1 //
   2 // Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  78 // allocator, and only shows up in the encodings.
  79 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  80 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  81 // Ok so here's the trick FPR1 is really st(0) except in the midst
  82 // of emission of assembly for a machnode. During the emission the fpu stack
  83 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  84 // the stack will not have this element so FPR1 == st(0) from the
  85 // oopMap viewpoint. This same weirdness with numbering causes
  86 // instruction encoding to have to play games with the register
  87 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  88 // where it does flt->flt moves to see an example
  89 //
  90 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  91 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  92 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  93 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  94 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  95 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  96 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
  97 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
  98 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
  99 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 100 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 101 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 102 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 103 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 104 
 105 // Specify priority of register selection within phases of register
 106 // allocation.  Highest priority is first.  A useful heuristic is to
 107 // give registers a low priority when they are required by machine
 108 // instructions, like EAX and EDX.  Registers which are used as
 109 // pairs must fall on an even boundary (witness the FPR#L's in this list).
 110 // For the Intel integer registers, the equivalent Long pairs are
 111 // EDX:EAX, EBX:ECX, and EDI:EBP.
 112 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 113                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 114                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 115                     FPR6L, FPR6H, FPR7L, FPR7H );
 116 
 117 
 118 //----------Architecture Description Register Classes--------------------------
 119 // Several register classes are automatically defined based upon information in
 120 // this architecture description.
 121 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 122 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 123 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 124 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 125 //
 126 // Class for no registers (empty set).
 127 reg_class no_reg();
 128 
 129 // Class for all registers
 130 reg_class any_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 131 // Class for all registers (excluding EBP)
 132 reg_class any_reg_no_ebp(EAX, EDX, EDI, ESI, ECX, EBX, ESP);
 133 // Dynamic register class that selects at runtime between register classes
 134 // any_reg and any_no_ebp_reg (depending on the value of the flag PreserveFramePointer). 
 135 // Equivalent to: return PreserveFramePointer ? any_no_ebp_reg : any_reg;
 136 reg_class_dynamic any_reg(any_reg_no_ebp, any_reg_with_ebp, %{ PreserveFramePointer %});
 137 
 138 // Class for general registers
 139 reg_class int_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 140 // Class for general registers (excluding EBP).
 141 // This register class can be used for implicit null checks on win95.
 142 // It is also safe for use by tailjumps (we don't want to allocate in ebp).
 143 // Used also if the PreserveFramePointer flag is true.
 144 reg_class int_reg_no_ebp(EAX, EDX, EDI, ESI, ECX, EBX);
 145 // Dynamic register class that selects between int_reg and int_reg_no_ebp.
 146 reg_class_dynamic int_reg(int_reg_no_ebp, int_reg_with_ebp, %{ PreserveFramePointer %});
 147 
 148 // Class of "X" registers
 149 reg_class int_x_reg(EBX, ECX, EDX, EAX);
 150 
 151 // Class of registers that can appear in an address with no offset.
 152 // EBP and ESP require an extra instruction byte for zero offset.
 153 // Used in fast-unlock
 154 reg_class p_reg(EDX, EDI, ESI, EBX);
 155 
 156 // Class for general registers excluding ECX
 157 reg_class ncx_reg_with_ebp(EAX, EDX, EBP, EDI, ESI, EBX);
 158 // Class for general registers excluding ECX (and EBP)
 159 reg_class ncx_reg_no_ebp(EAX, EDX, EDI, ESI, EBX);
 160 // Dynamic register class that selects between ncx_reg and ncx_reg_no_ebp.
 161 reg_class_dynamic ncx_reg(ncx_reg_no_ebp, ncx_reg_with_ebp, %{ PreserveFramePointer %});
 162 
 163 // Class for general registers excluding EAX
 164 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 165 
 166 // Class for general registers excluding EAX and EBX.
 167 reg_class nabx_reg_with_ebp(EDX, EDI, ESI, ECX, EBP);
 168 // Class for general registers excluding EAX and EBX (and EBP)
 169 reg_class nabx_reg_no_ebp(EDX, EDI, ESI, ECX);
 170 // Dynamic register class that selects between nabx_reg and nabx_reg_no_ebp.
 171 reg_class_dynamic nabx_reg(nabx_reg_no_ebp, nabx_reg_with_ebp, %{ PreserveFramePointer %});
 172 
 173 // Class of EAX (for multiply and divide operations)
 174 reg_class eax_reg(EAX);
 175 
 176 // Class of EBX (for atomic add)
 177 reg_class ebx_reg(EBX);
 178 
 179 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 180 reg_class ecx_reg(ECX);
 181 
 182 // Class of EDX (for multiply and divide operations)
 183 reg_class edx_reg(EDX);
 184 
 185 // Class of EDI (for synchronization)
 186 reg_class edi_reg(EDI);
 187 
 188 // Class of ESI (for synchronization)
 189 reg_class esi_reg(ESI);
 190 
 191 // Singleton class for stack pointer
 192 reg_class sp_reg(ESP);
 193 
 194 // Singleton class for instruction pointer
 195 // reg_class ip_reg(EIP);
 196 
 197 // Class of integer register pairs
 198 reg_class long_reg_with_ebp( EAX,EDX, ECX,EBX, EBP,EDI );
 199 // Class of integer register pairs (excluding EBP and EDI);
 200 reg_class long_reg_no_ebp( EAX,EDX, ECX,EBX );
 201 // Dynamic register class that selects between long_reg and long_reg_no_ebp.
 202 reg_class_dynamic long_reg(long_reg_no_ebp, long_reg_with_ebp, %{ PreserveFramePointer %});
 203 
 204 // Class of integer register pairs that aligns with calling convention
 205 reg_class eadx_reg( EAX,EDX );
 206 reg_class ebcx_reg( ECX,EBX );
 207 
 208 // Not AX or DX, used in divides
 209 reg_class nadx_reg_with_ebp(EBX, ECX, ESI, EDI, EBP);
 210 // Not AX or DX (and neither EBP), used in divides
 211 reg_class nadx_reg_no_ebp(EBX, ECX, ESI, EDI);
 212 // Dynamic register class that selects between nadx_reg and nadx_reg_no_ebp.
 213 reg_class_dynamic nadx_reg(nadx_reg_no_ebp, nadx_reg_with_ebp, %{ PreserveFramePointer %});
 214 
 215 // Floating point registers.  Notice FPR0 is not a choice.
 216 // FPR0 is not ever allocated; we use clever encodings to fake
 217 // a 2-address instructions out of Intels FP stack.
 218 reg_class fp_flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 219 
 220 reg_class fp_dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 221                       FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 222                       FPR7L,FPR7H );
 223 
 224 reg_class fp_flt_reg0( FPR1L );
 225 reg_class fp_dbl_reg0( FPR1L,FPR1H );
 226 reg_class fp_dbl_reg1( FPR2L,FPR2H );
 227 reg_class fp_dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 228                           FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 229 
 230 %}
 231 
 232 
 233 //----------SOURCE BLOCK-------------------------------------------------------
 234 // This is a block of C++ code which provides values, functions, and
 235 // definitions necessary in the rest of the architecture description
 236 source_hpp %{
 237 // Must be visible to the DFA in dfa_x86_32.cpp
 238 extern bool is_operand_hi32_zero(Node* n);
 239 %}
 240 
 241 source %{
 242 #define   RELOC_IMM32    Assembler::imm_operand
 243 #define   RELOC_DISP32   Assembler::disp32_operand
 244 
 245 #define __ _masm.
 246 
 247 // How to find the high register of a Long pair, given the low register
 248 #define   HIGH_FROM_LOW(x) ((x)+2)
 249 
 250 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 251 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 252 // fast versions of NegF/NegD and AbsF/AbsD.
 253 
 254 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 255 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 256   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 257   // of 128-bits operands for SSE instructions.
 258   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 259   // Store the value to a 128-bits operand.
 260   operand[0] = lo;
 261   operand[1] = hi;
 262   return operand;
 263 }
 264 
 265 // Buffer for 128-bits masks used by SSE instructions.
 266 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 267 
 268 // Static initialization during VM startup.
 269 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 270 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 271 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 272 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 273 
 274 // Offset hacking within calls.
 275 static int pre_call_resets_size() {
 276   int size = 0;
 277   Compile* C = Compile::current();
 278   if (C->in_24_bit_fp_mode()) {
 279     size += 6; // fldcw
 280   }
 281   if (C->max_vector_size() > 16) {
 282     size += 3; // vzeroupper
 283   }
 284   return size;
 285 }
 286 
 287 // !!!!! Special hack to get all type of calls to specify the byte offset
 288 //       from the start of the call to the point where the return address
 289 //       will point.
 290 int MachCallStaticJavaNode::ret_addr_offset() {
 291   return 5 + pre_call_resets_size();  // 5 bytes from start of call to where return address points  
 292 }
 293 
 294 int MachCallDynamicJavaNode::ret_addr_offset() {
 295   return 10 + pre_call_resets_size();  // 10 bytes from start of call to where return address points
 296 }
 297 
 298 static int sizeof_FFree_Float_Stack_All = -1;
 299 
 300 int MachCallRuntimeNode::ret_addr_offset() {
 301   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 302   return sizeof_FFree_Float_Stack_All + 5 + pre_call_resets_size();
 303 }
 304 
 305 // Indicate if the safepoint node needs the polling page as an input.
 306 // Since x86 does have absolute addressing, it doesn't.
 307 bool SafePointNode::needs_polling_address_input() {
 308   return false;
 309 }
 310 
 311 //
 312 // Compute padding required for nodes which need alignment
 313 //
 314 
 315 // The address of the call instruction needs to be 4-byte aligned to
 316 // ensure that it does not span a cache line so that it can be patched.
 317 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 318   current_offset += pre_call_resets_size();  // skip fldcw, if any
 319   current_offset += 1;      // skip call opcode byte
 320   return round_to(current_offset, alignment_required()) - current_offset;
 321 }
 322 
 323 // The address of the call instruction needs to be 4-byte aligned to
 324 // ensure that it does not span a cache line so that it can be patched.
 325 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 326   current_offset += pre_call_resets_size();  // skip fldcw, if any
 327   current_offset += 5;      // skip MOV instruction
 328   current_offset += 1;      // skip call opcode byte
 329   return round_to(current_offset, alignment_required()) - current_offset;
 330 }
 331 
 332 // EMIT_RM()
 333 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 334   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 335   cbuf.insts()->emit_int8(c);
 336 }
 337 
 338 // EMIT_CC()
 339 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 340   unsigned char c = (unsigned char)( f1 | f2 );
 341   cbuf.insts()->emit_int8(c);
 342 }
 343 
 344 // EMIT_OPCODE()
 345 void emit_opcode(CodeBuffer &cbuf, int code) {
 346   cbuf.insts()->emit_int8((unsigned char) code);
 347 }
 348 
 349 // EMIT_OPCODE() w/ relocation information
 350 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 351   cbuf.relocate(cbuf.insts_mark() + offset, reloc);
 352   emit_opcode(cbuf, code);
 353 }
 354 
 355 // EMIT_D8()
 356 void emit_d8(CodeBuffer &cbuf, int d8) {
 357   cbuf.insts()->emit_int8((unsigned char) d8);
 358 }
 359 
 360 // EMIT_D16()
 361 void emit_d16(CodeBuffer &cbuf, int d16) {
 362   cbuf.insts()->emit_int16(d16);
 363 }
 364 
 365 // EMIT_D32()
 366 void emit_d32(CodeBuffer &cbuf, int d32) {
 367   cbuf.insts()->emit_int32(d32);
 368 }
 369 
 370 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 371 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 372         int format) {
 373   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 374   cbuf.insts()->emit_int32(d32);
 375 }
 376 
 377 // emit 32 bit value and construct relocation entry from RelocationHolder
 378 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 379         int format) {
 380 #ifdef ASSERT
 381   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 382     assert(cast_to_oop(d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d32)->is_scavengable()), "cannot embed scavengable oops in code");
 383   }
 384 #endif
 385   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 386   cbuf.insts()->emit_int32(d32);
 387 }
 388 
 389 // Access stack slot for load or store
 390 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 391   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 392   if( -128 <= disp && disp <= 127 ) {
 393     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 394     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 395     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 396   } else {
 397     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 398     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 399     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 400   }
 401 }
 402 
 403    // rRegI ereg, memory mem) %{    // emit_reg_mem
 404 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, relocInfo::relocType disp_reloc ) {
 405   // There is no index & no scale, use form without SIB byte
 406   if ((index == 0x4) &&
 407       (scale == 0) && (base != ESP_enc)) {
 408     // If no displacement, mode is 0x0; unless base is [EBP]
 409     if ( (displace == 0) && (base != EBP_enc) ) {
 410       emit_rm(cbuf, 0x0, reg_encoding, base);
 411     }
 412     else {                    // If 8-bit displacement, mode 0x1
 413       if ((displace >= -128) && (displace <= 127)
 414           && (disp_reloc == relocInfo::none) ) {
 415         emit_rm(cbuf, 0x1, reg_encoding, base);
 416         emit_d8(cbuf, displace);
 417       }
 418       else {                  // If 32-bit displacement
 419         if (base == -1) { // Special flag for absolute address
 420           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 421           // (manual lies; no SIB needed here)
 422           if ( disp_reloc != relocInfo::none ) {
 423             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 424           } else {
 425             emit_d32      (cbuf, displace);
 426           }
 427         }
 428         else {                // Normal base + offset
 429           emit_rm(cbuf, 0x2, reg_encoding, base);
 430           if ( disp_reloc != relocInfo::none ) {
 431             emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 432           } else {
 433             emit_d32      (cbuf, displace);
 434           }
 435         }
 436       }
 437     }
 438   }
 439   else {                      // Else, encode with the SIB byte
 440     // If no displacement, mode is 0x0; unless base is [EBP]
 441     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 442       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 443       emit_rm(cbuf, scale, index, base);
 444     }
 445     else {                    // If 8-bit displacement, mode 0x1
 446       if ((displace >= -128) && (displace <= 127)
 447           && (disp_reloc == relocInfo::none) ) {
 448         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 449         emit_rm(cbuf, scale, index, base);
 450         emit_d8(cbuf, displace);
 451       }
 452       else {                  // If 32-bit displacement
 453         if (base == 0x04 ) {
 454           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 455           emit_rm(cbuf, scale, index, 0x04);
 456         } else {
 457           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 458           emit_rm(cbuf, scale, index, base);
 459         }
 460         if ( disp_reloc != relocInfo::none ) {
 461           emit_d32_reloc(cbuf, displace, disp_reloc, 1);
 462         } else {
 463           emit_d32      (cbuf, displace);
 464         }
 465       }
 466     }
 467   }
 468 }
 469 
 470 
 471 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 472   if( dst_encoding == src_encoding ) {
 473     // reg-reg copy, use an empty encoding
 474   } else {
 475     emit_opcode( cbuf, 0x8B );
 476     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 477   }
 478 }
 479 
 480 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 481   Label exit;
 482   __ jccb(Assembler::noParity, exit);
 483   __ pushf();
 484   //
 485   // comiss/ucomiss instructions set ZF,PF,CF flags and
 486   // zero OF,AF,SF for NaN values.
 487   // Fixup flags by zeroing ZF,PF so that compare of NaN
 488   // values returns 'less than' result (CF is set).
 489   // Leave the rest of flags unchanged.
 490   //
 491   //    7 6 5 4 3 2 1 0
 492   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 493   //    0 0 1 0 1 0 1 1   (0x2B)
 494   //
 495   __ andl(Address(rsp, 0), 0xffffff2b);
 496   __ popf();
 497   __ bind(exit);
 498 }
 499 
 500 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 501   Label done;
 502   __ movl(dst, -1);
 503   __ jcc(Assembler::parity, done);
 504   __ jcc(Assembler::below, done);
 505   __ setb(Assembler::notEqual, dst);
 506   __ movzbl(dst, dst);
 507   __ bind(done);
 508 }
 509 
 510 
 511 //=============================================================================
 512 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 513 
 514 int Compile::ConstantTable::calculate_table_base_offset() const {
 515   return 0;  // absolute addressing, no offset
 516 }
 517 
 518 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 519 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 520   ShouldNotReachHere();
 521 }
 522 
 523 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 524   // Empty encoding
 525 }
 526 
 527 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 528   return 0;
 529 }
 530 
 531 #ifndef PRODUCT
 532 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 533   st->print("# MachConstantBaseNode (empty encoding)");
 534 }
 535 #endif
 536 
 537 
 538 //=============================================================================
 539 #ifndef PRODUCT
 540 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 541   Compile* C = ra_->C;
 542 
 543   int framesize = C->frame_size_in_bytes();
 544   int bangsize = C->bang_size_in_bytes();
 545   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 546   // Remove wordSize for return addr which is already pushed.
 547   framesize -= wordSize;
 548 
 549   if (C->need_stack_bang(bangsize)) {
 550     framesize -= wordSize;
 551     st->print("# stack bang (%d bytes)", bangsize);
 552     st->print("\n\t");
 553     st->print("PUSH   EBP\t# Save EBP");
 554     if (PreserveFramePointer) {
 555       st->print("\n\t");
 556       st->print("MOV    EBP, ESP\t# Save the caller's SP into EBP");
 557     }
 558     if (framesize) {
 559       st->print("\n\t");
 560       st->print("SUB    ESP, #%d\t# Create frame",framesize);
 561     }
 562   } else {
 563     st->print("SUB    ESP, #%d\t# Create frame",framesize);
 564     st->print("\n\t");
 565     framesize -= wordSize;
 566     st->print("MOV    [ESP + #%d], EBP\t# Save EBP",framesize);
 567     if (PreserveFramePointer) {
 568       st->print("\n\t");
 569       st->print("MOV    EBP, ESP\t# Save the caller's SP into EBP");
 570       if (framesize > 0) {
 571         st->print("\n\t");
 572         st->print("ADD    EBP, #%d", framesize);
 573       }
 574     }
 575   }
 576 
 577   if (VerifyStackAtCalls) {
 578     st->print("\n\t");
 579     framesize -= wordSize;
 580     st->print("MOV    [ESP + #%d], 0xBADB100D\t# Majik cookie for stack depth check",framesize);
 581   }
 582 
 583   if( C->in_24_bit_fp_mode() ) {
 584     st->print("\n\t");
 585     st->print("FLDCW  \t# load 24 bit fpu control word");
 586   }
 587   if (UseSSE >= 2 && VerifyFPU) {
 588     st->print("\n\t");
 589     st->print("# verify FPU stack (must be clean on entry)");
 590   }
 591 
 592 #ifdef ASSERT
 593   if (VerifyStackAtCalls) {
 594     st->print("\n\t");
 595     st->print("# stack alignment check");
 596   }
 597 #endif
 598   st->cr();
 599 }
 600 #endif
 601 
 602 
 603 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 604   Compile* C = ra_->C;
 605   MacroAssembler _masm(&cbuf);
 606 
 607   int framesize = C->frame_size_in_bytes();
 608   int bangsize = C->bang_size_in_bytes();
 609 
 610   __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, C->in_24_bit_fp_mode());
 611 
 612   C->set_frame_complete(cbuf.insts_size());
 613 
 614   if (C->has_mach_constant_base_node()) {
 615     // NOTE: We set the table base offset here because users might be
 616     // emitted before MachConstantBaseNode.
 617     Compile::ConstantTable& constant_table = C->constant_table();
 618     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 619   }
 620 }
 621 
 622 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 623   return MachNode::size(ra_); // too many variables; just compute it the hard way
 624 }
 625 
 626 int MachPrologNode::reloc() const {
 627   return 0; // a large enough number
 628 }
 629 
 630 //=============================================================================
 631 #ifndef PRODUCT
 632 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 633   Compile *C = ra_->C;
 634   int framesize = C->frame_size_in_bytes();
 635   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 636   // Remove two words for return addr and rbp,
 637   framesize -= 2*wordSize;
 638 
 639   if (C->max_vector_size() > 16) {
 640     st->print("VZEROUPPER");
 641     st->cr(); st->print("\t");
 642   }
 643   if (C->in_24_bit_fp_mode()) {
 644     st->print("FLDCW  standard control word");
 645     st->cr(); st->print("\t");
 646   }
 647   if (framesize) {
 648     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 649     st->cr(); st->print("\t");
 650   }
 651   st->print_cr("POPL   EBP"); st->print("\t");
 652   if (do_polling() && C->is_method_compilation()) {
 653     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 654     st->cr(); st->print("\t");
 655   }
 656 }
 657 #endif
 658 
 659 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 660   Compile *C = ra_->C;
 661 
 662   if (C->max_vector_size() > 16) {
 663     // Clear upper bits of YMM registers when current compiled code uses
 664     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 665     MacroAssembler masm(&cbuf);
 666     masm.vzeroupper();
 667   }
 668   // If method set FPU control word, restore to standard control word
 669   if (C->in_24_bit_fp_mode()) {
 670     MacroAssembler masm(&cbuf);
 671     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 672   }
 673 
 674   int framesize = C->frame_size_in_bytes();
 675   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 676   // Remove two words for return addr and rbp,
 677   framesize -= 2*wordSize;
 678 
 679   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 680 
 681   if (framesize >= 128) {
 682     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 683     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 684     emit_d32(cbuf, framesize);
 685   } else if (framesize) {
 686     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 687     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 688     emit_d8(cbuf, framesize);
 689   }
 690 
 691   emit_opcode(cbuf, 0x58 | EBP_enc);
 692 
 693   if (do_polling() && C->is_method_compilation()) {
 694     cbuf.relocate(cbuf.insts_end(), relocInfo::poll_return_type, 0);
 695     emit_opcode(cbuf,0x85);
 696     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 697     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 698   }
 699 }
 700 
 701 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 702   Compile *C = ra_->C;
 703   // If method set FPU control word, restore to standard control word
 704   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 705   if (C->max_vector_size() > 16) size += 3; // vzeroupper
 706   if (do_polling() && C->is_method_compilation()) size += 6;
 707 
 708   int framesize = C->frame_size_in_bytes();
 709   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 710   // Remove two words for return addr and rbp,
 711   framesize -= 2*wordSize;
 712 
 713   size++; // popl rbp,
 714 
 715   if (framesize >= 128) {
 716     size += 6;
 717   } else {
 718     size += framesize ? 3 : 0;
 719   }
 720   return size;
 721 }
 722 
 723 int MachEpilogNode::reloc() const {
 724   return 0; // a large enough number
 725 }
 726 
 727 const Pipeline * MachEpilogNode::pipeline() const {
 728   return MachNode::pipeline_class();
 729 }
 730 
 731 int MachEpilogNode::safepoint_offset() const { return 0; }
 732 
 733 //=============================================================================
 734 
 735 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 736 static enum RC rc_class( OptoReg::Name reg ) {
 737 
 738   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 739   if (OptoReg::is_stack(reg)) return rc_stack;
 740 
 741   VMReg r = OptoReg::as_VMReg(reg);
 742   if (r->is_Register()) return rc_int;
 743   if (r->is_FloatRegister()) {
 744     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 745     return rc_float;
 746   }
 747   assert(r->is_XMMRegister(), "must be");
 748   return rc_xmm;
 749 }
 750 
 751 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 752                         int opcode, const char *op_str, int size, outputStream* st ) {
 753   if( cbuf ) {
 754     emit_opcode  (*cbuf, opcode );
 755     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, relocInfo::none);
 756 #ifndef PRODUCT
 757   } else if( !do_size ) {
 758     if( size != 0 ) st->print("\n\t");
 759     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 760       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 761       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 762     } else { // FLD, FST, PUSH, POP
 763       st->print("%s [ESP + #%d]",op_str,offset);
 764     }
 765 #endif
 766   }
 767   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 768   return size+3+offset_size;
 769 }
 770 
 771 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 772 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 773                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 774   if (cbuf) {
 775     MacroAssembler _masm(cbuf);
 776     if (reg_lo+1 == reg_hi) { // double move?
 777       if (is_load) {
 778         __ movdbl(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 779       } else {
 780         __ movdbl(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 781       }
 782     } else {
 783       if (is_load) {
 784         __ movflt(as_XMMRegister(Matcher::_regEncode[reg_lo]), Address(rsp, offset));
 785       } else {
 786         __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[reg_lo]));
 787       }
 788     }
 789 #ifndef PRODUCT
 790   } else if (!do_size) {
 791     if (size != 0) st->print("\n\t");
 792     if (reg_lo+1 == reg_hi) { // double move?
 793       if (is_load) st->print("%s %s,[ESP + #%d]",
 794                               UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 795                               Matcher::regName[reg_lo], offset);
 796       else         st->print("MOVSD  [ESP + #%d],%s",
 797                               offset, Matcher::regName[reg_lo]);
 798     } else {
 799       if (is_load) st->print("MOVSS  %s,[ESP + #%d]",
 800                               Matcher::regName[reg_lo], offset);
 801       else         st->print("MOVSS  [ESP + #%d],%s",
 802                               offset, Matcher::regName[reg_lo]);
 803     }
 804 #endif
 805   }
 806   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 807   // VEX_2bytes prefix is used if UseAVX > 0, so it takes the same 2 bytes as SIMD prefix.
 808   return size+5+offset_size;
 809 }
 810 
 811 
 812 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 813                             int src_hi, int dst_hi, int size, outputStream* st ) {
 814   if (cbuf) {
 815     MacroAssembler _masm(cbuf);
 816     if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 817       __ movdbl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 818                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 819     } else {
 820       __ movflt(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 821                 as_XMMRegister(Matcher::_regEncode[src_lo]));
 822     }
 823 #ifndef PRODUCT
 824   } else if (!do_size) {
 825     if (size != 0) st->print("\n\t");
 826     if (UseXmmRegToRegMoveAll) {//Use movaps,movapd to move between xmm registers
 827       if (src_lo+1 == src_hi && dst_lo+1 == dst_hi) { // double move?
 828         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 829       } else {
 830         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 831       }
 832     } else {
 833       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 834         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 835       } else {
 836         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 837       }
 838     }
 839 #endif
 840   }
 841   // VEX_2bytes prefix is used if UseAVX > 0, and it takes the same 2 bytes as SIMD prefix.
 842   // Only MOVAPS SSE prefix uses 1 byte.
 843   int sz = 4;
 844   if (!(src_lo+1 == src_hi && dst_lo+1 == dst_hi) &&
 845       UseXmmRegToRegMoveAll && (UseAVX == 0)) sz = 3;
 846   return size + sz;
 847 }
 848 
 849 static int impl_movgpr2x_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 850                             int src_hi, int dst_hi, int size, outputStream* st ) {
 851   // 32-bit
 852   if (cbuf) {
 853     MacroAssembler _masm(cbuf);
 854     __ movdl(as_XMMRegister(Matcher::_regEncode[dst_lo]),
 855              as_Register(Matcher::_regEncode[src_lo]));
 856 #ifndef PRODUCT
 857   } else if (!do_size) {
 858     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 859 #endif
 860   }
 861   return 4;
 862 }
 863 
 864 
 865 static int impl_movx2gpr_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 866                                  int src_hi, int dst_hi, int size, outputStream* st ) {
 867   // 32-bit
 868   if (cbuf) {
 869     MacroAssembler _masm(cbuf);
 870     __ movdl(as_Register(Matcher::_regEncode[dst_lo]),
 871              as_XMMRegister(Matcher::_regEncode[src_lo]));
 872 #ifndef PRODUCT
 873   } else if (!do_size) {
 874     st->print("movdl   %s, %s\t# spill", Matcher::regName[dst_lo], Matcher::regName[src_lo]);
 875 #endif
 876   }
 877   return 4;
 878 }
 879 
 880 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 881   if( cbuf ) {
 882     emit_opcode(*cbuf, 0x8B );
 883     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 884 #ifndef PRODUCT
 885   } else if( !do_size ) {
 886     if( size != 0 ) st->print("\n\t");
 887     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 888 #endif
 889   }
 890   return size+2;
 891 }
 892 
 893 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 894                                  int offset, int size, outputStream* st ) {
 895   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 896     if( cbuf ) {
 897       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 898       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 899 #ifndef PRODUCT
 900     } else if( !do_size ) {
 901       if( size != 0 ) st->print("\n\t");
 902       st->print("FLD    %s",Matcher::regName[src_lo]);
 903 #endif
 904     }
 905     size += 2;
 906   }
 907 
 908   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 909   const char *op_str;
 910   int op;
 911   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 912     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 913     op = 0xDD;
 914   } else {                   // 32-bit store
 915     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 916     op = 0xD9;
 917     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 918   }
 919 
 920   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 921 }
 922 
 923 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
 924 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 925                           int src_hi, int dst_hi, uint ireg, outputStream* st);
 926 
 927 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
 928                             int stack_offset, int reg, uint ireg, outputStream* st);
 929 
 930 static int vec_stack_to_stack_helper(CodeBuffer *cbuf, bool do_size, int src_offset,
 931                                      int dst_offset, uint ireg, outputStream* st) {
 932   int calc_size = 0;
 933   int src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 934   int dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 935   switch (ireg) {
 936   case Op_VecS:
 937     calc_size = 3+src_offset_size + 3+dst_offset_size;
 938     break;
 939   case Op_VecD:
 940     calc_size = 3+src_offset_size + 3+dst_offset_size;
 941     src_offset += 4;
 942     dst_offset += 4;
 943     src_offset_size = (src_offset == 0) ? 0 : ((src_offset < 0x80) ? 1 : 4);
 944     dst_offset_size = (dst_offset == 0) ? 0 : ((dst_offset < 0x80) ? 1 : 4);
 945     calc_size += 3+src_offset_size + 3+dst_offset_size;
 946     break;
 947   case Op_VecX:
 948     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 949     break;
 950   case Op_VecY:
 951     calc_size = 6 + 6 + 5+src_offset_size + 5+dst_offset_size;
 952     break;
 953   default:
 954     ShouldNotReachHere();
 955   }
 956   if (cbuf) {
 957     MacroAssembler _masm(cbuf);
 958     int offset = __ offset();
 959     switch (ireg) {
 960     case Op_VecS:
 961       __ pushl(Address(rsp, src_offset));
 962       __ popl (Address(rsp, dst_offset));
 963       break;
 964     case Op_VecD:
 965       __ pushl(Address(rsp, src_offset));
 966       __ popl (Address(rsp, dst_offset));
 967       __ pushl(Address(rsp, src_offset+4));
 968       __ popl (Address(rsp, dst_offset+4));
 969       break;
 970     case Op_VecX:
 971       __ movdqu(Address(rsp, -16), xmm0);
 972       __ movdqu(xmm0, Address(rsp, src_offset));
 973       __ movdqu(Address(rsp, dst_offset), xmm0);
 974       __ movdqu(xmm0, Address(rsp, -16));
 975       break;
 976     case Op_VecY:
 977       __ vmovdqu(Address(rsp, -32), xmm0);
 978       __ vmovdqu(xmm0, Address(rsp, src_offset));
 979       __ vmovdqu(Address(rsp, dst_offset), xmm0);
 980       __ vmovdqu(xmm0, Address(rsp, -32));
 981       break;
 982     default:
 983       ShouldNotReachHere();
 984     }
 985     int size = __ offset() - offset;
 986     assert(size == calc_size, "incorrect size calculattion");
 987     return size;
 988 #ifndef PRODUCT
 989   } else if (!do_size) {
 990     switch (ireg) {
 991     case Op_VecS:
 992       st->print("pushl   [rsp + #%d]\t# 32-bit mem-mem spill\n\t"
 993                 "popl    [rsp + #%d]",
 994                 src_offset, dst_offset);
 995       break;
 996     case Op_VecD:
 997       st->print("pushl   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
 998                 "popq    [rsp + #%d]\n\t"
 999                 "pushl   [rsp + #%d]\n\t"
1000                 "popq    [rsp + #%d]",
1001                 src_offset, dst_offset, src_offset+4, dst_offset+4);
1002       break;
1003      case Op_VecX:
1004       st->print("movdqu  [rsp - #16], xmm0\t# 128-bit mem-mem spill\n\t"
1005                 "movdqu  xmm0, [rsp + #%d]\n\t"
1006                 "movdqu  [rsp + #%d], xmm0\n\t"
1007                 "movdqu  xmm0, [rsp - #16]",
1008                 src_offset, dst_offset);
1009       break;
1010     case Op_VecY:
1011       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1012                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1013                 "vmovdqu [rsp + #%d], xmm0\n\t"
1014                 "vmovdqu xmm0, [rsp - #32]",
1015                 src_offset, dst_offset);
1016       break;
1017     default:
1018       ShouldNotReachHere();
1019     }
1020 #endif
1021   }
1022   return calc_size;
1023 }
1024 
1025 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
1026   // Get registers to move
1027   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1028   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1029   OptoReg::Name dst_second = ra_->get_reg_second(this );
1030   OptoReg::Name dst_first = ra_->get_reg_first(this );
1031 
1032   enum RC src_second_rc = rc_class(src_second);
1033   enum RC src_first_rc = rc_class(src_first);
1034   enum RC dst_second_rc = rc_class(dst_second);
1035   enum RC dst_first_rc = rc_class(dst_first);
1036 
1037   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1038 
1039   // Generate spill code!
1040   int size = 0;
1041 
1042   if( src_first == dst_first && src_second == dst_second )
1043     return size;            // Self copy, no move
1044 
1045   if (bottom_type()->isa_vect() != NULL) {
1046     uint ireg = ideal_reg();
1047     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1048     assert((src_first_rc != rc_float && dst_first_rc != rc_float), "sanity");
1049     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1050     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1051       // mem -> mem
1052       int src_offset = ra_->reg2offset(src_first);
1053       int dst_offset = ra_->reg2offset(dst_first);
1054       return vec_stack_to_stack_helper(cbuf, do_size, src_offset, dst_offset, ireg, st);
1055     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1056       return vec_mov_helper(cbuf, do_size, src_first, dst_first, src_second, dst_second, ireg, st);
1057     } else if (src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1058       int stack_offset = ra_->reg2offset(dst_first);
1059       return vec_spill_helper(cbuf, do_size, false, stack_offset, src_first, ireg, st);
1060     } else if (src_first_rc == rc_stack && dst_first_rc == rc_xmm ) {
1061       int stack_offset = ra_->reg2offset(src_first);
1062       return vec_spill_helper(cbuf, do_size, true,  stack_offset, dst_first, ireg, st);
1063     } else {
1064       ShouldNotReachHere();
1065     }
1066   }
1067 
1068   // --------------------------------------
1069   // Check for mem-mem move.  push/pop to move.
1070   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1071     if( src_second == dst_first ) { // overlapping stack copy ranges
1072       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
1073       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1074       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1075       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
1076     }
1077     // move low bits
1078     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
1079     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
1080     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
1081       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
1082       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
1083     }
1084     return size;
1085   }
1086 
1087   // --------------------------------------
1088   // Check for integer reg-reg copy
1089   if( src_first_rc == rc_int && dst_first_rc == rc_int )
1090     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
1091 
1092   // Check for integer store
1093   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
1094     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
1095 
1096   // Check for integer load
1097   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
1098     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
1099 
1100   // Check for integer reg-xmm reg copy
1101   if( src_first_rc == rc_int && dst_first_rc == rc_xmm ) {
1102     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1103             "no 64 bit integer-float reg moves" );
1104     return impl_movgpr2x_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1105   }
1106   // --------------------------------------
1107   // Check for float reg-reg copy
1108   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1109     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1110             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
1111     if( cbuf ) {
1112 
1113       // Note the mucking with the register encode to compensate for the 0/1
1114       // indexing issue mentioned in a comment in the reg_def sections
1115       // for FPR registers many lines above here.
1116 
1117       if( src_first != FPR1L_num ) {
1118         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
1119         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
1120         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1121         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1122      } else {
1123         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
1124         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
1125      }
1126 #ifndef PRODUCT
1127     } else if( !do_size ) {
1128       if( size != 0 ) st->print("\n\t");
1129       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
1130       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
1131 #endif
1132     }
1133     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
1134   }
1135 
1136   // Check for float store
1137   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1138     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
1139   }
1140 
1141   // Check for float load
1142   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1143     int offset = ra_->reg2offset(src_first);
1144     const char *op_str;
1145     int op;
1146     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
1147       op_str = "FLD_D";
1148       op = 0xDD;
1149     } else {                   // 32-bit load
1150       op_str = "FLD_S";
1151       op = 0xD9;
1152       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
1153     }
1154     if( cbuf ) {
1155       emit_opcode  (*cbuf, op );
1156       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, relocInfo::none);
1157       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
1158       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
1159 #ifndef PRODUCT
1160     } else if( !do_size ) {
1161       if( size != 0 ) st->print("\n\t");
1162       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
1163 #endif
1164     }
1165     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
1166     return size + 3+offset_size+2;
1167   }
1168 
1169   // Check for xmm reg-reg copy
1170   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
1171     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
1172             (src_first+1 == src_second && dst_first+1 == dst_second),
1173             "no non-adjacent float-moves" );
1174     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1175   }
1176 
1177   // Check for xmm reg-integer reg copy
1178   if( src_first_rc == rc_xmm && dst_first_rc == rc_int ) {
1179     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad),
1180             "no 64 bit float-integer reg moves" );
1181     return impl_movx2gpr_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
1182   }
1183 
1184   // Check for xmm store
1185   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
1186     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
1187   }
1188 
1189   // Check for float xmm load
1190   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1191     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1192   }
1193 
1194   // Copy from float reg to xmm reg
1195   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1196     // copy to the top of stack from floating point reg
1197     // and use LEA to preserve flags
1198     if( cbuf ) {
1199       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1200       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1201       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1202       emit_d8(*cbuf,0xF8);
1203 #ifndef PRODUCT
1204     } else if( !do_size ) {
1205       if( size != 0 ) st->print("\n\t");
1206       st->print("LEA    ESP,[ESP-8]");
1207 #endif
1208     }
1209     size += 4;
1210 
1211     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1212 
1213     // Copy from the temp memory to the xmm reg.
1214     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1215 
1216     if( cbuf ) {
1217       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1218       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1219       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1220       emit_d8(*cbuf,0x08);
1221 #ifndef PRODUCT
1222     } else if( !do_size ) {
1223       if( size != 0 ) st->print("\n\t");
1224       st->print("LEA    ESP,[ESP+8]");
1225 #endif
1226     }
1227     size += 4;
1228     return size;
1229   }
1230 
1231   assert( size > 0, "missed a case" );
1232 
1233   // --------------------------------------------------------------------
1234   // Check for second bits still needing moving.
1235   if( src_second == dst_second )
1236     return size;               // Self copy; no move
1237   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1238 
1239   // Check for second word int-int move
1240   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1241     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1242 
1243   // Check for second word integer store
1244   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1245     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1246 
1247   // Check for second word integer load
1248   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1249     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1250 
1251 
1252   Unimplemented();
1253 }
1254 
1255 #ifndef PRODUCT
1256 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1257   implementation( NULL, ra_, false, st );
1258 }
1259 #endif
1260 
1261 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1262   implementation( &cbuf, ra_, false, NULL );
1263 }
1264 
1265 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1266   return implementation( NULL, ra_, true, NULL );
1267 }
1268 
1269 
1270 //=============================================================================
1271 #ifndef PRODUCT
1272 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1273   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1274   int reg = ra_->get_reg_first(this);
1275   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1276 }
1277 #endif
1278 
1279 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1280   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1281   int reg = ra_->get_encode(this);
1282   if( offset >= 128 ) {
1283     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1284     emit_rm(cbuf, 0x2, reg, 0x04);
1285     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1286     emit_d32(cbuf, offset);
1287   }
1288   else {
1289     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1290     emit_rm(cbuf, 0x1, reg, 0x04);
1291     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1292     emit_d8(cbuf, offset);
1293   }
1294 }
1295 
1296 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1297   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1298   if( offset >= 128 ) {
1299     return 7;
1300   }
1301   else {
1302     return 4;
1303   }
1304 }
1305 
1306 //=============================================================================
1307 #ifndef PRODUCT
1308 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1309   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1310   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1311   st->print_cr("\tNOP");
1312   st->print_cr("\tNOP");
1313   if( !OptoBreakpoint )
1314     st->print_cr("\tNOP");
1315 }
1316 #endif
1317 
1318 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1319   MacroAssembler masm(&cbuf);
1320 #ifdef ASSERT
1321   uint insts_size = cbuf.insts_size();
1322 #endif
1323   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1324   masm.jump_cc(Assembler::notEqual,
1325                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1326   /* WARNING these NOPs are critical so that verified entry point is properly
1327      aligned for patching by NativeJump::patch_verified_entry() */
1328   int nops_cnt = 2;
1329   if( !OptoBreakpoint ) // Leave space for int3
1330      nops_cnt += 1;
1331   masm.nop(nops_cnt);
1332 
1333   assert(cbuf.insts_size() - insts_size == size(ra_), "checking code size of inline cache node");
1334 }
1335 
1336 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1337   return OptoBreakpoint ? 11 : 12;
1338 }
1339 
1340 
1341 //=============================================================================
1342 
1343 int Matcher::regnum_to_fpu_offset(int regnum) {
1344   return regnum - 32; // The FP registers are in the second chunk
1345 }
1346 
1347 // This is UltraSparc specific, true just means we have fast l2f conversion
1348 const bool Matcher::convL2FSupported(void) {
1349   return true;
1350 }
1351 
1352 // Is this branch offset short enough that a short branch can be used?
1353 //
1354 // NOTE: If the platform does not provide any short branch variants, then
1355 //       this method should return false for offset 0.
1356 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1357   // The passed offset is relative to address of the branch.
1358   // On 86 a branch displacement is calculated relative to address
1359   // of a next instruction.
1360   offset -= br_size;
1361 
1362   // the short version of jmpConUCF2 contains multiple branches,
1363   // making the reach slightly less
1364   if (rule == jmpConUCF2_rule)
1365     return (-126 <= offset && offset <= 125);
1366   return (-128 <= offset && offset <= 127);
1367 }
1368 
1369 const bool Matcher::isSimpleConstant64(jlong value) {
1370   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1371   return false;
1372 }
1373 
1374 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1375 const bool Matcher::init_array_count_is_in_bytes = false;
1376 
1377 // Threshold size for cleararray.
1378 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1379 
1380 // Needs 2 CMOV's for longs.
1381 const int Matcher::long_cmove_cost() { return 1; }
1382 
1383 // No CMOVF/CMOVD with SSE/SSE2
1384 const int Matcher::float_cmove_cost() { return (UseSSE>=1) ? ConditionalMoveLimit : 0; }
1385 
1386 // Does the CPU require late expand (see block.cpp for description of late expand)?
1387 const bool Matcher::require_postalloc_expand = false;
1388 
1389 // Should the Matcher clone shifts on addressing modes, expecting them to
1390 // be subsumed into complex addressing expressions or compute them into
1391 // registers?  True for Intel but false for most RISCs
1392 const bool Matcher::clone_shift_expressions = true;
1393 
1394 // Do we need to mask the count passed to shift instructions or does
1395 // the cpu only look at the lower 5/6 bits anyway?
1396 const bool Matcher::need_masked_shift_count = false;
1397 
1398 bool Matcher::narrow_oop_use_complex_address() {
1399   ShouldNotCallThis();
1400   return true;
1401 }
1402 
1403 bool Matcher::narrow_klass_use_complex_address() {
1404   ShouldNotCallThis();
1405   return true;
1406 }
1407 
1408 
1409 // Is it better to copy float constants, or load them directly from memory?
1410 // Intel can load a float constant from a direct address, requiring no
1411 // extra registers.  Most RISCs will have to materialize an address into a
1412 // register first, so they would do better to copy the constant from stack.
1413 const bool Matcher::rematerialize_float_constants = true;
1414 
1415 // If CPU can load and store mis-aligned doubles directly then no fixup is
1416 // needed.  Else we split the double into 2 integer pieces and move it
1417 // piece-by-piece.  Only happens when passing doubles into C code as the
1418 // Java calling convention forces doubles to be aligned.
1419 const bool Matcher::misaligned_doubles_ok = true;
1420 
1421 
1422 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1423   // Get the memory operand from the node
1424   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1425   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1426   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1427   uint opcnt     = 1;                 // First operand
1428   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1429   while( idx >= skipped+num_edges ) {
1430     skipped += num_edges;
1431     opcnt++;                          // Bump operand count
1432     assert( opcnt < numopnds, "Accessing non-existent operand" );
1433     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1434   }
1435 
1436   MachOper *memory = node->_opnds[opcnt];
1437   MachOper *new_memory = NULL;
1438   switch (memory->opcode()) {
1439   case DIRECT:
1440   case INDOFFSET32X:
1441     // No transformation necessary.
1442     return;
1443   case INDIRECT:
1444     new_memory = new (C) indirect_win95_safeOper( );
1445     break;
1446   case INDOFFSET8:
1447     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1448     break;
1449   case INDOFFSET32:
1450     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1451     break;
1452   case INDINDEXOFFSET:
1453     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1454     break;
1455   case INDINDEXSCALE:
1456     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1457     break;
1458   case INDINDEXSCALEOFFSET:
1459     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1460     break;
1461   case LOAD_LONG_INDIRECT:
1462   case LOAD_LONG_INDOFFSET32:
1463     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1464     return;
1465   default:
1466     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1467     return;
1468   }
1469   node->_opnds[opcnt] = new_memory;
1470 }
1471 
1472 // Advertise here if the CPU requires explicit rounding operations
1473 // to implement the UseStrictFP mode.
1474 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1475 
1476 // Are floats conerted to double when stored to stack during deoptimization?
1477 // On x32 it is stored with convertion only when FPU is used for floats.
1478 bool Matcher::float_in_double() { return (UseSSE == 0); }
1479 
1480 // Do ints take an entire long register or just half?
1481 const bool Matcher::int_in_long = false;
1482 
1483 // Return whether or not this register is ever used as an argument.  This
1484 // function is used on startup to build the trampoline stubs in generateOptoStub.
1485 // Registers not mentioned will be killed by the VM call in the trampoline, and
1486 // arguments in those registers not be available to the callee.
1487 bool Matcher::can_be_java_arg( int reg ) {
1488   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1489   if( (reg == XMM0_num  || reg == XMM1_num ) && UseSSE>=1 ) return true;
1490   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1491   return false;
1492 }
1493 
1494 bool Matcher::is_spillable_arg( int reg ) {
1495   return can_be_java_arg(reg);
1496 }
1497 
1498 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1499   // Use hardware integer DIV instruction when
1500   // it is faster than a code which use multiply.
1501   // Only when constant divisor fits into 32 bit
1502   // (min_jint is excluded to get only correct
1503   // positive 32 bit values from negative).
1504   return VM_Version::has_fast_idiv() &&
1505          (divisor == (int)divisor && divisor != min_jint);
1506 }
1507 
1508 // Register for DIVI projection of divmodI
1509 RegMask Matcher::divI_proj_mask() {
1510   return EAX_REG_mask();
1511 }
1512 
1513 // Register for MODI projection of divmodI
1514 RegMask Matcher::modI_proj_mask() {
1515   return EDX_REG_mask();
1516 }
1517 
1518 // Register for DIVL projection of divmodL
1519 RegMask Matcher::divL_proj_mask() {
1520   ShouldNotReachHere();
1521   return RegMask();
1522 }
1523 
1524 // Register for MODL projection of divmodL
1525 RegMask Matcher::modL_proj_mask() {
1526   ShouldNotReachHere();
1527   return RegMask();
1528 }
1529 
1530 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1531   return NO_REG_mask();
1532 }
1533 
1534 // Returns true if the high 32 bits of the value is known to be zero.
1535 bool is_operand_hi32_zero(Node* n) {
1536   int opc = n->Opcode();
1537   if (opc == Op_AndL) {
1538     Node* o2 = n->in(2);
1539     if (o2->is_Con() && (o2->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1540       return true;
1541     }
1542   }
1543   if (opc == Op_ConL && (n->get_long() & 0xFFFFFFFF00000000LL) == 0LL) {
1544     return true;
1545   }
1546   return false;
1547 }
1548 
1549 %}
1550 
1551 //----------ENCODING BLOCK-----------------------------------------------------
1552 // This block specifies the encoding classes used by the compiler to output
1553 // byte streams.  Encoding classes generate functions which are called by
1554 // Machine Instruction Nodes in order to generate the bit encoding of the
1555 // instruction.  Operands specify their base encoding interface with the
1556 // interface keyword.  There are currently supported four interfaces,
1557 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1558 // operand to generate a function which returns its register number when
1559 // queried.   CONST_INTER causes an operand to generate a function which
1560 // returns the value of the constant when queried.  MEMORY_INTER causes an
1561 // operand to generate four functions which return the Base Register, the
1562 // Index Register, the Scale Value, and the Offset Value of the operand when
1563 // queried.  COND_INTER causes an operand to generate six functions which
1564 // return the encoding code (ie - encoding bits for the instruction)
1565 // associated with each basic boolean condition for a conditional instruction.
1566 // Instructions specify two basic values for encoding.  They use the
1567 // ins_encode keyword to specify their encoding class (which must be one of
1568 // the class names specified in the encoding block), and they use the
1569 // opcode keyword to specify, in order, their primary, secondary, and
1570 // tertiary opcode.  Only the opcode sections which a particular instruction
1571 // needs for encoding need to be specified.
1572 encode %{
1573   // Build emit functions for each basic byte or larger field in the intel
1574   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1575   // code in the enc_class source block.  Emit functions will live in the
1576   // main source block for now.  In future, we can generalize this by
1577   // adding a syntax that specifies the sizes of fields in an order,
1578   // so that the adlc can build the emit functions automagically
1579 
1580   // Emit primary opcode
1581   enc_class OpcP %{
1582     emit_opcode(cbuf, $primary);
1583   %}
1584 
1585   // Emit secondary opcode
1586   enc_class OpcS %{
1587     emit_opcode(cbuf, $secondary);
1588   %}
1589 
1590   // Emit opcode directly
1591   enc_class Opcode(immI d8) %{
1592     emit_opcode(cbuf, $d8$$constant);
1593   %}
1594 
1595   enc_class SizePrefix %{
1596     emit_opcode(cbuf,0x66);
1597   %}
1598 
1599   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1600     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1601   %}
1602 
1603   enc_class OpcRegReg (immI opcode, rRegI dst, rRegI src) %{    // OpcRegReg(Many)
1604     emit_opcode(cbuf,$opcode$$constant);
1605     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1606   %}
1607 
1608   enc_class mov_r32_imm0( rRegI dst ) %{
1609     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1610     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1611   %}
1612 
1613   enc_class cdq_enc %{
1614     // Full implementation of Java idiv and irem; checks for
1615     // special case as described in JVM spec., p.243 & p.271.
1616     //
1617     //         normal case                           special case
1618     //
1619     // input : rax,: dividend                         min_int
1620     //         reg: divisor                          -1
1621     //
1622     // output: rax,: quotient  (= rax, idiv reg)       min_int
1623     //         rdx: remainder (= rax, irem reg)       0
1624     //
1625     //  Code sequnce:
1626     //
1627     //  81 F8 00 00 00 80    cmp         rax,80000000h
1628     //  0F 85 0B 00 00 00    jne         normal_case
1629     //  33 D2                xor         rdx,edx
1630     //  83 F9 FF             cmp         rcx,0FFh
1631     //  0F 84 03 00 00 00    je          done
1632     //                  normal_case:
1633     //  99                   cdq
1634     //  F7 F9                idiv        rax,ecx
1635     //                  done:
1636     //
1637     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1638     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1639     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1640     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1641     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1642     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1643     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1644     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1645     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1646     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1647     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1648     // normal_case:
1649     emit_opcode(cbuf,0x99);                                         // cdq
1650     // idiv (note: must be emitted by the user of this rule)
1651     // normal:
1652   %}
1653 
1654   // Dense encoding for older common ops
1655   enc_class Opc_plus(immI opcode, rRegI reg) %{
1656     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1657   %}
1658 
1659 
1660   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1661   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1662     // Check for 8-bit immediate, and set sign extend bit in opcode
1663     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1664       emit_opcode(cbuf, $primary | 0x02);
1665     }
1666     else {                          // If 32-bit immediate
1667       emit_opcode(cbuf, $primary);
1668     }
1669   %}
1670 
1671   enc_class OpcSErm (rRegI dst, immI imm) %{    // OpcSEr/m
1672     // Emit primary opcode and set sign-extend bit
1673     // Check for 8-bit immediate, and set sign extend bit in opcode
1674     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1675       emit_opcode(cbuf, $primary | 0x02);    }
1676     else {                          // If 32-bit immediate
1677       emit_opcode(cbuf, $primary);
1678     }
1679     // Emit r/m byte with secondary opcode, after primary opcode.
1680     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1681   %}
1682 
1683   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1684     // Check for 8-bit immediate, and set sign extend bit in opcode
1685     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1686       $$$emit8$imm$$constant;
1687     }
1688     else {                          // If 32-bit immediate
1689       // Output immediate
1690       $$$emit32$imm$$constant;
1691     }
1692   %}
1693 
1694   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1695     // Emit primary opcode and set sign-extend bit
1696     // Check for 8-bit immediate, and set sign extend bit in opcode
1697     int con = (int)$imm$$constant; // Throw away top bits
1698     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1699     // Emit r/m byte with secondary opcode, after primary opcode.
1700     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1701     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1702     else                               emit_d32(cbuf,con);
1703   %}
1704 
1705   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1706     // Emit primary opcode and set sign-extend bit
1707     // Check for 8-bit immediate, and set sign extend bit in opcode
1708     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1709     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1710     // Emit r/m byte with tertiary opcode, after primary opcode.
1711     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1712     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1713     else                               emit_d32(cbuf,con);
1714   %}
1715 
1716   enc_class OpcSReg (rRegI dst) %{    // BSWAP
1717     emit_cc(cbuf, $secondary, $dst$$reg );
1718   %}
1719 
1720   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1721     int destlo = $dst$$reg;
1722     int desthi = HIGH_FROM_LOW(destlo);
1723     // bswap lo
1724     emit_opcode(cbuf, 0x0F);
1725     emit_cc(cbuf, 0xC8, destlo);
1726     // bswap hi
1727     emit_opcode(cbuf, 0x0F);
1728     emit_cc(cbuf, 0xC8, desthi);
1729     // xchg lo and hi
1730     emit_opcode(cbuf, 0x87);
1731     emit_rm(cbuf, 0x3, destlo, desthi);
1732   %}
1733 
1734   enc_class RegOpc (rRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1735     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1736   %}
1737 
1738   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1739     $$$emit8$primary;
1740     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1741   %}
1742 
1743   enc_class enc_cmov_dpr(cmpOp cop, regDPR src ) %{ // CMOV
1744     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1745     emit_d8(cbuf, op >> 8 );
1746     emit_d8(cbuf, op & 255);
1747   %}
1748 
1749   // emulate a CMOV with a conditional branch around a MOV
1750   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1751     // Invert sense of branch from sense of CMOV
1752     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1753     emit_d8( cbuf, $brOffs$$constant );
1754   %}
1755 
1756   enc_class enc_PartialSubtypeCheck( ) %{
1757     Register Redi = as_Register(EDI_enc); // result register
1758     Register Reax = as_Register(EAX_enc); // super class
1759     Register Recx = as_Register(ECX_enc); // killed
1760     Register Resi = as_Register(ESI_enc); // sub class
1761     Label miss;
1762 
1763     MacroAssembler _masm(&cbuf);
1764     __ check_klass_subtype_slow_path(Resi, Reax, Recx, Redi,
1765                                      NULL, &miss,
1766                                      /*set_cond_codes:*/ true);
1767     if ($primary) {
1768       __ xorptr(Redi, Redi);
1769     }
1770     __ bind(miss);
1771   %}
1772 
1773   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1774     MacroAssembler masm(&cbuf);
1775     int start = masm.offset();
1776     if (UseSSE >= 2) {
1777       if (VerifyFPU) {
1778         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1779       }
1780     } else {
1781       // External c_calling_convention expects the FPU stack to be 'clean'.
1782       // Compiled code leaves it dirty.  Do cleanup now.
1783       masm.empty_FPU_stack();
1784     }
1785     if (sizeof_FFree_Float_Stack_All == -1) {
1786       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1787     } else {
1788       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1789     }
1790   %}
1791 
1792   enc_class Verify_FPU_For_Leaf %{
1793     if( VerifyFPU ) {
1794       MacroAssembler masm(&cbuf);
1795       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1796     }
1797   %}
1798 
1799   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1800     // This is the instruction starting address for relocation info.
1801     cbuf.set_insts_mark();
1802     $$$emit8$primary;
1803     // CALL directly to the runtime
1804     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1805                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1806 
1807     if (UseSSE >= 2) {
1808       MacroAssembler _masm(&cbuf);
1809       BasicType rt = tf()->return_type();
1810 
1811       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1812         // A C runtime call where the return value is unused.  In SSE2+
1813         // mode the result needs to be removed from the FPU stack.  It's
1814         // likely that this function call could be removed by the
1815         // optimizer if the C function is a pure function.
1816         __ ffree(0);
1817       } else if (rt == T_FLOAT) {
1818         __ lea(rsp, Address(rsp, -4));
1819         __ fstp_s(Address(rsp, 0));
1820         __ movflt(xmm0, Address(rsp, 0));
1821         __ lea(rsp, Address(rsp,  4));
1822       } else if (rt == T_DOUBLE) {
1823         __ lea(rsp, Address(rsp, -8));
1824         __ fstp_d(Address(rsp, 0));
1825         __ movdbl(xmm0, Address(rsp, 0));
1826         __ lea(rsp, Address(rsp,  8));
1827       }
1828     }
1829   %}
1830 
1831 
1832   enc_class pre_call_resets %{
1833     // If method sets FPU control word restore it here
1834     debug_only(int off0 = cbuf.insts_size());
1835     if (ra_->C->in_24_bit_fp_mode()) {
1836       MacroAssembler _masm(&cbuf);
1837       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1838     }
1839     if (ra_->C->max_vector_size() > 16) {
1840       // Clear upper bits of YMM registers when current compiled code uses
1841       // wide vectors to avoid AVX <-> SSE transition penalty during call.
1842       MacroAssembler _masm(&cbuf);
1843       __ vzeroupper();
1844     }
1845     debug_only(int off1 = cbuf.insts_size());
1846     assert(off1 - off0 == pre_call_resets_size(), "correct size prediction");
1847   %}
1848 
1849   enc_class post_call_FPU %{
1850     // If method sets FPU control word do it here also
1851     if (Compile::current()->in_24_bit_fp_mode()) {
1852       MacroAssembler masm(&cbuf);
1853       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1854     }
1855   %}
1856 
1857   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1858     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1859     // who we intended to call.
1860     cbuf.set_insts_mark();
1861     $$$emit8$primary;
1862     if (!_method) {
1863       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1864                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1865     } else if (_optimized_virtual) {
1866       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1867                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1868     } else {
1869       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.insts_end()) - 4),
1870                      static_call_Relocation::spec(), RELOC_IMM32 );
1871     }
1872     if (_method) {  // Emit stub for static call.
1873       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
1874       if (stub == NULL) {
1875         ciEnv::current()->record_failure("CodeCache is full");
1876         return;
1877       } 
1878     }
1879   %}
1880 
1881   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1882     MacroAssembler _masm(&cbuf);
1883     __ ic_call((address)$meth$$method);
1884   %}
1885 
1886   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1887     int disp = in_bytes(Method::from_compiled_offset());
1888     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1889 
1890     // CALL *[EAX+in_bytes(Method::from_compiled_code_entry_point_offset())]
1891     cbuf.set_insts_mark();
1892     $$$emit8$primary;
1893     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1894     emit_d8(cbuf, disp);             // Displacement
1895 
1896   %}
1897 
1898 //   Following encoding is no longer used, but may be restored if calling
1899 //   convention changes significantly.
1900 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1901 //
1902 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1903 //     // int ic_reg     = Matcher::inline_cache_reg();
1904 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1905 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1906 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1907 //
1908 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1909 //     // // so we load it immediately before the call
1910 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1911 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1912 //
1913 //     // xor rbp,ebp
1914 //     emit_opcode(cbuf, 0x33);
1915 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1916 //
1917 //     // CALL to interpreter.
1918 //     cbuf.set_insts_mark();
1919 //     $$$emit8$primary;
1920 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.insts_end()) - 4),
1921 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1922 //   %}
1923 
1924   enc_class RegOpcImm (rRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1925     $$$emit8$primary;
1926     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1927     $$$emit8$shift$$constant;
1928   %}
1929 
1930   enc_class LdImmI (rRegI dst, immI src) %{    // Load Immediate
1931     // Load immediate does not have a zero or sign extended version
1932     // for 8-bit immediates
1933     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1934     $$$emit32$src$$constant;
1935   %}
1936 
1937   enc_class LdImmP (rRegI dst, immI src) %{    // Load Immediate
1938     // Load immediate does not have a zero or sign extended version
1939     // for 8-bit immediates
1940     emit_opcode(cbuf, $primary + $dst$$reg);
1941     $$$emit32$src$$constant;
1942   %}
1943 
1944   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1945     // Load immediate does not have a zero or sign extended version
1946     // for 8-bit immediates
1947     int dst_enc = $dst$$reg;
1948     int src_con = $src$$constant & 0x0FFFFFFFFL;
1949     if (src_con == 0) {
1950       // xor dst, dst
1951       emit_opcode(cbuf, 0x33);
1952       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1953     } else {
1954       emit_opcode(cbuf, $primary + dst_enc);
1955       emit_d32(cbuf, src_con);
1956     }
1957   %}
1958 
1959   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1960     // Load immediate does not have a zero or sign extended version
1961     // for 8-bit immediates
1962     int dst_enc = $dst$$reg + 2;
1963     int src_con = ((julong)($src$$constant)) >> 32;
1964     if (src_con == 0) {
1965       // xor dst, dst
1966       emit_opcode(cbuf, 0x33);
1967       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1968     } else {
1969       emit_opcode(cbuf, $primary + dst_enc);
1970       emit_d32(cbuf, src_con);
1971     }
1972   %}
1973 
1974 
1975   // Encode a reg-reg copy.  If it is useless, then empty encoding.
1976   enc_class enc_Copy( rRegI dst, rRegI src ) %{
1977     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1978   %}
1979 
1980   enc_class enc_CopyL_Lo( rRegI dst, eRegL src ) %{
1981     encode_Copy( cbuf, $dst$$reg, $src$$reg );
1982   %}
1983 
1984   enc_class RegReg (rRegI dst, rRegI src) %{    // RegReg(Many)
1985     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1986   %}
1987 
1988   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
1989     $$$emit8$primary;
1990     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1991   %}
1992 
1993   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
1994     $$$emit8$secondary;
1995     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
1996   %}
1997 
1998   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
1999     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2000   %}
2001 
2002   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2003     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2004   %}
2005 
2006   enc_class RegReg_HiLo( eRegL src, rRegI dst ) %{
2007     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2008   %}
2009 
2010   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2011     // Output immediate
2012     $$$emit32$src$$constant;
2013   %}
2014 
2015   enc_class Con32FPR_as_bits(immFPR src) %{        // storeF_imm
2016     // Output Float immediate bits
2017     jfloat jf = $src$$constant;
2018     int    jf_as_bits = jint_cast( jf );
2019     emit_d32(cbuf, jf_as_bits);
2020   %}
2021 
2022   enc_class Con32F_as_bits(immF src) %{      // storeX_imm
2023     // Output Float immediate bits
2024     jfloat jf = $src$$constant;
2025     int    jf_as_bits = jint_cast( jf );
2026     emit_d32(cbuf, jf_as_bits);
2027   %}
2028 
2029   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2030     // Output immediate
2031     $$$emit16$src$$constant;
2032   %}
2033 
2034   enc_class Con_d32(immI src) %{
2035     emit_d32(cbuf,$src$$constant);
2036   %}
2037 
2038   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2039     // Output immediate memory reference
2040     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2041     emit_d32(cbuf, 0x00);
2042   %}
2043 
2044   enc_class lock_prefix( ) %{
2045     if( os::is_MP() )
2046       emit_opcode(cbuf,0xF0);         // [Lock]
2047   %}
2048 
2049   // Cmp-xchg long value.
2050   // Note: we need to swap rbx, and rcx before and after the
2051   //       cmpxchg8 instruction because the instruction uses
2052   //       rcx as the high order word of the new value to store but
2053   //       our register encoding uses rbx,.
2054   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2055 
2056     // XCHG  rbx,ecx
2057     emit_opcode(cbuf,0x87);
2058     emit_opcode(cbuf,0xD9);
2059     // [Lock]
2060     if( os::is_MP() )
2061       emit_opcode(cbuf,0xF0);
2062     // CMPXCHG8 [Eptr]
2063     emit_opcode(cbuf,0x0F);
2064     emit_opcode(cbuf,0xC7);
2065     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2066     // XCHG  rbx,ecx
2067     emit_opcode(cbuf,0x87);
2068     emit_opcode(cbuf,0xD9);
2069   %}
2070 
2071   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2072     // [Lock]
2073     if( os::is_MP() )
2074       emit_opcode(cbuf,0xF0);
2075 
2076     // CMPXCHG [Eptr]
2077     emit_opcode(cbuf,0x0F);
2078     emit_opcode(cbuf,0xB1);
2079     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2080   %}
2081 
2082   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2083     int res_encoding = $res$$reg;
2084 
2085     // MOV  res,0
2086     emit_opcode( cbuf, 0xB8 + res_encoding);
2087     emit_d32( cbuf, 0 );
2088     // JNE,s  fail
2089     emit_opcode(cbuf,0x75);
2090     emit_d8(cbuf, 5 );
2091     // MOV  res,1
2092     emit_opcode( cbuf, 0xB8 + res_encoding);
2093     emit_d32( cbuf, 1 );
2094     // fail:
2095   %}
2096 
2097   enc_class set_instruction_start( ) %{
2098     cbuf.set_insts_mark();            // Mark start of opcode for reloc info in mem operand
2099   %}
2100 
2101   enc_class RegMem (rRegI ereg, memory mem) %{    // emit_reg_mem
2102     int reg_encoding = $ereg$$reg;
2103     int base  = $mem$$base;
2104     int index = $mem$$index;
2105     int scale = $mem$$scale;
2106     int displace = $mem$$disp;
2107     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2108     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2109   %}
2110 
2111   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2112     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2113     int base  = $mem$$base;
2114     int index = $mem$$index;
2115     int scale = $mem$$scale;
2116     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2117     assert( $mem->disp_reloc() == relocInfo::none, "Cannot add 4 to oop" );
2118     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, relocInfo::none);
2119   %}
2120 
2121   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2122     int r1, r2;
2123     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2124     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2125     emit_opcode(cbuf,0x0F);
2126     emit_opcode(cbuf,$tertiary);
2127     emit_rm(cbuf, 0x3, r1, r2);
2128     emit_d8(cbuf,$cnt$$constant);
2129     emit_d8(cbuf,$primary);
2130     emit_rm(cbuf, 0x3, $secondary, r1);
2131     emit_d8(cbuf,$cnt$$constant);
2132   %}
2133 
2134   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2135     emit_opcode( cbuf, 0x8B ); // Move
2136     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2137     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2138       emit_d8(cbuf,$primary);
2139       emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2140       emit_d8(cbuf,$cnt$$constant-32);
2141     }
2142     emit_d8(cbuf,$primary);
2143     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2144     emit_d8(cbuf,31);
2145   %}
2146 
2147   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2148     int r1, r2;
2149     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2150     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2151 
2152     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2153     emit_rm(cbuf, 0x3, r1, r2);
2154     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2155       emit_opcode(cbuf,$primary);
2156       emit_rm(cbuf, 0x3, $secondary, r1);
2157       emit_d8(cbuf,$cnt$$constant-32);
2158     }
2159     emit_opcode(cbuf,0x33);  // XOR r2,r2
2160     emit_rm(cbuf, 0x3, r2, r2);
2161   %}
2162 
2163   // Clone of RegMem but accepts an extra parameter to access each
2164   // half of a double in memory; it never needs relocation info.
2165   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, rRegI rm_reg) %{
2166     emit_opcode(cbuf,$opcode$$constant);
2167     int reg_encoding = $rm_reg$$reg;
2168     int base     = $mem$$base;
2169     int index    = $mem$$index;
2170     int scale    = $mem$$scale;
2171     int displace = $mem$$disp + $disp_for_half$$constant;
2172     relocInfo::relocType disp_reloc = relocInfo::none;
2173     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2174   %}
2175 
2176   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2177   //
2178   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2179   // and it never needs relocation information.
2180   // Frequently used to move data between FPU's Stack Top and memory.
2181   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2182     int rm_byte_opcode = $rm_opcode$$constant;
2183     int base     = $mem$$base;
2184     int index    = $mem$$index;
2185     int scale    = $mem$$scale;
2186     int displace = $mem$$disp;
2187     assert( $mem->disp_reloc() == relocInfo::none, "No oops here because no reloc info allowed" );
2188     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, relocInfo::none);
2189   %}
2190 
2191   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2192     int rm_byte_opcode = $rm_opcode$$constant;
2193     int base     = $mem$$base;
2194     int index    = $mem$$index;
2195     int scale    = $mem$$scale;
2196     int displace = $mem$$disp;
2197     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2198     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
2199   %}
2200 
2201   enc_class RegLea (rRegI dst, rRegI src0, immI src1 ) %{    // emit_reg_lea
2202     int reg_encoding = $dst$$reg;
2203     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2204     int index        = 0x04;            // 0x04 indicates no index
2205     int scale        = 0x00;            // 0x00 indicates no scale
2206     int displace     = $src1$$constant; // 0x00 indicates no displacement
2207     relocInfo::relocType disp_reloc = relocInfo::none;
2208     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2209   %}
2210 
2211   enc_class min_enc (rRegI dst, rRegI src) %{    // MIN
2212     // Compare dst,src
2213     emit_opcode(cbuf,0x3B);
2214     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2215     // jmp dst < src around move
2216     emit_opcode(cbuf,0x7C);
2217     emit_d8(cbuf,2);
2218     // move dst,src
2219     emit_opcode(cbuf,0x8B);
2220     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2221   %}
2222 
2223   enc_class max_enc (rRegI dst, rRegI src) %{    // MAX
2224     // Compare dst,src
2225     emit_opcode(cbuf,0x3B);
2226     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2227     // jmp dst > src around move
2228     emit_opcode(cbuf,0x7F);
2229     emit_d8(cbuf,2);
2230     // move dst,src
2231     emit_opcode(cbuf,0x8B);
2232     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2233   %}
2234 
2235   enc_class enc_FPR_store(memory mem, regDPR src) %{
2236     // If src is FPR1, we can just FST to store it.
2237     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2238     int reg_encoding = 0x2; // Just store
2239     int base  = $mem$$base;
2240     int index = $mem$$index;
2241     int scale = $mem$$scale;
2242     int displace = $mem$$disp;
2243     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
2244     if( $src$$reg != FPR1L_enc ) {
2245       reg_encoding = 0x3;  // Store & pop
2246       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2247       emit_d8( cbuf, 0xC0-1+$src$$reg );
2248     }
2249     cbuf.set_insts_mark();       // Mark start of opcode for reloc info in mem operand
2250     emit_opcode(cbuf,$primary);
2251     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_reloc);
2252   %}
2253 
2254   enc_class neg_reg(rRegI dst) %{
2255     // NEG $dst
2256     emit_opcode(cbuf,0xF7);
2257     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2258   %}
2259 
2260   enc_class setLT_reg(eCXRegI dst) %{
2261     // SETLT $dst
2262     emit_opcode(cbuf,0x0F);
2263     emit_opcode(cbuf,0x9C);
2264     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2265   %}
2266 
2267   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2268     int tmpReg = $tmp$$reg;
2269 
2270     // SUB $p,$q
2271     emit_opcode(cbuf,0x2B);
2272     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2273     // SBB $tmp,$tmp
2274     emit_opcode(cbuf,0x1B);
2275     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2276     // AND $tmp,$y
2277     emit_opcode(cbuf,0x23);
2278     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2279     // ADD $p,$tmp
2280     emit_opcode(cbuf,0x03);
2281     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2282   %}
2283 
2284   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2285     // TEST shift,32
2286     emit_opcode(cbuf,0xF7);
2287     emit_rm(cbuf, 0x3, 0, ECX_enc);
2288     emit_d32(cbuf,0x20);
2289     // JEQ,s small
2290     emit_opcode(cbuf, 0x74);
2291     emit_d8(cbuf, 0x04);
2292     // MOV    $dst.hi,$dst.lo
2293     emit_opcode( cbuf, 0x8B );
2294     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2295     // CLR    $dst.lo
2296     emit_opcode(cbuf, 0x33);
2297     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2298 // small:
2299     // SHLD   $dst.hi,$dst.lo,$shift
2300     emit_opcode(cbuf,0x0F);
2301     emit_opcode(cbuf,0xA5);
2302     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2303     // SHL    $dst.lo,$shift"
2304     emit_opcode(cbuf,0xD3);
2305     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2306   %}
2307 
2308   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2309     // TEST shift,32
2310     emit_opcode(cbuf,0xF7);
2311     emit_rm(cbuf, 0x3, 0, ECX_enc);
2312     emit_d32(cbuf,0x20);
2313     // JEQ,s small
2314     emit_opcode(cbuf, 0x74);
2315     emit_d8(cbuf, 0x04);
2316     // MOV    $dst.lo,$dst.hi
2317     emit_opcode( cbuf, 0x8B );
2318     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2319     // CLR    $dst.hi
2320     emit_opcode(cbuf, 0x33);
2321     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2322 // small:
2323     // SHRD   $dst.lo,$dst.hi,$shift
2324     emit_opcode(cbuf,0x0F);
2325     emit_opcode(cbuf,0xAD);
2326     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2327     // SHR    $dst.hi,$shift"
2328     emit_opcode(cbuf,0xD3);
2329     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2330   %}
2331 
2332   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2333     // TEST shift,32
2334     emit_opcode(cbuf,0xF7);
2335     emit_rm(cbuf, 0x3, 0, ECX_enc);
2336     emit_d32(cbuf,0x20);
2337     // JEQ,s small
2338     emit_opcode(cbuf, 0x74);
2339     emit_d8(cbuf, 0x05);
2340     // MOV    $dst.lo,$dst.hi
2341     emit_opcode( cbuf, 0x8B );
2342     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2343     // SAR    $dst.hi,31
2344     emit_opcode(cbuf, 0xC1);
2345     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2346     emit_d8(cbuf, 0x1F );
2347 // small:
2348     // SHRD   $dst.lo,$dst.hi,$shift
2349     emit_opcode(cbuf,0x0F);
2350     emit_opcode(cbuf,0xAD);
2351     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2352     // SAR    $dst.hi,$shift"
2353     emit_opcode(cbuf,0xD3);
2354     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2355   %}
2356 
2357 
2358   // ----------------- Encodings for floating point unit -----------------
2359   // May leave result in FPU-TOS or FPU reg depending on opcodes
2360   enc_class OpcReg_FPR(regFPR src) %{    // FMUL, FDIV
2361     $$$emit8$primary;
2362     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2363   %}
2364 
2365   // Pop argument in FPR0 with FSTP ST(0)
2366   enc_class PopFPU() %{
2367     emit_opcode( cbuf, 0xDD );
2368     emit_d8( cbuf, 0xD8 );
2369   %}
2370 
2371   // !!!!! equivalent to Pop_Reg_F
2372   enc_class Pop_Reg_DPR( regDPR dst ) %{
2373     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2374     emit_d8( cbuf, 0xD8+$dst$$reg );
2375   %}
2376 
2377   enc_class Push_Reg_DPR( regDPR dst ) %{
2378     emit_opcode( cbuf, 0xD9 );
2379     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2380   %}
2381 
2382   enc_class strictfp_bias1( regDPR dst ) %{
2383     emit_opcode( cbuf, 0xDB );           // FLD m80real
2384     emit_opcode( cbuf, 0x2D );
2385     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2386     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2387     emit_opcode( cbuf, 0xC8+$dst$$reg );
2388   %}
2389 
2390   enc_class strictfp_bias2( regDPR dst ) %{
2391     emit_opcode( cbuf, 0xDB );           // FLD m80real
2392     emit_opcode( cbuf, 0x2D );
2393     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2394     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2395     emit_opcode( cbuf, 0xC8+$dst$$reg );
2396   %}
2397 
2398   // Special case for moving an integer register to a stack slot.
2399   enc_class OpcPRegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2400     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2401   %}
2402 
2403   // Special case for moving a register to a stack slot.
2404   enc_class RegSS( stackSlotI dst, rRegI src ) %{ // RegSS
2405     // Opcode already emitted
2406     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2407     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2408     emit_d32(cbuf, $dst$$disp);   // Displacement
2409   %}
2410 
2411   // Push the integer in stackSlot 'src' onto FP-stack
2412   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2413     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2414   %}
2415 
2416   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2417   enc_class Pop_Mem_FPR( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2418     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2419   %}
2420 
2421   // Same as Pop_Mem_F except for opcode
2422   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2423   enc_class Pop_Mem_DPR( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2424     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2425   %}
2426 
2427   enc_class Pop_Reg_FPR( regFPR dst ) %{
2428     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2429     emit_d8( cbuf, 0xD8+$dst$$reg );
2430   %}
2431 
2432   enc_class Push_Reg_FPR( regFPR dst ) %{
2433     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2434     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2435   %}
2436 
2437   // Push FPU's float to a stack-slot, and pop FPU-stack
2438   enc_class Pop_Mem_Reg_FPR( stackSlotF dst, regFPR src ) %{
2439     int pop = 0x02;
2440     if ($src$$reg != FPR1L_enc) {
2441       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2442       emit_d8( cbuf, 0xC0-1+$src$$reg );
2443       pop = 0x03;
2444     }
2445     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2446   %}
2447 
2448   // Push FPU's double to a stack-slot, and pop FPU-stack
2449   enc_class Pop_Mem_Reg_DPR( stackSlotD dst, regDPR src ) %{
2450     int pop = 0x02;
2451     if ($src$$reg != FPR1L_enc) {
2452       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2453       emit_d8( cbuf, 0xC0-1+$src$$reg );
2454       pop = 0x03;
2455     }
2456     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2457   %}
2458 
2459   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2460   enc_class Pop_Reg_Reg_DPR( regDPR dst, regFPR src ) %{
2461     int pop = 0xD0 - 1; // -1 since we skip FLD
2462     if ($src$$reg != FPR1L_enc) {
2463       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2464       emit_d8( cbuf, 0xC0-1+$src$$reg );
2465       pop = 0xD8;
2466     }
2467     emit_opcode( cbuf, 0xDD );
2468     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2469   %}
2470 
2471 
2472   enc_class Push_Reg_Mod_DPR( regDPR dst, regDPR src) %{
2473     // load dst in FPR0
2474     emit_opcode( cbuf, 0xD9 );
2475     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2476     if ($src$$reg != FPR1L_enc) {
2477       // fincstp
2478       emit_opcode (cbuf, 0xD9);
2479       emit_opcode (cbuf, 0xF7);
2480       // swap src with FPR1:
2481       // FXCH FPR1 with src
2482       emit_opcode(cbuf, 0xD9);
2483       emit_d8(cbuf, 0xC8-1+$src$$reg );
2484       // fdecstp
2485       emit_opcode (cbuf, 0xD9);
2486       emit_opcode (cbuf, 0xF6);
2487     }
2488   %}
2489 
2490   enc_class Push_ModD_encoding(regD src0, regD src1) %{
2491     MacroAssembler _masm(&cbuf);
2492     __ subptr(rsp, 8);
2493     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
2494     __ fld_d(Address(rsp, 0));
2495     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
2496     __ fld_d(Address(rsp, 0));
2497   %}
2498 
2499   enc_class Push_ModF_encoding(regF src0, regF src1) %{
2500     MacroAssembler _masm(&cbuf);
2501     __ subptr(rsp, 4);
2502     __ movflt(Address(rsp, 0), $src1$$XMMRegister);
2503     __ fld_s(Address(rsp, 0));
2504     __ movflt(Address(rsp, 0), $src0$$XMMRegister);
2505     __ fld_s(Address(rsp, 0));
2506   %}
2507 
2508   enc_class Push_ResultD(regD dst) %{
2509     MacroAssembler _masm(&cbuf);
2510     __ fstp_d(Address(rsp, 0));
2511     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2512     __ addptr(rsp, 8);
2513   %}
2514 
2515   enc_class Push_ResultF(regF dst, immI d8) %{
2516     MacroAssembler _masm(&cbuf);
2517     __ fstp_s(Address(rsp, 0));
2518     __ movflt($dst$$XMMRegister, Address(rsp, 0));
2519     __ addptr(rsp, $d8$$constant);
2520   %}
2521 
2522   enc_class Push_SrcD(regD src) %{
2523     MacroAssembler _masm(&cbuf);
2524     __ subptr(rsp, 8);
2525     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2526     __ fld_d(Address(rsp, 0));
2527   %}
2528 
2529   enc_class push_stack_temp_qword() %{
2530     MacroAssembler _masm(&cbuf);
2531     __ subptr(rsp, 8);
2532   %}
2533 
2534   enc_class pop_stack_temp_qword() %{
2535     MacroAssembler _masm(&cbuf);
2536     __ addptr(rsp, 8);
2537   %}
2538 
2539   enc_class push_xmm_to_fpr1(regD src) %{
2540     MacroAssembler _masm(&cbuf);
2541     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2542     __ fld_d(Address(rsp, 0));
2543   %}
2544 
2545   enc_class Push_Result_Mod_DPR( regDPR src) %{
2546     if ($src$$reg != FPR1L_enc) {
2547       // fincstp
2548       emit_opcode (cbuf, 0xD9);
2549       emit_opcode (cbuf, 0xF7);
2550       // FXCH FPR1 with src
2551       emit_opcode(cbuf, 0xD9);
2552       emit_d8(cbuf, 0xC8-1+$src$$reg );
2553       // fdecstp
2554       emit_opcode (cbuf, 0xD9);
2555       emit_opcode (cbuf, 0xF6);
2556     }
2557     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2558     // // FSTP   FPR$dst$$reg
2559     // emit_opcode( cbuf, 0xDD );
2560     // emit_d8( cbuf, 0xD8+$dst$$reg );
2561   %}
2562 
2563   enc_class fnstsw_sahf_skip_parity() %{
2564     // fnstsw ax
2565     emit_opcode( cbuf, 0xDF );
2566     emit_opcode( cbuf, 0xE0 );
2567     // sahf
2568     emit_opcode( cbuf, 0x9E );
2569     // jnp  ::skip
2570     emit_opcode( cbuf, 0x7B );
2571     emit_opcode( cbuf, 0x05 );
2572   %}
2573 
2574   enc_class emitModDPR() %{
2575     // fprem must be iterative
2576     // :: loop
2577     // fprem
2578     emit_opcode( cbuf, 0xD9 );
2579     emit_opcode( cbuf, 0xF8 );
2580     // wait
2581     emit_opcode( cbuf, 0x9b );
2582     // fnstsw ax
2583     emit_opcode( cbuf, 0xDF );
2584     emit_opcode( cbuf, 0xE0 );
2585     // sahf
2586     emit_opcode( cbuf, 0x9E );
2587     // jp  ::loop
2588     emit_opcode( cbuf, 0x0F );
2589     emit_opcode( cbuf, 0x8A );
2590     emit_opcode( cbuf, 0xF4 );
2591     emit_opcode( cbuf, 0xFF );
2592     emit_opcode( cbuf, 0xFF );
2593     emit_opcode( cbuf, 0xFF );
2594   %}
2595 
2596   enc_class fpu_flags() %{
2597     // fnstsw_ax
2598     emit_opcode( cbuf, 0xDF);
2599     emit_opcode( cbuf, 0xE0);
2600     // test ax,0x0400
2601     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2602     emit_opcode( cbuf, 0xA9 );
2603     emit_d16   ( cbuf, 0x0400 );
2604     // // // This sequence works, but stalls for 12-16 cycles on PPro
2605     // // test rax,0x0400
2606     // emit_opcode( cbuf, 0xA9 );
2607     // emit_d32   ( cbuf, 0x00000400 );
2608     //
2609     // jz exit (no unordered comparison)
2610     emit_opcode( cbuf, 0x74 );
2611     emit_d8    ( cbuf, 0x02 );
2612     // mov ah,1 - treat as LT case (set carry flag)
2613     emit_opcode( cbuf, 0xB4 );
2614     emit_d8    ( cbuf, 0x01 );
2615     // sahf
2616     emit_opcode( cbuf, 0x9E);
2617   %}
2618 
2619   enc_class cmpF_P6_fixup() %{
2620     // Fixup the integer flags in case comparison involved a NaN
2621     //
2622     // JNP exit (no unordered comparison, P-flag is set by NaN)
2623     emit_opcode( cbuf, 0x7B );
2624     emit_d8    ( cbuf, 0x03 );
2625     // MOV AH,1 - treat as LT case (set carry flag)
2626     emit_opcode( cbuf, 0xB4 );
2627     emit_d8    ( cbuf, 0x01 );
2628     // SAHF
2629     emit_opcode( cbuf, 0x9E);
2630     // NOP     // target for branch to avoid branch to branch
2631     emit_opcode( cbuf, 0x90);
2632   %}
2633 
2634 //     fnstsw_ax();
2635 //     sahf();
2636 //     movl(dst, nan_result);
2637 //     jcc(Assembler::parity, exit);
2638 //     movl(dst, less_result);
2639 //     jcc(Assembler::below, exit);
2640 //     movl(dst, equal_result);
2641 //     jcc(Assembler::equal, exit);
2642 //     movl(dst, greater_result);
2643 
2644 // less_result     =  1;
2645 // greater_result  = -1;
2646 // equal_result    = 0;
2647 // nan_result      = -1;
2648 
2649   enc_class CmpF_Result(rRegI dst) %{
2650     // fnstsw_ax();
2651     emit_opcode( cbuf, 0xDF);
2652     emit_opcode( cbuf, 0xE0);
2653     // sahf
2654     emit_opcode( cbuf, 0x9E);
2655     // movl(dst, nan_result);
2656     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2657     emit_d32( cbuf, -1 );
2658     // jcc(Assembler::parity, exit);
2659     emit_opcode( cbuf, 0x7A );
2660     emit_d8    ( cbuf, 0x13 );
2661     // movl(dst, less_result);
2662     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2663     emit_d32( cbuf, -1 );
2664     // jcc(Assembler::below, exit);
2665     emit_opcode( cbuf, 0x72 );
2666     emit_d8    ( cbuf, 0x0C );
2667     // movl(dst, equal_result);
2668     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2669     emit_d32( cbuf, 0 );
2670     // jcc(Assembler::equal, exit);
2671     emit_opcode( cbuf, 0x74 );
2672     emit_d8    ( cbuf, 0x05 );
2673     // movl(dst, greater_result);
2674     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2675     emit_d32( cbuf, 1 );
2676   %}
2677 
2678 
2679   // Compare the longs and set flags
2680   // BROKEN!  Do Not use as-is
2681   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2682     // CMP    $src1.hi,$src2.hi
2683     emit_opcode( cbuf, 0x3B );
2684     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2685     // JNE,s  done
2686     emit_opcode(cbuf,0x75);
2687     emit_d8(cbuf, 2 );
2688     // CMP    $src1.lo,$src2.lo
2689     emit_opcode( cbuf, 0x3B );
2690     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2691 // done:
2692   %}
2693 
2694   enc_class convert_int_long( regL dst, rRegI src ) %{
2695     // mov $dst.lo,$src
2696     int dst_encoding = $dst$$reg;
2697     int src_encoding = $src$$reg;
2698     encode_Copy( cbuf, dst_encoding  , src_encoding );
2699     // mov $dst.hi,$src
2700     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2701     // sar $dst.hi,31
2702     emit_opcode( cbuf, 0xC1 );
2703     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2704     emit_d8(cbuf, 0x1F );
2705   %}
2706 
2707   enc_class convert_long_double( eRegL src ) %{
2708     // push $src.hi
2709     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2710     // push $src.lo
2711     emit_opcode(cbuf, 0x50+$src$$reg  );
2712     // fild 64-bits at [SP]
2713     emit_opcode(cbuf,0xdf);
2714     emit_d8(cbuf, 0x6C);
2715     emit_d8(cbuf, 0x24);
2716     emit_d8(cbuf, 0x00);
2717     // pop stack
2718     emit_opcode(cbuf, 0x83); // add  SP, #8
2719     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2720     emit_d8(cbuf, 0x8);
2721   %}
2722 
2723   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2724     // IMUL   EDX:EAX,$src1
2725     emit_opcode( cbuf, 0xF7 );
2726     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2727     // SAR    EDX,$cnt-32
2728     int shift_count = ((int)$cnt$$constant) - 32;
2729     if (shift_count > 0) {
2730       emit_opcode(cbuf, 0xC1);
2731       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2732       emit_d8(cbuf, shift_count);
2733     }
2734   %}
2735 
2736   // this version doesn't have add sp, 8
2737   enc_class convert_long_double2( eRegL src ) %{
2738     // push $src.hi
2739     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2740     // push $src.lo
2741     emit_opcode(cbuf, 0x50+$src$$reg  );
2742     // fild 64-bits at [SP]
2743     emit_opcode(cbuf,0xdf);
2744     emit_d8(cbuf, 0x6C);
2745     emit_d8(cbuf, 0x24);
2746     emit_d8(cbuf, 0x00);
2747   %}
2748 
2749   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2750     // Basic idea: long = (long)int * (long)int
2751     // IMUL EDX:EAX, src
2752     emit_opcode( cbuf, 0xF7 );
2753     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2754   %}
2755 
2756   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2757     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2758     // MUL EDX:EAX, src
2759     emit_opcode( cbuf, 0xF7 );
2760     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2761   %}
2762 
2763   enc_class long_multiply( eADXRegL dst, eRegL src, rRegI tmp ) %{
2764     // Basic idea: lo(result) = lo(x_lo * y_lo)
2765     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2766     // MOV    $tmp,$src.lo
2767     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2768     // IMUL   $tmp,EDX
2769     emit_opcode( cbuf, 0x0F );
2770     emit_opcode( cbuf, 0xAF );
2771     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2772     // MOV    EDX,$src.hi
2773     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
2774     // IMUL   EDX,EAX
2775     emit_opcode( cbuf, 0x0F );
2776     emit_opcode( cbuf, 0xAF );
2777     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2778     // ADD    $tmp,EDX
2779     emit_opcode( cbuf, 0x03 );
2780     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2781     // MUL   EDX:EAX,$src.lo
2782     emit_opcode( cbuf, 0xF7 );
2783     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
2784     // ADD    EDX,ESI
2785     emit_opcode( cbuf, 0x03 );
2786     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
2787   %}
2788 
2789   enc_class long_multiply_con( eADXRegL dst, immL_127 src, rRegI tmp ) %{
2790     // Basic idea: lo(result) = lo(src * y_lo)
2791     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
2792     // IMUL   $tmp,EDX,$src
2793     emit_opcode( cbuf, 0x6B );
2794     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2795     emit_d8( cbuf, (int)$src$$constant );
2796     // MOV    EDX,$src
2797     emit_opcode(cbuf, 0xB8 + EDX_enc);
2798     emit_d32( cbuf, (int)$src$$constant );
2799     // MUL   EDX:EAX,EDX
2800     emit_opcode( cbuf, 0xF7 );
2801     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
2802     // ADD    EDX,ESI
2803     emit_opcode( cbuf, 0x03 );
2804     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
2805   %}
2806 
2807   enc_class long_div( eRegL src1, eRegL src2 ) %{
2808     // PUSH src1.hi
2809     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2810     // PUSH src1.lo
2811     emit_opcode(cbuf,               0x50+$src1$$reg  );
2812     // PUSH src2.hi
2813     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2814     // PUSH src2.lo
2815     emit_opcode(cbuf,               0x50+$src2$$reg  );
2816     // CALL directly to the runtime
2817     cbuf.set_insts_mark();
2818     emit_opcode(cbuf,0xE8);       // Call into runtime
2819     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2820     // Restore stack
2821     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2822     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2823     emit_d8(cbuf, 4*4);
2824   %}
2825 
2826   enc_class long_mod( eRegL src1, eRegL src2 ) %{
2827     // PUSH src1.hi
2828     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
2829     // PUSH src1.lo
2830     emit_opcode(cbuf,               0x50+$src1$$reg  );
2831     // PUSH src2.hi
2832     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
2833     // PUSH src2.lo
2834     emit_opcode(cbuf,               0x50+$src2$$reg  );
2835     // CALL directly to the runtime
2836     cbuf.set_insts_mark();
2837     emit_opcode(cbuf,0xE8);       // Call into runtime
2838     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2839     // Restore stack
2840     emit_opcode(cbuf, 0x83); // add  SP, #framesize
2841     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2842     emit_d8(cbuf, 4*4);
2843   %}
2844 
2845   enc_class long_cmp_flags0( eRegL src, rRegI tmp ) %{
2846     // MOV   $tmp,$src.lo
2847     emit_opcode(cbuf, 0x8B);
2848     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2849     // OR    $tmp,$src.hi
2850     emit_opcode(cbuf, 0x0B);
2851     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2852   %}
2853 
2854   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
2855     // CMP    $src1.lo,$src2.lo
2856     emit_opcode( cbuf, 0x3B );
2857     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2858     // JNE,s  skip
2859     emit_cc(cbuf, 0x70, 0x5);
2860     emit_d8(cbuf,2);
2861     // CMP    $src1.hi,$src2.hi
2862     emit_opcode( cbuf, 0x3B );
2863     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2864   %}
2865 
2866   enc_class long_cmp_flags2( eRegL src1, eRegL src2, rRegI tmp ) %{
2867     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
2868     emit_opcode( cbuf, 0x3B );
2869     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2870     // MOV    $tmp,$src1.hi
2871     emit_opcode( cbuf, 0x8B );
2872     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
2873     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
2874     emit_opcode( cbuf, 0x1B );
2875     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
2876   %}
2877 
2878   enc_class long_cmp_flags3( eRegL src, rRegI tmp ) %{
2879     // XOR    $tmp,$tmp
2880     emit_opcode(cbuf,0x33);  // XOR
2881     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
2882     // CMP    $tmp,$src.lo
2883     emit_opcode( cbuf, 0x3B );
2884     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
2885     // SBB    $tmp,$src.hi
2886     emit_opcode( cbuf, 0x1B );
2887     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
2888   %}
2889 
2890  // Sniff, sniff... smells like Gnu Superoptimizer
2891   enc_class neg_long( eRegL dst ) %{
2892     emit_opcode(cbuf,0xF7);    // NEG hi
2893     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2894     emit_opcode(cbuf,0xF7);    // NEG lo
2895     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
2896     emit_opcode(cbuf,0x83);    // SBB hi,0
2897     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
2898     emit_d8    (cbuf,0 );
2899   %}
2900 
2901   enc_class enc_pop_rdx() %{
2902     emit_opcode(cbuf,0x5A);
2903   %}
2904 
2905   enc_class enc_rethrow() %{
2906     cbuf.set_insts_mark();
2907     emit_opcode(cbuf, 0xE9);        // jmp    entry
2908     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.insts_end())-4,
2909                    runtime_call_Relocation::spec(), RELOC_IMM32 );
2910   %}
2911 
2912 
2913   // Convert a double to an int.  Java semantics require we do complex
2914   // manglelations in the corner cases.  So we set the rounding mode to
2915   // 'zero', store the darned double down as an int, and reset the
2916   // rounding mode to 'nearest'.  The hardware throws an exception which
2917   // patches up the correct value directly to the stack.
2918   enc_class DPR2I_encoding( regDPR src ) %{
2919     // Flip to round-to-zero mode.  We attempted to allow invalid-op
2920     // exceptions here, so that a NAN or other corner-case value will
2921     // thrown an exception (but normal values get converted at full speed).
2922     // However, I2C adapters and other float-stack manglers leave pending
2923     // invalid-op exceptions hanging.  We would have to clear them before
2924     // enabling them and that is more expensive than just testing for the
2925     // invalid value Intel stores down in the corner cases.
2926     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
2927     emit_opcode(cbuf,0x2D);
2928     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
2929     // Allocate a word
2930     emit_opcode(cbuf,0x83);            // SUB ESP,4
2931     emit_opcode(cbuf,0xEC);
2932     emit_d8(cbuf,0x04);
2933     // Encoding assumes a double has been pushed into FPR0.
2934     // Store down the double as an int, popping the FPU stack
2935     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
2936     emit_opcode(cbuf,0x1C);
2937     emit_d8(cbuf,0x24);
2938     // Restore the rounding mode; mask the exception
2939     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
2940     emit_opcode(cbuf,0x2D);
2941     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
2942         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
2943         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
2944 
2945     // Load the converted int; adjust CPU stack
2946     emit_opcode(cbuf,0x58);       // POP EAX
2947     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
2948     emit_d32   (cbuf,0x80000000); //         0x80000000
2949     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2950     emit_d8    (cbuf,0x07);       // Size of slow_call
2951     // Push src onto stack slow-path
2952     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
2953     emit_d8    (cbuf,0xC0-1+$src$$reg );
2954     // CALL directly to the runtime
2955     cbuf.set_insts_mark();
2956     emit_opcode(cbuf,0xE8);       // Call into runtime
2957     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
2958     // Carry on here...
2959   %}
2960 
2961   enc_class DPR2L_encoding( regDPR src ) %{
2962     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
2963     emit_opcode(cbuf,0x2D);
2964     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
2965     // Allocate a word
2966     emit_opcode(cbuf,0x83);            // SUB ESP,8
2967     emit_opcode(cbuf,0xEC);
2968     emit_d8(cbuf,0x08);
2969     // Encoding assumes a double has been pushed into FPR0.
2970     // Store down the double as a long, popping the FPU stack
2971     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
2972     emit_opcode(cbuf,0x3C);
2973     emit_d8(cbuf,0x24);
2974     // Restore the rounding mode; mask the exception
2975     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
2976     emit_opcode(cbuf,0x2D);
2977     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
2978         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
2979         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
2980 
2981     // Load the converted int; adjust CPU stack
2982     emit_opcode(cbuf,0x58);       // POP EAX
2983     emit_opcode(cbuf,0x5A);       // POP EDX
2984     emit_opcode(cbuf,0x81);       // CMP EDX,imm
2985     emit_d8    (cbuf,0xFA);       // rdx
2986     emit_d32   (cbuf,0x80000000); //         0x80000000
2987     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2988     emit_d8    (cbuf,0x07+4);     // Size of slow_call
2989     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
2990     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
2991     emit_opcode(cbuf,0x75);       // JNE around_slow_call
2992     emit_d8    (cbuf,0x07);       // Size of slow_call
2993     // Push src onto stack slow-path
2994     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
2995     emit_d8    (cbuf,0xC0-1+$src$$reg );
2996     // CALL directly to the runtime
2997     cbuf.set_insts_mark();
2998     emit_opcode(cbuf,0xE8);       // Call into runtime
2999     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.insts_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3000     // Carry on here...
3001   %}
3002 
3003   enc_class FMul_ST_reg( eRegFPR src1 ) %{
3004     // Operand was loaded from memory into fp ST (stack top)
3005     // FMUL   ST,$src  /* D8 C8+i */
3006     emit_opcode(cbuf, 0xD8);
3007     emit_opcode(cbuf, 0xC8 + $src1$$reg);
3008   %}
3009 
3010   enc_class FAdd_ST_reg( eRegFPR src2 ) %{
3011     // FADDP  ST,src2  /* D8 C0+i */
3012     emit_opcode(cbuf, 0xD8);
3013     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3014     //could use FADDP  src2,fpST  /* DE C0+i */
3015   %}
3016 
3017   enc_class FAddP_reg_ST( eRegFPR src2 ) %{
3018     // FADDP  src2,ST  /* DE C0+i */
3019     emit_opcode(cbuf, 0xDE);
3020     emit_opcode(cbuf, 0xC0 + $src2$$reg);
3021   %}
3022 
3023   enc_class subFPR_divFPR_encode( eRegFPR src1, eRegFPR src2) %{
3024     // Operand has been loaded into fp ST (stack top)
3025       // FSUB   ST,$src1
3026       emit_opcode(cbuf, 0xD8);
3027       emit_opcode(cbuf, 0xE0 + $src1$$reg);
3028 
3029       // FDIV
3030       emit_opcode(cbuf, 0xD8);
3031       emit_opcode(cbuf, 0xF0 + $src2$$reg);
3032   %}
3033 
3034   enc_class MulFAddF (eRegFPR src1, eRegFPR src2) %{
3035     // Operand was loaded from memory into fp ST (stack top)
3036     // FADD   ST,$src  /* D8 C0+i */
3037     emit_opcode(cbuf, 0xD8);
3038     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3039 
3040     // FMUL  ST,src2  /* D8 C*+i */
3041     emit_opcode(cbuf, 0xD8);
3042     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3043   %}
3044 
3045 
3046   enc_class MulFAddFreverse (eRegFPR src1, eRegFPR src2) %{
3047     // Operand was loaded from memory into fp ST (stack top)
3048     // FADD   ST,$src  /* D8 C0+i */
3049     emit_opcode(cbuf, 0xD8);
3050     emit_opcode(cbuf, 0xC0 + $src1$$reg);
3051 
3052     // FMULP  src2,ST  /* DE C8+i */
3053     emit_opcode(cbuf, 0xDE);
3054     emit_opcode(cbuf, 0xC8 + $src2$$reg);
3055   %}
3056 
3057   // Atomically load the volatile long
3058   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
3059     emit_opcode(cbuf,0xDF);
3060     int rm_byte_opcode = 0x05;
3061     int base     = $mem$$base;
3062     int index    = $mem$$index;
3063     int scale    = $mem$$scale;
3064     int displace = $mem$$disp;
3065     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3066     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3067     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
3068   %}
3069 
3070   // Volatile Store Long.  Must be atomic, so move it into
3071   // the FP TOS and then do a 64-bit FIST.  Has to probe the
3072   // target address before the store (for null-ptr checks)
3073   // so the memory operand is used twice in the encoding.
3074   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
3075     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
3076     cbuf.set_insts_mark();            // Mark start of FIST in case $mem has an oop
3077     emit_opcode(cbuf,0xDF);
3078     int rm_byte_opcode = 0x07;
3079     int base     = $mem$$base;
3080     int index    = $mem$$index;
3081     int scale    = $mem$$scale;
3082     int displace = $mem$$disp;
3083     relocInfo::relocType disp_reloc = $mem->disp_reloc(); // disp-as-oop when working with static globals
3084     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_reloc);
3085   %}
3086 
3087   // Safepoint Poll.  This polls the safepoint page, and causes an
3088   // exception if it is not readable. Unfortunately, it kills the condition code
3089   // in the process
3090   // We current use TESTL [spp],EDI
3091   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
3092 
3093   enc_class Safepoint_Poll() %{
3094     cbuf.relocate(cbuf.insts_mark(), relocInfo::poll_type, 0);
3095     emit_opcode(cbuf,0x85);
3096     emit_rm (cbuf, 0x0, 0x7, 0x5);
3097     emit_d32(cbuf, (intptr_t)os::get_polling_page());
3098   %}
3099 %}
3100 
3101 
3102 //----------FRAME--------------------------------------------------------------
3103 // Definition of frame structure and management information.
3104 //
3105 //  S T A C K   L A Y O U T    Allocators stack-slot number
3106 //                             |   (to get allocators register number
3107 //  G  Owned by    |        |  v    add OptoReg::stack0())
3108 //  r   CALLER     |        |
3109 //  o     |        +--------+      pad to even-align allocators stack-slot
3110 //  w     V        |  pad0  |        numbers; owned by CALLER
3111 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3112 //  h     ^        |   in   |  5
3113 //        |        |  args  |  4   Holes in incoming args owned by SELF
3114 //  |     |        |        |  3
3115 //  |     |        +--------+
3116 //  V     |        | old out|      Empty on Intel, window on Sparc
3117 //        |    old |preserve|      Must be even aligned.
3118 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
3119 //        |        |   in   |  3   area for Intel ret address
3120 //     Owned by    |preserve|      Empty on Sparc.
3121 //       SELF      +--------+
3122 //        |        |  pad2  |  2   pad to align old SP
3123 //        |        +--------+  1
3124 //        |        | locks  |  0
3125 //        |        +--------+----> OptoReg::stack0(), even aligned
3126 //        |        |  pad1  | 11   pad to align new SP
3127 //        |        +--------+
3128 //        |        |        | 10
3129 //        |        | spills |  9   spills
3130 //        V        |        |  8   (pad0 slot for callee)
3131 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3132 //        ^        |  out   |  7
3133 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3134 //     Owned by    +--------+
3135 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3136 //        |    new |preserve|      Must be even-aligned.
3137 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3138 //        |        |        |
3139 //
3140 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3141 //         known from SELF's arguments and the Java calling convention.
3142 //         Region 6-7 is determined per call site.
3143 // Note 2: If the calling convention leaves holes in the incoming argument
3144 //         area, those holes are owned by SELF.  Holes in the outgoing area
3145 //         are owned by the CALLEE.  Holes should not be nessecary in the
3146 //         incoming area, as the Java calling convention is completely under
3147 //         the control of the AD file.  Doubles can be sorted and packed to
3148 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3149 //         varargs C calling conventions.
3150 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3151 //         even aligned with pad0 as needed.
3152 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3153 //         region 6-11 is even aligned; it may be padded out more so that
3154 //         the region from SP to FP meets the minimum stack alignment.
3155 
3156 frame %{
3157   // What direction does stack grow in (assumed to be same for C & Java)
3158   stack_direction(TOWARDS_LOW);
3159 
3160   // These three registers define part of the calling convention
3161   // between compiled code and the interpreter.
3162   inline_cache_reg(EAX);                // Inline Cache Register
3163   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
3164 
3165   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3166   cisc_spilling_operand_name(indOffset32);
3167 
3168   // Number of stack slots consumed by locking an object
3169   sync_stack_slots(1);
3170 
3171   // Compiled code's Frame Pointer
3172   frame_pointer(ESP);
3173   // Interpreter stores its frame pointer in a register which is
3174   // stored to the stack by I2CAdaptors.
3175   // I2CAdaptors convert from interpreted java to compiled java.
3176   interpreter_frame_pointer(EBP);
3177 
3178   // Stack alignment requirement
3179   // Alignment size in bytes (128-bit -> 16 bytes)
3180   stack_alignment(StackAlignmentInBytes);
3181 
3182   // Number of stack slots between incoming argument block and the start of
3183   // a new frame.  The PROLOG must add this many slots to the stack.  The
3184   // EPILOG must remove this many slots.  Intel needs one slot for
3185   // return address and one for rbp, (must save rbp)
3186   in_preserve_stack_slots(2+VerifyStackAtCalls);
3187 
3188   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3189   // for calls to C.  Supports the var-args backing area for register parms.
3190   varargs_C_out_slots_killed(0);
3191 
3192   // The after-PROLOG location of the return address.  Location of
3193   // return address specifies a type (REG or STACK) and a number
3194   // representing the register number (i.e. - use a register name) or
3195   // stack slot.
3196   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
3197   // Otherwise, it is above the locks and verification slot and alignment word
3198   return_addr(STACK - 1 +
3199               round_to((Compile::current()->in_preserve_stack_slots() +
3200                         Compile::current()->fixed_slots()),
3201                        stack_alignment_in_slots()));
3202 
3203   // Body of function which returns an integer array locating
3204   // arguments either in registers or in stack slots.  Passed an array
3205   // of ideal registers called "sig" and a "length" count.  Stack-slot
3206   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3207   // arguments for a CALLEE.  Incoming stack arguments are
3208   // automatically biased by the preserve_stack_slots field above.
3209   calling_convention %{
3210     // No difference between ingoing/outgoing just pass false
3211     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
3212   %}
3213 
3214 
3215   // Body of function which returns an integer array locating
3216   // arguments either in registers or in stack slots.  Passed an array
3217   // of ideal registers called "sig" and a "length" count.  Stack-slot
3218   // offsets are based on outgoing arguments, i.e. a CALLER setting up
3219   // arguments for a CALLEE.  Incoming stack arguments are
3220   // automatically biased by the preserve_stack_slots field above.
3221   c_calling_convention %{
3222     // This is obviously always outgoing
3223     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3224   %}
3225 
3226   // Location of C & interpreter return values
3227   c_return_value %{
3228     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3229     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3230     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3231 
3232     // in SSE2+ mode we want to keep the FPU stack clean so pretend
3233     // that C functions return float and double results in XMM0.
3234     if( ideal_reg == Op_RegD && UseSSE>=2 )
3235       return OptoRegPair(XMM0b_num,XMM0_num);
3236     if( ideal_reg == Op_RegF && UseSSE>=2 )
3237       return OptoRegPair(OptoReg::Bad,XMM0_num);
3238 
3239     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3240   %}
3241 
3242   // Location of return values
3243   return_value %{
3244     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3245     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
3246     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
3247     if( ideal_reg == Op_RegD && UseSSE>=2 )
3248       return OptoRegPair(XMM0b_num,XMM0_num);
3249     if( ideal_reg == Op_RegF && UseSSE>=1 )
3250       return OptoRegPair(OptoReg::Bad,XMM0_num);
3251     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
3252   %}
3253 
3254 %}
3255 
3256 //----------ATTRIBUTES---------------------------------------------------------
3257 //----------Operand Attributes-------------------------------------------------
3258 op_attrib op_cost(0);        // Required cost attribute
3259 
3260 //----------Instruction Attributes---------------------------------------------
3261 ins_attrib ins_cost(100);       // Required cost attribute
3262 ins_attrib ins_size(8);         // Required size attribute (in bits)
3263 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
3264                                 // non-matching short branch variant of some
3265                                                             // long branch?
3266 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
3267                                 // specifies the alignment that some part of the instruction (not
3268                                 // necessarily the start) requires.  If > 1, a compute_padding()
3269                                 // function must be provided for the instruction
3270 
3271 //----------OPERANDS-----------------------------------------------------------
3272 // Operand definitions must precede instruction definitions for correct parsing
3273 // in the ADLC because operands constitute user defined types which are used in
3274 // instruction definitions.
3275 
3276 //----------Simple Operands----------------------------------------------------
3277 // Immediate Operands
3278 // Integer Immediate
3279 operand immI() %{
3280   match(ConI);
3281 
3282   op_cost(10);
3283   format %{ %}
3284   interface(CONST_INTER);
3285 %}
3286 
3287 // Constant for test vs zero
3288 operand immI0() %{
3289   predicate(n->get_int() == 0);
3290   match(ConI);
3291 
3292   op_cost(0);
3293   format %{ %}
3294   interface(CONST_INTER);
3295 %}
3296 
3297 // Constant for increment
3298 operand immI1() %{
3299   predicate(n->get_int() == 1);
3300   match(ConI);
3301 
3302   op_cost(0);
3303   format %{ %}
3304   interface(CONST_INTER);
3305 %}
3306 
3307 // Constant for decrement
3308 operand immI_M1() %{
3309   predicate(n->get_int() == -1);
3310   match(ConI);
3311 
3312   op_cost(0);
3313   format %{ %}
3314   interface(CONST_INTER);
3315 %}
3316 
3317 // Valid scale values for addressing modes
3318 operand immI2() %{
3319   predicate(0 <= n->get_int() && (n->get_int() <= 3));
3320   match(ConI);
3321 
3322   format %{ %}
3323   interface(CONST_INTER);
3324 %}
3325 
3326 operand immI8() %{
3327   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
3328   match(ConI);
3329 
3330   op_cost(5);
3331   format %{ %}
3332   interface(CONST_INTER);
3333 %}
3334 
3335 operand immI16() %{
3336   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
3337   match(ConI);
3338 
3339   op_cost(10);
3340   format %{ %}
3341   interface(CONST_INTER);
3342 %}
3343 
3344 // Int Immediate non-negative
3345 operand immU31()
3346 %{
3347   predicate(n->get_int() >= 0);
3348   match(ConI);
3349 
3350   op_cost(0);
3351   format %{ %}
3352   interface(CONST_INTER);
3353 %}
3354 
3355 // Constant for long shifts
3356 operand immI_32() %{
3357   predicate( n->get_int() == 32 );
3358   match(ConI);
3359 
3360   op_cost(0);
3361   format %{ %}
3362   interface(CONST_INTER);
3363 %}
3364 
3365 operand immI_1_31() %{
3366   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
3367   match(ConI);
3368 
3369   op_cost(0);
3370   format %{ %}
3371   interface(CONST_INTER);
3372 %}
3373 
3374 operand immI_32_63() %{
3375   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
3376   match(ConI);
3377   op_cost(0);
3378 
3379   format %{ %}
3380   interface(CONST_INTER);
3381 %}
3382 
3383 operand immI_1() %{
3384   predicate( n->get_int() == 1 );
3385   match(ConI);
3386 
3387   op_cost(0);
3388   format %{ %}
3389   interface(CONST_INTER);
3390 %}
3391 
3392 operand immI_2() %{
3393   predicate( n->get_int() == 2 );
3394   match(ConI);
3395 
3396   op_cost(0);
3397   format %{ %}
3398   interface(CONST_INTER);
3399 %}
3400 
3401 operand immI_3() %{
3402   predicate( n->get_int() == 3 );
3403   match(ConI);
3404 
3405   op_cost(0);
3406   format %{ %}
3407   interface(CONST_INTER);
3408 %}
3409 
3410 // Pointer Immediate
3411 operand immP() %{
3412   match(ConP);
3413 
3414   op_cost(10);
3415   format %{ %}
3416   interface(CONST_INTER);
3417 %}
3418 
3419 // NULL Pointer Immediate
3420 operand immP0() %{
3421   predicate( n->get_ptr() == 0 );
3422   match(ConP);
3423   op_cost(0);
3424 
3425   format %{ %}
3426   interface(CONST_INTER);
3427 %}
3428 
3429 // Long Immediate
3430 operand immL() %{
3431   match(ConL);
3432 
3433   op_cost(20);
3434   format %{ %}
3435   interface(CONST_INTER);
3436 %}
3437 
3438 // Long Immediate zero
3439 operand immL0() %{
3440   predicate( n->get_long() == 0L );
3441   match(ConL);
3442   op_cost(0);
3443 
3444   format %{ %}
3445   interface(CONST_INTER);
3446 %}
3447 
3448 // Long Immediate zero
3449 operand immL_M1() %{
3450   predicate( n->get_long() == -1L );
3451   match(ConL);
3452   op_cost(0);
3453 
3454   format %{ %}
3455   interface(CONST_INTER);
3456 %}
3457 
3458 // Long immediate from 0 to 127.
3459 // Used for a shorter form of long mul by 10.
3460 operand immL_127() %{
3461   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
3462   match(ConL);
3463   op_cost(0);
3464 
3465   format %{ %}
3466   interface(CONST_INTER);
3467 %}
3468 
3469 // Long Immediate: low 32-bit mask
3470 operand immL_32bits() %{
3471   predicate(n->get_long() == 0xFFFFFFFFL);
3472   match(ConL);
3473   op_cost(0);
3474 
3475   format %{ %}
3476   interface(CONST_INTER);
3477 %}
3478 
3479 // Long Immediate: low 32-bit mask
3480 operand immL32() %{
3481   predicate(n->get_long() == (int)(n->get_long()));
3482   match(ConL);
3483   op_cost(20);
3484 
3485   format %{ %}
3486   interface(CONST_INTER);
3487 %}
3488 
3489 //Double Immediate zero
3490 operand immDPR0() %{
3491   // Do additional (and counter-intuitive) test against NaN to work around VC++
3492   // bug that generates code such that NaNs compare equal to 0.0
3493   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
3494   match(ConD);
3495 
3496   op_cost(5);
3497   format %{ %}
3498   interface(CONST_INTER);
3499 %}
3500 
3501 // Double Immediate one
3502 operand immDPR1() %{
3503   predicate( UseSSE<=1 && n->getd() == 1.0 );
3504   match(ConD);
3505 
3506   op_cost(5);
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Double Immediate
3512 operand immDPR() %{
3513   predicate(UseSSE<=1);
3514   match(ConD);
3515 
3516   op_cost(5);
3517   format %{ %}
3518   interface(CONST_INTER);
3519 %}
3520 
3521 operand immD() %{
3522   predicate(UseSSE>=2);
3523   match(ConD);
3524 
3525   op_cost(5);
3526   format %{ %}
3527   interface(CONST_INTER);
3528 %}
3529 
3530 // Double Immediate zero
3531 operand immD0() %{
3532   // Do additional (and counter-intuitive) test against NaN to work around VC++
3533   // bug that generates code such that NaNs compare equal to 0.0 AND do not
3534   // compare equal to -0.0.
3535   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
3536   match(ConD);
3537 
3538   format %{ %}
3539   interface(CONST_INTER);
3540 %}
3541 
3542 // Float Immediate zero
3543 operand immFPR0() %{
3544   predicate(UseSSE == 0 && n->getf() == 0.0F);
3545   match(ConF);
3546 
3547   op_cost(5);
3548   format %{ %}
3549   interface(CONST_INTER);
3550 %}
3551 
3552 // Float Immediate one
3553 operand immFPR1() %{
3554   predicate(UseSSE == 0 && n->getf() == 1.0F);
3555   match(ConF);
3556 
3557   op_cost(5);
3558   format %{ %}
3559   interface(CONST_INTER);
3560 %}
3561 
3562 // Float Immediate
3563 operand immFPR() %{
3564   predicate( UseSSE == 0 );
3565   match(ConF);
3566 
3567   op_cost(5);
3568   format %{ %}
3569   interface(CONST_INTER);
3570 %}
3571 
3572 // Float Immediate
3573 operand immF() %{
3574   predicate(UseSSE >= 1);
3575   match(ConF);
3576 
3577   op_cost(5);
3578   format %{ %}
3579   interface(CONST_INTER);
3580 %}
3581 
3582 // Float Immediate zero.  Zero and not -0.0
3583 operand immF0() %{
3584   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
3585   match(ConF);
3586 
3587   op_cost(5);
3588   format %{ %}
3589   interface(CONST_INTER);
3590 %}
3591 
3592 // Immediates for special shifts (sign extend)
3593 
3594 // Constants for increment
3595 operand immI_16() %{
3596   predicate( n->get_int() == 16 );
3597   match(ConI);
3598 
3599   format %{ %}
3600   interface(CONST_INTER);
3601 %}
3602 
3603 operand immI_24() %{
3604   predicate( n->get_int() == 24 );
3605   match(ConI);
3606 
3607   format %{ %}
3608   interface(CONST_INTER);
3609 %}
3610 
3611 // Constant for byte-wide masking
3612 operand immI_255() %{
3613   predicate( n->get_int() == 255 );
3614   match(ConI);
3615 
3616   format %{ %}
3617   interface(CONST_INTER);
3618 %}
3619 
3620 // Constant for short-wide masking
3621 operand immI_65535() %{
3622   predicate(n->get_int() == 65535);
3623   match(ConI);
3624 
3625   format %{ %}
3626   interface(CONST_INTER);
3627 %}
3628 
3629 // Register Operands
3630 // Integer Register
3631 operand rRegI() %{
3632   constraint(ALLOC_IN_RC(int_reg));
3633   match(RegI);
3634   match(xRegI);
3635   match(eAXRegI);
3636   match(eBXRegI);
3637   match(eCXRegI);
3638   match(eDXRegI);
3639   match(eDIRegI);
3640   match(eSIRegI);
3641 
3642   format %{ %}
3643   interface(REG_INTER);
3644 %}
3645 
3646 // Subset of Integer Register
3647 operand xRegI(rRegI reg) %{
3648   constraint(ALLOC_IN_RC(int_x_reg));
3649   match(reg);
3650   match(eAXRegI);
3651   match(eBXRegI);
3652   match(eCXRegI);
3653   match(eDXRegI);
3654 
3655   format %{ %}
3656   interface(REG_INTER);
3657 %}
3658 
3659 // Special Registers
3660 operand eAXRegI(xRegI reg) %{
3661   constraint(ALLOC_IN_RC(eax_reg));
3662   match(reg);
3663   match(rRegI);
3664 
3665   format %{ "EAX" %}
3666   interface(REG_INTER);
3667 %}
3668 
3669 // Special Registers
3670 operand eBXRegI(xRegI reg) %{
3671   constraint(ALLOC_IN_RC(ebx_reg));
3672   match(reg);
3673   match(rRegI);
3674 
3675   format %{ "EBX" %}
3676   interface(REG_INTER);
3677 %}
3678 
3679 operand eCXRegI(xRegI reg) %{
3680   constraint(ALLOC_IN_RC(ecx_reg));
3681   match(reg);
3682   match(rRegI);
3683 
3684   format %{ "ECX" %}
3685   interface(REG_INTER);
3686 %}
3687 
3688 operand eDXRegI(xRegI reg) %{
3689   constraint(ALLOC_IN_RC(edx_reg));
3690   match(reg);
3691   match(rRegI);
3692 
3693   format %{ "EDX" %}
3694   interface(REG_INTER);
3695 %}
3696 
3697 operand eDIRegI(xRegI reg) %{
3698   constraint(ALLOC_IN_RC(edi_reg));
3699   match(reg);
3700   match(rRegI);
3701 
3702   format %{ "EDI" %}
3703   interface(REG_INTER);
3704 %}
3705 
3706 operand naxRegI() %{
3707   constraint(ALLOC_IN_RC(nax_reg));
3708   match(RegI);
3709   match(eCXRegI);
3710   match(eDXRegI);
3711   match(eSIRegI);
3712   match(eDIRegI);
3713 
3714   format %{ %}
3715   interface(REG_INTER);
3716 %}
3717 
3718 operand nadxRegI() %{
3719   constraint(ALLOC_IN_RC(nadx_reg));
3720   match(RegI);
3721   match(eBXRegI);
3722   match(eCXRegI);
3723   match(eSIRegI);
3724   match(eDIRegI);
3725 
3726   format %{ %}
3727   interface(REG_INTER);
3728 %}
3729 
3730 operand ncxRegI() %{
3731   constraint(ALLOC_IN_RC(ncx_reg));
3732   match(RegI);
3733   match(eAXRegI);
3734   match(eDXRegI);
3735   match(eSIRegI);
3736   match(eDIRegI);
3737 
3738   format %{ %}
3739   interface(REG_INTER);
3740 %}
3741 
3742 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
3743 // //
3744 operand eSIRegI(xRegI reg) %{
3745    constraint(ALLOC_IN_RC(esi_reg));
3746    match(reg);
3747    match(rRegI);
3748 
3749    format %{ "ESI" %}
3750    interface(REG_INTER);
3751 %}
3752 
3753 // Pointer Register
3754 operand anyRegP() %{
3755   constraint(ALLOC_IN_RC(any_reg));
3756   match(RegP);
3757   match(eAXRegP);
3758   match(eBXRegP);
3759   match(eCXRegP);
3760   match(eDIRegP);
3761   match(eRegP);
3762 
3763   format %{ %}
3764   interface(REG_INTER);
3765 %}
3766 
3767 operand eRegP() %{
3768   constraint(ALLOC_IN_RC(int_reg));
3769   match(RegP);
3770   match(eAXRegP);
3771   match(eBXRegP);
3772   match(eCXRegP);
3773   match(eDIRegP);
3774 
3775   format %{ %}
3776   interface(REG_INTER);
3777 %}
3778 
3779 // On windows95, EBP is not safe to use for implicit null tests.
3780 operand eRegP_no_EBP() %{
3781   constraint(ALLOC_IN_RC(int_reg_no_ebp));
3782   match(RegP);
3783   match(eAXRegP);
3784   match(eBXRegP);
3785   match(eCXRegP);
3786   match(eDIRegP);
3787 
3788   op_cost(100);
3789   format %{ %}
3790   interface(REG_INTER);
3791 %}
3792 
3793 operand naxRegP() %{
3794   constraint(ALLOC_IN_RC(nax_reg));
3795   match(RegP);
3796   match(eBXRegP);
3797   match(eDXRegP);
3798   match(eCXRegP);
3799   match(eSIRegP);
3800   match(eDIRegP);
3801 
3802   format %{ %}
3803   interface(REG_INTER);
3804 %}
3805 
3806 operand nabxRegP() %{
3807   constraint(ALLOC_IN_RC(nabx_reg));
3808   match(RegP);
3809   match(eCXRegP);
3810   match(eDXRegP);
3811   match(eSIRegP);
3812   match(eDIRegP);
3813 
3814   format %{ %}
3815   interface(REG_INTER);
3816 %}
3817 
3818 operand pRegP() %{
3819   constraint(ALLOC_IN_RC(p_reg));
3820   match(RegP);
3821   match(eBXRegP);
3822   match(eDXRegP);
3823   match(eSIRegP);
3824   match(eDIRegP);
3825 
3826   format %{ %}
3827   interface(REG_INTER);
3828 %}
3829 
3830 // Special Registers
3831 // Return a pointer value
3832 operand eAXRegP(eRegP reg) %{
3833   constraint(ALLOC_IN_RC(eax_reg));
3834   match(reg);
3835   format %{ "EAX" %}
3836   interface(REG_INTER);
3837 %}
3838 
3839 // Used in AtomicAdd
3840 operand eBXRegP(eRegP reg) %{
3841   constraint(ALLOC_IN_RC(ebx_reg));
3842   match(reg);
3843   format %{ "EBX" %}
3844   interface(REG_INTER);
3845 %}
3846 
3847 // Tail-call (interprocedural jump) to interpreter
3848 operand eCXRegP(eRegP reg) %{
3849   constraint(ALLOC_IN_RC(ecx_reg));
3850   match(reg);
3851   format %{ "ECX" %}
3852   interface(REG_INTER);
3853 %}
3854 
3855 operand eSIRegP(eRegP reg) %{
3856   constraint(ALLOC_IN_RC(esi_reg));
3857   match(reg);
3858   format %{ "ESI" %}
3859   interface(REG_INTER);
3860 %}
3861 
3862 // Used in rep stosw
3863 operand eDIRegP(eRegP reg) %{
3864   constraint(ALLOC_IN_RC(edi_reg));
3865   match(reg);
3866   format %{ "EDI" %}
3867   interface(REG_INTER);
3868 %}
3869 
3870 operand eRegL() %{
3871   constraint(ALLOC_IN_RC(long_reg));
3872   match(RegL);
3873   match(eADXRegL);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 operand eADXRegL( eRegL reg ) %{
3880   constraint(ALLOC_IN_RC(eadx_reg));
3881   match(reg);
3882 
3883   format %{ "EDX:EAX" %}
3884   interface(REG_INTER);
3885 %}
3886 
3887 operand eBCXRegL( eRegL reg ) %{
3888   constraint(ALLOC_IN_RC(ebcx_reg));
3889   match(reg);
3890 
3891   format %{ "EBX:ECX" %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 // Special case for integer high multiply
3896 operand eADXRegL_low_only() %{
3897   constraint(ALLOC_IN_RC(eadx_reg));
3898   match(RegL);
3899 
3900   format %{ "EAX" %}
3901   interface(REG_INTER);
3902 %}
3903 
3904 // Flags register, used as output of compare instructions
3905 operand eFlagsReg() %{
3906   constraint(ALLOC_IN_RC(int_flags));
3907   match(RegFlags);
3908 
3909   format %{ "EFLAGS" %}
3910   interface(REG_INTER);
3911 %}
3912 
3913 // Flags register, used as output of FLOATING POINT compare instructions
3914 operand eFlagsRegU() %{
3915   constraint(ALLOC_IN_RC(int_flags));
3916   match(RegFlags);
3917 
3918   format %{ "EFLAGS_U" %}
3919   interface(REG_INTER);
3920 %}
3921 
3922 operand eFlagsRegUCF() %{
3923   constraint(ALLOC_IN_RC(int_flags));
3924   match(RegFlags);
3925   predicate(false);
3926 
3927   format %{ "EFLAGS_U_CF" %}
3928   interface(REG_INTER);
3929 %}
3930 
3931 // Condition Code Register used by long compare
3932 operand flagsReg_long_LTGE() %{
3933   constraint(ALLOC_IN_RC(int_flags));
3934   match(RegFlags);
3935   format %{ "FLAGS_LTGE" %}
3936   interface(REG_INTER);
3937 %}
3938 operand flagsReg_long_EQNE() %{
3939   constraint(ALLOC_IN_RC(int_flags));
3940   match(RegFlags);
3941   format %{ "FLAGS_EQNE" %}
3942   interface(REG_INTER);
3943 %}
3944 operand flagsReg_long_LEGT() %{
3945   constraint(ALLOC_IN_RC(int_flags));
3946   match(RegFlags);
3947   format %{ "FLAGS_LEGT" %}
3948   interface(REG_INTER);
3949 %}
3950 
3951 // Float register operands
3952 operand regDPR() %{
3953   predicate( UseSSE < 2 );
3954   constraint(ALLOC_IN_RC(fp_dbl_reg));
3955   match(RegD);
3956   match(regDPR1);
3957   match(regDPR2);
3958   format %{ %}
3959   interface(REG_INTER);
3960 %}
3961 
3962 operand regDPR1(regDPR reg) %{
3963   predicate( UseSSE < 2 );
3964   constraint(ALLOC_IN_RC(fp_dbl_reg0));
3965   match(reg);
3966   format %{ "FPR1" %}
3967   interface(REG_INTER);
3968 %}
3969 
3970 operand regDPR2(regDPR reg) %{
3971   predicate( UseSSE < 2 );
3972   constraint(ALLOC_IN_RC(fp_dbl_reg1));
3973   match(reg);
3974   format %{ "FPR2" %}
3975   interface(REG_INTER);
3976 %}
3977 
3978 operand regnotDPR1(regDPR reg) %{
3979   predicate( UseSSE < 2 );
3980   constraint(ALLOC_IN_RC(fp_dbl_notreg0));
3981   match(reg);
3982   format %{ %}
3983   interface(REG_INTER);
3984 %}
3985 
3986 // Float register operands
3987 operand regFPR() %{
3988   predicate( UseSSE < 2 );
3989   constraint(ALLOC_IN_RC(fp_flt_reg));
3990   match(RegF);
3991   match(regFPR1);
3992   format %{ %}
3993   interface(REG_INTER);
3994 %}
3995 
3996 // Float register operands
3997 operand regFPR1(regFPR reg) %{
3998   predicate( UseSSE < 2 );
3999   constraint(ALLOC_IN_RC(fp_flt_reg0));
4000   match(reg);
4001   format %{ "FPR1" %}
4002   interface(REG_INTER);
4003 %}
4004 
4005 // XMM Float register operands
4006 operand regF() %{
4007   predicate( UseSSE>=1 );
4008   constraint(ALLOC_IN_RC(float_reg));
4009   match(RegF);
4010   format %{ %}
4011   interface(REG_INTER);
4012 %}
4013 
4014 // XMM Double register operands
4015 operand regD() %{
4016   predicate( UseSSE>=2 );
4017   constraint(ALLOC_IN_RC(double_reg));
4018   match(RegD);
4019   format %{ %}
4020   interface(REG_INTER);
4021 %}
4022 
4023 
4024 //----------Memory Operands----------------------------------------------------
4025 // Direct Memory Operand
4026 operand direct(immP addr) %{
4027   match(addr);
4028 
4029   format %{ "[$addr]" %}
4030   interface(MEMORY_INTER) %{
4031     base(0xFFFFFFFF);
4032     index(0x4);
4033     scale(0x0);
4034     disp($addr);
4035   %}
4036 %}
4037 
4038 // Indirect Memory Operand
4039 operand indirect(eRegP reg) %{
4040   constraint(ALLOC_IN_RC(int_reg));
4041   match(reg);
4042 
4043   format %{ "[$reg]" %}
4044   interface(MEMORY_INTER) %{
4045     base($reg);
4046     index(0x4);
4047     scale(0x0);
4048     disp(0x0);
4049   %}
4050 %}
4051 
4052 // Indirect Memory Plus Short Offset Operand
4053 operand indOffset8(eRegP reg, immI8 off) %{
4054   match(AddP reg off);
4055 
4056   format %{ "[$reg + $off]" %}
4057   interface(MEMORY_INTER) %{
4058     base($reg);
4059     index(0x4);
4060     scale(0x0);
4061     disp($off);
4062   %}
4063 %}
4064 
4065 // Indirect Memory Plus Long Offset Operand
4066 operand indOffset32(eRegP reg, immI off) %{
4067   match(AddP reg off);
4068 
4069   format %{ "[$reg + $off]" %}
4070   interface(MEMORY_INTER) %{
4071     base($reg);
4072     index(0x4);
4073     scale(0x0);
4074     disp($off);
4075   %}
4076 %}
4077 
4078 // Indirect Memory Plus Long Offset Operand
4079 operand indOffset32X(rRegI reg, immP off) %{
4080   match(AddP off reg);
4081 
4082   format %{ "[$reg + $off]" %}
4083   interface(MEMORY_INTER) %{
4084     base($reg);
4085     index(0x4);
4086     scale(0x0);
4087     disp($off);
4088   %}
4089 %}
4090 
4091 // Indirect Memory Plus Index Register Plus Offset Operand
4092 operand indIndexOffset(eRegP reg, rRegI ireg, immI off) %{
4093   match(AddP (AddP reg ireg) off);
4094 
4095   op_cost(10);
4096   format %{"[$reg + $off + $ireg]" %}
4097   interface(MEMORY_INTER) %{
4098     base($reg);
4099     index($ireg);
4100     scale(0x0);
4101     disp($off);
4102   %}
4103 %}
4104 
4105 // Indirect Memory Plus Index Register Plus Offset Operand
4106 operand indIndex(eRegP reg, rRegI ireg) %{
4107   match(AddP reg ireg);
4108 
4109   op_cost(10);
4110   format %{"[$reg + $ireg]" %}
4111   interface(MEMORY_INTER) %{
4112     base($reg);
4113     index($ireg);
4114     scale(0x0);
4115     disp(0x0);
4116   %}
4117 %}
4118 
4119 // // -------------------------------------------------------------------------
4120 // // 486 architecture doesn't support "scale * index + offset" with out a base
4121 // // -------------------------------------------------------------------------
4122 // // Scaled Memory Operands
4123 // // Indirect Memory Times Scale Plus Offset Operand
4124 // operand indScaleOffset(immP off, rRegI ireg, immI2 scale) %{
4125 //   match(AddP off (LShiftI ireg scale));
4126 //
4127 //   op_cost(10);
4128 //   format %{"[$off + $ireg << $scale]" %}
4129 //   interface(MEMORY_INTER) %{
4130 //     base(0x4);
4131 //     index($ireg);
4132 //     scale($scale);
4133 //     disp($off);
4134 //   %}
4135 // %}
4136 
4137 // Indirect Memory Times Scale Plus Index Register
4138 operand indIndexScale(eRegP reg, rRegI ireg, immI2 scale) %{
4139   match(AddP reg (LShiftI ireg scale));
4140 
4141   op_cost(10);
4142   format %{"[$reg + $ireg << $scale]" %}
4143   interface(MEMORY_INTER) %{
4144     base($reg);
4145     index($ireg);
4146     scale($scale);
4147     disp(0x0);
4148   %}
4149 %}
4150 
4151 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4152 operand indIndexScaleOffset(eRegP reg, immI off, rRegI ireg, immI2 scale) %{
4153   match(AddP (AddP reg (LShiftI ireg scale)) off);
4154 
4155   op_cost(10);
4156   format %{"[$reg + $off + $ireg << $scale]" %}
4157   interface(MEMORY_INTER) %{
4158     base($reg);
4159     index($ireg);
4160     scale($scale);
4161     disp($off);
4162   %}
4163 %}
4164 
4165 //----------Load Long Memory Operands------------------------------------------
4166 // The load-long idiom will use it's address expression again after loading
4167 // the first word of the long.  If the load-long destination overlaps with
4168 // registers used in the addressing expression, the 2nd half will be loaded
4169 // from a clobbered address.  Fix this by requiring that load-long use
4170 // address registers that do not overlap with the load-long target.
4171 
4172 // load-long support
4173 operand load_long_RegP() %{
4174   constraint(ALLOC_IN_RC(esi_reg));
4175   match(RegP);
4176   match(eSIRegP);
4177   op_cost(100);
4178   format %{  %}
4179   interface(REG_INTER);
4180 %}
4181 
4182 // Indirect Memory Operand Long
4183 operand load_long_indirect(load_long_RegP reg) %{
4184   constraint(ALLOC_IN_RC(esi_reg));
4185   match(reg);
4186 
4187   format %{ "[$reg]" %}
4188   interface(MEMORY_INTER) %{
4189     base($reg);
4190     index(0x4);
4191     scale(0x0);
4192     disp(0x0);
4193   %}
4194 %}
4195 
4196 // Indirect Memory Plus Long Offset Operand
4197 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
4198   match(AddP reg off);
4199 
4200   format %{ "[$reg + $off]" %}
4201   interface(MEMORY_INTER) %{
4202     base($reg);
4203     index(0x4);
4204     scale(0x0);
4205     disp($off);
4206   %}
4207 %}
4208 
4209 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
4210 
4211 
4212 //----------Special Memory Operands--------------------------------------------
4213 // Stack Slot Operand - This operand is used for loading and storing temporary
4214 //                      values on the stack where a match requires a value to
4215 //                      flow through memory.
4216 operand stackSlotP(sRegP reg) %{
4217   constraint(ALLOC_IN_RC(stack_slots));
4218   // No match rule because this operand is only generated in matching
4219   format %{ "[$reg]" %}
4220   interface(MEMORY_INTER) %{
4221     base(0x4);   // ESP
4222     index(0x4);  // No Index
4223     scale(0x0);  // No Scale
4224     disp($reg);  // Stack Offset
4225   %}
4226 %}
4227 
4228 operand stackSlotI(sRegI reg) %{
4229   constraint(ALLOC_IN_RC(stack_slots));
4230   // No match rule because this operand is only generated in matching
4231   format %{ "[$reg]" %}
4232   interface(MEMORY_INTER) %{
4233     base(0x4);   // ESP
4234     index(0x4);  // No Index
4235     scale(0x0);  // No Scale
4236     disp($reg);  // Stack Offset
4237   %}
4238 %}
4239 
4240 operand stackSlotF(sRegF reg) %{
4241   constraint(ALLOC_IN_RC(stack_slots));
4242   // No match rule because this operand is only generated in matching
4243   format %{ "[$reg]" %}
4244   interface(MEMORY_INTER) %{
4245     base(0x4);   // ESP
4246     index(0x4);  // No Index
4247     scale(0x0);  // No Scale
4248     disp($reg);  // Stack Offset
4249   %}
4250 %}
4251 
4252 operand stackSlotD(sRegD reg) %{
4253   constraint(ALLOC_IN_RC(stack_slots));
4254   // No match rule because this operand is only generated in matching
4255   format %{ "[$reg]" %}
4256   interface(MEMORY_INTER) %{
4257     base(0x4);   // ESP
4258     index(0x4);  // No Index
4259     scale(0x0);  // No Scale
4260     disp($reg);  // Stack Offset
4261   %}
4262 %}
4263 
4264 operand stackSlotL(sRegL reg) %{
4265   constraint(ALLOC_IN_RC(stack_slots));
4266   // No match rule because this operand is only generated in matching
4267   format %{ "[$reg]" %}
4268   interface(MEMORY_INTER) %{
4269     base(0x4);   // ESP
4270     index(0x4);  // No Index
4271     scale(0x0);  // No Scale
4272     disp($reg);  // Stack Offset
4273   %}
4274 %}
4275 
4276 //----------Memory Operands - Win95 Implicit Null Variants----------------
4277 // Indirect Memory Operand
4278 operand indirect_win95_safe(eRegP_no_EBP reg)
4279 %{
4280   constraint(ALLOC_IN_RC(int_reg));
4281   match(reg);
4282 
4283   op_cost(100);
4284   format %{ "[$reg]" %}
4285   interface(MEMORY_INTER) %{
4286     base($reg);
4287     index(0x4);
4288     scale(0x0);
4289     disp(0x0);
4290   %}
4291 %}
4292 
4293 // Indirect Memory Plus Short Offset Operand
4294 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
4295 %{
4296   match(AddP reg off);
4297 
4298   op_cost(100);
4299   format %{ "[$reg + $off]" %}
4300   interface(MEMORY_INTER) %{
4301     base($reg);
4302     index(0x4);
4303     scale(0x0);
4304     disp($off);
4305   %}
4306 %}
4307 
4308 // Indirect Memory Plus Long Offset Operand
4309 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
4310 %{
4311   match(AddP reg off);
4312 
4313   op_cost(100);
4314   format %{ "[$reg + $off]" %}
4315   interface(MEMORY_INTER) %{
4316     base($reg);
4317     index(0x4);
4318     scale(0x0);
4319     disp($off);
4320   %}
4321 %}
4322 
4323 // Indirect Memory Plus Index Register Plus Offset Operand
4324 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI off)
4325 %{
4326   match(AddP (AddP reg ireg) off);
4327 
4328   op_cost(100);
4329   format %{"[$reg + $off + $ireg]" %}
4330   interface(MEMORY_INTER) %{
4331     base($reg);
4332     index($ireg);
4333     scale(0x0);
4334     disp($off);
4335   %}
4336 %}
4337 
4338 // Indirect Memory Times Scale Plus Index Register
4339 operand indIndexScale_win95_safe(eRegP_no_EBP reg, rRegI ireg, immI2 scale)
4340 %{
4341   match(AddP reg (LShiftI ireg scale));
4342 
4343   op_cost(100);
4344   format %{"[$reg + $ireg << $scale]" %}
4345   interface(MEMORY_INTER) %{
4346     base($reg);
4347     index($ireg);
4348     scale($scale);
4349     disp(0x0);
4350   %}
4351 %}
4352 
4353 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
4354 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, rRegI ireg, immI2 scale)
4355 %{
4356   match(AddP (AddP reg (LShiftI ireg scale)) off);
4357 
4358   op_cost(100);
4359   format %{"[$reg + $off + $ireg << $scale]" %}
4360   interface(MEMORY_INTER) %{
4361     base($reg);
4362     index($ireg);
4363     scale($scale);
4364     disp($off);
4365   %}
4366 %}
4367 
4368 //----------Conditional Branch Operands----------------------------------------
4369 // Comparison Op  - This is the operation of the comparison, and is limited to
4370 //                  the following set of codes:
4371 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4372 //
4373 // Other attributes of the comparison, such as unsignedness, are specified
4374 // by the comparison instruction that sets a condition code flags register.
4375 // That result is represented by a flags operand whose subtype is appropriate
4376 // to the unsignedness (etc.) of the comparison.
4377 //
4378 // Later, the instruction which matches both the Comparison Op (a Bool) and
4379 // the flags (produced by the Cmp) specifies the coding of the comparison op
4380 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4381 
4382 // Comparision Code
4383 operand cmpOp() %{
4384   match(Bool);
4385 
4386   format %{ "" %}
4387   interface(COND_INTER) %{
4388     equal(0x4, "e");
4389     not_equal(0x5, "ne");
4390     less(0xC, "l");
4391     greater_equal(0xD, "ge");
4392     less_equal(0xE, "le");
4393     greater(0xF, "g");
4394     overflow(0x0, "o");
4395     no_overflow(0x1, "no");
4396   %}
4397 %}
4398 
4399 // Comparison Code, unsigned compare.  Used by FP also, with
4400 // C2 (unordered) turned into GT or LT already.  The other bits
4401 // C0 and C3 are turned into Carry & Zero flags.
4402 operand cmpOpU() %{
4403   match(Bool);
4404 
4405   format %{ "" %}
4406   interface(COND_INTER) %{
4407     equal(0x4, "e");
4408     not_equal(0x5, "ne");
4409     less(0x2, "b");
4410     greater_equal(0x3, "nb");
4411     less_equal(0x6, "be");
4412     greater(0x7, "nbe");
4413     overflow(0x0, "o");
4414     no_overflow(0x1, "no");
4415   %}
4416 %}
4417 
4418 // Floating comparisons that don't require any fixup for the unordered case
4419 operand cmpOpUCF() %{
4420   match(Bool);
4421   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4422             n->as_Bool()->_test._test == BoolTest::ge ||
4423             n->as_Bool()->_test._test == BoolTest::le ||
4424             n->as_Bool()->_test._test == BoolTest::gt);
4425   format %{ "" %}
4426   interface(COND_INTER) %{
4427     equal(0x4, "e");
4428     not_equal(0x5, "ne");
4429     less(0x2, "b");
4430     greater_equal(0x3, "nb");
4431     less_equal(0x6, "be");
4432     greater(0x7, "nbe");
4433     overflow(0x0, "o");
4434     no_overflow(0x1, "no");
4435   %}
4436 %}
4437 
4438 
4439 // Floating comparisons that can be fixed up with extra conditional jumps
4440 operand cmpOpUCF2() %{
4441   match(Bool);
4442   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4443             n->as_Bool()->_test._test == BoolTest::eq);
4444   format %{ "" %}
4445   interface(COND_INTER) %{
4446     equal(0x4, "e");
4447     not_equal(0x5, "ne");
4448     less(0x2, "b");
4449     greater_equal(0x3, "nb");
4450     less_equal(0x6, "be");
4451     greater(0x7, "nbe");
4452     overflow(0x0, "o");
4453     no_overflow(0x1, "no");
4454   %}
4455 %}
4456 
4457 // Comparison Code for FP conditional move
4458 operand cmpOp_fcmov() %{
4459   match(Bool);
4460 
4461   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4462             n->as_Bool()->_test._test != BoolTest::no_overflow);
4463   format %{ "" %}
4464   interface(COND_INTER) %{
4465     equal        (0x0C8);
4466     not_equal    (0x1C8);
4467     less         (0x0C0);
4468     greater_equal(0x1C0);
4469     less_equal   (0x0D0);
4470     greater      (0x1D0);
4471     overflow(0x0, "o"); // not really supported by the instruction
4472     no_overflow(0x1, "no"); // not really supported by the instruction
4473   %}
4474 %}
4475 
4476 // Comparision Code used in long compares
4477 operand cmpOp_commute() %{
4478   match(Bool);
4479 
4480   format %{ "" %}
4481   interface(COND_INTER) %{
4482     equal(0x4, "e");
4483     not_equal(0x5, "ne");
4484     less(0xF, "g");
4485     greater_equal(0xE, "le");
4486     less_equal(0xD, "ge");
4487     greater(0xC, "l");
4488     overflow(0x0, "o");
4489     no_overflow(0x1, "no");
4490   %}
4491 %}
4492 
4493 //----------OPERAND CLASSES----------------------------------------------------
4494 // Operand Classes are groups of operands that are used as to simplify
4495 // instruction definitions by not requiring the AD writer to specify separate
4496 // instructions for every form of operand when the instruction accepts
4497 // multiple operand types with the same basic encoding and format.  The classic
4498 // case of this is memory operands.
4499 
4500 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
4501                indIndex, indIndexScale, indIndexScaleOffset);
4502 
4503 // Long memory operations are encoded in 2 instructions and a +4 offset.
4504 // This means some kind of offset is always required and you cannot use
4505 // an oop as the offset (done when working on static globals).
4506 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
4507                     indIndex, indIndexScale, indIndexScaleOffset);
4508 
4509 
4510 //----------PIPELINE-----------------------------------------------------------
4511 // Rules which define the behavior of the target architectures pipeline.
4512 pipeline %{
4513 
4514 //----------ATTRIBUTES---------------------------------------------------------
4515 attributes %{
4516   variable_size_instructions;        // Fixed size instructions
4517   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4518   instruction_unit_size = 1;         // An instruction is 1 bytes long
4519   instruction_fetch_unit_size = 16;  // The processor fetches one line
4520   instruction_fetch_units = 1;       // of 16 bytes
4521 
4522   // List of nop instructions
4523   nops( MachNop );
4524 %}
4525 
4526 //----------RESOURCES----------------------------------------------------------
4527 // Resources are the functional units available to the machine
4528 
4529 // Generic P2/P3 pipeline
4530 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4531 // 3 instructions decoded per cycle.
4532 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4533 // 2 ALU op, only ALU0 handles mul/div instructions.
4534 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4535            MS0, MS1, MEM = MS0 | MS1,
4536            BR, FPU,
4537            ALU0, ALU1, ALU = ALU0 | ALU1 );
4538 
4539 //----------PIPELINE DESCRIPTION-----------------------------------------------
4540 // Pipeline Description specifies the stages in the machine's pipeline
4541 
4542 // Generic P2/P3 pipeline
4543 pipe_desc(S0, S1, S2, S3, S4, S5);
4544 
4545 //----------PIPELINE CLASSES---------------------------------------------------
4546 // Pipeline Classes describe the stages in which input and output are
4547 // referenced by the hardware pipeline.
4548 
4549 // Naming convention: ialu or fpu
4550 // Then: _reg
4551 // Then: _reg if there is a 2nd register
4552 // Then: _long if it's a pair of instructions implementing a long
4553 // Then: _fat if it requires the big decoder
4554 //   Or: _mem if it requires the big decoder and a memory unit.
4555 
4556 // Integer ALU reg operation
4557 pipe_class ialu_reg(rRegI dst) %{
4558     single_instruction;
4559     dst    : S4(write);
4560     dst    : S3(read);
4561     DECODE : S0;        // any decoder
4562     ALU    : S3;        // any alu
4563 %}
4564 
4565 // Long ALU reg operation
4566 pipe_class ialu_reg_long(eRegL dst) %{
4567     instruction_count(2);
4568     dst    : S4(write);
4569     dst    : S3(read);
4570     DECODE : S0(2);     // any 2 decoders
4571     ALU    : S3(2);     // both alus
4572 %}
4573 
4574 // Integer ALU reg operation using big decoder
4575 pipe_class ialu_reg_fat(rRegI dst) %{
4576     single_instruction;
4577     dst    : S4(write);
4578     dst    : S3(read);
4579     D0     : S0;        // big decoder only
4580     ALU    : S3;        // any alu
4581 %}
4582 
4583 // Long ALU reg operation using big decoder
4584 pipe_class ialu_reg_long_fat(eRegL dst) %{
4585     instruction_count(2);
4586     dst    : S4(write);
4587     dst    : S3(read);
4588     D0     : S0(2);     // big decoder only; twice
4589     ALU    : S3(2);     // any 2 alus
4590 %}
4591 
4592 // Integer ALU reg-reg operation
4593 pipe_class ialu_reg_reg(rRegI dst, rRegI src) %{
4594     single_instruction;
4595     dst    : S4(write);
4596     src    : S3(read);
4597     DECODE : S0;        // any decoder
4598     ALU    : S3;        // any alu
4599 %}
4600 
4601 // Long ALU reg-reg operation
4602 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
4603     instruction_count(2);
4604     dst    : S4(write);
4605     src    : S3(read);
4606     DECODE : S0(2);     // any 2 decoders
4607     ALU    : S3(2);     // both alus
4608 %}
4609 
4610 // Integer ALU reg-reg operation
4611 pipe_class ialu_reg_reg_fat(rRegI dst, memory src) %{
4612     single_instruction;
4613     dst    : S4(write);
4614     src    : S3(read);
4615     D0     : S0;        // big decoder only
4616     ALU    : S3;        // any alu
4617 %}
4618 
4619 // Long ALU reg-reg operation
4620 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
4621     instruction_count(2);
4622     dst    : S4(write);
4623     src    : S3(read);
4624     D0     : S0(2);     // big decoder only; twice
4625     ALU    : S3(2);     // both alus
4626 %}
4627 
4628 // Integer ALU reg-mem operation
4629 pipe_class ialu_reg_mem(rRegI dst, memory mem) %{
4630     single_instruction;
4631     dst    : S5(write);
4632     mem    : S3(read);
4633     D0     : S0;        // big decoder only
4634     ALU    : S4;        // any alu
4635     MEM    : S3;        // any mem
4636 %}
4637 
4638 // Long ALU reg-mem operation
4639 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
4640     instruction_count(2);
4641     dst    : S5(write);
4642     mem    : S3(read);
4643     D0     : S0(2);     // big decoder only; twice
4644     ALU    : S4(2);     // any 2 alus
4645     MEM    : S3(2);     // both mems
4646 %}
4647 
4648 // Integer mem operation (prefetch)
4649 pipe_class ialu_mem(memory mem)
4650 %{
4651     single_instruction;
4652     mem    : S3(read);
4653     D0     : S0;        // big decoder only
4654     MEM    : S3;        // any mem
4655 %}
4656 
4657 // Integer Store to Memory
4658 pipe_class ialu_mem_reg(memory mem, rRegI src) %{
4659     single_instruction;
4660     mem    : S3(read);
4661     src    : S5(read);
4662     D0     : S0;        // big decoder only
4663     ALU    : S4;        // any alu
4664     MEM    : S3;
4665 %}
4666 
4667 // Long Store to Memory
4668 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
4669     instruction_count(2);
4670     mem    : S3(read);
4671     src    : S5(read);
4672     D0     : S0(2);     // big decoder only; twice
4673     ALU    : S4(2);     // any 2 alus
4674     MEM    : S3(2);     // Both mems
4675 %}
4676 
4677 // Integer Store to Memory
4678 pipe_class ialu_mem_imm(memory mem) %{
4679     single_instruction;
4680     mem    : S3(read);
4681     D0     : S0;        // big decoder only
4682     ALU    : S4;        // any alu
4683     MEM    : S3;
4684 %}
4685 
4686 // Integer ALU0 reg-reg operation
4687 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src) %{
4688     single_instruction;
4689     dst    : S4(write);
4690     src    : S3(read);
4691     D0     : S0;        // Big decoder only
4692     ALU0   : S3;        // only alu0
4693 %}
4694 
4695 // Integer ALU0 reg-mem operation
4696 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem) %{
4697     single_instruction;
4698     dst    : S5(write);
4699     mem    : S3(read);
4700     D0     : S0;        // big decoder only
4701     ALU0   : S4;        // ALU0 only
4702     MEM    : S3;        // any mem
4703 %}
4704 
4705 // Integer ALU reg-reg operation
4706 pipe_class ialu_cr_reg_reg(eFlagsReg cr, rRegI src1, rRegI src2) %{
4707     single_instruction;
4708     cr     : S4(write);
4709     src1   : S3(read);
4710     src2   : S3(read);
4711     DECODE : S0;        // any decoder
4712     ALU    : S3;        // any alu
4713 %}
4714 
4715 // Integer ALU reg-imm operation
4716 pipe_class ialu_cr_reg_imm(eFlagsReg cr, rRegI src1) %{
4717     single_instruction;
4718     cr     : S4(write);
4719     src1   : S3(read);
4720     DECODE : S0;        // any decoder
4721     ALU    : S3;        // any alu
4722 %}
4723 
4724 // Integer ALU reg-mem operation
4725 pipe_class ialu_cr_reg_mem(eFlagsReg cr, rRegI src1, memory src2) %{
4726     single_instruction;
4727     cr     : S4(write);
4728     src1   : S3(read);
4729     src2   : S3(read);
4730     D0     : S0;        // big decoder only
4731     ALU    : S4;        // any alu
4732     MEM    : S3;
4733 %}
4734 
4735 // Conditional move reg-reg
4736 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y ) %{
4737     instruction_count(4);
4738     y      : S4(read);
4739     q      : S3(read);
4740     p      : S3(read);
4741     DECODE : S0(4);     // any decoder
4742 %}
4743 
4744 // Conditional move reg-reg
4745 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, eFlagsReg cr ) %{
4746     single_instruction;
4747     dst    : S4(write);
4748     src    : S3(read);
4749     cr     : S3(read);
4750     DECODE : S0;        // any decoder
4751 %}
4752 
4753 // Conditional move reg-mem
4754 pipe_class pipe_cmov_mem( eFlagsReg cr, rRegI dst, memory src) %{
4755     single_instruction;
4756     dst    : S4(write);
4757     src    : S3(read);
4758     cr     : S3(read);
4759     DECODE : S0;        // any decoder
4760     MEM    : S3;
4761 %}
4762 
4763 // Conditional move reg-reg long
4764 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
4765     single_instruction;
4766     dst    : S4(write);
4767     src    : S3(read);
4768     cr     : S3(read);
4769     DECODE : S0(2);     // any 2 decoders
4770 %}
4771 
4772 // Conditional move double reg-reg
4773 pipe_class pipe_cmovDPR_reg( eFlagsReg cr, regDPR1 dst, regDPR src) %{
4774     single_instruction;
4775     dst    : S4(write);
4776     src    : S3(read);
4777     cr     : S3(read);
4778     DECODE : S0;        // any decoder
4779 %}
4780 
4781 // Float reg-reg operation
4782 pipe_class fpu_reg(regDPR dst) %{
4783     instruction_count(2);
4784     dst    : S3(read);
4785     DECODE : S0(2);     // any 2 decoders
4786     FPU    : S3;
4787 %}
4788 
4789 // Float reg-reg operation
4790 pipe_class fpu_reg_reg(regDPR dst, regDPR src) %{
4791     instruction_count(2);
4792     dst    : S4(write);
4793     src    : S3(read);
4794     DECODE : S0(2);     // any 2 decoders
4795     FPU    : S3;
4796 %}
4797 
4798 // Float reg-reg operation
4799 pipe_class fpu_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2) %{
4800     instruction_count(3);
4801     dst    : S4(write);
4802     src1   : S3(read);
4803     src2   : S3(read);
4804     DECODE : S0(3);     // any 3 decoders
4805     FPU    : S3(2);
4806 %}
4807 
4808 // Float reg-reg operation
4809 pipe_class fpu_reg_reg_reg_reg(regDPR dst, regDPR src1, regDPR src2, regDPR src3) %{
4810     instruction_count(4);
4811     dst    : S4(write);
4812     src1   : S3(read);
4813     src2   : S3(read);
4814     src3   : S3(read);
4815     DECODE : S0(4);     // any 3 decoders
4816     FPU    : S3(2);
4817 %}
4818 
4819 // Float reg-reg operation
4820 pipe_class fpu_reg_mem_reg_reg(regDPR dst, memory src1, regDPR src2, regDPR src3) %{
4821     instruction_count(4);
4822     dst    : S4(write);
4823     src1   : S3(read);
4824     src2   : S3(read);
4825     src3   : S3(read);
4826     DECODE : S1(3);     // any 3 decoders
4827     D0     : S0;        // Big decoder only
4828     FPU    : S3(2);
4829     MEM    : S3;
4830 %}
4831 
4832 // Float reg-mem operation
4833 pipe_class fpu_reg_mem(regDPR dst, memory mem) %{
4834     instruction_count(2);
4835     dst    : S5(write);
4836     mem    : S3(read);
4837     D0     : S0;        // big decoder only
4838     DECODE : S1;        // any decoder for FPU POP
4839     FPU    : S4;
4840     MEM    : S3;        // any mem
4841 %}
4842 
4843 // Float reg-mem operation
4844 pipe_class fpu_reg_reg_mem(regDPR dst, regDPR src1, memory mem) %{
4845     instruction_count(3);
4846     dst    : S5(write);
4847     src1   : S3(read);
4848     mem    : S3(read);
4849     D0     : S0;        // big decoder only
4850     DECODE : S1(2);     // any decoder for FPU POP
4851     FPU    : S4;
4852     MEM    : S3;        // any mem
4853 %}
4854 
4855 // Float mem-reg operation
4856 pipe_class fpu_mem_reg(memory mem, regDPR src) %{
4857     instruction_count(2);
4858     src    : S5(read);
4859     mem    : S3(read);
4860     DECODE : S0;        // any decoder for FPU PUSH
4861     D0     : S1;        // big decoder only
4862     FPU    : S4;
4863     MEM    : S3;        // any mem
4864 %}
4865 
4866 pipe_class fpu_mem_reg_reg(memory mem, regDPR src1, regDPR src2) %{
4867     instruction_count(3);
4868     src1   : S3(read);
4869     src2   : S3(read);
4870     mem    : S3(read);
4871     DECODE : S0(2);     // any decoder for FPU PUSH
4872     D0     : S1;        // big decoder only
4873     FPU    : S4;
4874     MEM    : S3;        // any mem
4875 %}
4876 
4877 pipe_class fpu_mem_reg_mem(memory mem, regDPR src1, memory src2) %{
4878     instruction_count(3);
4879     src1   : S3(read);
4880     src2   : S3(read);
4881     mem    : S4(read);
4882     DECODE : S0;        // any decoder for FPU PUSH
4883     D0     : S0(2);     // big decoder only
4884     FPU    : S4;
4885     MEM    : S3(2);     // any mem
4886 %}
4887 
4888 pipe_class fpu_mem_mem(memory dst, memory src1) %{
4889     instruction_count(2);
4890     src1   : S3(read);
4891     dst    : S4(read);
4892     D0     : S0(2);     // big decoder only
4893     MEM    : S3(2);     // any mem
4894 %}
4895 
4896 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
4897     instruction_count(3);
4898     src1   : S3(read);
4899     src2   : S3(read);
4900     dst    : S4(read);
4901     D0     : S0(3);     // big decoder only
4902     FPU    : S4;
4903     MEM    : S3(3);     // any mem
4904 %}
4905 
4906 pipe_class fpu_mem_reg_con(memory mem, regDPR src1) %{
4907     instruction_count(3);
4908     src1   : S4(read);
4909     mem    : S4(read);
4910     DECODE : S0;        // any decoder for FPU PUSH
4911     D0     : S0(2);     // big decoder only
4912     FPU    : S4;
4913     MEM    : S3(2);     // any mem
4914 %}
4915 
4916 // Float load constant
4917 pipe_class fpu_reg_con(regDPR dst) %{
4918     instruction_count(2);
4919     dst    : S5(write);
4920     D0     : S0;        // big decoder only for the load
4921     DECODE : S1;        // any decoder for FPU POP
4922     FPU    : S4;
4923     MEM    : S3;        // any mem
4924 %}
4925 
4926 // Float load constant
4927 pipe_class fpu_reg_reg_con(regDPR dst, regDPR src) %{
4928     instruction_count(3);
4929     dst    : S5(write);
4930     src    : S3(read);
4931     D0     : S0;        // big decoder only for the load
4932     DECODE : S1(2);     // any decoder for FPU POP
4933     FPU    : S4;
4934     MEM    : S3;        // any mem
4935 %}
4936 
4937 // UnConditional branch
4938 pipe_class pipe_jmp( label labl ) %{
4939     single_instruction;
4940     BR   : S3;
4941 %}
4942 
4943 // Conditional branch
4944 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
4945     single_instruction;
4946     cr    : S1(read);
4947     BR    : S3;
4948 %}
4949 
4950 // Allocation idiom
4951 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
4952     instruction_count(1); force_serialization;
4953     fixed_latency(6);
4954     heap_ptr : S3(read);
4955     DECODE   : S0(3);
4956     D0       : S2;
4957     MEM      : S3;
4958     ALU      : S3(2);
4959     dst      : S5(write);
4960     BR       : S5;
4961 %}
4962 
4963 // Generic big/slow expanded idiom
4964 pipe_class pipe_slow(  ) %{
4965     instruction_count(10); multiple_bundles; force_serialization;
4966     fixed_latency(100);
4967     D0  : S0(2);
4968     MEM : S3(2);
4969 %}
4970 
4971 // The real do-nothing guy
4972 pipe_class empty( ) %{
4973     instruction_count(0);
4974 %}
4975 
4976 // Define the class for the Nop node
4977 define %{
4978    MachNop = empty;
4979 %}
4980 
4981 %}
4982 
4983 //----------INSTRUCTIONS-------------------------------------------------------
4984 //
4985 // match      -- States which machine-independent subtree may be replaced
4986 //               by this instruction.
4987 // ins_cost   -- The estimated cost of this instruction is used by instruction
4988 //               selection to identify a minimum cost tree of machine
4989 //               instructions that matches a tree of machine-independent
4990 //               instructions.
4991 // format     -- A string providing the disassembly for this instruction.
4992 //               The value of an instruction's operand may be inserted
4993 //               by referring to it with a '$' prefix.
4994 // opcode     -- Three instruction opcodes may be provided.  These are referred
4995 //               to within an encode class as $primary, $secondary, and $tertiary
4996 //               respectively.  The primary opcode is commonly used to
4997 //               indicate the type of machine instruction, while secondary
4998 //               and tertiary are often used for prefix options or addressing
4999 //               modes.
5000 // ins_encode -- A list of encode classes with parameters. The encode class
5001 //               name must have been defined in an 'enc_class' specification
5002 //               in the encode section of the architecture description.
5003 
5004 //----------BSWAP-Instruction--------------------------------------------------
5005 instruct bytes_reverse_int(rRegI dst) %{
5006   match(Set dst (ReverseBytesI dst));
5007 
5008   format %{ "BSWAP  $dst" %}
5009   opcode(0x0F, 0xC8);
5010   ins_encode( OpcP, OpcSReg(dst) );
5011   ins_pipe( ialu_reg );
5012 %}
5013 
5014 instruct bytes_reverse_long(eRegL dst) %{
5015   match(Set dst (ReverseBytesL dst));
5016 
5017   format %{ "BSWAP  $dst.lo\n\t"
5018             "BSWAP  $dst.hi\n\t"
5019             "XCHG   $dst.lo $dst.hi" %}
5020 
5021   ins_cost(125);
5022   ins_encode( bswap_long_bytes(dst) );
5023   ins_pipe( ialu_reg_reg);
5024 %}
5025 
5026 instruct bytes_reverse_unsigned_short(rRegI dst, eFlagsReg cr) %{
5027   match(Set dst (ReverseBytesUS dst));
5028   effect(KILL cr);
5029 
5030   format %{ "BSWAP  $dst\n\t" 
5031             "SHR    $dst,16\n\t" %}
5032   ins_encode %{
5033     __ bswapl($dst$$Register);
5034     __ shrl($dst$$Register, 16); 
5035   %}
5036   ins_pipe( ialu_reg );
5037 %}
5038 
5039 instruct bytes_reverse_short(rRegI dst, eFlagsReg cr) %{
5040   match(Set dst (ReverseBytesS dst));
5041   effect(KILL cr);
5042 
5043   format %{ "BSWAP  $dst\n\t" 
5044             "SAR    $dst,16\n\t" %}
5045   ins_encode %{
5046     __ bswapl($dst$$Register);
5047     __ sarl($dst$$Register, 16); 
5048   %}
5049   ins_pipe( ialu_reg );
5050 %}
5051 
5052 
5053 //---------- Zeros Count Instructions ------------------------------------------
5054 
5055 instruct countLeadingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5056   predicate(UseCountLeadingZerosInstruction);
5057   match(Set dst (CountLeadingZerosI src));
5058   effect(KILL cr);
5059 
5060   format %{ "LZCNT  $dst, $src\t# count leading zeros (int)" %}
5061   ins_encode %{
5062     __ lzcntl($dst$$Register, $src$$Register);
5063   %}
5064   ins_pipe(ialu_reg);
5065 %}
5066 
5067 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, eFlagsReg cr) %{
5068   predicate(!UseCountLeadingZerosInstruction);
5069   match(Set dst (CountLeadingZerosI src));
5070   effect(KILL cr);
5071 
5072   format %{ "BSR    $dst, $src\t# count leading zeros (int)\n\t"
5073             "JNZ    skip\n\t"
5074             "MOV    $dst, -1\n"
5075       "skip:\n\t"
5076             "NEG    $dst\n\t"
5077             "ADD    $dst, 31" %}
5078   ins_encode %{
5079     Register Rdst = $dst$$Register;
5080     Register Rsrc = $src$$Register;
5081     Label skip;
5082     __ bsrl(Rdst, Rsrc);
5083     __ jccb(Assembler::notZero, skip);
5084     __ movl(Rdst, -1);
5085     __ bind(skip);
5086     __ negl(Rdst);
5087     __ addl(Rdst, BitsPerInt - 1);
5088   %}
5089   ins_pipe(ialu_reg);
5090 %}
5091 
5092 instruct countLeadingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5093   predicate(UseCountLeadingZerosInstruction);
5094   match(Set dst (CountLeadingZerosL src));
5095   effect(TEMP dst, KILL cr);
5096 
5097   format %{ "LZCNT  $dst, $src.hi\t# count leading zeros (long)\n\t"
5098             "JNC    done\n\t"
5099             "LZCNT  $dst, $src.lo\n\t"
5100             "ADD    $dst, 32\n"
5101       "done:" %}
5102   ins_encode %{
5103     Register Rdst = $dst$$Register;
5104     Register Rsrc = $src$$Register;
5105     Label done;
5106     __ lzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5107     __ jccb(Assembler::carryClear, done);
5108     __ lzcntl(Rdst, Rsrc);
5109     __ addl(Rdst, BitsPerInt);
5110     __ bind(done);
5111   %}
5112   ins_pipe(ialu_reg);
5113 %}
5114 
5115 instruct countLeadingZerosL_bsr(rRegI dst, eRegL src, eFlagsReg cr) %{
5116   predicate(!UseCountLeadingZerosInstruction);
5117   match(Set dst (CountLeadingZerosL src));
5118   effect(TEMP dst, KILL cr);
5119 
5120   format %{ "BSR    $dst, $src.hi\t# count leading zeros (long)\n\t"
5121             "JZ     msw_is_zero\n\t"
5122             "ADD    $dst, 32\n\t"
5123             "JMP    not_zero\n"
5124       "msw_is_zero:\n\t"
5125             "BSR    $dst, $src.lo\n\t"
5126             "JNZ    not_zero\n\t"
5127             "MOV    $dst, -1\n"
5128       "not_zero:\n\t"
5129             "NEG    $dst\n\t"
5130             "ADD    $dst, 63\n" %}
5131  ins_encode %{
5132     Register Rdst = $dst$$Register;
5133     Register Rsrc = $src$$Register;
5134     Label msw_is_zero;
5135     Label not_zero;
5136     __ bsrl(Rdst, HIGH_FROM_LOW(Rsrc));
5137     __ jccb(Assembler::zero, msw_is_zero);
5138     __ addl(Rdst, BitsPerInt);
5139     __ jmpb(not_zero);
5140     __ bind(msw_is_zero);
5141     __ bsrl(Rdst, Rsrc);
5142     __ jccb(Assembler::notZero, not_zero);
5143     __ movl(Rdst, -1);
5144     __ bind(not_zero);
5145     __ negl(Rdst);
5146     __ addl(Rdst, BitsPerLong - 1);
5147   %}
5148   ins_pipe(ialu_reg);
5149 %}
5150 
5151 instruct countTrailingZerosI(rRegI dst, rRegI src, eFlagsReg cr) %{
5152   predicate(UseCountTrailingZerosInstruction);
5153   match(Set dst (CountTrailingZerosI src));
5154   effect(KILL cr);
5155 
5156   format %{ "TZCNT    $dst, $src\t# count trailing zeros (int)" %}
5157   ins_encode %{
5158     __ tzcntl($dst$$Register, $src$$Register);
5159   %}
5160   ins_pipe(ialu_reg);
5161 %}
5162 
5163 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, eFlagsReg cr) %{
5164   predicate(!UseCountTrailingZerosInstruction);
5165   match(Set dst (CountTrailingZerosI src));
5166   effect(KILL cr);
5167 
5168   format %{ "BSF    $dst, $src\t# count trailing zeros (int)\n\t"
5169             "JNZ    done\n\t"
5170             "MOV    $dst, 32\n"
5171       "done:" %}
5172   ins_encode %{
5173     Register Rdst = $dst$$Register;
5174     Label done;
5175     __ bsfl(Rdst, $src$$Register);
5176     __ jccb(Assembler::notZero, done);
5177     __ movl(Rdst, BitsPerInt);
5178     __ bind(done);
5179   %}
5180   ins_pipe(ialu_reg);
5181 %}
5182 
5183 instruct countTrailingZerosL(rRegI dst, eRegL src, eFlagsReg cr) %{
5184   predicate(UseCountTrailingZerosInstruction);
5185   match(Set dst (CountTrailingZerosL src));
5186   effect(TEMP dst, KILL cr);
5187 
5188   format %{ "TZCNT  $dst, $src.lo\t# count trailing zeros (long) \n\t"
5189             "JNC    done\n\t"
5190             "TZCNT  $dst, $src.hi\n\t"
5191             "ADD    $dst, 32\n"
5192             "done:" %}
5193   ins_encode %{
5194     Register Rdst = $dst$$Register;
5195     Register Rsrc = $src$$Register;
5196     Label done;
5197     __ tzcntl(Rdst, Rsrc);
5198     __ jccb(Assembler::carryClear, done);
5199     __ tzcntl(Rdst, HIGH_FROM_LOW(Rsrc));
5200     __ addl(Rdst, BitsPerInt);
5201     __ bind(done);
5202   %}
5203   ins_pipe(ialu_reg);
5204 %}
5205 
5206 instruct countTrailingZerosL_bsf(rRegI dst, eRegL src, eFlagsReg cr) %{
5207   predicate(!UseCountTrailingZerosInstruction);
5208   match(Set dst (CountTrailingZerosL src));
5209   effect(TEMP dst, KILL cr);
5210 
5211   format %{ "BSF    $dst, $src.lo\t# count trailing zeros (long)\n\t"
5212             "JNZ    done\n\t"
5213             "BSF    $dst, $src.hi\n\t"
5214             "JNZ    msw_not_zero\n\t"
5215             "MOV    $dst, 32\n"
5216       "msw_not_zero:\n\t"
5217             "ADD    $dst, 32\n"
5218       "done:" %}
5219   ins_encode %{
5220     Register Rdst = $dst$$Register;
5221     Register Rsrc = $src$$Register;
5222     Label msw_not_zero;
5223     Label done;
5224     __ bsfl(Rdst, Rsrc);
5225     __ jccb(Assembler::notZero, done);
5226     __ bsfl(Rdst, HIGH_FROM_LOW(Rsrc));
5227     __ jccb(Assembler::notZero, msw_not_zero);
5228     __ movl(Rdst, BitsPerInt);
5229     __ bind(msw_not_zero);
5230     __ addl(Rdst, BitsPerInt);
5231     __ bind(done);
5232   %}
5233   ins_pipe(ialu_reg);
5234 %}
5235 
5236 
5237 //---------- Population Count Instructions -------------------------------------
5238 
5239 instruct popCountI(rRegI dst, rRegI src, eFlagsReg cr) %{
5240   predicate(UsePopCountInstruction);
5241   match(Set dst (PopCountI src));
5242   effect(KILL cr);
5243 
5244   format %{ "POPCNT $dst, $src" %}
5245   ins_encode %{
5246     __ popcntl($dst$$Register, $src$$Register);
5247   %}
5248   ins_pipe(ialu_reg);
5249 %}
5250 
5251 instruct popCountI_mem(rRegI dst, memory mem, eFlagsReg cr) %{
5252   predicate(UsePopCountInstruction);
5253   match(Set dst (PopCountI (LoadI mem)));
5254   effect(KILL cr);
5255 
5256   format %{ "POPCNT $dst, $mem" %}
5257   ins_encode %{
5258     __ popcntl($dst$$Register, $mem$$Address);
5259   %}
5260   ins_pipe(ialu_reg);
5261 %}
5262 
5263 // Note: Long.bitCount(long) returns an int.
5264 instruct popCountL(rRegI dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
5265   predicate(UsePopCountInstruction);
5266   match(Set dst (PopCountL src));
5267   effect(KILL cr, TEMP tmp, TEMP dst);
5268 
5269   format %{ "POPCNT $dst, $src.lo\n\t"
5270             "POPCNT $tmp, $src.hi\n\t"
5271             "ADD    $dst, $tmp" %}
5272   ins_encode %{
5273     __ popcntl($dst$$Register, $src$$Register);
5274     __ popcntl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
5275     __ addl($dst$$Register, $tmp$$Register);
5276   %}
5277   ins_pipe(ialu_reg);
5278 %}
5279 
5280 // Note: Long.bitCount(long) returns an int.
5281 instruct popCountL_mem(rRegI dst, memory mem, rRegI tmp, eFlagsReg cr) %{
5282   predicate(UsePopCountInstruction);
5283   match(Set dst (PopCountL (LoadL mem)));
5284   effect(KILL cr, TEMP tmp, TEMP dst);
5285 
5286   format %{ "POPCNT $dst, $mem\n\t"
5287             "POPCNT $tmp, $mem+4\n\t"
5288             "ADD    $dst, $tmp" %}
5289   ins_encode %{
5290     //__ popcntl($dst$$Register, $mem$$Address$$first);
5291     //__ popcntl($tmp$$Register, $mem$$Address$$second);
5292     __ popcntl($dst$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none));
5293     __ popcntl($tmp$$Register, Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none));
5294     __ addl($dst$$Register, $tmp$$Register);
5295   %}
5296   ins_pipe(ialu_reg);
5297 %}
5298 
5299 
5300 //----------Load/Store/Move Instructions---------------------------------------
5301 //----------Load Instructions--------------------------------------------------
5302 // Load Byte (8bit signed)
5303 instruct loadB(xRegI dst, memory mem) %{
5304   match(Set dst (LoadB mem));
5305 
5306   ins_cost(125);
5307   format %{ "MOVSX8 $dst,$mem\t# byte" %}
5308 
5309   ins_encode %{
5310     __ movsbl($dst$$Register, $mem$$Address);
5311   %}
5312 
5313   ins_pipe(ialu_reg_mem);
5314 %}
5315 
5316 // Load Byte (8bit signed) into Long Register
5317 instruct loadB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5318   match(Set dst (ConvI2L (LoadB mem)));
5319   effect(KILL cr);
5320 
5321   ins_cost(375);
5322   format %{ "MOVSX8 $dst.lo,$mem\t# byte -> long\n\t"
5323             "MOV    $dst.hi,$dst.lo\n\t"
5324             "SAR    $dst.hi,7" %}
5325 
5326   ins_encode %{
5327     __ movsbl($dst$$Register, $mem$$Address);
5328     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5329     __ sarl(HIGH_FROM_LOW($dst$$Register), 7); // 24+1 MSB are already signed extended.
5330   %}
5331 
5332   ins_pipe(ialu_reg_mem);
5333 %}
5334 
5335 // Load Unsigned Byte (8bit UNsigned)
5336 instruct loadUB(xRegI dst, memory mem) %{
5337   match(Set dst (LoadUB mem));
5338 
5339   ins_cost(125);
5340   format %{ "MOVZX8 $dst,$mem\t# ubyte -> int" %}
5341 
5342   ins_encode %{
5343     __ movzbl($dst$$Register, $mem$$Address);
5344   %}
5345 
5346   ins_pipe(ialu_reg_mem);
5347 %}
5348 
5349 // Load Unsigned Byte (8 bit UNsigned) into Long Register
5350 instruct loadUB2L(eRegL dst, memory mem, eFlagsReg cr) %{
5351   match(Set dst (ConvI2L (LoadUB mem)));
5352   effect(KILL cr);
5353 
5354   ins_cost(250);
5355   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte -> long\n\t"
5356             "XOR    $dst.hi,$dst.hi" %}
5357 
5358   ins_encode %{
5359     Register Rdst = $dst$$Register;
5360     __ movzbl(Rdst, $mem$$Address);
5361     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5362   %}
5363 
5364   ins_pipe(ialu_reg_mem);
5365 %}
5366 
5367 // Load Unsigned Byte (8 bit UNsigned) with mask into Long Register
5368 instruct loadUB2L_immI8(eRegL dst, memory mem, immI8 mask, eFlagsReg cr) %{
5369   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5370   effect(KILL cr);
5371 
5372   format %{ "MOVZX8 $dst.lo,$mem\t# ubyte & 8-bit mask -> long\n\t"
5373             "XOR    $dst.hi,$dst.hi\n\t"
5374             "AND    $dst.lo,$mask" %}
5375   ins_encode %{
5376     Register Rdst = $dst$$Register;
5377     __ movzbl(Rdst, $mem$$Address);
5378     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5379     __ andl(Rdst, $mask$$constant);
5380   %}
5381   ins_pipe(ialu_reg_mem);
5382 %}
5383 
5384 // Load Short (16bit signed)
5385 instruct loadS(rRegI dst, memory mem) %{
5386   match(Set dst (LoadS mem));
5387 
5388   ins_cost(125);
5389   format %{ "MOVSX  $dst,$mem\t# short" %}
5390 
5391   ins_encode %{
5392     __ movswl($dst$$Register, $mem$$Address);
5393   %}
5394 
5395   ins_pipe(ialu_reg_mem);
5396 %}
5397 
5398 // Load Short (16 bit signed) to Byte (8 bit signed)
5399 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5400   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5401 
5402   ins_cost(125);
5403   format %{ "MOVSX  $dst, $mem\t# short -> byte" %}
5404   ins_encode %{
5405     __ movsbl($dst$$Register, $mem$$Address);
5406   %}
5407   ins_pipe(ialu_reg_mem);
5408 %}
5409 
5410 // Load Short (16bit signed) into Long Register
5411 instruct loadS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5412   match(Set dst (ConvI2L (LoadS mem)));
5413   effect(KILL cr);
5414 
5415   ins_cost(375);
5416   format %{ "MOVSX  $dst.lo,$mem\t# short -> long\n\t"
5417             "MOV    $dst.hi,$dst.lo\n\t"
5418             "SAR    $dst.hi,15" %}
5419 
5420   ins_encode %{
5421     __ movswl($dst$$Register, $mem$$Address);
5422     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5423     __ sarl(HIGH_FROM_LOW($dst$$Register), 15); // 16+1 MSB are already signed extended.
5424   %}
5425 
5426   ins_pipe(ialu_reg_mem);
5427 %}
5428 
5429 // Load Unsigned Short/Char (16bit unsigned)
5430 instruct loadUS(rRegI dst, memory mem) %{
5431   match(Set dst (LoadUS mem));
5432 
5433   ins_cost(125);
5434   format %{ "MOVZX  $dst,$mem\t# ushort/char -> int" %}
5435 
5436   ins_encode %{
5437     __ movzwl($dst$$Register, $mem$$Address);
5438   %}
5439 
5440   ins_pipe(ialu_reg_mem);
5441 %}
5442 
5443 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5444 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5445   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5446 
5447   ins_cost(125);
5448   format %{ "MOVSX  $dst, $mem\t# ushort -> byte" %}
5449   ins_encode %{
5450     __ movsbl($dst$$Register, $mem$$Address);
5451   %}
5452   ins_pipe(ialu_reg_mem);
5453 %}
5454 
5455 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
5456 instruct loadUS2L(eRegL dst, memory mem, eFlagsReg cr) %{
5457   match(Set dst (ConvI2L (LoadUS mem)));
5458   effect(KILL cr);
5459 
5460   ins_cost(250);
5461   format %{ "MOVZX  $dst.lo,$mem\t# ushort/char -> long\n\t"
5462             "XOR    $dst.hi,$dst.hi" %}
5463 
5464   ins_encode %{
5465     __ movzwl($dst$$Register, $mem$$Address);
5466     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5467   %}
5468 
5469   ins_pipe(ialu_reg_mem);
5470 %}
5471 
5472 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
5473 instruct loadUS2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5474   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5475   effect(KILL cr);
5476 
5477   format %{ "MOVZX8 $dst.lo,$mem\t# ushort/char & 0xFF -> long\n\t"
5478             "XOR    $dst.hi,$dst.hi" %}
5479   ins_encode %{
5480     Register Rdst = $dst$$Register;
5481     __ movzbl(Rdst, $mem$$Address);
5482     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5483   %}
5484   ins_pipe(ialu_reg_mem);
5485 %}
5486 
5487 // Load Unsigned Short/Char (16 bit UNsigned) with a 16-bit mask into Long Register
5488 instruct loadUS2L_immI16(eRegL dst, memory mem, immI16 mask, eFlagsReg cr) %{
5489   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5490   effect(KILL cr);
5491 
5492   format %{ "MOVZX  $dst.lo, $mem\t# ushort/char & 16-bit mask -> long\n\t"
5493             "XOR    $dst.hi,$dst.hi\n\t"
5494             "AND    $dst.lo,$mask" %}
5495   ins_encode %{
5496     Register Rdst = $dst$$Register;
5497     __ movzwl(Rdst, $mem$$Address);
5498     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5499     __ andl(Rdst, $mask$$constant);
5500   %}
5501   ins_pipe(ialu_reg_mem);
5502 %}
5503 
5504 // Load Integer
5505 instruct loadI(rRegI dst, memory mem) %{
5506   match(Set dst (LoadI mem));
5507 
5508   ins_cost(125);
5509   format %{ "MOV    $dst,$mem\t# int" %}
5510 
5511   ins_encode %{
5512     __ movl($dst$$Register, $mem$$Address);
5513   %}
5514 
5515   ins_pipe(ialu_reg_mem);
5516 %}
5517 
5518 // Load Integer (32 bit signed) to Byte (8 bit signed)
5519 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
5520   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5521 
5522   ins_cost(125);
5523   format %{ "MOVSX  $dst, $mem\t# int -> byte" %}
5524   ins_encode %{
5525     __ movsbl($dst$$Register, $mem$$Address);
5526   %}
5527   ins_pipe(ialu_reg_mem);
5528 %}
5529 
5530 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
5531 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
5532   match(Set dst (AndI (LoadI mem) mask));
5533 
5534   ins_cost(125);
5535   format %{ "MOVZX  $dst, $mem\t# int -> ubyte" %}
5536   ins_encode %{
5537     __ movzbl($dst$$Register, $mem$$Address);
5538   %}
5539   ins_pipe(ialu_reg_mem);
5540 %}
5541 
5542 // Load Integer (32 bit signed) to Short (16 bit signed)
5543 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
5544   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5545 
5546   ins_cost(125);
5547   format %{ "MOVSX  $dst, $mem\t# int -> short" %}
5548   ins_encode %{
5549     __ movswl($dst$$Register, $mem$$Address);
5550   %}
5551   ins_pipe(ialu_reg_mem);
5552 %}
5553 
5554 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
5555 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
5556   match(Set dst (AndI (LoadI mem) mask));
5557 
5558   ins_cost(125);
5559   format %{ "MOVZX  $dst, $mem\t# int -> ushort/char" %}
5560   ins_encode %{
5561     __ movzwl($dst$$Register, $mem$$Address);
5562   %}
5563   ins_pipe(ialu_reg_mem);
5564 %}
5565 
5566 // Load Integer into Long Register
5567 instruct loadI2L(eRegL dst, memory mem, eFlagsReg cr) %{
5568   match(Set dst (ConvI2L (LoadI mem)));
5569   effect(KILL cr);
5570 
5571   ins_cost(375);
5572   format %{ "MOV    $dst.lo,$mem\t# int -> long\n\t"
5573             "MOV    $dst.hi,$dst.lo\n\t"
5574             "SAR    $dst.hi,31" %}
5575 
5576   ins_encode %{
5577     __ movl($dst$$Register, $mem$$Address);
5578     __ movl(HIGH_FROM_LOW($dst$$Register), $dst$$Register); // This is always a different register.
5579     __ sarl(HIGH_FROM_LOW($dst$$Register), 31);
5580   %}
5581 
5582   ins_pipe(ialu_reg_mem);
5583 %}
5584 
5585 // Load Integer with mask 0xFF into Long Register
5586 instruct loadI2L_immI_255(eRegL dst, memory mem, immI_255 mask, eFlagsReg cr) %{
5587   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5588   effect(KILL cr);
5589 
5590   format %{ "MOVZX8 $dst.lo,$mem\t# int & 0xFF -> long\n\t"
5591             "XOR    $dst.hi,$dst.hi" %}
5592   ins_encode %{
5593     Register Rdst = $dst$$Register;
5594     __ movzbl(Rdst, $mem$$Address);
5595     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5596   %}
5597   ins_pipe(ialu_reg_mem);
5598 %}
5599 
5600 // Load Integer with mask 0xFFFF into Long Register
5601 instruct loadI2L_immI_65535(eRegL dst, memory mem, immI_65535 mask, eFlagsReg cr) %{
5602   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5603   effect(KILL cr);
5604 
5605   format %{ "MOVZX  $dst.lo,$mem\t# int & 0xFFFF -> long\n\t"
5606             "XOR    $dst.hi,$dst.hi" %}
5607   ins_encode %{
5608     Register Rdst = $dst$$Register;
5609     __ movzwl(Rdst, $mem$$Address);
5610     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5611   %}
5612   ins_pipe(ialu_reg_mem);
5613 %}
5614 
5615 // Load Integer with 31-bit mask into Long Register
5616 instruct loadI2L_immU31(eRegL dst, memory mem, immU31 mask, eFlagsReg cr) %{
5617   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5618   effect(KILL cr);
5619 
5620   format %{ "MOV    $dst.lo,$mem\t# int & 31-bit mask -> long\n\t"
5621             "XOR    $dst.hi,$dst.hi\n\t"
5622             "AND    $dst.lo,$mask" %}
5623   ins_encode %{
5624     Register Rdst = $dst$$Register;
5625     __ movl(Rdst, $mem$$Address);
5626     __ xorl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rdst));
5627     __ andl(Rdst, $mask$$constant);
5628   %}
5629   ins_pipe(ialu_reg_mem);
5630 %}
5631 
5632 // Load Unsigned Integer into Long Register
5633 instruct loadUI2L(eRegL dst, memory mem, immL_32bits mask, eFlagsReg cr) %{
5634   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5635   effect(KILL cr);
5636 
5637   ins_cost(250);
5638   format %{ "MOV    $dst.lo,$mem\t# uint -> long\n\t"
5639             "XOR    $dst.hi,$dst.hi" %}
5640 
5641   ins_encode %{
5642     __ movl($dst$$Register, $mem$$Address);
5643     __ xorl(HIGH_FROM_LOW($dst$$Register), HIGH_FROM_LOW($dst$$Register));
5644   %}
5645 
5646   ins_pipe(ialu_reg_mem);
5647 %}
5648 
5649 // Load Long.  Cannot clobber address while loading, so restrict address
5650 // register to ESI
5651 instruct loadL(eRegL dst, load_long_memory mem) %{
5652   predicate(!((LoadLNode*)n)->require_atomic_access());
5653   match(Set dst (LoadL mem));
5654 
5655   ins_cost(250);
5656   format %{ "MOV    $dst.lo,$mem\t# long\n\t"
5657             "MOV    $dst.hi,$mem+4" %}
5658 
5659   ins_encode %{
5660     Address Amemlo = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp, relocInfo::none);
5661     Address Amemhi = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp + 4, relocInfo::none);
5662     __ movl($dst$$Register, Amemlo);
5663     __ movl(HIGH_FROM_LOW($dst$$Register), Amemhi);
5664   %}
5665 
5666   ins_pipe(ialu_reg_long_mem);
5667 %}
5668 
5669 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
5670 // then store it down to the stack and reload on the int
5671 // side.
5672 instruct loadL_volatile(stackSlotL dst, memory mem) %{
5673   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
5674   match(Set dst (LoadL mem));
5675 
5676   ins_cost(200);
5677   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
5678             "FISTp  $dst" %}
5679   ins_encode(enc_loadL_volatile(mem,dst));
5680   ins_pipe( fpu_reg_mem );
5681 %}
5682 
5683 instruct loadLX_volatile(stackSlotL dst, memory mem, regD tmp) %{
5684   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
5685   match(Set dst (LoadL mem));
5686   effect(TEMP tmp);
5687   ins_cost(180);
5688   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
5689             "MOVSD  $dst,$tmp" %}
5690   ins_encode %{
5691     __ movdbl($tmp$$XMMRegister, $mem$$Address);
5692     __ movdbl(Address(rsp, $dst$$disp), $tmp$$XMMRegister);
5693   %}
5694   ins_pipe( pipe_slow );
5695 %}
5696 
5697 instruct loadLX_reg_volatile(eRegL dst, memory mem, regD tmp) %{
5698   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
5699   match(Set dst (LoadL mem));
5700   effect(TEMP tmp);
5701   ins_cost(160);
5702   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
5703             "MOVD   $dst.lo,$tmp\n\t"
5704             "PSRLQ  $tmp,32\n\t"
5705             "MOVD   $dst.hi,$tmp" %}
5706   ins_encode %{
5707     __ movdbl($tmp$$XMMRegister, $mem$$Address);
5708     __ movdl($dst$$Register, $tmp$$XMMRegister);
5709     __ psrlq($tmp$$XMMRegister, 32);
5710     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
5711   %}
5712   ins_pipe( pipe_slow );
5713 %}
5714 
5715 // Load Range
5716 instruct loadRange(rRegI dst, memory mem) %{
5717   match(Set dst (LoadRange mem));
5718 
5719   ins_cost(125);
5720   format %{ "MOV    $dst,$mem" %}
5721   opcode(0x8B);
5722   ins_encode( OpcP, RegMem(dst,mem));
5723   ins_pipe( ialu_reg_mem );
5724 %}
5725 
5726 
5727 // Load Pointer
5728 instruct loadP(eRegP dst, memory mem) %{
5729   match(Set dst (LoadP mem));
5730 
5731   ins_cost(125);
5732   format %{ "MOV    $dst,$mem" %}
5733   opcode(0x8B);
5734   ins_encode( OpcP, RegMem(dst,mem));
5735   ins_pipe( ialu_reg_mem );
5736 %}
5737 
5738 // Load Klass Pointer
5739 instruct loadKlass(eRegP dst, memory mem) %{
5740   match(Set dst (LoadKlass mem));
5741 
5742   ins_cost(125);
5743   format %{ "MOV    $dst,$mem" %}
5744   opcode(0x8B);
5745   ins_encode( OpcP, RegMem(dst,mem));
5746   ins_pipe( ialu_reg_mem );
5747 %}
5748 
5749 // Load Double
5750 instruct loadDPR(regDPR dst, memory mem) %{
5751   predicate(UseSSE<=1);
5752   match(Set dst (LoadD mem));
5753 
5754   ins_cost(150);
5755   format %{ "FLD_D  ST,$mem\n\t"
5756             "FSTP   $dst" %}
5757   opcode(0xDD);               /* DD /0 */
5758   ins_encode( OpcP, RMopc_Mem(0x00,mem),
5759               Pop_Reg_DPR(dst) );
5760   ins_pipe( fpu_reg_mem );
5761 %}
5762 
5763 // Load Double to XMM
5764 instruct loadD(regD dst, memory mem) %{
5765   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
5766   match(Set dst (LoadD mem));
5767   ins_cost(145);
5768   format %{ "MOVSD  $dst,$mem" %}
5769   ins_encode %{
5770     __ movdbl ($dst$$XMMRegister, $mem$$Address);
5771   %}
5772   ins_pipe( pipe_slow );
5773 %}
5774 
5775 instruct loadD_partial(regD dst, memory mem) %{
5776   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
5777   match(Set dst (LoadD mem));
5778   ins_cost(145);
5779   format %{ "MOVLPD $dst,$mem" %}
5780   ins_encode %{
5781     __ movdbl ($dst$$XMMRegister, $mem$$Address);
5782   %}
5783   ins_pipe( pipe_slow );
5784 %}
5785 
5786 // Load to XMM register (single-precision floating point)
5787 // MOVSS instruction
5788 instruct loadF(regF dst, memory mem) %{
5789   predicate(UseSSE>=1);
5790   match(Set dst (LoadF mem));
5791   ins_cost(145);
5792   format %{ "MOVSS  $dst,$mem" %}
5793   ins_encode %{
5794     __ movflt ($dst$$XMMRegister, $mem$$Address);
5795   %}
5796   ins_pipe( pipe_slow );
5797 %}
5798 
5799 // Load Float
5800 instruct loadFPR(regFPR dst, memory mem) %{
5801   predicate(UseSSE==0);
5802   match(Set dst (LoadF mem));
5803 
5804   ins_cost(150);
5805   format %{ "FLD_S  ST,$mem\n\t"
5806             "FSTP   $dst" %}
5807   opcode(0xD9);               /* D9 /0 */
5808   ins_encode( OpcP, RMopc_Mem(0x00,mem),
5809               Pop_Reg_FPR(dst) );
5810   ins_pipe( fpu_reg_mem );
5811 %}
5812 
5813 // Load Effective Address
5814 instruct leaP8(eRegP dst, indOffset8 mem) %{
5815   match(Set dst mem);
5816 
5817   ins_cost(110);
5818   format %{ "LEA    $dst,$mem" %}
5819   opcode(0x8D);
5820   ins_encode( OpcP, RegMem(dst,mem));
5821   ins_pipe( ialu_reg_reg_fat );
5822 %}
5823 
5824 instruct leaP32(eRegP dst, indOffset32 mem) %{
5825   match(Set dst mem);
5826 
5827   ins_cost(110);
5828   format %{ "LEA    $dst,$mem" %}
5829   opcode(0x8D);
5830   ins_encode( OpcP, RegMem(dst,mem));
5831   ins_pipe( ialu_reg_reg_fat );
5832 %}
5833 
5834 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
5835   match(Set dst mem);
5836 
5837   ins_cost(110);
5838   format %{ "LEA    $dst,$mem" %}
5839   opcode(0x8D);
5840   ins_encode( OpcP, RegMem(dst,mem));
5841   ins_pipe( ialu_reg_reg_fat );
5842 %}
5843 
5844 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
5845   match(Set dst mem);
5846 
5847   ins_cost(110);
5848   format %{ "LEA    $dst,$mem" %}
5849   opcode(0x8D);
5850   ins_encode( OpcP, RegMem(dst,mem));
5851   ins_pipe( ialu_reg_reg_fat );
5852 %}
5853 
5854 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
5855   match(Set dst mem);
5856 
5857   ins_cost(110);
5858   format %{ "LEA    $dst,$mem" %}
5859   opcode(0x8D);
5860   ins_encode( OpcP, RegMem(dst,mem));
5861   ins_pipe( ialu_reg_reg_fat );
5862 %}
5863 
5864 // Load Constant
5865 instruct loadConI(rRegI dst, immI src) %{
5866   match(Set dst src);
5867 
5868   format %{ "MOV    $dst,$src" %}
5869   ins_encode( LdImmI(dst, src) );
5870   ins_pipe( ialu_reg_fat );
5871 %}
5872 
5873 // Load Constant zero
5874 instruct loadConI0(rRegI dst, immI0 src, eFlagsReg cr) %{
5875   match(Set dst src);
5876   effect(KILL cr);
5877 
5878   ins_cost(50);
5879   format %{ "XOR    $dst,$dst" %}
5880   opcode(0x33);  /* + rd */
5881   ins_encode( OpcP, RegReg( dst, dst ) );
5882   ins_pipe( ialu_reg );
5883 %}
5884 
5885 instruct loadConP(eRegP dst, immP src) %{
5886   match(Set dst src);
5887 
5888   format %{ "MOV    $dst,$src" %}
5889   opcode(0xB8);  /* + rd */
5890   ins_encode( LdImmP(dst, src) );
5891   ins_pipe( ialu_reg_fat );
5892 %}
5893 
5894 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
5895   match(Set dst src);
5896   effect(KILL cr);
5897   ins_cost(200);
5898   format %{ "MOV    $dst.lo,$src.lo\n\t"
5899             "MOV    $dst.hi,$src.hi" %}
5900   opcode(0xB8);
5901   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
5902   ins_pipe( ialu_reg_long_fat );
5903 %}
5904 
5905 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
5906   match(Set dst src);
5907   effect(KILL cr);
5908   ins_cost(150);
5909   format %{ "XOR    $dst.lo,$dst.lo\n\t"
5910             "XOR    $dst.hi,$dst.hi" %}
5911   opcode(0x33,0x33);
5912   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
5913   ins_pipe( ialu_reg_long );
5914 %}
5915 
5916 // The instruction usage is guarded by predicate in operand immFPR().
5917 instruct loadConFPR(regFPR dst, immFPR con) %{
5918   match(Set dst con);
5919   ins_cost(125);
5920   format %{ "FLD_S  ST,[$constantaddress]\t# load from constant table: float=$con\n\t"
5921             "FSTP   $dst" %}
5922   ins_encode %{
5923     __ fld_s($constantaddress($con));
5924     __ fstp_d($dst$$reg);
5925   %}
5926   ins_pipe(fpu_reg_con);
5927 %}
5928 
5929 // The instruction usage is guarded by predicate in operand immFPR0().
5930 instruct loadConFPR0(regFPR dst, immFPR0 con) %{
5931   match(Set dst con);
5932   ins_cost(125);
5933   format %{ "FLDZ   ST\n\t"
5934             "FSTP   $dst" %}
5935   ins_encode %{
5936     __ fldz();
5937     __ fstp_d($dst$$reg);
5938   %}
5939   ins_pipe(fpu_reg_con);
5940 %}
5941 
5942 // The instruction usage is guarded by predicate in operand immFPR1().
5943 instruct loadConFPR1(regFPR dst, immFPR1 con) %{
5944   match(Set dst con);
5945   ins_cost(125);
5946   format %{ "FLD1   ST\n\t"
5947             "FSTP   $dst" %}
5948   ins_encode %{
5949     __ fld1();
5950     __ fstp_d($dst$$reg);
5951   %}
5952   ins_pipe(fpu_reg_con);
5953 %}
5954 
5955 // The instruction usage is guarded by predicate in operand immF().
5956 instruct loadConF(regF dst, immF con) %{
5957   match(Set dst con);
5958   ins_cost(125);
5959   format %{ "MOVSS  $dst,[$constantaddress]\t# load from constant table: float=$con" %}
5960   ins_encode %{
5961     __ movflt($dst$$XMMRegister, $constantaddress($con));
5962   %}
5963   ins_pipe(pipe_slow);
5964 %}
5965 
5966 // The instruction usage is guarded by predicate in operand immF0().
5967 instruct loadConF0(regF dst, immF0 src) %{
5968   match(Set dst src);
5969   ins_cost(100);
5970   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
5971   ins_encode %{
5972     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5973   %}
5974   ins_pipe(pipe_slow);
5975 %}
5976 
5977 // The instruction usage is guarded by predicate in operand immDPR().
5978 instruct loadConDPR(regDPR dst, immDPR con) %{
5979   match(Set dst con);
5980   ins_cost(125);
5981 
5982   format %{ "FLD_D  ST,[$constantaddress]\t# load from constant table: double=$con\n\t"
5983             "FSTP   $dst" %}
5984   ins_encode %{
5985     __ fld_d($constantaddress($con));
5986     __ fstp_d($dst$$reg);
5987   %}
5988   ins_pipe(fpu_reg_con);
5989 %}
5990 
5991 // The instruction usage is guarded by predicate in operand immDPR0().
5992 instruct loadConDPR0(regDPR dst, immDPR0 con) %{
5993   match(Set dst con);
5994   ins_cost(125);
5995 
5996   format %{ "FLDZ   ST\n\t"
5997             "FSTP   $dst" %}
5998   ins_encode %{
5999     __ fldz();
6000     __ fstp_d($dst$$reg);
6001   %}
6002   ins_pipe(fpu_reg_con);
6003 %}
6004 
6005 // The instruction usage is guarded by predicate in operand immDPR1().
6006 instruct loadConDPR1(regDPR dst, immDPR1 con) %{
6007   match(Set dst con);
6008   ins_cost(125);
6009 
6010   format %{ "FLD1   ST\n\t"
6011             "FSTP   $dst" %}
6012   ins_encode %{
6013     __ fld1();
6014     __ fstp_d($dst$$reg);
6015   %}
6016   ins_pipe(fpu_reg_con);
6017 %}
6018 
6019 // The instruction usage is guarded by predicate in operand immD().
6020 instruct loadConD(regD dst, immD con) %{
6021   match(Set dst con);
6022   ins_cost(125);
6023   format %{ "MOVSD  $dst,[$constantaddress]\t# load from constant table: double=$con" %}
6024   ins_encode %{
6025     __ movdbl($dst$$XMMRegister, $constantaddress($con));
6026   %}
6027   ins_pipe(pipe_slow);
6028 %}
6029 
6030 // The instruction usage is guarded by predicate in operand immD0().
6031 instruct loadConD0(regD dst, immD0 src) %{
6032   match(Set dst src);
6033   ins_cost(100);
6034   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6035   ins_encode %{
6036     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
6037   %}
6038   ins_pipe( pipe_slow );
6039 %}
6040 
6041 // Load Stack Slot
6042 instruct loadSSI(rRegI dst, stackSlotI src) %{
6043   match(Set dst src);
6044   ins_cost(125);
6045 
6046   format %{ "MOV    $dst,$src" %}
6047   opcode(0x8B);
6048   ins_encode( OpcP, RegMem(dst,src));
6049   ins_pipe( ialu_reg_mem );
6050 %}
6051 
6052 instruct loadSSL(eRegL dst, stackSlotL src) %{
6053   match(Set dst src);
6054 
6055   ins_cost(200);
6056   format %{ "MOV    $dst,$src.lo\n\t"
6057             "MOV    $dst+4,$src.hi" %}
6058   opcode(0x8B, 0x8B);
6059   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6060   ins_pipe( ialu_mem_long_reg );
6061 %}
6062 
6063 // Load Stack Slot
6064 instruct loadSSP(eRegP dst, stackSlotP src) %{
6065   match(Set dst src);
6066   ins_cost(125);
6067 
6068   format %{ "MOV    $dst,$src" %}
6069   opcode(0x8B);
6070   ins_encode( OpcP, RegMem(dst,src));
6071   ins_pipe( ialu_reg_mem );
6072 %}
6073 
6074 // Load Stack Slot
6075 instruct loadSSF(regFPR dst, stackSlotF src) %{
6076   match(Set dst src);
6077   ins_cost(125);
6078 
6079   format %{ "FLD_S  $src\n\t"
6080             "FSTP   $dst" %}
6081   opcode(0xD9);               /* D9 /0, FLD m32real */
6082   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6083               Pop_Reg_FPR(dst) );
6084   ins_pipe( fpu_reg_mem );
6085 %}
6086 
6087 // Load Stack Slot
6088 instruct loadSSD(regDPR dst, stackSlotD src) %{
6089   match(Set dst src);
6090   ins_cost(125);
6091 
6092   format %{ "FLD_D  $src\n\t"
6093             "FSTP   $dst" %}
6094   opcode(0xDD);               /* DD /0, FLD m64real */
6095   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6096               Pop_Reg_DPR(dst) );
6097   ins_pipe( fpu_reg_mem );
6098 %}
6099 
6100 // Prefetch instructions.
6101 // Must be safe to execute with invalid address (cannot fault).
6102 
6103 instruct prefetchr0( memory mem ) %{
6104   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6105   match(PrefetchRead mem);
6106   ins_cost(0);
6107   size(0);
6108   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6109   ins_encode();
6110   ins_pipe(empty);
6111 %}
6112 
6113 instruct prefetchr( memory mem ) %{
6114   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch() || ReadPrefetchInstr==3);
6115   match(PrefetchRead mem);
6116   ins_cost(100);
6117 
6118   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6119   ins_encode %{
6120     __ prefetchr($mem$$Address);
6121   %}
6122   ins_pipe(ialu_mem);
6123 %}
6124 
6125 instruct prefetchrNTA( memory mem ) %{
6126   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6127   match(PrefetchRead mem);
6128   ins_cost(100);
6129 
6130   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6131   ins_encode %{
6132     __ prefetchnta($mem$$Address);
6133   %}
6134   ins_pipe(ialu_mem);
6135 %}
6136 
6137 instruct prefetchrT0( memory mem ) %{
6138   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6139   match(PrefetchRead mem);
6140   ins_cost(100);
6141 
6142   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6143   ins_encode %{
6144     __ prefetcht0($mem$$Address);
6145   %}
6146   ins_pipe(ialu_mem);
6147 %}
6148 
6149 instruct prefetchrT2( memory mem ) %{
6150   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6151   match(PrefetchRead mem);
6152   ins_cost(100);
6153 
6154   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6155   ins_encode %{
6156     __ prefetcht2($mem$$Address);
6157   %}
6158   ins_pipe(ialu_mem);
6159 %}
6160 
6161 instruct prefetchw0( memory mem ) %{
6162   predicate(UseSSE==0 && !VM_Version::supports_3dnow_prefetch());
6163   match(PrefetchWrite mem);
6164   ins_cost(0);
6165   size(0);
6166   format %{ "Prefetch (non-SSE is empty encoding)" %}
6167   ins_encode();
6168   ins_pipe(empty);
6169 %}
6170 
6171 instruct prefetchw( memory mem ) %{
6172   predicate(UseSSE==0 && VM_Version::supports_3dnow_prefetch());
6173   match( PrefetchWrite mem );
6174   ins_cost(100);
6175 
6176   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6177   ins_encode %{
6178     __ prefetchw($mem$$Address);
6179   %}
6180   ins_pipe(ialu_mem);
6181 %}
6182 
6183 instruct prefetchwNTA( memory mem ) %{
6184   predicate(UseSSE>=1);
6185   match(PrefetchWrite mem);
6186   ins_cost(100);
6187 
6188   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6189   ins_encode %{
6190     __ prefetchnta($mem$$Address);
6191   %}
6192   ins_pipe(ialu_mem);
6193 %}
6194 
6195 // Prefetch instructions for allocation.
6196 
6197 instruct prefetchAlloc0( memory mem ) %{
6198   predicate(UseSSE==0 && AllocatePrefetchInstr!=3);
6199   match(PrefetchAllocation mem);
6200   ins_cost(0);
6201   size(0);
6202   format %{ "Prefetch allocation (non-SSE is empty encoding)" %}
6203   ins_encode();
6204   ins_pipe(empty);
6205 %}
6206 
6207 instruct prefetchAlloc( memory mem ) %{
6208   predicate(AllocatePrefetchInstr==3);
6209   match( PrefetchAllocation mem );
6210   ins_cost(100);
6211 
6212   format %{ "PREFETCHW $mem\t! Prefetch allocation into L1 cache and mark modified" %}
6213   ins_encode %{
6214     __ prefetchw($mem$$Address);
6215   %}
6216   ins_pipe(ialu_mem);
6217 %}
6218 
6219 instruct prefetchAllocNTA( memory mem ) %{
6220   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6221   match(PrefetchAllocation mem);
6222   ins_cost(100);
6223 
6224   format %{ "PREFETCHNTA $mem\t! Prefetch allocation into non-temporal cache for write" %}
6225   ins_encode %{
6226     __ prefetchnta($mem$$Address);
6227   %}
6228   ins_pipe(ialu_mem);
6229 %}
6230 
6231 instruct prefetchAllocT0( memory mem ) %{
6232   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6233   match(PrefetchAllocation mem);
6234   ins_cost(100);
6235 
6236   format %{ "PREFETCHT0 $mem\t! Prefetch allocation into L1 and L2 caches for write" %}
6237   ins_encode %{
6238     __ prefetcht0($mem$$Address);
6239   %}
6240   ins_pipe(ialu_mem);
6241 %}
6242 
6243 instruct prefetchAllocT2( memory mem ) %{
6244   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6245   match(PrefetchAllocation mem);
6246   ins_cost(100);
6247 
6248   format %{ "PREFETCHT2 $mem\t! Prefetch allocation into L2 cache for write" %}
6249   ins_encode %{
6250     __ prefetcht2($mem$$Address);
6251   %}
6252   ins_pipe(ialu_mem);
6253 %}
6254 
6255 //----------Store Instructions-------------------------------------------------
6256 
6257 // Store Byte
6258 instruct storeB(memory mem, xRegI src) %{
6259   match(Set mem (StoreB mem src));
6260 
6261   ins_cost(125);
6262   format %{ "MOV8   $mem,$src" %}
6263   opcode(0x88);
6264   ins_encode( OpcP, RegMem( src, mem ) );
6265   ins_pipe( ialu_mem_reg );
6266 %}
6267 
6268 // Store Char/Short
6269 instruct storeC(memory mem, rRegI src) %{
6270   match(Set mem (StoreC mem src));
6271 
6272   ins_cost(125);
6273   format %{ "MOV16  $mem,$src" %}
6274   opcode(0x89, 0x66);
6275   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6276   ins_pipe( ialu_mem_reg );
6277 %}
6278 
6279 // Store Integer
6280 instruct storeI(memory mem, rRegI src) %{
6281   match(Set mem (StoreI mem src));
6282 
6283   ins_cost(125);
6284   format %{ "MOV    $mem,$src" %}
6285   opcode(0x89);
6286   ins_encode( OpcP, RegMem( src, mem ) );
6287   ins_pipe( ialu_mem_reg );
6288 %}
6289 
6290 // Store Long
6291 instruct storeL(long_memory mem, eRegL src) %{
6292   predicate(!((StoreLNode*)n)->require_atomic_access());
6293   match(Set mem (StoreL mem src));
6294 
6295   ins_cost(200);
6296   format %{ "MOV    $mem,$src.lo\n\t"
6297             "MOV    $mem+4,$src.hi" %}
6298   opcode(0x89, 0x89);
6299   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
6300   ins_pipe( ialu_mem_long_reg );
6301 %}
6302 
6303 // Store Long to Integer
6304 instruct storeL2I(memory mem, eRegL src) %{
6305   match(Set mem (StoreI mem (ConvL2I src)));
6306 
6307   format %{ "MOV    $mem,$src.lo\t# long -> int" %}
6308   ins_encode %{
6309     __ movl($mem$$Address, $src$$Register);
6310   %}
6311   ins_pipe(ialu_mem_reg);
6312 %}
6313 
6314 // Volatile Store Long.  Must be atomic, so move it into
6315 // the FP TOS and then do a 64-bit FIST.  Has to probe the
6316 // target address before the store (for null-ptr checks)
6317 // so the memory operand is used twice in the encoding.
6318 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
6319   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
6320   match(Set mem (StoreL mem src));
6321   effect( KILL cr );
6322   ins_cost(400);
6323   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6324             "FILD   $src\n\t"
6325             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
6326   opcode(0x3B);
6327   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
6328   ins_pipe( fpu_reg_mem );
6329 %}
6330 
6331 instruct storeLX_volatile(memory mem, stackSlotL src, regD tmp, eFlagsReg cr) %{
6332   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6333   match(Set mem (StoreL mem src));
6334   effect( TEMP tmp, KILL cr );
6335   ins_cost(380);
6336   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6337             "MOVSD  $tmp,$src\n\t"
6338             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6339   ins_encode %{
6340     __ cmpl(rax, $mem$$Address);
6341     __ movdbl($tmp$$XMMRegister, Address(rsp, $src$$disp));
6342     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6343   %}
6344   ins_pipe( pipe_slow );
6345 %}
6346 
6347 instruct storeLX_reg_volatile(memory mem, eRegL src, regD tmp2, regD tmp, eFlagsReg cr) %{
6348   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
6349   match(Set mem (StoreL mem src));
6350   effect( TEMP tmp2 , TEMP tmp, KILL cr );
6351   ins_cost(360);
6352   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
6353             "MOVD   $tmp,$src.lo\n\t"
6354             "MOVD   $tmp2,$src.hi\n\t"
6355             "PUNPCKLDQ $tmp,$tmp2\n\t"
6356             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
6357   ins_encode %{
6358     __ cmpl(rax, $mem$$Address);
6359     __ movdl($tmp$$XMMRegister, $src$$Register);
6360     __ movdl($tmp2$$XMMRegister, HIGH_FROM_LOW($src$$Register));
6361     __ punpckldq($tmp$$XMMRegister, $tmp2$$XMMRegister);
6362     __ movdbl($mem$$Address, $tmp$$XMMRegister);
6363   %}
6364   ins_pipe( pipe_slow );
6365 %}
6366 
6367 // Store Pointer; for storing unknown oops and raw pointers
6368 instruct storeP(memory mem, anyRegP src) %{
6369   match(Set mem (StoreP mem src));
6370 
6371   ins_cost(125);
6372   format %{ "MOV    $mem,$src" %}
6373   opcode(0x89);
6374   ins_encode( OpcP, RegMem( src, mem ) );
6375   ins_pipe( ialu_mem_reg );
6376 %}
6377 
6378 // Store Integer Immediate
6379 instruct storeImmI(memory mem, immI src) %{
6380   match(Set mem (StoreI mem src));
6381 
6382   ins_cost(150);
6383   format %{ "MOV    $mem,$src" %}
6384   opcode(0xC7);               /* C7 /0 */
6385   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6386   ins_pipe( ialu_mem_imm );
6387 %}
6388 
6389 // Store Short/Char Immediate
6390 instruct storeImmI16(memory mem, immI16 src) %{
6391   predicate(UseStoreImmI16);
6392   match(Set mem (StoreC mem src));
6393 
6394   ins_cost(150);
6395   format %{ "MOV16  $mem,$src" %}
6396   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
6397   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
6398   ins_pipe( ialu_mem_imm );
6399 %}
6400 
6401 // Store Pointer Immediate; null pointers or constant oops that do not
6402 // need card-mark barriers.
6403 instruct storeImmP(memory mem, immP src) %{
6404   match(Set mem (StoreP mem src));
6405 
6406   ins_cost(150);
6407   format %{ "MOV    $mem,$src" %}
6408   opcode(0xC7);               /* C7 /0 */
6409   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
6410   ins_pipe( ialu_mem_imm );
6411 %}
6412 
6413 // Store Byte Immediate
6414 instruct storeImmB(memory mem, immI8 src) %{
6415   match(Set mem (StoreB mem src));
6416 
6417   ins_cost(150);
6418   format %{ "MOV8   $mem,$src" %}
6419   opcode(0xC6);               /* C6 /0 */
6420   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6421   ins_pipe( ialu_mem_imm );
6422 %}
6423 
6424 // Store CMS card-mark Immediate
6425 instruct storeImmCM(memory mem, immI8 src) %{
6426   match(Set mem (StoreCM mem src));
6427 
6428   ins_cost(150);
6429   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
6430   opcode(0xC6);               /* C6 /0 */
6431   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
6432   ins_pipe( ialu_mem_imm );
6433 %}
6434 
6435 // Store Double
6436 instruct storeDPR( memory mem, regDPR1 src) %{
6437   predicate(UseSSE<=1);
6438   match(Set mem (StoreD mem src));
6439 
6440   ins_cost(100);
6441   format %{ "FST_D  $mem,$src" %}
6442   opcode(0xDD);       /* DD /2 */
6443   ins_encode( enc_FPR_store(mem,src) );
6444   ins_pipe( fpu_mem_reg );
6445 %}
6446 
6447 // Store double does rounding on x86
6448 instruct storeDPR_rounded( memory mem, regDPR1 src) %{
6449   predicate(UseSSE<=1);
6450   match(Set mem (StoreD mem (RoundDouble src)));
6451 
6452   ins_cost(100);
6453   format %{ "FST_D  $mem,$src\t# round" %}
6454   opcode(0xDD);       /* DD /2 */
6455   ins_encode( enc_FPR_store(mem,src) );
6456   ins_pipe( fpu_mem_reg );
6457 %}
6458 
6459 // Store XMM register to memory (double-precision floating points)
6460 // MOVSD instruction
6461 instruct storeD(memory mem, regD src) %{
6462   predicate(UseSSE>=2);
6463   match(Set mem (StoreD mem src));
6464   ins_cost(95);
6465   format %{ "MOVSD  $mem,$src" %}
6466   ins_encode %{
6467     __ movdbl($mem$$Address, $src$$XMMRegister);
6468   %}
6469   ins_pipe( pipe_slow );
6470 %}
6471 
6472 // Store XMM register to memory (single-precision floating point)
6473 // MOVSS instruction
6474 instruct storeF(memory mem, regF src) %{
6475   predicate(UseSSE>=1);
6476   match(Set mem (StoreF mem src));
6477   ins_cost(95);
6478   format %{ "MOVSS  $mem,$src" %}
6479   ins_encode %{
6480     __ movflt($mem$$Address, $src$$XMMRegister);
6481   %}
6482   ins_pipe( pipe_slow );
6483 %}
6484 
6485 // Store Float
6486 instruct storeFPR( memory mem, regFPR1 src) %{
6487   predicate(UseSSE==0);
6488   match(Set mem (StoreF mem src));
6489 
6490   ins_cost(100);
6491   format %{ "FST_S  $mem,$src" %}
6492   opcode(0xD9);       /* D9 /2 */
6493   ins_encode( enc_FPR_store(mem,src) );
6494   ins_pipe( fpu_mem_reg );
6495 %}
6496 
6497 // Store Float does rounding on x86
6498 instruct storeFPR_rounded( memory mem, regFPR1 src) %{
6499   predicate(UseSSE==0);
6500   match(Set mem (StoreF mem (RoundFloat src)));
6501 
6502   ins_cost(100);
6503   format %{ "FST_S  $mem,$src\t# round" %}
6504   opcode(0xD9);       /* D9 /2 */
6505   ins_encode( enc_FPR_store(mem,src) );
6506   ins_pipe( fpu_mem_reg );
6507 %}
6508 
6509 // Store Float does rounding on x86
6510 instruct storeFPR_Drounded( memory mem, regDPR1 src) %{
6511   predicate(UseSSE<=1);
6512   match(Set mem (StoreF mem (ConvD2F src)));
6513 
6514   ins_cost(100);
6515   format %{ "FST_S  $mem,$src\t# D-round" %}
6516   opcode(0xD9);       /* D9 /2 */
6517   ins_encode( enc_FPR_store(mem,src) );
6518   ins_pipe( fpu_mem_reg );
6519 %}
6520 
6521 // Store immediate Float value (it is faster than store from FPU register)
6522 // The instruction usage is guarded by predicate in operand immFPR().
6523 instruct storeFPR_imm( memory mem, immFPR src) %{
6524   match(Set mem (StoreF mem src));
6525 
6526   ins_cost(50);
6527   format %{ "MOV    $mem,$src\t# store float" %}
6528   opcode(0xC7);               /* C7 /0 */
6529   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32FPR_as_bits( src ));
6530   ins_pipe( ialu_mem_imm );
6531 %}
6532 
6533 // Store immediate Float value (it is faster than store from XMM register)
6534 // The instruction usage is guarded by predicate in operand immF().
6535 instruct storeF_imm( memory mem, immF src) %{
6536   match(Set mem (StoreF mem src));
6537 
6538   ins_cost(50);
6539   format %{ "MOV    $mem,$src\t# store float" %}
6540   opcode(0xC7);               /* C7 /0 */
6541   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
6542   ins_pipe( ialu_mem_imm );
6543 %}
6544 
6545 // Store Integer to stack slot
6546 instruct storeSSI(stackSlotI dst, rRegI src) %{
6547   match(Set dst src);
6548 
6549   ins_cost(100);
6550   format %{ "MOV    $dst,$src" %}
6551   opcode(0x89);
6552   ins_encode( OpcPRegSS( dst, src ) );
6553   ins_pipe( ialu_mem_reg );
6554 %}
6555 
6556 // Store Integer to stack slot
6557 instruct storeSSP(stackSlotP dst, eRegP src) %{
6558   match(Set dst src);
6559 
6560   ins_cost(100);
6561   format %{ "MOV    $dst,$src" %}
6562   opcode(0x89);
6563   ins_encode( OpcPRegSS( dst, src ) );
6564   ins_pipe( ialu_mem_reg );
6565 %}
6566 
6567 // Store Long to stack slot
6568 instruct storeSSL(stackSlotL dst, eRegL src) %{
6569   match(Set dst src);
6570 
6571   ins_cost(200);
6572   format %{ "MOV    $dst,$src.lo\n\t"
6573             "MOV    $dst+4,$src.hi" %}
6574   opcode(0x89, 0x89);
6575   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
6576   ins_pipe( ialu_mem_long_reg );
6577 %}
6578 
6579 //----------MemBar Instructions-----------------------------------------------
6580 // Memory barrier flavors
6581 
6582 instruct membar_acquire() %{
6583   match(MemBarAcquire);
6584   match(LoadFence);
6585   ins_cost(400);
6586 
6587   size(0);
6588   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6589   ins_encode();
6590   ins_pipe(empty);
6591 %}
6592 
6593 instruct membar_acquire_lock() %{
6594   match(MemBarAcquireLock);
6595   ins_cost(0);
6596 
6597   size(0);
6598   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6599   ins_encode( );
6600   ins_pipe(empty);
6601 %}
6602 
6603 instruct membar_release() %{
6604   match(MemBarRelease);
6605   match(StoreFence);
6606   ins_cost(400);
6607 
6608   size(0);
6609   format %{ "MEMBAR-release ! (empty encoding)" %}
6610   ins_encode( );
6611   ins_pipe(empty);
6612 %}
6613 
6614 instruct membar_release_lock() %{
6615   match(MemBarReleaseLock);
6616   ins_cost(0);
6617 
6618   size(0);
6619   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6620   ins_encode( );
6621   ins_pipe(empty);
6622 %}
6623 
6624 instruct membar_volatile(eFlagsReg cr) %{
6625   match(MemBarVolatile);
6626   effect(KILL cr);
6627   ins_cost(400);
6628 
6629   format %{ 
6630     $$template
6631     if (os::is_MP()) {
6632       $$emit$$"LOCK ADDL [ESP + #0], 0\t! membar_volatile"
6633     } else {
6634       $$emit$$"MEMBAR-volatile ! (empty encoding)"
6635     }
6636   %}
6637   ins_encode %{
6638     __ membar(Assembler::StoreLoad);
6639   %}
6640   ins_pipe(pipe_slow);
6641 %}
6642 
6643 instruct unnecessary_membar_volatile() %{
6644   match(MemBarVolatile);
6645   predicate(Matcher::post_store_load_barrier(n));
6646   ins_cost(0);
6647 
6648   size(0);
6649   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6650   ins_encode( );
6651   ins_pipe(empty);
6652 %}
6653 
6654 instruct membar_storestore() %{
6655   match(MemBarStoreStore);
6656   ins_cost(0);
6657 
6658   size(0);
6659   format %{ "MEMBAR-storestore (empty encoding)" %}
6660   ins_encode( );
6661   ins_pipe(empty);
6662 %}
6663 
6664 //----------Move Instructions--------------------------------------------------
6665 instruct castX2P(eAXRegP dst, eAXRegI src) %{
6666   match(Set dst (CastX2P src));
6667   format %{ "# X2P  $dst, $src" %}
6668   ins_encode( /*empty encoding*/ );
6669   ins_cost(0);
6670   ins_pipe(empty);
6671 %}
6672 
6673 instruct castP2X(rRegI dst, eRegP src ) %{
6674   match(Set dst (CastP2X src));
6675   ins_cost(50);
6676   format %{ "MOV    $dst, $src\t# CastP2X" %}
6677   ins_encode( enc_Copy( dst, src) );
6678   ins_pipe( ialu_reg_reg );
6679 %}
6680 
6681 //----------Conditional Move---------------------------------------------------
6682 // Conditional move
6683 instruct jmovI_reg(cmpOp cop, eFlagsReg cr, rRegI dst, rRegI src) %{
6684   predicate(!VM_Version::supports_cmov() );
6685   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6686   ins_cost(200);
6687   format %{ "J$cop,us skip\t# signed cmove\n\t"
6688             "MOV    $dst,$src\n"
6689       "skip:" %}
6690   ins_encode %{
6691     Label Lskip;
6692     // Invert sense of branch from sense of CMOV
6693     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6694     __ movl($dst$$Register, $src$$Register);
6695     __ bind(Lskip);
6696   %}
6697   ins_pipe( pipe_cmov_reg );
6698 %}
6699 
6700 instruct jmovI_regU(cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src) %{
6701   predicate(!VM_Version::supports_cmov() );
6702   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6703   ins_cost(200);
6704   format %{ "J$cop,us skip\t# unsigned cmove\n\t"
6705             "MOV    $dst,$src\n"
6706       "skip:" %}
6707   ins_encode %{
6708     Label Lskip;
6709     // Invert sense of branch from sense of CMOV
6710     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6711     __ movl($dst$$Register, $src$$Register);
6712     __ bind(Lskip);
6713   %}
6714   ins_pipe( pipe_cmov_reg );
6715 %}
6716 
6717 instruct cmovI_reg(rRegI dst, rRegI src, eFlagsReg cr, cmpOp cop ) %{
6718   predicate(VM_Version::supports_cmov() );
6719   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6720   ins_cost(200);
6721   format %{ "CMOV$cop $dst,$src" %}
6722   opcode(0x0F,0x40);
6723   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6724   ins_pipe( pipe_cmov_reg );
6725 %}
6726 
6727 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, rRegI dst, rRegI src ) %{
6728   predicate(VM_Version::supports_cmov() );
6729   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6730   ins_cost(200);
6731   format %{ "CMOV$cop $dst,$src" %}
6732   opcode(0x0F,0x40);
6733   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6734   ins_pipe( pipe_cmov_reg );
6735 %}
6736 
6737 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, rRegI src ) %{
6738   predicate(VM_Version::supports_cmov() );
6739   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6740   ins_cost(200);
6741   expand %{
6742     cmovI_regU(cop, cr, dst, src);
6743   %}
6744 %}
6745 
6746 // Conditional move
6747 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, rRegI dst, memory src) %{
6748   predicate(VM_Version::supports_cmov() );
6749   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6750   ins_cost(250);
6751   format %{ "CMOV$cop $dst,$src" %}
6752   opcode(0x0F,0x40);
6753   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6754   ins_pipe( pipe_cmov_mem );
6755 %}
6756 
6757 // Conditional move
6758 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, rRegI dst, memory src) %{
6759   predicate(VM_Version::supports_cmov() );
6760   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6761   ins_cost(250);
6762   format %{ "CMOV$cop $dst,$src" %}
6763   opcode(0x0F,0x40);
6764   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6765   ins_pipe( pipe_cmov_mem );
6766 %}
6767 
6768 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, rRegI dst, memory src) %{
6769   predicate(VM_Version::supports_cmov() );
6770   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6771   ins_cost(250);
6772   expand %{
6773     cmovI_memU(cop, cr, dst, src);
6774   %}
6775 %}
6776 
6777 // Conditional move
6778 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
6779   predicate(VM_Version::supports_cmov() );
6780   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6781   ins_cost(200);
6782   format %{ "CMOV$cop $dst,$src\t# ptr" %}
6783   opcode(0x0F,0x40);
6784   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6785   ins_pipe( pipe_cmov_reg );
6786 %}
6787 
6788 // Conditional move (non-P6 version)
6789 // Note:  a CMoveP is generated for  stubs and native wrappers
6790 //        regardless of whether we are on a P6, so we
6791 //        emulate a cmov here
6792 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
6793   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6794   ins_cost(300);
6795   format %{ "Jn$cop   skip\n\t"
6796           "MOV    $dst,$src\t# pointer\n"
6797       "skip:" %}
6798   opcode(0x8b);
6799   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
6800   ins_pipe( pipe_cmov_reg );
6801 %}
6802 
6803 // Conditional move
6804 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
6805   predicate(VM_Version::supports_cmov() );
6806   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6807   ins_cost(200);
6808   format %{ "CMOV$cop $dst,$src\t# ptr" %}
6809   opcode(0x0F,0x40);
6810   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
6811   ins_pipe( pipe_cmov_reg );
6812 %}
6813 
6814 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
6815   predicate(VM_Version::supports_cmov() );
6816   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6817   ins_cost(200);
6818   expand %{
6819     cmovP_regU(cop, cr, dst, src);
6820   %}
6821 %}
6822 
6823 // DISABLED: Requires the ADLC to emit a bottom_type call that
6824 // correctly meets the two pointer arguments; one is an incoming
6825 // register but the other is a memory operand.  ALSO appears to
6826 // be buggy with implicit null checks.
6827 //
6828 //// Conditional move
6829 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
6830 //  predicate(VM_Version::supports_cmov() );
6831 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6832 //  ins_cost(250);
6833 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6834 //  opcode(0x0F,0x40);
6835 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6836 //  ins_pipe( pipe_cmov_mem );
6837 //%}
6838 //
6839 //// Conditional move
6840 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
6841 //  predicate(VM_Version::supports_cmov() );
6842 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6843 //  ins_cost(250);
6844 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6845 //  opcode(0x0F,0x40);
6846 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
6847 //  ins_pipe( pipe_cmov_mem );
6848 //%}
6849 
6850 // Conditional move
6851 instruct fcmovDPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regDPR src) %{
6852   predicate(UseSSE<=1);
6853   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6854   ins_cost(200);
6855   format %{ "FCMOV$cop $dst,$src\t# double" %}
6856   opcode(0xDA);
6857   ins_encode( enc_cmov_dpr(cop,src) );
6858   ins_pipe( pipe_cmovDPR_reg );
6859 %}
6860 
6861 // Conditional move
6862 instruct fcmovFPR_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regFPR src) %{
6863   predicate(UseSSE==0);
6864   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6865   ins_cost(200);
6866   format %{ "FCMOV$cop $dst,$src\t# float" %}
6867   opcode(0xDA);
6868   ins_encode( enc_cmov_dpr(cop,src) );
6869   ins_pipe( pipe_cmovDPR_reg );
6870 %}
6871 
6872 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
6873 instruct fcmovDPR_regS(cmpOp cop, eFlagsReg cr, regDPR dst, regDPR src) %{
6874   predicate(UseSSE<=1);
6875   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6876   ins_cost(200);
6877   format %{ "Jn$cop   skip\n\t"
6878             "MOV    $dst,$src\t# double\n"
6879       "skip:" %}
6880   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
6881   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_DPR(src), OpcP, RegOpc(dst) );
6882   ins_pipe( pipe_cmovDPR_reg );
6883 %}
6884 
6885 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
6886 instruct fcmovFPR_regS(cmpOp cop, eFlagsReg cr, regFPR dst, regFPR src) %{
6887   predicate(UseSSE==0);
6888   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6889   ins_cost(200);
6890   format %{ "Jn$cop    skip\n\t"
6891             "MOV    $dst,$src\t# float\n"
6892       "skip:" %}
6893   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
6894   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_FPR(src), OpcP, RegOpc(dst) );
6895   ins_pipe( pipe_cmovDPR_reg );
6896 %}
6897 
6898 // No CMOVE with SSE/SSE2
6899 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
6900   predicate (UseSSE>=1);
6901   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6902   ins_cost(200);
6903   format %{ "Jn$cop   skip\n\t"
6904             "MOVSS  $dst,$src\t# float\n"
6905       "skip:" %}
6906   ins_encode %{
6907     Label skip;
6908     // Invert sense of branch from sense of CMOV
6909     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6910     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6911     __ bind(skip);
6912   %}
6913   ins_pipe( pipe_slow );
6914 %}
6915 
6916 // No CMOVE with SSE/SSE2
6917 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
6918   predicate (UseSSE>=2);
6919   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6920   ins_cost(200);
6921   format %{ "Jn$cop   skip\n\t"
6922             "MOVSD  $dst,$src\t# float\n"
6923       "skip:" %}
6924   ins_encode %{
6925     Label skip;
6926     // Invert sense of branch from sense of CMOV
6927     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6928     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6929     __ bind(skip);
6930   %}
6931   ins_pipe( pipe_slow );
6932 %}
6933 
6934 // unsigned version
6935 instruct fcmovF_regU(cmpOpU cop, eFlagsRegU cr, regF dst, regF src) %{
6936   predicate (UseSSE>=1);
6937   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6938   ins_cost(200);
6939   format %{ "Jn$cop   skip\n\t"
6940             "MOVSS  $dst,$src\t# float\n"
6941       "skip:" %}
6942   ins_encode %{
6943     Label skip;
6944     // Invert sense of branch from sense of CMOV
6945     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6946     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6947     __ bind(skip);
6948   %}
6949   ins_pipe( pipe_slow );
6950 %}
6951 
6952 instruct fcmovF_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regF dst, regF src) %{
6953   predicate (UseSSE>=1);
6954   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6955   ins_cost(200);
6956   expand %{
6957     fcmovF_regU(cop, cr, dst, src);
6958   %}
6959 %}
6960 
6961 // unsigned version
6962 instruct fcmovD_regU(cmpOpU cop, eFlagsRegU cr, regD dst, regD src) %{
6963   predicate (UseSSE>=2);
6964   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6965   ins_cost(200);
6966   format %{ "Jn$cop   skip\n\t"
6967             "MOVSD  $dst,$src\t# float\n"
6968       "skip:" %}
6969   ins_encode %{
6970     Label skip;
6971     // Invert sense of branch from sense of CMOV
6972     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
6973     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6974     __ bind(skip);
6975   %}
6976   ins_pipe( pipe_slow );
6977 %}
6978 
6979 instruct fcmovD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regD dst, regD src) %{
6980   predicate (UseSSE>=2);
6981   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6982   ins_cost(200);
6983   expand %{
6984     fcmovD_regU(cop, cr, dst, src);
6985   %}
6986 %}
6987 
6988 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
6989   predicate(VM_Version::supports_cmov() );
6990   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6991   ins_cost(200);
6992   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
6993             "CMOV$cop $dst.hi,$src.hi" %}
6994   opcode(0x0F,0x40);
6995   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
6996   ins_pipe( pipe_cmov_reg_long );
6997 %}
6998 
6999 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7000   predicate(VM_Version::supports_cmov() );
7001   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7002   ins_cost(200);
7003   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7004             "CMOV$cop $dst.hi,$src.hi" %}
7005   opcode(0x0F,0x40);
7006   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7007   ins_pipe( pipe_cmov_reg_long );
7008 %}
7009 
7010 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7011   predicate(VM_Version::supports_cmov() );
7012   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7013   ins_cost(200);
7014   expand %{
7015     cmovL_regU(cop, cr, dst, src);
7016   %}
7017 %}
7018 
7019 //----------Arithmetic Instructions--------------------------------------------
7020 //----------Addition Instructions----------------------------------------------
7021 
7022 // Integer Addition Instructions
7023 instruct addI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7024   match(Set dst (AddI dst src));
7025   effect(KILL cr);
7026 
7027   size(2);
7028   format %{ "ADD    $dst,$src" %}
7029   opcode(0x03);
7030   ins_encode( OpcP, RegReg( dst, src) );
7031   ins_pipe( ialu_reg_reg );
7032 %}
7033 
7034 instruct addI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7035   match(Set dst (AddI dst src));
7036   effect(KILL cr);
7037 
7038   format %{ "ADD    $dst,$src" %}
7039   opcode(0x81, 0x00); /* /0 id */
7040   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7041   ins_pipe( ialu_reg );
7042 %}
7043 
7044 instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
7045   predicate(UseIncDec);
7046   match(Set dst (AddI dst src));
7047   effect(KILL cr);
7048 
7049   size(1);
7050   format %{ "INC    $dst" %}
7051   opcode(0x40); /*  */
7052   ins_encode( Opc_plus( primary, dst ) );
7053   ins_pipe( ialu_reg );
7054 %}
7055 
7056 instruct leaI_eReg_immI(rRegI dst, rRegI src0, immI src1) %{
7057   match(Set dst (AddI src0 src1));
7058   ins_cost(110);
7059 
7060   format %{ "LEA    $dst,[$src0 + $src1]" %}
7061   opcode(0x8D); /* 0x8D /r */
7062   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7063   ins_pipe( ialu_reg_reg );
7064 %}
7065 
7066 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7067   match(Set dst (AddP src0 src1));
7068   ins_cost(110);
7069 
7070   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7071   opcode(0x8D); /* 0x8D /r */
7072   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7073   ins_pipe( ialu_reg_reg );
7074 %}
7075 
7076 instruct decI_eReg(rRegI dst, immI_M1 src, eFlagsReg cr) %{
7077   predicate(UseIncDec);
7078   match(Set dst (AddI dst src));
7079   effect(KILL cr);
7080 
7081   size(1);
7082   format %{ "DEC    $dst" %}
7083   opcode(0x48); /*  */
7084   ins_encode( Opc_plus( primary, dst ) );
7085   ins_pipe( ialu_reg );
7086 %}
7087 
7088 instruct addP_eReg(eRegP dst, rRegI src, eFlagsReg cr) %{
7089   match(Set dst (AddP dst src));
7090   effect(KILL cr);
7091 
7092   size(2);
7093   format %{ "ADD    $dst,$src" %}
7094   opcode(0x03);
7095   ins_encode( OpcP, RegReg( dst, src) );
7096   ins_pipe( ialu_reg_reg );
7097 %}
7098 
7099 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7100   match(Set dst (AddP dst src));
7101   effect(KILL cr);
7102 
7103   format %{ "ADD    $dst,$src" %}
7104   opcode(0x81,0x00); /* Opcode 81 /0 id */
7105   // ins_encode( RegImm( dst, src) );
7106   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7107   ins_pipe( ialu_reg );
7108 %}
7109 
7110 instruct addI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7111   match(Set dst (AddI dst (LoadI src)));
7112   effect(KILL cr);
7113 
7114   ins_cost(125);
7115   format %{ "ADD    $dst,$src" %}
7116   opcode(0x03);
7117   ins_encode( OpcP, RegMem( dst, src) );
7118   ins_pipe( ialu_reg_mem );
7119 %}
7120 
7121 instruct addI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7122   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7123   effect(KILL cr);
7124 
7125   ins_cost(150);
7126   format %{ "ADD    $dst,$src" %}
7127   opcode(0x01);  /* Opcode 01 /r */
7128   ins_encode( OpcP, RegMem( src, dst ) );
7129   ins_pipe( ialu_mem_reg );
7130 %}
7131 
7132 // Add Memory with Immediate
7133 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7134   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7135   effect(KILL cr);
7136 
7137   ins_cost(125);
7138   format %{ "ADD    $dst,$src" %}
7139   opcode(0x81);               /* Opcode 81 /0 id */
7140   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7141   ins_pipe( ialu_mem_imm );
7142 %}
7143 
7144 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7145   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7146   effect(KILL cr);
7147 
7148   ins_cost(125);
7149   format %{ "INC    $dst" %}
7150   opcode(0xFF);               /* Opcode FF /0 */
7151   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7152   ins_pipe( ialu_mem_imm );
7153 %}
7154 
7155 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7156   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7157   effect(KILL cr);
7158 
7159   ins_cost(125);
7160   format %{ "DEC    $dst" %}
7161   opcode(0xFF);               /* Opcode FF /1 */
7162   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7163   ins_pipe( ialu_mem_imm );
7164 %}
7165 
7166 
7167 instruct checkCastPP( eRegP dst ) %{
7168   match(Set dst (CheckCastPP dst));
7169 
7170   size(0);
7171   format %{ "#checkcastPP of $dst" %}
7172   ins_encode( /*empty encoding*/ );
7173   ins_pipe( empty );
7174 %}
7175 
7176 instruct castPP( eRegP dst ) %{
7177   match(Set dst (CastPP dst));
7178   format %{ "#castPP of $dst" %}
7179   ins_encode( /*empty encoding*/ );
7180   ins_pipe( empty );
7181 %}
7182 
7183 instruct castII( rRegI dst ) %{
7184   match(Set dst (CastII dst));
7185   format %{ "#castII of $dst" %}
7186   ins_encode( /*empty encoding*/ );
7187   ins_cost(0);
7188   ins_pipe( empty );
7189 %}
7190 
7191 
7192 // Load-locked - same as a regular pointer load when used with compare-swap
7193 instruct loadPLocked(eRegP dst, memory mem) %{
7194   match(Set dst (LoadPLocked mem));
7195 
7196   ins_cost(125);
7197   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7198   opcode(0x8B);
7199   ins_encode( OpcP, RegMem(dst,mem));
7200   ins_pipe( ialu_reg_mem );
7201 %}
7202 
7203 // Conditional-store of the updated heap-top.
7204 // Used during allocation of the shared heap.
7205 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7206 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7207   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7208   // EAX is killed if there is contention, but then it's also unused.
7209   // In the common case of no contention, EAX holds the new oop address.
7210   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7211   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7212   ins_pipe( pipe_cmpxchg );
7213 %}
7214 
7215 // Conditional-store of an int value.
7216 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7217 instruct storeIConditional( memory mem, eAXRegI oldval, rRegI newval, eFlagsReg cr ) %{
7218   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7219   effect(KILL oldval);
7220   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7221   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7222   ins_pipe( pipe_cmpxchg );
7223 %}
7224 
7225 // Conditional-store of a long value.
7226 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7227 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7228   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7229   effect(KILL oldval);
7230   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7231             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7232             "XCHG   EBX,ECX"
7233   %}
7234   ins_encode %{
7235     // Note: we need to swap rbx, and rcx before and after the
7236     //       cmpxchg8 instruction because the instruction uses
7237     //       rcx as the high order word of the new value to store but
7238     //       our register encoding uses rbx.
7239     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7240     if( os::is_MP() )
7241       __ lock();
7242     __ cmpxchg8($mem$$Address);
7243     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7244   %}
7245   ins_pipe( pipe_cmpxchg );
7246 %}
7247 
7248 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7249 
7250 instruct compareAndSwapL( rRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7251   predicate(VM_Version::supports_cx8());
7252   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7253   effect(KILL cr, KILL oldval);
7254   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7255             "MOV    $res,0\n\t"
7256             "JNE,s  fail\n\t"
7257             "MOV    $res,1\n"
7258           "fail:" %}
7259   ins_encode( enc_cmpxchg8(mem_ptr),
7260               enc_flags_ne_to_boolean(res) );
7261   ins_pipe( pipe_cmpxchg );
7262 %}
7263 
7264 instruct compareAndSwapP( rRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7265   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7266   effect(KILL cr, KILL oldval);
7267   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7268             "MOV    $res,0\n\t"
7269             "JNE,s  fail\n\t"
7270             "MOV    $res,1\n"
7271           "fail:" %}
7272   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7273   ins_pipe( pipe_cmpxchg );
7274 %}
7275 
7276 instruct compareAndSwapI( rRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7277   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7278   effect(KILL cr, KILL oldval);
7279   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7280             "MOV    $res,0\n\t"
7281             "JNE,s  fail\n\t"
7282             "MOV    $res,1\n"
7283           "fail:" %}
7284   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7285   ins_pipe( pipe_cmpxchg );
7286 %}
7287 
7288 instruct xaddI_no_res( memory mem, Universe dummy, immI add, eFlagsReg cr) %{
7289   predicate(n->as_LoadStore()->result_not_used());
7290   match(Set dummy (GetAndAddI mem add));
7291   effect(KILL cr);
7292   format %{ "ADDL  [$mem],$add" %}
7293   ins_encode %{
7294     if (os::is_MP()) { __ lock(); }
7295     __ addl($mem$$Address, $add$$constant);
7296   %}
7297   ins_pipe( pipe_cmpxchg );
7298 %}
7299 
7300 instruct xaddI( memory mem, rRegI newval, eFlagsReg cr) %{
7301   match(Set newval (GetAndAddI mem newval));
7302   effect(KILL cr);
7303   format %{ "XADDL  [$mem],$newval" %}
7304   ins_encode %{
7305     if (os::is_MP()) { __ lock(); }
7306     __ xaddl($mem$$Address, $newval$$Register);
7307   %}
7308   ins_pipe( pipe_cmpxchg );
7309 %}
7310 
7311 instruct xchgI( memory mem, rRegI newval) %{
7312   match(Set newval (GetAndSetI mem newval));
7313   format %{ "XCHGL  $newval,[$mem]" %}
7314   ins_encode %{
7315     __ xchgl($newval$$Register, $mem$$Address);
7316   %}
7317   ins_pipe( pipe_cmpxchg );
7318 %}
7319 
7320 instruct xchgP( memory mem, pRegP newval) %{
7321   match(Set newval (GetAndSetP mem newval));
7322   format %{ "XCHGL  $newval,[$mem]" %}
7323   ins_encode %{
7324     __ xchgl($newval$$Register, $mem$$Address);
7325   %}
7326   ins_pipe( pipe_cmpxchg );
7327 %}
7328 
7329 //----------Subtraction Instructions-------------------------------------------
7330 
7331 // Integer Subtraction Instructions
7332 instruct subI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7333   match(Set dst (SubI dst src));
7334   effect(KILL cr);
7335 
7336   size(2);
7337   format %{ "SUB    $dst,$src" %}
7338   opcode(0x2B);
7339   ins_encode( OpcP, RegReg( dst, src) );
7340   ins_pipe( ialu_reg_reg );
7341 %}
7342 
7343 instruct subI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
7344   match(Set dst (SubI dst src));
7345   effect(KILL cr);
7346 
7347   format %{ "SUB    $dst,$src" %}
7348   opcode(0x81,0x05);  /* Opcode 81 /5 */
7349   // ins_encode( RegImm( dst, src) );
7350   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7351   ins_pipe( ialu_reg );
7352 %}
7353 
7354 instruct subI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
7355   match(Set dst (SubI dst (LoadI src)));
7356   effect(KILL cr);
7357 
7358   ins_cost(125);
7359   format %{ "SUB    $dst,$src" %}
7360   opcode(0x2B);
7361   ins_encode( OpcP, RegMem( dst, src) );
7362   ins_pipe( ialu_reg_mem );
7363 %}
7364 
7365 instruct subI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
7366   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7367   effect(KILL cr);
7368 
7369   ins_cost(150);
7370   format %{ "SUB    $dst,$src" %}
7371   opcode(0x29);  /* Opcode 29 /r */
7372   ins_encode( OpcP, RegMem( src, dst ) );
7373   ins_pipe( ialu_mem_reg );
7374 %}
7375 
7376 // Subtract from a pointer
7377 instruct subP_eReg(eRegP dst, rRegI src, immI0 zero, eFlagsReg cr) %{
7378   match(Set dst (AddP dst (SubI zero src)));
7379   effect(KILL cr);
7380 
7381   size(2);
7382   format %{ "SUB    $dst,$src" %}
7383   opcode(0x2B);
7384   ins_encode( OpcP, RegReg( dst, src) );
7385   ins_pipe( ialu_reg_reg );
7386 %}
7387 
7388 instruct negI_eReg(rRegI dst, immI0 zero, eFlagsReg cr) %{
7389   match(Set dst (SubI zero dst));
7390   effect(KILL cr);
7391 
7392   size(2);
7393   format %{ "NEG    $dst" %}
7394   opcode(0xF7,0x03);  // Opcode F7 /3
7395   ins_encode( OpcP, RegOpc( dst ) );
7396   ins_pipe( ialu_reg );
7397 %}
7398 
7399 //----------Multiplication/Division Instructions-------------------------------
7400 // Integer Multiplication Instructions
7401 // Multiply Register
7402 instruct mulI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7403   match(Set dst (MulI dst src));
7404   effect(KILL cr);
7405 
7406   size(3);
7407   ins_cost(300);
7408   format %{ "IMUL   $dst,$src" %}
7409   opcode(0xAF, 0x0F);
7410   ins_encode( OpcS, OpcP, RegReg( dst, src) );
7411   ins_pipe( ialu_reg_reg_alu0 );
7412 %}
7413 
7414 // Multiply 32-bit Immediate
7415 instruct mulI_eReg_imm(rRegI dst, rRegI src, immI imm, eFlagsReg cr) %{
7416   match(Set dst (MulI src imm));
7417   effect(KILL cr);
7418 
7419   ins_cost(300);
7420   format %{ "IMUL   $dst,$src,$imm" %}
7421   opcode(0x69);  /* 69 /r id */
7422   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
7423   ins_pipe( ialu_reg_reg_alu0 );
7424 %}
7425 
7426 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
7427   match(Set dst src);
7428   effect(KILL cr);
7429 
7430   // Note that this is artificially increased to make it more expensive than loadConL
7431   ins_cost(250);
7432   format %{ "MOV    EAX,$src\t// low word only" %}
7433   opcode(0xB8);
7434   ins_encode( LdImmL_Lo(dst, src) );
7435   ins_pipe( ialu_reg_fat );
7436 %}
7437 
7438 // Multiply by 32-bit Immediate, taking the shifted high order results
7439 //  (special case for shift by 32)
7440 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
7441   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7442   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7443              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7444              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7445   effect(USE src1, KILL cr);
7446 
7447   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7448   ins_cost(0*100 + 1*400 - 150);
7449   format %{ "IMUL   EDX:EAX,$src1" %}
7450   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7451   ins_pipe( pipe_slow );
7452 %}
7453 
7454 // Multiply by 32-bit Immediate, taking the shifted high order results
7455 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
7456   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
7457   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
7458              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
7459              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
7460   effect(USE src1, KILL cr);
7461 
7462   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
7463   ins_cost(1*100 + 1*400 - 150);
7464   format %{ "IMUL   EDX:EAX,$src1\n\t"
7465             "SAR    EDX,$cnt-32" %}
7466   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
7467   ins_pipe( pipe_slow );
7468 %}
7469 
7470 // Multiply Memory 32-bit Immediate
7471 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, eFlagsReg cr) %{
7472   match(Set dst (MulI (LoadI src) imm));
7473   effect(KILL cr);
7474 
7475   ins_cost(300);
7476   format %{ "IMUL   $dst,$src,$imm" %}
7477   opcode(0x69);  /* 69 /r id */
7478   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
7479   ins_pipe( ialu_reg_mem_alu0 );
7480 %}
7481 
7482 // Multiply Memory
7483 instruct mulI(rRegI dst, memory src, eFlagsReg cr) %{
7484   match(Set dst (MulI dst (LoadI src)));
7485   effect(KILL cr);
7486 
7487   ins_cost(350);
7488   format %{ "IMUL   $dst,$src" %}
7489   opcode(0xAF, 0x0F);
7490   ins_encode( OpcS, OpcP, RegMem( dst, src) );
7491   ins_pipe( ialu_reg_mem_alu0 );
7492 %}
7493 
7494 // Multiply Register Int to Long
7495 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
7496   // Basic Idea: long = (long)int * (long)int
7497   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
7498   effect(DEF dst, USE src, USE src1, KILL flags);
7499 
7500   ins_cost(300);
7501   format %{ "IMUL   $dst,$src1" %}
7502 
7503   ins_encode( long_int_multiply( dst, src1 ) );
7504   ins_pipe( ialu_reg_reg_alu0 );
7505 %}
7506 
7507 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
7508   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
7509   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
7510   effect(KILL flags);
7511 
7512   ins_cost(300);
7513   format %{ "MUL    $dst,$src1" %}
7514 
7515   ins_encode( long_uint_multiply(dst, src1) );
7516   ins_pipe( ialu_reg_reg_alu0 );
7517 %}
7518 
7519 // Multiply Register Long
7520 instruct mulL_eReg(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7521   match(Set dst (MulL dst src));
7522   effect(KILL cr, TEMP tmp);
7523   ins_cost(4*100+3*400);
7524 // Basic idea: lo(result) = lo(x_lo * y_lo)
7525 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
7526   format %{ "MOV    $tmp,$src.lo\n\t"
7527             "IMUL   $tmp,EDX\n\t"
7528             "MOV    EDX,$src.hi\n\t"
7529             "IMUL   EDX,EAX\n\t"
7530             "ADD    $tmp,EDX\n\t"
7531             "MUL    EDX:EAX,$src.lo\n\t"
7532             "ADD    EDX,$tmp" %}
7533   ins_encode( long_multiply( dst, src, tmp ) );
7534   ins_pipe( pipe_slow );
7535 %}
7536 
7537 // Multiply Register Long where the left operand's high 32 bits are zero
7538 instruct mulL_eReg_lhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7539   predicate(is_operand_hi32_zero(n->in(1)));
7540   match(Set dst (MulL dst src));
7541   effect(KILL cr, TEMP tmp);
7542   ins_cost(2*100+2*400);
7543 // Basic idea: lo(result) = lo(x_lo * y_lo)
7544 //             hi(result) = hi(x_lo * y_lo) + lo(x_lo * y_hi) where lo(x_hi * y_lo) = 0 because x_hi = 0
7545   format %{ "MOV    $tmp,$src.hi\n\t"
7546             "IMUL   $tmp,EAX\n\t"
7547             "MUL    EDX:EAX,$src.lo\n\t"
7548             "ADD    EDX,$tmp" %}
7549   ins_encode %{
7550     __ movl($tmp$$Register, HIGH_FROM_LOW($src$$Register));
7551     __ imull($tmp$$Register, rax);
7552     __ mull($src$$Register);
7553     __ addl(rdx, $tmp$$Register);
7554   %}
7555   ins_pipe( pipe_slow );
7556 %}
7557 
7558 // Multiply Register Long where the right operand's high 32 bits are zero
7559 instruct mulL_eReg_rhi0(eADXRegL dst, eRegL src, rRegI tmp, eFlagsReg cr) %{
7560   predicate(is_operand_hi32_zero(n->in(2)));
7561   match(Set dst (MulL dst src));
7562   effect(KILL cr, TEMP tmp);
7563   ins_cost(2*100+2*400);
7564 // Basic idea: lo(result) = lo(x_lo * y_lo)
7565 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) where lo(x_lo * y_hi) = 0 because y_hi = 0
7566   format %{ "MOV    $tmp,$src.lo\n\t"
7567             "IMUL   $tmp,EDX\n\t"
7568             "MUL    EDX:EAX,$src.lo\n\t"
7569             "ADD    EDX,$tmp" %}
7570   ins_encode %{
7571     __ movl($tmp$$Register, $src$$Register);
7572     __ imull($tmp$$Register, rdx);
7573     __ mull($src$$Register);
7574     __ addl(rdx, $tmp$$Register);
7575   %}
7576   ins_pipe( pipe_slow );
7577 %}
7578 
7579 // Multiply Register Long where the left and the right operands' high 32 bits are zero
7580 instruct mulL_eReg_hi0(eADXRegL dst, eRegL src, eFlagsReg cr) %{
7581   predicate(is_operand_hi32_zero(n->in(1)) && is_operand_hi32_zero(n->in(2)));
7582   match(Set dst (MulL dst src));
7583   effect(KILL cr);
7584   ins_cost(1*400);
7585 // Basic idea: lo(result) = lo(x_lo * y_lo)
7586 //             hi(result) = hi(x_lo * y_lo) where lo(x_hi * y_lo) = 0 and lo(x_lo * y_hi) = 0 because x_hi = 0 and y_hi = 0
7587   format %{ "MUL    EDX:EAX,$src.lo\n\t" %}
7588   ins_encode %{
7589     __ mull($src$$Register);
7590   %}
7591   ins_pipe( pipe_slow );
7592 %}
7593 
7594 // Multiply Register Long by small constant
7595 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, rRegI tmp, eFlagsReg cr) %{
7596   match(Set dst (MulL dst src));
7597   effect(KILL cr, TEMP tmp);
7598   ins_cost(2*100+2*400);
7599   size(12);
7600 // Basic idea: lo(result) = lo(src * EAX)
7601 //             hi(result) = hi(src * EAX) + lo(src * EDX)
7602   format %{ "IMUL   $tmp,EDX,$src\n\t"
7603             "MOV    EDX,$src\n\t"
7604             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
7605             "ADD    EDX,$tmp" %}
7606   ins_encode( long_multiply_con( dst, src, tmp ) );
7607   ins_pipe( pipe_slow );
7608 %}
7609 
7610 // Integer DIV with Register
7611 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
7612   match(Set rax (DivI rax div));
7613   effect(KILL rdx, KILL cr);
7614   size(26);
7615   ins_cost(30*100+10*100);
7616   format %{ "CMP    EAX,0x80000000\n\t"
7617             "JNE,s  normal\n\t"
7618             "XOR    EDX,EDX\n\t"
7619             "CMP    ECX,-1\n\t"
7620             "JE,s   done\n"
7621     "normal: CDQ\n\t"
7622             "IDIV   $div\n\t"
7623     "done:"        %}
7624   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7625   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7626   ins_pipe( ialu_reg_reg_alu0 );
7627 %}
7628 
7629 // Divide Register Long
7630 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
7631   match(Set dst (DivL src1 src2));
7632   effect( KILL cr, KILL cx, KILL bx );
7633   ins_cost(10000);
7634   format %{ "PUSH   $src1.hi\n\t"
7635             "PUSH   $src1.lo\n\t"
7636             "PUSH   $src2.hi\n\t"
7637             "PUSH   $src2.lo\n\t"
7638             "CALL   SharedRuntime::ldiv\n\t"
7639             "ADD    ESP,16" %}
7640   ins_encode( long_div(src1,src2) );
7641   ins_pipe( pipe_slow );
7642 %}
7643 
7644 // Integer DIVMOD with Register, both quotient and mod results
7645 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
7646   match(DivModI rax div);
7647   effect(KILL cr);
7648   size(26);
7649   ins_cost(30*100+10*100);
7650   format %{ "CMP    EAX,0x80000000\n\t"
7651             "JNE,s  normal\n\t"
7652             "XOR    EDX,EDX\n\t"
7653             "CMP    ECX,-1\n\t"
7654             "JE,s   done\n"
7655     "normal: CDQ\n\t"
7656             "IDIV   $div\n\t"
7657     "done:"        %}
7658   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7659   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7660   ins_pipe( pipe_slow );
7661 %}
7662 
7663 // Integer MOD with Register
7664 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
7665   match(Set rdx (ModI rax div));
7666   effect(KILL rax, KILL cr);
7667 
7668   size(26);
7669   ins_cost(300);
7670   format %{ "CDQ\n\t"
7671             "IDIV   $div" %}
7672   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7673   ins_encode( cdq_enc, OpcP, RegOpc(div) );
7674   ins_pipe( ialu_reg_reg_alu0 );
7675 %}
7676 
7677 // Remainder Register Long
7678 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
7679   match(Set dst (ModL src1 src2));
7680   effect( KILL cr, KILL cx, KILL bx );
7681   ins_cost(10000);
7682   format %{ "PUSH   $src1.hi\n\t"
7683             "PUSH   $src1.lo\n\t"
7684             "PUSH   $src2.hi\n\t"
7685             "PUSH   $src2.lo\n\t"
7686             "CALL   SharedRuntime::lrem\n\t"
7687             "ADD    ESP,16" %}
7688   ins_encode( long_mod(src1,src2) );
7689   ins_pipe( pipe_slow );
7690 %}
7691 
7692 // Divide Register Long (no special case since divisor != -1)
7693 instruct divL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
7694   match(Set dst (DivL dst imm));
7695   effect( TEMP tmp, TEMP tmp2, KILL cr );
7696   ins_cost(1000);
7697   format %{ "MOV    $tmp,abs($imm) # ldiv EDX:EAX,$imm\n\t"
7698             "XOR    $tmp2,$tmp2\n\t"
7699             "CMP    $tmp,EDX\n\t"
7700             "JA,s   fast\n\t"
7701             "MOV    $tmp2,EAX\n\t"
7702             "MOV    EAX,EDX\n\t"
7703             "MOV    EDX,0\n\t"
7704             "JLE,s  pos\n\t"
7705             "LNEG   EAX : $tmp2\n\t"
7706             "DIV    $tmp # unsigned division\n\t"
7707             "XCHG   EAX,$tmp2\n\t"
7708             "DIV    $tmp\n\t"
7709             "LNEG   $tmp2 : EAX\n\t"
7710             "JMP,s  done\n"
7711     "pos:\n\t"
7712             "DIV    $tmp\n\t"
7713             "XCHG   EAX,$tmp2\n"
7714     "fast:\n\t"
7715             "DIV    $tmp\n"
7716     "done:\n\t"
7717             "MOV    EDX,$tmp2\n\t"
7718             "NEG    EDX:EAX # if $imm < 0" %}
7719   ins_encode %{
7720     int con = (int)$imm$$constant;
7721     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
7722     int pcon = (con > 0) ? con : -con;
7723     Label Lfast, Lpos, Ldone;
7724 
7725     __ movl($tmp$$Register, pcon);
7726     __ xorl($tmp2$$Register,$tmp2$$Register);
7727     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
7728     __ jccb(Assembler::above, Lfast); // result fits into 32 bit
7729 
7730     __ movl($tmp2$$Register, $dst$$Register); // save
7731     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7732     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
7733     __ jccb(Assembler::lessEqual, Lpos); // result is positive
7734 
7735     // Negative dividend.
7736     // convert value to positive to use unsigned division
7737     __ lneg($dst$$Register, $tmp2$$Register);
7738     __ divl($tmp$$Register);
7739     __ xchgl($dst$$Register, $tmp2$$Register);
7740     __ divl($tmp$$Register);
7741     // revert result back to negative
7742     __ lneg($tmp2$$Register, $dst$$Register);
7743     __ jmpb(Ldone);
7744 
7745     __ bind(Lpos);
7746     __ divl($tmp$$Register); // Use unsigned division
7747     __ xchgl($dst$$Register, $tmp2$$Register);
7748     // Fallthrow for final divide, tmp2 has 32 bit hi result
7749 
7750     __ bind(Lfast);
7751     // fast path: src is positive
7752     __ divl($tmp$$Register); // Use unsigned division
7753 
7754     __ bind(Ldone);
7755     __ movl(HIGH_FROM_LOW($dst$$Register),$tmp2$$Register);
7756     if (con < 0) {
7757       __ lneg(HIGH_FROM_LOW($dst$$Register), $dst$$Register);
7758     }
7759   %}
7760   ins_pipe( pipe_slow );
7761 %}
7762 
7763 // Remainder Register Long (remainder fit into 32 bits)
7764 instruct modL_eReg_imm32( eADXRegL dst, immL32 imm, rRegI tmp, rRegI tmp2, eFlagsReg cr ) %{
7765   match(Set dst (ModL dst imm));
7766   effect( TEMP tmp, TEMP tmp2, KILL cr );
7767   ins_cost(1000);
7768   format %{ "MOV    $tmp,abs($imm) # lrem EDX:EAX,$imm\n\t"
7769             "CMP    $tmp,EDX\n\t"
7770             "JA,s   fast\n\t"
7771             "MOV    $tmp2,EAX\n\t"
7772             "MOV    EAX,EDX\n\t"
7773             "MOV    EDX,0\n\t"
7774             "JLE,s  pos\n\t"
7775             "LNEG   EAX : $tmp2\n\t"
7776             "DIV    $tmp # unsigned division\n\t"
7777             "MOV    EAX,$tmp2\n\t"
7778             "DIV    $tmp\n\t"
7779             "NEG    EDX\n\t"
7780             "JMP,s  done\n"
7781     "pos:\n\t"
7782             "DIV    $tmp\n\t"
7783             "MOV    EAX,$tmp2\n"
7784     "fast:\n\t"
7785             "DIV    $tmp\n"
7786     "done:\n\t"
7787             "MOV    EAX,EDX\n\t"
7788             "SAR    EDX,31\n\t" %}
7789   ins_encode %{
7790     int con = (int)$imm$$constant;
7791     assert(con != 0 && con != -1 && con != min_jint, "wrong divisor");
7792     int pcon = (con > 0) ? con : -con;
7793     Label  Lfast, Lpos, Ldone;
7794 
7795     __ movl($tmp$$Register, pcon);
7796     __ cmpl($tmp$$Register, HIGH_FROM_LOW($dst$$Register));
7797     __ jccb(Assembler::above, Lfast); // src is positive and result fits into 32 bit
7798 
7799     __ movl($tmp2$$Register, $dst$$Register); // save
7800     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7801     __ movl(HIGH_FROM_LOW($dst$$Register),0); // preserve flags
7802     __ jccb(Assembler::lessEqual, Lpos); // result is positive
7803 
7804     // Negative dividend.
7805     // convert value to positive to use unsigned division
7806     __ lneg($dst$$Register, $tmp2$$Register);
7807     __ divl($tmp$$Register);
7808     __ movl($dst$$Register, $tmp2$$Register);
7809     __ divl($tmp$$Register);
7810     // revert remainder back to negative
7811     __ negl(HIGH_FROM_LOW($dst$$Register));
7812     __ jmpb(Ldone);
7813 
7814     __ bind(Lpos);
7815     __ divl($tmp$$Register);
7816     __ movl($dst$$Register, $tmp2$$Register);
7817 
7818     __ bind(Lfast);
7819     // fast path: src is positive
7820     __ divl($tmp$$Register);
7821 
7822     __ bind(Ldone);
7823     __ movl($dst$$Register, HIGH_FROM_LOW($dst$$Register));
7824     __ sarl(HIGH_FROM_LOW($dst$$Register), 31); // result sign
7825 
7826   %}
7827   ins_pipe( pipe_slow );
7828 %}
7829 
7830 // Integer Shift Instructions
7831 // Shift Left by one
7832 instruct shlI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7833   match(Set dst (LShiftI dst shift));
7834   effect(KILL cr);
7835 
7836   size(2);
7837   format %{ "SHL    $dst,$shift" %}
7838   opcode(0xD1, 0x4);  /* D1 /4 */
7839   ins_encode( OpcP, RegOpc( dst ) );
7840   ins_pipe( ialu_reg );
7841 %}
7842 
7843 // Shift Left by 8-bit immediate
7844 instruct salI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7845   match(Set dst (LShiftI dst shift));
7846   effect(KILL cr);
7847 
7848   size(3);
7849   format %{ "SHL    $dst,$shift" %}
7850   opcode(0xC1, 0x4);  /* C1 /4 ib */
7851   ins_encode( RegOpcImm( dst, shift) );
7852   ins_pipe( ialu_reg );
7853 %}
7854 
7855 // Shift Left by variable
7856 instruct salI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7857   match(Set dst (LShiftI dst shift));
7858   effect(KILL cr);
7859 
7860   size(2);
7861   format %{ "SHL    $dst,$shift" %}
7862   opcode(0xD3, 0x4);  /* D3 /4 */
7863   ins_encode( OpcP, RegOpc( dst ) );
7864   ins_pipe( ialu_reg_reg );
7865 %}
7866 
7867 // Arithmetic shift right by one
7868 instruct sarI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7869   match(Set dst (RShiftI dst shift));
7870   effect(KILL cr);
7871 
7872   size(2);
7873   format %{ "SAR    $dst,$shift" %}
7874   opcode(0xD1, 0x7);  /* D1 /7 */
7875   ins_encode( OpcP, RegOpc( dst ) );
7876   ins_pipe( ialu_reg );
7877 %}
7878 
7879 // Arithmetic shift right by one
7880 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
7881   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7882   effect(KILL cr);
7883   format %{ "SAR    $dst,$shift" %}
7884   opcode(0xD1, 0x7);  /* D1 /7 */
7885   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
7886   ins_pipe( ialu_mem_imm );
7887 %}
7888 
7889 // Arithmetic Shift Right by 8-bit immediate
7890 instruct sarI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7891   match(Set dst (RShiftI dst shift));
7892   effect(KILL cr);
7893 
7894   size(3);
7895   format %{ "SAR    $dst,$shift" %}
7896   opcode(0xC1, 0x7);  /* C1 /7 ib */
7897   ins_encode( RegOpcImm( dst, shift ) );
7898   ins_pipe( ialu_mem_imm );
7899 %}
7900 
7901 // Arithmetic Shift Right by 8-bit immediate
7902 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
7903   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7904   effect(KILL cr);
7905 
7906   format %{ "SAR    $dst,$shift" %}
7907   opcode(0xC1, 0x7);  /* C1 /7 ib */
7908   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
7909   ins_pipe( ialu_mem_imm );
7910 %}
7911 
7912 // Arithmetic Shift Right by variable
7913 instruct sarI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7914   match(Set dst (RShiftI dst shift));
7915   effect(KILL cr);
7916 
7917   size(2);
7918   format %{ "SAR    $dst,$shift" %}
7919   opcode(0xD3, 0x7);  /* D3 /7 */
7920   ins_encode( OpcP, RegOpc( dst ) );
7921   ins_pipe( ialu_reg_reg );
7922 %}
7923 
7924 // Logical shift right by one
7925 instruct shrI_eReg_1(rRegI dst, immI1 shift, eFlagsReg cr) %{
7926   match(Set dst (URShiftI dst shift));
7927   effect(KILL cr);
7928 
7929   size(2);
7930   format %{ "SHR    $dst,$shift" %}
7931   opcode(0xD1, 0x5);  /* D1 /5 */
7932   ins_encode( OpcP, RegOpc( dst ) );
7933   ins_pipe( ialu_reg );
7934 %}
7935 
7936 // Logical Shift Right by 8-bit immediate
7937 instruct shrI_eReg_imm(rRegI dst, immI8 shift, eFlagsReg cr) %{
7938   match(Set dst (URShiftI dst shift));
7939   effect(KILL cr);
7940 
7941   size(3);
7942   format %{ "SHR    $dst,$shift" %}
7943   opcode(0xC1, 0x5);  /* C1 /5 ib */
7944   ins_encode( RegOpcImm( dst, shift) );
7945   ins_pipe( ialu_reg );
7946 %}
7947 
7948 
7949 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
7950 // This idiom is used by the compiler for the i2b bytecode.
7951 instruct i2b(rRegI dst, xRegI src, immI_24 twentyfour) %{
7952   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
7953 
7954   size(3);
7955   format %{ "MOVSX  $dst,$src :8" %}
7956   ins_encode %{
7957     __ movsbl($dst$$Register, $src$$Register);
7958   %}
7959   ins_pipe(ialu_reg_reg);
7960 %}
7961 
7962 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
7963 // This idiom is used by the compiler the i2s bytecode.
7964 instruct i2s(rRegI dst, xRegI src, immI_16 sixteen) %{
7965   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
7966 
7967   size(3);
7968   format %{ "MOVSX  $dst,$src :16" %}
7969   ins_encode %{
7970     __ movswl($dst$$Register, $src$$Register);
7971   %}
7972   ins_pipe(ialu_reg_reg);
7973 %}
7974 
7975 
7976 // Logical Shift Right by variable
7977 instruct shrI_eReg_CL(rRegI dst, eCXRegI shift, eFlagsReg cr) %{
7978   match(Set dst (URShiftI dst shift));
7979   effect(KILL cr);
7980 
7981   size(2);
7982   format %{ "SHR    $dst,$shift" %}
7983   opcode(0xD3, 0x5);  /* D3 /5 */
7984   ins_encode( OpcP, RegOpc( dst ) );
7985   ins_pipe( ialu_reg_reg );
7986 %}
7987 
7988 
7989 //----------Logical Instructions-----------------------------------------------
7990 //----------Integer Logical Instructions---------------------------------------
7991 // And Instructions
7992 // And Register with Register
7993 instruct andI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
7994   match(Set dst (AndI dst src));
7995   effect(KILL cr);
7996 
7997   size(2);
7998   format %{ "AND    $dst,$src" %}
7999   opcode(0x23);
8000   ins_encode( OpcP, RegReg( dst, src) );
8001   ins_pipe( ialu_reg_reg );
8002 %}
8003 
8004 // And Register with Immediate
8005 instruct andI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8006   match(Set dst (AndI dst src));
8007   effect(KILL cr);
8008 
8009   format %{ "AND    $dst,$src" %}
8010   opcode(0x81,0x04);  /* Opcode 81 /4 */
8011   // ins_encode( RegImm( dst, src) );
8012   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8013   ins_pipe( ialu_reg );
8014 %}
8015 
8016 // And Register with Memory
8017 instruct andI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8018   match(Set dst (AndI dst (LoadI src)));
8019   effect(KILL cr);
8020 
8021   ins_cost(125);
8022   format %{ "AND    $dst,$src" %}
8023   opcode(0x23);
8024   ins_encode( OpcP, RegMem( dst, src) );
8025   ins_pipe( ialu_reg_mem );
8026 %}
8027 
8028 // And Memory with Register
8029 instruct andI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8030   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8031   effect(KILL cr);
8032 
8033   ins_cost(150);
8034   format %{ "AND    $dst,$src" %}
8035   opcode(0x21);  /* Opcode 21 /r */
8036   ins_encode( OpcP, RegMem( src, dst ) );
8037   ins_pipe( ialu_mem_reg );
8038 %}
8039 
8040 // And Memory with Immediate
8041 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8042   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8043   effect(KILL cr);
8044 
8045   ins_cost(125);
8046   format %{ "AND    $dst,$src" %}
8047   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8048   // ins_encode( MemImm( dst, src) );
8049   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8050   ins_pipe( ialu_mem_imm );
8051 %}
8052 
8053 // BMI1 instructions
8054 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, eFlagsReg cr) %{
8055   match(Set dst (AndI (XorI src1 minus_1) src2));
8056   predicate(UseBMI1Instructions);
8057   effect(KILL cr);
8058 
8059   format %{ "ANDNL  $dst, $src1, $src2" %}
8060 
8061   ins_encode %{
8062     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
8063   %}
8064   ins_pipe(ialu_reg);
8065 %}
8066 
8067 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, eFlagsReg cr) %{
8068   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2) ));
8069   predicate(UseBMI1Instructions);
8070   effect(KILL cr);
8071 
8072   ins_cost(125);
8073   format %{ "ANDNL  $dst, $src1, $src2" %}
8074 
8075   ins_encode %{
8076     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
8077   %}
8078   ins_pipe(ialu_reg_mem);
8079 %}
8080 
8081 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, eFlagsReg cr) %{
8082   match(Set dst (AndI (SubI imm_zero src) src));
8083   predicate(UseBMI1Instructions);
8084   effect(KILL cr);
8085 
8086   format %{ "BLSIL  $dst, $src" %}
8087 
8088   ins_encode %{
8089     __ blsil($dst$$Register, $src$$Register);
8090   %}
8091   ins_pipe(ialu_reg);
8092 %}
8093 
8094 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, eFlagsReg cr) %{
8095   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
8096   predicate(UseBMI1Instructions);
8097   effect(KILL cr);
8098 
8099   ins_cost(125);
8100   format %{ "BLSIL  $dst, $src" %}
8101 
8102   ins_encode %{
8103     __ blsil($dst$$Register, $src$$Address);
8104   %}
8105   ins_pipe(ialu_reg_mem);
8106 %}
8107 
8108 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
8109 %{
8110   match(Set dst (XorI (AddI src minus_1) src));
8111   predicate(UseBMI1Instructions);
8112   effect(KILL cr);
8113 
8114   format %{ "BLSMSKL $dst, $src" %}
8115 
8116   ins_encode %{
8117     __ blsmskl($dst$$Register, $src$$Register);
8118   %}
8119 
8120   ins_pipe(ialu_reg);
8121 %}
8122 
8123 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
8124 %{
8125   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ));
8126   predicate(UseBMI1Instructions);
8127   effect(KILL cr);
8128 
8129   ins_cost(125);
8130   format %{ "BLSMSKL $dst, $src" %}
8131 
8132   ins_encode %{
8133     __ blsmskl($dst$$Register, $src$$Address);
8134   %}
8135 
8136   ins_pipe(ialu_reg_mem);
8137 %}
8138 
8139 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, eFlagsReg cr)
8140 %{
8141   match(Set dst (AndI (AddI src minus_1) src) );
8142   predicate(UseBMI1Instructions);
8143   effect(KILL cr);
8144 
8145   format %{ "BLSRL  $dst, $src" %}
8146 
8147   ins_encode %{
8148     __ blsrl($dst$$Register, $src$$Register);
8149   %}
8150 
8151   ins_pipe(ialu_reg);
8152 %}
8153 
8154 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, eFlagsReg cr)
8155 %{
8156   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ));
8157   predicate(UseBMI1Instructions);
8158   effect(KILL cr);
8159 
8160   ins_cost(125);
8161   format %{ "BLSRL  $dst, $src" %}
8162 
8163   ins_encode %{
8164     __ blsrl($dst$$Register, $src$$Address);
8165   %}
8166 
8167   ins_pipe(ialu_reg_mem);
8168 %}
8169 
8170 // Or Instructions
8171 // Or Register with Register
8172 instruct orI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8173   match(Set dst (OrI dst src));
8174   effect(KILL cr);
8175 
8176   size(2);
8177   format %{ "OR     $dst,$src" %}
8178   opcode(0x0B);
8179   ins_encode( OpcP, RegReg( dst, src) );
8180   ins_pipe( ialu_reg_reg );
8181 %}
8182 
8183 instruct orI_eReg_castP2X(rRegI dst, eRegP src, eFlagsReg cr) %{
8184   match(Set dst (OrI dst (CastP2X src)));
8185   effect(KILL cr);
8186 
8187   size(2);
8188   format %{ "OR     $dst,$src" %}
8189   opcode(0x0B);
8190   ins_encode( OpcP, RegReg( dst, src) );
8191   ins_pipe( ialu_reg_reg );
8192 %}
8193 
8194 
8195 // Or Register with Immediate
8196 instruct orI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8197   match(Set dst (OrI dst src));
8198   effect(KILL cr);
8199 
8200   format %{ "OR     $dst,$src" %}
8201   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8202   // ins_encode( RegImm( dst, src) );
8203   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8204   ins_pipe( ialu_reg );
8205 %}
8206 
8207 // Or Register with Memory
8208 instruct orI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8209   match(Set dst (OrI dst (LoadI src)));
8210   effect(KILL cr);
8211 
8212   ins_cost(125);
8213   format %{ "OR     $dst,$src" %}
8214   opcode(0x0B);
8215   ins_encode( OpcP, RegMem( dst, src) );
8216   ins_pipe( ialu_reg_mem );
8217 %}
8218 
8219 // Or Memory with Register
8220 instruct orI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8221   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8222   effect(KILL cr);
8223 
8224   ins_cost(150);
8225   format %{ "OR     $dst,$src" %}
8226   opcode(0x09);  /* Opcode 09 /r */
8227   ins_encode( OpcP, RegMem( src, dst ) );
8228   ins_pipe( ialu_mem_reg );
8229 %}
8230 
8231 // Or Memory with Immediate
8232 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8233   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8234   effect(KILL cr);
8235 
8236   ins_cost(125);
8237   format %{ "OR     $dst,$src" %}
8238   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8239   // ins_encode( MemImm( dst, src) );
8240   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8241   ins_pipe( ialu_mem_imm );
8242 %}
8243 
8244 // ROL/ROR
8245 // ROL expand
8246 instruct rolI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8247   effect(USE_DEF dst, USE shift, KILL cr);
8248 
8249   format %{ "ROL    $dst, $shift" %}
8250   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8251   ins_encode( OpcP, RegOpc( dst ));
8252   ins_pipe( ialu_reg );
8253 %}
8254 
8255 instruct rolI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8256   effect(USE_DEF dst, USE shift, KILL cr);
8257 
8258   format %{ "ROL    $dst, $shift" %}
8259   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8260   ins_encode( RegOpcImm(dst, shift) );
8261   ins_pipe(ialu_reg);
8262 %}
8263 
8264 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8265   effect(USE_DEF dst, USE shift, KILL cr);
8266 
8267   format %{ "ROL    $dst, $shift" %}
8268   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8269   ins_encode(OpcP, RegOpc(dst));
8270   ins_pipe( ialu_reg_reg );
8271 %}
8272 // end of ROL expand
8273 
8274 // ROL 32bit by one once
8275 instruct rolI_eReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8276   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8277 
8278   expand %{
8279     rolI_eReg_imm1(dst, lshift, cr);
8280   %}
8281 %}
8282 
8283 // ROL 32bit var by imm8 once
8284 instruct rolI_eReg_i8(rRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8285   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8286   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8287 
8288   expand %{
8289     rolI_eReg_imm8(dst, lshift, cr);
8290   %}
8291 %}
8292 
8293 // ROL 32bit var by var once
8294 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8295   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8296 
8297   expand %{
8298     rolI_eReg_CL(dst, shift, cr);
8299   %}
8300 %}
8301 
8302 // ROL 32bit var by var once
8303 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8304   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8305 
8306   expand %{
8307     rolI_eReg_CL(dst, shift, cr);
8308   %}
8309 %}
8310 
8311 // ROR expand
8312 instruct rorI_eReg_imm1(rRegI dst, immI1 shift, eFlagsReg cr) %{
8313   effect(USE_DEF dst, USE shift, KILL cr);
8314 
8315   format %{ "ROR    $dst, $shift" %}
8316   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8317   ins_encode( OpcP, RegOpc( dst ) );
8318   ins_pipe( ialu_reg );
8319 %}
8320 
8321 instruct rorI_eReg_imm8(rRegI dst, immI8 shift, eFlagsReg cr) %{
8322   effect (USE_DEF dst, USE shift, KILL cr);
8323 
8324   format %{ "ROR    $dst, $shift" %}
8325   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8326   ins_encode( RegOpcImm(dst, shift) );
8327   ins_pipe( ialu_reg );
8328 %}
8329 
8330 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8331   effect(USE_DEF dst, USE shift, KILL cr);
8332 
8333   format %{ "ROR    $dst, $shift" %}
8334   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8335   ins_encode(OpcP, RegOpc(dst));
8336   ins_pipe( ialu_reg_reg );
8337 %}
8338 // end of ROR expand
8339 
8340 // ROR right once
8341 instruct rorI_eReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8342   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8343 
8344   expand %{
8345     rorI_eReg_imm1(dst, rshift, cr);
8346   %}
8347 %}
8348 
8349 // ROR 32bit by immI8 once
8350 instruct rorI_eReg_i8(rRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8351   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8352   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8353 
8354   expand %{
8355     rorI_eReg_imm8(dst, rshift, cr);
8356   %}
8357 %}
8358 
8359 // ROR 32bit var by var once
8360 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8361   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8362 
8363   expand %{
8364     rorI_eReg_CL(dst, shift, cr);
8365   %}
8366 %}
8367 
8368 // ROR 32bit var by var once
8369 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8370   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8371 
8372   expand %{
8373     rorI_eReg_CL(dst, shift, cr);
8374   %}
8375 %}
8376 
8377 // Xor Instructions
8378 // Xor Register with Register
8379 instruct xorI_eReg(rRegI dst, rRegI src, eFlagsReg cr) %{
8380   match(Set dst (XorI dst src));
8381   effect(KILL cr);
8382 
8383   size(2);
8384   format %{ "XOR    $dst,$src" %}
8385   opcode(0x33);
8386   ins_encode( OpcP, RegReg( dst, src) );
8387   ins_pipe( ialu_reg_reg );
8388 %}
8389 
8390 // Xor Register with Immediate -1
8391 instruct xorI_eReg_im1(rRegI dst, immI_M1 imm) %{
8392   match(Set dst (XorI dst imm));  
8393 
8394   size(2);
8395   format %{ "NOT    $dst" %}  
8396   ins_encode %{
8397      __ notl($dst$$Register);
8398   %}
8399   ins_pipe( ialu_reg );
8400 %}
8401 
8402 // Xor Register with Immediate
8403 instruct xorI_eReg_imm(rRegI dst, immI src, eFlagsReg cr) %{
8404   match(Set dst (XorI dst src));
8405   effect(KILL cr);
8406 
8407   format %{ "XOR    $dst,$src" %}
8408   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8409   // ins_encode( RegImm( dst, src) );
8410   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8411   ins_pipe( ialu_reg );
8412 %}
8413 
8414 // Xor Register with Memory
8415 instruct xorI_eReg_mem(rRegI dst, memory src, eFlagsReg cr) %{
8416   match(Set dst (XorI dst (LoadI src)));
8417   effect(KILL cr);
8418 
8419   ins_cost(125);
8420   format %{ "XOR    $dst,$src" %}
8421   opcode(0x33);
8422   ins_encode( OpcP, RegMem(dst, src) );
8423   ins_pipe( ialu_reg_mem );
8424 %}
8425 
8426 // Xor Memory with Register
8427 instruct xorI_mem_eReg(memory dst, rRegI src, eFlagsReg cr) %{
8428   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8429   effect(KILL cr);
8430 
8431   ins_cost(150);
8432   format %{ "XOR    $dst,$src" %}
8433   opcode(0x31);  /* Opcode 31 /r */
8434   ins_encode( OpcP, RegMem( src, dst ) );
8435   ins_pipe( ialu_mem_reg );
8436 %}
8437 
8438 // Xor Memory with Immediate
8439 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8440   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8441   effect(KILL cr);
8442 
8443   ins_cost(125);
8444   format %{ "XOR    $dst,$src" %}
8445   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8446   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8447   ins_pipe( ialu_mem_imm );
8448 %}
8449 
8450 //----------Convert Int to Boolean---------------------------------------------
8451 
8452 instruct movI_nocopy(rRegI dst, rRegI src) %{
8453   effect( DEF dst, USE src );
8454   format %{ "MOV    $dst,$src" %}
8455   ins_encode( enc_Copy( dst, src) );
8456   ins_pipe( ialu_reg_reg );
8457 %}
8458 
8459 instruct ci2b( rRegI dst, rRegI src, eFlagsReg cr ) %{
8460   effect( USE_DEF dst, USE src, KILL cr );
8461 
8462   size(4);
8463   format %{ "NEG    $dst\n\t"
8464             "ADC    $dst,$src" %}
8465   ins_encode( neg_reg(dst),
8466               OpcRegReg(0x13,dst,src) );
8467   ins_pipe( ialu_reg_reg_long );
8468 %}
8469 
8470 instruct convI2B( rRegI dst, rRegI src, eFlagsReg cr ) %{
8471   match(Set dst (Conv2B src));
8472 
8473   expand %{
8474     movI_nocopy(dst,src);
8475     ci2b(dst,src,cr);
8476   %}
8477 %}
8478 
8479 instruct movP_nocopy(rRegI dst, eRegP src) %{
8480   effect( DEF dst, USE src );
8481   format %{ "MOV    $dst,$src" %}
8482   ins_encode( enc_Copy( dst, src) );
8483   ins_pipe( ialu_reg_reg );
8484 %}
8485 
8486 instruct cp2b( rRegI dst, eRegP src, eFlagsReg cr ) %{
8487   effect( USE_DEF dst, USE src, KILL cr );
8488   format %{ "NEG    $dst\n\t"
8489             "ADC    $dst,$src" %}
8490   ins_encode( neg_reg(dst),
8491               OpcRegReg(0x13,dst,src) );
8492   ins_pipe( ialu_reg_reg_long );
8493 %}
8494 
8495 instruct convP2B( rRegI dst, eRegP src, eFlagsReg cr ) %{
8496   match(Set dst (Conv2B src));
8497 
8498   expand %{
8499     movP_nocopy(dst,src);
8500     cp2b(dst,src,cr);
8501   %}
8502 %}
8503 
8504 instruct cmpLTMask(eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr) %{
8505   match(Set dst (CmpLTMask p q));
8506   effect(KILL cr);
8507   ins_cost(400);
8508 
8509   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8510   format %{ "XOR    $dst,$dst\n\t"
8511             "CMP    $p,$q\n\t"
8512             "SETlt  $dst\n\t"
8513             "NEG    $dst" %}
8514   ins_encode %{
8515     Register Rp = $p$$Register;
8516     Register Rq = $q$$Register;
8517     Register Rd = $dst$$Register;
8518     Label done;
8519     __ xorl(Rd, Rd);
8520     __ cmpl(Rp, Rq);
8521     __ setb(Assembler::less, Rd);
8522     __ negl(Rd);
8523   %}
8524 
8525   ins_pipe(pipe_slow);
8526 %}
8527 
8528 instruct cmpLTMask0(rRegI dst, immI0 zero, eFlagsReg cr) %{
8529   match(Set dst (CmpLTMask dst zero));
8530   effect(DEF dst, KILL cr);
8531   ins_cost(100);
8532 
8533   format %{ "SAR    $dst,31\t# cmpLTMask0" %}
8534   ins_encode %{
8535   __ sarl($dst$$Register, 31);
8536   %}
8537   ins_pipe(ialu_reg);
8538 %}
8539 
8540 /* better to save a register than avoid a branch */
8541 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
8542   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8543   effect(KILL cr);
8544   ins_cost(400);
8545   format %{ "SUB    $p,$q\t# cadd_cmpLTMask\n\t"
8546             "JGE    done\n\t"
8547             "ADD    $p,$y\n"
8548             "done:  " %}
8549   ins_encode %{
8550     Register Rp = $p$$Register;
8551     Register Rq = $q$$Register;
8552     Register Ry = $y$$Register;
8553     Label done;
8554     __ subl(Rp, Rq);
8555     __ jccb(Assembler::greaterEqual, done);
8556     __ addl(Rp, Ry);
8557     __ bind(done);
8558   %}
8559 
8560   ins_pipe(pipe_cmplt);
8561 %}
8562 
8563 /* better to save a register than avoid a branch */
8564 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, eFlagsReg cr) %{
8565   match(Set y (AndI (CmpLTMask p q) y));
8566   effect(KILL cr);
8567 
8568   ins_cost(300);
8569 
8570   format %{ "CMPL     $p, $q\t# and_cmpLTMask\n\t"
8571             "JLT      done\n\t"
8572             "XORL     $y, $y\n"
8573             "done:  " %}
8574   ins_encode %{
8575     Register Rp = $p$$Register;
8576     Register Rq = $q$$Register;
8577     Register Ry = $y$$Register;
8578     Label done;
8579     __ cmpl(Rp, Rq);
8580     __ jccb(Assembler::less, done);
8581     __ xorl(Ry, Ry);
8582     __ bind(done);
8583   %}
8584 
8585   ins_pipe(pipe_cmplt);
8586 %}
8587 
8588 /* If I enable this, I encourage spilling in the inner loop of compress.
8589 instruct cadd_cmpLTMask_mem(ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr) %{
8590   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8591 */
8592 //----------Overflow Math Instructions-----------------------------------------
8593 
8594 instruct overflowAddI_eReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
8595 %{
8596   match(Set cr (OverflowAddI op1 op2));
8597   effect(DEF cr, USE_KILL op1, USE op2);
8598 
8599   format %{ "ADD    $op1, $op2\t# overflow check int" %}
8600 
8601   ins_encode %{
8602     __ addl($op1$$Register, $op2$$Register);
8603   %}
8604   ins_pipe(ialu_reg_reg);
8605 %}
8606 
8607 instruct overflowAddI_rReg_imm(eFlagsReg cr, eAXRegI op1, immI op2)
8608 %{
8609   match(Set cr (OverflowAddI op1 op2));
8610   effect(DEF cr, USE_KILL op1, USE op2);
8611 
8612   format %{ "ADD    $op1, $op2\t# overflow check int" %}
8613 
8614   ins_encode %{
8615     __ addl($op1$$Register, $op2$$constant);
8616   %}
8617   ins_pipe(ialu_reg_reg);
8618 %}
8619 
8620 instruct overflowSubI_rReg(eFlagsReg cr, rRegI op1, rRegI op2)
8621 %{
8622   match(Set cr (OverflowSubI op1 op2));
8623 
8624   format %{ "CMP    $op1, $op2\t# overflow check int" %}
8625   ins_encode %{
8626     __ cmpl($op1$$Register, $op2$$Register);
8627   %}
8628   ins_pipe(ialu_reg_reg);
8629 %}
8630 
8631 instruct overflowSubI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2)
8632 %{
8633   match(Set cr (OverflowSubI op1 op2));
8634 
8635   format %{ "CMP    $op1, $op2\t# overflow check int" %}
8636   ins_encode %{
8637     __ cmpl($op1$$Register, $op2$$constant);
8638   %}
8639   ins_pipe(ialu_reg_reg);
8640 %}
8641 
8642 instruct overflowNegI_rReg(eFlagsReg cr, immI0 zero, eAXRegI op2)
8643 %{
8644   match(Set cr (OverflowSubI zero op2));
8645   effect(DEF cr, USE_KILL op2);
8646 
8647   format %{ "NEG    $op2\t# overflow check int" %}
8648   ins_encode %{
8649     __ negl($op2$$Register);
8650   %}
8651   ins_pipe(ialu_reg_reg);
8652 %}
8653 
8654 instruct overflowMulI_rReg(eFlagsReg cr, eAXRegI op1, rRegI op2)
8655 %{
8656   match(Set cr (OverflowMulI op1 op2));
8657   effect(DEF cr, USE_KILL op1, USE op2);
8658 
8659   format %{ "IMUL    $op1, $op2\t# overflow check int" %}
8660   ins_encode %{
8661     __ imull($op1$$Register, $op2$$Register);
8662   %}
8663   ins_pipe(ialu_reg_reg_alu0);
8664 %}
8665 
8666 instruct overflowMulI_rReg_imm(eFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
8667 %{
8668   match(Set cr (OverflowMulI op1 op2));
8669   effect(DEF cr, TEMP tmp, USE op1, USE op2);
8670 
8671   format %{ "IMUL    $tmp, $op1, $op2\t# overflow check int" %}
8672   ins_encode %{
8673     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
8674   %}
8675   ins_pipe(ialu_reg_reg_alu0);
8676 %}
8677 
8678 //----------Long Instructions------------------------------------------------
8679 // Add Long Register with Register
8680 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8681   match(Set dst (AddL dst src));
8682   effect(KILL cr);
8683   ins_cost(200);
8684   format %{ "ADD    $dst.lo,$src.lo\n\t"
8685             "ADC    $dst.hi,$src.hi" %}
8686   opcode(0x03, 0x13);
8687   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8688   ins_pipe( ialu_reg_reg_long );
8689 %}
8690 
8691 // Add Long Register with Immediate
8692 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8693   match(Set dst (AddL dst src));
8694   effect(KILL cr);
8695   format %{ "ADD    $dst.lo,$src.lo\n\t"
8696             "ADC    $dst.hi,$src.hi" %}
8697   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8698   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8699   ins_pipe( ialu_reg_long );
8700 %}
8701 
8702 // Add Long Register with Memory
8703 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8704   match(Set dst (AddL dst (LoadL mem)));
8705   effect(KILL cr);
8706   ins_cost(125);
8707   format %{ "ADD    $dst.lo,$mem\n\t"
8708             "ADC    $dst.hi,$mem+4" %}
8709   opcode(0x03, 0x13);
8710   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8711   ins_pipe( ialu_reg_long_mem );
8712 %}
8713 
8714 // Subtract Long Register with Register.
8715 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8716   match(Set dst (SubL dst src));
8717   effect(KILL cr);
8718   ins_cost(200);
8719   format %{ "SUB    $dst.lo,$src.lo\n\t"
8720             "SBB    $dst.hi,$src.hi" %}
8721   opcode(0x2B, 0x1B);
8722   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8723   ins_pipe( ialu_reg_reg_long );
8724 %}
8725 
8726 // Subtract Long Register with Immediate
8727 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8728   match(Set dst (SubL dst src));
8729   effect(KILL cr);
8730   format %{ "SUB    $dst.lo,$src.lo\n\t"
8731             "SBB    $dst.hi,$src.hi" %}
8732   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
8733   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8734   ins_pipe( ialu_reg_long );
8735 %}
8736 
8737 // Subtract Long Register with Memory
8738 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8739   match(Set dst (SubL dst (LoadL mem)));
8740   effect(KILL cr);
8741   ins_cost(125);
8742   format %{ "SUB    $dst.lo,$mem\n\t"
8743             "SBB    $dst.hi,$mem+4" %}
8744   opcode(0x2B, 0x1B);
8745   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8746   ins_pipe( ialu_reg_long_mem );
8747 %}
8748 
8749 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
8750   match(Set dst (SubL zero dst));
8751   effect(KILL cr);
8752   ins_cost(300);
8753   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
8754   ins_encode( neg_long(dst) );
8755   ins_pipe( ialu_reg_reg_long );
8756 %}
8757 
8758 // And Long Register with Register
8759 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8760   match(Set dst (AndL dst src));
8761   effect(KILL cr);
8762   format %{ "AND    $dst.lo,$src.lo\n\t"
8763             "AND    $dst.hi,$src.hi" %}
8764   opcode(0x23,0x23);
8765   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
8766   ins_pipe( ialu_reg_reg_long );
8767 %}
8768 
8769 // And Long Register with Immediate
8770 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8771   match(Set dst (AndL dst src));
8772   effect(KILL cr);
8773   format %{ "AND    $dst.lo,$src.lo\n\t"
8774             "AND    $dst.hi,$src.hi" %}
8775   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
8776   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8777   ins_pipe( ialu_reg_long );
8778 %}
8779 
8780 // And Long Register with Memory
8781 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8782   match(Set dst (AndL dst (LoadL mem)));
8783   effect(KILL cr);
8784   ins_cost(125);
8785   format %{ "AND    $dst.lo,$mem\n\t"
8786             "AND    $dst.hi,$mem+4" %}
8787   opcode(0x23, 0x23);
8788   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8789   ins_pipe( ialu_reg_long_mem );
8790 %}
8791 
8792 // BMI1 instructions
8793 instruct andnL_eReg_eReg_eReg(eRegL dst, eRegL src1, eRegL src2, immL_M1 minus_1, eFlagsReg cr) %{
8794   match(Set dst (AndL (XorL src1 minus_1) src2));
8795   predicate(UseBMI1Instructions);
8796   effect(KILL cr, TEMP dst);
8797 
8798   format %{ "ANDNL  $dst.lo, $src1.lo, $src2.lo\n\t"
8799             "ANDNL  $dst.hi, $src1.hi, $src2.hi"
8800          %}
8801 
8802   ins_encode %{
8803     Register Rdst = $dst$$Register;
8804     Register Rsrc1 = $src1$$Register;
8805     Register Rsrc2 = $src2$$Register;
8806     __ andnl(Rdst, Rsrc1, Rsrc2);
8807     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), HIGH_FROM_LOW(Rsrc2));
8808   %}
8809   ins_pipe(ialu_reg_reg_long);
8810 %}
8811 
8812 instruct andnL_eReg_eReg_mem(eRegL dst, eRegL src1, memory src2, immL_M1 minus_1, eFlagsReg cr) %{
8813   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2) ));
8814   predicate(UseBMI1Instructions);
8815   effect(KILL cr, TEMP dst);
8816 
8817   ins_cost(125);
8818   format %{ "ANDNL  $dst.lo, $src1.lo, $src2\n\t"
8819             "ANDNL  $dst.hi, $src1.hi, $src2+4"
8820          %}
8821 
8822   ins_encode %{
8823     Register Rdst = $dst$$Register;
8824     Register Rsrc1 = $src1$$Register;
8825     Address src2_hi = Address::make_raw($src2$$base, $src2$$index, $src2$$scale, $src2$$disp + 4, relocInfo::none);
8826 
8827     __ andnl(Rdst, Rsrc1, $src2$$Address);
8828     __ andnl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc1), src2_hi);
8829   %}
8830   ins_pipe(ialu_reg_mem);
8831 %}
8832 
8833 instruct blsiL_eReg_eReg(eRegL dst, eRegL src, immL0 imm_zero, eFlagsReg cr) %{
8834   match(Set dst (AndL (SubL imm_zero src) src));
8835   predicate(UseBMI1Instructions);
8836   effect(KILL cr, TEMP dst);
8837 
8838   format %{ "MOVL   $dst.hi, 0\n\t"
8839             "BLSIL  $dst.lo, $src.lo\n\t"
8840             "JNZ    done\n\t"
8841             "BLSIL  $dst.hi, $src.hi\n"
8842             "done:"
8843          %}
8844 
8845   ins_encode %{
8846     Label done;
8847     Register Rdst = $dst$$Register;
8848     Register Rsrc = $src$$Register;
8849     __ movl(HIGH_FROM_LOW(Rdst), 0);
8850     __ blsil(Rdst, Rsrc);
8851     __ jccb(Assembler::notZero, done);
8852     __ blsil(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8853     __ bind(done);
8854   %}
8855   ins_pipe(ialu_reg);
8856 %}
8857 
8858 instruct blsiL_eReg_mem(eRegL dst, memory src, immL0 imm_zero, eFlagsReg cr) %{
8859   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
8860   predicate(UseBMI1Instructions);
8861   effect(KILL cr, TEMP dst);
8862 
8863   ins_cost(125);
8864   format %{ "MOVL   $dst.hi, 0\n\t"
8865             "BLSIL  $dst.lo, $src\n\t"
8866             "JNZ    done\n\t"
8867             "BLSIL  $dst.hi, $src+4\n"
8868             "done:"
8869          %}
8870 
8871   ins_encode %{
8872     Label done;
8873     Register Rdst = $dst$$Register;
8874     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8875 
8876     __ movl(HIGH_FROM_LOW(Rdst), 0);
8877     __ blsil(Rdst, $src$$Address);
8878     __ jccb(Assembler::notZero, done);
8879     __ blsil(HIGH_FROM_LOW(Rdst), src_hi);
8880     __ bind(done);
8881   %}
8882   ins_pipe(ialu_reg_mem);
8883 %}
8884 
8885 instruct blsmskL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
8886 %{
8887   match(Set dst (XorL (AddL src minus_1) src));
8888   predicate(UseBMI1Instructions);
8889   effect(KILL cr, TEMP dst);
8890 
8891   format %{ "MOVL    $dst.hi, 0\n\t"
8892             "BLSMSKL $dst.lo, $src.lo\n\t"
8893             "JNC     done\n\t"
8894             "BLSMSKL $dst.hi, $src.hi\n"
8895             "done:"
8896          %}
8897 
8898   ins_encode %{
8899     Label done;
8900     Register Rdst = $dst$$Register;
8901     Register Rsrc = $src$$Register;
8902     __ movl(HIGH_FROM_LOW(Rdst), 0);
8903     __ blsmskl(Rdst, Rsrc);
8904     __ jccb(Assembler::carryClear, done);
8905     __ blsmskl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8906     __ bind(done);
8907   %}
8908 
8909   ins_pipe(ialu_reg);
8910 %}
8911 
8912 instruct blsmskL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
8913 %{
8914   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ));
8915   predicate(UseBMI1Instructions);
8916   effect(KILL cr, TEMP dst);
8917 
8918   ins_cost(125);
8919   format %{ "MOVL    $dst.hi, 0\n\t"
8920             "BLSMSKL $dst.lo, $src\n\t"
8921             "JNC     done\n\t"
8922             "BLSMSKL $dst.hi, $src+4\n"
8923             "done:"
8924          %}
8925 
8926   ins_encode %{
8927     Label done;
8928     Register Rdst = $dst$$Register;
8929     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8930 
8931     __ movl(HIGH_FROM_LOW(Rdst), 0);
8932     __ blsmskl(Rdst, $src$$Address);
8933     __ jccb(Assembler::carryClear, done);
8934     __ blsmskl(HIGH_FROM_LOW(Rdst), src_hi);
8935     __ bind(done);
8936   %}
8937 
8938   ins_pipe(ialu_reg_mem);
8939 %}
8940 
8941 instruct blsrL_eReg_eReg(eRegL dst, eRegL src, immL_M1 minus_1, eFlagsReg cr)
8942 %{
8943   match(Set dst (AndL (AddL src minus_1) src) );
8944   predicate(UseBMI1Instructions);
8945   effect(KILL cr, TEMP dst);
8946 
8947   format %{ "MOVL   $dst.hi, $src.hi\n\t"
8948             "BLSRL  $dst.lo, $src.lo\n\t"
8949             "JNC    done\n\t"
8950             "BLSRL  $dst.hi, $src.hi\n"
8951             "done:"
8952   %}
8953 
8954   ins_encode %{
8955     Label done;
8956     Register Rdst = $dst$$Register;
8957     Register Rsrc = $src$$Register;
8958     __ movl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8959     __ blsrl(Rdst, Rsrc);
8960     __ jccb(Assembler::carryClear, done);
8961     __ blsrl(HIGH_FROM_LOW(Rdst), HIGH_FROM_LOW(Rsrc));
8962     __ bind(done);
8963   %}
8964 
8965   ins_pipe(ialu_reg);
8966 %}
8967 
8968 instruct blsrL_eReg_mem(eRegL dst, memory src, immL_M1 minus_1, eFlagsReg cr)
8969 %{
8970   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src) ));
8971   predicate(UseBMI1Instructions);
8972   effect(KILL cr, TEMP dst);
8973 
8974   ins_cost(125);
8975   format %{ "MOVL   $dst.hi, $src+4\n\t"
8976             "BLSRL  $dst.lo, $src\n\t"
8977             "JNC    done\n\t"
8978             "BLSRL  $dst.hi, $src+4\n"
8979             "done:"
8980   %}
8981 
8982   ins_encode %{
8983     Label done;
8984     Register Rdst = $dst$$Register;
8985     Address src_hi = Address::make_raw($src$$base, $src$$index, $src$$scale, $src$$disp + 4, relocInfo::none);
8986     __ movl(HIGH_FROM_LOW(Rdst), src_hi);
8987     __ blsrl(Rdst, $src$$Address);
8988     __ jccb(Assembler::carryClear, done);
8989     __ blsrl(HIGH_FROM_LOW(Rdst), src_hi);
8990     __ bind(done);
8991   %}
8992 
8993   ins_pipe(ialu_reg_mem);
8994 %}
8995 
8996 // Or Long Register with Register
8997 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8998   match(Set dst (OrL dst src));
8999   effect(KILL cr);
9000   format %{ "OR     $dst.lo,$src.lo\n\t"
9001             "OR     $dst.hi,$src.hi" %}
9002   opcode(0x0B,0x0B);
9003   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9004   ins_pipe( ialu_reg_reg_long );
9005 %}
9006 
9007 // Or Long Register with Immediate
9008 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9009   match(Set dst (OrL dst src));
9010   effect(KILL cr);
9011   format %{ "OR     $dst.lo,$src.lo\n\t"
9012             "OR     $dst.hi,$src.hi" %}
9013   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9014   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9015   ins_pipe( ialu_reg_long );
9016 %}
9017 
9018 // Or Long Register with Memory
9019 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9020   match(Set dst (OrL dst (LoadL mem)));
9021   effect(KILL cr);
9022   ins_cost(125);
9023   format %{ "OR     $dst.lo,$mem\n\t"
9024             "OR     $dst.hi,$mem+4" %}
9025   opcode(0x0B,0x0B);
9026   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9027   ins_pipe( ialu_reg_long_mem );
9028 %}
9029 
9030 // Xor Long Register with Register
9031 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9032   match(Set dst (XorL dst src));
9033   effect(KILL cr);
9034   format %{ "XOR    $dst.lo,$src.lo\n\t"
9035             "XOR    $dst.hi,$src.hi" %}
9036   opcode(0x33,0x33);
9037   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9038   ins_pipe( ialu_reg_reg_long );
9039 %}
9040 
9041 // Xor Long Register with Immediate -1
9042 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9043   match(Set dst (XorL dst imm));  
9044   format %{ "NOT    $dst.lo\n\t"
9045             "NOT    $dst.hi" %}
9046   ins_encode %{
9047      __ notl($dst$$Register);
9048      __ notl(HIGH_FROM_LOW($dst$$Register));
9049   %}
9050   ins_pipe( ialu_reg_long );
9051 %}
9052 
9053 // Xor Long Register with Immediate
9054 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9055   match(Set dst (XorL dst src));
9056   effect(KILL cr);
9057   format %{ "XOR    $dst.lo,$src.lo\n\t"
9058             "XOR    $dst.hi,$src.hi" %}
9059   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9060   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9061   ins_pipe( ialu_reg_long );
9062 %}
9063 
9064 // Xor Long Register with Memory
9065 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9066   match(Set dst (XorL dst (LoadL mem)));
9067   effect(KILL cr);
9068   ins_cost(125);
9069   format %{ "XOR    $dst.lo,$mem\n\t"
9070             "XOR    $dst.hi,$mem+4" %}
9071   opcode(0x33,0x33);
9072   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9073   ins_pipe( ialu_reg_long_mem );
9074 %}
9075 
9076 // Shift Left Long by 1
9077 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9078   predicate(UseNewLongLShift);
9079   match(Set dst (LShiftL dst cnt));
9080   effect(KILL cr);
9081   ins_cost(100);
9082   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9083             "ADC    $dst.hi,$dst.hi" %}
9084   ins_encode %{
9085     __ addl($dst$$Register,$dst$$Register);
9086     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9087   %}
9088   ins_pipe( ialu_reg_long );
9089 %}
9090 
9091 // Shift Left Long by 2
9092 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9093   predicate(UseNewLongLShift);
9094   match(Set dst (LShiftL dst cnt));
9095   effect(KILL cr);
9096   ins_cost(100);
9097   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9098             "ADC    $dst.hi,$dst.hi\n\t" 
9099             "ADD    $dst.lo,$dst.lo\n\t"
9100             "ADC    $dst.hi,$dst.hi" %}
9101   ins_encode %{
9102     __ addl($dst$$Register,$dst$$Register);
9103     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9104     __ addl($dst$$Register,$dst$$Register);
9105     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9106   %}
9107   ins_pipe( ialu_reg_long );
9108 %}
9109 
9110 // Shift Left Long by 3
9111 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9112   predicate(UseNewLongLShift);
9113   match(Set dst (LShiftL dst cnt));
9114   effect(KILL cr);
9115   ins_cost(100);
9116   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9117             "ADC    $dst.hi,$dst.hi\n\t" 
9118             "ADD    $dst.lo,$dst.lo\n\t"
9119             "ADC    $dst.hi,$dst.hi\n\t" 
9120             "ADD    $dst.lo,$dst.lo\n\t"
9121             "ADC    $dst.hi,$dst.hi" %}
9122   ins_encode %{
9123     __ addl($dst$$Register,$dst$$Register);
9124     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9125     __ addl($dst$$Register,$dst$$Register);
9126     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9127     __ addl($dst$$Register,$dst$$Register);
9128     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9129   %}
9130   ins_pipe( ialu_reg_long );
9131 %}
9132 
9133 // Shift Left Long by 1-31
9134 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9135   match(Set dst (LShiftL dst cnt));
9136   effect(KILL cr);
9137   ins_cost(200);
9138   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9139             "SHL    $dst.lo,$cnt" %}
9140   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9141   ins_encode( move_long_small_shift(dst,cnt) );
9142   ins_pipe( ialu_reg_long );
9143 %}
9144 
9145 // Shift Left Long by 32-63
9146 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9147   match(Set dst (LShiftL dst cnt));
9148   effect(KILL cr);
9149   ins_cost(300);
9150   format %{ "MOV    $dst.hi,$dst.lo\n"
9151           "\tSHL    $dst.hi,$cnt-32\n"
9152           "\tXOR    $dst.lo,$dst.lo" %}
9153   opcode(0xC1, 0x4);  /* C1 /4 ib */
9154   ins_encode( move_long_big_shift_clr(dst,cnt) );
9155   ins_pipe( ialu_reg_long );
9156 %}
9157 
9158 // Shift Left Long by variable
9159 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9160   match(Set dst (LShiftL dst shift));
9161   effect(KILL cr);
9162   ins_cost(500+200);
9163   size(17);
9164   format %{ "TEST   $shift,32\n\t"
9165             "JEQ,s  small\n\t"
9166             "MOV    $dst.hi,$dst.lo\n\t"
9167             "XOR    $dst.lo,$dst.lo\n"
9168     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9169             "SHL    $dst.lo,$shift" %}
9170   ins_encode( shift_left_long( dst, shift ) );
9171   ins_pipe( pipe_slow );
9172 %}
9173 
9174 // Shift Right Long by 1-31
9175 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9176   match(Set dst (URShiftL dst cnt));
9177   effect(KILL cr);
9178   ins_cost(200);
9179   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9180             "SHR    $dst.hi,$cnt" %}
9181   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9182   ins_encode( move_long_small_shift(dst,cnt) );
9183   ins_pipe( ialu_reg_long );
9184 %}
9185 
9186 // Shift Right Long by 32-63
9187 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9188   match(Set dst (URShiftL dst cnt));
9189   effect(KILL cr);
9190   ins_cost(300);
9191   format %{ "MOV    $dst.lo,$dst.hi\n"
9192           "\tSHR    $dst.lo,$cnt-32\n"
9193           "\tXOR    $dst.hi,$dst.hi" %}
9194   opcode(0xC1, 0x5);  /* C1 /5 ib */
9195   ins_encode( move_long_big_shift_clr(dst,cnt) );
9196   ins_pipe( ialu_reg_long );
9197 %}
9198 
9199 // Shift Right Long by variable
9200 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9201   match(Set dst (URShiftL dst shift));
9202   effect(KILL cr);
9203   ins_cost(600);
9204   size(17);
9205   format %{ "TEST   $shift,32\n\t"
9206             "JEQ,s  small\n\t"
9207             "MOV    $dst.lo,$dst.hi\n\t"
9208             "XOR    $dst.hi,$dst.hi\n"
9209     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9210             "SHR    $dst.hi,$shift" %}
9211   ins_encode( shift_right_long( dst, shift ) );
9212   ins_pipe( pipe_slow );
9213 %}
9214 
9215 // Shift Right Long by 1-31
9216 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9217   match(Set dst (RShiftL dst cnt));
9218   effect(KILL cr);
9219   ins_cost(200);
9220   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9221             "SAR    $dst.hi,$cnt" %}
9222   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9223   ins_encode( move_long_small_shift(dst,cnt) );
9224   ins_pipe( ialu_reg_long );
9225 %}
9226 
9227 // Shift Right Long by 32-63
9228 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9229   match(Set dst (RShiftL dst cnt));
9230   effect(KILL cr);
9231   ins_cost(300);
9232   format %{ "MOV    $dst.lo,$dst.hi\n"
9233           "\tSAR    $dst.lo,$cnt-32\n"
9234           "\tSAR    $dst.hi,31" %}
9235   opcode(0xC1, 0x7);  /* C1 /7 ib */
9236   ins_encode( move_long_big_shift_sign(dst,cnt) );
9237   ins_pipe( ialu_reg_long );
9238 %}
9239 
9240 // Shift Right arithmetic Long by variable
9241 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9242   match(Set dst (RShiftL dst shift));
9243   effect(KILL cr);
9244   ins_cost(600);
9245   size(18);
9246   format %{ "TEST   $shift,32\n\t"
9247             "JEQ,s  small\n\t"
9248             "MOV    $dst.lo,$dst.hi\n\t"
9249             "SAR    $dst.hi,31\n"
9250     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9251             "SAR    $dst.hi,$shift" %}
9252   ins_encode( shift_right_arith_long( dst, shift ) );
9253   ins_pipe( pipe_slow );
9254 %}
9255 
9256 
9257 //----------Double Instructions------------------------------------------------
9258 // Double Math
9259 
9260 // Compare & branch
9261 
9262 // P6 version of float compare, sets condition codes in EFLAGS
9263 instruct cmpDPR_cc_P6(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9264   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9265   match(Set cr (CmpD src1 src2));
9266   effect(KILL rax);
9267   ins_cost(150);
9268   format %{ "FLD    $src1\n\t"
9269             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9270             "JNP    exit\n\t"
9271             "MOV    ah,1       // saw a NaN, set CF\n\t"
9272             "SAHF\n"
9273      "exit:\tNOP               // avoid branch to branch" %}
9274   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9275   ins_encode( Push_Reg_DPR(src1),
9276               OpcP, RegOpc(src2),
9277               cmpF_P6_fixup );
9278   ins_pipe( pipe_slow );
9279 %}
9280 
9281 instruct cmpDPR_cc_P6CF(eFlagsRegUCF cr, regDPR src1, regDPR src2) %{
9282   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9283   match(Set cr (CmpD src1 src2));
9284   ins_cost(150);
9285   format %{ "FLD    $src1\n\t"
9286             "FUCOMIP ST,$src2  // P6 instruction" %}
9287   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9288   ins_encode( Push_Reg_DPR(src1),
9289               OpcP, RegOpc(src2));
9290   ins_pipe( pipe_slow );
9291 %}
9292 
9293 // Compare & branch
9294 instruct cmpDPR_cc(eFlagsRegU cr, regDPR src1, regDPR src2, eAXRegI rax) %{
9295   predicate(UseSSE<=1);
9296   match(Set cr (CmpD src1 src2));
9297   effect(KILL rax);
9298   ins_cost(200);
9299   format %{ "FLD    $src1\n\t"
9300             "FCOMp  $src2\n\t"
9301             "FNSTSW AX\n\t"
9302             "TEST   AX,0x400\n\t"
9303             "JZ,s   flags\n\t"
9304             "MOV    AH,1\t# unordered treat as LT\n"
9305     "flags:\tSAHF" %}
9306   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9307   ins_encode( Push_Reg_DPR(src1),
9308               OpcP, RegOpc(src2),
9309               fpu_flags);
9310   ins_pipe( pipe_slow );
9311 %}
9312 
9313 // Compare vs zero into -1,0,1
9314 instruct cmpDPR_0(rRegI dst, regDPR src1, immDPR0 zero, eAXRegI rax, eFlagsReg cr) %{
9315   predicate(UseSSE<=1);
9316   match(Set dst (CmpD3 src1 zero));
9317   effect(KILL cr, KILL rax);
9318   ins_cost(280);
9319   format %{ "FTSTD  $dst,$src1" %}
9320   opcode(0xE4, 0xD9);
9321   ins_encode( Push_Reg_DPR(src1),
9322               OpcS, OpcP, PopFPU,
9323               CmpF_Result(dst));
9324   ins_pipe( pipe_slow );
9325 %}
9326 
9327 // Compare into -1,0,1
9328 instruct cmpDPR_reg(rRegI dst, regDPR src1, regDPR src2, eAXRegI rax, eFlagsReg cr) %{
9329   predicate(UseSSE<=1);
9330   match(Set dst (CmpD3 src1 src2));
9331   effect(KILL cr, KILL rax);
9332   ins_cost(300);
9333   format %{ "FCMPD  $dst,$src1,$src2" %}
9334   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9335   ins_encode( Push_Reg_DPR(src1),
9336               OpcP, RegOpc(src2),
9337               CmpF_Result(dst));
9338   ins_pipe( pipe_slow );
9339 %}
9340 
9341 // float compare and set condition codes in EFLAGS by XMM regs
9342 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2) %{
9343   predicate(UseSSE>=2);
9344   match(Set cr (CmpD src1 src2));
9345   ins_cost(145);
9346   format %{ "UCOMISD $src1,$src2\n\t"
9347             "JNP,s   exit\n\t"
9348             "PUSHF\t# saw NaN, set CF\n\t"
9349             "AND     [rsp], #0xffffff2b\n\t"
9350             "POPF\n"
9351     "exit:" %}
9352   ins_encode %{
9353     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9354     emit_cmpfp_fixup(_masm);
9355   %}
9356   ins_pipe( pipe_slow );
9357 %}
9358 
9359 instruct cmpD_ccCF(eFlagsRegUCF cr, regD src1, regD src2) %{
9360   predicate(UseSSE>=2);
9361   match(Set cr (CmpD src1 src2));
9362   ins_cost(100);
9363   format %{ "UCOMISD $src1,$src2" %}
9364   ins_encode %{
9365     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9366   %}
9367   ins_pipe( pipe_slow );
9368 %}
9369 
9370 // float compare and set condition codes in EFLAGS by XMM regs
9371 instruct cmpD_ccmem(eFlagsRegU cr, regD src1, memory src2) %{
9372   predicate(UseSSE>=2);
9373   match(Set cr (CmpD src1 (LoadD src2)));
9374   ins_cost(145);
9375   format %{ "UCOMISD $src1,$src2\n\t"
9376             "JNP,s   exit\n\t"
9377             "PUSHF\t# saw NaN, set CF\n\t"
9378             "AND     [rsp], #0xffffff2b\n\t"
9379             "POPF\n"
9380     "exit:" %}
9381   ins_encode %{
9382     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9383     emit_cmpfp_fixup(_masm);
9384   %}
9385   ins_pipe( pipe_slow );
9386 %}
9387 
9388 instruct cmpD_ccmemCF(eFlagsRegUCF cr, regD src1, memory src2) %{
9389   predicate(UseSSE>=2);
9390   match(Set cr (CmpD src1 (LoadD src2)));
9391   ins_cost(100);
9392   format %{ "UCOMISD $src1,$src2" %}
9393   ins_encode %{
9394     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9395   %}
9396   ins_pipe( pipe_slow );
9397 %}
9398 
9399 // Compare into -1,0,1 in XMM
9400 instruct cmpD_reg(xRegI dst, regD src1, regD src2, eFlagsReg cr) %{
9401   predicate(UseSSE>=2);
9402   match(Set dst (CmpD3 src1 src2));
9403   effect(KILL cr);
9404   ins_cost(255);
9405   format %{ "UCOMISD $src1, $src2\n\t"
9406             "MOV     $dst, #-1\n\t"
9407             "JP,s    done\n\t"
9408             "JB,s    done\n\t"
9409             "SETNE   $dst\n\t"
9410             "MOVZB   $dst, $dst\n"
9411     "done:" %}
9412   ins_encode %{
9413     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9414     emit_cmpfp3(_masm, $dst$$Register);
9415   %}
9416   ins_pipe( pipe_slow );
9417 %}
9418 
9419 // Compare into -1,0,1 in XMM and memory
9420 instruct cmpD_regmem(xRegI dst, regD src1, memory src2, eFlagsReg cr) %{
9421   predicate(UseSSE>=2);
9422   match(Set dst (CmpD3 src1 (LoadD src2)));
9423   effect(KILL cr);
9424   ins_cost(275);
9425   format %{ "UCOMISD $src1, $src2\n\t"
9426             "MOV     $dst, #-1\n\t"
9427             "JP,s    done\n\t"
9428             "JB,s    done\n\t"
9429             "SETNE   $dst\n\t"
9430             "MOVZB   $dst, $dst\n"
9431     "done:" %}
9432   ins_encode %{
9433     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9434     emit_cmpfp3(_masm, $dst$$Register);
9435   %}
9436   ins_pipe( pipe_slow );
9437 %}
9438 
9439 
9440 instruct subDPR_reg(regDPR dst, regDPR src) %{
9441   predicate (UseSSE <=1);
9442   match(Set dst (SubD dst src));
9443 
9444   format %{ "FLD    $src\n\t"
9445             "DSUBp  $dst,ST" %}
9446   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9447   ins_cost(150);
9448   ins_encode( Push_Reg_DPR(src),
9449               OpcP, RegOpc(dst) );
9450   ins_pipe( fpu_reg_reg );
9451 %}
9452 
9453 instruct subDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9454   predicate (UseSSE <=1);
9455   match(Set dst (RoundDouble (SubD src1 src2)));
9456   ins_cost(250);
9457 
9458   format %{ "FLD    $src2\n\t"
9459             "DSUB   ST,$src1\n\t"
9460             "FSTP_D $dst\t# D-round" %}
9461   opcode(0xD8, 0x5);
9462   ins_encode( Push_Reg_DPR(src2),
9463               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9464   ins_pipe( fpu_mem_reg_reg );
9465 %}
9466 
9467 
9468 instruct subDPR_reg_mem(regDPR dst, memory src) %{
9469   predicate (UseSSE <=1);
9470   match(Set dst (SubD dst (LoadD src)));
9471   ins_cost(150);
9472 
9473   format %{ "FLD    $src\n\t"
9474             "DSUBp  $dst,ST" %}
9475   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9476   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9477               OpcP, RegOpc(dst) );
9478   ins_pipe( fpu_reg_mem );
9479 %}
9480 
9481 instruct absDPR_reg(regDPR1 dst, regDPR1 src) %{
9482   predicate (UseSSE<=1);
9483   match(Set dst (AbsD src));
9484   ins_cost(100);
9485   format %{ "FABS" %}
9486   opcode(0xE1, 0xD9);
9487   ins_encode( OpcS, OpcP );
9488   ins_pipe( fpu_reg_reg );
9489 %}
9490 
9491 instruct negDPR_reg(regDPR1 dst, regDPR1 src) %{
9492   predicate(UseSSE<=1);
9493   match(Set dst (NegD src));
9494   ins_cost(100);
9495   format %{ "FCHS" %}
9496   opcode(0xE0, 0xD9);
9497   ins_encode( OpcS, OpcP );
9498   ins_pipe( fpu_reg_reg );
9499 %}
9500 
9501 instruct addDPR_reg(regDPR dst, regDPR src) %{
9502   predicate(UseSSE<=1);
9503   match(Set dst (AddD dst src));
9504   format %{ "FLD    $src\n\t"
9505             "DADD   $dst,ST" %}
9506   size(4);
9507   ins_cost(150);
9508   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9509   ins_encode( Push_Reg_DPR(src),
9510               OpcP, RegOpc(dst) );
9511   ins_pipe( fpu_reg_reg );
9512 %}
9513 
9514 
9515 instruct addDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9516   predicate(UseSSE<=1);
9517   match(Set dst (RoundDouble (AddD src1 src2)));
9518   ins_cost(250);
9519 
9520   format %{ "FLD    $src2\n\t"
9521             "DADD   ST,$src1\n\t"
9522             "FSTP_D $dst\t# D-round" %}
9523   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9524   ins_encode( Push_Reg_DPR(src2),
9525               OpcP, RegOpc(src1), Pop_Mem_DPR(dst) );
9526   ins_pipe( fpu_mem_reg_reg );
9527 %}
9528 
9529 
9530 instruct addDPR_reg_mem(regDPR dst, memory src) %{
9531   predicate(UseSSE<=1);
9532   match(Set dst (AddD dst (LoadD src)));
9533   ins_cost(150);
9534 
9535   format %{ "FLD    $src\n\t"
9536             "DADDp  $dst,ST" %}
9537   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9538   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9539               OpcP, RegOpc(dst) );
9540   ins_pipe( fpu_reg_mem );
9541 %}
9542 
9543 // add-to-memory
9544 instruct addDPR_mem_reg(memory dst, regDPR src) %{
9545   predicate(UseSSE<=1);
9546   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9547   ins_cost(150);
9548 
9549   format %{ "FLD_D  $dst\n\t"
9550             "DADD   ST,$src\n\t"
9551             "FST_D  $dst" %}
9552   opcode(0xDD, 0x0);
9553   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9554               Opcode(0xD8), RegOpc(src),
9555               set_instruction_start,
9556               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9557   ins_pipe( fpu_reg_mem );
9558 %}
9559 
9560 instruct addDPR_reg_imm1(regDPR dst, immDPR1 con) %{
9561   predicate(UseSSE<=1);
9562   match(Set dst (AddD dst con));
9563   ins_cost(125);
9564   format %{ "FLD1\n\t"
9565             "DADDp  $dst,ST" %}
9566   ins_encode %{
9567     __ fld1();
9568     __ faddp($dst$$reg);
9569   %}
9570   ins_pipe(fpu_reg);
9571 %}
9572 
9573 instruct addDPR_reg_imm(regDPR dst, immDPR con) %{
9574   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9575   match(Set dst (AddD dst con));
9576   ins_cost(200);
9577   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9578             "DADDp  $dst,ST" %}
9579   ins_encode %{
9580     __ fld_d($constantaddress($con));
9581     __ faddp($dst$$reg);
9582   %}
9583   ins_pipe(fpu_reg_mem);
9584 %}
9585 
9586 instruct addDPR_reg_imm_round(stackSlotD dst, regDPR src, immDPR con) %{
9587   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9588   match(Set dst (RoundDouble (AddD src con)));
9589   ins_cost(200);
9590   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9591             "DADD   ST,$src\n\t"
9592             "FSTP_D $dst\t# D-round" %}
9593   ins_encode %{
9594     __ fld_d($constantaddress($con));
9595     __ fadd($src$$reg);
9596     __ fstp_d(Address(rsp, $dst$$disp));
9597   %}
9598   ins_pipe(fpu_mem_reg_con);
9599 %}
9600 
9601 instruct mulDPR_reg(regDPR dst, regDPR src) %{
9602   predicate(UseSSE<=1);
9603   match(Set dst (MulD dst src));
9604   format %{ "FLD    $src\n\t"
9605             "DMULp  $dst,ST" %}
9606   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9607   ins_cost(150);
9608   ins_encode( Push_Reg_DPR(src),
9609               OpcP, RegOpc(dst) );
9610   ins_pipe( fpu_reg_reg );
9611 %}
9612 
9613 // Strict FP instruction biases argument before multiply then
9614 // biases result to avoid double rounding of subnormals.
9615 //
9616 // scale arg1 by multiplying arg1 by 2^(-15360)
9617 // load arg2
9618 // multiply scaled arg1 by arg2
9619 // rescale product by 2^(15360)
9620 //
9621 instruct strictfp_mulDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9622   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9623   match(Set dst (MulD dst src));
9624   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9625 
9626   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9627             "DMULp  $dst,ST\n\t"
9628             "FLD    $src\n\t"
9629             "DMULp  $dst,ST\n\t"
9630             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9631             "DMULp  $dst,ST\n\t" %}
9632   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9633   ins_encode( strictfp_bias1(dst),
9634               Push_Reg_DPR(src),
9635               OpcP, RegOpc(dst),
9636               strictfp_bias2(dst) );
9637   ins_pipe( fpu_reg_reg );
9638 %}
9639 
9640 instruct mulDPR_reg_imm(regDPR dst, immDPR con) %{
9641   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9642   match(Set dst (MulD dst con));
9643   ins_cost(200);
9644   format %{ "FLD_D  [$constantaddress]\t# load from constant table: double=$con\n\t"
9645             "DMULp  $dst,ST" %}
9646   ins_encode %{
9647     __ fld_d($constantaddress($con));
9648     __ fmulp($dst$$reg);
9649   %}
9650   ins_pipe(fpu_reg_mem);
9651 %}
9652 
9653 
9654 instruct mulDPR_reg_mem(regDPR dst, memory src) %{
9655   predicate( UseSSE<=1 );
9656   match(Set dst (MulD dst (LoadD src)));
9657   ins_cost(200);
9658   format %{ "FLD_D  $src\n\t"
9659             "DMULp  $dst,ST" %}
9660   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9661   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9662               OpcP, RegOpc(dst) );
9663   ins_pipe( fpu_reg_mem );
9664 %}
9665 
9666 //
9667 // Cisc-alternate to reg-reg multiply
9668 instruct mulDPR_reg_mem_cisc(regDPR dst, regDPR src, memory mem) %{
9669   predicate( UseSSE<=1 );
9670   match(Set dst (MulD src (LoadD mem)));
9671   ins_cost(250);
9672   format %{ "FLD_D  $mem\n\t"
9673             "DMUL   ST,$src\n\t"
9674             "FSTP_D $dst" %}
9675   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9676   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9677               OpcReg_FPR(src),
9678               Pop_Reg_DPR(dst) );
9679   ins_pipe( fpu_reg_reg_mem );
9680 %}
9681 
9682 
9683 // MACRO3 -- addDPR a mulDPR
9684 // This instruction is a '2-address' instruction in that the result goes
9685 // back to src2.  This eliminates a move from the macro; possibly the
9686 // register allocator will have to add it back (and maybe not).
9687 instruct addDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9688   predicate( UseSSE<=1 );
9689   match(Set src2 (AddD (MulD src0 src1) src2));
9690   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9691             "DMUL   ST,$src1\n\t"
9692             "DADDp  $src2,ST" %}
9693   ins_cost(250);
9694   opcode(0xDD); /* LoadD DD /0 */
9695   ins_encode( Push_Reg_FPR(src0),
9696               FMul_ST_reg(src1),
9697               FAddP_reg_ST(src2) );
9698   ins_pipe( fpu_reg_reg_reg );
9699 %}
9700 
9701 
9702 // MACRO3 -- subDPR a mulDPR
9703 instruct subDPR_mulDPR_reg(regDPR src2, regDPR src1, regDPR src0) %{
9704   predicate( UseSSE<=1 );
9705   match(Set src2 (SubD (MulD src0 src1) src2));
9706   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9707             "DMUL   ST,$src1\n\t"
9708             "DSUBRp $src2,ST" %}
9709   ins_cost(250);
9710   ins_encode( Push_Reg_FPR(src0),
9711               FMul_ST_reg(src1),
9712               Opcode(0xDE), Opc_plus(0xE0,src2));
9713   ins_pipe( fpu_reg_reg_reg );
9714 %}
9715 
9716 
9717 instruct divDPR_reg(regDPR dst, regDPR src) %{
9718   predicate( UseSSE<=1 );
9719   match(Set dst (DivD dst src));
9720 
9721   format %{ "FLD    $src\n\t"
9722             "FDIVp  $dst,ST" %}
9723   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9724   ins_cost(150);
9725   ins_encode( Push_Reg_DPR(src),
9726               OpcP, RegOpc(dst) );
9727   ins_pipe( fpu_reg_reg );
9728 %}
9729 
9730 // Strict FP instruction biases argument before division then
9731 // biases result, to avoid double rounding of subnormals.
9732 //
9733 // scale dividend by multiplying dividend by 2^(-15360)
9734 // load divisor
9735 // divide scaled dividend by divisor
9736 // rescale quotient by 2^(15360)
9737 //
9738 instruct strictfp_divDPR_reg(regDPR1 dst, regnotDPR1 src) %{
9739   predicate (UseSSE<=1);
9740   match(Set dst (DivD dst src));
9741   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9742   ins_cost(01);
9743 
9744   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9745             "DMULp  $dst,ST\n\t"
9746             "FLD    $src\n\t"
9747             "FDIVp  $dst,ST\n\t"
9748             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9749             "DMULp  $dst,ST\n\t" %}
9750   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9751   ins_encode( strictfp_bias1(dst),
9752               Push_Reg_DPR(src),
9753               OpcP, RegOpc(dst),
9754               strictfp_bias2(dst) );
9755   ins_pipe( fpu_reg_reg );
9756 %}
9757 
9758 instruct divDPR_reg_round(stackSlotD dst, regDPR src1, regDPR src2) %{
9759   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9760   match(Set dst (RoundDouble (DivD src1 src2)));
9761 
9762   format %{ "FLD    $src1\n\t"
9763             "FDIV   ST,$src2\n\t"
9764             "FSTP_D $dst\t# D-round" %}
9765   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9766   ins_encode( Push_Reg_DPR(src1),
9767               OpcP, RegOpc(src2), Pop_Mem_DPR(dst) );
9768   ins_pipe( fpu_mem_reg_reg );
9769 %}
9770 
9771 
9772 instruct modDPR_reg(regDPR dst, regDPR src, eAXRegI rax, eFlagsReg cr) %{
9773   predicate(UseSSE<=1);
9774   match(Set dst (ModD dst src));
9775   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
9776 
9777   format %{ "DMOD   $dst,$src" %}
9778   ins_cost(250);
9779   ins_encode(Push_Reg_Mod_DPR(dst, src),
9780               emitModDPR(),
9781               Push_Result_Mod_DPR(src),
9782               Pop_Reg_DPR(dst));
9783   ins_pipe( pipe_slow );
9784 %}
9785 
9786 instruct modD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eFlagsReg cr) %{
9787   predicate(UseSSE>=2);
9788   match(Set dst (ModD src0 src1));
9789   effect(KILL rax, KILL cr);
9790 
9791   format %{ "SUB    ESP,8\t # DMOD\n"
9792           "\tMOVSD  [ESP+0],$src1\n"
9793           "\tFLD_D  [ESP+0]\n"
9794           "\tMOVSD  [ESP+0],$src0\n"
9795           "\tFLD_D  [ESP+0]\n"
9796      "loop:\tFPREM\n"
9797           "\tFWAIT\n"
9798           "\tFNSTSW AX\n"
9799           "\tSAHF\n"
9800           "\tJP     loop\n"
9801           "\tFSTP_D [ESP+0]\n"
9802           "\tMOVSD  $dst,[ESP+0]\n"
9803           "\tADD    ESP,8\n"
9804           "\tFSTP   ST0\t # Restore FPU Stack"
9805     %}
9806   ins_cost(250);
9807   ins_encode( Push_ModD_encoding(src0, src1), emitModDPR(), Push_ResultD(dst), PopFPU);
9808   ins_pipe( pipe_slow );
9809 %}
9810 
9811 instruct sinDPR_reg(regDPR1 dst, regDPR1 src) %{
9812   predicate (UseSSE<=1);
9813   match(Set dst (SinD src));
9814   ins_cost(1800);
9815   format %{ "DSIN   $dst" %}
9816   opcode(0xD9, 0xFE);
9817   ins_encode( OpcP, OpcS );
9818   ins_pipe( pipe_slow );
9819 %}
9820 
9821 instruct sinD_reg(regD dst, eFlagsReg cr) %{
9822   predicate (UseSSE>=2);
9823   match(Set dst (SinD dst));
9824   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9825   ins_cost(1800);
9826   format %{ "DSIN   $dst" %}
9827   opcode(0xD9, 0xFE);
9828   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9829   ins_pipe( pipe_slow );
9830 %}
9831 
9832 instruct cosDPR_reg(regDPR1 dst, regDPR1 src) %{
9833   predicate (UseSSE<=1);
9834   match(Set dst (CosD src));
9835   ins_cost(1800);
9836   format %{ "DCOS   $dst" %}
9837   opcode(0xD9, 0xFF);
9838   ins_encode( OpcP, OpcS );
9839   ins_pipe( pipe_slow );
9840 %}
9841 
9842 instruct cosD_reg(regD dst, eFlagsReg cr) %{
9843   predicate (UseSSE>=2);
9844   match(Set dst (CosD dst));
9845   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9846   ins_cost(1800);
9847   format %{ "DCOS   $dst" %}
9848   opcode(0xD9, 0xFF);
9849   ins_encode( Push_SrcD(dst), OpcP, OpcS, Push_ResultD(dst) );
9850   ins_pipe( pipe_slow );
9851 %}
9852 
9853 instruct tanDPR_reg(regDPR1 dst, regDPR1 src) %{
9854   predicate (UseSSE<=1);
9855   match(Set dst(TanD src));
9856   format %{ "DTAN   $dst" %}
9857   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
9858               Opcode(0xDD), Opcode(0xD8));   // fstp st
9859   ins_pipe( pipe_slow );
9860 %}
9861 
9862 instruct tanD_reg(regD dst, eFlagsReg cr) %{
9863   predicate (UseSSE>=2);
9864   match(Set dst(TanD dst));
9865   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9866   format %{ "DTAN   $dst" %}
9867   ins_encode( Push_SrcD(dst),
9868               Opcode(0xD9), Opcode(0xF2),    // fptan
9869               Opcode(0xDD), Opcode(0xD8),   // fstp st
9870               Push_ResultD(dst) );
9871   ins_pipe( pipe_slow );
9872 %}
9873 
9874 instruct atanDPR_reg(regDPR dst, regDPR src) %{
9875   predicate (UseSSE<=1);
9876   match(Set dst(AtanD dst src));
9877   format %{ "DATA   $dst,$src" %}
9878   opcode(0xD9, 0xF3);
9879   ins_encode( Push_Reg_DPR(src),
9880               OpcP, OpcS, RegOpc(dst) );
9881   ins_pipe( pipe_slow );
9882 %}
9883 
9884 instruct atanD_reg(regD dst, regD src, eFlagsReg cr) %{
9885   predicate (UseSSE>=2);
9886   match(Set dst(AtanD dst src));
9887   effect(KILL cr); // Push_{Src|Result}D() uses "{SUB|ADD} ESP,8"
9888   format %{ "DATA   $dst,$src" %}
9889   opcode(0xD9, 0xF3);
9890   ins_encode( Push_SrcD(src),
9891               OpcP, OpcS, Push_ResultD(dst) );
9892   ins_pipe( pipe_slow );
9893 %}
9894 
9895 instruct sqrtDPR_reg(regDPR dst, regDPR src) %{
9896   predicate (UseSSE<=1);
9897   match(Set dst (SqrtD src));
9898   format %{ "DSQRT  $dst,$src" %}
9899   opcode(0xFA, 0xD9);
9900   ins_encode( Push_Reg_DPR(src),
9901               OpcS, OpcP, Pop_Reg_DPR(dst) );
9902   ins_pipe( pipe_slow );
9903 %}
9904 
9905 instruct powDPR_reg(regDPR X, regDPR1 Y, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9906   predicate (UseSSE<=1);
9907   match(Set Y (PowD X Y));  // Raise X to the Yth power
9908   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9909   format %{ "fast_pow $X $Y -> $Y  // KILL $rax, $rcx, $rdx" %}
9910   ins_encode %{
9911     __ subptr(rsp, 8);
9912     __ fld_s($X$$reg - 1);
9913     __ fast_pow();
9914     __ addptr(rsp, 8);
9915   %}
9916   ins_pipe( pipe_slow );
9917 %}
9918 
9919 instruct powD_reg(regD dst, regD src0, regD src1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9920   predicate (UseSSE>=2);
9921   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9922   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9923   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
9924   ins_encode %{
9925     __ subptr(rsp, 8);
9926     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
9927     __ fld_d(Address(rsp, 0));
9928     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
9929     __ fld_d(Address(rsp, 0));
9930     __ fast_pow();
9931     __ fstp_d(Address(rsp, 0));
9932     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9933     __ addptr(rsp, 8);
9934   %}
9935   ins_pipe( pipe_slow );
9936 %}
9937 
9938 
9939 instruct expDPR_reg(regDPR1 dpr1, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9940   predicate (UseSSE<=1);
9941   match(Set dpr1 (ExpD dpr1));
9942   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9943   format %{ "fast_exp $dpr1 -> $dpr1  // KILL $rax, $rcx, $rdx" %}
9944   ins_encode %{
9945     __ fast_exp();
9946   %}
9947   ins_pipe( pipe_slow );
9948 %}
9949 
9950 instruct expD_reg(regD dst, regD src, eAXRegI rax, eDXRegI rdx, eCXRegI rcx, eFlagsReg cr) %{
9951   predicate (UseSSE>=2);
9952   match(Set dst (ExpD src));
9953   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9954   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
9955   ins_encode %{
9956     __ subptr(rsp, 8);
9957     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9958     __ fld_d(Address(rsp, 0));
9959     __ fast_exp();
9960     __ fstp_d(Address(rsp, 0));
9961     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9962     __ addptr(rsp, 8);
9963   %}
9964   ins_pipe( pipe_slow );
9965 %}
9966 
9967 instruct log10DPR_reg(regDPR1 dst, regDPR1 src) %{
9968   predicate (UseSSE<=1);
9969   // The source Double operand on FPU stack
9970   match(Set dst (Log10D src));
9971   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9972   // fxch         ; swap ST(0) with ST(1)
9973   // fyl2x        ; compute log_10(2) * log_2(x)
9974   format %{ "FLDLG2 \t\t\t#Log10\n\t"
9975             "FXCH   \n\t"
9976             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
9977          %}
9978   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
9979               Opcode(0xD9), Opcode(0xC9),   // fxch
9980               Opcode(0xD9), Opcode(0xF1));  // fyl2x
9981 
9982   ins_pipe( pipe_slow );
9983 %}
9984 
9985 instruct log10D_reg(regD dst, regD src, eFlagsReg cr) %{
9986   predicate (UseSSE>=2);
9987   effect(KILL cr);
9988   match(Set dst (Log10D src));
9989   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9990   // fyl2x        ; compute log_10(2) * log_2(x)
9991   format %{ "FLDLG2 \t\t\t#Log10\n\t"
9992             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
9993          %}
9994   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
9995               Push_SrcD(src),
9996               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9997               Push_ResultD(dst));
9998 
9999   ins_pipe( pipe_slow );
10000 %}
10001 
10002 instruct logDPR_reg(regDPR1 dst, regDPR1 src) %{
10003   predicate (UseSSE<=1);
10004   // The source Double operand on FPU stack
10005   match(Set dst (LogD src));
10006   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10007   // fxch         ; swap ST(0) with ST(1)
10008   // fyl2x        ; compute log_e(2) * log_2(x)
10009   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10010             "FXCH   \n\t"
10011             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10012          %}
10013   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10014               Opcode(0xD9), Opcode(0xC9),   // fxch
10015               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10016 
10017   ins_pipe( pipe_slow );
10018 %}
10019 
10020 instruct logD_reg(regD dst, regD src, eFlagsReg cr) %{
10021   predicate (UseSSE>=2);
10022   effect(KILL cr);
10023   // The source and result Double operands in XMM registers
10024   match(Set dst (LogD src));
10025   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10026   // fyl2x        ; compute log_e(2) * log_2(x)
10027   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10028             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10029          %}
10030   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10031               Push_SrcD(src),
10032               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10033               Push_ResultD(dst));
10034   ins_pipe( pipe_slow );
10035 %}
10036 
10037 //-------------Float Instructions-------------------------------
10038 // Float Math
10039 
10040 // Code for float compare:
10041 //     fcompp();
10042 //     fwait(); fnstsw_ax();
10043 //     sahf();
10044 //     movl(dst, unordered_result);
10045 //     jcc(Assembler::parity, exit);
10046 //     movl(dst, less_result);
10047 //     jcc(Assembler::below, exit);
10048 //     movl(dst, equal_result);
10049 //     jcc(Assembler::equal, exit);
10050 //     movl(dst, greater_result);
10051 //   exit:
10052 
10053 // P6 version of float compare, sets condition codes in EFLAGS
10054 instruct cmpFPR_cc_P6(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10055   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10056   match(Set cr (CmpF src1 src2));
10057   effect(KILL rax);
10058   ins_cost(150);
10059   format %{ "FLD    $src1\n\t"
10060             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10061             "JNP    exit\n\t"
10062             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10063             "SAHF\n"
10064      "exit:\tNOP               // avoid branch to branch" %}
10065   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10066   ins_encode( Push_Reg_DPR(src1),
10067               OpcP, RegOpc(src2),
10068               cmpF_P6_fixup );
10069   ins_pipe( pipe_slow );
10070 %}
10071 
10072 instruct cmpFPR_cc_P6CF(eFlagsRegUCF cr, regFPR src1, regFPR src2) %{
10073   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10074   match(Set cr (CmpF src1 src2));
10075   ins_cost(100);
10076   format %{ "FLD    $src1\n\t"
10077             "FUCOMIP ST,$src2  // P6 instruction" %}
10078   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10079   ins_encode( Push_Reg_DPR(src1),
10080               OpcP, RegOpc(src2));
10081   ins_pipe( pipe_slow );
10082 %}
10083 
10084 
10085 // Compare & branch
10086 instruct cmpFPR_cc(eFlagsRegU cr, regFPR src1, regFPR src2, eAXRegI rax) %{
10087   predicate(UseSSE == 0);
10088   match(Set cr (CmpF src1 src2));
10089   effect(KILL rax);
10090   ins_cost(200);
10091   format %{ "FLD    $src1\n\t"
10092             "FCOMp  $src2\n\t"
10093             "FNSTSW AX\n\t"
10094             "TEST   AX,0x400\n\t"
10095             "JZ,s   flags\n\t"
10096             "MOV    AH,1\t# unordered treat as LT\n"
10097     "flags:\tSAHF" %}
10098   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10099   ins_encode( Push_Reg_DPR(src1),
10100               OpcP, RegOpc(src2),
10101               fpu_flags);
10102   ins_pipe( pipe_slow );
10103 %}
10104 
10105 // Compare vs zero into -1,0,1
10106 instruct cmpFPR_0(rRegI dst, regFPR src1, immFPR0 zero, eAXRegI rax, eFlagsReg cr) %{
10107   predicate(UseSSE == 0);
10108   match(Set dst (CmpF3 src1 zero));
10109   effect(KILL cr, KILL rax);
10110   ins_cost(280);
10111   format %{ "FTSTF  $dst,$src1" %}
10112   opcode(0xE4, 0xD9);
10113   ins_encode( Push_Reg_DPR(src1),
10114               OpcS, OpcP, PopFPU,
10115               CmpF_Result(dst));
10116   ins_pipe( pipe_slow );
10117 %}
10118 
10119 // Compare into -1,0,1
10120 instruct cmpFPR_reg(rRegI dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10121   predicate(UseSSE == 0);
10122   match(Set dst (CmpF3 src1 src2));
10123   effect(KILL cr, KILL rax);
10124   ins_cost(300);
10125   format %{ "FCMPF  $dst,$src1,$src2" %}
10126   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10127   ins_encode( Push_Reg_DPR(src1),
10128               OpcP, RegOpc(src2),
10129               CmpF_Result(dst));
10130   ins_pipe( pipe_slow );
10131 %}
10132 
10133 // float compare and set condition codes in EFLAGS by XMM regs
10134 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2) %{
10135   predicate(UseSSE>=1);
10136   match(Set cr (CmpF src1 src2));
10137   ins_cost(145);
10138   format %{ "UCOMISS $src1,$src2\n\t"
10139             "JNP,s   exit\n\t"
10140             "PUSHF\t# saw NaN, set CF\n\t"
10141             "AND     [rsp], #0xffffff2b\n\t"
10142             "POPF\n"
10143     "exit:" %}
10144   ins_encode %{
10145     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10146     emit_cmpfp_fixup(_masm);
10147   %}
10148   ins_pipe( pipe_slow );
10149 %}
10150 
10151 instruct cmpF_ccCF(eFlagsRegUCF cr, regF src1, regF src2) %{
10152   predicate(UseSSE>=1);
10153   match(Set cr (CmpF src1 src2));
10154   ins_cost(100);
10155   format %{ "UCOMISS $src1,$src2" %}
10156   ins_encode %{
10157     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10158   %}
10159   ins_pipe( pipe_slow );
10160 %}
10161 
10162 // float compare and set condition codes in EFLAGS by XMM regs
10163 instruct cmpF_ccmem(eFlagsRegU cr, regF src1, memory src2) %{
10164   predicate(UseSSE>=1);
10165   match(Set cr (CmpF src1 (LoadF src2)));
10166   ins_cost(165);
10167   format %{ "UCOMISS $src1,$src2\n\t"
10168             "JNP,s   exit\n\t"
10169             "PUSHF\t# saw NaN, set CF\n\t"
10170             "AND     [rsp], #0xffffff2b\n\t"
10171             "POPF\n"
10172     "exit:" %}
10173   ins_encode %{
10174     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10175     emit_cmpfp_fixup(_masm);
10176   %}
10177   ins_pipe( pipe_slow );
10178 %}
10179 
10180 instruct cmpF_ccmemCF(eFlagsRegUCF cr, regF src1, memory src2) %{
10181   predicate(UseSSE>=1);
10182   match(Set cr (CmpF src1 (LoadF src2)));
10183   ins_cost(100);
10184   format %{ "UCOMISS $src1,$src2" %}
10185   ins_encode %{
10186     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10187   %}
10188   ins_pipe( pipe_slow );
10189 %}
10190 
10191 // Compare into -1,0,1 in XMM
10192 instruct cmpF_reg(xRegI dst, regF src1, regF src2, eFlagsReg cr) %{
10193   predicate(UseSSE>=1);
10194   match(Set dst (CmpF3 src1 src2));
10195   effect(KILL cr);
10196   ins_cost(255);
10197   format %{ "UCOMISS $src1, $src2\n\t"
10198             "MOV     $dst, #-1\n\t"
10199             "JP,s    done\n\t"
10200             "JB,s    done\n\t"
10201             "SETNE   $dst\n\t"
10202             "MOVZB   $dst, $dst\n"
10203     "done:" %}
10204   ins_encode %{
10205     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
10206     emit_cmpfp3(_masm, $dst$$Register);
10207   %}
10208   ins_pipe( pipe_slow );
10209 %}
10210 
10211 // Compare into -1,0,1 in XMM and memory
10212 instruct cmpF_regmem(xRegI dst, regF src1, memory src2, eFlagsReg cr) %{
10213   predicate(UseSSE>=1);
10214   match(Set dst (CmpF3 src1 (LoadF src2)));
10215   effect(KILL cr);
10216   ins_cost(275);
10217   format %{ "UCOMISS $src1, $src2\n\t"
10218             "MOV     $dst, #-1\n\t"
10219             "JP,s    done\n\t"
10220             "JB,s    done\n\t"
10221             "SETNE   $dst\n\t"
10222             "MOVZB   $dst, $dst\n"
10223     "done:" %}
10224   ins_encode %{
10225     __ ucomiss($src1$$XMMRegister, $src2$$Address);
10226     emit_cmpfp3(_masm, $dst$$Register);
10227   %}
10228   ins_pipe( pipe_slow );
10229 %}
10230 
10231 // Spill to obtain 24-bit precision
10232 instruct subFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10233   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10234   match(Set dst (SubF src1 src2));
10235 
10236   format %{ "FSUB   $dst,$src1 - $src2" %}
10237   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10238   ins_encode( Push_Reg_FPR(src1),
10239               OpcReg_FPR(src2),
10240               Pop_Mem_FPR(dst) );
10241   ins_pipe( fpu_mem_reg_reg );
10242 %}
10243 //
10244 // This instruction does not round to 24-bits
10245 instruct subFPR_reg(regFPR dst, regFPR src) %{
10246   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10247   match(Set dst (SubF dst src));
10248 
10249   format %{ "FSUB   $dst,$src" %}
10250   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10251   ins_encode( Push_Reg_FPR(src),
10252               OpcP, RegOpc(dst) );
10253   ins_pipe( fpu_reg_reg );
10254 %}
10255 
10256 // Spill to obtain 24-bit precision
10257 instruct addFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10258   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10259   match(Set dst (AddF src1 src2));
10260 
10261   format %{ "FADD   $dst,$src1,$src2" %}
10262   opcode(0xD8, 0x0); /* D8 C0+i */
10263   ins_encode( Push_Reg_FPR(src2),
10264               OpcReg_FPR(src1),
10265               Pop_Mem_FPR(dst) );
10266   ins_pipe( fpu_mem_reg_reg );
10267 %}
10268 //
10269 // This instruction does not round to 24-bits
10270 instruct addFPR_reg(regFPR dst, regFPR src) %{
10271   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10272   match(Set dst (AddF dst src));
10273 
10274   format %{ "FLD    $src\n\t"
10275             "FADDp  $dst,ST" %}
10276   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10277   ins_encode( Push_Reg_FPR(src),
10278               OpcP, RegOpc(dst) );
10279   ins_pipe( fpu_reg_reg );
10280 %}
10281 
10282 instruct absFPR_reg(regFPR1 dst, regFPR1 src) %{
10283   predicate(UseSSE==0);
10284   match(Set dst (AbsF src));
10285   ins_cost(100);
10286   format %{ "FABS" %}
10287   opcode(0xE1, 0xD9);
10288   ins_encode( OpcS, OpcP );
10289   ins_pipe( fpu_reg_reg );
10290 %}
10291 
10292 instruct negFPR_reg(regFPR1 dst, regFPR1 src) %{
10293   predicate(UseSSE==0);
10294   match(Set dst (NegF src));
10295   ins_cost(100);
10296   format %{ "FCHS" %}
10297   opcode(0xE0, 0xD9);
10298   ins_encode( OpcS, OpcP );
10299   ins_pipe( fpu_reg_reg );
10300 %}
10301 
10302 // Cisc-alternate to addFPR_reg
10303 // Spill to obtain 24-bit precision
10304 instruct addFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10305   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10306   match(Set dst (AddF src1 (LoadF src2)));
10307 
10308   format %{ "FLD    $src2\n\t"
10309             "FADD   ST,$src1\n\t"
10310             "FSTP_S $dst" %}
10311   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10312   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10313               OpcReg_FPR(src1),
10314               Pop_Mem_FPR(dst) );
10315   ins_pipe( fpu_mem_reg_mem );
10316 %}
10317 //
10318 // Cisc-alternate to addFPR_reg
10319 // This instruction does not round to 24-bits
10320 instruct addFPR_reg_mem(regFPR dst, memory src) %{
10321   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10322   match(Set dst (AddF dst (LoadF src)));
10323 
10324   format %{ "FADD   $dst,$src" %}
10325   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10326   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10327               OpcP, RegOpc(dst) );
10328   ins_pipe( fpu_reg_mem );
10329 %}
10330 
10331 // // Following two instructions for _222_mpegaudio
10332 // Spill to obtain 24-bit precision
10333 instruct addFPR24_mem_reg(stackSlotF dst, regFPR src2, memory src1 ) %{
10334   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10335   match(Set dst (AddF src1 src2));
10336 
10337   format %{ "FADD   $dst,$src1,$src2" %}
10338   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10339   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10340               OpcReg_FPR(src2),
10341               Pop_Mem_FPR(dst) );
10342   ins_pipe( fpu_mem_reg_mem );
10343 %}
10344 
10345 // Cisc-spill variant
10346 // Spill to obtain 24-bit precision
10347 instruct addFPR24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10348   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10349   match(Set dst (AddF src1 (LoadF src2)));
10350 
10351   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10352   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10353   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10354               set_instruction_start,
10355               OpcP, RMopc_Mem(secondary,src1),
10356               Pop_Mem_FPR(dst) );
10357   ins_pipe( fpu_mem_mem_mem );
10358 %}
10359 
10360 // Spill to obtain 24-bit precision
10361 instruct addFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10362   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10363   match(Set dst (AddF src1 src2));
10364 
10365   format %{ "FADD   $dst,$src1,$src2" %}
10366   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10367   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10368               set_instruction_start,
10369               OpcP, RMopc_Mem(secondary,src1),
10370               Pop_Mem_FPR(dst) );
10371   ins_pipe( fpu_mem_mem_mem );
10372 %}
10373 
10374 
10375 // Spill to obtain 24-bit precision
10376 instruct addFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10377   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10378   match(Set dst (AddF src con));
10379   format %{ "FLD    $src\n\t"
10380             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10381             "FSTP_S $dst"  %}
10382   ins_encode %{
10383     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10384     __ fadd_s($constantaddress($con));
10385     __ fstp_s(Address(rsp, $dst$$disp));
10386   %}
10387   ins_pipe(fpu_mem_reg_con);
10388 %}
10389 //
10390 // This instruction does not round to 24-bits
10391 instruct addFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10392   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10393   match(Set dst (AddF src con));
10394   format %{ "FLD    $src\n\t"
10395             "FADD_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10396             "FSTP   $dst"  %}
10397   ins_encode %{
10398     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10399     __ fadd_s($constantaddress($con));
10400     __ fstp_d($dst$$reg);
10401   %}
10402   ins_pipe(fpu_reg_reg_con);
10403 %}
10404 
10405 // Spill to obtain 24-bit precision
10406 instruct mulFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10407   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10408   match(Set dst (MulF src1 src2));
10409 
10410   format %{ "FLD    $src1\n\t"
10411             "FMUL   $src2\n\t"
10412             "FSTP_S $dst"  %}
10413   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10414   ins_encode( Push_Reg_FPR(src1),
10415               OpcReg_FPR(src2),
10416               Pop_Mem_FPR(dst) );
10417   ins_pipe( fpu_mem_reg_reg );
10418 %}
10419 //
10420 // This instruction does not round to 24-bits
10421 instruct mulFPR_reg(regFPR dst, regFPR src1, regFPR src2) %{
10422   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10423   match(Set dst (MulF src1 src2));
10424 
10425   format %{ "FLD    $src1\n\t"
10426             "FMUL   $src2\n\t"
10427             "FSTP_S $dst"  %}
10428   opcode(0xD8, 0x1); /* D8 C8+i */
10429   ins_encode( Push_Reg_FPR(src2),
10430               OpcReg_FPR(src1),
10431               Pop_Reg_FPR(dst) );
10432   ins_pipe( fpu_reg_reg_reg );
10433 %}
10434 
10435 
10436 // Spill to obtain 24-bit precision
10437 // Cisc-alternate to reg-reg multiply
10438 instruct mulFPR24_reg_mem(stackSlotF dst, regFPR src1, memory src2) %{
10439   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10440   match(Set dst (MulF src1 (LoadF src2)));
10441 
10442   format %{ "FLD_S  $src2\n\t"
10443             "FMUL   $src1\n\t"
10444             "FSTP_S $dst"  %}
10445   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10446   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10447               OpcReg_FPR(src1),
10448               Pop_Mem_FPR(dst) );
10449   ins_pipe( fpu_mem_reg_mem );
10450 %}
10451 //
10452 // This instruction does not round to 24-bits
10453 // Cisc-alternate to reg-reg multiply
10454 instruct mulFPR_reg_mem(regFPR dst, regFPR src1, memory src2) %{
10455   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10456   match(Set dst (MulF src1 (LoadF src2)));
10457 
10458   format %{ "FMUL   $dst,$src1,$src2" %}
10459   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10460   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10461               OpcReg_FPR(src1),
10462               Pop_Reg_FPR(dst) );
10463   ins_pipe( fpu_reg_reg_mem );
10464 %}
10465 
10466 // Spill to obtain 24-bit precision
10467 instruct mulFPR24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10468   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10469   match(Set dst (MulF src1 src2));
10470 
10471   format %{ "FMUL   $dst,$src1,$src2" %}
10472   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10473   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10474               set_instruction_start,
10475               OpcP, RMopc_Mem(secondary,src1),
10476               Pop_Mem_FPR(dst) );
10477   ins_pipe( fpu_mem_mem_mem );
10478 %}
10479 
10480 // Spill to obtain 24-bit precision
10481 instruct mulFPR24_reg_imm(stackSlotF dst, regFPR src, immFPR con) %{
10482   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10483   match(Set dst (MulF src con));
10484 
10485   format %{ "FLD    $src\n\t"
10486             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10487             "FSTP_S $dst"  %}
10488   ins_encode %{
10489     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10490     __ fmul_s($constantaddress($con));
10491     __ fstp_s(Address(rsp, $dst$$disp));
10492   %}
10493   ins_pipe(fpu_mem_reg_con);
10494 %}
10495 //
10496 // This instruction does not round to 24-bits
10497 instruct mulFPR_reg_imm(regFPR dst, regFPR src, immFPR con) %{
10498   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10499   match(Set dst (MulF src con));
10500 
10501   format %{ "FLD    $src\n\t"
10502             "FMUL_S [$constantaddress]\t# load from constant table: float=$con\n\t"
10503             "FSTP   $dst"  %}
10504   ins_encode %{
10505     __ fld_s($src$$reg - 1);  // FLD ST(i-1)
10506     __ fmul_s($constantaddress($con));
10507     __ fstp_d($dst$$reg);
10508   %}
10509   ins_pipe(fpu_reg_reg_con);
10510 %}
10511 
10512 
10513 //
10514 // MACRO1 -- subsume unshared load into mulFPR
10515 // This instruction does not round to 24-bits
10516 instruct mulFPR_reg_load1(regFPR dst, regFPR src, memory mem1 ) %{
10517   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10518   match(Set dst (MulF (LoadF mem1) src));
10519 
10520   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10521             "FMUL   ST,$src\n\t"
10522             "FSTP   $dst" %}
10523   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10524   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10525               OpcReg_FPR(src),
10526               Pop_Reg_FPR(dst) );
10527   ins_pipe( fpu_reg_reg_mem );
10528 %}
10529 //
10530 // MACRO2 -- addFPR a mulFPR which subsumed an unshared load
10531 // This instruction does not round to 24-bits
10532 instruct addFPR_mulFPR_reg_load1(regFPR dst, memory mem1, regFPR src1, regFPR src2) %{
10533   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10534   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10535   ins_cost(95);
10536 
10537   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10538             "FMUL   ST,$src1  subsume mulFPR left load\n\t"
10539             "FADD   ST,$src2\n\t"
10540             "FSTP   $dst" %}
10541   opcode(0xD9); /* LoadF D9 /0 */
10542   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10543               FMul_ST_reg(src1),
10544               FAdd_ST_reg(src2),
10545               Pop_Reg_FPR(dst) );
10546   ins_pipe( fpu_reg_mem_reg_reg );
10547 %}
10548 
10549 // MACRO3 -- addFPR a mulFPR
10550 // This instruction does not round to 24-bits.  It is a '2-address'
10551 // instruction in that the result goes back to src2.  This eliminates
10552 // a move from the macro; possibly the register allocator will have
10553 // to add it back (and maybe not).
10554 instruct addFPR_mulFPR_reg(regFPR src2, regFPR src1, regFPR src0) %{
10555   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10556   match(Set src2 (AddF (MulF src0 src1) src2));
10557 
10558   format %{ "FLD    $src0     ===MACRO3===\n\t"
10559             "FMUL   ST,$src1\n\t"
10560             "FADDP  $src2,ST" %}
10561   opcode(0xD9); /* LoadF D9 /0 */
10562   ins_encode( Push_Reg_FPR(src0),
10563               FMul_ST_reg(src1),
10564               FAddP_reg_ST(src2) );
10565   ins_pipe( fpu_reg_reg_reg );
10566 %}
10567 
10568 // MACRO4 -- divFPR subFPR
10569 // This instruction does not round to 24-bits
10570 instruct subFPR_divFPR_reg(regFPR dst, regFPR src1, regFPR src2, regFPR src3) %{
10571   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10572   match(Set dst (DivF (SubF src2 src1) src3));
10573 
10574   format %{ "FLD    $src2   ===MACRO4===\n\t"
10575             "FSUB   ST,$src1\n\t"
10576             "FDIV   ST,$src3\n\t"
10577             "FSTP  $dst" %}
10578   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10579   ins_encode( Push_Reg_FPR(src2),
10580               subFPR_divFPR_encode(src1,src3),
10581               Pop_Reg_FPR(dst) );
10582   ins_pipe( fpu_reg_reg_reg_reg );
10583 %}
10584 
10585 // Spill to obtain 24-bit precision
10586 instruct divFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2) %{
10587   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10588   match(Set dst (DivF src1 src2));
10589 
10590   format %{ "FDIV   $dst,$src1,$src2" %}
10591   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10592   ins_encode( Push_Reg_FPR(src1),
10593               OpcReg_FPR(src2),
10594               Pop_Mem_FPR(dst) );
10595   ins_pipe( fpu_mem_reg_reg );
10596 %}
10597 //
10598 // This instruction does not round to 24-bits
10599 instruct divFPR_reg(regFPR dst, regFPR src) %{
10600   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10601   match(Set dst (DivF dst src));
10602 
10603   format %{ "FDIV   $dst,$src" %}
10604   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10605   ins_encode( Push_Reg_FPR(src),
10606               OpcP, RegOpc(dst) );
10607   ins_pipe( fpu_reg_reg );
10608 %}
10609 
10610 
10611 // Spill to obtain 24-bit precision
10612 instruct modFPR24_reg(stackSlotF dst, regFPR src1, regFPR src2, eAXRegI rax, eFlagsReg cr) %{
10613   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
10614   match(Set dst (ModF src1 src2));
10615   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10616 
10617   format %{ "FMOD   $dst,$src1,$src2" %}
10618   ins_encode( Push_Reg_Mod_DPR(src1, src2),
10619               emitModDPR(),
10620               Push_Result_Mod_DPR(src2),
10621               Pop_Mem_FPR(dst));
10622   ins_pipe( pipe_slow );
10623 %}
10624 //
10625 // This instruction does not round to 24-bits
10626 instruct modFPR_reg(regFPR dst, regFPR src, eAXRegI rax, eFlagsReg cr) %{
10627   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
10628   match(Set dst (ModF dst src));
10629   effect(KILL rax, KILL cr); // emitModDPR() uses EAX and EFLAGS
10630 
10631   format %{ "FMOD   $dst,$src" %}
10632   ins_encode(Push_Reg_Mod_DPR(dst, src),
10633               emitModDPR(),
10634               Push_Result_Mod_DPR(src),
10635               Pop_Reg_FPR(dst));
10636   ins_pipe( pipe_slow );
10637 %}
10638 
10639 instruct modF_reg(regF dst, regF src0, regF src1, eAXRegI rax, eFlagsReg cr) %{
10640   predicate(UseSSE>=1);
10641   match(Set dst (ModF src0 src1));
10642   effect(KILL rax, KILL cr);
10643   format %{ "SUB    ESP,4\t # FMOD\n"
10644           "\tMOVSS  [ESP+0],$src1\n"
10645           "\tFLD_S  [ESP+0]\n"
10646           "\tMOVSS  [ESP+0],$src0\n"
10647           "\tFLD_S  [ESP+0]\n"
10648      "loop:\tFPREM\n"
10649           "\tFWAIT\n"
10650           "\tFNSTSW AX\n"
10651           "\tSAHF\n"
10652           "\tJP     loop\n"
10653           "\tFSTP_S [ESP+0]\n"
10654           "\tMOVSS  $dst,[ESP+0]\n"
10655           "\tADD    ESP,4\n"
10656           "\tFSTP   ST0\t # Restore FPU Stack"
10657     %}
10658   ins_cost(250);
10659   ins_encode( Push_ModF_encoding(src0, src1), emitModDPR(), Push_ResultF(dst,0x4), PopFPU);
10660   ins_pipe( pipe_slow );
10661 %}
10662 
10663 
10664 //----------Arithmetic Conversion Instructions---------------------------------
10665 // The conversions operations are all Alpha sorted.  Please keep it that way!
10666 
10667 instruct roundFloat_mem_reg(stackSlotF dst, regFPR src) %{
10668   predicate(UseSSE==0);
10669   match(Set dst (RoundFloat src));
10670   ins_cost(125);
10671   format %{ "FST_S  $dst,$src\t# F-round" %}
10672   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
10673   ins_pipe( fpu_mem_reg );
10674 %}
10675 
10676 instruct roundDouble_mem_reg(stackSlotD dst, regDPR src) %{
10677   predicate(UseSSE<=1);
10678   match(Set dst (RoundDouble src));
10679   ins_cost(125);
10680   format %{ "FST_D  $dst,$src\t# D-round" %}
10681   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
10682   ins_pipe( fpu_mem_reg );
10683 %}
10684 
10685 // Force rounding to 24-bit precision and 6-bit exponent
10686 instruct convDPR2FPR_reg(stackSlotF dst, regDPR src) %{
10687   predicate(UseSSE==0);
10688   match(Set dst (ConvD2F src));
10689   format %{ "FST_S  $dst,$src\t# F-round" %}
10690   expand %{
10691     roundFloat_mem_reg(dst,src);
10692   %}
10693 %}
10694 
10695 // Force rounding to 24-bit precision and 6-bit exponent
10696 instruct convDPR2F_reg(regF dst, regDPR src, eFlagsReg cr) %{
10697   predicate(UseSSE==1);
10698   match(Set dst (ConvD2F src));
10699   effect( KILL cr );
10700   format %{ "SUB    ESP,4\n\t"
10701             "FST_S  [ESP],$src\t# F-round\n\t"
10702             "MOVSS  $dst,[ESP]\n\t"
10703             "ADD ESP,4" %}
10704   ins_encode %{
10705     __ subptr(rsp, 4);
10706     if ($src$$reg != FPR1L_enc) {
10707       __ fld_s($src$$reg-1);
10708       __ fstp_s(Address(rsp, 0));
10709     } else {
10710       __ fst_s(Address(rsp, 0));
10711     }
10712     __ movflt($dst$$XMMRegister, Address(rsp, 0));
10713     __ addptr(rsp, 4);
10714   %}
10715   ins_pipe( pipe_slow );
10716 %}
10717 
10718 // Force rounding double precision to single precision
10719 instruct convD2F_reg(regF dst, regD src) %{
10720   predicate(UseSSE>=2);
10721   match(Set dst (ConvD2F src));
10722   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
10723   ins_encode %{
10724     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
10725   %}
10726   ins_pipe( pipe_slow );
10727 %}
10728 
10729 instruct convFPR2DPR_reg_reg(regDPR dst, regFPR src) %{
10730   predicate(UseSSE==0);
10731   match(Set dst (ConvF2D src));
10732   format %{ "FST_S  $dst,$src\t# D-round" %}
10733   ins_encode( Pop_Reg_Reg_DPR(dst, src));
10734   ins_pipe( fpu_reg_reg );
10735 %}
10736 
10737 instruct convFPR2D_reg(stackSlotD dst, regFPR src) %{
10738   predicate(UseSSE==1);
10739   match(Set dst (ConvF2D src));
10740   format %{ "FST_D  $dst,$src\t# D-round" %}
10741   expand %{
10742     roundDouble_mem_reg(dst,src);
10743   %}
10744 %}
10745 
10746 instruct convF2DPR_reg(regDPR dst, regF src, eFlagsReg cr) %{
10747   predicate(UseSSE==1);
10748   match(Set dst (ConvF2D src));
10749   effect( KILL cr );
10750   format %{ "SUB    ESP,4\n\t"
10751             "MOVSS  [ESP] $src\n\t"
10752             "FLD_S  [ESP]\n\t"
10753             "ADD    ESP,4\n\t"
10754             "FSTP   $dst\t# D-round" %}
10755   ins_encode %{
10756     __ subptr(rsp, 4);
10757     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10758     __ fld_s(Address(rsp, 0));
10759     __ addptr(rsp, 4);
10760     __ fstp_d($dst$$reg);
10761   %}
10762   ins_pipe( pipe_slow );
10763 %}
10764 
10765 instruct convF2D_reg(regD dst, regF src) %{
10766   predicate(UseSSE>=2);
10767   match(Set dst (ConvF2D src));
10768   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
10769   ins_encode %{
10770     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
10771   %}
10772   ins_pipe( pipe_slow );
10773 %}
10774 
10775 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10776 instruct convDPR2I_reg_reg( eAXRegI dst, eDXRegI tmp, regDPR src, eFlagsReg cr ) %{
10777   predicate(UseSSE<=1);
10778   match(Set dst (ConvD2I src));
10779   effect( KILL tmp, KILL cr );
10780   format %{ "FLD    $src\t# Convert double to int \n\t"
10781             "FLDCW  trunc mode\n\t"
10782             "SUB    ESP,4\n\t"
10783             "FISTp  [ESP + #0]\n\t"
10784             "FLDCW  std/24-bit mode\n\t"
10785             "POP    EAX\n\t"
10786             "CMP    EAX,0x80000000\n\t"
10787             "JNE,s  fast\n\t"
10788             "FLD_D  $src\n\t"
10789             "CALL   d2i_wrapper\n"
10790       "fast:" %}
10791   ins_encode( Push_Reg_DPR(src), DPR2I_encoding(src) );
10792   ins_pipe( pipe_slow );
10793 %}
10794 
10795 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
10796 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
10797   predicate(UseSSE>=2);
10798   match(Set dst (ConvD2I src));
10799   effect( KILL tmp, KILL cr );
10800   format %{ "CVTTSD2SI $dst, $src\n\t"
10801             "CMP    $dst,0x80000000\n\t"
10802             "JNE,s  fast\n\t"
10803             "SUB    ESP, 8\n\t"
10804             "MOVSD  [ESP], $src\n\t"
10805             "FLD_D  [ESP]\n\t"
10806             "ADD    ESP, 8\n\t"
10807             "CALL   d2i_wrapper\n"
10808       "fast:" %}
10809   ins_encode %{
10810     Label fast;
10811     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
10812     __ cmpl($dst$$Register, 0x80000000);
10813     __ jccb(Assembler::notEqual, fast);
10814     __ subptr(rsp, 8);
10815     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10816     __ fld_d(Address(rsp, 0));
10817     __ addptr(rsp, 8);
10818     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10819     __ bind(fast);
10820   %}
10821   ins_pipe( pipe_slow );
10822 %}
10823 
10824 instruct convDPR2L_reg_reg( eADXRegL dst, regDPR src, eFlagsReg cr ) %{
10825   predicate(UseSSE<=1);
10826   match(Set dst (ConvD2L src));
10827   effect( KILL cr );
10828   format %{ "FLD    $src\t# Convert double to long\n\t"
10829             "FLDCW  trunc mode\n\t"
10830             "SUB    ESP,8\n\t"
10831             "FISTp  [ESP + #0]\n\t"
10832             "FLDCW  std/24-bit mode\n\t"
10833             "POP    EAX\n\t"
10834             "POP    EDX\n\t"
10835             "CMP    EDX,0x80000000\n\t"
10836             "JNE,s  fast\n\t"
10837             "TEST   EAX,EAX\n\t"
10838             "JNE,s  fast\n\t"
10839             "FLD    $src\n\t"
10840             "CALL   d2l_wrapper\n"
10841       "fast:" %}
10842   ins_encode( Push_Reg_DPR(src),  DPR2L_encoding(src) );
10843   ins_pipe( pipe_slow );
10844 %}
10845 
10846 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10847 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
10848   predicate (UseSSE>=2);
10849   match(Set dst (ConvD2L src));
10850   effect( KILL cr );
10851   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
10852             "MOVSD  [ESP],$src\n\t"
10853             "FLD_D  [ESP]\n\t"
10854             "FLDCW  trunc mode\n\t"
10855             "FISTp  [ESP + #0]\n\t"
10856             "FLDCW  std/24-bit mode\n\t"
10857             "POP    EAX\n\t"
10858             "POP    EDX\n\t"
10859             "CMP    EDX,0x80000000\n\t"
10860             "JNE,s  fast\n\t"
10861             "TEST   EAX,EAX\n\t"
10862             "JNE,s  fast\n\t"
10863             "SUB    ESP,8\n\t"
10864             "MOVSD  [ESP],$src\n\t"
10865             "FLD_D  [ESP]\n\t"
10866             "ADD    ESP,8\n\t"
10867             "CALL   d2l_wrapper\n"
10868       "fast:" %}
10869   ins_encode %{
10870     Label fast;
10871     __ subptr(rsp, 8);
10872     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10873     __ fld_d(Address(rsp, 0));
10874     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
10875     __ fistp_d(Address(rsp, 0));
10876     // Restore the rounding mode, mask the exception
10877     if (Compile::current()->in_24_bit_fp_mode()) {
10878       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
10879     } else {
10880       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
10881     }
10882     // Load the converted long, adjust CPU stack
10883     __ pop(rax);
10884     __ pop(rdx);
10885     __ cmpl(rdx, 0x80000000);
10886     __ jccb(Assembler::notEqual, fast);
10887     __ testl(rax, rax);
10888     __ jccb(Assembler::notEqual, fast);
10889     __ subptr(rsp, 8);
10890     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10891     __ fld_d(Address(rsp, 0));
10892     __ addptr(rsp, 8);
10893     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
10894     __ bind(fast);
10895   %}
10896   ins_pipe( pipe_slow );
10897 %}
10898 
10899 // Convert a double to an int.  Java semantics require we do complex
10900 // manglations in the corner cases.  So we set the rounding mode to
10901 // 'zero', store the darned double down as an int, and reset the
10902 // rounding mode to 'nearest'.  The hardware stores a flag value down
10903 // if we would overflow or converted a NAN; we check for this and
10904 // and go the slow path if needed.
10905 instruct convFPR2I_reg_reg(eAXRegI dst, eDXRegI tmp, regFPR src, eFlagsReg cr ) %{
10906   predicate(UseSSE==0);
10907   match(Set dst (ConvF2I src));
10908   effect( KILL tmp, KILL cr );
10909   format %{ "FLD    $src\t# Convert float to int \n\t"
10910             "FLDCW  trunc mode\n\t"
10911             "SUB    ESP,4\n\t"
10912             "FISTp  [ESP + #0]\n\t"
10913             "FLDCW  std/24-bit mode\n\t"
10914             "POP    EAX\n\t"
10915             "CMP    EAX,0x80000000\n\t"
10916             "JNE,s  fast\n\t"
10917             "FLD    $src\n\t"
10918             "CALL   d2i_wrapper\n"
10919       "fast:" %}
10920   // DPR2I_encoding works for FPR2I
10921   ins_encode( Push_Reg_FPR(src), DPR2I_encoding(src) );
10922   ins_pipe( pipe_slow );
10923 %}
10924 
10925 // Convert a float in xmm to an int reg.
10926 instruct convF2I_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
10927   predicate(UseSSE>=1);
10928   match(Set dst (ConvF2I src));
10929   effect( KILL tmp, KILL cr );
10930   format %{ "CVTTSS2SI $dst, $src\n\t"
10931             "CMP    $dst,0x80000000\n\t"
10932             "JNE,s  fast\n\t"
10933             "SUB    ESP, 4\n\t"
10934             "MOVSS  [ESP], $src\n\t"
10935             "FLD    [ESP]\n\t"
10936             "ADD    ESP, 4\n\t"
10937             "CALL   d2i_wrapper\n"
10938       "fast:" %}
10939   ins_encode %{
10940     Label fast;
10941     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
10942     __ cmpl($dst$$Register, 0x80000000);
10943     __ jccb(Assembler::notEqual, fast);
10944     __ subptr(rsp, 4);
10945     __ movflt(Address(rsp, 0), $src$$XMMRegister);
10946     __ fld_s(Address(rsp, 0));
10947     __ addptr(rsp, 4);
10948     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2i_wrapper())));
10949     __ bind(fast);
10950   %}
10951   ins_pipe( pipe_slow );
10952 %}
10953 
10954 instruct convFPR2L_reg_reg( eADXRegL dst, regFPR src, eFlagsReg cr ) %{
10955   predicate(UseSSE==0);
10956   match(Set dst (ConvF2L src));
10957   effect( KILL cr );
10958   format %{ "FLD    $src\t# Convert float to long\n\t"
10959             "FLDCW  trunc mode\n\t"
10960             "SUB    ESP,8\n\t"
10961             "FISTp  [ESP + #0]\n\t"
10962             "FLDCW  std/24-bit mode\n\t"
10963             "POP    EAX\n\t"
10964             "POP    EDX\n\t"
10965             "CMP    EDX,0x80000000\n\t"
10966             "JNE,s  fast\n\t"
10967             "TEST   EAX,EAX\n\t"
10968             "JNE,s  fast\n\t"
10969             "FLD    $src\n\t"
10970             "CALL   d2l_wrapper\n"
10971       "fast:" %}
10972   // DPR2L_encoding works for FPR2L
10973   ins_encode( Push_Reg_FPR(src), DPR2L_encoding(src) );
10974   ins_pipe( pipe_slow );
10975 %}
10976 
10977 // XMM lacks a float/double->long conversion, so use the old FPU stack.
10978 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
10979   predicate (UseSSE>=1);
10980   match(Set dst (ConvF2L src));
10981   effect( KILL cr );
10982   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
10983             "MOVSS  [ESP],$src\n\t"
10984             "FLD_S  [ESP]\n\t"
10985             "FLDCW  trunc mode\n\t"
10986             "FISTp  [ESP + #0]\n\t"
10987             "FLDCW  std/24-bit mode\n\t"
10988             "POP    EAX\n\t"
10989             "POP    EDX\n\t"
10990             "CMP    EDX,0x80000000\n\t"
10991             "JNE,s  fast\n\t"
10992             "TEST   EAX,EAX\n\t"
10993             "JNE,s  fast\n\t"
10994             "SUB    ESP,4\t# Convert float to long\n\t"
10995             "MOVSS  [ESP],$src\n\t"
10996             "FLD_S  [ESP]\n\t"
10997             "ADD    ESP,4\n\t"
10998             "CALL   d2l_wrapper\n"
10999       "fast:" %}
11000   ins_encode %{
11001     Label fast;
11002     __ subptr(rsp, 8);
11003     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11004     __ fld_s(Address(rsp, 0));
11005     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
11006     __ fistp_d(Address(rsp, 0));
11007     // Restore the rounding mode, mask the exception
11008     if (Compile::current()->in_24_bit_fp_mode()) {
11009       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
11010     } else {
11011       __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
11012     }
11013     // Load the converted long, adjust CPU stack
11014     __ pop(rax);
11015     __ pop(rdx);
11016     __ cmpl(rdx, 0x80000000);
11017     __ jccb(Assembler::notEqual, fast);
11018     __ testl(rax, rax);
11019     __ jccb(Assembler::notEqual, fast);
11020     __ subptr(rsp, 4);
11021     __ movflt(Address(rsp, 0), $src$$XMMRegister);
11022     __ fld_s(Address(rsp, 0));
11023     __ addptr(rsp, 4);
11024     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::d2l_wrapper())));
11025     __ bind(fast);
11026   %}
11027   ins_pipe( pipe_slow );
11028 %}
11029 
11030 instruct convI2DPR_reg(regDPR dst, stackSlotI src) %{
11031   predicate( UseSSE<=1 );
11032   match(Set dst (ConvI2D src));
11033   format %{ "FILD   $src\n\t"
11034             "FSTP   $dst" %}
11035   opcode(0xDB, 0x0);  /* DB /0 */
11036   ins_encode(Push_Mem_I(src), Pop_Reg_DPR(dst));
11037   ins_pipe( fpu_reg_mem );
11038 %}
11039 
11040 instruct convI2D_reg(regD dst, rRegI src) %{
11041   predicate( UseSSE>=2 && !UseXmmI2D );
11042   match(Set dst (ConvI2D src));
11043   format %{ "CVTSI2SD $dst,$src" %}
11044   ins_encode %{
11045     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
11046   %}
11047   ins_pipe( pipe_slow );
11048 %}
11049 
11050 instruct convI2D_mem(regD dst, memory mem) %{
11051   predicate( UseSSE>=2 );
11052   match(Set dst (ConvI2D (LoadI mem)));
11053   format %{ "CVTSI2SD $dst,$mem" %}
11054   ins_encode %{
11055     __ cvtsi2sdl ($dst$$XMMRegister, $mem$$Address);
11056   %}
11057   ins_pipe( pipe_slow );
11058 %}
11059 
11060 instruct convXI2D_reg(regD dst, rRegI src)
11061 %{
11062   predicate( UseSSE>=2 && UseXmmI2D );
11063   match(Set dst (ConvI2D src));
11064 
11065   format %{ "MOVD  $dst,$src\n\t"
11066             "CVTDQ2PD $dst,$dst\t# i2d" %}
11067   ins_encode %{
11068     __ movdl($dst$$XMMRegister, $src$$Register);
11069     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11070   %}
11071   ins_pipe(pipe_slow); // XXX
11072 %}
11073 
11074 instruct convI2DPR_mem(regDPR dst, memory mem) %{
11075   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11076   match(Set dst (ConvI2D (LoadI mem)));
11077   format %{ "FILD   $mem\n\t"
11078             "FSTP   $dst" %}
11079   opcode(0xDB);      /* DB /0 */
11080   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11081               Pop_Reg_DPR(dst));
11082   ins_pipe( fpu_reg_mem );
11083 %}
11084 
11085 // Convert a byte to a float; no rounding step needed.
11086 instruct conv24I2FPR_reg(regFPR dst, stackSlotI src) %{
11087   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11088   match(Set dst (ConvI2F src));
11089   format %{ "FILD   $src\n\t"
11090             "FSTP   $dst" %}
11091 
11092   opcode(0xDB, 0x0);  /* DB /0 */
11093   ins_encode(Push_Mem_I(src), Pop_Reg_FPR(dst));
11094   ins_pipe( fpu_reg_mem );
11095 %}
11096 
11097 // In 24-bit mode, force exponent rounding by storing back out
11098 instruct convI2FPR_SSF(stackSlotF dst, stackSlotI src) %{
11099   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11100   match(Set dst (ConvI2F src));
11101   ins_cost(200);
11102   format %{ "FILD   $src\n\t"
11103             "FSTP_S $dst" %}
11104   opcode(0xDB, 0x0);  /* DB /0 */
11105   ins_encode( Push_Mem_I(src),
11106               Pop_Mem_FPR(dst));
11107   ins_pipe( fpu_mem_mem );
11108 %}
11109 
11110 // In 24-bit mode, force exponent rounding by storing back out
11111 instruct convI2FPR_SSF_mem(stackSlotF dst, memory mem) %{
11112   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11113   match(Set dst (ConvI2F (LoadI mem)));
11114   ins_cost(200);
11115   format %{ "FILD   $mem\n\t"
11116             "FSTP_S $dst" %}
11117   opcode(0xDB);  /* DB /0 */
11118   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11119               Pop_Mem_FPR(dst));
11120   ins_pipe( fpu_mem_mem );
11121 %}
11122 
11123 // This instruction does not round to 24-bits
11124 instruct convI2FPR_reg(regFPR dst, stackSlotI src) %{
11125   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11126   match(Set dst (ConvI2F src));
11127   format %{ "FILD   $src\n\t"
11128             "FSTP   $dst" %}
11129   opcode(0xDB, 0x0);  /* DB /0 */
11130   ins_encode( Push_Mem_I(src),
11131               Pop_Reg_FPR(dst));
11132   ins_pipe( fpu_reg_mem );
11133 %}
11134 
11135 // This instruction does not round to 24-bits
11136 instruct convI2FPR_mem(regFPR dst, memory mem) %{
11137   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11138   match(Set dst (ConvI2F (LoadI mem)));
11139   format %{ "FILD   $mem\n\t"
11140             "FSTP   $dst" %}
11141   opcode(0xDB);      /* DB /0 */
11142   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11143               Pop_Reg_FPR(dst));
11144   ins_pipe( fpu_reg_mem );
11145 %}
11146 
11147 // Convert an int to a float in xmm; no rounding step needed.
11148 instruct convI2F_reg(regF dst, rRegI src) %{
11149   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11150   match(Set dst (ConvI2F src));
11151   format %{ "CVTSI2SS $dst, $src" %}
11152   ins_encode %{
11153     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
11154   %}
11155   ins_pipe( pipe_slow );
11156 %}
11157 
11158  instruct convXI2F_reg(regF dst, rRegI src)
11159 %{
11160   predicate( UseSSE>=2 && UseXmmI2F );
11161   match(Set dst (ConvI2F src));
11162 
11163   format %{ "MOVD  $dst,$src\n\t"
11164             "CVTDQ2PS $dst,$dst\t# i2f" %}
11165   ins_encode %{
11166     __ movdl($dst$$XMMRegister, $src$$Register);
11167     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11168   %}
11169   ins_pipe(pipe_slow); // XXX
11170 %}
11171 
11172 instruct convI2L_reg( eRegL dst, rRegI src, eFlagsReg cr) %{
11173   match(Set dst (ConvI2L src));
11174   effect(KILL cr);
11175   ins_cost(375);
11176   format %{ "MOV    $dst.lo,$src\n\t"
11177             "MOV    $dst.hi,$src\n\t"
11178             "SAR    $dst.hi,31" %}
11179   ins_encode(convert_int_long(dst,src));
11180   ins_pipe( ialu_reg_reg_long );
11181 %}
11182 
11183 // Zero-extend convert int to long
11184 instruct convI2L_reg_zex(eRegL dst, rRegI src, immL_32bits mask, eFlagsReg flags ) %{
11185   match(Set dst (AndL (ConvI2L src) mask) );
11186   effect( KILL flags );
11187   ins_cost(250);
11188   format %{ "MOV    $dst.lo,$src\n\t"
11189             "XOR    $dst.hi,$dst.hi" %}
11190   opcode(0x33); // XOR
11191   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11192   ins_pipe( ialu_reg_reg_long );
11193 %}
11194 
11195 // Zero-extend long
11196 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11197   match(Set dst (AndL src mask) );
11198   effect( KILL flags );
11199   ins_cost(250);
11200   format %{ "MOV    $dst.lo,$src.lo\n\t"
11201             "XOR    $dst.hi,$dst.hi\n\t" %}
11202   opcode(0x33); // XOR
11203   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11204   ins_pipe( ialu_reg_reg_long );
11205 %}
11206 
11207 instruct convL2DPR_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11208   predicate (UseSSE<=1);
11209   match(Set dst (ConvL2D src));
11210   effect( KILL cr );
11211   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11212             "PUSH   $src.lo\n\t"
11213             "FILD   ST,[ESP + #0]\n\t"
11214             "ADD    ESP,8\n\t"
11215             "FSTP_D $dst\t# D-round" %}
11216   opcode(0xDF, 0x5);  /* DF /5 */
11217   ins_encode(convert_long_double(src), Pop_Mem_DPR(dst));
11218   ins_pipe( pipe_slow );
11219 %}
11220 
11221 instruct convL2D_reg( regD dst, eRegL src, eFlagsReg cr) %{
11222   predicate (UseSSE>=2);
11223   match(Set dst (ConvL2D src));
11224   effect( KILL cr );
11225   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11226             "PUSH   $src.lo\n\t"
11227             "FILD_D [ESP]\n\t"
11228             "FSTP_D [ESP]\n\t"
11229             "MOVSD  $dst,[ESP]\n\t"
11230             "ADD    ESP,8" %}
11231   opcode(0xDF, 0x5);  /* DF /5 */
11232   ins_encode(convert_long_double2(src), Push_ResultD(dst));
11233   ins_pipe( pipe_slow );
11234 %}
11235 
11236 instruct convL2F_reg( regF dst, eRegL src, eFlagsReg cr) %{
11237   predicate (UseSSE>=1);
11238   match(Set dst (ConvL2F src));
11239   effect( KILL cr );
11240   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11241             "PUSH   $src.lo\n\t"
11242             "FILD_D [ESP]\n\t"
11243             "FSTP_S [ESP]\n\t"
11244             "MOVSS  $dst,[ESP]\n\t"
11245             "ADD    ESP,8" %}
11246   opcode(0xDF, 0x5);  /* DF /5 */
11247   ins_encode(convert_long_double2(src), Push_ResultF(dst,0x8));
11248   ins_pipe( pipe_slow );
11249 %}
11250 
11251 instruct convL2FPR_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11252   match(Set dst (ConvL2F src));
11253   effect( KILL cr );
11254   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11255             "PUSH   $src.lo\n\t"
11256             "FILD   ST,[ESP + #0]\n\t"
11257             "ADD    ESP,8\n\t"
11258             "FSTP_S $dst\t# F-round" %}
11259   opcode(0xDF, 0x5);  /* DF /5 */
11260   ins_encode(convert_long_double(src), Pop_Mem_FPR(dst));
11261   ins_pipe( pipe_slow );
11262 %}
11263 
11264 instruct convL2I_reg( rRegI dst, eRegL src ) %{
11265   match(Set dst (ConvL2I src));
11266   effect( DEF dst, USE src );
11267   format %{ "MOV    $dst,$src.lo" %}
11268   ins_encode(enc_CopyL_Lo(dst,src));
11269   ins_pipe( ialu_reg_reg );
11270 %}
11271 
11272 
11273 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
11274   match(Set dst (MoveF2I src));
11275   effect( DEF dst, USE src );
11276   ins_cost(100);
11277   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11278   ins_encode %{
11279     __ movl($dst$$Register, Address(rsp, $src$$disp));
11280   %}
11281   ins_pipe( ialu_reg_mem );
11282 %}
11283 
11284 instruct MoveFPR2I_reg_stack(stackSlotI dst, regFPR src) %{
11285   predicate(UseSSE==0);
11286   match(Set dst (MoveF2I src));
11287   effect( DEF dst, USE src );
11288 
11289   ins_cost(125);
11290   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11291   ins_encode( Pop_Mem_Reg_FPR(dst, src) );
11292   ins_pipe( fpu_mem_reg );
11293 %}
11294 
11295 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regF src) %{
11296   predicate(UseSSE>=1);
11297   match(Set dst (MoveF2I src));
11298   effect( DEF dst, USE src );
11299 
11300   ins_cost(95);
11301   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11302   ins_encode %{
11303     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
11304   %}
11305   ins_pipe( pipe_slow );
11306 %}
11307 
11308 instruct MoveF2I_reg_reg_sse(rRegI dst, regF src) %{
11309   predicate(UseSSE>=2);
11310   match(Set dst (MoveF2I src));
11311   effect( DEF dst, USE src );
11312   ins_cost(85);
11313   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11314   ins_encode %{
11315     __ movdl($dst$$Register, $src$$XMMRegister);
11316   %}
11317   ins_pipe( pipe_slow );
11318 %}
11319 
11320 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
11321   match(Set dst (MoveI2F src));
11322   effect( DEF dst, USE src );
11323 
11324   ins_cost(100);
11325   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11326   ins_encode %{
11327     __ movl(Address(rsp, $dst$$disp), $src$$Register);
11328   %}
11329   ins_pipe( ialu_mem_reg );
11330 %}
11331 
11332 
11333 instruct MoveI2FPR_stack_reg(regFPR dst, stackSlotI src) %{
11334   predicate(UseSSE==0);
11335   match(Set dst (MoveI2F src));
11336   effect(DEF dst, USE src);
11337 
11338   ins_cost(125);
11339   format %{ "FLD_S  $src\n\t"
11340             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11341   opcode(0xD9);               /* D9 /0, FLD m32real */
11342   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11343               Pop_Reg_FPR(dst) );
11344   ins_pipe( fpu_reg_mem );
11345 %}
11346 
11347 instruct MoveI2F_stack_reg_sse(regF dst, stackSlotI src) %{
11348   predicate(UseSSE>=1);
11349   match(Set dst (MoveI2F src));
11350   effect( DEF dst, USE src );
11351 
11352   ins_cost(95);
11353   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11354   ins_encode %{
11355     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
11356   %}
11357   ins_pipe( pipe_slow );
11358 %}
11359 
11360 instruct MoveI2F_reg_reg_sse(regF dst, rRegI src) %{
11361   predicate(UseSSE>=2);
11362   match(Set dst (MoveI2F src));
11363   effect( DEF dst, USE src );
11364 
11365   ins_cost(85);
11366   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11367   ins_encode %{
11368     __ movdl($dst$$XMMRegister, $src$$Register);
11369   %}
11370   ins_pipe( pipe_slow );
11371 %}
11372 
11373 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11374   match(Set dst (MoveD2L src));
11375   effect(DEF dst, USE src);
11376 
11377   ins_cost(250);
11378   format %{ "MOV    $dst.lo,$src\n\t"
11379             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11380   opcode(0x8B, 0x8B);
11381   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11382   ins_pipe( ialu_mem_long_reg );
11383 %}
11384 
11385 instruct MoveDPR2L_reg_stack(stackSlotL dst, regDPR src) %{
11386   predicate(UseSSE<=1);
11387   match(Set dst (MoveD2L src));
11388   effect(DEF dst, USE src);
11389 
11390   ins_cost(125);
11391   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11392   ins_encode( Pop_Mem_Reg_DPR(dst, src) );
11393   ins_pipe( fpu_mem_reg );
11394 %}
11395 
11396 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regD src) %{
11397   predicate(UseSSE>=2);
11398   match(Set dst (MoveD2L src));
11399   effect(DEF dst, USE src);
11400   ins_cost(95);
11401   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11402   ins_encode %{
11403     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
11404   %}
11405   ins_pipe( pipe_slow );
11406 %}
11407 
11408 instruct MoveD2L_reg_reg_sse(eRegL dst, regD src, regD tmp) %{
11409   predicate(UseSSE>=2);
11410   match(Set dst (MoveD2L src));
11411   effect(DEF dst, USE src, TEMP tmp);
11412   ins_cost(85);
11413   format %{ "MOVD   $dst.lo,$src\n\t"
11414             "PSHUFLW $tmp,$src,0x4E\n\t"
11415             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11416   ins_encode %{
11417     __ movdl($dst$$Register, $src$$XMMRegister);
11418     __ pshuflw($tmp$$XMMRegister, $src$$XMMRegister, 0x4e);
11419     __ movdl(HIGH_FROM_LOW($dst$$Register), $tmp$$XMMRegister);
11420   %}
11421   ins_pipe( pipe_slow );
11422 %}
11423 
11424 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11425   match(Set dst (MoveL2D src));
11426   effect(DEF dst, USE src);
11427 
11428   ins_cost(200);
11429   format %{ "MOV    $dst,$src.lo\n\t"
11430             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11431   opcode(0x89, 0x89);
11432   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11433   ins_pipe( ialu_mem_long_reg );
11434 %}
11435 
11436 
11437 instruct MoveL2DPR_stack_reg(regDPR dst, stackSlotL src) %{
11438   predicate(UseSSE<=1);
11439   match(Set dst (MoveL2D src));
11440   effect(DEF dst, USE src);
11441   ins_cost(125);
11442 
11443   format %{ "FLD_D  $src\n\t"
11444             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11445   opcode(0xDD);               /* DD /0, FLD m64real */
11446   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11447               Pop_Reg_DPR(dst) );
11448   ins_pipe( fpu_reg_mem );
11449 %}
11450 
11451 
11452 instruct MoveL2D_stack_reg_sse(regD dst, stackSlotL src) %{
11453   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11454   match(Set dst (MoveL2D src));
11455   effect(DEF dst, USE src);
11456 
11457   ins_cost(95);
11458   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11459   ins_encode %{
11460     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11461   %}
11462   ins_pipe( pipe_slow );
11463 %}
11464 
11465 instruct MoveL2D_stack_reg_sse_partial(regD dst, stackSlotL src) %{
11466   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11467   match(Set dst (MoveL2D src));
11468   effect(DEF dst, USE src);
11469 
11470   ins_cost(95);
11471   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11472   ins_encode %{
11473     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
11474   %}
11475   ins_pipe( pipe_slow );
11476 %}
11477 
11478 instruct MoveL2D_reg_reg_sse(regD dst, eRegL src, regD tmp) %{
11479   predicate(UseSSE>=2);
11480   match(Set dst (MoveL2D src));
11481   effect(TEMP dst, USE src, TEMP tmp);
11482   ins_cost(85);
11483   format %{ "MOVD   $dst,$src.lo\n\t"
11484             "MOVD   $tmp,$src.hi\n\t"
11485             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11486   ins_encode %{
11487     __ movdl($dst$$XMMRegister, $src$$Register);
11488     __ movdl($tmp$$XMMRegister, HIGH_FROM_LOW($src$$Register));
11489     __ punpckldq($dst$$XMMRegister, $tmp$$XMMRegister);
11490   %}
11491   ins_pipe( pipe_slow );
11492 %}
11493 
11494 
11495 // =======================================================================
11496 // fast clearing of an array
11497 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11498   predicate(!UseFastStosb);
11499   match(Set dummy (ClearArray cnt base));
11500   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11501   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11502             "SHL    ECX,1\t# Convert doublewords to words\n\t"
11503             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11504   ins_encode %{ 
11505     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11506   %}
11507   ins_pipe( pipe_slow );
11508 %}
11509 
11510 instruct rep_fast_stosb(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11511   predicate(UseFastStosb);
11512   match(Set dummy (ClearArray cnt base));
11513   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11514   format %{ "XOR    EAX,EAX\t# ClearArray:\n\t"
11515             "SHL    ECX,3\t# Convert doublewords to bytes\n\t"
11516             "REP STOSB\t# store EAX into [EDI++] while ECX--" %}
11517   ins_encode %{ 
11518     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
11519   %}
11520   ins_pipe( pipe_slow );
11521 %}
11522 
11523 instruct string_compare(eDIRegP str1, eCXRegI cnt1, eSIRegP str2, eDXRegI cnt2,
11524                         eAXRegI result, regD tmp1, eFlagsReg cr) %{
11525   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
11526   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
11527 
11528   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
11529   ins_encode %{
11530     __ string_compare($str1$$Register, $str2$$Register,
11531                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
11532                       $tmp1$$XMMRegister);
11533   %}
11534   ins_pipe( pipe_slow );
11535 %}
11536 
11537 // fast string equals
11538 instruct string_equals(eDIRegP str1, eSIRegP str2, eCXRegI cnt, eAXRegI result,
11539                        regD tmp1, regD tmp2, eBXRegI tmp3, eFlagsReg cr) %{
11540   match(Set result (StrEquals (Binary str1 str2) cnt));
11541   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
11542 
11543   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
11544   ins_encode %{
11545     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
11546                           $cnt$$Register, $result$$Register, $tmp3$$Register,
11547                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11548   %}
11549   ins_pipe( pipe_slow );
11550 %}
11551 
11552 // fast search of substring with known size.
11553 instruct string_indexof_con(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, immI int_cnt2,
11554                             eBXRegI result, regD vec, eAXRegI cnt2, eCXRegI tmp, eFlagsReg cr) %{
11555   predicate(UseSSE42Intrinsics);
11556   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
11557   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
11558 
11559   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
11560   ins_encode %{
11561     int icnt2 = (int)$int_cnt2$$constant;
11562     if (icnt2 >= 8) {
11563       // IndexOf for constant substrings with size >= 8 elements
11564       // which don't need to be loaded through stack.
11565       __ string_indexofC8($str1$$Register, $str2$$Register,
11566                           $cnt1$$Register, $cnt2$$Register,
11567                           icnt2, $result$$Register,
11568                           $vec$$XMMRegister, $tmp$$Register);
11569     } else {
11570       // Small strings are loaded through stack if they cross page boundary.
11571       __ string_indexof($str1$$Register, $str2$$Register,
11572                         $cnt1$$Register, $cnt2$$Register,
11573                         icnt2, $result$$Register,
11574                         $vec$$XMMRegister, $tmp$$Register);
11575     }
11576   %}
11577   ins_pipe( pipe_slow );
11578 %}
11579 
11580 instruct string_indexof(eDIRegP str1, eDXRegI cnt1, eSIRegP str2, eAXRegI cnt2,
11581                         eBXRegI result, regD vec, eCXRegI tmp, eFlagsReg cr) %{
11582   predicate(UseSSE42Intrinsics);
11583   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
11584   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
11585 
11586   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
11587   ins_encode %{
11588     __ string_indexof($str1$$Register, $str2$$Register,
11589                       $cnt1$$Register, $cnt2$$Register,
11590                       (-1), $result$$Register,
11591                       $vec$$XMMRegister, $tmp$$Register);
11592   %}
11593   ins_pipe( pipe_slow );
11594 %}
11595 
11596 // fast array equals
11597 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI result,
11598                       regD tmp1, regD tmp2, eCXRegI tmp3, eBXRegI tmp4, eFlagsReg cr)
11599 %{
11600   match(Set result (AryEq ary1 ary2));
11601   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
11602   //ins_cost(300);
11603 
11604   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
11605   ins_encode %{
11606     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
11607                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
11608                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
11609   %}
11610   ins_pipe( pipe_slow );
11611 %}
11612 
11613 // encode char[] to byte[] in ISO_8859_1
11614 instruct encode_iso_array(eSIRegP src, eDIRegP dst, eDXRegI len,
11615                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
11616                           eCXRegI tmp5, eAXRegI result, eFlagsReg cr) %{
11617   match(Set result (EncodeISOArray src (Binary dst len)));
11618   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
11619 
11620   format %{ "Encode array $src,$dst,$len -> $result    // KILL ECX, EDX, $tmp1, $tmp2, $tmp3, $tmp4, ESI, EDI " %}
11621   ins_encode %{
11622     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
11623                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
11624                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
11625   %}
11626   ins_pipe( pipe_slow );
11627 %}
11628 
11629 
11630 //----------Control Flow Instructions------------------------------------------
11631 // Signed compare Instructions
11632 instruct compI_eReg(eFlagsReg cr, rRegI op1, rRegI op2) %{
11633   match(Set cr (CmpI op1 op2));
11634   effect( DEF cr, USE op1, USE op2 );
11635   format %{ "CMP    $op1,$op2" %}
11636   opcode(0x3B);  /* Opcode 3B /r */
11637   ins_encode( OpcP, RegReg( op1, op2) );
11638   ins_pipe( ialu_cr_reg_reg );
11639 %}
11640 
11641 instruct compI_eReg_imm(eFlagsReg cr, rRegI op1, immI op2) %{
11642   match(Set cr (CmpI op1 op2));
11643   effect( DEF cr, USE op1 );
11644   format %{ "CMP    $op1,$op2" %}
11645   opcode(0x81,0x07);  /* Opcode 81 /7 */
11646   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11647   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11648   ins_pipe( ialu_cr_reg_imm );
11649 %}
11650 
11651 // Cisc-spilled version of cmpI_eReg
11652 instruct compI_eReg_mem(eFlagsReg cr, rRegI op1, memory op2) %{
11653   match(Set cr (CmpI op1 (LoadI op2)));
11654 
11655   format %{ "CMP    $op1,$op2" %}
11656   ins_cost(500);
11657   opcode(0x3B);  /* Opcode 3B /r */
11658   ins_encode( OpcP, RegMem( op1, op2) );
11659   ins_pipe( ialu_cr_reg_mem );
11660 %}
11661 
11662 instruct testI_reg( eFlagsReg cr, rRegI src, immI0 zero ) %{
11663   match(Set cr (CmpI src zero));
11664   effect( DEF cr, USE src );
11665 
11666   format %{ "TEST   $src,$src" %}
11667   opcode(0x85);
11668   ins_encode( OpcP, RegReg( src, src ) );
11669   ins_pipe( ialu_cr_reg_imm );
11670 %}
11671 
11672 instruct testI_reg_imm( eFlagsReg cr, rRegI src, immI con, immI0 zero ) %{
11673   match(Set cr (CmpI (AndI src con) zero));
11674 
11675   format %{ "TEST   $src,$con" %}
11676   opcode(0xF7,0x00);
11677   ins_encode( OpcP, RegOpc(src), Con32(con) );
11678   ins_pipe( ialu_cr_reg_imm );
11679 %}
11680 
11681 instruct testI_reg_mem( eFlagsReg cr, rRegI src, memory mem, immI0 zero ) %{
11682   match(Set cr (CmpI (AndI src mem) zero));
11683 
11684   format %{ "TEST   $src,$mem" %}
11685   opcode(0x85);
11686   ins_encode( OpcP, RegMem( src, mem ) );
11687   ins_pipe( ialu_cr_reg_mem );
11688 %}
11689 
11690 // Unsigned compare Instructions; really, same as signed except they
11691 // produce an eFlagsRegU instead of eFlagsReg.
11692 instruct compU_eReg(eFlagsRegU cr, rRegI op1, rRegI op2) %{
11693   match(Set cr (CmpU op1 op2));
11694 
11695   format %{ "CMPu   $op1,$op2" %}
11696   opcode(0x3B);  /* Opcode 3B /r */
11697   ins_encode( OpcP, RegReg( op1, op2) );
11698   ins_pipe( ialu_cr_reg_reg );
11699 %}
11700 
11701 instruct compU_eReg_imm(eFlagsRegU cr, rRegI op1, immI op2) %{
11702   match(Set cr (CmpU op1 op2));
11703 
11704   format %{ "CMPu   $op1,$op2" %}
11705   opcode(0x81,0x07);  /* Opcode 81 /7 */
11706   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11707   ins_pipe( ialu_cr_reg_imm );
11708 %}
11709 
11710 // // Cisc-spilled version of cmpU_eReg
11711 instruct compU_eReg_mem(eFlagsRegU cr, rRegI op1, memory op2) %{
11712   match(Set cr (CmpU op1 (LoadI op2)));
11713 
11714   format %{ "CMPu   $op1,$op2" %}
11715   ins_cost(500);
11716   opcode(0x3B);  /* Opcode 3B /r */
11717   ins_encode( OpcP, RegMem( op1, op2) );
11718   ins_pipe( ialu_cr_reg_mem );
11719 %}
11720 
11721 // // Cisc-spilled version of cmpU_eReg
11722 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, rRegI op2) %{
11723 //  match(Set cr (CmpU (LoadI op1) op2));
11724 //
11725 //  format %{ "CMPu   $op1,$op2" %}
11726 //  ins_cost(500);
11727 //  opcode(0x39);  /* Opcode 39 /r */
11728 //  ins_encode( OpcP, RegMem( op1, op2) );
11729 //%}
11730 
11731 instruct testU_reg( eFlagsRegU cr, rRegI src, immI0 zero ) %{
11732   match(Set cr (CmpU src zero));
11733 
11734   format %{ "TESTu  $src,$src" %}
11735   opcode(0x85);
11736   ins_encode( OpcP, RegReg( src, src ) );
11737   ins_pipe( ialu_cr_reg_imm );
11738 %}
11739 
11740 // Unsigned pointer compare Instructions
11741 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
11742   match(Set cr (CmpP op1 op2));
11743 
11744   format %{ "CMPu   $op1,$op2" %}
11745   opcode(0x3B);  /* Opcode 3B /r */
11746   ins_encode( OpcP, RegReg( op1, op2) );
11747   ins_pipe( ialu_cr_reg_reg );
11748 %}
11749 
11750 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
11751   match(Set cr (CmpP op1 op2));
11752 
11753   format %{ "CMPu   $op1,$op2" %}
11754   opcode(0x81,0x07);  /* Opcode 81 /7 */
11755   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11756   ins_pipe( ialu_cr_reg_imm );
11757 %}
11758 
11759 // // Cisc-spilled version of cmpP_eReg
11760 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
11761   match(Set cr (CmpP op1 (LoadP op2)));
11762 
11763   format %{ "CMPu   $op1,$op2" %}
11764   ins_cost(500);
11765   opcode(0x3B);  /* Opcode 3B /r */
11766   ins_encode( OpcP, RegMem( op1, op2) );
11767   ins_pipe( ialu_cr_reg_mem );
11768 %}
11769 
11770 // // Cisc-spilled version of cmpP_eReg
11771 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
11772 //  match(Set cr (CmpP (LoadP op1) op2));
11773 //
11774 //  format %{ "CMPu   $op1,$op2" %}
11775 //  ins_cost(500);
11776 //  opcode(0x39);  /* Opcode 39 /r */
11777 //  ins_encode( OpcP, RegMem( op1, op2) );
11778 //%}
11779 
11780 // Compare raw pointer (used in out-of-heap check).
11781 // Only works because non-oop pointers must be raw pointers
11782 // and raw pointers have no anti-dependencies.
11783 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
11784   predicate( n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none );
11785   match(Set cr (CmpP op1 (LoadP op2)));
11786 
11787   format %{ "CMPu   $op1,$op2" %}
11788   opcode(0x3B);  /* Opcode 3B /r */
11789   ins_encode( OpcP, RegMem( op1, op2) );
11790   ins_pipe( ialu_cr_reg_mem );
11791 %}
11792 
11793 //
11794 // This will generate a signed flags result. This should be ok
11795 // since any compare to a zero should be eq/neq.
11796 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
11797   match(Set cr (CmpP src zero));
11798 
11799   format %{ "TEST   $src,$src" %}
11800   opcode(0x85);
11801   ins_encode( OpcP, RegReg( src, src ) );
11802   ins_pipe( ialu_cr_reg_imm );
11803 %}
11804 
11805 // Cisc-spilled version of testP_reg
11806 // This will generate a signed flags result. This should be ok
11807 // since any compare to a zero should be eq/neq.
11808 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
11809   match(Set cr (CmpP (LoadP op) zero));
11810 
11811   format %{ "TEST   $op,0xFFFFFFFF" %}
11812   ins_cost(500);
11813   opcode(0xF7);               /* Opcode F7 /0 */
11814   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
11815   ins_pipe( ialu_cr_reg_imm );
11816 %}
11817 
11818 // Yanked all unsigned pointer compare operations.
11819 // Pointer compares are done with CmpP which is already unsigned.
11820 
11821 //----------Max and Min--------------------------------------------------------
11822 // Min Instructions
11823 ////
11824 //   *** Min and Max using the conditional move are slower than the
11825 //   *** branch version on a Pentium III.
11826 // // Conditional move for min
11827 //instruct cmovI_reg_lt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11828 //  effect( USE_DEF op2, USE op1, USE cr );
11829 //  format %{ "CMOVlt $op2,$op1\t! min" %}
11830 //  opcode(0x4C,0x0F);
11831 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11832 //  ins_pipe( pipe_cmov_reg );
11833 //%}
11834 //
11835 //// Min Register with Register (P6 version)
11836 //instruct minI_eReg_p6( rRegI op1, rRegI op2 ) %{
11837 //  predicate(VM_Version::supports_cmov() );
11838 //  match(Set op2 (MinI op1 op2));
11839 //  ins_cost(200);
11840 //  expand %{
11841 //    eFlagsReg cr;
11842 //    compI_eReg(cr,op1,op2);
11843 //    cmovI_reg_lt(op2,op1,cr);
11844 //  %}
11845 //%}
11846 
11847 // Min Register with Register (generic version)
11848 instruct minI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11849   match(Set dst (MinI dst src));
11850   effect(KILL flags);
11851   ins_cost(300);
11852 
11853   format %{ "MIN    $dst,$src" %}
11854   opcode(0xCC);
11855   ins_encode( min_enc(dst,src) );
11856   ins_pipe( pipe_slow );
11857 %}
11858 
11859 // Max Register with Register
11860 //   *** Min and Max using the conditional move are slower than the
11861 //   *** branch version on a Pentium III.
11862 // // Conditional move for max
11863 //instruct cmovI_reg_gt( rRegI op2, rRegI op1, eFlagsReg cr ) %{
11864 //  effect( USE_DEF op2, USE op1, USE cr );
11865 //  format %{ "CMOVgt $op2,$op1\t! max" %}
11866 //  opcode(0x4F,0x0F);
11867 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
11868 //  ins_pipe( pipe_cmov_reg );
11869 //%}
11870 //
11871 // // Max Register with Register (P6 version)
11872 //instruct maxI_eReg_p6( rRegI op1, rRegI op2 ) %{
11873 //  predicate(VM_Version::supports_cmov() );
11874 //  match(Set op2 (MaxI op1 op2));
11875 //  ins_cost(200);
11876 //  expand %{
11877 //    eFlagsReg cr;
11878 //    compI_eReg(cr,op1,op2);
11879 //    cmovI_reg_gt(op2,op1,cr);
11880 //  %}
11881 //%}
11882 
11883 // Max Register with Register (generic version)
11884 instruct maxI_eReg(rRegI dst, rRegI src, eFlagsReg flags) %{
11885   match(Set dst (MaxI dst src));
11886   effect(KILL flags);
11887   ins_cost(300);
11888 
11889   format %{ "MAX    $dst,$src" %}
11890   opcode(0xCC);
11891   ins_encode( max_enc(dst,src) );
11892   ins_pipe( pipe_slow );
11893 %}
11894 
11895 // ============================================================================
11896 // Counted Loop limit node which represents exact final iterator value.
11897 // Note: the resulting value should fit into integer range since
11898 // counted loops have limit check on overflow.
11899 instruct loopLimit_eReg(eAXRegI limit, nadxRegI init, immI stride, eDXRegI limit_hi, nadxRegI tmp, eFlagsReg flags) %{
11900   match(Set limit (LoopLimit (Binary init limit) stride));
11901   effect(TEMP limit_hi, TEMP tmp, KILL flags);
11902   ins_cost(300);
11903 
11904   format %{ "loopLimit $init,$limit,$stride  # $limit = $init + $stride *( $limit - $init + $stride -1)/ $stride, kills $limit_hi" %}
11905   ins_encode %{
11906     int strd = (int)$stride$$constant;
11907     assert(strd != 1 && strd != -1, "sanity");
11908     int m1 = (strd > 0) ? 1 : -1;
11909     // Convert limit to long (EAX:EDX)
11910     __ cdql();
11911     // Convert init to long (init:tmp)
11912     __ movl($tmp$$Register, $init$$Register);
11913     __ sarl($tmp$$Register, 31);
11914     // $limit - $init
11915     __ subl($limit$$Register, $init$$Register);
11916     __ sbbl($limit_hi$$Register, $tmp$$Register);
11917     // + ($stride - 1)
11918     if (strd > 0) {
11919       __ addl($limit$$Register, (strd - 1));
11920       __ adcl($limit_hi$$Register, 0);
11921       __ movl($tmp$$Register, strd);
11922     } else {
11923       __ addl($limit$$Register, (strd + 1));
11924       __ adcl($limit_hi$$Register, -1);
11925       __ lneg($limit_hi$$Register, $limit$$Register);
11926       __ movl($tmp$$Register, -strd);
11927     }
11928     // signed devision: (EAX:EDX) / pos_stride
11929     __ idivl($tmp$$Register);
11930     if (strd < 0) {
11931       // restore sign
11932       __ negl($tmp$$Register);
11933     }
11934     // (EAX) * stride
11935     __ mull($tmp$$Register);
11936     // + init (ignore upper bits)
11937     __ addl($limit$$Register, $init$$Register);
11938   %}
11939   ins_pipe( pipe_slow );
11940 %}
11941 
11942 // ============================================================================
11943 // Branch Instructions
11944 // Jump Table
11945 instruct jumpXtnd(rRegI switch_val) %{
11946   match(Jump switch_val);
11947   ins_cost(350);
11948   format %{  "JMP    [$constantaddress](,$switch_val,1)\n\t" %}
11949   ins_encode %{
11950     // Jump to Address(table_base + switch_reg)
11951     Address index(noreg, $switch_val$$Register, Address::times_1);
11952     __ jump(ArrayAddress($constantaddress, index));
11953   %}
11954   ins_pipe(pipe_jmp);
11955 %}
11956 
11957 // Jump Direct - Label defines a relative address from JMP+1
11958 instruct jmpDir(label labl) %{
11959   match(Goto);
11960   effect(USE labl);
11961 
11962   ins_cost(300);
11963   format %{ "JMP    $labl" %}
11964   size(5);
11965   ins_encode %{
11966     Label* L = $labl$$label;
11967     __ jmp(*L, false); // Always long jump
11968   %}
11969   ins_pipe( pipe_jmp );
11970 %}
11971 
11972 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11973 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
11974   match(If cop cr);
11975   effect(USE labl);
11976 
11977   ins_cost(300);
11978   format %{ "J$cop    $labl" %}
11979   size(6);
11980   ins_encode %{
11981     Label* L = $labl$$label;
11982     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11983   %}
11984   ins_pipe( pipe_jcc );
11985 %}
11986 
11987 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11988 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
11989   match(CountedLoopEnd cop cr);
11990   effect(USE labl);
11991 
11992   ins_cost(300);
11993   format %{ "J$cop    $labl\t# Loop end" %}
11994   size(6);
11995   ins_encode %{
11996     Label* L = $labl$$label;
11997     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11998   %}
11999   ins_pipe( pipe_jcc );
12000 %}
12001 
12002 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12003 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12004   match(CountedLoopEnd cop cmp);
12005   effect(USE labl);
12006 
12007   ins_cost(300);
12008   format %{ "J$cop,u  $labl\t# Loop end" %}
12009   size(6);
12010   ins_encode %{
12011     Label* L = $labl$$label;
12012     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12013   %}
12014   ins_pipe( pipe_jcc );
12015 %}
12016 
12017 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12018   match(CountedLoopEnd cop cmp);
12019   effect(USE labl);
12020 
12021   ins_cost(200);
12022   format %{ "J$cop,u  $labl\t# Loop end" %}
12023   size(6);
12024   ins_encode %{
12025     Label* L = $labl$$label;
12026     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12027   %}
12028   ins_pipe( pipe_jcc );
12029 %}
12030 
12031 // Jump Direct Conditional - using unsigned comparison
12032 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12033   match(If cop cmp);
12034   effect(USE labl);
12035 
12036   ins_cost(300);
12037   format %{ "J$cop,u  $labl" %}
12038   size(6);
12039   ins_encode %{
12040     Label* L = $labl$$label;
12041     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12042   %}
12043   ins_pipe(pipe_jcc);
12044 %}
12045 
12046 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12047   match(If cop cmp);
12048   effect(USE labl);
12049 
12050   ins_cost(200);
12051   format %{ "J$cop,u  $labl" %}
12052   size(6);
12053   ins_encode %{
12054     Label* L = $labl$$label;
12055     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
12056   %}
12057   ins_pipe(pipe_jcc);
12058 %}
12059 
12060 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12061   match(If cop cmp);
12062   effect(USE labl);
12063 
12064   ins_cost(200);
12065   format %{ $$template
12066     if ($cop$$cmpcode == Assembler::notEqual) {
12067       $$emit$$"JP,u   $labl\n\t"
12068       $$emit$$"J$cop,u   $labl"
12069     } else {
12070       $$emit$$"JP,u   done\n\t"
12071       $$emit$$"J$cop,u   $labl\n\t"
12072       $$emit$$"done:"
12073     }
12074   %}
12075   ins_encode %{
12076     Label* l = $labl$$label;
12077     if ($cop$$cmpcode == Assembler::notEqual) {
12078       __ jcc(Assembler::parity, *l, false);
12079       __ jcc(Assembler::notEqual, *l, false);
12080     } else if ($cop$$cmpcode == Assembler::equal) {
12081       Label done;
12082       __ jccb(Assembler::parity, done);
12083       __ jcc(Assembler::equal, *l, false);
12084       __ bind(done);
12085     } else {
12086        ShouldNotReachHere();
12087     }
12088   %}
12089   ins_pipe(pipe_jcc);
12090 %}
12091 
12092 // ============================================================================
12093 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12094 // array for an instance of the superklass.  Set a hidden internal cache on a
12095 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12096 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12097 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12098   match(Set result (PartialSubtypeCheck sub super));
12099   effect( KILL rcx, KILL cr );
12100 
12101   ins_cost(1100);  // slightly larger than the next version
12102   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12103             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12104             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12105             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12106             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12107             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12108             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12109      "miss:\t" %}
12110 
12111   opcode(0x1); // Force a XOR of EDI
12112   ins_encode( enc_PartialSubtypeCheck() );
12113   ins_pipe( pipe_slow );
12114 %}
12115 
12116 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12117   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12118   effect( KILL rcx, KILL result );
12119 
12120   ins_cost(1000);
12121   format %{ "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12122             "MOV    ECX,[EDI+ArrayKlass::length]\t# length to scan\n\t"
12123             "ADD    EDI,ArrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12124             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12125             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12126             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12127      "miss:\t" %}
12128 
12129   opcode(0x0);  // No need to XOR EDI
12130   ins_encode( enc_PartialSubtypeCheck() );
12131   ins_pipe( pipe_slow );
12132 %}
12133 
12134 // ============================================================================
12135 // Branch Instructions -- short offset versions
12136 //
12137 // These instructions are used to replace jumps of a long offset (the default
12138 // match) with jumps of a shorter offset.  These instructions are all tagged
12139 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12140 // match rules in general matching.  Instead, the ADLC generates a conversion
12141 // method in the MachNode which can be used to do in-place replacement of the
12142 // long variant with the shorter variant.  The compiler will determine if a
12143 // branch can be taken by the is_short_branch_offset() predicate in the machine
12144 // specific code section of the file.
12145 
12146 // Jump Direct - Label defines a relative address from JMP+1
12147 instruct jmpDir_short(label labl) %{
12148   match(Goto);
12149   effect(USE labl);
12150 
12151   ins_cost(300);
12152   format %{ "JMP,s  $labl" %}
12153   size(2);
12154   ins_encode %{
12155     Label* L = $labl$$label;
12156     __ jmpb(*L);
12157   %}
12158   ins_pipe( pipe_jmp );
12159   ins_short_branch(1);
12160 %}
12161 
12162 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12163 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12164   match(If cop cr);
12165   effect(USE labl);
12166 
12167   ins_cost(300);
12168   format %{ "J$cop,s  $labl" %}
12169   size(2);
12170   ins_encode %{
12171     Label* L = $labl$$label;
12172     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12173   %}
12174   ins_pipe( pipe_jcc );
12175   ins_short_branch(1);
12176 %}
12177 
12178 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12179 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12180   match(CountedLoopEnd cop cr);
12181   effect(USE labl);
12182 
12183   ins_cost(300);
12184   format %{ "J$cop,s  $labl\t# Loop end" %}
12185   size(2);
12186   ins_encode %{
12187     Label* L = $labl$$label;
12188     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12189   %}
12190   ins_pipe( pipe_jcc );
12191   ins_short_branch(1);
12192 %}
12193 
12194 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12195 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12196   match(CountedLoopEnd cop cmp);
12197   effect(USE labl);
12198 
12199   ins_cost(300);
12200   format %{ "J$cop,us $labl\t# Loop end" %}
12201   size(2);
12202   ins_encode %{
12203     Label* L = $labl$$label;
12204     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12205   %}
12206   ins_pipe( pipe_jcc );
12207   ins_short_branch(1);
12208 %}
12209 
12210 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12211   match(CountedLoopEnd cop cmp);
12212   effect(USE labl);
12213 
12214   ins_cost(300);
12215   format %{ "J$cop,us $labl\t# Loop end" %}
12216   size(2);
12217   ins_encode %{
12218     Label* L = $labl$$label;
12219     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12220   %}
12221   ins_pipe( pipe_jcc );
12222   ins_short_branch(1);
12223 %}
12224 
12225 // Jump Direct Conditional - using unsigned comparison
12226 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12227   match(If cop cmp);
12228   effect(USE labl);
12229 
12230   ins_cost(300);
12231   format %{ "J$cop,us $labl" %}
12232   size(2);
12233   ins_encode %{
12234     Label* L = $labl$$label;
12235     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12236   %}
12237   ins_pipe( pipe_jcc );
12238   ins_short_branch(1);
12239 %}
12240 
12241 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12242   match(If cop cmp);
12243   effect(USE labl);
12244 
12245   ins_cost(300);
12246   format %{ "J$cop,us $labl" %}
12247   size(2);
12248   ins_encode %{
12249     Label* L = $labl$$label;
12250     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
12251   %}
12252   ins_pipe( pipe_jcc );
12253   ins_short_branch(1);
12254 %}
12255 
12256 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12257   match(If cop cmp);
12258   effect(USE labl);
12259 
12260   ins_cost(300);
12261   format %{ $$template
12262     if ($cop$$cmpcode == Assembler::notEqual) {
12263       $$emit$$"JP,u,s   $labl\n\t"
12264       $$emit$$"J$cop,u,s   $labl"
12265     } else {
12266       $$emit$$"JP,u,s   done\n\t"
12267       $$emit$$"J$cop,u,s  $labl\n\t"
12268       $$emit$$"done:"
12269     }
12270   %}
12271   size(4);
12272   ins_encode %{
12273     Label* l = $labl$$label;
12274     if ($cop$$cmpcode == Assembler::notEqual) {
12275       __ jccb(Assembler::parity, *l);
12276       __ jccb(Assembler::notEqual, *l);
12277     } else if ($cop$$cmpcode == Assembler::equal) {
12278       Label done;
12279       __ jccb(Assembler::parity, done);
12280       __ jccb(Assembler::equal, *l);
12281       __ bind(done);
12282     } else {
12283        ShouldNotReachHere();
12284     }
12285   %}
12286   ins_pipe(pipe_jcc);
12287   ins_short_branch(1);
12288 %}
12289 
12290 // ============================================================================
12291 // Long Compare
12292 //
12293 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12294 // is tricky.  The flavor of compare used depends on whether we are testing
12295 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12296 // The GE test is the negated LT test.  The LE test can be had by commuting
12297 // the operands (yielding a GE test) and then negating; negate again for the
12298 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12299 // NE test is negated from that.
12300 
12301 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12302 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12303 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12304 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12305 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12306 // foo match ends up with the wrong leaf.  One fix is to not match both
12307 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12308 // both forms beat the trinary form of long-compare and both are very useful
12309 // on Intel which has so few registers.
12310 
12311 // Manifest a CmpL result in an integer register.  Very painful.
12312 // This is the test to avoid.
12313 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12314   match(Set dst (CmpL3 src1 src2));
12315   effect( KILL flags );
12316   ins_cost(1000);
12317   format %{ "XOR    $dst,$dst\n\t"
12318             "CMP    $src1.hi,$src2.hi\n\t"
12319             "JLT,s  m_one\n\t"
12320             "JGT,s  p_one\n\t"
12321             "CMP    $src1.lo,$src2.lo\n\t"
12322             "JB,s   m_one\n\t"
12323             "JEQ,s  done\n"
12324     "p_one:\tINC    $dst\n\t"
12325             "JMP,s  done\n"
12326     "m_one:\tDEC    $dst\n"
12327      "done:" %}
12328   ins_encode %{
12329     Label p_one, m_one, done;
12330     __ xorptr($dst$$Register, $dst$$Register);
12331     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12332     __ jccb(Assembler::less,    m_one);
12333     __ jccb(Assembler::greater, p_one);
12334     __ cmpl($src1$$Register, $src2$$Register);
12335     __ jccb(Assembler::below,   m_one);
12336     __ jccb(Assembler::equal,   done);
12337     __ bind(p_one);
12338     __ incrementl($dst$$Register);
12339     __ jmpb(done);
12340     __ bind(m_one);
12341     __ decrementl($dst$$Register);
12342     __ bind(done);
12343   %}
12344   ins_pipe( pipe_slow );
12345 %}
12346 
12347 //======
12348 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12349 // compares.  Can be used for LE or GT compares by reversing arguments.
12350 // NOT GOOD FOR EQ/NE tests.
12351 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12352   match( Set flags (CmpL src zero ));
12353   ins_cost(100);
12354   format %{ "TEST   $src.hi,$src.hi" %}
12355   opcode(0x85);
12356   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12357   ins_pipe( ialu_cr_reg_reg );
12358 %}
12359 
12360 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12361 // compares.  Can be used for LE or GT compares by reversing arguments.
12362 // NOT GOOD FOR EQ/NE tests.
12363 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12364   match( Set flags (CmpL src1 src2 ));
12365   effect( TEMP tmp );
12366   ins_cost(300);
12367   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12368             "MOV    $tmp,$src1.hi\n\t"
12369             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12370   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12371   ins_pipe( ialu_cr_reg_reg );
12372 %}
12373 
12374 // Long compares reg < zero/req OR reg >= zero/req.
12375 // Just a wrapper for a normal branch, plus the predicate test.
12376 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12377   match(If cmp flags);
12378   effect(USE labl);
12379   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12380   expand %{
12381     jmpCon(cmp,flags,labl);    // JLT or JGE...
12382   %}
12383 %}
12384 
12385 // Compare 2 longs and CMOVE longs.
12386 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12387   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12388   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12389   ins_cost(400);
12390   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12391             "CMOV$cmp $dst.hi,$src.hi" %}
12392   opcode(0x0F,0x40);
12393   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12394   ins_pipe( pipe_cmov_reg_long );
12395 %}
12396 
12397 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12398   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12399   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12400   ins_cost(500);
12401   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12402             "CMOV$cmp $dst.hi,$src.hi" %}
12403   opcode(0x0F,0x40);
12404   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12405   ins_pipe( pipe_cmov_reg_long );
12406 %}
12407 
12408 // Compare 2 longs and CMOVE ints.
12409 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, rRegI src) %{
12410   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12411   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12412   ins_cost(200);
12413   format %{ "CMOV$cmp $dst,$src" %}
12414   opcode(0x0F,0x40);
12415   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12416   ins_pipe( pipe_cmov_reg );
12417 %}
12418 
12419 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, rRegI dst, memory src) %{
12420   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12421   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12422   ins_cost(250);
12423   format %{ "CMOV$cmp $dst,$src" %}
12424   opcode(0x0F,0x40);
12425   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12426   ins_pipe( pipe_cmov_mem );
12427 %}
12428 
12429 // Compare 2 longs and CMOVE ints.
12430 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12431   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12432   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12433   ins_cost(200);
12434   format %{ "CMOV$cmp $dst,$src" %}
12435   opcode(0x0F,0x40);
12436   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12437   ins_pipe( pipe_cmov_reg );
12438 %}
12439 
12440 // Compare 2 longs and CMOVE doubles
12441 instruct cmovDDPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regDPR dst, regDPR src) %{
12442   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12443   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12444   ins_cost(200);
12445   expand %{
12446     fcmovDPR_regS(cmp,flags,dst,src);
12447   %}
12448 %}
12449 
12450 // Compare 2 longs and CMOVE doubles
12451 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12452   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12453   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12454   ins_cost(200);
12455   expand %{
12456     fcmovD_regS(cmp,flags,dst,src);
12457   %}
12458 %}
12459 
12460 instruct cmovFFPR_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regFPR dst, regFPR src) %{
12461   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12462   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12463   ins_cost(200);
12464   expand %{
12465     fcmovFPR_regS(cmp,flags,dst,src);
12466   %}
12467 %}
12468 
12469 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12470   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12471   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12472   ins_cost(200);
12473   expand %{
12474     fcmovF_regS(cmp,flags,dst,src);
12475   %}
12476 %}
12477 
12478 //======
12479 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12480 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, rRegI tmp ) %{
12481   match( Set flags (CmpL src zero ));
12482   effect(TEMP tmp);
12483   ins_cost(200);
12484   format %{ "MOV    $tmp,$src.lo\n\t"
12485             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12486   ins_encode( long_cmp_flags0( src, tmp ) );
12487   ins_pipe( ialu_reg_reg_long );
12488 %}
12489 
12490 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12491 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12492   match( Set flags (CmpL src1 src2 ));
12493   ins_cost(200+300);
12494   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12495             "JNE,s  skip\n\t"
12496             "CMP    $src1.hi,$src2.hi\n\t"
12497      "skip:\t" %}
12498   ins_encode( long_cmp_flags1( src1, src2 ) );
12499   ins_pipe( ialu_cr_reg_reg );
12500 %}
12501 
12502 // Long compare reg == zero/reg OR reg != zero/reg
12503 // Just a wrapper for a normal branch, plus the predicate test.
12504 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12505   match(If cmp flags);
12506   effect(USE labl);
12507   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12508   expand %{
12509     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12510   %}
12511 %}
12512 
12513 // Compare 2 longs and CMOVE longs.
12514 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12515   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12516   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12517   ins_cost(400);
12518   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12519             "CMOV$cmp $dst.hi,$src.hi" %}
12520   opcode(0x0F,0x40);
12521   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12522   ins_pipe( pipe_cmov_reg_long );
12523 %}
12524 
12525 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12526   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12527   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12528   ins_cost(500);
12529   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12530             "CMOV$cmp $dst.hi,$src.hi" %}
12531   opcode(0x0F,0x40);
12532   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12533   ins_pipe( pipe_cmov_reg_long );
12534 %}
12535 
12536 // Compare 2 longs and CMOVE ints.
12537 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, rRegI src) %{
12538   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12539   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12540   ins_cost(200);
12541   format %{ "CMOV$cmp $dst,$src" %}
12542   opcode(0x0F,0x40);
12543   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12544   ins_pipe( pipe_cmov_reg );
12545 %}
12546 
12547 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, rRegI dst, memory src) %{
12548   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12549   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12550   ins_cost(250);
12551   format %{ "CMOV$cmp $dst,$src" %}
12552   opcode(0x0F,0x40);
12553   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12554   ins_pipe( pipe_cmov_mem );
12555 %}
12556 
12557 // Compare 2 longs and CMOVE ints.
12558 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12559   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12560   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12561   ins_cost(200);
12562   format %{ "CMOV$cmp $dst,$src" %}
12563   opcode(0x0F,0x40);
12564   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12565   ins_pipe( pipe_cmov_reg );
12566 %}
12567 
12568 // Compare 2 longs and CMOVE doubles
12569 instruct cmovDDPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regDPR dst, regDPR src) %{
12570   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12571   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12572   ins_cost(200);
12573   expand %{
12574     fcmovDPR_regS(cmp,flags,dst,src);
12575   %}
12576 %}
12577 
12578 // Compare 2 longs and CMOVE doubles
12579 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12580   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12581   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12582   ins_cost(200);
12583   expand %{
12584     fcmovD_regS(cmp,flags,dst,src);
12585   %}
12586 %}
12587 
12588 instruct cmovFFPR_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regFPR dst, regFPR src) %{
12589   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12590   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12591   ins_cost(200);
12592   expand %{
12593     fcmovFPR_regS(cmp,flags,dst,src);
12594   %}
12595 %}
12596 
12597 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12598   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12599   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12600   ins_cost(200);
12601   expand %{
12602     fcmovF_regS(cmp,flags,dst,src);
12603   %}
12604 %}
12605 
12606 //======
12607 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12608 // Same as cmpL_reg_flags_LEGT except must negate src
12609 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, rRegI tmp ) %{
12610   match( Set flags (CmpL src zero ));
12611   effect( TEMP tmp );
12612   ins_cost(300);
12613   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12614             "CMP    $tmp,$src.lo\n\t"
12615             "SBB    $tmp,$src.hi\n\t" %}
12616   ins_encode( long_cmp_flags3(src, tmp) );
12617   ins_pipe( ialu_reg_reg_long );
12618 %}
12619 
12620 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12621 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12622 // requires a commuted test to get the same result.
12623 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, rRegI tmp ) %{
12624   match( Set flags (CmpL src1 src2 ));
12625   effect( TEMP tmp );
12626   ins_cost(300);
12627   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12628             "MOV    $tmp,$src2.hi\n\t"
12629             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12630   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12631   ins_pipe( ialu_cr_reg_reg );
12632 %}
12633 
12634 // Long compares reg < zero/req OR reg >= zero/req.
12635 // Just a wrapper for a normal branch, plus the predicate test
12636 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12637   match(If cmp flags);
12638   effect(USE labl);
12639   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12640   ins_cost(300);
12641   expand %{
12642     jmpCon(cmp,flags,labl);    // JGT or JLE...
12643   %}
12644 %}
12645 
12646 // Compare 2 longs and CMOVE longs.
12647 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12648   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12649   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12650   ins_cost(400);
12651   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12652             "CMOV$cmp $dst.hi,$src.hi" %}
12653   opcode(0x0F,0x40);
12654   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12655   ins_pipe( pipe_cmov_reg_long );
12656 %}
12657 
12658 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12659   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12660   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12661   ins_cost(500);
12662   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12663             "CMOV$cmp $dst.hi,$src.hi+4" %}
12664   opcode(0x0F,0x40);
12665   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12666   ins_pipe( pipe_cmov_reg_long );
12667 %}
12668 
12669 // Compare 2 longs and CMOVE ints.
12670 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, rRegI src) %{
12671   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12672   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12673   ins_cost(200);
12674   format %{ "CMOV$cmp $dst,$src" %}
12675   opcode(0x0F,0x40);
12676   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12677   ins_pipe( pipe_cmov_reg );
12678 %}
12679 
12680 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, rRegI dst, memory src) %{
12681   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12682   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12683   ins_cost(250);
12684   format %{ "CMOV$cmp $dst,$src" %}
12685   opcode(0x0F,0x40);
12686   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12687   ins_pipe( pipe_cmov_mem );
12688 %}
12689 
12690 // Compare 2 longs and CMOVE ptrs.
12691 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12692   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12693   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12694   ins_cost(200);
12695   format %{ "CMOV$cmp $dst,$src" %}
12696   opcode(0x0F,0x40);
12697   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12698   ins_pipe( pipe_cmov_reg );
12699 %}
12700 
12701 // Compare 2 longs and CMOVE doubles
12702 instruct cmovDDPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regDPR dst, regDPR src) %{
12703   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12704   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12705   ins_cost(200);
12706   expand %{
12707     fcmovDPR_regS(cmp,flags,dst,src);
12708   %}
12709 %}
12710 
12711 // Compare 2 longs and CMOVE doubles
12712 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12713   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12714   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12715   ins_cost(200);
12716   expand %{
12717     fcmovD_regS(cmp,flags,dst,src);
12718   %}
12719 %}
12720 
12721 instruct cmovFFPR_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regFPR dst, regFPR src) %{
12722   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12723   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12724   ins_cost(200);
12725   expand %{
12726     fcmovFPR_regS(cmp,flags,dst,src);
12727   %}
12728 %}
12729 
12730 
12731 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
12732   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12733   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12734   ins_cost(200);
12735   expand %{
12736     fcmovF_regS(cmp,flags,dst,src);
12737   %}
12738 %}
12739 
12740 
12741 // ============================================================================
12742 // Procedure Call/Return Instructions
12743 // Call Java Static Instruction
12744 // Note: If this code changes, the corresponding ret_addr_offset() and
12745 //       compute_padding() functions will have to be adjusted.
12746 instruct CallStaticJavaDirect(method meth) %{
12747   match(CallStaticJava);
12748   effect(USE meth);
12749 
12750   ins_cost(300);
12751   format %{ "CALL,static " %}
12752   opcode(0xE8); /* E8 cd */
12753   ins_encode( pre_call_resets,
12754               Java_Static_Call( meth ),
12755               call_epilog,
12756               post_call_FPU );
12757   ins_pipe( pipe_slow );
12758   ins_alignment(4);
12759 %}
12760 
12761 // Call Java Dynamic Instruction
12762 // Note: If this code changes, the corresponding ret_addr_offset() and
12763 //       compute_padding() functions will have to be adjusted.
12764 instruct CallDynamicJavaDirect(method meth) %{
12765   match(CallDynamicJava);
12766   effect(USE meth);
12767 
12768   ins_cost(300);
12769   format %{ "MOV    EAX,(oop)-1\n\t"
12770             "CALL,dynamic" %}
12771   opcode(0xE8); /* E8 cd */
12772   ins_encode( pre_call_resets,
12773               Java_Dynamic_Call( meth ),
12774               call_epilog,
12775               post_call_FPU );
12776   ins_pipe( pipe_slow );
12777   ins_alignment(4);
12778 %}
12779 
12780 // Call Runtime Instruction
12781 instruct CallRuntimeDirect(method meth) %{
12782   match(CallRuntime );
12783   effect(USE meth);
12784 
12785   ins_cost(300);
12786   format %{ "CALL,runtime " %}
12787   opcode(0xE8); /* E8 cd */
12788   // Use FFREEs to clear entries in float stack
12789   ins_encode( pre_call_resets,
12790               FFree_Float_Stack_All,
12791               Java_To_Runtime( meth ),
12792               post_call_FPU );
12793   ins_pipe( pipe_slow );
12794 %}
12795 
12796 // Call runtime without safepoint
12797 instruct CallLeafDirect(method meth) %{
12798   match(CallLeaf);
12799   effect(USE meth);
12800 
12801   ins_cost(300);
12802   format %{ "CALL_LEAF,runtime " %}
12803   opcode(0xE8); /* E8 cd */
12804   ins_encode( pre_call_resets,
12805               FFree_Float_Stack_All,
12806               Java_To_Runtime( meth ),
12807               Verify_FPU_For_Leaf, post_call_FPU );
12808   ins_pipe( pipe_slow );
12809 %}
12810 
12811 instruct CallLeafNoFPDirect(method meth) %{
12812   match(CallLeafNoFP);
12813   effect(USE meth);
12814 
12815   ins_cost(300);
12816   format %{ "CALL_LEAF_NOFP,runtime " %}
12817   opcode(0xE8); /* E8 cd */
12818   ins_encode(Java_To_Runtime(meth));
12819   ins_pipe( pipe_slow );
12820 %}
12821 
12822 
12823 // Return Instruction
12824 // Remove the return address & jump to it.
12825 instruct Ret() %{
12826   match(Return);
12827   format %{ "RET" %}
12828   opcode(0xC3);
12829   ins_encode(OpcP);
12830   ins_pipe( pipe_jmp );
12831 %}
12832 
12833 // Tail Call; Jump from runtime stub to Java code.
12834 // Also known as an 'interprocedural jump'.
12835 // Target of jump will eventually return to caller.
12836 // TailJump below removes the return address.
12837 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
12838   match(TailCall jump_target method_oop );
12839   ins_cost(300);
12840   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
12841   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12842   ins_encode( OpcP, RegOpc(jump_target) );
12843   ins_pipe( pipe_jmp );
12844 %}
12845 
12846 
12847 // Tail Jump; remove the return address; jump to target.
12848 // TailCall above leaves the return address around.
12849 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
12850   match( TailJump jump_target ex_oop );
12851   ins_cost(300);
12852   format %{ "POP    EDX\t# pop return address into dummy\n\t"
12853             "JMP    $jump_target " %}
12854   opcode(0xFF, 0x4);  /* Opcode FF /4 */
12855   ins_encode( enc_pop_rdx,
12856               OpcP, RegOpc(jump_target) );
12857   ins_pipe( pipe_jmp );
12858 %}
12859 
12860 // Create exception oop: created by stack-crawling runtime code.
12861 // Created exception is now available to this handler, and is setup
12862 // just prior to jumping to this handler.  No code emitted.
12863 instruct CreateException( eAXRegP ex_oop )
12864 %{
12865   match(Set ex_oop (CreateEx));
12866 
12867   size(0);
12868   // use the following format syntax
12869   format %{ "# exception oop is in EAX; no code emitted" %}
12870   ins_encode();
12871   ins_pipe( empty );
12872 %}
12873 
12874 
12875 // Rethrow exception:
12876 // The exception oop will come in the first argument position.
12877 // Then JUMP (not call) to the rethrow stub code.
12878 instruct RethrowException()
12879 %{
12880   match(Rethrow);
12881 
12882   // use the following format syntax
12883   format %{ "JMP    rethrow_stub" %}
12884   ins_encode(enc_rethrow);
12885   ins_pipe( pipe_jmp );
12886 %}
12887 
12888 // inlined locking and unlocking
12889 
12890 instruct cmpFastLockRTM(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eDXRegI scr, rRegI cx1, rRegI cx2) %{
12891   predicate(Compile::current()->use_rtm());
12892   match(Set cr (FastLock object box));
12893   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
12894   ins_cost(300);
12895   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
12896   ins_encode %{
12897     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12898                  $scr$$Register, $cx1$$Register, $cx2$$Register,
12899                  _counters, _rtm_counters, _stack_rtm_counters,
12900                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
12901                  true, ra_->C->profile_rtm());
12902   %}
12903   ins_pipe(pipe_slow);
12904 %}
12905 
12906 instruct cmpFastLock(eFlagsReg cr, eRegP object, eBXRegP box, eAXRegI tmp, eRegP scr) %{
12907   predicate(!Compile::current()->use_rtm());
12908   match(Set cr (FastLock object box));
12909   effect(TEMP tmp, TEMP scr, USE_KILL box);
12910   ins_cost(300);
12911   format %{ "FASTLOCK $object,$box\t! kills $box,$tmp,$scr" %}
12912   ins_encode %{
12913     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
12914                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
12915   %}
12916   ins_pipe(pipe_slow);
12917 %}
12918 
12919 instruct cmpFastUnlock(eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
12920   match(Set cr (FastUnlock object box));
12921   effect(TEMP tmp, USE_KILL box);
12922   ins_cost(300);
12923   format %{ "FASTUNLOCK $object,$box\t! kills $box,$tmp" %}
12924   ins_encode %{
12925     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
12926   %}
12927   ins_pipe(pipe_slow);
12928 %}
12929 
12930 
12931 
12932 // ============================================================================
12933 // Safepoint Instruction
12934 instruct safePoint_poll(eFlagsReg cr) %{
12935   match(SafePoint);
12936   effect(KILL cr);
12937 
12938   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
12939   // On SPARC that might be acceptable as we can generate the address with
12940   // just a sethi, saving an or.  By polling at offset 0 we can end up
12941   // putting additional pressure on the index-0 in the D$.  Because of
12942   // alignment (just like the situation at hand) the lower indices tend
12943   // to see more traffic.  It'd be better to change the polling address
12944   // to offset 0 of the last $line in the polling page.
12945 
12946   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
12947   ins_cost(125);
12948   size(6) ;
12949   ins_encode( Safepoint_Poll() );
12950   ins_pipe( ialu_reg_mem );
12951 %}
12952 
12953 
12954 // ============================================================================
12955 // This name is KNOWN by the ADLC and cannot be changed.
12956 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
12957 // for this guy.
12958 instruct tlsLoadP(eRegP dst, eFlagsReg cr) %{
12959   match(Set dst (ThreadLocal));
12960   effect(DEF dst, KILL cr);
12961 
12962   format %{ "MOV    $dst, Thread::current()" %}
12963   ins_encode %{
12964     Register dstReg = as_Register($dst$$reg);
12965     __ get_thread(dstReg);
12966   %}
12967   ins_pipe( ialu_reg_fat );
12968 %}
12969 
12970 
12971 
12972 //----------PEEPHOLE RULES-----------------------------------------------------
12973 // These must follow all instruction definitions as they use the names
12974 // defined in the instructions definitions.
12975 //
12976 // peepmatch ( root_instr_name [preceding_instruction]* );
12977 //
12978 // peepconstraint %{
12979 // (instruction_number.operand_name relational_op instruction_number.operand_name
12980 //  [, ...] );
12981 // // instruction numbers are zero-based using left to right order in peepmatch
12982 //
12983 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
12984 // // provide an instruction_number.operand_name for each operand that appears
12985 // // in the replacement instruction's match rule
12986 //
12987 // ---------VM FLAGS---------------------------------------------------------
12988 //
12989 // All peephole optimizations can be turned off using -XX:-OptoPeephole
12990 //
12991 // Each peephole rule is given an identifying number starting with zero and
12992 // increasing by one in the order seen by the parser.  An individual peephole
12993 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
12994 // on the command-line.
12995 //
12996 // ---------CURRENT LIMITATIONS----------------------------------------------
12997 //
12998 // Only match adjacent instructions in same basic block
12999 // Only equality constraints
13000 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13001 // Only one replacement instruction
13002 //
13003 // ---------EXAMPLE----------------------------------------------------------
13004 //
13005 // // pertinent parts of existing instructions in architecture description
13006 // instruct movI(rRegI dst, rRegI src) %{
13007 //   match(Set dst (CopyI src));
13008 // %}
13009 //
13010 // instruct incI_eReg(rRegI dst, immI1 src, eFlagsReg cr) %{
13011 //   match(Set dst (AddI dst src));
13012 //   effect(KILL cr);
13013 // %}
13014 //
13015 // // Change (inc mov) to lea
13016 // peephole %{
13017 //   // increment preceeded by register-register move
13018 //   peepmatch ( incI_eReg movI );
13019 //   // require that the destination register of the increment
13020 //   // match the destination register of the move
13021 //   peepconstraint ( 0.dst == 1.dst );
13022 //   // construct a replacement instruction that sets
13023 //   // the destination to ( move's source register + one )
13024 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13025 // %}
13026 //
13027 // Implementation no longer uses movX instructions since
13028 // machine-independent system no longer uses CopyX nodes.
13029 //
13030 // peephole %{
13031 //   peepmatch ( incI_eReg movI );
13032 //   peepconstraint ( 0.dst == 1.dst );
13033 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13034 // %}
13035 //
13036 // peephole %{
13037 //   peepmatch ( decI_eReg movI );
13038 //   peepconstraint ( 0.dst == 1.dst );
13039 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13040 // %}
13041 //
13042 // peephole %{
13043 //   peepmatch ( addI_eReg_imm movI );
13044 //   peepconstraint ( 0.dst == 1.dst );
13045 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13046 // %}
13047 //
13048 // peephole %{
13049 //   peepmatch ( addP_eReg_imm movP );
13050 //   peepconstraint ( 0.dst == 1.dst );
13051 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13052 // %}
13053 
13054 // // Change load of spilled value to only a spill
13055 // instruct storeI(memory mem, rRegI src) %{
13056 //   match(Set mem (StoreI mem src));
13057 // %}
13058 //
13059 // instruct loadI(rRegI dst, memory mem) %{
13060 //   match(Set dst (LoadI mem));
13061 // %}
13062 //
13063 peephole %{
13064   peepmatch ( loadI storeI );
13065   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13066   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13067 %}
13068 
13069 //----------SMARTSPILL RULES---------------------------------------------------
13070 // These must follow all instruction definitions as they use the names
13071 // defined in the instructions definitions.