (FastUnlock object box));
12917   effect(TEMP tmp, USE_KILL box);
12918   ins_cost(300);
12919   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
12920   ins_encode %{
12921     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12922   %}
12923   ins_pipe(pipe_slow);
12924 %}
12925 
12926 
12927 
12928 // ============================================================================
12929 // Safepoint Instruction
12930 instruct safePoint_poll(eFlagsReg cr) %{
12931   match(SafePoint);
12932   effect(KILL cr);
12933 
12934   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
12935   // On SPARC that might be acceptable as we can generate the address with
12936   // just a sethi, saving an or.  By polling at offset 0 we can end up
12937   // putting additional pressure on the index-0 in the D$.  Because of
12938   // alignment (just like the situation at hand) the lower indices tend
12939   // to see more traffic.  It'd be better to change the polling address
12940   // to offset 0 of the last $line in the polling page.
12941 
12942   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
12943   ins_cost(125);
12944   size(6) ;
12945   ins_encode( Safepoint_Poll() );
12946   ins_pipe( ialu_reg_mem );
12947 %}
12948 
12949 
12950 // ============================================================================
12951 // This name is KNOWN by the ADLC and cannot be changed.
12952 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12953 // for this guy.
12954 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
12955   match(Set dst (ThreadLocal));
12956   effect(DEF dst, KILL cr);
12957 
12958   format %{ "MOV    $dst, Thread::current()" %}
12959   ins_encode %{
12960     Register dstReg = as_Register($dst$$reg);
12961     __ get_thread(dstReg);
12962   %}
12963   ins_pipe( ialu_reg_fat );
12964 %}
12965 
12966 
12967 
12968 //----------PEEPHOLE RULES-----------------------------------------------------
12969 // These must follow all instruction definitions as they use the names
12970 // defined in the instructions definitions.
12971 //
12972 // peepmatch ( root_instr_name [preceding_instruction]* );
12973 //
12974 // peepconstraint %{
12975 // (instruction_number.operand_name relational_op instruction_number.operand_name
12976 //  [, ...] );
12977 // // instruction numbers are zero-based using left to right order in peepmatch
12978 //
12979 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12980 // // provide an instruction_number.operand_name for each operand that appears
12981 // // in the replacement instruction's match rule
12982 //
12983 // ---------VM FLAGS---------------------------------------------------------
12984 //
12985 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12986 //
12987 // Each peephole rule is given an identifying number starting with zero and
12988 // increasing by one in the order seen by the parser.  An individual peephole
12989 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12990 // on the command-line.
12991 //
12992 // ---------CURRENT LIMITATIONS----------------------------------------------
12993 //
12994 // Only match adjacent instructions in same basic block
12995 // Only equality constraints
12996 // Only constraints between operands, not (0.dest_reg == EAX_enc)
12997 // Only one replacement instruction
12998 //
12999 // ---------EXAMPLE----------------------------------------------------------
13000 //
13001 // // pertinent parts of existing instructions in architecture description
13002 // instruct movI(rRegI dst, rRegI src) %{
13003 //   match(Set dst (CopyI src));
13004 // %}
13005 //
13006 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13007 //   match(Set dst (AddI dst src));
13008 //   effect(KILL cr);
13009 // %}
13010 //
13011 // // Change (inc mov) to lea
13012 // peephole %{
13013 //   // increment preceeded by register-register move
13014 //   peepmatch ( incI_eReg movI );
13015 //   // require that the destination register of the increment
13016 //   // match the destination register of the move
13017 //   peepconstraint ( 0.dst == 1.dst );
13018 //   // construct a replacement instruction that sets
13019 //   // the destination to ( move's source register + one )
13020 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13021 // %}
13022 //
13023 // Implementation no longer uses movX instructions since
13024 // machine-independent system no longer uses CopyX nodes.
13025 //
13026 // peephole %{
13027 //   peepmatch ( incI_eReg movI );
13028 //   peepconstraint ( 0.dst == 1.dst );
13029 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13030 // %}
13031 //
13032 // peephole %{
13033 //   peepmatch ( decI_eReg movI );
13034 //   peepconstraint ( 0.dst == 1.dst );
13035 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13036 // %}
13037 //
13038 // peephole %{
13039 //   peepmatch ( addI_eReg_imm movI );
13040 //   peepconstraint ( 0.dst == 1.dst );
13041 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13042 // %}
13043 //
13044 // peephole %{
13045 //   peepmatch ( addP_eReg_imm movP );
13046 //   peepconstraint ( 0.dst == 1.dst );
13047 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13048 // %}
13049 
13050 // // Change load of spilled value to only a spill
13051 // instruct storeI(memory mem, rRegI src) %{
13052 //   match(Set mem (StoreI mem src));
13053 // %}
13054 //
13055 // instruct loadI(rRegI dst, memory mem) %{
13056 //   match(Set dst (LoadI mem));
13057 // %}
13058 //
13059 peephole %{
13060   peepmatch ( loadI storeI );
13061   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13062   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13063 %}
13064 
13065 //----------SMARTSPILL RULES---------------------------------------------------
13066 // These must follow all instruction definitions as they use the names
13067 // defined in the instructions definitions.