1 //
   2 // Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // AMD64 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // R8-R15 must be encoded with REX.  (RSP, RBP, RSI, RDI need REX when
  64 // used as byte registers)
  65 
  66 // Previously set RBX, RSI, and RDI as save-on-entry for java code
  67 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  68 // Now that allocator is better, turn on RSI and RDI as SOE registers.
  69 
  70 reg_def RAX  (SOC, SOC, Op_RegI,  0, rax->as_VMReg());
  71 reg_def RAX_H(SOC, SOC, Op_RegI,  0, rax->as_VMReg()->next());
  72 
  73 reg_def RCX  (SOC, SOC, Op_RegI,  1, rcx->as_VMReg());
  74 reg_def RCX_H(SOC, SOC, Op_RegI,  1, rcx->as_VMReg()->next());
  75 
  76 reg_def RDX  (SOC, SOC, Op_RegI,  2, rdx->as_VMReg());
  77 reg_def RDX_H(SOC, SOC, Op_RegI,  2, rdx->as_VMReg()->next());
  78 
  79 reg_def RBX  (SOC, SOE, Op_RegI,  3, rbx->as_VMReg());
  80 reg_def RBX_H(SOC, SOE, Op_RegI,  3, rbx->as_VMReg()->next());
  81 
  82 reg_def RSP  (NS,  NS,  Op_RegI,  4, rsp->as_VMReg());
  83 reg_def RSP_H(NS,  NS,  Op_RegI,  4, rsp->as_VMReg()->next());
  84 
  85 // now that adapter frames are gone RBP is always saved and restored by the prolog/epilog code
  86 reg_def RBP  (NS, SOE, Op_RegI,  5, rbp->as_VMReg());
  87 reg_def RBP_H(NS, SOE, Op_RegI,  5, rbp->as_VMReg()->next());
  88 
  89 #ifdef _WIN64
  90 
  91 reg_def RSI  (SOC, SOE, Op_RegI,  6, rsi->as_VMReg());
  92 reg_def RSI_H(SOC, SOE, Op_RegI,  6, rsi->as_VMReg()->next());
  93 
  94 reg_def RDI  (SOC, SOE, Op_RegI,  7, rdi->as_VMReg());
  95 reg_def RDI_H(SOC, SOE, Op_RegI,  7, rdi->as_VMReg()->next());
  96 
  97 #else
  98 
  99 reg_def RSI  (SOC, SOC, Op_RegI,  6, rsi->as_VMReg());
 100 reg_def RSI_H(SOC, SOC, Op_RegI,  6, rsi->as_VMReg()->next());
 101 
 102 reg_def RDI  (SOC, SOC, Op_RegI,  7, rdi->as_VMReg());
 103 reg_def RDI_H(SOC, SOC, Op_RegI,  7, rdi->as_VMReg()->next());
 104 
 105 #endif
 106 
 107 reg_def R8   (SOC, SOC, Op_RegI,  8, r8->as_VMReg());
 108 reg_def R8_H (SOC, SOC, Op_RegI,  8, r8->as_VMReg()->next());
 109 
 110 reg_def R9   (SOC, SOC, Op_RegI,  9, r9->as_VMReg());
 111 reg_def R9_H (SOC, SOC, Op_RegI,  9, r9->as_VMReg()->next());
 112 
 113 reg_def R10  (SOC, SOC, Op_RegI, 10, r10->as_VMReg());
 114 reg_def R10_H(SOC, SOC, Op_RegI, 10, r10->as_VMReg()->next());
 115 
 116 reg_def R11  (SOC, SOC, Op_RegI, 11, r11->as_VMReg());
 117 reg_def R11_H(SOC, SOC, Op_RegI, 11, r11->as_VMReg()->next());
 118 
 119 reg_def R12  (SOC, SOE, Op_RegI, 12, r12->as_VMReg());
 120 reg_def R12_H(SOC, SOE, Op_RegI, 12, r12->as_VMReg()->next());
 121 
 122 reg_def R13  (SOC, SOE, Op_RegI, 13, r13->as_VMReg());
 123 reg_def R13_H(SOC, SOE, Op_RegI, 13, r13->as_VMReg()->next());
 124 
 125 reg_def R14  (SOC, SOE, Op_RegI, 14, r14->as_VMReg());
 126 reg_def R14_H(SOC, SOE, Op_RegI, 14, r14->as_VMReg()->next());
 127 
 128 reg_def R15  (SOC, SOE, Op_RegI, 15, r15->as_VMReg());
 129 reg_def R15_H(SOC, SOE, Op_RegI, 15, r15->as_VMReg()->next());
 130 
 131 
 132 // Floating Point Registers
 133 
 134 // Specify priority of register selection within phases of register
 135 // allocation.  Highest priority is first.  A useful heuristic is to
 136 // give registers a low priority when they are required by machine
 137 // instructions, like EAX and EDX on I486, and choose no-save registers
 138 // before save-on-call, & save-on-call before save-on-entry.  Registers
 139 // which participate in fixed calling sequences should come last.
 140 // Registers which are used as pairs must fall on an even boundary.
 141 
 142 alloc_class chunk0(R10,         R10_H,
 143                    R11,         R11_H,
 144                    R8,          R8_H,
 145                    R9,          R9_H,
 146                    R12,         R12_H,
 147                    RCX,         RCX_H,
 148                    RBX,         RBX_H,
 149                    RDI,         RDI_H,
 150                    RDX,         RDX_H,
 151                    RSI,         RSI_H,
 152                    RAX,         RAX_H,
 153                    RBP,         RBP_H,
 154                    R13,         R13_H,
 155                    R14,         R14_H,
 156                    R15,         R15_H,
 157                    RSP,         RSP_H);
 158 
 159 
 160 //----------Architecture Description Register Classes--------------------------
 161 // Several register classes are automatically defined based upon information in
 162 // this architecture description.
 163 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 164 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 165 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 166 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 167 //
 168 
 169 // Empty register class.
 170 reg_class no_reg();
 171 
 172 // Class for all pointer registers (including RSP and RBP)
 173 reg_class any_reg_with_rbp(RAX, RAX_H,
 174                            RDX, RDX_H,
 175                            RBP, RBP_H,               
 176                            RDI, RDI_H,
 177                            RSI, RSI_H,
 178                            RCX, RCX_H,
 179                            RBX, RBX_H,
 180                            RSP, RSP_H,
 181                            R8,  R8_H,
 182                            R9,  R9_H,
 183                            R10, R10_H,
 184                            R11, R11_H,
 185                            R12, R12_H,
 186                            R13, R13_H,
 187                            R14, R14_H,
 188                            R15, R15_H);
 189 
 190 // Class for all pointer registers (including RSP, but excluding RBP)
 191 reg_class any_reg_no_rbp(RAX, RAX_H,
 192                          RDX, RDX_H,                
 193                          RDI, RDI_H,
 194                          RSI, RSI_H,
 195                          RCX, RCX_H,
 196                          RBX, RBX_H,
 197                          RSP, RSP_H,
 198                          R8,  R8_H,
 199                          R9,  R9_H,
 200                          R10, R10_H,
 201                          R11, R11_H,
 202                          R12, R12_H,
 203                          R13, R13_H,
 204                          R14, R14_H,
 205                          R15, R15_H);
 206 
 207 // Dynamic register class that selects at runtime between register classes
 208 // any_reg_no_rbp and any_reg_with_rbp (depending on the value of the flag PreserveFramePointer). 
 209 // Equivalent to: return PreserveFramePointer ? any_reg_no_rbp : any_reg_with_rbp;
 210 reg_class_dynamic any_reg(any_reg_no_rbp, any_reg_with_rbp, %{ PreserveFramePointer %});
 211                   
 212 // Class for all pointer registers (excluding RSP)
 213 reg_class ptr_reg_with_rbp(RAX, RAX_H,
 214                            RDX, RDX_H,
 215                            RBP, RBP_H,
 216                            RDI, RDI_H,
 217                            RSI, RSI_H,
 218                            RCX, RCX_H,
 219                            RBX, RBX_H,
 220                            R8,  R8_H,
 221                            R9,  R9_H,
 222                            R10, R10_H,
 223                            R11, R11_H,
 224                            R13, R13_H,
 225                            R14, R14_H);
 226 
 227 // Class for all pointer registers (excluding RSP and RBP)
 228 reg_class ptr_reg_no_rbp(RAX, RAX_H,
 229                          RDX, RDX_H,                         
 230                          RDI, RDI_H,
 231                          RSI, RSI_H,
 232                          RCX, RCX_H,
 233                          RBX, RBX_H,
 234                          R8,  R8_H,
 235                          R9,  R9_H,
 236                          R10, R10_H,
 237                          R11, R11_H,
 238                          R13, R13_H,
 239                          R14, R14_H);
 240 
 241 // Dynamic register class that selects between ptr_reg_no_rbp and ptr_reg_with_rbp.
 242 reg_class_dynamic ptr_reg(ptr_reg_no_rbp, ptr_reg_with_rbp, %{ PreserveFramePointer %});
 243 
 244 // Class for all pointer registers (excluding RAX and RSP)
 245 reg_class ptr_no_rax_reg_with_rbp(RDX, RDX_H,
 246                                   RBP, RBP_H,
 247                                   RDI, RDI_H,
 248                                   RSI, RSI_H,
 249                                   RCX, RCX_H,
 250                                   RBX, RBX_H,
 251                                   R8,  R8_H,
 252                                   R9,  R9_H,
 253                                   R10, R10_H,
 254                                   R11, R11_H,
 255                                   R13, R13_H,
 256                                   R14, R14_H);
 257 
 258 // Class for all pointer registers (excluding RAX, RSP, and RBP)
 259 reg_class ptr_no_rax_reg_no_rbp(RDX, RDX_H,
 260                                 RDI, RDI_H,
 261                                 RSI, RSI_H,
 262                                 RCX, RCX_H,
 263                                 RBX, RBX_H,
 264                                 R8,  R8_H,
 265                                 R9,  R9_H,
 266                                 R10, R10_H,
 267                                 R11, R11_H,
 268                                 R13, R13_H,
 269                                 R14, R14_H);
 270 
 271 // Dynamic register class that selects between ptr_no_rax_reg_no_rbp and ptr_no_rax_reg_with_rbp.
 272 reg_class_dynamic ptr_no_rax_reg(ptr_no_rax_reg_no_rbp, ptr_no_rax_reg_with_rbp, %{ PreserveFramePointer %});
 273 
 274 // Class for all pointer registers (excluding RAX, RBX, and RSP)
 275 reg_class ptr_no_rax_rbx_reg_with_rbp(RDX, RDX_H,
 276                                       RBP, RBP_H,
 277                                       RDI, RDI_H,
 278                                       RSI, RSI_H,
 279                                       RCX, RCX_H,
 280                                       R8,  R8_H,
 281                                       R9,  R9_H,
 282                                       R10, R10_H,
 283                                       R11, R11_H,
 284                                       R13, R13_H,
 285                                       R14, R14_H);
 286 
 287 // Class for all pointer registers (excluding RAX, RBX, RSP, and RBP)
 288 reg_class ptr_no_rax_rbx_reg_no_rbp(RDX, RDX_H,
 289                                     RDI, RDI_H,
 290                                     RSI, RSI_H,
 291                                     RCX, RCX_H,
 292                                     R8,  R8_H,
 293                                     R9,  R9_H,
 294                                     R10, R10_H,
 295                                     R11, R11_H,
 296                                     R13, R13_H,
 297                                     R14, R14_H);
 298 
 299 // Dynamic register class that selects between ptr_no_rax_rbx_reg_no_rbp and ptr_no_rax_rbx_reg_with_rbp.
 300 reg_class_dynamic ptr_no_rax_rbx_reg(ptr_no_rax_rbx_reg_no_rbp, ptr_no_rax_rbx_reg_with_rbp, %{ PreserveFramePointer %});
 301 
 302 // Singleton class for RAX pointer register
 303 reg_class ptr_rax_reg(RAX, RAX_H);
 304 
 305 // Singleton class for RBX pointer register
 306 reg_class ptr_rbx_reg(RBX, RBX_H);
 307 
 308 // Singleton class for RSI pointer register
 309 reg_class ptr_rsi_reg(RSI, RSI_H);
 310 
 311 // Singleton class for RDI pointer register
 312 reg_class ptr_rdi_reg(RDI, RDI_H);
 313 
 314 // Singleton class for stack pointer
 315 reg_class ptr_rsp_reg(RSP, RSP_H);
 316 
 317 // Singleton class for TLS pointer
 318 reg_class ptr_r15_reg(R15, R15_H);
 319 
 320 // Class for all long registers (excluding RSP)
 321 reg_class long_reg_with_rbp(RAX, RAX_H,
 322                             RDX, RDX_H,
 323                             RBP, RBP_H,
 324                             RDI, RDI_H,
 325                             RSI, RSI_H,
 326                             RCX, RCX_H,
 327                             RBX, RBX_H,
 328                             R8,  R8_H,
 329                             R9,  R9_H,
 330                             R10, R10_H,
 331                             R11, R11_H,
 332                             R13, R13_H,
 333                             R14, R14_H);
 334 
 335 // Class for all long registers (excluding RSP and RBP)
 336 reg_class long_reg_no_rbp(RAX, RAX_H,
 337                           RDX, RDX_H,
 338                           RDI, RDI_H,
 339                           RSI, RSI_H,
 340                           RCX, RCX_H,
 341                           RBX, RBX_H,
 342                           R8,  R8_H,
 343                           R9,  R9_H,
 344                           R10, R10_H,
 345                           R11, R11_H,
 346                           R13, R13_H,
 347                           R14, R14_H);
 348 
 349 // Dynamic register class that selects between long_reg_no_rbp and long_reg_with_rbp.
 350 reg_class_dynamic long_reg(long_reg_no_rbp, long_reg_with_rbp, %{ PreserveFramePointer %});
 351 
 352 // Class for all long registers (excluding RAX, RDX and RSP)
 353 reg_class long_no_rax_rdx_reg_with_rbp(RBP, RBP_H,
 354                                        RDI, RDI_H,
 355                                        RSI, RSI_H,
 356                                        RCX, RCX_H,
 357                                        RBX, RBX_H,
 358                                        R8,  R8_H,
 359                                        R9,  R9_H,
 360                                        R10, R10_H,
 361                                        R11, R11_H,
 362                                        R13, R13_H,
 363                                        R14, R14_H);
 364 
 365 // Class for all long registers (excluding RAX, RDX, RSP, and RBP)
 366 reg_class long_no_rax_rdx_reg_no_rbp(RDI, RDI_H,
 367                                      RSI, RSI_H,
 368                                      RCX, RCX_H,
 369                                      RBX, RBX_H,
 370                                      R8,  R8_H,
 371                                      R9,  R9_H,
 372                                      R10, R10_H,
 373                                      R11, R11_H,
 374                                      R13, R13_H,
 375                                      R14, R14_H);
 376 
 377 // Dynamic register class that selects between long_no_rax_rdx_reg_no_rbp and long_no_rax_rdx_reg_with_rbp.
 378 reg_class_dynamic long_no_rax_rdx_reg(long_no_rax_rdx_reg_no_rbp, long_no_rax_rdx_reg_with_rbp, %{ PreserveFramePointer %});
 379 
 380 // Class for all long registers (excluding RCX and RSP)
 381 reg_class long_no_rcx_reg_with_rbp(RBP, RBP_H,
 382                                    RDI, RDI_H,
 383                                    RSI, RSI_H,
 384                                    RAX, RAX_H,
 385                                    RDX, RDX_H,
 386                                    RBX, RBX_H,
 387                                    R8,  R8_H,
 388                                    R9,  R9_H,
 389                                    R10, R10_H,
 390                                    R11, R11_H,
 391                                    R13, R13_H,
 392                                    R14, R14_H);
 393 
 394 // Class for all long registers (excluding RCX, RSP, and RBP)
 395 reg_class long_no_rcx_reg_no_rbp(RDI, RDI_H,
 396                                  RSI, RSI_H,
 397                                  RAX, RAX_H,
 398                                  RDX, RDX_H,
 399                                  RBX, RBX_H,
 400                                  R8,  R8_H,
 401                                  R9,  R9_H,
 402                                  R10, R10_H,
 403                                  R11, R11_H,
 404                                  R13, R13_H,
 405                                  R14, R14_H);
 406 
 407 // Dynamic register class that selects between long_no_rcx_reg_no_rbp and long_no_rcx_reg_with_rbp.
 408 reg_class_dynamic long_no_rcx_reg(long_no_rcx_reg_no_rbp, long_no_rcx_reg_with_rbp, %{ PreserveFramePointer %});
 409 
 410 // Singleton class for RAX long register
 411 reg_class long_rax_reg(RAX, RAX_H);
 412 
 413 // Singleton class for RCX long register
 414 reg_class long_rcx_reg(RCX, RCX_H);
 415 
 416 // Singleton class for RDX long register
 417 reg_class long_rdx_reg(RDX, RDX_H);
 418 
 419 // Class for all int registers (excluding RSP)
 420 reg_class int_reg_with_rbp(RAX,
 421                            RDX,
 422                            RBP,
 423                            RDI,
 424                            RSI,
 425                            RCX,
 426                            RBX,
 427                            R8,
 428                            R9,
 429                            R10,
 430                            R11,
 431                            R13,
 432                            R14);
 433 
 434 // Class for all int registers (excluding RSP and RBP)
 435 reg_class int_reg_no_rbp(RAX,
 436                          RDX,
 437                          RDI,
 438                          RSI,
 439                          RCX,
 440                          RBX,
 441                          R8,
 442                          R9,
 443                          R10,
 444                          R11,
 445                          R13,
 446                          R14);
 447 
 448 // Dynamic register class that selects between int_reg_no_rbp and int_reg_with_rbp.
 449 reg_class_dynamic int_reg(int_reg_no_rbp, int_reg_with_rbp, %{ PreserveFramePointer %});
 450 
 451 // Class for all int registers (excluding RCX and RSP)
 452 reg_class int_no_rcx_reg_with_rbp(RAX,
 453                                   RDX,
 454                                   RBP,
 455                                   RDI,
 456                                   RSI,
 457                                   RBX,
 458                                   R8,
 459                                   R9,
 460                                   R10,
 461                                   R11,
 462                                   R13,
 463                                   R14);
 464 
 465 // Class for all int registers (excluding RCX, RSP, and RBP)
 466 reg_class int_no_rcx_reg_no_rbp(RAX,
 467                                 RDX,
 468                                 RDI,
 469                                 RSI,
 470                                 RBX,
 471                                 R8,
 472                                 R9,
 473                                 R10,
 474                                 R11,
 475                                 R13,
 476                                 R14);
 477 
 478 // Dynamic register class that selects between int_no_rcx_reg_no_rbp and int_no_rcx_reg_with_rbp.
 479 reg_class_dynamic int_no_rcx_reg(int_no_rcx_reg_no_rbp, int_no_rcx_reg_with_rbp, %{ PreserveFramePointer %});
 480 
 481 // Class for all int registers (excluding RAX, RDX, and RSP)
 482 reg_class int_no_rax_rdx_reg_with_rbp(RBP,
 483                                       RDI,
 484                                       RSI,
 485                                       RCX,
 486                                       RBX,
 487                                       R8,
 488                                       R9,
 489                                       R10,
 490                                       R11,
 491                                       R13,
 492                                       R14);
 493 
 494 // Class for all int registers (excluding RAX, RDX, RSP, and RBP)
 495 reg_class int_no_rax_rdx_reg_no_rbp(RDI,
 496                                     RSI,
 497                                     RCX,
 498                                     RBX,
 499                                     R8,
 500                                     R9,
 501                                     R10,
 502                                     R11,
 503                                     R13,
 504                                     R14);
 505 
 506 // Dynamic register class that selects between int_no_rax_rdx_reg_no_rbp and int_no_rax_rdx_reg_with_rbp.
 507 reg_class_dynamic int_no_rax_rdx_reg(int_no_rax_rdx_reg_no_rbp, int_no_rax_rdx_reg_with_rbp, %{ PreserveFramePointer %});
 508 
 509 // Singleton class for RAX int register
 510 reg_class int_rax_reg(RAX);
 511 
 512 // Singleton class for RBX int register
 513 reg_class int_rbx_reg(RBX);
 514 
 515 // Singleton class for RCX int register
 516 reg_class int_rcx_reg(RCX);
 517 
 518 // Singleton class for RCX int register
 519 reg_class int_rdx_reg(RDX);
 520 
 521 // Singleton class for RCX int register
 522 reg_class int_rdi_reg(RDI);
 523 
 524 // Singleton class for instruction pointer
 525 // reg_class ip_reg(RIP);
 526 
 527 %}
 528 
 529 //----------SOURCE BLOCK-------------------------------------------------------
 530 // This is a block of C++ code which provides values, functions, and
 531 // definitions necessary in the rest of the architecture description
 532 source %{
 533 #define   RELOC_IMM64    Assembler::imm_operand
 534 #define   RELOC_DISP32   Assembler::disp32_operand
 535 
 536 #define __ _masm.
 537 
 538 static int clear_avx_size() {
 539   return (Compile::current()->max_vector_size() > 16) ? 3 : 0;  // vzeroupper
 540 }
 541 
 542 // !!!!! Special hack to get all types of calls to specify the byte offset
 543 //       from the start of the call to the point where the return address
 544 //       will point.
 545 int MachCallStaticJavaNode::ret_addr_offset()
 546 {
 547   int offset = 5; // 5 bytes from start of call to where return address points
 548   offset += clear_avx_size();  
 549   return offset;
 550 }
 551 
 552 int MachCallDynamicJavaNode::ret_addr_offset()
 553 {
 554   int offset = 15; // 15 bytes from start of call to where return address points
 555   offset += clear_avx_size();
 556   return offset;
 557 }
 558 
 559 int MachCallRuntimeNode::ret_addr_offset() {
 560   int offset = 13; // movq r10,#addr; callq (r10)
 561   offset += clear_avx_size();
 562   return offset;
 563 }
 564 
 565 // Indicate if the safepoint node needs the polling page as an input,
 566 // it does if the polling page is more than disp32 away.
 567 bool SafePointNode::needs_polling_address_input()
 568 {
 569   return Assembler::is_polling_page_far();
 570 }
 571 
 572 //
 573 // Compute padding required for nodes which need alignment
 574 //
 575 
 576 // The address of the call instruction needs to be 4-byte aligned to
 577 // ensure that it does not span a cache line so that it can be patched.
 578 int CallStaticJavaDirectNode::compute_padding(int current_offset) const
 579 {
 580   current_offset += clear_avx_size(); // skip vzeroupper
 581   current_offset += 1; // skip call opcode byte
 582   return round_to(current_offset, alignment_required()) - current_offset;
 583 }
 584 
 585 // The address of the call instruction needs to be 4-byte aligned to
 586 // ensure that it does not span a cache line so that it can be patched.
 587 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
 588 {
 589   current_offset += clear_avx_size(); // skip vzeroupper
 590   current_offset += 11; // skip movq instruction + call opcode byte
 591   return round_to(current_offset, alignment_required()) - current_offset;
 592 }
 593 
 594 // EMIT_RM()
 595 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 596   unsigned char c = (unsigned char) ((f1 << 6) | (f2 << 3) | f3);
 597   cbuf.insts()->emit_int8(c);
 598 }
 599 
 600 // EMIT_CC()
 601 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 602   unsigned char c = (unsigned char) (f1 | f2);
 603   cbuf.insts()->emit_int8(c);
 604 }
 605 
 606 // EMIT_OPCODE()
 607 void emit_opcode(CodeBuffer &cbuf, int code) {
 608   cbuf.insts()->emit_int8((unsigned char) code);
 609 }
 610 
 611 // EMIT_OPCODE() w/ relocation information
 612 void emit_opcode(CodeBuffer &cbuf,
 613                  int code, relocInfo::relocType reloc, int offset, int format)
 614 {
 615   cbuf.relocate(cbuf.insts_mark() + offset, reloc, format);
 616   emit_opcode(cbuf, code);
 617 }
 618 
 619 // EMIT_D8()
 620 void emit_d8(CodeBuffer &cbuf, int d8) {
 621   cbuf.insts()->emit_int8((unsigned char) d8);
 622 }
 623 
 624 // EMIT_D16()
 625 void emit_d16(CodeBuffer &cbuf, int d16) {
 626   cbuf.insts()->emit_int16(d16);
 627 }
 628 
 629 // EMIT_D32()
 630 void emit_d32(CodeBuffer &cbuf, int d32) {
 631   cbuf.insts()->emit_int32(d32);
 632 }
 633 
 634 // EMIT_D64()
 635 void emit_d64(CodeBuffer &cbuf, int64_t d64) {
 636   cbuf.insts()->emit_int64(d64);
 637 }
 638 
 639 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 640 void emit_d32_reloc(CodeBuffer& cbuf,
 641                     int d32,
 642                     relocInfo::relocType reloc,
 643                     int format)
 644 {
 645   assert(reloc != relocInfo::external_word_type, "use 2-arg emit_d32_reloc");
 646   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 647   cbuf.insts()->emit_int32(d32);
 648 }
 649 
 650 // emit 32 bit value and construct relocation entry from RelocationHolder
 651 void emit_d32_reloc(CodeBuffer& cbuf, int d32, RelocationHolder const& rspec, int format) {
 652 #ifdef ASSERT
 653   if (rspec.reloc()->type() == relocInfo::oop_type &&
 654       d32 != 0 && d32 != (intptr_t) Universe::non_oop_word()) {
 655     assert(Universe::heap()->is_in_reserved((address)(intptr_t)d32), "should be real oop");
 656     assert(cast_to_oop((intptr_t)d32)->is_oop() && (ScavengeRootsInCode || !cast_to_oop((intptr_t)d32)->is_scavengable()), "cannot embed scavengable oops in code");
 657   }
 658 #endif
 659   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 660   cbuf.insts()->emit_int32(d32);
 661 }
 662 
 663 void emit_d32_reloc(CodeBuffer& cbuf, address addr) {
 664   address next_ip = cbuf.insts_end() + 4;
 665   emit_d32_reloc(cbuf, (int) (addr - next_ip),
 666                  external_word_Relocation::spec(addr),
 667                  RELOC_DISP32);
 668 }
 669 
 670 
 671 // emit 64 bit value and construct relocation entry from relocInfo::relocType
 672 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, relocInfo::relocType reloc, int format) {
 673   cbuf.relocate(cbuf.insts_mark(), reloc, format);
 674   cbuf.insts()->emit_int64(d64);
 675 }
 676 
 677 // emit 64 bit value and construct relocation entry from RelocationHolder
 678 void emit_d64_reloc(CodeBuffer& cbuf, int64_t d64, RelocationHolder const& rspec, int format) {
 679 #ifdef ASSERT
 680   if (rspec.reloc()->type() == relocInfo::oop_type &&
 681       d64 != 0 && d64 != (int64_t) Universe::non_oop_word()) {
 682     assert(Universe::heap()->is_in_reserved((address)d64), "should be real oop");
 683     assert(cast_to_oop(d64)->is_oop() && (ScavengeRootsInCode || !cast_to_oop(d64)->is_scavengable()),
 684            "cannot embed scavengable oops in code");
 685   }
 686 #endif
 687   cbuf.relocate(cbuf.insts_mark(), rspec, format);
 688   cbuf.insts()->emit_int64(d64);
 689 }
 690 
 691 // Access stack slot for load or store
 692 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp)
 693 {
 694   emit_opcode(cbuf, opcode);                  // (e.g., FILD   [RSP+src])
 695   if (-0x80 <= disp && disp < 0x80) {
 696     emit_rm(cbuf, 0x01, rm_field, RSP_enc);   // R/M byte
 697     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 698     emit_d8(cbuf, disp);     // Displacement  // R/M byte
 699   } else {
 700     emit_rm(cbuf, 0x02, rm_field, RSP_enc);   // R/M byte
 701     emit_rm(cbuf, 0x00, RSP_enc, RSP_enc);    // SIB byte
 702     emit_d32(cbuf, disp);     // Displacement // R/M byte
 703   }
 704 }
 705 
 706    // rRegI ereg, memory mem) %{    // emit_reg_mem
 707 void encode_RegMem(CodeBuffer &cbuf,
 708                    int reg,
 709                    int base, int index, int scale, int disp, relocInfo::relocType disp_reloc)
 710 {
 711   assert(disp_reloc == relocInfo::none, "cannot have disp");
 712   int regenc = reg & 7;
 713   int baseenc = base & 7;
 714   int indexenc = index & 7;
 715 
 716   // There is no index & no scale, use form without SIB byte
 717   if (index == 0x4 && scale == 0 && base != RSP_enc && base != R12_enc) {
 718     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 719     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 720       emit_rm(cbuf, 0x0, regenc, baseenc); // *
 721     } else if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 722       // If 8-bit displacement, mode 0x1
 723       emit_rm(cbuf, 0x1, regenc, baseenc); // *
 724       emit_d8(cbuf, disp);
 725     } else {
 726       // If 32-bit displacement
 727       if (base == -1) { // Special flag for absolute address
 728         emit_rm(cbuf, 0x0, regenc, 0x5); // *
 729         if (disp_reloc != relocInfo::none) {
 730           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 731         } else {
 732           emit_d32(cbuf, disp);
 733         }
 734       } else {
 735         // Normal base + offset
 736         emit_rm(cbuf, 0x2, regenc, baseenc); // *
 737         if (disp_reloc != relocInfo::none) {
 738           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 739         } else {
 740           emit_d32(cbuf, disp);
 741         }
 742       }
 743     }
 744   } else {
 745     // Else, encode with the SIB byte
 746     // If no displacement, mode is 0x0; unless base is [RBP] or [R13]
 747     if (disp == 0 && base != RBP_enc && base != R13_enc) {
 748       // If no displacement
 749       emit_rm(cbuf, 0x0, regenc, 0x4); // *
 750       emit_rm(cbuf, scale, indexenc, baseenc);
 751     } else {
 752       if (-0x80 <= disp && disp < 0x80 && disp_reloc == relocInfo::none) {
 753         // If 8-bit displacement, mode 0x1
 754         emit_rm(cbuf, 0x1, regenc, 0x4); // *
 755         emit_rm(cbuf, scale, indexenc, baseenc);
 756         emit_d8(cbuf, disp);
 757       } else {
 758         // If 32-bit displacement
 759         if (base == 0x04 ) {
 760           emit_rm(cbuf, 0x2, regenc, 0x4);
 761           emit_rm(cbuf, scale, indexenc, 0x04); // XXX is this valid???
 762         } else {
 763           emit_rm(cbuf, 0x2, regenc, 0x4);
 764           emit_rm(cbuf, scale, indexenc, baseenc); // *
 765         }
 766         if (disp_reloc != relocInfo::none) {
 767           emit_d32_reloc(cbuf, disp, relocInfo::oop_type, RELOC_DISP32);
 768         } else {
 769           emit_d32(cbuf, disp);
 770         }
 771       }
 772     }
 773   }
 774 }
 775 
 776 // This could be in MacroAssembler but it's fairly C2 specific
 777 void emit_cmpfp_fixup(MacroAssembler& _masm) {
 778   Label exit;
 779   __ jccb(Assembler::noParity, exit);
 780   __ pushf();
 781   //
 782   // comiss/ucomiss instructions set ZF,PF,CF flags and
 783   // zero OF,AF,SF for NaN values.
 784   // Fixup flags by zeroing ZF,PF so that compare of NaN
 785   // values returns 'less than' result (CF is set).
 786   // Leave the rest of flags unchanged.
 787   //
 788   //    7 6 5 4 3 2 1 0
 789   //   |S|Z|r|A|r|P|r|C|  (r - reserved bit)
 790   //    0 0 1 0 1 0 1 1   (0x2B)
 791   //
 792   __ andq(Address(rsp, 0), 0xffffff2b);
 793   __ popf();
 794   __ bind(exit);
 795 }
 796 
 797 void emit_cmpfp3(MacroAssembler& _masm, Register dst) {
 798   Label done;
 799   __ movl(dst, -1);
 800   __ jcc(Assembler::parity, done);
 801   __ jcc(Assembler::below, done);
 802   __ setb(Assembler::notEqual, dst);
 803   __ movzbl(dst, dst);
 804   __ bind(done);
 805 }
 806 
 807 
 808 //=============================================================================
 809 const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
 810 
 811 int Compile::ConstantTable::calculate_table_base_offset() const {
 812   return 0;  // absolute addressing, no offset
 813 }
 814 
 815 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
 816 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
 817   ShouldNotReachHere();
 818 }
 819 
 820 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
 821   // Empty encoding
 822 }
 823 
 824 uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
 825   return 0;
 826 }
 827 
 828 #ifndef PRODUCT
 829 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 830   st->print("# MachConstantBaseNode (empty encoding)");
 831 }
 832 #endif
 833 
 834 
 835 //=============================================================================
 836 #ifndef PRODUCT
 837 void MachPrologNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
 838   Compile* C = ra_->C;
 839 
 840   int framesize = C->frame_size_in_bytes();
 841   int bangsize = C->bang_size_in_bytes();
 842   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 843   // Remove wordSize for return addr which is already pushed.
 844   framesize -= wordSize;
 845 
 846   if (C->need_stack_bang(bangsize)) {
 847     framesize -= wordSize;
 848     st->print("# stack bang (%d bytes)", bangsize);
 849     st->print("\n\t");
 850     st->print("pushq   rbp\t# Save rbp");
 851     if (PreserveFramePointer) {
 852         st->print("\n\t");
 853         st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 854     }
 855     if (framesize) {
 856       st->print("\n\t");
 857       st->print("subq    rsp, #%d\t# Create frame",framesize);
 858     }
 859   } else {
 860     st->print("subq    rsp, #%d\t# Create frame",framesize);
 861     st->print("\n\t");
 862     framesize -= wordSize;
 863     st->print("movq    [rsp + #%d], rbp\t# Save rbp",framesize);    
 864     if (PreserveFramePointer) {
 865       st->print("\n\t");
 866       st->print("movq    rbp, rsp\t# Save the caller's SP into rbp");
 867       if (framesize > 0) {
 868         st->print("\n\t");
 869         st->print("addq    rbp, #%d", framesize);
 870       }      
 871     }
 872   }
 873 
 874   if (VerifyStackAtCalls) {
 875     st->print("\n\t");
 876     framesize -= wordSize;
 877     st->print("movq    [rsp + #%d], 0xbadb100d\t# Majik cookie for stack depth check",framesize);
 878 #ifdef ASSERT
 879     st->print("\n\t");
 880     st->print("# stack alignment check");
 881 #endif
 882   }
 883   st->cr();
 884 }
 885 #endif
 886 
 887 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 888   Compile* C = ra_->C;
 889   MacroAssembler _masm(&cbuf);
 890 
 891   int framesize = C->frame_size_in_bytes();
 892   int bangsize = C->bang_size_in_bytes();
 893 
 894   __ verified_entry(framesize, C->need_stack_bang(bangsize)?bangsize:0, false);
 895 
 896   C->set_frame_complete(cbuf.insts_size());
 897 
 898   if (C->has_mach_constant_base_node()) {
 899     // NOTE: We set the table base offset here because users might be
 900     // emitted before MachConstantBaseNode.
 901     Compile::ConstantTable& constant_table = C->constant_table();
 902     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
 903   }
 904 }
 905 
 906 uint MachPrologNode::size(PhaseRegAlloc* ra_) const
 907 {
 908   return MachNode::size(ra_); // too many variables; just compute it
 909                               // the hard way
 910 }
 911 
 912 int MachPrologNode::reloc() const
 913 {
 914   return 0; // a large enough number
 915 }
 916 
 917 //=============================================================================
 918 #ifndef PRODUCT
 919 void MachEpilogNode::format(PhaseRegAlloc* ra_, outputStream* st) const
 920 {
 921   Compile* C = ra_->C;
 922   if (C->max_vector_size() > 16) {
 923     st->print("vzeroupper");
 924     st->cr(); st->print("\t");
 925   }
 926 
 927   int framesize = C->frame_size_in_bytes();
 928   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 929   // Remove word for return adr already pushed
 930   // and RBP
 931   framesize -= 2*wordSize;
 932 
 933   if (framesize) {
 934     st->print_cr("addq    rsp, %d\t# Destroy frame", framesize);
 935     st->print("\t");
 936   }
 937 
 938   st->print_cr("popq   rbp");
 939   if (do_polling() && C->is_method_compilation()) {
 940     st->print("\t");
 941     if (Assembler::is_polling_page_far()) {
 942       st->print_cr("movq   rscratch1, #polling_page_address\n\t"
 943                    "testl  rax, [rscratch1]\t"
 944                    "# Safepoint: poll for GC");
 945     } else {
 946       st->print_cr("testl  rax, [rip + #offset_to_poll_page]\t"
 947                    "# Safepoint: poll for GC");
 948     }
 949   }
 950 }
 951 #endif
 952 
 953 void MachEpilogNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
 954 {
 955   Compile* C = ra_->C;
 956   if (C->max_vector_size() > 16) {
 957     // Clear upper bits of YMM registers when current compiled code uses
 958     // wide vectors to avoid AVX <-> SSE transition penalty during call.
 959     MacroAssembler _masm(&cbuf);
 960     __ vzeroupper();
 961   }
 962 
 963   int framesize = C->frame_size_in_bytes();
 964   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 965   // Remove word for return adr already pushed
 966   // and RBP
 967   framesize -= 2*wordSize;
 968 
 969   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 970 
 971   if (framesize) {
 972     emit_opcode(cbuf, Assembler::REX_W);
 973     if (framesize < 0x80) {
 974       emit_opcode(cbuf, 0x83); // addq rsp, #framesize
 975       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 976       emit_d8(cbuf, framesize);
 977     } else {
 978       emit_opcode(cbuf, 0x81); // addq rsp, #framesize
 979       emit_rm(cbuf, 0x3, 0x00, RSP_enc);
 980       emit_d32(cbuf, framesize);
 981     }
 982   }
 983 
 984   // popq rbp
 985   emit_opcode(cbuf, 0x58 | RBP_enc);
 986 
 987   if (do_polling() && C->is_method_compilation()) {
 988     MacroAssembler _masm(&cbuf);
 989     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 990     if (Assembler::is_polling_page_far()) {
 991       __ lea(rscratch1, polling_page);
 992       __ relocate(relocInfo::poll_return_type);
 993       __ testl(rax, Address(rscratch1, 0));
 994     } else {
 995       __ testl(rax, polling_page);
 996     }
 997   }
 998 }
 999 
1000 uint MachEpilogNode::size(PhaseRegAlloc* ra_) const
1001 {
1002   return MachNode::size(ra_); // too many variables; just compute it
1003                               // the hard way
1004 }
1005 
1006 int MachEpilogNode::reloc() const
1007 {
1008   return 2; // a large enough number
1009 }
1010 
1011 const Pipeline* MachEpilogNode::pipeline() const
1012 {
1013   return MachNode::pipeline_class();
1014 }
1015 
1016 int MachEpilogNode::safepoint_offset() const
1017 {
1018   return 0;
1019 }
1020 
1021 //=============================================================================
1022 
1023 enum RC {
1024   rc_bad,
1025   rc_int,
1026   rc_float,
1027   rc_stack
1028 };
1029 
1030 static enum RC rc_class(OptoReg::Name reg)
1031 {
1032   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1033 
1034   if (OptoReg::is_stack(reg)) return rc_stack;
1035 
1036   VMReg r = OptoReg::as_VMReg(reg);
1037 
1038   if (r->is_Register()) return rc_int;
1039 
1040   assert(r->is_XMMRegister(), "must be");
1041   return rc_float;
1042 }
1043 
1044 // Next two methods are shared by 32- and 64-bit VM. They are defined in x86.ad.
1045 static int vec_mov_helper(CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
1046                           int src_hi, int dst_hi, uint ireg, outputStream* st);
1047 
1048 static int vec_spill_helper(CodeBuffer *cbuf, bool do_size, bool is_load,
1049                             int stack_offset, int reg, uint ireg, outputStream* st);
1050 
1051 static void vec_stack_to_stack_helper(CodeBuffer *cbuf, int src_offset,
1052                                       int dst_offset, uint ireg, outputStream* st) {
1053   if (cbuf) {
1054     MacroAssembler _masm(cbuf);
1055     switch (ireg) {
1056     case Op_VecS:
1057       __ movq(Address(rsp, -8), rax);
1058       __ movl(rax, Address(rsp, src_offset));
1059       __ movl(Address(rsp, dst_offset), rax);
1060       __ movq(rax, Address(rsp, -8));
1061       break;
1062     case Op_VecD:
1063       __ pushq(Address(rsp, src_offset));
1064       __ popq (Address(rsp, dst_offset));
1065       break;
1066     case Op_VecX:
1067       __ pushq(Address(rsp, src_offset));
1068       __ popq (Address(rsp, dst_offset));
1069       __ pushq(Address(rsp, src_offset+8));
1070       __ popq (Address(rsp, dst_offset+8));
1071       break;
1072     case Op_VecY:
1073       __ vmovdqu(Address(rsp, -32), xmm0);
1074       __ vmovdqu(xmm0, Address(rsp, src_offset));
1075       __ vmovdqu(Address(rsp, dst_offset), xmm0);
1076       __ vmovdqu(xmm0, Address(rsp, -32));
1077       break;
1078     default:
1079       ShouldNotReachHere();
1080     }
1081 #ifndef PRODUCT
1082   } else {
1083     switch (ireg) {
1084     case Op_VecS:
1085       st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1086                 "movl    rax, [rsp + #%d]\n\t"
1087                 "movl    [rsp + #%d], rax\n\t"
1088                 "movq    rax, [rsp - #8]",
1089                 src_offset, dst_offset);
1090       break;
1091     case Op_VecD:
1092       st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1093                 "popq    [rsp + #%d]",
1094                 src_offset, dst_offset);
1095       break;
1096      case Op_VecX:
1097       st->print("pushq   [rsp + #%d]\t# 128-bit mem-mem spill\n\t"
1098                 "popq    [rsp + #%d]\n\t"
1099                 "pushq   [rsp + #%d]\n\t"
1100                 "popq    [rsp + #%d]",
1101                 src_offset, dst_offset, src_offset+8, dst_offset+8);
1102       break;
1103     case Op_VecY:
1104       st->print("vmovdqu [rsp - #32], xmm0\t# 256-bit mem-mem spill\n\t"
1105                 "vmovdqu xmm0, [rsp + #%d]\n\t"
1106                 "vmovdqu [rsp + #%d], xmm0\n\t"
1107                 "vmovdqu xmm0, [rsp - #32]",
1108                 src_offset, dst_offset);
1109       break;
1110     default:
1111       ShouldNotReachHere();
1112     }
1113 #endif
1114   }
1115 }
1116 
1117 uint MachSpillCopyNode::implementation(CodeBuffer* cbuf,
1118                                        PhaseRegAlloc* ra_,
1119                                        bool do_size,
1120                                        outputStream* st) const {
1121   assert(cbuf != NULL || st  != NULL, "sanity");
1122   // Get registers to move
1123   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1124   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1125   OptoReg::Name dst_second = ra_->get_reg_second(this);
1126   OptoReg::Name dst_first = ra_->get_reg_first(this);
1127 
1128   enum RC src_second_rc = rc_class(src_second);
1129   enum RC src_first_rc = rc_class(src_first);
1130   enum RC dst_second_rc = rc_class(dst_second);
1131   enum RC dst_first_rc = rc_class(dst_first);
1132 
1133   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first),
1134          "must move at least 1 register" );
1135 
1136   if (src_first == dst_first && src_second == dst_second) {
1137     // Self copy, no move
1138     return 0;
1139   }
1140   if (bottom_type()->isa_vect() != NULL) {
1141     uint ireg = ideal_reg();
1142     assert((src_first_rc != rc_int && dst_first_rc != rc_int), "sanity");
1143     assert((ireg == Op_VecS || ireg == Op_VecD || ireg == Op_VecX || ireg == Op_VecY), "sanity");
1144     if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1145       // mem -> mem
1146       int src_offset = ra_->reg2offset(src_first);
1147       int dst_offset = ra_->reg2offset(dst_first);
1148       vec_stack_to_stack_helper(cbuf, src_offset, dst_offset, ireg, st);
1149     } else if (src_first_rc == rc_float && dst_first_rc == rc_float ) {
1150       vec_mov_helper(cbuf, false, src_first, dst_first, src_second, dst_second, ireg, st);
1151     } else if (src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1152       int stack_offset = ra_->reg2offset(dst_first);
1153       vec_spill_helper(cbuf, false, false, stack_offset, src_first, ireg, st);
1154     } else if (src_first_rc == rc_stack && dst_first_rc == rc_float ) {
1155       int stack_offset = ra_->reg2offset(src_first);
1156       vec_spill_helper(cbuf, false, true,  stack_offset, dst_first, ireg, st);
1157     } else {
1158       ShouldNotReachHere();
1159     }
1160     return 0;
1161   }
1162   if (src_first_rc == rc_stack) {
1163     // mem ->
1164     if (dst_first_rc == rc_stack) {
1165       // mem -> mem
1166       assert(src_second != dst_first, "overlap");
1167       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1168           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1169         // 64-bit
1170         int src_offset = ra_->reg2offset(src_first);
1171         int dst_offset = ra_->reg2offset(dst_first);
1172         if (cbuf) {
1173           MacroAssembler _masm(cbuf);
1174           __ pushq(Address(rsp, src_offset));
1175           __ popq (Address(rsp, dst_offset));
1176 #ifndef PRODUCT
1177         } else {
1178           st->print("pushq   [rsp + #%d]\t# 64-bit mem-mem spill\n\t"
1179                     "popq    [rsp + #%d]",
1180                      src_offset, dst_offset);
1181 #endif
1182         }
1183       } else {
1184         // 32-bit
1185         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1186         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1187         // No pushl/popl, so:
1188         int src_offset = ra_->reg2offset(src_first);
1189         int dst_offset = ra_->reg2offset(dst_first);
1190         if (cbuf) {
1191           MacroAssembler _masm(cbuf);
1192           __ movq(Address(rsp, -8), rax);
1193           __ movl(rax, Address(rsp, src_offset));
1194           __ movl(Address(rsp, dst_offset), rax);
1195           __ movq(rax, Address(rsp, -8));
1196 #ifndef PRODUCT
1197         } else {
1198           st->print("movq    [rsp - #8], rax\t# 32-bit mem-mem spill\n\t"
1199                     "movl    rax, [rsp + #%d]\n\t"
1200                     "movl    [rsp + #%d], rax\n\t"
1201                     "movq    rax, [rsp - #8]",
1202                      src_offset, dst_offset);
1203 #endif
1204         }
1205       }
1206       return 0;
1207     } else if (dst_first_rc == rc_int) {
1208       // mem -> gpr
1209       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1210           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1211         // 64-bit
1212         int offset = ra_->reg2offset(src_first);
1213         if (cbuf) {
1214           MacroAssembler _masm(cbuf);
1215           __ movq(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1216 #ifndef PRODUCT
1217         } else {
1218           st->print("movq    %s, [rsp + #%d]\t# spill",
1219                      Matcher::regName[dst_first],
1220                      offset);
1221 #endif
1222         }
1223       } else {
1224         // 32-bit
1225         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1226         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1227         int offset = ra_->reg2offset(src_first);
1228         if (cbuf) {
1229           MacroAssembler _masm(cbuf);
1230           __ movl(as_Register(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1231 #ifndef PRODUCT
1232         } else {
1233           st->print("movl    %s, [rsp + #%d]\t# spill",
1234                      Matcher::regName[dst_first],
1235                      offset);
1236 #endif
1237         }
1238       }
1239       return 0;
1240     } else if (dst_first_rc == rc_float) {
1241       // mem-> xmm
1242       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1243           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1244         // 64-bit
1245         int offset = ra_->reg2offset(src_first);
1246         if (cbuf) {
1247           MacroAssembler _masm(cbuf);
1248           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1249 #ifndef PRODUCT
1250         } else {
1251           st->print("%s  %s, [rsp + #%d]\t# spill",
1252                      UseXmmLoadAndClearUpper ? "movsd " : "movlpd",
1253                      Matcher::regName[dst_first],
1254                      offset);
1255 #endif
1256         }
1257       } else {
1258         // 32-bit
1259         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1260         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1261         int offset = ra_->reg2offset(src_first);
1262         if (cbuf) {
1263           MacroAssembler _masm(cbuf);
1264           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), Address(rsp, offset));
1265 #ifndef PRODUCT
1266         } else {
1267           st->print("movss   %s, [rsp + #%d]\t# spill",
1268                      Matcher::regName[dst_first],
1269                      offset);
1270 #endif
1271         }
1272       }
1273       return 0;
1274     }
1275   } else if (src_first_rc == rc_int) {
1276     // gpr ->
1277     if (dst_first_rc == rc_stack) {
1278       // gpr -> mem
1279       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1280           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1281         // 64-bit
1282         int offset = ra_->reg2offset(dst_first);
1283         if (cbuf) {
1284           MacroAssembler _masm(cbuf);
1285           __ movq(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1286 #ifndef PRODUCT
1287         } else {
1288           st->print("movq    [rsp + #%d], %s\t# spill",
1289                      offset,
1290                      Matcher::regName[src_first]);
1291 #endif
1292         }
1293       } else {
1294         // 32-bit
1295         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1296         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1297         int offset = ra_->reg2offset(dst_first);
1298         if (cbuf) {
1299           MacroAssembler _masm(cbuf);
1300           __ movl(Address(rsp, offset), as_Register(Matcher::_regEncode[src_first]));
1301 #ifndef PRODUCT
1302         } else {
1303           st->print("movl    [rsp + #%d], %s\t# spill",
1304                      offset,
1305                      Matcher::regName[src_first]);
1306 #endif
1307         }
1308       }
1309       return 0;
1310     } else if (dst_first_rc == rc_int) {
1311       // gpr -> gpr
1312       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1313           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1314         // 64-bit
1315         if (cbuf) {
1316           MacroAssembler _masm(cbuf);
1317           __ movq(as_Register(Matcher::_regEncode[dst_first]),
1318                   as_Register(Matcher::_regEncode[src_first]));
1319 #ifndef PRODUCT
1320         } else {
1321           st->print("movq    %s, %s\t# spill",
1322                      Matcher::regName[dst_first],
1323                      Matcher::regName[src_first]);
1324 #endif
1325         }
1326         return 0;
1327       } else {
1328         // 32-bit
1329         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1330         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1331         if (cbuf) {
1332           MacroAssembler _masm(cbuf);
1333           __ movl(as_Register(Matcher::_regEncode[dst_first]),
1334                   as_Register(Matcher::_regEncode[src_first]));
1335 #ifndef PRODUCT
1336         } else {
1337           st->print("movl    %s, %s\t# spill",
1338                      Matcher::regName[dst_first],
1339                      Matcher::regName[src_first]);
1340 #endif
1341         }
1342         return 0;
1343       }
1344     } else if (dst_first_rc == rc_float) {
1345       // gpr -> xmm
1346       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1347           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1348         // 64-bit
1349         if (cbuf) {
1350           MacroAssembler _masm(cbuf);
1351           __ movdq( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1352 #ifndef PRODUCT
1353         } else {
1354           st->print("movdq   %s, %s\t# spill",
1355                      Matcher::regName[dst_first],
1356                      Matcher::regName[src_first]);
1357 #endif
1358         }
1359       } else {
1360         // 32-bit
1361         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1362         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1363         if (cbuf) {
1364           MacroAssembler _masm(cbuf);
1365           __ movdl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_Register(Matcher::_regEncode[src_first]));
1366 #ifndef PRODUCT
1367         } else {
1368           st->print("movdl   %s, %s\t# spill",
1369                      Matcher::regName[dst_first],
1370                      Matcher::regName[src_first]);
1371 #endif
1372         }
1373       }
1374       return 0;
1375     }
1376   } else if (src_first_rc == rc_float) {
1377     // xmm ->
1378     if (dst_first_rc == rc_stack) {
1379       // xmm -> mem
1380       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1381           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1382         // 64-bit
1383         int offset = ra_->reg2offset(dst_first);
1384         if (cbuf) {
1385           MacroAssembler _masm(cbuf);
1386           __ movdbl( Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1387 #ifndef PRODUCT
1388         } else {
1389           st->print("movsd   [rsp + #%d], %s\t# spill",
1390                      offset,
1391                      Matcher::regName[src_first]);
1392 #endif
1393         }
1394       } else {
1395         // 32-bit
1396         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1397         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1398         int offset = ra_->reg2offset(dst_first);
1399         if (cbuf) {
1400           MacroAssembler _masm(cbuf);
1401           __ movflt(Address(rsp, offset), as_XMMRegister(Matcher::_regEncode[src_first]));
1402 #ifndef PRODUCT
1403         } else {
1404           st->print("movss   [rsp + #%d], %s\t# spill",
1405                      offset,
1406                      Matcher::regName[src_first]);
1407 #endif
1408         }
1409       }
1410       return 0;
1411     } else if (dst_first_rc == rc_int) {
1412       // xmm -> gpr
1413       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1414           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1415         // 64-bit
1416         if (cbuf) {
1417           MacroAssembler _masm(cbuf);
1418           __ movdq( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1419 #ifndef PRODUCT
1420         } else {
1421           st->print("movdq   %s, %s\t# spill",
1422                      Matcher::regName[dst_first],
1423                      Matcher::regName[src_first]);
1424 #endif
1425         }
1426       } else {
1427         // 32-bit
1428         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1429         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1430         if (cbuf) {
1431           MacroAssembler _masm(cbuf);
1432           __ movdl( as_Register(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1433 #ifndef PRODUCT
1434         } else {
1435           st->print("movdl   %s, %s\t# spill",
1436                      Matcher::regName[dst_first],
1437                      Matcher::regName[src_first]);
1438 #endif
1439         }
1440       }
1441       return 0;
1442     } else if (dst_first_rc == rc_float) {
1443       // xmm -> xmm
1444       if ((src_first & 1) == 0 && src_first + 1 == src_second &&
1445           (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1446         // 64-bit
1447         if (cbuf) {
1448           MacroAssembler _masm(cbuf);
1449           __ movdbl( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1450 #ifndef PRODUCT
1451         } else {
1452           st->print("%s  %s, %s\t# spill",
1453                      UseXmmRegToRegMoveAll ? "movapd" : "movsd ",
1454                      Matcher::regName[dst_first],
1455                      Matcher::regName[src_first]);
1456 #endif
1457         }
1458       } else {
1459         // 32-bit
1460         assert(!((src_first & 1) == 0 && src_first + 1 == src_second), "no transform");
1461         assert(!((dst_first & 1) == 0 && dst_first + 1 == dst_second), "no transform");
1462         if (cbuf) {
1463           MacroAssembler _masm(cbuf);
1464           __ movflt( as_XMMRegister(Matcher::_regEncode[dst_first]), as_XMMRegister(Matcher::_regEncode[src_first]));
1465 #ifndef PRODUCT
1466         } else {
1467           st->print("%s  %s, %s\t# spill",
1468                      UseXmmRegToRegMoveAll ? "movaps" : "movss ",
1469                      Matcher::regName[dst_first],
1470                      Matcher::regName[src_first]);
1471 #endif
1472         }
1473       }
1474       return 0;
1475     }
1476   }
1477 
1478   assert(0," foo ");
1479   Unimplemented();
1480   return 0;
1481 }
1482 
1483 #ifndef PRODUCT
1484 void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream* st) const {
1485   implementation(NULL, ra_, false, st);
1486 }
1487 #endif
1488 
1489 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1490   implementation(&cbuf, ra_, false, NULL);
1491 }
1492 
1493 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1494   return MachNode::size(ra_);
1495 }
1496 
1497 //=============================================================================
1498 #ifndef PRODUCT
1499 void BoxLockNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1500 {
1501   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1502   int reg = ra_->get_reg_first(this);
1503   st->print("leaq    %s, [rsp + #%d]\t# box lock",
1504             Matcher::regName[reg], offset);
1505 }
1506 #endif
1507 
1508 void BoxLockNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1509 {
1510   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1511   int reg = ra_->get_encode(this);
1512   if (offset >= 0x80) {
1513     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1514     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1515     emit_rm(cbuf, 0x2, reg & 7, 0x04);
1516     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1517     emit_d32(cbuf, offset);
1518   } else {
1519     emit_opcode(cbuf, reg < 8 ? Assembler::REX_W : Assembler::REX_WR);
1520     emit_opcode(cbuf, 0x8D); // LEA  reg,[SP+offset]
1521     emit_rm(cbuf, 0x1, reg & 7, 0x04);
1522     emit_rm(cbuf, 0x0, 0x04, RSP_enc);
1523     emit_d8(cbuf, offset);
1524   }
1525 }
1526 
1527 uint BoxLockNode::size(PhaseRegAlloc *ra_) const
1528 {
1529   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1530   return (offset < 0x80) ? 5 : 8; // REX
1531 }
1532 
1533 //=============================================================================
1534 #ifndef PRODUCT
1535 void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
1536 {
1537   if (UseCompressedClassPointers) {
1538     st->print_cr("movl    rscratch1, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t# compressed klass");
1539     st->print_cr("\tdecode_klass_not_null rscratch1, rscratch1");
1540     st->print_cr("\tcmpq    rax, rscratch1\t # Inline cache check");
1541   } else {
1542     st->print_cr("\tcmpq    rax, [j_rarg0 + oopDesc::klass_offset_in_bytes()]\t"
1543                  "# Inline cache check");
1544   }
1545   st->print_cr("\tjne     SharedRuntime::_ic_miss_stub");
1546   st->print_cr("\tnop\t# nops to align entry point");
1547 }
1548 #endif
1549 
1550 void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
1551 {
1552   MacroAssembler masm(&cbuf);
1553   uint insts_size = cbuf.insts_size();
1554   if (UseCompressedClassPointers) {
1555     masm.load_klass(rscratch1, j_rarg0);
1556     masm.cmpptr(rax, rscratch1);
1557   } else {
1558     masm.cmpptr(rax, Address(j_rarg0, oopDesc::klass_offset_in_bytes()));
1559   }
1560 
1561   masm.jump_cc(Assembler::notEqual, RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1562 
1563   /* WARNING these NOPs are critical so that verified entry point is properly
1564      4 bytes aligned for patching by NativeJump::patch_verified_entry() */
1565   int nops_cnt = 4 - ((cbuf.insts_size() - insts_size) & 0x3);
1566   if (OptoBreakpoint) {
1567     // Leave space for int3
1568     nops_cnt -= 1;
1569   }
1570   nops_cnt &= 0x3; // Do not add nops if code is aligned.
1571   if (nops_cnt > 0)
1572     masm.nop(nops_cnt);
1573 }
1574 
1575 uint MachUEPNode::size(PhaseRegAlloc* ra_) const
1576 {
1577   return MachNode::size(ra_); // too many variables; just compute it
1578                               // the hard way
1579 }
1580  
1581 
1582 //=============================================================================
1583 
1584 int Matcher::regnum_to_fpu_offset(int regnum)
1585 {
1586   return regnum - 32; // The FP registers are in the second chunk
1587 }
1588 
1589 // This is UltraSparc specific, true just means we have fast l2f conversion
1590 const bool Matcher::convL2FSupported(void) {
1591   return true;
1592 }
1593 
1594 // Is this branch offset short enough that a short branch can be used?
1595 //
1596 // NOTE: If the platform does not provide any short branch variants, then
1597 //       this method should return false for offset 0.
1598 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1599   // The passed offset is relative to address of the branch.
1600   // On 86 a branch displacement is calculated relative to address
1601   // of a next instruction.
1602   offset -= br_size;
1603 
1604   // the short version of jmpConUCF2 contains multiple branches,
1605   // making the reach slightly less
1606   if (rule == jmpConUCF2_rule)
1607     return (-126 <= offset && offset <= 125);
1608   return (-128 <= offset && offset <= 127);
1609 }
1610 
1611 const bool Matcher::isSimpleConstant64(jlong value) {
1612   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1613   //return value == (int) value;  // Cf. storeImmL and immL32.
1614 
1615   // Probably always true, even if a temp register is required.
1616   return true;
1617 }
1618 
1619 // The ecx parameter to rep stosq for the ClearArray node is in words.
1620 const bool Matcher::init_array_count_is_in_bytes = false;
1621 
1622 // Threshold size for cleararray.
1623 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1624 
1625 // No additional cost for CMOVL.
1626 const int Matcher::long_cmove_cost() { return 0; }
1627 
1628 // No CMOVF/CMOVD with SSE2
1629 const int Matcher::float_cmove_cost() { return ConditionalMoveLimit; }
1630 
1631 // Does the CPU require late expand (see block.cpp for description of late expand)?
1632 const bool Matcher::require_postalloc_expand = false;
1633 
1634 // Should the Matcher clone shifts on addressing modes, expecting them
1635 // to be subsumed into complex addressing expressions or compute them
1636 // into registers?  True for Intel but false for most RISCs
1637 const bool Matcher::clone_shift_expressions = true;
1638 
1639 // Do we need to mask the count passed to shift instructions or does
1640 // the cpu only look at the lower 5/6 bits anyway?
1641 const bool Matcher::need_masked_shift_count = false;
1642 
1643 bool Matcher::narrow_oop_use_complex_address() {
1644   assert(UseCompressedOops, "only for compressed oops code");
1645   return (LogMinObjAlignmentInBytes <= 3);
1646 }
1647 
1648 bool Matcher::narrow_klass_use_complex_address() {
1649   assert(UseCompressedClassPointers, "only for compressed klass code");
1650   return (LogKlassAlignmentInBytes <= 3);
1651 }
1652 
1653 // Is it better to copy float constants, or load them directly from
1654 // memory?  Intel can load a float constant from a direct address,
1655 // requiring no extra registers.  Most RISCs will have to materialize
1656 // an address into a register first, so they would do better to copy
1657 // the constant from stack.
1658 const bool Matcher::rematerialize_float_constants = true; // XXX
1659 
1660 // If CPU can load and store mis-aligned doubles directly then no
1661 // fixup is needed.  Else we split the double into 2 integer pieces
1662 // and move it piece-by-piece.  Only happens when passing doubles into
1663 // C code as the Java calling convention forces doubles to be aligned.
1664 const bool Matcher::misaligned_doubles_ok = true;
1665 
1666 // No-op on amd64
1667 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {}
1668 
1669 // Advertise here if the CPU requires explicit rounding operations to
1670 // implement the UseStrictFP mode.
1671 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1672 
1673 // Are floats conerted to double when stored to stack during deoptimization?
1674 // On x64 it is stored without convertion so we can use normal access.
1675 bool Matcher::float_in_double() { return false; }
1676 
1677 // Do ints take an entire long register or just half?
1678 const bool Matcher::int_in_long = true;
1679 
1680 // Return whether or not this register is ever used as an argument.
1681 // This function is used on startup to build the trampoline stubs in
1682 // generateOptoStub.  Registers not mentioned will be killed by the VM
1683 // call in the trampoline, and arguments in those registers not be
1684 // available to the callee.
1685 bool Matcher::can_be_java_arg(int reg)
1686 {
1687   return
1688     reg ==  RDI_num || reg == RDI_H_num ||
1689     reg ==  RSI_num || reg == RSI_H_num ||
1690     reg ==  RDX_num || reg == RDX_H_num ||
1691     reg ==  RCX_num || reg == RCX_H_num ||
1692     reg ==   R8_num || reg ==  R8_H_num ||
1693     reg ==   R9_num || reg ==  R9_H_num ||
1694     reg ==  R12_num || reg == R12_H_num ||
1695     reg == XMM0_num || reg == XMM0b_num ||
1696     reg == XMM1_num || reg == XMM1b_num ||
1697     reg == XMM2_num || reg == XMM2b_num ||
1698     reg == XMM3_num || reg == XMM3b_num ||
1699     reg == XMM4_num || reg == XMM4b_num ||
1700     reg == XMM5_num || reg == XMM5b_num ||
1701     reg == XMM6_num || reg == XMM6b_num ||
1702     reg == XMM7_num || reg == XMM7b_num;
1703 }
1704 
1705 bool Matcher::is_spillable_arg(int reg)
1706 {
1707   return can_be_java_arg(reg);
1708 }
1709 
1710 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1711   // In 64 bit mode a code which use multiply when
1712   // devisor is constant is faster than hardware
1713   // DIV instruction (it uses MulHiL).
1714   return false;
1715 }
1716 
1717 // Register for DIVI projection of divmodI
1718 RegMask Matcher::divI_proj_mask() {
1719   return INT_RAX_REG_mask();
1720 }
1721 
1722 // Register for MODI projection of divmodI
1723 RegMask Matcher::modI_proj_mask() {
1724   return INT_RDX_REG_mask();
1725 }
1726 
1727 // Register for DIVL projection of divmodL
1728 RegMask Matcher::divL_proj_mask() {
1729   return LONG_RAX_REG_mask();
1730 }
1731 
1732 // Register for MODL projection of divmodL
1733 RegMask Matcher::modL_proj_mask() {
1734   return LONG_RDX_REG_mask();
1735 }
1736 
1737 // Register for saving SP into on method handle invokes. Not used on x86_64.
1738 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1739     return NO_REG_mask();
1740 }
1741 
1742 %}
1743 
1744 //----------ENCODING BLOCK-----------------------------------------------------
1745 // This block specifies the encoding classes used by the compiler to
1746 // output byte streams.  Encoding classes are parameterized macros
1747 // used by Machine Instruction Nodes in order to generate the bit
1748 // encoding of the instruction.  Operands specify their base encoding
1749 // interface with the interface keyword.  There are currently
1750 // supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
1751 // COND_INTER.  REG_INTER causes an operand to generate a function
1752 // which returns its register number when queried.  CONST_INTER causes
1753 // an operand to generate a function which returns the value of the
1754 // constant when queried.  MEMORY_INTER causes an operand to generate
1755 // four functions which return the Base Register, the Index Register,
1756 // the Scale Value, and the Offset Value of the operand when queried.
1757 // COND_INTER causes an operand to generate six functions which return
1758 // the encoding code (ie - encoding bits for the instruction)
1759 // associated with each basic boolean condition for a conditional
1760 // instruction.
1761 //
1762 // Instructions specify two basic values for encoding.  Again, a
1763 // function is available to check if the constant displacement is an
1764 // oop. They use the ins_encode keyword to specify their encoding
1765 // classes (which must be a sequence of enc_class names, and their
1766 // parameters, specified in the encoding block), and they use the
1767 // opcode keyword to specify, in order, their primary, secondary, and
1768 // tertiary opcode.  Only the opcode sections which a particular
1769 // instruction needs for encoding need to be specified.
1770 encode %{
1771   // Build emit functions for each basic byte or larger field in the
1772   // intel encoding scheme (opcode, rm, sib, immediate), and call them
1773   // from C++ code in the enc_class source block.  Emit functions will
1774   // live in the main source block for now.  In future, we can
1775   // generalize this by adding a syntax that specifies the sizes of
1776   // fields in an order, so that the adlc can build the emit functions
1777   // automagically
1778 
1779   // Emit primary opcode
1780   enc_class OpcP
1781   %{
1782     emit_opcode(cbuf, $primary);
1783   %}
1784 
1785   // Emit secondary opcode
1786   enc_class OpcS
1787   %{
1788     emit_opcode(cbuf, $secondary);
1789   %}
1790 
1791   // Emit tertiary opcode
1792   enc_class OpcT
1793   %{
1794     emit_opcode(cbuf, $tertiary);
1795   %}
1796 
1797   // Emit opcode directly
1798   enc_class Opcode(immI d8)
1799   %{
1800     emit_opcode(cbuf, $d8$$constant);
1801   %}
1802 
1803   // Emit size prefix
1804   enc_class SizePrefix
1805   %{
1806     emit_opcode(cbuf, 0x66);
1807   %}
1808 
1809   enc_class reg(rRegI reg)
1810   %{
1811     emit_rm(cbuf, 0x3, 0, $reg$$reg & 7);
1812   %}
1813 
1814   enc_class reg_reg(rRegI dst, rRegI src)
1815   %{
1816     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1817   %}
1818 
1819   enc_class opc_reg_reg(immI opcode, rRegI dst, rRegI src)
1820   %{
1821     emit_opcode(cbuf, $opcode$$constant);
1822     emit_rm(cbuf, 0x3, $dst$$reg & 7, $src$$reg & 7);
1823   %}
1824 
1825   enc_class cdql_enc(no_rax_rdx_RegI div)
1826   %{
1827     // Full implementation of Java idiv and irem; checks for
1828     // special case as described in JVM spec., p.243 & p.271.
1829     //
1830     //         normal case                           special case
1831     //
1832     // input : rax: dividend                         min_int
1833     //         reg: divisor                          -1
1834     //
1835     // output: rax: quotient  (= rax idiv reg)       min_int
1836     //         rdx: remainder (= rax irem reg)       0
1837     //
1838     //  Code sequnce:
1839     //
1840     //    0:   3d 00 00 00 80          cmp    $0x80000000,%eax
1841     //    5:   75 07/08                jne    e <normal>
1842     //    7:   33 d2                   xor    %edx,%edx
1843     //  [div >= 8 -> offset + 1]
1844     //  [REX_B]
1845     //    9:   83 f9 ff                cmp    $0xffffffffffffffff,$div
1846     //    c:   74 03/04                je     11 <done>
1847     // 000000000000000e <normal>:
1848     //    e:   99                      cltd
1849     //  [div >= 8 -> offset + 1]
1850     //  [REX_B]
1851     //    f:   f7 f9                   idiv   $div
1852     // 0000000000000011 <done>:
1853 
1854     // cmp    $0x80000000,%eax
1855     emit_opcode(cbuf, 0x3d);
1856     emit_d8(cbuf, 0x00);
1857     emit_d8(cbuf, 0x00);
1858     emit_d8(cbuf, 0x00);
1859     emit_d8(cbuf, 0x80);
1860 
1861     // jne    e <normal>
1862     emit_opcode(cbuf, 0x75);
1863     emit_d8(cbuf, $div$$reg < 8 ? 0x07 : 0x08);
1864 
1865     // xor    %edx,%edx
1866     emit_opcode(cbuf, 0x33);
1867     emit_d8(cbuf, 0xD2);
1868 
1869     // cmp    $0xffffffffffffffff,%ecx
1870     if ($div$$reg >= 8) {
1871       emit_opcode(cbuf, Assembler::REX_B);
1872     }
1873     emit_opcode(cbuf, 0x83);
1874     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1875     emit_d8(cbuf, 0xFF);
1876 
1877     // je     11 <done>
1878     emit_opcode(cbuf, 0x74);
1879     emit_d8(cbuf, $div$$reg < 8 ? 0x03 : 0x04);
1880 
1881     // <normal>
1882     // cltd
1883     emit_opcode(cbuf, 0x99);
1884 
1885     // idivl (note: must be emitted by the user of this rule)
1886     // <done>
1887   %}
1888 
1889   enc_class cdqq_enc(no_rax_rdx_RegL div)
1890   %{
1891     // Full implementation of Java ldiv and lrem; checks for
1892     // special case as described in JVM spec., p.243 & p.271.
1893     //
1894     //         normal case                           special case
1895     //
1896     // input : rax: dividend                         min_long
1897     //         reg: divisor                          -1
1898     //
1899     // output: rax: quotient  (= rax idiv reg)       min_long
1900     //         rdx: remainder (= rax irem reg)       0
1901     //
1902     //  Code sequnce:
1903     //
1904     //    0:   48 ba 00 00 00 00 00    mov    $0x8000000000000000,%rdx
1905     //    7:   00 00 80
1906     //    a:   48 39 d0                cmp    %rdx,%rax
1907     //    d:   75 08                   jne    17 <normal>
1908     //    f:   33 d2                   xor    %edx,%edx
1909     //   11:   48 83 f9 ff             cmp    $0xffffffffffffffff,$div
1910     //   15:   74 05                   je     1c <done>
1911     // 0000000000000017 <normal>:
1912     //   17:   48 99                   cqto
1913     //   19:   48 f7 f9                idiv   $div
1914     // 000000000000001c <done>:
1915 
1916     // mov    $0x8000000000000000,%rdx
1917     emit_opcode(cbuf, Assembler::REX_W);
1918     emit_opcode(cbuf, 0xBA);
1919     emit_d8(cbuf, 0x00);
1920     emit_d8(cbuf, 0x00);
1921     emit_d8(cbuf, 0x00);
1922     emit_d8(cbuf, 0x00);
1923     emit_d8(cbuf, 0x00);
1924     emit_d8(cbuf, 0x00);
1925     emit_d8(cbuf, 0x00);
1926     emit_d8(cbuf, 0x80);
1927 
1928     // cmp    %rdx,%rax
1929     emit_opcode(cbuf, Assembler::REX_W);
1930     emit_opcode(cbuf, 0x39);
1931     emit_d8(cbuf, 0xD0);
1932 
1933     // jne    17 <normal>
1934     emit_opcode(cbuf, 0x75);
1935     emit_d8(cbuf, 0x08);
1936 
1937     // xor    %edx,%edx
1938     emit_opcode(cbuf, 0x33);
1939     emit_d8(cbuf, 0xD2);
1940 
1941     // cmp    $0xffffffffffffffff,$div
1942     emit_opcode(cbuf, $div$$reg < 8 ? Assembler::REX_W : Assembler::REX_WB);
1943     emit_opcode(cbuf, 0x83);
1944     emit_rm(cbuf, 0x3, 0x7, $div$$reg & 7);
1945     emit_d8(cbuf, 0xFF);
1946 
1947     // je     1e <done>
1948     emit_opcode(cbuf, 0x74);
1949     emit_d8(cbuf, 0x05);
1950 
1951     // <normal>
1952     // cqto
1953     emit_opcode(cbuf, Assembler::REX_W);
1954     emit_opcode(cbuf, 0x99);
1955 
1956     // idivq (note: must be emitted by the user of this rule)
1957     // <done>
1958   %}
1959 
1960   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1961   enc_class OpcSE(immI imm)
1962   %{
1963     // Emit primary opcode and set sign-extend bit
1964     // Check for 8-bit immediate, and set sign extend bit in opcode
1965     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1966       emit_opcode(cbuf, $primary | 0x02);
1967     } else {
1968       // 32-bit immediate
1969       emit_opcode(cbuf, $primary);
1970     }
1971   %}
1972 
1973   enc_class OpcSErm(rRegI dst, immI imm)
1974   %{
1975     // OpcSEr/m
1976     int dstenc = $dst$$reg;
1977     if (dstenc >= 8) {
1978       emit_opcode(cbuf, Assembler::REX_B);
1979       dstenc -= 8;
1980     }
1981     // Emit primary opcode and set sign-extend bit
1982     // Check for 8-bit immediate, and set sign extend bit in opcode
1983     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
1984       emit_opcode(cbuf, $primary | 0x02);
1985     } else {
1986       // 32-bit immediate
1987       emit_opcode(cbuf, $primary);
1988     }
1989     // Emit r/m byte with secondary opcode, after primary opcode.
1990     emit_rm(cbuf, 0x3, $secondary, dstenc);
1991   %}
1992 
1993   enc_class OpcSErm_wide(rRegL dst, immI imm)
1994   %{
1995     // OpcSEr/m
1996     int dstenc = $dst$$reg;
1997     if (dstenc < 8) {
1998       emit_opcode(cbuf, Assembler::REX_W);
1999     } else {
2000       emit_opcode(cbuf, Assembler::REX_WB);
2001       dstenc -= 8;
2002     }
2003     // Emit primary opcode and set sign-extend bit
2004     // Check for 8-bit immediate, and set sign extend bit in opcode
2005     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2006       emit_opcode(cbuf, $primary | 0x02);
2007     } else {
2008       // 32-bit immediate
2009       emit_opcode(cbuf, $primary);
2010     }
2011     // Emit r/m byte with secondary opcode, after primary opcode.
2012     emit_rm(cbuf, 0x3, $secondary, dstenc);
2013   %}
2014 
2015   enc_class Con8or32(immI imm)
2016   %{
2017     // Check for 8-bit immediate, and set sign extend bit in opcode
2018     if (-0x80 <= $imm$$constant && $imm$$constant < 0x80) {
2019       $$$emit8$imm$$constant;
2020     } else {
2021       // 32-bit immediate
2022       $$$emit32$imm$$constant;
2023     }
2024   %}
2025 
2026   enc_class opc2_reg(rRegI dst)
2027   %{
2028     // BSWAP
2029     emit_cc(cbuf, $secondary, $dst$$reg);
2030   %}
2031 
2032   enc_class opc3_reg(rRegI dst)
2033   %{
2034     // BSWAP
2035     emit_cc(cbuf, $tertiary, $dst$$reg);
2036   %}
2037 
2038   enc_class reg_opc(rRegI div)
2039   %{
2040     // INC, DEC, IDIV, IMOD, JMP indirect, ...
2041     emit_rm(cbuf, 0x3, $secondary, $div$$reg & 7);
2042   %}
2043 
2044   enc_class enc_cmov(cmpOp cop)
2045   %{
2046     // CMOV
2047     $$$emit8$primary;
2048     emit_cc(cbuf, $secondary, $cop$$cmpcode);
2049   %}
2050 
2051   enc_class enc_PartialSubtypeCheck()
2052   %{
2053     Register Rrdi = as_Register(RDI_enc); // result register
2054     Register Rrax = as_Register(RAX_enc); // super class
2055     Register Rrcx = as_Register(RCX_enc); // killed
2056     Register Rrsi = as_Register(RSI_enc); // sub class
2057     Label miss;
2058     const bool set_cond_codes = true;
2059 
2060     MacroAssembler _masm(&cbuf);
2061     __ check_klass_subtype_slow_path(Rrsi, Rrax, Rrcx, Rrdi,
2062                                      NULL, &miss,
2063                                      /*set_cond_codes:*/ true);
2064     if ($primary) {
2065       __ xorptr(Rrdi, Rrdi);
2066     }
2067     __ bind(miss);
2068   %}
2069 
2070   enc_class clear_avx %{
2071     debug_only(int off0 = cbuf.insts_size());
2072     if (ra_->C->max_vector_size() > 16) {
2073       // Clear upper bits of YMM registers when current compiled code uses
2074       // wide vectors to avoid AVX <-> SSE transition penalty during call.
2075       MacroAssembler _masm(&cbuf);
2076       __ vzeroupper();
2077     }
2078     debug_only(int off1 = cbuf.insts_size());
2079     assert(off1 - off0 == clear_avx_size(), "correct size prediction");
2080   %}
2081 
2082   enc_class Java_To_Runtime(method meth) %{
2083     // No relocation needed
2084     MacroAssembler _masm(&cbuf);
2085     __ mov64(r10, (int64_t) $meth$$method);
2086     __ call(r10);
2087   %}
2088 
2089   enc_class Java_To_Interpreter(method meth)
2090   %{
2091     // CALL Java_To_Interpreter
2092     // This is the instruction starting address for relocation info.
2093     cbuf.set_insts_mark();
2094     $$$emit8$primary;
2095     // CALL directly to the runtime
2096     emit_d32_reloc(cbuf,
2097                    (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2098                    runtime_call_Relocation::spec(),
2099                    RELOC_DISP32);
2100   %}
2101 
2102   enc_class Java_Static_Call(method meth)
2103   %{
2104     // JAVA STATIC CALL
2105     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to
2106     // determine who we intended to call.
2107     cbuf.set_insts_mark();
2108     $$$emit8$primary;
2109 
2110     if (!_method) {
2111       emit_d32_reloc(cbuf,
2112                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2113                      runtime_call_Relocation::spec(),
2114                      RELOC_DISP32);
2115     } else if (_optimized_virtual) {
2116       emit_d32_reloc(cbuf,
2117                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2118                      opt_virtual_call_Relocation::spec(),
2119                      RELOC_DISP32);
2120     } else {
2121       emit_d32_reloc(cbuf,
2122                      (int) ($meth$$method - ((intptr_t) cbuf.insts_end()) - 4),
2123                      static_call_Relocation::spec(),
2124                      RELOC_DISP32);
2125     }
2126     if (_method) {
2127       // Emit stub for static call.
2128       CompiledStaticCall::emit_to_interp_stub(cbuf);
2129     }
2130   %}
2131 
2132   enc_class Java_Dynamic_Call(method meth) %{
2133     MacroAssembler _masm(&cbuf);
2134     __ ic_call((address)$meth$$method);
2135   %}
2136 
2137   enc_class Java_Compiled_Call(method meth)
2138   %{
2139     // JAVA COMPILED CALL
2140     int disp = in_bytes(Method:: from_compiled_offset());
2141 
2142     // XXX XXX offset is 128 is 1.5 NON-PRODUCT !!!
2143     // assert(-0x80 <= disp && disp < 0x80, "compiled_code_offset isn't small");
2144 
2145     // callq *disp(%rax)
2146     cbuf.set_insts_mark();
2147     $$$emit8$primary;
2148     if (disp < 0x80) {
2149       emit_rm(cbuf, 0x01, $secondary, RAX_enc); // R/M byte
2150       emit_d8(cbuf, disp); // Displacement
2151     } else {
2152       emit_rm(cbuf, 0x02, $secondary, RAX_enc); // R/M byte
2153       emit_d32(cbuf, disp); // Displacement
2154     }
2155   %}
2156 
2157   enc_class reg_opc_imm(rRegI dst, immI8 shift)
2158   %{
2159     // SAL, SAR, SHR
2160     int dstenc = $dst$$reg;
2161     if (dstenc >= 8) {
2162       emit_opcode(cbuf, Assembler::REX_B);
2163       dstenc -= 8;
2164     }
2165     $$$emit8$primary;
2166     emit_rm(cbuf, 0x3, $secondary, dstenc);
2167     $$$emit8$shift$$constant;
2168   %}
2169 
2170   enc_class reg_opc_imm_wide(rRegL dst, immI8 shift)
2171   %{
2172     // SAL, SAR, SHR
2173     int dstenc = $dst$$reg;
2174     if (dstenc < 8) {
2175       emit_opcode(cbuf, Assembler::REX_W);
2176     } else {
2177       emit_opcode(cbuf, Assembler::REX_WB);
2178       dstenc -= 8;
2179     }
2180     $$$emit8$primary;
2181     emit_rm(cbuf, 0x3, $secondary, dstenc);
2182     $$$emit8$shift$$constant;
2183   %}
2184 
2185   enc_class load_immI(rRegI dst, immI src)
2186   %{
2187     int dstenc = $dst$$reg;
2188     if (dstenc >= 8) {
2189       emit_opcode(cbuf, Assembler::REX_B);
2190       dstenc -= 8;
2191     }
2192     emit_opcode(cbuf, 0xB8 | dstenc);
2193     $$$emit32$src$$constant;
2194   %}
2195 
2196   enc_class load_immL(rRegL dst, immL src)
2197   %{
2198     int dstenc = $dst$$reg;
2199     if (dstenc < 8) {
2200       emit_opcode(cbuf, Assembler::REX_W);
2201     } else {
2202       emit_opcode(cbuf, Assembler::REX_WB);
2203       dstenc -= 8;
2204     }
2205     emit_opcode(cbuf, 0xB8 | dstenc);
2206     emit_d64(cbuf, $src$$constant);
2207   %}
2208 
2209   enc_class load_immUL32(rRegL dst, immUL32 src)
2210   %{
2211     // same as load_immI, but this time we care about zeroes in the high word
2212     int dstenc = $dst$$reg;
2213     if (dstenc >= 8) {
2214       emit_opcode(cbuf, Assembler::REX_B);
2215       dstenc -= 8;
2216     }
2217     emit_opcode(cbuf, 0xB8 | dstenc);
2218     $$$emit32$src$$constant;
2219   %}
2220 
2221   enc_class load_immL32(rRegL dst, immL32 src)
2222   %{
2223     int dstenc = $dst$$reg;
2224     if (dstenc < 8) {
2225       emit_opcode(cbuf, Assembler::REX_W);
2226     } else {
2227       emit_opcode(cbuf, Assembler::REX_WB);
2228       dstenc -= 8;
2229     }
2230     emit_opcode(cbuf, 0xC7);
2231     emit_rm(cbuf, 0x03, 0x00, dstenc);
2232     $$$emit32$src$$constant;
2233   %}
2234 
2235   enc_class load_immP31(rRegP dst, immP32 src)
2236   %{
2237     // same as load_immI, but this time we care about zeroes in the high word
2238     int dstenc = $dst$$reg;
2239     if (dstenc >= 8) {
2240       emit_opcode(cbuf, Assembler::REX_B);
2241       dstenc -= 8;
2242     }
2243     emit_opcode(cbuf, 0xB8 | dstenc);
2244     $$$emit32$src$$constant;
2245   %}
2246 
2247   enc_class load_immP(rRegP dst, immP src)
2248   %{
2249     int dstenc = $dst$$reg;
2250     if (dstenc < 8) {
2251       emit_opcode(cbuf, Assembler::REX_W);
2252     } else {
2253       emit_opcode(cbuf, Assembler::REX_WB);
2254       dstenc -= 8;
2255     }
2256     emit_opcode(cbuf, 0xB8 | dstenc);
2257     // This next line should be generated from ADLC
2258     if ($src->constant_reloc() != relocInfo::none) {
2259       emit_d64_reloc(cbuf, $src$$constant, $src->constant_reloc(), RELOC_IMM64);
2260     } else {
2261       emit_d64(cbuf, $src$$constant);
2262     }
2263   %}
2264 
2265   enc_class Con32(immI src)
2266   %{
2267     // Output immediate
2268     $$$emit32$src$$constant;
2269   %}
2270 
2271   enc_class Con32F_as_bits(immF src)
2272   %{
2273     // Output Float immediate bits
2274     jfloat jf = $src$$constant;
2275     jint jf_as_bits = jint_cast(jf);
2276     emit_d32(cbuf, jf_as_bits);
2277   %}
2278 
2279   enc_class Con16(immI src)
2280   %{
2281     // Output immediate
2282     $$$emit16$src$$constant;
2283   %}
2284 
2285   // How is this different from Con32??? XXX
2286   enc_class Con_d32(immI src)
2287   %{
2288     emit_d32(cbuf,$src$$constant);
2289   %}
2290 
2291   enc_class conmemref (rRegP t1) %{    // Con32(storeImmI)
2292     // Output immediate memory reference
2293     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2294     emit_d32(cbuf, 0x00);
2295   %}
2296 
2297   enc_class lock_prefix()
2298   %{
2299     if (os::is_MP()) {
2300       emit_opcode(cbuf, 0xF0); // lock
2301     }
2302   %}
2303 
2304   enc_class REX_mem(memory mem)
2305   %{
2306     if ($mem$$base >= 8) {
2307       if ($mem$$index < 8) {
2308         emit_opcode(cbuf, Assembler::REX_B);
2309       } else {
2310         emit_opcode(cbuf, Assembler::REX_XB);
2311       }
2312     } else {
2313       if ($mem$$index >= 8) {
2314         emit_opcode(cbuf, Assembler::REX_X);
2315       }
2316     }
2317   %}
2318 
2319   enc_class REX_mem_wide(memory mem)
2320   %{
2321     if ($mem$$base >= 8) {
2322       if ($mem$$index < 8) {
2323         emit_opcode(cbuf, Assembler::REX_WB);
2324       } else {
2325         emit_opcode(cbuf, Assembler::REX_WXB);
2326       }
2327     } else {
2328       if ($mem$$index < 8) {
2329         emit_opcode(cbuf, Assembler::REX_W);
2330       } else {
2331         emit_opcode(cbuf, Assembler::REX_WX);
2332       }
2333     }
2334   %}
2335 
2336   // for byte regs
2337   enc_class REX_breg(rRegI reg)
2338   %{
2339     if ($reg$$reg >= 4) {
2340       emit_opcode(cbuf, $reg$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2341     }
2342   %}
2343 
2344   // for byte regs
2345   enc_class REX_reg_breg(rRegI dst, rRegI src)
2346   %{
2347     if ($dst$$reg < 8) {
2348       if ($src$$reg >= 4) {
2349         emit_opcode(cbuf, $src$$reg < 8 ? Assembler::REX : Assembler::REX_B);
2350       }
2351     } else {
2352       if ($src$$reg < 8) {
2353         emit_opcode(cbuf, Assembler::REX_R);
2354       } else {
2355         emit_opcode(cbuf, Assembler::REX_RB);
2356       }
2357     }
2358   %}
2359 
2360   // for byte regs
2361   enc_class REX_breg_mem(rRegI reg, memory mem)
2362   %{
2363     if ($reg$$reg < 8) {
2364       if ($mem$$base < 8) {
2365         if ($mem$$index >= 8) {
2366           emit_opcode(cbuf, Assembler::REX_X);
2367         } else if ($reg$$reg >= 4) {
2368           emit_opcode(cbuf, Assembler::REX);
2369         }
2370       } else {
2371         if ($mem$$index < 8) {
2372           emit_opcode(cbuf, Assembler::REX_B);
2373         } else {
2374           emit_opcode(cbuf, Assembler::REX_XB);
2375         }
2376       }
2377     } else {
2378       if ($mem$$base < 8) {
2379         if ($mem$$index < 8) {
2380           emit_opcode(cbuf, Assembler::REX_R);
2381         } else {
2382           emit_opcode(cbuf, Assembler::REX_RX);
2383         }
2384       } else {
2385         if ($mem$$index < 8) {
2386           emit_opcode(cbuf, Assembler::REX_RB);
2387         } else {
2388           emit_opcode(cbuf, Assembler::REX_RXB);
2389         }
2390       }
2391     }
2392   %}
2393 
2394   enc_class REX_reg(rRegI reg)
2395   %{
2396     if ($reg$$reg >= 8) {
2397       emit_opcode(cbuf, Assembler::REX_B);
2398     }
2399   %}
2400 
2401   enc_class REX_reg_wide(rRegI reg)
2402   %{
2403     if ($reg$$reg < 8) {
2404       emit_opcode(cbuf, Assembler::REX_W);
2405     } else {
2406       emit_opcode(cbuf, Assembler::REX_WB);
2407     }
2408   %}
2409 
2410   enc_class REX_reg_reg(rRegI dst, rRegI src)
2411   %{
2412     if ($dst$$reg < 8) {
2413       if ($src$$reg >= 8) {
2414         emit_opcode(cbuf, Assembler::REX_B);
2415       }
2416     } else {
2417       if ($src$$reg < 8) {
2418         emit_opcode(cbuf, Assembler::REX_R);
2419       } else {
2420         emit_opcode(cbuf, Assembler::REX_RB);
2421       }
2422     }
2423   %}
2424 
2425   enc_class REX_reg_reg_wide(rRegI dst, rRegI src)
2426   %{
2427     if ($dst$$reg < 8) {
2428       if ($src$$reg < 8) {
2429         emit_opcode(cbuf, Assembler::REX_W);
2430       } else {
2431         emit_opcode(cbuf, Assembler::REX_WB);
2432       }
2433     } else {
2434       if ($src$$reg < 8) {
2435         emit_opcode(cbuf, Assembler::REX_WR);
2436       } else {
2437         emit_opcode(cbuf, Assembler::REX_WRB);
2438       }
2439     }
2440   %}
2441 
2442   enc_class REX_reg_mem(rRegI reg, memory mem)
2443   %{
2444     if ($reg$$reg < 8) {
2445       if ($mem$$base < 8) {
2446         if ($mem$$index >= 8) {
2447           emit_opcode(cbuf, Assembler::REX_X);
2448         }
2449       } else {
2450         if ($mem$$index < 8) {
2451           emit_opcode(cbuf, Assembler::REX_B);
2452         } else {
2453           emit_opcode(cbuf, Assembler::REX_XB);
2454         }
2455       }
2456     } else {
2457       if ($mem$$base < 8) {
2458         if ($mem$$index < 8) {
2459           emit_opcode(cbuf, Assembler::REX_R);
2460         } else {
2461           emit_opcode(cbuf, Assembler::REX_RX);
2462         }
2463       } else {
2464         if ($mem$$index < 8) {
2465           emit_opcode(cbuf, Assembler::REX_RB);
2466         } else {
2467           emit_opcode(cbuf, Assembler::REX_RXB);
2468         }
2469       }
2470     }
2471   %}
2472 
2473   enc_class REX_reg_mem_wide(rRegL reg, memory mem)
2474   %{
2475     if ($reg$$reg < 8) {
2476       if ($mem$$base < 8) {
2477         if ($mem$$index < 8) {
2478           emit_opcode(cbuf, Assembler::REX_W);
2479         } else {
2480           emit_opcode(cbuf, Assembler::REX_WX);
2481         }
2482       } else {
2483         if ($mem$$index < 8) {
2484           emit_opcode(cbuf, Assembler::REX_WB);
2485         } else {
2486           emit_opcode(cbuf, Assembler::REX_WXB);
2487         }
2488       }
2489     } else {
2490       if ($mem$$base < 8) {
2491         if ($mem$$index < 8) {
2492           emit_opcode(cbuf, Assembler::REX_WR);
2493         } else {
2494           emit_opcode(cbuf, Assembler::REX_WRX);
2495         }
2496       } else {
2497         if ($mem$$index < 8) {
2498           emit_opcode(cbuf, Assembler::REX_WRB);
2499         } else {
2500           emit_opcode(cbuf, Assembler::REX_WRXB);
2501         }
2502       }
2503     }
2504   %}
2505 
2506   enc_class reg_mem(rRegI ereg, memory mem)
2507   %{
2508     // High registers handle in encode_RegMem
2509     int reg = $ereg$$reg;
2510     int base = $mem$$base;
2511     int index = $mem$$index;
2512     int scale = $mem$$scale;
2513     int disp = $mem$$disp;
2514     relocInfo::relocType disp_reloc = $mem->disp_reloc();
2515 
2516     encode_RegMem(cbuf, reg, base, index, scale, disp, disp_reloc);
2517   %}
2518 
2519   enc_class RM_opc_mem(immI rm_opcode, memory mem)
2520   %{
2521     int rm_byte_opcode = $rm_opcode$$constant;
2522 
2523     // High registers handle in encode_RegMem
2524     int base = $mem$$base;
2525     int index = $mem$$index;
2526     int scale = $mem$$scale;
2527     int displace = $mem$$disp;
2528 
2529     relocInfo::relocType disp_reloc = $mem->disp_reloc();       // disp-as-oop when
2530                                             // working with static
2531                                             // globals
2532     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace,
2533                   disp_reloc);
2534   %}
2535 
2536   enc_class reg_lea(rRegI dst, rRegI src0, immI src1)
2537   %{
2538     int reg_encoding = $dst$$reg;
2539     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2540     int index        = 0x04;            // 0x04 indicates no index
2541     int scale        = 0x00;            // 0x00 indicates no scale
2542     int displace     = $src1$$constant; // 0x00 indicates no displacement
2543     relocInfo::relocType disp_reloc = relocInfo::none;
2544     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace,
2545                   disp_reloc);
2546   %}
2547 
2548   enc_class neg_reg(rRegI dst)
2549   %{
2550     int dstenc = $dst$$reg;
2551     if (dstenc >= 8) {
2552       emit_opcode(cbuf, Assembler::REX_B);
2553       dstenc -= 8;
2554     }
2555     // NEG $dst
2556     emit_opcode(cbuf, 0xF7);
2557     emit_rm(cbuf, 0x3, 0x03, dstenc);
2558   %}
2559 
2560   enc_class neg_reg_wide(rRegI dst)
2561   %{
2562     int dstenc = $dst$$reg;
2563     if (dstenc < 8) {
2564       emit_opcode(cbuf, Assembler::REX_W);
2565     } else {
2566       emit_opcode(cbuf, Assembler::REX_WB);
2567       dstenc -= 8;
2568     }
2569     // NEG $dst
2570     emit_opcode(cbuf, 0xF7);
2571     emit_rm(cbuf, 0x3, 0x03, dstenc);
2572   %}
2573 
2574   enc_class setLT_reg(rRegI dst)
2575   %{
2576     int dstenc = $dst$$reg;
2577     if (dstenc >= 8) {
2578       emit_opcode(cbuf, Assembler::REX_B);
2579       dstenc -= 8;
2580     } else if (dstenc >= 4) {
2581       emit_opcode(cbuf, Assembler::REX);
2582     }
2583     // SETLT $dst
2584     emit_opcode(cbuf, 0x0F);
2585     emit_opcode(cbuf, 0x9C);
2586     emit_rm(cbuf, 0x3, 0x0, dstenc);
2587   %}
2588 
2589   enc_class setNZ_reg(rRegI dst)
2590   %{
2591     int dstenc = $dst$$reg;
2592     if (dstenc >= 8) {
2593       emit_opcode(cbuf, Assembler::REX_B);
2594       dstenc -= 8;
2595     } else if (dstenc >= 4) {
2596       emit_opcode(cbuf, Assembler::REX);
2597     }
2598     // SETNZ $dst
2599     emit_opcode(cbuf, 0x0F);
2600     emit_opcode(cbuf, 0x95);
2601     emit_rm(cbuf, 0x3, 0x0, dstenc);
2602   %}
2603 
2604 
2605   // Compare the lonogs and set -1, 0, or 1 into dst
2606   enc_class cmpl3_flag(rRegL src1, rRegL src2, rRegI dst)
2607   %{
2608     int src1enc = $src1$$reg;
2609     int src2enc = $src2$$reg;
2610     int dstenc = $dst$$reg;
2611 
2612     // cmpq $src1, $src2
2613     if (src1enc < 8) {
2614       if (src2enc < 8) {
2615         emit_opcode(cbuf, Assembler::REX_W);
2616       } else {
2617         emit_opcode(cbuf, Assembler::REX_WB);
2618       }
2619     } else {
2620       if (src2enc < 8) {
2621         emit_opcode(cbuf, Assembler::REX_WR);
2622       } else {
2623         emit_opcode(cbuf, Assembler::REX_WRB);
2624       }
2625     }
2626     emit_opcode(cbuf, 0x3B);
2627     emit_rm(cbuf, 0x3, src1enc & 7, src2enc & 7);
2628 
2629     // movl $dst, -1
2630     if (dstenc >= 8) {
2631       emit_opcode(cbuf, Assembler::REX_B);
2632     }
2633     emit_opcode(cbuf, 0xB8 | (dstenc & 7));
2634     emit_d32(cbuf, -1);
2635 
2636     // jl,s done
2637     emit_opcode(cbuf, 0x7C);
2638     emit_d8(cbuf, dstenc < 4 ? 0x06 : 0x08);
2639 
2640     // setne $dst
2641     if (dstenc >= 4) {
2642       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_B);
2643     }
2644     emit_opcode(cbuf, 0x0F);
2645     emit_opcode(cbuf, 0x95);
2646     emit_opcode(cbuf, 0xC0 | (dstenc & 7));
2647 
2648     // movzbl $dst, $dst
2649     if (dstenc >= 4) {
2650       emit_opcode(cbuf, dstenc < 8 ? Assembler::REX : Assembler::REX_RB);
2651     }
2652     emit_opcode(cbuf, 0x0F);
2653     emit_opcode(cbuf, 0xB6);
2654     emit_rm(cbuf, 0x3, dstenc & 7, dstenc & 7);
2655   %}
2656 
2657   enc_class Push_ResultXD(regD dst) %{
2658     MacroAssembler _masm(&cbuf);
2659     __ fstp_d(Address(rsp, 0));
2660     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
2661     __ addptr(rsp, 8);
2662   %}
2663 
2664   enc_class Push_SrcXD(regD src) %{
2665     MacroAssembler _masm(&cbuf);
2666     __ subptr(rsp, 8);
2667     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
2668     __ fld_d(Address(rsp, 0));
2669   %}
2670 
2671 
2672   enc_class enc_rethrow()
2673   %{
2674     cbuf.set_insts_mark();
2675     emit_opcode(cbuf, 0xE9); // jmp entry
2676     emit_d32_reloc(cbuf,
2677                    (int) (OptoRuntime::rethrow_stub() - cbuf.insts_end() - 4),
2678                    runtime_call_Relocation::spec(),
2679                    RELOC_DISP32);
2680   %}
2681 
2682 %}
2683 
2684 
2685 
2686 //----------FRAME--------------------------------------------------------------
2687 // Definition of frame structure and management information.
2688 //
2689 //  S T A C K   L A Y O U T    Allocators stack-slot number
2690 //                             |   (to get allocators register number
2691 //  G  Owned by    |        |  v    add OptoReg::stack0())
2692 //  r   CALLER     |        |
2693 //  o     |        +--------+      pad to even-align allocators stack-slot
2694 //  w     V        |  pad0  |        numbers; owned by CALLER
2695 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2696 //  h     ^        |   in   |  5
2697 //        |        |  args  |  4   Holes in incoming args owned by SELF
2698 //  |     |        |        |  3
2699 //  |     |        +--------+
2700 //  V     |        | old out|      Empty on Intel, window on Sparc
2701 //        |    old |preserve|      Must be even aligned.
2702 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
2703 //        |        |   in   |  3   area for Intel ret address
2704 //     Owned by    |preserve|      Empty on Sparc.
2705 //       SELF      +--------+
2706 //        |        |  pad2  |  2   pad to align old SP
2707 //        |        +--------+  1
2708 //        |        | locks  |  0
2709 //        |        +--------+----> OptoReg::stack0(), even aligned
2710 //        |        |  pad1  | 11   pad to align new SP
2711 //        |        +--------+
2712 //        |        |        | 10
2713 //        |        | spills |  9   spills
2714 //        V        |        |  8   (pad0 slot for callee)
2715 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2716 //        ^        |  out   |  7
2717 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2718 //     Owned by    +--------+
2719 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2720 //        |    new |preserve|      Must be even-aligned.
2721 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2722 //        |        |        |
2723 //
2724 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2725 //         known from SELF's arguments and the Java calling convention.
2726 //         Region 6-7 is determined per call site.
2727 // Note 2: If the calling convention leaves holes in the incoming argument
2728 //         area, those holes are owned by SELF.  Holes in the outgoing area
2729 //         are owned by the CALLEE.  Holes should not be nessecary in the
2730 //         incoming area, as the Java calling convention is completely under
2731 //         the control of the AD file.  Doubles can be sorted and packed to
2732 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
2733 //         varargs C calling conventions.
2734 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2735 //         even aligned with pad0 as needed.
2736 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2737 //         region 6-11 is even aligned; it may be padded out more so that
2738 //         the region from SP to FP meets the minimum stack alignment.
2739 // Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
2740 //         alignment.  Region 11, pad1, may be dynamically extended so that
2741 //         SP meets the minimum alignment.
2742 
2743 frame
2744 %{
2745   // What direction does stack grow in (assumed to be same for C & Java)
2746   stack_direction(TOWARDS_LOW);
2747 
2748   // These three registers define part of the calling convention
2749   // between compiled code and the interpreter.
2750   inline_cache_reg(RAX);                // Inline Cache Register
2751   interpreter_method_oop_reg(RBX);      // Method Oop Register when
2752                                         // calling interpreter
2753 
2754   // Optional: name the operand used by cisc-spilling to access
2755   // [stack_pointer + offset]
2756   cisc_spilling_operand_name(indOffset32);
2757 
2758   // Number of stack slots consumed by locking an object
2759   sync_stack_slots(2);
2760 
2761   // Compiled code's Frame Pointer
2762   frame_pointer(RSP);
2763 
2764   // Interpreter stores its frame pointer in a register which is
2765   // stored to the stack by I2CAdaptors.
2766   // I2CAdaptors convert from interpreted java to compiled java.
2767   interpreter_frame_pointer(RBP);
2768 
2769   // Stack alignment requirement
2770   stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
2771 
2772   // Number of stack slots between incoming argument block and the start of
2773   // a new frame.  The PROLOG must add this many slots to the stack.  The
2774   // EPILOG must remove this many slots.  amd64 needs two slots for
2775   // return address.
2776   in_preserve_stack_slots(4 + 2 * VerifyStackAtCalls);
2777 
2778   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2779   // for calls to C.  Supports the var-args backing area for register parms.
2780   varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes/BytesPerInt);
2781 
2782   // The after-PROLOG location of the return address.  Location of
2783   // return address specifies a type (REG or STACK) and a number
2784   // representing the register number (i.e. - use a register name) or
2785   // stack slot.
2786   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
2787   // Otherwise, it is above the locks and verification slot and alignment word
2788   return_addr(STACK - 2 +
2789               round_to((Compile::current()->in_preserve_stack_slots() +
2790                         Compile::current()->fixed_slots()),
2791                        stack_alignment_in_slots()));
2792 
2793   // Body of function which returns an integer array locating
2794   // arguments either in registers or in stack slots.  Passed an array
2795   // of ideal registers called "sig" and a "length" count.  Stack-slot
2796   // offsets are based on outgoing arguments, i.e. a CALLER setting up
2797   // arguments for a CALLEE.  Incoming stack arguments are
2798   // automatically biased by the preserve_stack_slots field above.
2799 
2800   calling_convention
2801   %{
2802     // No difference between ingoing/outgoing just pass false
2803     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
2804   %}
2805 
2806   c_calling_convention
2807   %{
2808     // This is obviously always outgoing
2809     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
2810   %}
2811 
2812   // Location of compiled Java return values.  Same as C for now.
2813   return_value
2814   %{
2815     assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
2816            "only return normal values");
2817 
2818     static const int lo[Op_RegL + 1] = {
2819       0,
2820       0,
2821       RAX_num,  // Op_RegN
2822       RAX_num,  // Op_RegI
2823       RAX_num,  // Op_RegP
2824       XMM0_num, // Op_RegF
2825       XMM0_num, // Op_RegD
2826       RAX_num   // Op_RegL
2827     };
2828     static const int hi[Op_RegL + 1] = {
2829       0,
2830       0,
2831       OptoReg::Bad, // Op_RegN
2832       OptoReg::Bad, // Op_RegI
2833       RAX_H_num,    // Op_RegP
2834       OptoReg::Bad, // Op_RegF
2835       XMM0b_num,    // Op_RegD
2836       RAX_H_num     // Op_RegL
2837     };
2838     // Excluded flags and vector registers.
2839     assert(ARRAY_SIZE(hi) == _last_machine_leaf - 5, "missing type");
2840     return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
2841   %}
2842 %}
2843 
2844 //----------ATTRIBUTES---------------------------------------------------------
2845 //----------Operand Attributes-------------------------------------------------
2846 op_attrib op_cost(0);        // Required cost attribute
2847 
2848 //----------Instruction Attributes---------------------------------------------
2849 ins_attrib ins_cost(100);       // Required cost attribute
2850 ins_attrib ins_size(8);         // Required size attribute (in bits)
2851 ins_attrib ins_short_branch(0); // Required flag: is this instruction
2852                                 // a non-matching short branch variant
2853                                 // of some long branch?
2854 ins_attrib ins_alignment(1);    // Required alignment attribute (must
2855                                 // be a power of 2) specifies the
2856                                 // alignment that some part of the
2857                                 // instruction (not necessarily the
2858                                 // start) requires.  If > 1, a
2859                                 // compute_padding() function must be
2860                                 // provided for the instruction
2861 
2862 //----------OPERANDS-----------------------------------------------------------
2863 // Operand definitions must precede instruction definitions for correct parsing
2864 // in the ADLC because operands constitute user defined types which are used in
2865 // instruction definitions.
2866 
2867 //----------Simple Operands----------------------------------------------------
2868 // Immediate Operands
2869 // Integer Immediate
2870 operand immI()
2871 %{
2872   match(ConI);
2873 
2874   op_cost(10);
2875   format %{ %}
2876   interface(CONST_INTER);
2877 %}
2878 
2879 // Constant for test vs zero
2880 operand immI0()
2881 %{
2882   predicate(n->get_int() == 0);
2883   match(ConI);
2884 
2885   op_cost(0);
2886   format %{ %}
2887   interface(CONST_INTER);
2888 %}
2889 
2890 // Constant for increment
2891 operand immI1()
2892 %{
2893   predicate(n->get_int() == 1);
2894   match(ConI);
2895 
2896   op_cost(0);
2897   format %{ %}
2898   interface(CONST_INTER);
2899 %}
2900 
2901 // Constant for decrement
2902 operand immI_M1()
2903 %{
2904   predicate(n->get_int() == -1);
2905   match(ConI);
2906 
2907   op_cost(0);
2908   format %{ %}
2909   interface(CONST_INTER);
2910 %}
2911 
2912 // Valid scale values for addressing modes
2913 operand immI2()
2914 %{
2915   predicate(0 <= n->get_int() && (n->get_int() <= 3));
2916   match(ConI);
2917 
2918   format %{ %}
2919   interface(CONST_INTER);
2920 %}
2921 
2922 operand immI8()
2923 %{
2924   predicate((-0x80 <= n->get_int()) && (n->get_int() < 0x80));
2925   match(ConI);
2926 
2927   op_cost(5);
2928   format %{ %}
2929   interface(CONST_INTER);
2930 %}
2931 
2932 operand immI16()
2933 %{
2934   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
2935   match(ConI);
2936 
2937   op_cost(10);
2938   format %{ %}
2939   interface(CONST_INTER);
2940 %}
2941 
2942 // Int Immediate non-negative
2943 operand immU31()
2944 %{
2945   predicate(n->get_int() >= 0);
2946   match(ConI);
2947 
2948   op_cost(0);
2949   format %{ %}
2950   interface(CONST_INTER);
2951 %}
2952 
2953 // Constant for long shifts
2954 operand immI_32()
2955 %{
2956   predicate( n->get_int() == 32 );
2957   match(ConI);
2958 
2959   op_cost(0);
2960   format %{ %}
2961   interface(CONST_INTER);
2962 %}
2963 
2964 // Constant for long shifts
2965 operand immI_64()
2966 %{
2967   predicate( n->get_int() == 64 );
2968   match(ConI);
2969 
2970   op_cost(0);
2971   format %{ %}
2972   interface(CONST_INTER);
2973 %}
2974 
2975 // Pointer Immediate
2976 operand immP()
2977 %{
2978   match(ConP);
2979 
2980   op_cost(10);
2981   format %{ %}
2982   interface(CONST_INTER);
2983 %}
2984 
2985 // NULL Pointer Immediate
2986 operand immP0()
2987 %{
2988   predicate(n->get_ptr() == 0);
2989   match(ConP);
2990 
2991   op_cost(5);
2992   format %{ %}
2993   interface(CONST_INTER);
2994 %}
2995 
2996 // Pointer Immediate
2997 operand immN() %{
2998   match(ConN);
2999 
3000   op_cost(10);
3001   format %{ %}
3002   interface(CONST_INTER);
3003 %}
3004 
3005 operand immNKlass() %{
3006   match(ConNKlass);
3007 
3008   op_cost(10);
3009   format %{ %}
3010   interface(CONST_INTER);
3011 %}
3012 
3013 // NULL Pointer Immediate
3014 operand immN0() %{
3015   predicate(n->get_narrowcon() == 0);
3016   match(ConN);
3017 
3018   op_cost(5);
3019   format %{ %}
3020   interface(CONST_INTER);
3021 %}
3022 
3023 operand immP31()
3024 %{
3025   predicate(n->as_Type()->type()->reloc() == relocInfo::none
3026             && (n->get_ptr() >> 31) == 0);
3027   match(ConP);
3028 
3029   op_cost(5);
3030   format %{ %}
3031   interface(CONST_INTER);
3032 %}
3033 
3034 
3035 // Long Immediate
3036 operand immL()
3037 %{
3038   match(ConL);
3039 
3040   op_cost(20);
3041   format %{ %}
3042   interface(CONST_INTER);
3043 %}
3044 
3045 // Long Immediate 8-bit
3046 operand immL8()
3047 %{
3048   predicate(-0x80L <= n->get_long() && n->get_long() < 0x80L);
3049   match(ConL);
3050 
3051   op_cost(5);
3052   format %{ %}
3053   interface(CONST_INTER);
3054 %}
3055 
3056 // Long Immediate 32-bit unsigned
3057 operand immUL32()
3058 %{
3059   predicate(n->get_long() == (unsigned int) (n->get_long()));
3060   match(ConL);
3061 
3062   op_cost(10);
3063   format %{ %}
3064   interface(CONST_INTER);
3065 %}
3066 
3067 // Long Immediate 32-bit signed
3068 operand immL32()
3069 %{
3070   predicate(n->get_long() == (int) (n->get_long()));
3071   match(ConL);
3072 
3073   op_cost(15);
3074   format %{ %}
3075   interface(CONST_INTER);
3076 %}
3077 
3078 // Long Immediate zero
3079 operand immL0()
3080 %{
3081   predicate(n->get_long() == 0L);
3082   match(ConL);
3083 
3084   op_cost(10);
3085   format %{ %}
3086   interface(CONST_INTER);
3087 %}
3088 
3089 // Constant for increment
3090 operand immL1()
3091 %{
3092   predicate(n->get_long() == 1);
3093   match(ConL);
3094 
3095   format %{ %}
3096   interface(CONST_INTER);
3097 %}
3098 
3099 // Constant for decrement
3100 operand immL_M1()
3101 %{
3102   predicate(n->get_long() == -1);
3103   match(ConL);
3104 
3105   format %{ %}
3106   interface(CONST_INTER);
3107 %}
3108 
3109 // Long Immediate: the value 10
3110 operand immL10()
3111 %{
3112   predicate(n->get_long() == 10);
3113   match(ConL);
3114 
3115   format %{ %}
3116   interface(CONST_INTER);
3117 %}
3118 
3119 // Long immediate from 0 to 127.
3120 // Used for a shorter form of long mul by 10.
3121 operand immL_127()
3122 %{
3123   predicate(0 <= n->get_long() && n->get_long() < 0x80);
3124   match(ConL);
3125 
3126   op_cost(10);
3127   format %{ %}
3128   interface(CONST_INTER);
3129 %}
3130 
3131 // Long Immediate: low 32-bit mask
3132 operand immL_32bits()
3133 %{
3134   predicate(n->get_long() == 0xFFFFFFFFL);
3135   match(ConL);
3136   op_cost(20);
3137 
3138   format %{ %}
3139   interface(CONST_INTER);
3140 %}
3141 
3142 // Float Immediate zero
3143 operand immF0()
3144 %{
3145   predicate(jint_cast(n->getf()) == 0);
3146   match(ConF);
3147 
3148   op_cost(5);
3149   format %{ %}
3150   interface(CONST_INTER);
3151 %}
3152 
3153 // Float Immediate
3154 operand immF()
3155 %{
3156   match(ConF);
3157 
3158   op_cost(15);
3159   format %{ %}
3160   interface(CONST_INTER);
3161 %}
3162 
3163 // Double Immediate zero
3164 operand immD0()
3165 %{
3166   predicate(jlong_cast(n->getd()) == 0);
3167   match(ConD);
3168 
3169   op_cost(5);
3170   format %{ %}
3171   interface(CONST_INTER);
3172 %}
3173 
3174 // Double Immediate
3175 operand immD()
3176 %{
3177   match(ConD);
3178 
3179   op_cost(15);
3180   format %{ %}
3181   interface(CONST_INTER);
3182 %}
3183 
3184 // Immediates for special shifts (sign extend)
3185 
3186 // Constants for increment
3187 operand immI_16()
3188 %{
3189   predicate(n->get_int() == 16);
3190   match(ConI);
3191 
3192   format %{ %}
3193   interface(CONST_INTER);
3194 %}
3195 
3196 operand immI_24()
3197 %{
3198   predicate(n->get_int() == 24);
3199   match(ConI);
3200 
3201   format %{ %}
3202   interface(CONST_INTER);
3203 %}
3204 
3205 // Constant for byte-wide masking
3206 operand immI_255()
3207 %{
3208   predicate(n->get_int() == 255);
3209   match(ConI);
3210 
3211   format %{ %}
3212   interface(CONST_INTER);
3213 %}
3214 
3215 // Constant for short-wide masking
3216 operand immI_65535()
3217 %{
3218   predicate(n->get_int() == 65535);
3219   match(ConI);
3220 
3221   format %{ %}
3222   interface(CONST_INTER);
3223 %}
3224 
3225 // Constant for byte-wide masking
3226 operand immL_255()
3227 %{
3228   predicate(n->get_long() == 255);
3229   match(ConL);
3230 
3231   format %{ %}
3232   interface(CONST_INTER);
3233 %}
3234 
3235 // Constant for short-wide masking
3236 operand immL_65535()
3237 %{
3238   predicate(n->get_long() == 65535);
3239   match(ConL);
3240 
3241   format %{ %}
3242   interface(CONST_INTER);
3243 %}
3244 
3245 // Register Operands
3246 // Integer Register
3247 operand rRegI()
3248 %{
3249   constraint(ALLOC_IN_RC(int_reg));
3250   match(RegI);
3251 
3252   match(rax_RegI);
3253   match(rbx_RegI);
3254   match(rcx_RegI);
3255   match(rdx_RegI);
3256   match(rdi_RegI);
3257 
3258   format %{ %}
3259   interface(REG_INTER);
3260 %}
3261 
3262 // Special Registers
3263 operand rax_RegI()
3264 %{
3265   constraint(ALLOC_IN_RC(int_rax_reg));
3266   match(RegI);
3267   match(rRegI);
3268 
3269   format %{ "RAX" %}
3270   interface(REG_INTER);
3271 %}
3272 
3273 // Special Registers
3274 operand rbx_RegI()
3275 %{
3276   constraint(ALLOC_IN_RC(int_rbx_reg));
3277   match(RegI);
3278   match(rRegI);
3279 
3280   format %{ "RBX" %}
3281   interface(REG_INTER);
3282 %}
3283 
3284 operand rcx_RegI()
3285 %{
3286   constraint(ALLOC_IN_RC(int_rcx_reg));
3287   match(RegI);
3288   match(rRegI);
3289 
3290   format %{ "RCX" %}
3291   interface(REG_INTER);
3292 %}
3293 
3294 operand rdx_RegI()
3295 %{
3296   constraint(ALLOC_IN_RC(int_rdx_reg));
3297   match(RegI);
3298   match(rRegI);
3299 
3300   format %{ "RDX" %}
3301   interface(REG_INTER);
3302 %}
3303 
3304 operand rdi_RegI()
3305 %{
3306   constraint(ALLOC_IN_RC(int_rdi_reg));
3307   match(RegI);
3308   match(rRegI);
3309 
3310   format %{ "RDI" %}
3311   interface(REG_INTER);
3312 %}
3313 
3314 operand no_rcx_RegI()
3315 %{
3316   constraint(ALLOC_IN_RC(int_no_rcx_reg));
3317   match(RegI);
3318   match(rax_RegI);
3319   match(rbx_RegI);
3320   match(rdx_RegI);
3321   match(rdi_RegI);
3322 
3323   format %{ %}
3324   interface(REG_INTER);
3325 %}
3326 
3327 operand no_rax_rdx_RegI()
3328 %{
3329   constraint(ALLOC_IN_RC(int_no_rax_rdx_reg));
3330   match(RegI);
3331   match(rbx_RegI);
3332   match(rcx_RegI);
3333   match(rdi_RegI);
3334 
3335   format %{ %}
3336   interface(REG_INTER);
3337 %}
3338 
3339 // Pointer Register
3340 operand any_RegP()
3341 %{
3342   constraint(ALLOC_IN_RC(any_reg));  
3343   match(RegP);
3344   match(rax_RegP);
3345   match(rbx_RegP);
3346   match(rdi_RegP);
3347   match(rsi_RegP);
3348   match(rbp_RegP);
3349   match(r15_RegP);
3350   match(rRegP);
3351 
3352   format %{ %}
3353   interface(REG_INTER);
3354 %}
3355 
3356 operand rRegP()
3357 %{
3358   constraint(ALLOC_IN_RC(ptr_reg));
3359   match(RegP);
3360   match(rax_RegP);
3361   match(rbx_RegP);
3362   match(rdi_RegP);
3363   match(rsi_RegP);
3364   match(rbp_RegP);  // See Q&A below about
3365   match(r15_RegP);  // r15_RegP and rbp_RegP.
3366 
3367   format %{ %}
3368   interface(REG_INTER);
3369 %}
3370 
3371 operand rRegN() %{
3372   constraint(ALLOC_IN_RC(int_reg));
3373   match(RegN);
3374 
3375   format %{ %}
3376   interface(REG_INTER);
3377 %}
3378 
3379 // Question: Why is r15_RegP (the read-only TLS register) a match for rRegP?
3380 // Answer: Operand match rules govern the DFA as it processes instruction inputs.
3381 // It's fine for an instruction input that expects rRegP to match a r15_RegP.
3382 // The output of an instruction is controlled by the allocator, which respects
3383 // register class masks, not match rules.  Unless an instruction mentions
3384 // r15_RegP or any_RegP explicitly as its output, r15 will not be considered
3385 // by the allocator as an input.
3386 // The same logic applies to rbp_RegP being a match for rRegP: If PreserveFramePointer==true,
3387 // the RBP is used as a proper frame pointer and is not included in ptr_reg. As a
3388 // result, RBP is not included in the output of the instruction either.
3389 
3390 operand no_rax_RegP()
3391 %{
3392   constraint(ALLOC_IN_RC(ptr_no_rax_reg));
3393   match(RegP);
3394   match(rbx_RegP);
3395   match(rsi_RegP);
3396   match(rdi_RegP);
3397 
3398   format %{ %}
3399   interface(REG_INTER);
3400 %}
3401 
3402 // This operand is not allowed to use RBP even if
3403 // RBP is not used to hold the frame pointer.
3404 operand no_rbp_RegP()
3405 %{
3406   constraint(ALLOC_IN_RC(ptr_reg_no_rbp));
3407   match(RegP);
3408   match(rbx_RegP);
3409   match(rsi_RegP);
3410   match(rdi_RegP);
3411 
3412   format %{ %}
3413   interface(REG_INTER);
3414 %}
3415 
3416 operand no_rax_rbx_RegP()
3417 %{
3418   constraint(ALLOC_IN_RC(ptr_no_rax_rbx_reg));
3419   match(RegP);
3420   match(rsi_RegP);
3421   match(rdi_RegP);
3422 
3423   format %{ %}
3424   interface(REG_INTER);
3425 %}
3426 
3427 // Special Registers
3428 // Return a pointer value
3429 operand rax_RegP()
3430 %{
3431   constraint(ALLOC_IN_RC(ptr_rax_reg));
3432   match(RegP);
3433   match(rRegP);
3434 
3435   format %{ %}
3436   interface(REG_INTER);
3437 %}
3438 
3439 // Special Registers
3440 // Return a compressed pointer value
3441 operand rax_RegN()
3442 %{
3443   constraint(ALLOC_IN_RC(int_rax_reg));
3444   match(RegN);
3445   match(rRegN);
3446 
3447   format %{ %}
3448   interface(REG_INTER);
3449 %}
3450 
3451 // Used in AtomicAdd
3452 operand rbx_RegP()
3453 %{
3454   constraint(ALLOC_IN_RC(ptr_rbx_reg));
3455   match(RegP);
3456   match(rRegP);
3457 
3458   format %{ %}
3459   interface(REG_INTER);
3460 %}
3461 
3462 operand rsi_RegP()
3463 %{
3464   constraint(ALLOC_IN_RC(ptr_rsi_reg));
3465   match(RegP);
3466   match(rRegP);
3467 
3468   format %{ %}
3469   interface(REG_INTER);
3470 %}
3471 
3472 // Used in rep stosq
3473 operand rdi_RegP()
3474 %{
3475   constraint(ALLOC_IN_RC(ptr_rdi_reg));
3476   match(RegP);
3477   match(rRegP);
3478 
3479   format %{ %}
3480   interface(REG_INTER);
3481 %}
3482 
3483 operand r15_RegP()
3484 %{
3485   constraint(ALLOC_IN_RC(ptr_r15_reg));
3486   match(RegP);
3487   match(rRegP);
3488 
3489   format %{ %}
3490   interface(REG_INTER);
3491 %}
3492 
3493 operand rRegL()
3494 %{
3495   constraint(ALLOC_IN_RC(long_reg));
3496   match(RegL);
3497   match(rax_RegL);
3498   match(rdx_RegL);
3499 
3500   format %{ %}
3501   interface(REG_INTER);
3502 %}
3503 
3504 // Special Registers
3505 operand no_rax_rdx_RegL()
3506 %{
3507   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3508   match(RegL);
3509   match(rRegL);
3510 
3511   format %{ %}
3512   interface(REG_INTER);
3513 %}
3514 
3515 operand no_rax_RegL()
3516 %{
3517   constraint(ALLOC_IN_RC(long_no_rax_rdx_reg));
3518   match(RegL);
3519   match(rRegL);
3520   match(rdx_RegL);
3521 
3522   format %{ %}
3523   interface(REG_INTER);
3524 %}
3525 
3526 operand no_rcx_RegL()
3527 %{
3528   constraint(ALLOC_IN_RC(long_no_rcx_reg));
3529   match(RegL);
3530   match(rRegL);
3531 
3532   format %{ %}
3533   interface(REG_INTER);
3534 %}
3535 
3536 operand rax_RegL()
3537 %{
3538   constraint(ALLOC_IN_RC(long_rax_reg));
3539   match(RegL);
3540   match(rRegL);
3541 
3542   format %{ "RAX" %}
3543   interface(REG_INTER);
3544 %}
3545 
3546 operand rcx_RegL()
3547 %{
3548   constraint(ALLOC_IN_RC(long_rcx_reg));
3549   match(RegL);
3550   match(rRegL);
3551 
3552   format %{ %}
3553   interface(REG_INTER);
3554 %}
3555 
3556 operand rdx_RegL()
3557 %{
3558   constraint(ALLOC_IN_RC(long_rdx_reg));
3559   match(RegL);
3560   match(rRegL);
3561 
3562   format %{ %}
3563   interface(REG_INTER);
3564 %}
3565 
3566 // Flags register, used as output of compare instructions
3567 operand rFlagsReg()
3568 %{
3569   constraint(ALLOC_IN_RC(int_flags));
3570   match(RegFlags);
3571 
3572   format %{ "RFLAGS" %}
3573   interface(REG_INTER);
3574 %}
3575 
3576 // Flags register, used as output of FLOATING POINT compare instructions
3577 operand rFlagsRegU()
3578 %{
3579   constraint(ALLOC_IN_RC(int_flags));
3580   match(RegFlags);
3581 
3582   format %{ "RFLAGS_U" %}
3583   interface(REG_INTER);
3584 %}
3585 
3586 operand rFlagsRegUCF() %{
3587   constraint(ALLOC_IN_RC(int_flags));
3588   match(RegFlags);
3589   predicate(false);
3590 
3591   format %{ "RFLAGS_U_CF" %}
3592   interface(REG_INTER);
3593 %}
3594 
3595 // Float register operands
3596 operand regF()
3597 %{
3598   constraint(ALLOC_IN_RC(float_reg));
3599   match(RegF);
3600 
3601   format %{ %}
3602   interface(REG_INTER);
3603 %}
3604 
3605 // Double register operands
3606 operand regD()
3607 %{
3608   constraint(ALLOC_IN_RC(double_reg));
3609   match(RegD);
3610 
3611   format %{ %}
3612   interface(REG_INTER);
3613 %}
3614 
3615 //----------Memory Operands----------------------------------------------------
3616 // Direct Memory Operand
3617 // operand direct(immP addr)
3618 // %{
3619 //   match(addr);
3620 
3621 //   format %{ "[$addr]" %}
3622 //   interface(MEMORY_INTER) %{
3623 //     base(0xFFFFFFFF);
3624 //     index(0x4);
3625 //     scale(0x0);
3626 //     disp($addr);
3627 //   %}
3628 // %}
3629 
3630 // Indirect Memory Operand
3631 operand indirect(any_RegP reg)
3632 %{
3633   constraint(ALLOC_IN_RC(ptr_reg));
3634   match(reg);
3635 
3636   format %{ "[$reg]" %}
3637   interface(MEMORY_INTER) %{
3638     base($reg);
3639     index(0x4);
3640     scale(0x0);
3641     disp(0x0);
3642   %}
3643 %}
3644 
3645 // Indirect Memory Plus Short Offset Operand
3646 operand indOffset8(any_RegP reg, immL8 off)
3647 %{
3648   constraint(ALLOC_IN_RC(ptr_reg));
3649   match(AddP reg off);
3650 
3651   format %{ "[$reg + $off (8-bit)]" %}
3652   interface(MEMORY_INTER) %{
3653     base($reg);
3654     index(0x4);
3655     scale(0x0);
3656     disp($off);
3657   %}
3658 %}
3659 
3660 // Indirect Memory Plus Long Offset Operand
3661 operand indOffset32(any_RegP reg, immL32 off)
3662 %{
3663   constraint(ALLOC_IN_RC(ptr_reg));
3664   match(AddP reg off);
3665 
3666   format %{ "[$reg + $off (32-bit)]" %}
3667   interface(MEMORY_INTER) %{
3668     base($reg);
3669     index(0x4);
3670     scale(0x0);
3671     disp($off);
3672   %}
3673 %}
3674 
3675 // Indirect Memory Plus Index Register Plus Offset Operand
3676 operand indIndexOffset(any_RegP reg, rRegL lreg, immL32 off)
3677 %{
3678   constraint(ALLOC_IN_RC(ptr_reg));
3679   match(AddP (AddP reg lreg) off);
3680 
3681   op_cost(10);
3682   format %{"[$reg + $off + $lreg]" %}
3683   interface(MEMORY_INTER) %{
3684     base($reg);
3685     index($lreg);
3686     scale(0x0);
3687     disp($off);
3688   %}
3689 %}
3690 
3691 // Indirect Memory Plus Index Register Plus Offset Operand
3692 operand indIndex(any_RegP reg, rRegL lreg)
3693 %{
3694   constraint(ALLOC_IN_RC(ptr_reg));
3695   match(AddP reg lreg);
3696 
3697   op_cost(10);
3698   format %{"[$reg + $lreg]" %}
3699   interface(MEMORY_INTER) %{
3700     base($reg);
3701     index($lreg);
3702     scale(0x0);
3703     disp(0x0);
3704   %}
3705 %}
3706 
3707 // Indirect Memory Times Scale Plus Index Register
3708 operand indIndexScale(any_RegP reg, rRegL lreg, immI2 scale)
3709 %{
3710   constraint(ALLOC_IN_RC(ptr_reg));
3711   match(AddP reg (LShiftL lreg scale));
3712 
3713   op_cost(10);
3714   format %{"[$reg + $lreg << $scale]" %}
3715   interface(MEMORY_INTER) %{
3716     base($reg);
3717     index($lreg);
3718     scale($scale);
3719     disp(0x0);
3720   %}
3721 %}
3722 
3723 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3724 operand indIndexScaleOffset(any_RegP reg, immL32 off, rRegL lreg, immI2 scale)
3725 %{
3726   constraint(ALLOC_IN_RC(ptr_reg));
3727   match(AddP (AddP reg (LShiftL lreg scale)) off);
3728 
3729   op_cost(10);
3730   format %{"[$reg + $off + $lreg << $scale]" %}
3731   interface(MEMORY_INTER) %{
3732     base($reg);
3733     index($lreg);
3734     scale($scale);
3735     disp($off);
3736   %}
3737 %}
3738 
3739 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3740 operand indPosIndexScaleOffset(any_RegP reg, immL32 off, rRegI idx, immI2 scale)
3741 %{
3742   constraint(ALLOC_IN_RC(ptr_reg));
3743   predicate(n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3744   match(AddP (AddP reg (LShiftL (ConvI2L idx) scale)) off);
3745 
3746   op_cost(10);
3747   format %{"[$reg + $off + $idx << $scale]" %}
3748   interface(MEMORY_INTER) %{
3749     base($reg);
3750     index($idx);
3751     scale($scale);
3752     disp($off);
3753   %}
3754 %}
3755 
3756 // Indirect Narrow Oop Plus Offset Operand
3757 // Note: x86 architecture doesn't support "scale * index + offset" without a base
3758 // we can't free r12 even with Universe::narrow_oop_base() == NULL.
3759 operand indCompressedOopOffset(rRegN reg, immL32 off) %{
3760   predicate(UseCompressedOops && (Universe::narrow_oop_shift() == Address::times_8));
3761   constraint(ALLOC_IN_RC(ptr_reg));
3762   match(AddP (DecodeN reg) off);
3763 
3764   op_cost(10);
3765   format %{"[R12 + $reg << 3 + $off] (compressed oop addressing)" %}
3766   interface(MEMORY_INTER) %{
3767     base(0xc); // R12
3768     index($reg);
3769     scale(0x3);
3770     disp($off);
3771   %}
3772 %}
3773 
3774 // Indirect Memory Operand
3775 operand indirectNarrow(rRegN reg)
3776 %{
3777   predicate(Universe::narrow_oop_shift() == 0);
3778   constraint(ALLOC_IN_RC(ptr_reg));
3779   match(DecodeN reg);
3780 
3781   format %{ "[$reg]" %}
3782   interface(MEMORY_INTER) %{
3783     base($reg);
3784     index(0x4);
3785     scale(0x0);
3786     disp(0x0);
3787   %}
3788 %}
3789 
3790 // Indirect Memory Plus Short Offset Operand
3791 operand indOffset8Narrow(rRegN reg, immL8 off)
3792 %{
3793   predicate(Universe::narrow_oop_shift() == 0);
3794   constraint(ALLOC_IN_RC(ptr_reg));
3795   match(AddP (DecodeN reg) off);
3796 
3797   format %{ "[$reg + $off (8-bit)]" %}
3798   interface(MEMORY_INTER) %{
3799     base($reg);
3800     index(0x4);
3801     scale(0x0);
3802     disp($off);
3803   %}
3804 %}
3805 
3806 // Indirect Memory Plus Long Offset Operand
3807 operand indOffset32Narrow(rRegN reg, immL32 off)
3808 %{
3809   predicate(Universe::narrow_oop_shift() == 0);
3810   constraint(ALLOC_IN_RC(ptr_reg));
3811   match(AddP (DecodeN reg) off);
3812 
3813   format %{ "[$reg + $off (32-bit)]" %}
3814   interface(MEMORY_INTER) %{
3815     base($reg);
3816     index(0x4);
3817     scale(0x0);
3818     disp($off);
3819   %}
3820 %}
3821 
3822 // Indirect Memory Plus Index Register Plus Offset Operand
3823 operand indIndexOffsetNarrow(rRegN reg, rRegL lreg, immL32 off)
3824 %{
3825   predicate(Universe::narrow_oop_shift() == 0);
3826   constraint(ALLOC_IN_RC(ptr_reg));
3827   match(AddP (AddP (DecodeN reg) lreg) off);
3828 
3829   op_cost(10);
3830   format %{"[$reg + $off + $lreg]" %}
3831   interface(MEMORY_INTER) %{
3832     base($reg);
3833     index($lreg);
3834     scale(0x0);
3835     disp($off);
3836   %}
3837 %}
3838 
3839 // Indirect Memory Plus Index Register Plus Offset Operand
3840 operand indIndexNarrow(rRegN reg, rRegL lreg)
3841 %{
3842   predicate(Universe::narrow_oop_shift() == 0);
3843   constraint(ALLOC_IN_RC(ptr_reg));
3844   match(AddP (DecodeN reg) lreg);
3845 
3846   op_cost(10);
3847   format %{"[$reg + $lreg]" %}
3848   interface(MEMORY_INTER) %{
3849     base($reg);
3850     index($lreg);
3851     scale(0x0);
3852     disp(0x0);
3853   %}
3854 %}
3855 
3856 // Indirect Memory Times Scale Plus Index Register
3857 operand indIndexScaleNarrow(rRegN reg, rRegL lreg, immI2 scale)
3858 %{
3859   predicate(Universe::narrow_oop_shift() == 0);
3860   constraint(ALLOC_IN_RC(ptr_reg));
3861   match(AddP (DecodeN reg) (LShiftL lreg scale));
3862 
3863   op_cost(10);
3864   format %{"[$reg + $lreg << $scale]" %}
3865   interface(MEMORY_INTER) %{
3866     base($reg);
3867     index($lreg);
3868     scale($scale);
3869     disp(0x0);
3870   %}
3871 %}
3872 
3873 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
3874 operand indIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegL lreg, immI2 scale)
3875 %{
3876   predicate(Universe::narrow_oop_shift() == 0);
3877   constraint(ALLOC_IN_RC(ptr_reg));
3878   match(AddP (AddP (DecodeN reg) (LShiftL lreg scale)) off);
3879 
3880   op_cost(10);
3881   format %{"[$reg + $off + $lreg << $scale]" %}
3882   interface(MEMORY_INTER) %{
3883     base($reg);
3884     index($lreg);
3885     scale($scale);
3886     disp($off);
3887   %}
3888 %}
3889 
3890 // Indirect Memory Times Scale Plus Positive Index Register Plus Offset Operand
3891 operand indPosIndexScaleOffsetNarrow(rRegN reg, immL32 off, rRegI idx, immI2 scale)
3892 %{
3893   constraint(ALLOC_IN_RC(ptr_reg));
3894   predicate(Universe::narrow_oop_shift() == 0 && n->in(2)->in(3)->in(1)->as_Type()->type()->is_long()->_lo >= 0);
3895   match(AddP (AddP (DecodeN reg) (LShiftL (ConvI2L idx) scale)) off);
3896 
3897   op_cost(10);
3898   format %{"[$reg + $off + $idx << $scale]" %}
3899   interface(MEMORY_INTER) %{
3900     base($reg);
3901     index($idx);
3902     scale($scale);
3903     disp($off);
3904   %}
3905 %}
3906 
3907 //----------Special Memory Operands--------------------------------------------
3908 // Stack Slot Operand - This operand is used for loading and storing temporary
3909 //                      values on the stack where a match requires a value to
3910 //                      flow through memory.
3911 operand stackSlotP(sRegP reg)
3912 %{
3913   constraint(ALLOC_IN_RC(stack_slots));
3914   // No match rule because this operand is only generated in matching
3915 
3916   format %{ "[$reg]" %}
3917   interface(MEMORY_INTER) %{
3918     base(0x4);   // RSP
3919     index(0x4);  // No Index
3920     scale(0x0);  // No Scale
3921     disp($reg);  // Stack Offset
3922   %}
3923 %}
3924 
3925 operand stackSlotI(sRegI reg)
3926 %{
3927   constraint(ALLOC_IN_RC(stack_slots));
3928   // No match rule because this operand is only generated in matching
3929 
3930   format %{ "[$reg]" %}
3931   interface(MEMORY_INTER) %{
3932     base(0x4);   // RSP
3933     index(0x4);  // No Index
3934     scale(0x0);  // No Scale
3935     disp($reg);  // Stack Offset
3936   %}
3937 %}
3938 
3939 operand stackSlotF(sRegF reg)
3940 %{
3941   constraint(ALLOC_IN_RC(stack_slots));
3942   // No match rule because this operand is only generated in matching
3943 
3944   format %{ "[$reg]" %}
3945   interface(MEMORY_INTER) %{
3946     base(0x4);   // RSP
3947     index(0x4);  // No Index
3948     scale(0x0);  // No Scale
3949     disp($reg);  // Stack Offset
3950   %}
3951 %}
3952 
3953 operand stackSlotD(sRegD reg)
3954 %{
3955   constraint(ALLOC_IN_RC(stack_slots));
3956   // No match rule because this operand is only generated in matching
3957 
3958   format %{ "[$reg]" %}
3959   interface(MEMORY_INTER) %{
3960     base(0x4);   // RSP
3961     index(0x4);  // No Index
3962     scale(0x0);  // No Scale
3963     disp($reg);  // Stack Offset
3964   %}
3965 %}
3966 operand stackSlotL(sRegL reg)
3967 %{
3968   constraint(ALLOC_IN_RC(stack_slots));
3969   // No match rule because this operand is only generated in matching
3970 
3971   format %{ "[$reg]" %}
3972   interface(MEMORY_INTER) %{
3973     base(0x4);   // RSP
3974     index(0x4);  // No Index
3975     scale(0x0);  // No Scale
3976     disp($reg);  // Stack Offset
3977   %}
3978 %}
3979 
3980 //----------Conditional Branch Operands----------------------------------------
3981 // Comparison Op  - This is the operation of the comparison, and is limited to
3982 //                  the following set of codes:
3983 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
3984 //
3985 // Other attributes of the comparison, such as unsignedness, are specified
3986 // by the comparison instruction that sets a condition code flags register.
3987 // That result is represented by a flags operand whose subtype is appropriate
3988 // to the unsignedness (etc.) of the comparison.
3989 //
3990 // Later, the instruction which matches both the Comparison Op (a Bool) and
3991 // the flags (produced by the Cmp) specifies the coding of the comparison op
3992 // by matching a specific subtype of Bool operand below, such as cmpOpU.
3993 
3994 // Comparision Code
3995 operand cmpOp()
3996 %{
3997   match(Bool);
3998 
3999   format %{ "" %}
4000   interface(COND_INTER) %{
4001     equal(0x4, "e");
4002     not_equal(0x5, "ne");
4003     less(0xC, "l");
4004     greater_equal(0xD, "ge");
4005     less_equal(0xE, "le");
4006     greater(0xF, "g");
4007     overflow(0x0, "o");
4008     no_overflow(0x1, "no");
4009   %}
4010 %}
4011 
4012 // Comparison Code, unsigned compare.  Used by FP also, with
4013 // C2 (unordered) turned into GT or LT already.  The other bits
4014 // C0 and C3 are turned into Carry & Zero flags.
4015 operand cmpOpU()
4016 %{
4017   match(Bool);
4018 
4019   format %{ "" %}
4020   interface(COND_INTER) %{
4021     equal(0x4, "e");
4022     not_equal(0x5, "ne");
4023     less(0x2, "b");
4024     greater_equal(0x3, "nb");
4025     less_equal(0x6, "be");
4026     greater(0x7, "nbe");
4027     overflow(0x0, "o");
4028     no_overflow(0x1, "no");
4029   %}
4030 %}
4031 
4032 
4033 // Floating comparisons that don't require any fixup for the unordered case
4034 operand cmpOpUCF() %{
4035   match(Bool);
4036   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
4037             n->as_Bool()->_test._test == BoolTest::ge ||
4038             n->as_Bool()->_test._test == BoolTest::le ||
4039             n->as_Bool()->_test._test == BoolTest::gt);
4040   format %{ "" %}
4041   interface(COND_INTER) %{
4042     equal(0x4, "e");
4043     not_equal(0x5, "ne");
4044     less(0x2, "b");
4045     greater_equal(0x3, "nb");
4046     less_equal(0x6, "be");
4047     greater(0x7, "nbe");
4048     overflow(0x0, "o");
4049     no_overflow(0x1, "no");
4050   %}
4051 %}
4052 
4053 
4054 // Floating comparisons that can be fixed up with extra conditional jumps
4055 operand cmpOpUCF2() %{
4056   match(Bool);
4057   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
4058             n->as_Bool()->_test._test == BoolTest::eq);
4059   format %{ "" %}
4060   interface(COND_INTER) %{
4061     equal(0x4, "e");
4062     not_equal(0x5, "ne");
4063     less(0x2, "b");
4064     greater_equal(0x3, "nb");
4065     less_equal(0x6, "be");
4066     greater(0x7, "nbe");
4067     overflow(0x0, "o");
4068     no_overflow(0x1, "no");
4069   %}
4070 %}
4071 
4072 
4073 //----------OPERAND CLASSES----------------------------------------------------
4074 // Operand Classes are groups of operands that are used as to simplify
4075 // instruction definitions by not requiring the AD writer to specify separate
4076 // instructions for every form of operand when the instruction accepts
4077 // multiple operand types with the same basic encoding and format.  The classic
4078 // case of this is memory operands.
4079 
4080 opclass memory(indirect, indOffset8, indOffset32, indIndexOffset, indIndex,
4081                indIndexScale, indIndexScaleOffset, indPosIndexScaleOffset,
4082                indCompressedOopOffset,
4083                indirectNarrow, indOffset8Narrow, indOffset32Narrow,
4084                indIndexOffsetNarrow, indIndexNarrow, indIndexScaleNarrow,
4085                indIndexScaleOffsetNarrow, indPosIndexScaleOffsetNarrow);
4086 
4087 //----------PIPELINE-----------------------------------------------------------
4088 // Rules which define the behavior of the target architectures pipeline.
4089 pipeline %{
4090 
4091 //----------ATTRIBUTES---------------------------------------------------------
4092 attributes %{
4093   variable_size_instructions;        // Fixed size instructions
4094   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
4095   instruction_unit_size = 1;         // An instruction is 1 bytes long
4096   instruction_fetch_unit_size = 16;  // The processor fetches one line
4097   instruction_fetch_units = 1;       // of 16 bytes
4098 
4099   // List of nop instructions
4100   nops( MachNop );
4101 %}
4102 
4103 //----------RESOURCES----------------------------------------------------------
4104 // Resources are the functional units available to the machine
4105 
4106 // Generic P2/P3 pipeline
4107 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
4108 // 3 instructions decoded per cycle.
4109 // 2 load/store ops per cycle, 1 branch, 1 FPU,
4110 // 3 ALU op, only ALU0 handles mul instructions.
4111 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
4112            MS0, MS1, MS2, MEM = MS0 | MS1 | MS2,
4113            BR, FPU,
4114            ALU0, ALU1, ALU2, ALU = ALU0 | ALU1 | ALU2);
4115 
4116 //----------PIPELINE DESCRIPTION-----------------------------------------------
4117 // Pipeline Description specifies the stages in the machine's pipeline
4118 
4119 // Generic P2/P3 pipeline
4120 pipe_desc(S0, S1, S2, S3, S4, S5);
4121 
4122 //----------PIPELINE CLASSES---------------------------------------------------
4123 // Pipeline Classes describe the stages in which input and output are
4124 // referenced by the hardware pipeline.
4125 
4126 // Naming convention: ialu or fpu
4127 // Then: _reg
4128 // Then: _reg if there is a 2nd register
4129 // Then: _long if it's a pair of instructions implementing a long
4130 // Then: _fat if it requires the big decoder
4131 //   Or: _mem if it requires the big decoder and a memory unit.
4132 
4133 // Integer ALU reg operation
4134 pipe_class ialu_reg(rRegI dst)
4135 %{
4136     single_instruction;
4137     dst    : S4(write);
4138     dst    : S3(read);
4139     DECODE : S0;        // any decoder
4140     ALU    : S3;        // any alu
4141 %}
4142 
4143 // Long ALU reg operation
4144 pipe_class ialu_reg_long(rRegL dst)
4145 %{
4146     instruction_count(2);
4147     dst    : S4(write);
4148     dst    : S3(read);
4149     DECODE : S0(2);     // any 2 decoders
4150     ALU    : S3(2);     // both alus
4151 %}
4152 
4153 // Integer ALU reg operation using big decoder
4154 pipe_class ialu_reg_fat(rRegI dst)
4155 %{
4156     single_instruction;
4157     dst    : S4(write);
4158     dst    : S3(read);
4159     D0     : S0;        // big decoder only
4160     ALU    : S3;        // any alu
4161 %}
4162 
4163 // Long ALU reg operation using big decoder
4164 pipe_class ialu_reg_long_fat(rRegL dst)
4165 %{
4166     instruction_count(2);
4167     dst    : S4(write);
4168     dst    : S3(read);
4169     D0     : S0(2);     // big decoder only; twice
4170     ALU    : S3(2);     // any 2 alus
4171 %}
4172 
4173 // Integer ALU reg-reg operation
4174 pipe_class ialu_reg_reg(rRegI dst, rRegI src)
4175 %{
4176     single_instruction;
4177     dst    : S4(write);
4178     src    : S3(read);
4179     DECODE : S0;        // any decoder
4180     ALU    : S3;        // any alu
4181 %}
4182 
4183 // Long ALU reg-reg operation
4184 pipe_class ialu_reg_reg_long(rRegL dst, rRegL src)
4185 %{
4186     instruction_count(2);
4187     dst    : S4(write);
4188     src    : S3(read);
4189     DECODE : S0(2);     // any 2 decoders
4190     ALU    : S3(2);     // both alus
4191 %}
4192 
4193 // Integer ALU reg-reg operation
4194 pipe_class ialu_reg_reg_fat(rRegI dst, memory src)
4195 %{
4196     single_instruction;
4197     dst    : S4(write);
4198     src    : S3(read);
4199     D0     : S0;        // big decoder only
4200     ALU    : S3;        // any alu
4201 %}
4202 
4203 // Long ALU reg-reg operation
4204 pipe_class ialu_reg_reg_long_fat(rRegL dst, rRegL src)
4205 %{
4206     instruction_count(2);
4207     dst    : S4(write);
4208     src    : S3(read);
4209     D0     : S0(2);     // big decoder only; twice
4210     ALU    : S3(2);     // both alus
4211 %}
4212 
4213 // Integer ALU reg-mem operation
4214 pipe_class ialu_reg_mem(rRegI dst, memory mem)
4215 %{
4216     single_instruction;
4217     dst    : S5(write);
4218     mem    : S3(read);
4219     D0     : S0;        // big decoder only
4220     ALU    : S4;        // any alu
4221     MEM    : S3;        // any mem
4222 %}
4223 
4224 // Integer mem operation (prefetch)
4225 pipe_class ialu_mem(memory mem)
4226 %{
4227     single_instruction;
4228     mem    : S3(read);
4229     D0     : S0;        // big decoder only
4230     MEM    : S3;        // any mem
4231 %}
4232 
4233 // Integer Store to Memory
4234 pipe_class ialu_mem_reg(memory mem, rRegI src)
4235 %{
4236     single_instruction;
4237     mem    : S3(read);
4238     src    : S5(read);
4239     D0     : S0;        // big decoder only
4240     ALU    : S4;        // any alu
4241     MEM    : S3;
4242 %}
4243 
4244 // // Long Store to Memory
4245 // pipe_class ialu_mem_long_reg(memory mem, rRegL src)
4246 // %{
4247 //     instruction_count(2);
4248 //     mem    : S3(read);
4249 //     src    : S5(read);
4250 //     D0     : S0(2);          // big decoder only; twice
4251 //     ALU    : S4(2);     // any 2 alus
4252 //     MEM    : S3(2);  // Both mems
4253 // %}
4254 
4255 // Integer Store to Memory
4256 pipe_class ialu_mem_imm(memory mem)
4257 %{
4258     single_instruction;
4259     mem    : S3(read);
4260     D0     : S0;        // big decoder only
4261     ALU    : S4;        // any alu
4262     MEM    : S3;
4263 %}
4264 
4265 // Integer ALU0 reg-reg operation
4266 pipe_class ialu_reg_reg_alu0(rRegI dst, rRegI src)
4267 %{
4268     single_instruction;
4269     dst    : S4(write);
4270     src    : S3(read);
4271     D0     : S0;        // Big decoder only
4272     ALU0   : S3;        // only alu0
4273 %}
4274 
4275 // Integer ALU0 reg-mem operation
4276 pipe_class ialu_reg_mem_alu0(rRegI dst, memory mem)
4277 %{
4278     single_instruction;
4279     dst    : S5(write);
4280     mem    : S3(read);
4281     D0     : S0;        // big decoder only
4282     ALU0   : S4;        // ALU0 only
4283     MEM    : S3;        // any mem
4284 %}
4285 
4286 // Integer ALU reg-reg operation
4287 pipe_class ialu_cr_reg_reg(rFlagsReg cr, rRegI src1, rRegI src2)
4288 %{
4289     single_instruction;
4290     cr     : S4(write);
4291     src1   : S3(read);
4292     src2   : S3(read);
4293     DECODE : S0;        // any decoder
4294     ALU    : S3;        // any alu
4295 %}
4296 
4297 // Integer ALU reg-imm operation
4298 pipe_class ialu_cr_reg_imm(rFlagsReg cr, rRegI src1)
4299 %{
4300     single_instruction;
4301     cr     : S4(write);
4302     src1   : S3(read);
4303     DECODE : S0;        // any decoder
4304     ALU    : S3;        // any alu
4305 %}
4306 
4307 // Integer ALU reg-mem operation
4308 pipe_class ialu_cr_reg_mem(rFlagsReg cr, rRegI src1, memory src2)
4309 %{
4310     single_instruction;
4311     cr     : S4(write);
4312     src1   : S3(read);
4313     src2   : S3(read);
4314     D0     : S0;        // big decoder only
4315     ALU    : S4;        // any alu
4316     MEM    : S3;
4317 %}
4318 
4319 // Conditional move reg-reg
4320 pipe_class pipe_cmplt( rRegI p, rRegI q, rRegI y)
4321 %{
4322     instruction_count(4);
4323     y      : S4(read);
4324     q      : S3(read);
4325     p      : S3(read);
4326     DECODE : S0(4);     // any decoder
4327 %}
4328 
4329 // Conditional move reg-reg
4330 pipe_class pipe_cmov_reg( rRegI dst, rRegI src, rFlagsReg cr)
4331 %{
4332     single_instruction;
4333     dst    : S4(write);
4334     src    : S3(read);
4335     cr     : S3(read);
4336     DECODE : S0;        // any decoder
4337 %}
4338 
4339 // Conditional move reg-mem
4340 pipe_class pipe_cmov_mem( rFlagsReg cr, rRegI dst, memory src)
4341 %{
4342     single_instruction;
4343     dst    : S4(write);
4344     src    : S3(read);
4345     cr     : S3(read);
4346     DECODE : S0;        // any decoder
4347     MEM    : S3;
4348 %}
4349 
4350 // Conditional move reg-reg long
4351 pipe_class pipe_cmov_reg_long( rFlagsReg cr, rRegL dst, rRegL src)
4352 %{
4353     single_instruction;
4354     dst    : S4(write);
4355     src    : S3(read);
4356     cr     : S3(read);
4357     DECODE : S0(2);     // any 2 decoders
4358 %}
4359 
4360 // XXX
4361 // // Conditional move double reg-reg
4362 // pipe_class pipe_cmovD_reg( rFlagsReg cr, regDPR1 dst, regD src)
4363 // %{
4364 //     single_instruction;
4365 //     dst    : S4(write);
4366 //     src    : S3(read);
4367 //     cr     : S3(read);
4368 //     DECODE : S0;     // any decoder
4369 // %}
4370 
4371 // Float reg-reg operation
4372 pipe_class fpu_reg(regD dst)
4373 %{
4374     instruction_count(2);
4375     dst    : S3(read);
4376     DECODE : S0(2);     // any 2 decoders
4377     FPU    : S3;
4378 %}
4379 
4380 // Float reg-reg operation
4381 pipe_class fpu_reg_reg(regD dst, regD src)
4382 %{
4383     instruction_count(2);
4384     dst    : S4(write);
4385     src    : S3(read);
4386     DECODE : S0(2);     // any 2 decoders
4387     FPU    : S3;
4388 %}
4389 
4390 // Float reg-reg operation
4391 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2)
4392 %{
4393     instruction_count(3);
4394     dst    : S4(write);
4395     src1   : S3(read);
4396     src2   : S3(read);
4397     DECODE : S0(3);     // any 3 decoders
4398     FPU    : S3(2);
4399 %}
4400 
4401 // Float reg-reg operation
4402 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3)
4403 %{
4404     instruction_count(4);
4405     dst    : S4(write);
4406     src1   : S3(read);
4407     src2   : S3(read);
4408     src3   : S3(read);
4409     DECODE : S0(4);     // any 3 decoders
4410     FPU    : S3(2);
4411 %}
4412 
4413 // Float reg-reg operation
4414 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3)
4415 %{
4416     instruction_count(4);
4417     dst    : S4(write);
4418     src1   : S3(read);
4419     src2   : S3(read);
4420     src3   : S3(read);
4421     DECODE : S1(3);     // any 3 decoders
4422     D0     : S0;        // Big decoder only
4423     FPU    : S3(2);
4424     MEM    : S3;
4425 %}
4426 
4427 // Float reg-mem operation
4428 pipe_class fpu_reg_mem(regD dst, memory mem)
4429 %{
4430     instruction_count(2);
4431     dst    : S5(write);
4432     mem    : S3(read);
4433     D0     : S0;        // big decoder only
4434     DECODE : S1;        // any decoder for FPU POP
4435     FPU    : S4;
4436     MEM    : S3;        // any mem
4437 %}
4438 
4439 // Float reg-mem operation
4440 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem)
4441 %{
4442     instruction_count(3);
4443     dst    : S5(write);
4444     src1   : S3(read);
4445     mem    : S3(read);
4446     D0     : S0;        // big decoder only
4447     DECODE : S1(2);     // any decoder for FPU POP
4448     FPU    : S4;
4449     MEM    : S3;        // any mem
4450 %}
4451 
4452 // Float mem-reg operation
4453 pipe_class fpu_mem_reg(memory mem, regD src)
4454 %{
4455     instruction_count(2);
4456     src    : S5(read);
4457     mem    : S3(read);
4458     DECODE : S0;        // any decoder for FPU PUSH
4459     D0     : S1;        // big decoder only
4460     FPU    : S4;
4461     MEM    : S3;        // any mem
4462 %}
4463 
4464 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2)
4465 %{
4466     instruction_count(3);
4467     src1   : S3(read);
4468     src2   : S3(read);
4469     mem    : S3(read);
4470     DECODE : S0(2);     // any decoder for FPU PUSH
4471     D0     : S1;        // big decoder only
4472     FPU    : S4;
4473     MEM    : S3;        // any mem
4474 %}
4475 
4476 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2)
4477 %{
4478     instruction_count(3);
4479     src1   : S3(read);
4480     src2   : S3(read);
4481     mem    : S4(read);
4482     DECODE : S0;        // any decoder for FPU PUSH
4483     D0     : S0(2);     // big decoder only
4484     FPU    : S4;
4485     MEM    : S3(2);     // any mem
4486 %}
4487 
4488 pipe_class fpu_mem_mem(memory dst, memory src1)
4489 %{
4490     instruction_count(2);
4491     src1   : S3(read);
4492     dst    : S4(read);
4493     D0     : S0(2);     // big decoder only
4494     MEM    : S3(2);     // any mem
4495 %}
4496 
4497 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2)
4498 %{
4499     instruction_count(3);
4500     src1   : S3(read);
4501     src2   : S3(read);
4502     dst    : S4(read);
4503     D0     : S0(3);     // big decoder only
4504     FPU    : S4;
4505     MEM    : S3(3);     // any mem
4506 %}
4507 
4508 pipe_class fpu_mem_reg_con(memory mem, regD src1)
4509 %{
4510     instruction_count(3);
4511     src1   : S4(read);
4512     mem    : S4(read);
4513     DECODE : S0;        // any decoder for FPU PUSH
4514     D0     : S0(2);     // big decoder only
4515     FPU    : S4;
4516     MEM    : S3(2);     // any mem
4517 %}
4518 
4519 // Float load constant
4520 pipe_class fpu_reg_con(regD dst)
4521 %{
4522     instruction_count(2);
4523     dst    : S5(write);
4524     D0     : S0;        // big decoder only for the load
4525     DECODE : S1;        // any decoder for FPU POP
4526     FPU    : S4;
4527     MEM    : S3;        // any mem
4528 %}
4529 
4530 // Float load constant
4531 pipe_class fpu_reg_reg_con(regD dst, regD src)
4532 %{
4533     instruction_count(3);
4534     dst    : S5(write);
4535     src    : S3(read);
4536     D0     : S0;        // big decoder only for the load
4537     DECODE : S1(2);     // any decoder for FPU POP
4538     FPU    : S4;
4539     MEM    : S3;        // any mem
4540 %}
4541 
4542 // UnConditional branch
4543 pipe_class pipe_jmp(label labl)
4544 %{
4545     single_instruction;
4546     BR   : S3;
4547 %}
4548 
4549 // Conditional branch
4550 pipe_class pipe_jcc(cmpOp cmp, rFlagsReg cr, label labl)
4551 %{
4552     single_instruction;
4553     cr    : S1(read);
4554     BR    : S3;
4555 %}
4556 
4557 // Allocation idiom
4558 pipe_class pipe_cmpxchg(rRegP dst, rRegP heap_ptr)
4559 %{
4560     instruction_count(1); force_serialization;
4561     fixed_latency(6);
4562     heap_ptr : S3(read);
4563     DECODE   : S0(3);
4564     D0       : S2;
4565     MEM      : S3;
4566     ALU      : S3(2);
4567     dst      : S5(write);
4568     BR       : S5;
4569 %}
4570 
4571 // Generic big/slow expanded idiom
4572 pipe_class pipe_slow()
4573 %{
4574     instruction_count(10); multiple_bundles; force_serialization;
4575     fixed_latency(100);
4576     D0  : S0(2);
4577     MEM : S3(2);
4578 %}
4579 
4580 // The real do-nothing guy
4581 pipe_class empty()
4582 %{
4583     instruction_count(0);
4584 %}
4585 
4586 // Define the class for the Nop node
4587 define
4588 %{
4589    MachNop = empty;
4590 %}
4591 
4592 %}
4593 
4594 //----------INSTRUCTIONS-------------------------------------------------------
4595 //
4596 // match      -- States which machine-independent subtree may be replaced
4597 //               by this instruction.
4598 // ins_cost   -- The estimated cost of this instruction is used by instruction
4599 //               selection to identify a minimum cost tree of machine
4600 //               instructions that matches a tree of machine-independent
4601 //               instructions.
4602 // format     -- A string providing the disassembly for this instruction.
4603 //               The value of an instruction's operand may be inserted
4604 //               by referring to it with a '$' prefix.
4605 // opcode     -- Three instruction opcodes may be provided.  These are referred
4606 //               to within an encode class as $primary, $secondary, and $tertiary
4607 //               rrspectively.  The primary opcode is commonly used to
4608 //               indicate the type of machine instruction, while secondary
4609 //               and tertiary are often used for prefix options or addressing
4610 //               modes.
4611 // ins_encode -- A list of encode classes with parameters. The encode class
4612 //               name must have been defined in an 'enc_class' specification
4613 //               in the encode section of the architecture description.
4614 
4615 
4616 //----------Load/Store/Move Instructions---------------------------------------
4617 //----------Load Instructions--------------------------------------------------
4618 
4619 // Load Byte (8 bit signed)
4620 instruct loadB(rRegI dst, memory mem)
4621 %{
4622   match(Set dst (LoadB mem));
4623 
4624   ins_cost(125);
4625   format %{ "movsbl  $dst, $mem\t# byte" %}
4626 
4627   ins_encode %{
4628     __ movsbl($dst$$Register, $mem$$Address);
4629   %}
4630 
4631   ins_pipe(ialu_reg_mem);
4632 %}
4633 
4634 // Load Byte (8 bit signed) into Long Register
4635 instruct loadB2L(rRegL dst, memory mem)
4636 %{
4637   match(Set dst (ConvI2L (LoadB mem)));
4638 
4639   ins_cost(125);
4640   format %{ "movsbq  $dst, $mem\t# byte -> long" %}
4641 
4642   ins_encode %{
4643     __ movsbq($dst$$Register, $mem$$Address);
4644   %}
4645 
4646   ins_pipe(ialu_reg_mem);
4647 %}
4648 
4649 // Load Unsigned Byte (8 bit UNsigned)
4650 instruct loadUB(rRegI dst, memory mem)
4651 %{
4652   match(Set dst (LoadUB mem));
4653 
4654   ins_cost(125);
4655   format %{ "movzbl  $dst, $mem\t# ubyte" %}
4656 
4657   ins_encode %{
4658     __ movzbl($dst$$Register, $mem$$Address);
4659   %}
4660 
4661   ins_pipe(ialu_reg_mem);
4662 %}
4663 
4664 // Load Unsigned Byte (8 bit UNsigned) into Long Register
4665 instruct loadUB2L(rRegL dst, memory mem)
4666 %{
4667   match(Set dst (ConvI2L (LoadUB mem)));
4668 
4669   ins_cost(125);
4670   format %{ "movzbq  $dst, $mem\t# ubyte -> long" %}
4671 
4672   ins_encode %{
4673     __ movzbq($dst$$Register, $mem$$Address);
4674   %}
4675 
4676   ins_pipe(ialu_reg_mem);
4677 %}
4678 
4679 // Load Unsigned Byte (8 bit UNsigned) with a 8-bit mask into Long Register
4680 instruct loadUB2L_immI8(rRegL dst, memory mem, immI8 mask, rFlagsReg cr) %{
4681   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
4682   effect(KILL cr);
4683 
4684   format %{ "movzbq  $dst, $mem\t# ubyte & 8-bit mask -> long\n\t"
4685             "andl    $dst, $mask" %}
4686   ins_encode %{
4687     Register Rdst = $dst$$Register;
4688     __ movzbq(Rdst, $mem$$Address);
4689     __ andl(Rdst, $mask$$constant);
4690   %}
4691   ins_pipe(ialu_reg_mem);
4692 %}
4693 
4694 // Load Short (16 bit signed)
4695 instruct loadS(rRegI dst, memory mem)
4696 %{
4697   match(Set dst (LoadS mem));
4698 
4699   ins_cost(125);
4700   format %{ "movswl $dst, $mem\t# short" %}
4701 
4702   ins_encode %{
4703     __ movswl($dst$$Register, $mem$$Address);
4704   %}
4705 
4706   ins_pipe(ialu_reg_mem);
4707 %}
4708 
4709 // Load Short (16 bit signed) to Byte (8 bit signed)
4710 instruct loadS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4711   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
4712 
4713   ins_cost(125);
4714   format %{ "movsbl $dst, $mem\t# short -> byte" %}
4715   ins_encode %{
4716     __ movsbl($dst$$Register, $mem$$Address);
4717   %}
4718   ins_pipe(ialu_reg_mem);
4719 %}
4720 
4721 // Load Short (16 bit signed) into Long Register
4722 instruct loadS2L(rRegL dst, memory mem)
4723 %{
4724   match(Set dst (ConvI2L (LoadS mem)));
4725 
4726   ins_cost(125);
4727   format %{ "movswq $dst, $mem\t# short -> long" %}
4728 
4729   ins_encode %{
4730     __ movswq($dst$$Register, $mem$$Address);
4731   %}
4732 
4733   ins_pipe(ialu_reg_mem);
4734 %}
4735 
4736 // Load Unsigned Short/Char (16 bit UNsigned)
4737 instruct loadUS(rRegI dst, memory mem)
4738 %{
4739   match(Set dst (LoadUS mem));
4740 
4741   ins_cost(125);
4742   format %{ "movzwl  $dst, $mem\t# ushort/char" %}
4743 
4744   ins_encode %{
4745     __ movzwl($dst$$Register, $mem$$Address);
4746   %}
4747 
4748   ins_pipe(ialu_reg_mem);
4749 %}
4750 
4751 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
4752 instruct loadUS2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4753   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
4754 
4755   ins_cost(125);
4756   format %{ "movsbl $dst, $mem\t# ushort -> byte" %}
4757   ins_encode %{
4758     __ movsbl($dst$$Register, $mem$$Address);
4759   %}
4760   ins_pipe(ialu_reg_mem);
4761 %}
4762 
4763 // Load Unsigned Short/Char (16 bit UNsigned) into Long Register
4764 instruct loadUS2L(rRegL dst, memory mem)
4765 %{
4766   match(Set dst (ConvI2L (LoadUS mem)));
4767 
4768   ins_cost(125);
4769   format %{ "movzwq  $dst, $mem\t# ushort/char -> long" %}
4770 
4771   ins_encode %{
4772     __ movzwq($dst$$Register, $mem$$Address);
4773   %}
4774 
4775   ins_pipe(ialu_reg_mem);
4776 %}
4777 
4778 // Load Unsigned Short/Char (16 bit UNsigned) with mask 0xFF into Long Register
4779 instruct loadUS2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
4780   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4781 
4782   format %{ "movzbq  $dst, $mem\t# ushort/char & 0xFF -> long" %}
4783   ins_encode %{
4784     __ movzbq($dst$$Register, $mem$$Address);
4785   %}
4786   ins_pipe(ialu_reg_mem);
4787 %}
4788 
4789 // Load Unsigned Short/Char (16 bit UNsigned) with mask into Long Register
4790 instruct loadUS2L_immI16(rRegL dst, memory mem, immI16 mask, rFlagsReg cr) %{
4791   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
4792   effect(KILL cr);
4793 
4794   format %{ "movzwq  $dst, $mem\t# ushort/char & 16-bit mask -> long\n\t"
4795             "andl    $dst, $mask" %}
4796   ins_encode %{
4797     Register Rdst = $dst$$Register;
4798     __ movzwq(Rdst, $mem$$Address);
4799     __ andl(Rdst, $mask$$constant);
4800   %}
4801   ins_pipe(ialu_reg_mem);
4802 %}
4803 
4804 // Load Integer
4805 instruct loadI(rRegI dst, memory mem)
4806 %{
4807   match(Set dst (LoadI mem));
4808 
4809   ins_cost(125);
4810   format %{ "movl    $dst, $mem\t# int" %}
4811 
4812   ins_encode %{
4813     __ movl($dst$$Register, $mem$$Address);
4814   %}
4815 
4816   ins_pipe(ialu_reg_mem);
4817 %}
4818 
4819 // Load Integer (32 bit signed) to Byte (8 bit signed)
4820 instruct loadI2B(rRegI dst, memory mem, immI_24 twentyfour) %{
4821   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
4822 
4823   ins_cost(125);
4824   format %{ "movsbl  $dst, $mem\t# int -> byte" %}
4825   ins_encode %{
4826     __ movsbl($dst$$Register, $mem$$Address);
4827   %}
4828   ins_pipe(ialu_reg_mem);
4829 %}
4830 
4831 // Load Integer (32 bit signed) to Unsigned Byte (8 bit UNsigned)
4832 instruct loadI2UB(rRegI dst, memory mem, immI_255 mask) %{
4833   match(Set dst (AndI (LoadI mem) mask));
4834 
4835   ins_cost(125);
4836   format %{ "movzbl  $dst, $mem\t# int -> ubyte" %}
4837   ins_encode %{
4838     __ movzbl($dst$$Register, $mem$$Address);
4839   %}
4840   ins_pipe(ialu_reg_mem);
4841 %}
4842 
4843 // Load Integer (32 bit signed) to Short (16 bit signed)
4844 instruct loadI2S(rRegI dst, memory mem, immI_16 sixteen) %{
4845   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
4846 
4847   ins_cost(125);
4848   format %{ "movswl  $dst, $mem\t# int -> short" %}
4849   ins_encode %{
4850     __ movswl($dst$$Register, $mem$$Address);
4851   %}
4852   ins_pipe(ialu_reg_mem);
4853 %}
4854 
4855 // Load Integer (32 bit signed) to Unsigned Short/Char (16 bit UNsigned)
4856 instruct loadI2US(rRegI dst, memory mem, immI_65535 mask) %{
4857   match(Set dst (AndI (LoadI mem) mask));
4858 
4859   ins_cost(125);
4860   format %{ "movzwl  $dst, $mem\t# int -> ushort/char" %}
4861   ins_encode %{
4862     __ movzwl($dst$$Register, $mem$$Address);
4863   %}
4864   ins_pipe(ialu_reg_mem);
4865 %}
4866 
4867 // Load Integer into Long Register
4868 instruct loadI2L(rRegL dst, memory mem)
4869 %{
4870   match(Set dst (ConvI2L (LoadI mem)));
4871 
4872   ins_cost(125);
4873   format %{ "movslq  $dst, $mem\t# int -> long" %}
4874 
4875   ins_encode %{
4876     __ movslq($dst$$Register, $mem$$Address);
4877   %}
4878 
4879   ins_pipe(ialu_reg_mem);
4880 %}
4881 
4882 // Load Integer with mask 0xFF into Long Register
4883 instruct loadI2L_immI_255(rRegL dst, memory mem, immI_255 mask) %{
4884   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
4885 
4886   format %{ "movzbq  $dst, $mem\t# int & 0xFF -> long" %}
4887   ins_encode %{
4888     __ movzbq($dst$$Register, $mem$$Address);
4889   %}
4890   ins_pipe(ialu_reg_mem);
4891 %}
4892 
4893 // Load Integer with mask 0xFFFF into Long Register
4894 instruct loadI2L_immI_65535(rRegL dst, memory mem, immI_65535 mask) %{
4895   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
4896 
4897   format %{ "movzwq  $dst, $mem\t# int & 0xFFFF -> long" %}
4898   ins_encode %{
4899     __ movzwq($dst$$Register, $mem$$Address);
4900   %}
4901   ins_pipe(ialu_reg_mem);
4902 %}
4903 
4904 // Load Integer with a 31-bit mask into Long Register
4905 instruct loadI2L_immU31(rRegL dst, memory mem, immU31 mask, rFlagsReg cr) %{
4906   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
4907   effect(KILL cr);
4908 
4909   format %{ "movl    $dst, $mem\t# int & 31-bit mask -> long\n\t"
4910             "andl    $dst, $mask" %}
4911   ins_encode %{
4912     Register Rdst = $dst$$Register;
4913     __ movl(Rdst, $mem$$Address);
4914     __ andl(Rdst, $mask$$constant);
4915   %}
4916   ins_pipe(ialu_reg_mem);
4917 %}
4918 
4919 // Load Unsigned Integer into Long Register
4920 instruct loadUI2L(rRegL dst, memory mem, immL_32bits mask) 
4921 %{
4922   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
4923 
4924   ins_cost(125);
4925   format %{ "movl    $dst, $mem\t# uint -> long" %}
4926 
4927   ins_encode %{
4928     __ movl($dst$$Register, $mem$$Address);
4929   %}
4930 
4931   ins_pipe(ialu_reg_mem);
4932 %}
4933 
4934 // Load Long
4935 instruct loadL(rRegL dst, memory mem)
4936 %{
4937   match(Set dst (LoadL mem));
4938 
4939   ins_cost(125);
4940   format %{ "movq    $dst, $mem\t# long" %}
4941 
4942   ins_encode %{
4943     __ movq($dst$$Register, $mem$$Address);
4944   %}
4945 
4946   ins_pipe(ialu_reg_mem); // XXX
4947 %}
4948 
4949 // Load Range
4950 instruct loadRange(rRegI dst, memory mem)
4951 %{
4952   match(Set dst (LoadRange mem));
4953 
4954   ins_cost(125); // XXX
4955   format %{ "movl    $dst, $mem\t# range" %}
4956   opcode(0x8B);
4957   ins_encode(REX_reg_mem(dst, mem), OpcP, reg_mem(dst, mem));
4958   ins_pipe(ialu_reg_mem);
4959 %}
4960 
4961 // Load Pointer
4962 instruct loadP(rRegP dst, memory mem)
4963 %{
4964   match(Set dst (LoadP mem));
4965 
4966   ins_cost(125); // XXX
4967   format %{ "movq    $dst, $mem\t# ptr" %}
4968   opcode(0x8B);
4969   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
4970   ins_pipe(ialu_reg_mem); // XXX
4971 %}
4972 
4973 // Load Compressed Pointer
4974 instruct loadN(rRegN dst, memory mem)
4975 %{
4976    match(Set dst (LoadN mem));
4977 
4978    ins_cost(125); // XXX
4979    format %{ "movl    $dst, $mem\t# compressed ptr" %}
4980    ins_encode %{
4981      __ movl($dst$$Register, $mem$$Address);
4982    %}
4983    ins_pipe(ialu_reg_mem); // XXX
4984 %}
4985 
4986 
4987 // Load Klass Pointer
4988 instruct loadKlass(rRegP dst, memory mem)
4989 %{
4990   match(Set dst (LoadKlass mem));
4991 
4992   ins_cost(125); // XXX
4993   format %{ "movq    $dst, $mem\t# class" %}
4994   opcode(0x8B);
4995   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
4996   ins_pipe(ialu_reg_mem); // XXX
4997 %}
4998 
4999 // Load narrow Klass Pointer
5000 instruct loadNKlass(rRegN dst, memory mem)
5001 %{
5002   match(Set dst (LoadNKlass mem));
5003 
5004   ins_cost(125); // XXX
5005   format %{ "movl    $dst, $mem\t# compressed klass ptr" %}
5006   ins_encode %{
5007     __ movl($dst$$Register, $mem$$Address);
5008   %}
5009   ins_pipe(ialu_reg_mem); // XXX
5010 %}
5011 
5012 // Load Float
5013 instruct loadF(regF dst, memory mem)
5014 %{
5015   match(Set dst (LoadF mem));
5016 
5017   ins_cost(145); // XXX
5018   format %{ "movss   $dst, $mem\t# float" %}
5019   ins_encode %{
5020     __ movflt($dst$$XMMRegister, $mem$$Address);
5021   %}
5022   ins_pipe(pipe_slow); // XXX
5023 %}
5024 
5025 // Load Double
5026 instruct loadD_partial(regD dst, memory mem)
5027 %{
5028   predicate(!UseXmmLoadAndClearUpper);
5029   match(Set dst (LoadD mem));
5030 
5031   ins_cost(145); // XXX
5032   format %{ "movlpd  $dst, $mem\t# double" %}
5033   ins_encode %{
5034     __ movdbl($dst$$XMMRegister, $mem$$Address);
5035   %}
5036   ins_pipe(pipe_slow); // XXX
5037 %}
5038 
5039 instruct loadD(regD dst, memory mem)
5040 %{
5041   predicate(UseXmmLoadAndClearUpper);
5042   match(Set dst (LoadD mem));
5043 
5044   ins_cost(145); // XXX
5045   format %{ "movsd   $dst, $mem\t# double" %}
5046   ins_encode %{
5047     __ movdbl($dst$$XMMRegister, $mem$$Address);
5048   %}
5049   ins_pipe(pipe_slow); // XXX
5050 %}
5051 
5052 // Load Effective Address
5053 instruct leaP8(rRegP dst, indOffset8 mem)
5054 %{
5055   match(Set dst mem);
5056 
5057   ins_cost(110); // XXX
5058   format %{ "leaq    $dst, $mem\t# ptr 8" %}
5059   opcode(0x8D);
5060   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5061   ins_pipe(ialu_reg_reg_fat);
5062 %}
5063 
5064 instruct leaP32(rRegP dst, indOffset32 mem)
5065 %{
5066   match(Set dst mem);
5067 
5068   ins_cost(110);
5069   format %{ "leaq    $dst, $mem\t# ptr 32" %}
5070   opcode(0x8D);
5071   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5072   ins_pipe(ialu_reg_reg_fat);
5073 %}
5074 
5075 // instruct leaPIdx(rRegP dst, indIndex mem)
5076 // %{
5077 //   match(Set dst mem);
5078 
5079 //   ins_cost(110);
5080 //   format %{ "leaq    $dst, $mem\t# ptr idx" %}
5081 //   opcode(0x8D);
5082 //   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5083 //   ins_pipe(ialu_reg_reg_fat);
5084 // %}
5085 
5086 instruct leaPIdxOff(rRegP dst, indIndexOffset mem)
5087 %{
5088   match(Set dst mem);
5089 
5090   ins_cost(110);
5091   format %{ "leaq    $dst, $mem\t# ptr idxoff" %}
5092   opcode(0x8D);
5093   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5094   ins_pipe(ialu_reg_reg_fat);
5095 %}
5096 
5097 instruct leaPIdxScale(rRegP dst, indIndexScale mem)
5098 %{
5099   match(Set dst mem);
5100 
5101   ins_cost(110);
5102   format %{ "leaq    $dst, $mem\t# ptr idxscale" %}
5103   opcode(0x8D);
5104   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5105   ins_pipe(ialu_reg_reg_fat);
5106 %}
5107 
5108 instruct leaPIdxScaleOff(rRegP dst, indIndexScaleOffset mem)
5109 %{
5110   match(Set dst mem);
5111 
5112   ins_cost(110);
5113   format %{ "leaq    $dst, $mem\t# ptr idxscaleoff" %}
5114   opcode(0x8D);
5115   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5116   ins_pipe(ialu_reg_reg_fat);
5117 %}
5118 
5119 instruct leaPPosIdxScaleOff(rRegP dst, indPosIndexScaleOffset mem)
5120 %{
5121   match(Set dst mem);
5122 
5123   ins_cost(110);
5124   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoff" %}
5125   opcode(0x8D);
5126   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5127   ins_pipe(ialu_reg_reg_fat);
5128 %}
5129 
5130 // Load Effective Address which uses Narrow (32-bits) oop
5131 instruct leaPCompressedOopOffset(rRegP dst, indCompressedOopOffset mem)
5132 %{
5133   predicate(UseCompressedOops && (Universe::narrow_oop_shift() != 0));
5134   match(Set dst mem);
5135 
5136   ins_cost(110);
5137   format %{ "leaq    $dst, $mem\t# ptr compressedoopoff32" %}
5138   opcode(0x8D);
5139   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5140   ins_pipe(ialu_reg_reg_fat);
5141 %}
5142 
5143 instruct leaP8Narrow(rRegP dst, indOffset8Narrow mem)
5144 %{
5145   predicate(Universe::narrow_oop_shift() == 0);
5146   match(Set dst mem);
5147 
5148   ins_cost(110); // XXX
5149   format %{ "leaq    $dst, $mem\t# ptr off8narrow" %}
5150   opcode(0x8D);
5151   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5152   ins_pipe(ialu_reg_reg_fat);
5153 %}
5154 
5155 instruct leaP32Narrow(rRegP dst, indOffset32Narrow mem)
5156 %{
5157   predicate(Universe::narrow_oop_shift() == 0);
5158   match(Set dst mem);
5159 
5160   ins_cost(110);
5161   format %{ "leaq    $dst, $mem\t# ptr off32narrow" %}
5162   opcode(0x8D);
5163   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5164   ins_pipe(ialu_reg_reg_fat);
5165 %}
5166 
5167 instruct leaPIdxOffNarrow(rRegP dst, indIndexOffsetNarrow mem)
5168 %{
5169   predicate(Universe::narrow_oop_shift() == 0);
5170   match(Set dst mem);
5171 
5172   ins_cost(110);
5173   format %{ "leaq    $dst, $mem\t# ptr idxoffnarrow" %}
5174   opcode(0x8D);
5175   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5176   ins_pipe(ialu_reg_reg_fat);
5177 %}
5178 
5179 instruct leaPIdxScaleNarrow(rRegP dst, indIndexScaleNarrow mem)
5180 %{
5181   predicate(Universe::narrow_oop_shift() == 0);
5182   match(Set dst mem);
5183 
5184   ins_cost(110);
5185   format %{ "leaq    $dst, $mem\t# ptr idxscalenarrow" %}
5186   opcode(0x8D);
5187   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5188   ins_pipe(ialu_reg_reg_fat);
5189 %}
5190 
5191 instruct leaPIdxScaleOffNarrow(rRegP dst, indIndexScaleOffsetNarrow mem)
5192 %{
5193   predicate(Universe::narrow_oop_shift() == 0);
5194   match(Set dst mem);
5195 
5196   ins_cost(110);
5197   format %{ "leaq    $dst, $mem\t# ptr idxscaleoffnarrow" %}
5198   opcode(0x8D);
5199   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5200   ins_pipe(ialu_reg_reg_fat);
5201 %}
5202 
5203 instruct leaPPosIdxScaleOffNarrow(rRegP dst, indPosIndexScaleOffsetNarrow mem)
5204 %{
5205   predicate(Universe::narrow_oop_shift() == 0);
5206   match(Set dst mem);
5207 
5208   ins_cost(110);
5209   format %{ "leaq    $dst, $mem\t# ptr posidxscaleoffnarrow" %}
5210   opcode(0x8D);
5211   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
5212   ins_pipe(ialu_reg_reg_fat);
5213 %}
5214 
5215 instruct loadConI(rRegI dst, immI src)
5216 %{
5217   match(Set dst src);
5218 
5219   format %{ "movl    $dst, $src\t# int" %}
5220   ins_encode(load_immI(dst, src));
5221   ins_pipe(ialu_reg_fat); // XXX
5222 %}
5223 
5224 instruct loadConI0(rRegI dst, immI0 src, rFlagsReg cr)
5225 %{
5226   match(Set dst src);
5227   effect(KILL cr);
5228 
5229   ins_cost(50);
5230   format %{ "xorl    $dst, $dst\t# int" %}
5231   opcode(0x33); /* + rd */
5232   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5233   ins_pipe(ialu_reg);
5234 %}
5235 
5236 instruct loadConL(rRegL dst, immL src)
5237 %{
5238   match(Set dst src);
5239 
5240   ins_cost(150);
5241   format %{ "movq    $dst, $src\t# long" %}
5242   ins_encode(load_immL(dst, src));
5243   ins_pipe(ialu_reg);
5244 %}
5245 
5246 instruct loadConL0(rRegL dst, immL0 src, rFlagsReg cr)
5247 %{
5248   match(Set dst src);
5249   effect(KILL cr);
5250 
5251   ins_cost(50);
5252   format %{ "xorl    $dst, $dst\t# long" %}
5253   opcode(0x33); /* + rd */
5254   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5255   ins_pipe(ialu_reg); // XXX
5256 %}
5257 
5258 instruct loadConUL32(rRegL dst, immUL32 src)
5259 %{
5260   match(Set dst src);
5261 
5262   ins_cost(60);
5263   format %{ "movl    $dst, $src\t# long (unsigned 32-bit)" %}
5264   ins_encode(load_immUL32(dst, src));
5265   ins_pipe(ialu_reg);
5266 %}
5267 
5268 instruct loadConL32(rRegL dst, immL32 src)
5269 %{
5270   match(Set dst src);
5271 
5272   ins_cost(70);
5273   format %{ "movq    $dst, $src\t# long (32-bit)" %}
5274   ins_encode(load_immL32(dst, src));
5275   ins_pipe(ialu_reg);
5276 %}
5277 
5278 instruct loadConP(rRegP dst, immP con) %{
5279   match(Set dst con);
5280 
5281   format %{ "movq    $dst, $con\t# ptr" %}
5282   ins_encode(load_immP(dst, con));
5283   ins_pipe(ialu_reg_fat); // XXX
5284 %}
5285 
5286 instruct loadConP0(rRegP dst, immP0 src, rFlagsReg cr)
5287 %{
5288   match(Set dst src);
5289   effect(KILL cr);
5290 
5291   ins_cost(50);
5292   format %{ "xorl    $dst, $dst\t# ptr" %}
5293   opcode(0x33); /* + rd */
5294   ins_encode(REX_reg_reg(dst, dst), OpcP, reg_reg(dst, dst));
5295   ins_pipe(ialu_reg);
5296 %}
5297 
5298 instruct loadConP31(rRegP dst, immP31 src, rFlagsReg cr)
5299 %{
5300   match(Set dst src);
5301   effect(KILL cr);
5302 
5303   ins_cost(60);
5304   format %{ "movl    $dst, $src\t# ptr (positive 32-bit)" %}
5305   ins_encode(load_immP31(dst, src));
5306   ins_pipe(ialu_reg);
5307 %}
5308 
5309 instruct loadConF(regF dst, immF con) %{
5310   match(Set dst con);
5311   ins_cost(125);
5312   format %{ "movss   $dst, [$constantaddress]\t# load from constant table: float=$con" %}
5313   ins_encode %{
5314     __ movflt($dst$$XMMRegister, $constantaddress($con));
5315   %}
5316   ins_pipe(pipe_slow);
5317 %}
5318 
5319 instruct loadConN0(rRegN dst, immN0 src, rFlagsReg cr) %{
5320   match(Set dst src);
5321   effect(KILL cr);
5322   format %{ "xorq    $dst, $src\t# compressed NULL ptr" %}
5323   ins_encode %{
5324     __ xorq($dst$$Register, $dst$$Register);
5325   %}
5326   ins_pipe(ialu_reg);
5327 %}
5328 
5329 instruct loadConN(rRegN dst, immN src) %{
5330   match(Set dst src);
5331 
5332   ins_cost(125);
5333   format %{ "movl    $dst, $src\t# compressed ptr" %}
5334   ins_encode %{
5335     address con = (address)$src$$constant;
5336     if (con == NULL) {
5337       ShouldNotReachHere();
5338     } else {
5339       __ set_narrow_oop($dst$$Register, (jobject)$src$$constant);
5340     }
5341   %}
5342   ins_pipe(ialu_reg_fat); // XXX
5343 %}
5344 
5345 instruct loadConNKlass(rRegN dst, immNKlass src) %{
5346   match(Set dst src);
5347 
5348   ins_cost(125);
5349   format %{ "movl    $dst, $src\t# compressed klass ptr" %}
5350   ins_encode %{
5351     address con = (address)$src$$constant;
5352     if (con == NULL) {
5353       ShouldNotReachHere();
5354     } else {
5355       __ set_narrow_klass($dst$$Register, (Klass*)$src$$constant);
5356     }
5357   %}
5358   ins_pipe(ialu_reg_fat); // XXX
5359 %}
5360 
5361 instruct loadConF0(regF dst, immF0 src)
5362 %{
5363   match(Set dst src);
5364   ins_cost(100);
5365 
5366   format %{ "xorps   $dst, $dst\t# float 0.0" %}
5367   ins_encode %{
5368     __ xorps($dst$$XMMRegister, $dst$$XMMRegister);
5369   %}
5370   ins_pipe(pipe_slow);
5371 %}
5372 
5373 // Use the same format since predicate() can not be used here.
5374 instruct loadConD(regD dst, immD con) %{
5375   match(Set dst con);
5376   ins_cost(125);
5377   format %{ "movsd   $dst, [$constantaddress]\t# load from constant table: double=$con" %}
5378   ins_encode %{
5379     __ movdbl($dst$$XMMRegister, $constantaddress($con));
5380   %}
5381   ins_pipe(pipe_slow);
5382 %}
5383 
5384 instruct loadConD0(regD dst, immD0 src)
5385 %{
5386   match(Set dst src);
5387   ins_cost(100);
5388 
5389   format %{ "xorpd   $dst, $dst\t# double 0.0" %}
5390   ins_encode %{
5391     __ xorpd ($dst$$XMMRegister, $dst$$XMMRegister);
5392   %}
5393   ins_pipe(pipe_slow);
5394 %}
5395 
5396 instruct loadSSI(rRegI dst, stackSlotI src)
5397 %{
5398   match(Set dst src);
5399 
5400   ins_cost(125);
5401   format %{ "movl    $dst, $src\t# int stk" %}
5402   opcode(0x8B);
5403   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
5404   ins_pipe(ialu_reg_mem);
5405 %}
5406 
5407 instruct loadSSL(rRegL dst, stackSlotL src)
5408 %{
5409   match(Set dst src);
5410 
5411   ins_cost(125);
5412   format %{ "movq    $dst, $src\t# long stk" %}
5413   opcode(0x8B);
5414   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5415   ins_pipe(ialu_reg_mem);
5416 %}
5417 
5418 instruct loadSSP(rRegP dst, stackSlotP src)
5419 %{
5420   match(Set dst src);
5421 
5422   ins_cost(125);
5423   format %{ "movq    $dst, $src\t# ptr stk" %}
5424   opcode(0x8B);
5425   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
5426   ins_pipe(ialu_reg_mem);
5427 %}
5428 
5429 instruct loadSSF(regF dst, stackSlotF src)
5430 %{
5431   match(Set dst src);
5432 
5433   ins_cost(125);
5434   format %{ "movss   $dst, $src\t# float stk" %}
5435   ins_encode %{
5436     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
5437   %}
5438   ins_pipe(pipe_slow); // XXX
5439 %}
5440 
5441 // Use the same format since predicate() can not be used here.
5442 instruct loadSSD(regD dst, stackSlotD src)
5443 %{
5444   match(Set dst src);
5445 
5446   ins_cost(125);
5447   format %{ "movsd   $dst, $src\t# double stk" %}
5448   ins_encode  %{
5449     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
5450   %}
5451   ins_pipe(pipe_slow); // XXX
5452 %}
5453 
5454 // Prefetch instructions.
5455 // Must be safe to execute with invalid address (cannot fault).
5456 
5457 instruct prefetchr( memory mem ) %{
5458   predicate(ReadPrefetchInstr==3);
5459   match(PrefetchRead mem);
5460   ins_cost(125);
5461 
5462   format %{ "PREFETCHR $mem\t# Prefetch into level 1 cache" %}
5463   ins_encode %{
5464     __ prefetchr($mem$$Address);
5465   %}
5466   ins_pipe(ialu_mem);
5467 %}
5468 
5469 instruct prefetchrNTA( memory mem ) %{
5470   predicate(ReadPrefetchInstr==0);
5471   match(PrefetchRead mem);
5472   ins_cost(125);
5473 
5474   format %{ "PREFETCHNTA $mem\t# Prefetch into non-temporal cache for read" %}
5475   ins_encode %{
5476     __ prefetchnta($mem$$Address);
5477   %}
5478   ins_pipe(ialu_mem);
5479 %}
5480 
5481 instruct prefetchrT0( memory mem ) %{
5482   predicate(ReadPrefetchInstr==1);
5483   match(PrefetchRead mem);
5484   ins_cost(125);
5485 
5486   format %{ "PREFETCHT0 $mem\t# prefetch into L1 and L2 caches for read" %}
5487   ins_encode %{
5488     __ prefetcht0($mem$$Address);
5489   %}
5490   ins_pipe(ialu_mem);
5491 %}
5492 
5493 instruct prefetchrT2( memory mem ) %{
5494   predicate(ReadPrefetchInstr==2);
5495   match(PrefetchRead mem);
5496   ins_cost(125);
5497 
5498   format %{ "PREFETCHT2 $mem\t# prefetch into L2 caches for read" %}
5499   ins_encode %{
5500     __ prefetcht2($mem$$Address);
5501   %}
5502   ins_pipe(ialu_mem);
5503 %}
5504 
5505 instruct prefetchwNTA( memory mem ) %{
5506   match(PrefetchWrite mem);
5507   ins_cost(125);
5508 
5509   format %{ "PREFETCHNTA $mem\t# Prefetch to non-temporal cache for write" %}
5510   ins_encode %{
5511     __ prefetchnta($mem$$Address);
5512   %}
5513   ins_pipe(ialu_mem);
5514 %}
5515 
5516 // Prefetch instructions for allocation.
5517 
5518 instruct prefetchAlloc( memory mem ) %{
5519   predicate(AllocatePrefetchInstr==3);
5520   match(PrefetchAllocation mem);
5521   ins_cost(125);
5522 
5523   format %{ "PREFETCHW $mem\t# Prefetch allocation into level 1 cache and mark modified" %}
5524   ins_encode %{
5525     __ prefetchw($mem$$Address);
5526   %}
5527   ins_pipe(ialu_mem);
5528 %}
5529 
5530 instruct prefetchAllocNTA( memory mem ) %{
5531   predicate(AllocatePrefetchInstr==0);
5532   match(PrefetchAllocation mem);
5533   ins_cost(125);
5534 
5535   format %{ "PREFETCHNTA $mem\t# Prefetch allocation to non-temporal cache for write" %}
5536   ins_encode %{
5537     __ prefetchnta($mem$$Address);
5538   %}
5539   ins_pipe(ialu_mem);
5540 %}
5541 
5542 instruct prefetchAllocT0( memory mem ) %{
5543   predicate(AllocatePrefetchInstr==1);
5544   match(PrefetchAllocation mem);
5545   ins_cost(125);
5546 
5547   format %{ "PREFETCHT0 $mem\t# Prefetch allocation to level 1 and 2 caches for write" %}
5548   ins_encode %{
5549     __ prefetcht0($mem$$Address);
5550   %}
5551   ins_pipe(ialu_mem);
5552 %}
5553 
5554 instruct prefetchAllocT2( memory mem ) %{
5555   predicate(AllocatePrefetchInstr==2);
5556   match(PrefetchAllocation mem);
5557   ins_cost(125);
5558 
5559   format %{ "PREFETCHT2 $mem\t# Prefetch allocation to level 2 cache for write" %}
5560   ins_encode %{
5561     __ prefetcht2($mem$$Address);
5562   %}
5563   ins_pipe(ialu_mem);
5564 %}
5565 
5566 //----------Store Instructions-------------------------------------------------
5567 
5568 // Store Byte
5569 instruct storeB(memory mem, rRegI src)
5570 %{
5571   match(Set mem (StoreB mem src));
5572 
5573   ins_cost(125); // XXX
5574   format %{ "movb    $mem, $src\t# byte" %}
5575   opcode(0x88);
5576   ins_encode(REX_breg_mem(src, mem), OpcP, reg_mem(src, mem));
5577   ins_pipe(ialu_mem_reg);
5578 %}
5579 
5580 // Store Char/Short
5581 instruct storeC(memory mem, rRegI src)
5582 %{
5583   match(Set mem (StoreC mem src));
5584 
5585   ins_cost(125); // XXX
5586   format %{ "movw    $mem, $src\t# char/short" %}
5587   opcode(0x89);
5588   ins_encode(SizePrefix, REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5589   ins_pipe(ialu_mem_reg);
5590 %}
5591 
5592 // Store Integer
5593 instruct storeI(memory mem, rRegI src)
5594 %{
5595   match(Set mem (StoreI mem src));
5596 
5597   ins_cost(125); // XXX
5598   format %{ "movl    $mem, $src\t# int" %}
5599   opcode(0x89);
5600   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
5601   ins_pipe(ialu_mem_reg);
5602 %}
5603 
5604 // Store Long
5605 instruct storeL(memory mem, rRegL src)
5606 %{
5607   match(Set mem (StoreL mem src));
5608 
5609   ins_cost(125); // XXX
5610   format %{ "movq    $mem, $src\t# long" %}
5611   opcode(0x89);
5612   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5613   ins_pipe(ialu_mem_reg); // XXX
5614 %}
5615 
5616 // Store Pointer
5617 instruct storeP(memory mem, any_RegP src)
5618 %{
5619   match(Set mem (StoreP mem src));
5620 
5621   ins_cost(125); // XXX
5622   format %{ "movq    $mem, $src\t# ptr" %}
5623   opcode(0x89);
5624   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
5625   ins_pipe(ialu_mem_reg);
5626 %}
5627 
5628 instruct storeImmP0(memory mem, immP0 zero)
5629 %{
5630   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5631   match(Set mem (StoreP mem zero));
5632 
5633   ins_cost(125); // XXX
5634   format %{ "movq    $mem, R12\t# ptr (R12_heapbase==0)" %}
5635   ins_encode %{
5636     __ movq($mem$$Address, r12);
5637   %}
5638   ins_pipe(ialu_mem_reg);
5639 %}
5640 
5641 // Store NULL Pointer, mark word, or other simple pointer constant.
5642 instruct storeImmP(memory mem, immP31 src)
5643 %{
5644   match(Set mem (StoreP mem src));
5645 
5646   ins_cost(150); // XXX
5647   format %{ "movq    $mem, $src\t# ptr" %}
5648   opcode(0xC7); /* C7 /0 */
5649   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5650   ins_pipe(ialu_mem_imm);
5651 %}
5652 
5653 // Store Compressed Pointer
5654 instruct storeN(memory mem, rRegN src)
5655 %{
5656   match(Set mem (StoreN mem src));
5657 
5658   ins_cost(125); // XXX
5659   format %{ "movl    $mem, $src\t# compressed ptr" %}
5660   ins_encode %{
5661     __ movl($mem$$Address, $src$$Register);
5662   %}
5663   ins_pipe(ialu_mem_reg);
5664 %}
5665 
5666 instruct storeNKlass(memory mem, rRegN src)
5667 %{
5668   match(Set mem (StoreNKlass mem src));
5669 
5670   ins_cost(125); // XXX
5671   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
5672   ins_encode %{
5673     __ movl($mem$$Address, $src$$Register);
5674   %}
5675   ins_pipe(ialu_mem_reg);
5676 %}
5677 
5678 instruct storeImmN0(memory mem, immN0 zero)
5679 %{
5680   predicate(Universe::narrow_oop_base() == NULL && Universe::narrow_klass_base() == NULL);
5681   match(Set mem (StoreN mem zero));
5682 
5683   ins_cost(125); // XXX
5684   format %{ "movl    $mem, R12\t# compressed ptr (R12_heapbase==0)" %}
5685   ins_encode %{
5686     __ movl($mem$$Address, r12);
5687   %}
5688   ins_pipe(ialu_mem_reg);
5689 %}
5690 
5691 instruct storeImmN(memory mem, immN src)
5692 %{
5693   match(Set mem (StoreN mem src));
5694 
5695   ins_cost(150); // XXX
5696   format %{ "movl    $mem, $src\t# compressed ptr" %}
5697   ins_encode %{
5698     address con = (address)$src$$constant;
5699     if (con == NULL) {
5700       __ movl($mem$$Address, (int32_t)0);
5701     } else {
5702       __ set_narrow_oop($mem$$Address, (jobject)$src$$constant);
5703     }
5704   %}
5705   ins_pipe(ialu_mem_imm);
5706 %}
5707 
5708 instruct storeImmNKlass(memory mem, immNKlass src)
5709 %{
5710   match(Set mem (StoreNKlass mem src));
5711 
5712   ins_cost(150); // XXX
5713   format %{ "movl    $mem, $src\t# compressed klass ptr" %}
5714   ins_encode %{
5715     __ set_narrow_klass($mem$$Address, (Klass*)$src$$constant);
5716   %}
5717   ins_pipe(ialu_mem_imm);
5718 %}
5719 
5720 // Store Integer Immediate
5721 instruct storeImmI0(memory mem, immI0 zero)
5722 %{
5723   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5724   match(Set mem (StoreI mem zero));
5725 
5726   ins_cost(125); // XXX
5727   format %{ "movl    $mem, R12\t# int (R12_heapbase==0)" %}
5728   ins_encode %{
5729     __ movl($mem$$Address, r12);
5730   %}
5731   ins_pipe(ialu_mem_reg);
5732 %}
5733 
5734 instruct storeImmI(memory mem, immI src)
5735 %{
5736   match(Set mem (StoreI mem src));
5737 
5738   ins_cost(150);
5739   format %{ "movl    $mem, $src\t# int" %}
5740   opcode(0xC7); /* C7 /0 */
5741   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5742   ins_pipe(ialu_mem_imm);
5743 %}
5744 
5745 // Store Long Immediate
5746 instruct storeImmL0(memory mem, immL0 zero)
5747 %{
5748   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5749   match(Set mem (StoreL mem zero));
5750 
5751   ins_cost(125); // XXX
5752   format %{ "movq    $mem, R12\t# long (R12_heapbase==0)" %}
5753   ins_encode %{
5754     __ movq($mem$$Address, r12);
5755   %}
5756   ins_pipe(ialu_mem_reg);
5757 %}
5758 
5759 instruct storeImmL(memory mem, immL32 src)
5760 %{
5761   match(Set mem (StoreL mem src));
5762 
5763   ins_cost(150);
5764   format %{ "movq    $mem, $src\t# long" %}
5765   opcode(0xC7); /* C7 /0 */
5766   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32(src));
5767   ins_pipe(ialu_mem_imm);
5768 %}
5769 
5770 // Store Short/Char Immediate
5771 instruct storeImmC0(memory mem, immI0 zero)
5772 %{
5773   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5774   match(Set mem (StoreC mem zero));
5775 
5776   ins_cost(125); // XXX
5777   format %{ "movw    $mem, R12\t# short/char (R12_heapbase==0)" %}
5778   ins_encode %{
5779     __ movw($mem$$Address, r12);
5780   %}
5781   ins_pipe(ialu_mem_reg);
5782 %}
5783 
5784 instruct storeImmI16(memory mem, immI16 src)
5785 %{
5786   predicate(UseStoreImmI16);
5787   match(Set mem (StoreC mem src));
5788 
5789   ins_cost(150);
5790   format %{ "movw    $mem, $src\t# short/char" %}
5791   opcode(0xC7); /* C7 /0 Same as 32 store immediate with prefix */
5792   ins_encode(SizePrefix, REX_mem(mem), OpcP, RM_opc_mem(0x00, mem),Con16(src));
5793   ins_pipe(ialu_mem_imm);
5794 %}
5795 
5796 // Store Byte Immediate
5797 instruct storeImmB0(memory mem, immI0 zero)
5798 %{
5799   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5800   match(Set mem (StoreB mem zero));
5801 
5802   ins_cost(125); // XXX
5803   format %{ "movb    $mem, R12\t# short/char (R12_heapbase==0)" %}
5804   ins_encode %{
5805     __ movb($mem$$Address, r12);
5806   %}
5807   ins_pipe(ialu_mem_reg);
5808 %}
5809 
5810 instruct storeImmB(memory mem, immI8 src)
5811 %{
5812   match(Set mem (StoreB mem src));
5813 
5814   ins_cost(150); // XXX
5815   format %{ "movb    $mem, $src\t# byte" %}
5816   opcode(0xC6); /* C6 /0 */
5817   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
5818   ins_pipe(ialu_mem_imm);
5819 %}
5820 
5821 // Store CMS card-mark Immediate
5822 instruct storeImmCM0_reg(memory mem, immI0 zero)
5823 %{
5824   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5825   match(Set mem (StoreCM mem zero));
5826 
5827   ins_cost(125); // XXX
5828   format %{ "movb    $mem, R12\t# CMS card-mark byte 0 (R12_heapbase==0)" %}
5829   ins_encode %{
5830     __ movb($mem$$Address, r12);
5831   %}
5832   ins_pipe(ialu_mem_reg);
5833 %}
5834 
5835 instruct storeImmCM0(memory mem, immI0 src)
5836 %{
5837   match(Set mem (StoreCM mem src));
5838 
5839   ins_cost(150); // XXX
5840   format %{ "movb    $mem, $src\t# CMS card-mark byte 0" %}
5841   opcode(0xC6); /* C6 /0 */
5842   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con8or32(src));
5843   ins_pipe(ialu_mem_imm);
5844 %}
5845 
5846 // Store Float
5847 instruct storeF(memory mem, regF src)
5848 %{
5849   match(Set mem (StoreF mem src));
5850 
5851   ins_cost(95); // XXX
5852   format %{ "movss   $mem, $src\t# float" %}
5853   ins_encode %{
5854     __ movflt($mem$$Address, $src$$XMMRegister);
5855   %}
5856   ins_pipe(pipe_slow); // XXX
5857 %}
5858 
5859 // Store immediate Float value (it is faster than store from XMM register)
5860 instruct storeF0(memory mem, immF0 zero)
5861 %{
5862   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5863   match(Set mem (StoreF mem zero));
5864 
5865   ins_cost(25); // XXX
5866   format %{ "movl    $mem, R12\t# float 0. (R12_heapbase==0)" %}
5867   ins_encode %{
5868     __ movl($mem$$Address, r12);
5869   %}
5870   ins_pipe(ialu_mem_reg);
5871 %}
5872 
5873 instruct storeF_imm(memory mem, immF src)
5874 %{
5875   match(Set mem (StoreF mem src));
5876 
5877   ins_cost(50);
5878   format %{ "movl    $mem, $src\t# float" %}
5879   opcode(0xC7); /* C7 /0 */
5880   ins_encode(REX_mem(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
5881   ins_pipe(ialu_mem_imm);
5882 %}
5883 
5884 // Store Double
5885 instruct storeD(memory mem, regD src)
5886 %{
5887   match(Set mem (StoreD mem src));
5888 
5889   ins_cost(95); // XXX
5890   format %{ "movsd   $mem, $src\t# double" %}
5891   ins_encode %{
5892     __ movdbl($mem$$Address, $src$$XMMRegister);
5893   %}
5894   ins_pipe(pipe_slow); // XXX
5895 %}
5896 
5897 // Store immediate double 0.0 (it is faster than store from XMM register)
5898 instruct storeD0_imm(memory mem, immD0 src)
5899 %{
5900   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
5901   match(Set mem (StoreD mem src));
5902 
5903   ins_cost(50);
5904   format %{ "movq    $mem, $src\t# double 0." %}
5905   opcode(0xC7); /* C7 /0 */
5906   ins_encode(REX_mem_wide(mem), OpcP, RM_opc_mem(0x00, mem), Con32F_as_bits(src));
5907   ins_pipe(ialu_mem_imm);
5908 %}
5909 
5910 instruct storeD0(memory mem, immD0 zero)
5911 %{
5912   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
5913   match(Set mem (StoreD mem zero));
5914 
5915   ins_cost(25); // XXX
5916   format %{ "movq    $mem, R12\t# double 0. (R12_heapbase==0)" %}
5917   ins_encode %{
5918     __ movq($mem$$Address, r12);
5919   %}
5920   ins_pipe(ialu_mem_reg);
5921 %}
5922 
5923 instruct storeSSI(stackSlotI dst, rRegI src)
5924 %{
5925   match(Set dst src);
5926 
5927   ins_cost(100);
5928   format %{ "movl    $dst, $src\t# int stk" %}
5929   opcode(0x89);
5930   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
5931   ins_pipe( ialu_mem_reg );
5932 %}
5933 
5934 instruct storeSSL(stackSlotL dst, rRegL src)
5935 %{
5936   match(Set dst src);
5937 
5938   ins_cost(100);
5939   format %{ "movq    $dst, $src\t# long stk" %}
5940   opcode(0x89);
5941   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
5942   ins_pipe(ialu_mem_reg);
5943 %}
5944 
5945 instruct storeSSP(stackSlotP dst, rRegP src)
5946 %{
5947   match(Set dst src);
5948 
5949   ins_cost(100);
5950   format %{ "movq    $dst, $src\t# ptr stk" %}
5951   opcode(0x89);
5952   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
5953   ins_pipe(ialu_mem_reg);
5954 %}
5955 
5956 instruct storeSSF(stackSlotF dst, regF src)
5957 %{
5958   match(Set dst src);
5959 
5960   ins_cost(95); // XXX
5961   format %{ "movss   $dst, $src\t# float stk" %}
5962   ins_encode %{
5963     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
5964   %}
5965   ins_pipe(pipe_slow); // XXX
5966 %}
5967 
5968 instruct storeSSD(stackSlotD dst, regD src)
5969 %{
5970   match(Set dst src);
5971 
5972   ins_cost(95); // XXX
5973   format %{ "movsd   $dst, $src\t# double stk" %}
5974   ins_encode %{
5975     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
5976   %}
5977   ins_pipe(pipe_slow); // XXX
5978 %}
5979 
5980 //----------BSWAP Instructions-------------------------------------------------
5981 instruct bytes_reverse_int(rRegI dst) %{
5982   match(Set dst (ReverseBytesI dst));
5983 
5984   format %{ "bswapl  $dst" %}
5985   opcode(0x0F, 0xC8);  /*Opcode 0F /C8 */
5986   ins_encode( REX_reg(dst), OpcP, opc2_reg(dst) );
5987   ins_pipe( ialu_reg );
5988 %}
5989 
5990 instruct bytes_reverse_long(rRegL dst) %{
5991   match(Set dst (ReverseBytesL dst));
5992 
5993   format %{ "bswapq  $dst" %}
5994   opcode(0x0F, 0xC8); /* Opcode 0F /C8 */
5995   ins_encode( REX_reg_wide(dst), OpcP, opc2_reg(dst) );
5996   ins_pipe( ialu_reg);
5997 %}
5998 
5999 instruct bytes_reverse_unsigned_short(rRegI dst, rFlagsReg cr) %{
6000   match(Set dst (ReverseBytesUS dst));
6001   effect(KILL cr);
6002 
6003   format %{ "bswapl  $dst\n\t"
6004             "shrl    $dst,16\n\t" %}
6005   ins_encode %{
6006     __ bswapl($dst$$Register);
6007     __ shrl($dst$$Register, 16);
6008   %}
6009   ins_pipe( ialu_reg );
6010 %}
6011 
6012 instruct bytes_reverse_short(rRegI dst, rFlagsReg cr) %{
6013   match(Set dst (ReverseBytesS dst));
6014   effect(KILL cr);
6015 
6016   format %{ "bswapl  $dst\n\t"
6017             "sar     $dst,16\n\t" %}
6018   ins_encode %{
6019     __ bswapl($dst$$Register);
6020     __ sarl($dst$$Register, 16);
6021   %}
6022   ins_pipe( ialu_reg );
6023 %}
6024 
6025 //---------- Zeros Count Instructions ------------------------------------------
6026 
6027 instruct countLeadingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6028   predicate(UseCountLeadingZerosInstruction);
6029   match(Set dst (CountLeadingZerosI src));
6030   effect(KILL cr);
6031 
6032   format %{ "lzcntl  $dst, $src\t# count leading zeros (int)" %}
6033   ins_encode %{
6034     __ lzcntl($dst$$Register, $src$$Register);
6035   %}
6036   ins_pipe(ialu_reg);
6037 %}
6038 
6039 instruct countLeadingZerosI_bsr(rRegI dst, rRegI src, rFlagsReg cr) %{
6040   predicate(!UseCountLeadingZerosInstruction);
6041   match(Set dst (CountLeadingZerosI src));
6042   effect(KILL cr);
6043 
6044   format %{ "bsrl    $dst, $src\t# count leading zeros (int)\n\t"
6045             "jnz     skip\n\t"
6046             "movl    $dst, -1\n"
6047       "skip:\n\t"
6048             "negl    $dst\n\t"
6049             "addl    $dst, 31" %}
6050   ins_encode %{
6051     Register Rdst = $dst$$Register;
6052     Register Rsrc = $src$$Register;
6053     Label skip;
6054     __ bsrl(Rdst, Rsrc);
6055     __ jccb(Assembler::notZero, skip);
6056     __ movl(Rdst, -1);
6057     __ bind(skip);
6058     __ negl(Rdst);
6059     __ addl(Rdst, BitsPerInt - 1);
6060   %}
6061   ins_pipe(ialu_reg);
6062 %}
6063 
6064 instruct countLeadingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6065   predicate(UseCountLeadingZerosInstruction);
6066   match(Set dst (CountLeadingZerosL src));
6067   effect(KILL cr);
6068 
6069   format %{ "lzcntq  $dst, $src\t# count leading zeros (long)" %}
6070   ins_encode %{
6071     __ lzcntq($dst$$Register, $src$$Register);
6072   %}
6073   ins_pipe(ialu_reg);
6074 %}
6075 
6076 instruct countLeadingZerosL_bsr(rRegI dst, rRegL src, rFlagsReg cr) %{
6077   predicate(!UseCountLeadingZerosInstruction);
6078   match(Set dst (CountLeadingZerosL src));
6079   effect(KILL cr);
6080 
6081   format %{ "bsrq    $dst, $src\t# count leading zeros (long)\n\t"
6082             "jnz     skip\n\t"
6083             "movl    $dst, -1\n"
6084       "skip:\n\t"
6085             "negl    $dst\n\t"
6086             "addl    $dst, 63" %}
6087   ins_encode %{
6088     Register Rdst = $dst$$Register;
6089     Register Rsrc = $src$$Register;
6090     Label skip;
6091     __ bsrq(Rdst, Rsrc);
6092     __ jccb(Assembler::notZero, skip);
6093     __ movl(Rdst, -1);
6094     __ bind(skip);
6095     __ negl(Rdst);
6096     __ addl(Rdst, BitsPerLong - 1);
6097   %}
6098   ins_pipe(ialu_reg);
6099 %}
6100 
6101 instruct countTrailingZerosI(rRegI dst, rRegI src, rFlagsReg cr) %{
6102   predicate(UseCountTrailingZerosInstruction);
6103   match(Set dst (CountTrailingZerosI src));
6104   effect(KILL cr);
6105 
6106   format %{ "tzcntl    $dst, $src\t# count trailing zeros (int)" %}
6107   ins_encode %{
6108     __ tzcntl($dst$$Register, $src$$Register);
6109   %}
6110   ins_pipe(ialu_reg);
6111 %}
6112 
6113 instruct countTrailingZerosI_bsf(rRegI dst, rRegI src, rFlagsReg cr) %{
6114   predicate(!UseCountTrailingZerosInstruction);
6115   match(Set dst (CountTrailingZerosI src));
6116   effect(KILL cr);
6117 
6118   format %{ "bsfl    $dst, $src\t# count trailing zeros (int)\n\t"
6119             "jnz     done\n\t"
6120             "movl    $dst, 32\n"
6121       "done:" %}
6122   ins_encode %{
6123     Register Rdst = $dst$$Register;
6124     Label done;
6125     __ bsfl(Rdst, $src$$Register);
6126     __ jccb(Assembler::notZero, done);
6127     __ movl(Rdst, BitsPerInt);
6128     __ bind(done);
6129   %}
6130   ins_pipe(ialu_reg);
6131 %}
6132 
6133 instruct countTrailingZerosL(rRegI dst, rRegL src, rFlagsReg cr) %{
6134   predicate(UseCountTrailingZerosInstruction);
6135   match(Set dst (CountTrailingZerosL src));
6136   effect(KILL cr);
6137 
6138   format %{ "tzcntq    $dst, $src\t# count trailing zeros (long)" %}
6139   ins_encode %{
6140     __ tzcntq($dst$$Register, $src$$Register);
6141   %}
6142   ins_pipe(ialu_reg);
6143 %}
6144 
6145 instruct countTrailingZerosL_bsf(rRegI dst, rRegL src, rFlagsReg cr) %{
6146   predicate(!UseCountTrailingZerosInstruction);
6147   match(Set dst (CountTrailingZerosL src));
6148   effect(KILL cr);
6149 
6150   format %{ "bsfq    $dst, $src\t# count trailing zeros (long)\n\t"
6151             "jnz     done\n\t"
6152             "movl    $dst, 64\n"
6153       "done:" %}
6154   ins_encode %{
6155     Register Rdst = $dst$$Register;
6156     Label done;
6157     __ bsfq(Rdst, $src$$Register);
6158     __ jccb(Assembler::notZero, done);
6159     __ movl(Rdst, BitsPerLong);
6160     __ bind(done);
6161   %}
6162   ins_pipe(ialu_reg);
6163 %}
6164 
6165 
6166 //---------- Population Count Instructions -------------------------------------
6167 
6168 instruct popCountI(rRegI dst, rRegI src, rFlagsReg cr) %{
6169   predicate(UsePopCountInstruction);
6170   match(Set dst (PopCountI src));
6171   effect(KILL cr);
6172 
6173   format %{ "popcnt  $dst, $src" %}
6174   ins_encode %{
6175     __ popcntl($dst$$Register, $src$$Register);
6176   %}
6177   ins_pipe(ialu_reg);
6178 %}
6179 
6180 instruct popCountI_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6181   predicate(UsePopCountInstruction);
6182   match(Set dst (PopCountI (LoadI mem)));
6183   effect(KILL cr);
6184 
6185   format %{ "popcnt  $dst, $mem" %}
6186   ins_encode %{
6187     __ popcntl($dst$$Register, $mem$$Address);
6188   %}
6189   ins_pipe(ialu_reg);
6190 %}
6191 
6192 // Note: Long.bitCount(long) returns an int.
6193 instruct popCountL(rRegI dst, rRegL src, rFlagsReg cr) %{
6194   predicate(UsePopCountInstruction);
6195   match(Set dst (PopCountL src));
6196   effect(KILL cr);
6197 
6198   format %{ "popcnt  $dst, $src" %}
6199   ins_encode %{
6200     __ popcntq($dst$$Register, $src$$Register);
6201   %}
6202   ins_pipe(ialu_reg);
6203 %}
6204 
6205 // Note: Long.bitCount(long) returns an int.
6206 instruct popCountL_mem(rRegI dst, memory mem, rFlagsReg cr) %{
6207   predicate(UsePopCountInstruction);
6208   match(Set dst (PopCountL (LoadL mem)));
6209   effect(KILL cr);
6210 
6211   format %{ "popcnt  $dst, $mem" %}
6212   ins_encode %{
6213     __ popcntq($dst$$Register, $mem$$Address);
6214   %}
6215   ins_pipe(ialu_reg);
6216 %}
6217 
6218 
6219 //----------MemBar Instructions-----------------------------------------------
6220 // Memory barrier flavors
6221 
6222 instruct membar_acquire()
6223 %{
6224   match(MemBarAcquire);
6225   match(LoadFence);
6226   ins_cost(0);
6227 
6228   size(0);
6229   format %{ "MEMBAR-acquire ! (empty encoding)" %}
6230   ins_encode();
6231   ins_pipe(empty);
6232 %}
6233 
6234 instruct membar_acquire_lock()
6235 %{
6236   match(MemBarAcquireLock);
6237   ins_cost(0);
6238 
6239   size(0);
6240   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
6241   ins_encode();
6242   ins_pipe(empty);
6243 %}
6244 
6245 instruct membar_release()
6246 %{
6247   match(MemBarRelease);
6248   match(StoreFence);
6249   ins_cost(0);
6250 
6251   size(0);
6252   format %{ "MEMBAR-release ! (empty encoding)" %}
6253   ins_encode();
6254   ins_pipe(empty);
6255 %}
6256 
6257 instruct membar_release_lock()
6258 %{
6259   match(MemBarReleaseLock);
6260   ins_cost(0);
6261 
6262   size(0);
6263   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
6264   ins_encode();
6265   ins_pipe(empty);
6266 %}
6267 
6268 instruct membar_volatile(rFlagsReg cr) %{
6269   match(MemBarVolatile);
6270   effect(KILL cr);
6271   ins_cost(400);
6272 
6273   format %{
6274     $$template
6275     if (os::is_MP()) {
6276       $$emit$$"lock addl [rsp + #0], 0\t! membar_volatile"
6277     } else {
6278       $$emit$$"MEMBAR-volatile ! (empty encoding)"
6279     }
6280   %}
6281   ins_encode %{
6282     __ membar(Assembler::StoreLoad);
6283   %}
6284   ins_pipe(pipe_slow);
6285 %}
6286 
6287 instruct unnecessary_membar_volatile()
6288 %{
6289   match(MemBarVolatile);
6290   predicate(Matcher::post_store_load_barrier(n));
6291   ins_cost(0);
6292 
6293   size(0);
6294   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
6295   ins_encode();
6296   ins_pipe(empty);
6297 %}
6298 
6299 instruct membar_storestore() %{
6300   match(MemBarStoreStore);
6301   ins_cost(0);
6302 
6303   size(0);
6304   format %{ "MEMBAR-storestore (empty encoding)" %}
6305   ins_encode( );
6306   ins_pipe(empty);
6307 %}
6308 
6309 //----------Move Instructions--------------------------------------------------
6310 
6311 instruct castX2P(rRegP dst, rRegL src)
6312 %{
6313   match(Set dst (CastX2P src));
6314 
6315   format %{ "movq    $dst, $src\t# long->ptr" %}
6316   ins_encode %{
6317     if ($dst$$reg != $src$$reg) {
6318       __ movptr($dst$$Register, $src$$Register);
6319     }
6320   %}
6321   ins_pipe(ialu_reg_reg); // XXX
6322 %}
6323 
6324 instruct castP2X(rRegL dst, rRegP src)
6325 %{
6326   match(Set dst (CastP2X src));
6327 
6328   format %{ "movq    $dst, $src\t# ptr -> long" %}
6329   ins_encode %{
6330     if ($dst$$reg != $src$$reg) {
6331       __ movptr($dst$$Register, $src$$Register);
6332     }
6333   %}
6334   ins_pipe(ialu_reg_reg); // XXX
6335 %}
6336 
6337 // Convert oop into int for vectors alignment masking
6338 instruct convP2I(rRegI dst, rRegP src)
6339 %{
6340   match(Set dst (ConvL2I (CastP2X src)));
6341 
6342   format %{ "movl    $dst, $src\t# ptr -> int" %}
6343   ins_encode %{
6344     __ movl($dst$$Register, $src$$Register);
6345   %}
6346   ins_pipe(ialu_reg_reg); // XXX
6347 %}
6348 
6349 // Convert compressed oop into int for vectors alignment masking
6350 // in case of 32bit oops (heap < 4Gb).
6351 instruct convN2I(rRegI dst, rRegN src)
6352 %{
6353   predicate(Universe::narrow_oop_shift() == 0);
6354   match(Set dst (ConvL2I (CastP2X (DecodeN src))));
6355 
6356   format %{ "movl    $dst, $src\t# compressed ptr -> int" %}
6357   ins_encode %{
6358     __ movl($dst$$Register, $src$$Register);
6359   %}
6360   ins_pipe(ialu_reg_reg); // XXX
6361 %}
6362 
6363 // Convert oop pointer into compressed form
6364 instruct encodeHeapOop(rRegN dst, rRegP src, rFlagsReg cr) %{
6365   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6366   match(Set dst (EncodeP src));
6367   effect(KILL cr);
6368   format %{ "encode_heap_oop $dst,$src" %}
6369   ins_encode %{
6370     Register s = $src$$Register;
6371     Register d = $dst$$Register;
6372     if (s != d) {
6373       __ movq(d, s);
6374     }
6375     __ encode_heap_oop(d);
6376   %}
6377   ins_pipe(ialu_reg_long);
6378 %}
6379 
6380 instruct encodeHeapOop_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6381   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6382   match(Set dst (EncodeP src));
6383   effect(KILL cr);
6384   format %{ "encode_heap_oop_not_null $dst,$src" %}
6385   ins_encode %{
6386     __ encode_heap_oop_not_null($dst$$Register, $src$$Register);
6387   %}
6388   ins_pipe(ialu_reg_long);
6389 %}
6390 
6391 instruct decodeHeapOop(rRegP dst, rRegN src, rFlagsReg cr) %{
6392   predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
6393             n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
6394   match(Set dst (DecodeN src));
6395   effect(KILL cr);
6396   format %{ "decode_heap_oop $dst,$src" %}
6397   ins_encode %{
6398     Register s = $src$$Register;
6399     Register d = $dst$$Register;
6400     if (s != d) {
6401       __ movq(d, s);
6402     }
6403     __ decode_heap_oop(d);
6404   %}
6405   ins_pipe(ialu_reg_long);
6406 %}
6407 
6408 instruct decodeHeapOop_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6409   predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
6410             n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
6411   match(Set dst (DecodeN src));
6412   effect(KILL cr);
6413   format %{ "decode_heap_oop_not_null $dst,$src" %}
6414   ins_encode %{
6415     Register s = $src$$Register;
6416     Register d = $dst$$Register;
6417     if (s != d) {
6418       __ decode_heap_oop_not_null(d, s);
6419     } else {
6420       __ decode_heap_oop_not_null(d);
6421     }
6422   %}
6423   ins_pipe(ialu_reg_long);
6424 %}
6425 
6426 instruct encodeKlass_not_null(rRegN dst, rRegP src, rFlagsReg cr) %{
6427   match(Set dst (EncodePKlass src));
6428   effect(KILL cr);
6429   format %{ "encode_klass_not_null $dst,$src" %}
6430   ins_encode %{
6431     __ encode_klass_not_null($dst$$Register, $src$$Register);
6432   %}
6433   ins_pipe(ialu_reg_long);
6434 %}
6435 
6436 instruct decodeKlass_not_null(rRegP dst, rRegN src, rFlagsReg cr) %{
6437   match(Set dst (DecodeNKlass src));
6438   effect(KILL cr);
6439   format %{ "decode_klass_not_null $dst,$src" %}
6440   ins_encode %{
6441     Register s = $src$$Register;
6442     Register d = $dst$$Register;
6443     if (s != d) {
6444       __ decode_klass_not_null(d, s);
6445     } else {
6446       __ decode_klass_not_null(d);
6447     }
6448   %}
6449   ins_pipe(ialu_reg_long);
6450 %}
6451 
6452 
6453 //----------Conditional Move---------------------------------------------------
6454 // Jump
6455 // dummy instruction for generating temp registers
6456 instruct jumpXtnd_offset(rRegL switch_val, immI2 shift, rRegI dest) %{
6457   match(Jump (LShiftL switch_val shift));
6458   ins_cost(350);
6459   predicate(false);
6460   effect(TEMP dest);
6461 
6462   format %{ "leaq    $dest, [$constantaddress]\n\t"
6463             "jmp     [$dest + $switch_val << $shift]\n\t" %}
6464   ins_encode %{
6465     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6466     // to do that and the compiler is using that register as one it can allocate.
6467     // So we build it all by hand.
6468     // Address index(noreg, switch_reg, (Address::ScaleFactor)$shift$$constant);
6469     // ArrayAddress dispatch(table, index);
6470     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant);
6471     __ lea($dest$$Register, $constantaddress);
6472     __ jmp(dispatch);
6473   %}
6474   ins_pipe(pipe_jmp);
6475 %}
6476 
6477 instruct jumpXtnd_addr(rRegL switch_val, immI2 shift, immL32 offset, rRegI dest) %{
6478   match(Jump (AddL (LShiftL switch_val shift) offset));
6479   ins_cost(350);
6480   effect(TEMP dest);
6481 
6482   format %{ "leaq    $dest, [$constantaddress]\n\t"
6483             "jmp     [$dest + $switch_val << $shift + $offset]\n\t" %}
6484   ins_encode %{
6485     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6486     // to do that and the compiler is using that register as one it can allocate.
6487     // So we build it all by hand.
6488     // Address index(noreg, switch_reg, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6489     // ArrayAddress dispatch(table, index);
6490     Address dispatch($dest$$Register, $switch_val$$Register, (Address::ScaleFactor) $shift$$constant, (int) $offset$$constant);
6491     __ lea($dest$$Register, $constantaddress);
6492     __ jmp(dispatch);
6493   %}
6494   ins_pipe(pipe_jmp);
6495 %}
6496 
6497 instruct jumpXtnd(rRegL switch_val, rRegI dest) %{
6498   match(Jump switch_val);
6499   ins_cost(350);
6500   effect(TEMP dest);
6501 
6502   format %{ "leaq    $dest, [$constantaddress]\n\t"
6503             "jmp     [$dest + $switch_val]\n\t" %}
6504   ins_encode %{
6505     // We could use jump(ArrayAddress) except that the macro assembler needs to use r10
6506     // to do that and the compiler is using that register as one it can allocate.
6507     // So we build it all by hand.
6508     // Address index(noreg, switch_reg, Address::times_1);
6509     // ArrayAddress dispatch(table, index);
6510     Address dispatch($dest$$Register, $switch_val$$Register, Address::times_1);
6511     __ lea($dest$$Register, $constantaddress);
6512     __ jmp(dispatch);
6513   %}
6514   ins_pipe(pipe_jmp);
6515 %}
6516 
6517 // Conditional move
6518 instruct cmovI_reg(rRegI dst, rRegI src, rFlagsReg cr, cmpOp cop)
6519 %{
6520   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6521 
6522   ins_cost(200); // XXX
6523   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6524   opcode(0x0F, 0x40);
6525   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6526   ins_pipe(pipe_cmov_reg);
6527 %}
6528 
6529 instruct cmovI_regU(cmpOpU cop, rFlagsRegU cr, rRegI dst, rRegI src) %{
6530   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6531 
6532   ins_cost(200); // XXX
6533   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6534   opcode(0x0F, 0x40);
6535   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6536   ins_pipe(pipe_cmov_reg);
6537 %}
6538 
6539 instruct cmovI_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, rRegI src) %{
6540   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
6541   ins_cost(200);
6542   expand %{
6543     cmovI_regU(cop, cr, dst, src);
6544   %}
6545 %}
6546 
6547 // Conditional move
6548 instruct cmovI_mem(cmpOp cop, rFlagsReg cr, rRegI dst, memory src) %{
6549   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6550 
6551   ins_cost(250); // XXX
6552   format %{ "cmovl$cop $dst, $src\t# signed, int" %}
6553   opcode(0x0F, 0x40);
6554   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6555   ins_pipe(pipe_cmov_mem);
6556 %}
6557 
6558 // Conditional move
6559 instruct cmovI_memU(cmpOpU cop, rFlagsRegU cr, rRegI dst, memory src)
6560 %{
6561   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6562 
6563   ins_cost(250); // XXX
6564   format %{ "cmovl$cop $dst, $src\t# unsigned, int" %}
6565   opcode(0x0F, 0x40);
6566   ins_encode(REX_reg_mem(dst, src), enc_cmov(cop), reg_mem(dst, src));
6567   ins_pipe(pipe_cmov_mem);
6568 %}
6569 
6570 instruct cmovI_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegI dst, memory src) %{
6571   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
6572   ins_cost(250);
6573   expand %{
6574     cmovI_memU(cop, cr, dst, src);
6575   %}
6576 %}
6577 
6578 // Conditional move
6579 instruct cmovN_reg(rRegN dst, rRegN src, rFlagsReg cr, cmpOp cop)
6580 %{
6581   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6582 
6583   ins_cost(200); // XXX
6584   format %{ "cmovl$cop $dst, $src\t# signed, compressed ptr" %}
6585   opcode(0x0F, 0x40);
6586   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6587   ins_pipe(pipe_cmov_reg);
6588 %}
6589 
6590 // Conditional move
6591 instruct cmovN_regU(cmpOpU cop, rFlagsRegU cr, rRegN dst, rRegN src)
6592 %{
6593   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6594 
6595   ins_cost(200); // XXX
6596   format %{ "cmovl$cop $dst, $src\t# unsigned, compressed ptr" %}
6597   opcode(0x0F, 0x40);
6598   ins_encode(REX_reg_reg(dst, src), enc_cmov(cop), reg_reg(dst, src));
6599   ins_pipe(pipe_cmov_reg);
6600 %}
6601 
6602 instruct cmovN_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegN dst, rRegN src) %{
6603   match(Set dst (CMoveN (Binary cop cr) (Binary dst src)));
6604   ins_cost(200);
6605   expand %{
6606     cmovN_regU(cop, cr, dst, src);
6607   %}
6608 %}
6609 
6610 // Conditional move
6611 instruct cmovP_reg(rRegP dst, rRegP src, rFlagsReg cr, cmpOp cop)
6612 %{
6613   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6614 
6615   ins_cost(200); // XXX
6616   format %{ "cmovq$cop $dst, $src\t# signed, ptr" %}
6617   opcode(0x0F, 0x40);
6618   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6619   ins_pipe(pipe_cmov_reg);  // XXX
6620 %}
6621 
6622 // Conditional move
6623 instruct cmovP_regU(cmpOpU cop, rFlagsRegU cr, rRegP dst, rRegP src)
6624 %{
6625   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6626 
6627   ins_cost(200); // XXX
6628   format %{ "cmovq$cop $dst, $src\t# unsigned, ptr" %}
6629   opcode(0x0F, 0x40);
6630   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6631   ins_pipe(pipe_cmov_reg); // XXX
6632 %}
6633 
6634 instruct cmovP_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegP dst, rRegP src) %{
6635   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
6636   ins_cost(200);
6637   expand %{
6638     cmovP_regU(cop, cr, dst, src);
6639   %}
6640 %}
6641 
6642 // DISABLED: Requires the ADLC to emit a bottom_type call that
6643 // correctly meets the two pointer arguments; one is an incoming
6644 // register but the other is a memory operand.  ALSO appears to
6645 // be buggy with implicit null checks.
6646 //
6647 //// Conditional move
6648 //instruct cmovP_mem(cmpOp cop, rFlagsReg cr, rRegP dst, memory src)
6649 //%{
6650 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6651 //  ins_cost(250);
6652 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6653 //  opcode(0x0F,0x40);
6654 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6655 //  ins_pipe( pipe_cmov_mem );
6656 //%}
6657 //
6658 //// Conditional move
6659 //instruct cmovP_memU(cmpOpU cop, rFlagsRegU cr, rRegP dst, memory src)
6660 //%{
6661 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
6662 //  ins_cost(250);
6663 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
6664 //  opcode(0x0F,0x40);
6665 //  ins_encode( enc_cmov(cop), reg_mem( dst, src ) );
6666 //  ins_pipe( pipe_cmov_mem );
6667 //%}
6668 
6669 instruct cmovL_reg(cmpOp cop, rFlagsReg cr, rRegL dst, rRegL src)
6670 %{
6671   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6672 
6673   ins_cost(200); // XXX
6674   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
6675   opcode(0x0F, 0x40);
6676   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6677   ins_pipe(pipe_cmov_reg);  // XXX
6678 %}
6679 
6680 instruct cmovL_mem(cmpOp cop, rFlagsReg cr, rRegL dst, memory src)
6681 %{
6682   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6683 
6684   ins_cost(200); // XXX
6685   format %{ "cmovq$cop $dst, $src\t# signed, long" %}
6686   opcode(0x0F, 0x40);
6687   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
6688   ins_pipe(pipe_cmov_mem);  // XXX
6689 %}
6690 
6691 instruct cmovL_regU(cmpOpU cop, rFlagsRegU cr, rRegL dst, rRegL src)
6692 %{
6693   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6694 
6695   ins_cost(200); // XXX
6696   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
6697   opcode(0x0F, 0x40);
6698   ins_encode(REX_reg_reg_wide(dst, src), enc_cmov(cop), reg_reg(dst, src));
6699   ins_pipe(pipe_cmov_reg); // XXX
6700 %}
6701 
6702 instruct cmovL_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, rRegL src) %{
6703   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
6704   ins_cost(200);
6705   expand %{
6706     cmovL_regU(cop, cr, dst, src);
6707   %}
6708 %}
6709 
6710 instruct cmovL_memU(cmpOpU cop, rFlagsRegU cr, rRegL dst, memory src)
6711 %{
6712   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6713 
6714   ins_cost(200); // XXX
6715   format %{ "cmovq$cop $dst, $src\t# unsigned, long" %}
6716   opcode(0x0F, 0x40);
6717   ins_encode(REX_reg_mem_wide(dst, src), enc_cmov(cop), reg_mem(dst, src));
6718   ins_pipe(pipe_cmov_mem); // XXX
6719 %}
6720 
6721 instruct cmovL_memUCF(cmpOpUCF cop, rFlagsRegUCF cr, rRegL dst, memory src) %{
6722   match(Set dst (CMoveL (Binary cop cr) (Binary dst (LoadL src))));
6723   ins_cost(200);
6724   expand %{
6725     cmovL_memU(cop, cr, dst, src);
6726   %}
6727 %}
6728 
6729 instruct cmovF_reg(cmpOp cop, rFlagsReg cr, regF dst, regF src)
6730 %{
6731   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6732 
6733   ins_cost(200); // XXX
6734   format %{ "jn$cop    skip\t# signed cmove float\n\t"
6735             "movss     $dst, $src\n"
6736     "skip:" %}
6737   ins_encode %{
6738     Label Lskip;
6739     // Invert sense of branch from sense of CMOV
6740     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6741     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6742     __ bind(Lskip);
6743   %}
6744   ins_pipe(pipe_slow);
6745 %}
6746 
6747 // instruct cmovF_mem(cmpOp cop, rFlagsReg cr, regF dst, memory src)
6748 // %{
6749 //   match(Set dst (CMoveF (Binary cop cr) (Binary dst (LoadL src))));
6750 
6751 //   ins_cost(200); // XXX
6752 //   format %{ "jn$cop    skip\t# signed cmove float\n\t"
6753 //             "movss     $dst, $src\n"
6754 //     "skip:" %}
6755 //   ins_encode(enc_cmovf_mem_branch(cop, dst, src));
6756 //   ins_pipe(pipe_slow);
6757 // %}
6758 
6759 instruct cmovF_regU(cmpOpU cop, rFlagsRegU cr, regF dst, regF src)
6760 %{
6761   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6762 
6763   ins_cost(200); // XXX
6764   format %{ "jn$cop    skip\t# unsigned cmove float\n\t"
6765             "movss     $dst, $src\n"
6766     "skip:" %}
6767   ins_encode %{
6768     Label Lskip;
6769     // Invert sense of branch from sense of CMOV
6770     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6771     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
6772     __ bind(Lskip);
6773   %}
6774   ins_pipe(pipe_slow);
6775 %}
6776 
6777 instruct cmovF_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regF dst, regF src) %{
6778   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
6779   ins_cost(200);
6780   expand %{
6781     cmovF_regU(cop, cr, dst, src);
6782   %}
6783 %}
6784 
6785 instruct cmovD_reg(cmpOp cop, rFlagsReg cr, regD dst, regD src)
6786 %{
6787   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6788 
6789   ins_cost(200); // XXX
6790   format %{ "jn$cop    skip\t# signed cmove double\n\t"
6791             "movsd     $dst, $src\n"
6792     "skip:" %}
6793   ins_encode %{
6794     Label Lskip;
6795     // Invert sense of branch from sense of CMOV
6796     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6797     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6798     __ bind(Lskip);
6799   %}
6800   ins_pipe(pipe_slow);
6801 %}
6802 
6803 instruct cmovD_regU(cmpOpU cop, rFlagsRegU cr, regD dst, regD src)
6804 %{
6805   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6806 
6807   ins_cost(200); // XXX
6808   format %{ "jn$cop    skip\t# unsigned cmove double\n\t"
6809             "movsd     $dst, $src\n"
6810     "skip:" %}
6811   ins_encode %{
6812     Label Lskip;
6813     // Invert sense of branch from sense of CMOV
6814     __ jccb((Assembler::Condition)($cop$$cmpcode^1), Lskip);
6815     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
6816     __ bind(Lskip);
6817   %}
6818   ins_pipe(pipe_slow);
6819 %}
6820 
6821 instruct cmovD_regUCF(cmpOpUCF cop, rFlagsRegUCF cr, regD dst, regD src) %{
6822   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
6823   ins_cost(200);
6824   expand %{
6825     cmovD_regU(cop, cr, dst, src);
6826   %}
6827 %}
6828 
6829 //----------Arithmetic Instructions--------------------------------------------
6830 //----------Addition Instructions----------------------------------------------
6831 
6832 instruct addI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
6833 %{
6834   match(Set dst (AddI dst src));
6835   effect(KILL cr);
6836 
6837   format %{ "addl    $dst, $src\t# int" %}
6838   opcode(0x03);
6839   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
6840   ins_pipe(ialu_reg_reg);
6841 %}
6842 
6843 instruct addI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
6844 %{
6845   match(Set dst (AddI dst src));
6846   effect(KILL cr);
6847 
6848   format %{ "addl    $dst, $src\t# int" %}
6849   opcode(0x81, 0x00); /* /0 id */
6850   ins_encode(OpcSErm(dst, src), Con8or32(src));
6851   ins_pipe( ialu_reg );
6852 %}
6853 
6854 instruct addI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
6855 %{
6856   match(Set dst (AddI dst (LoadI src)));
6857   effect(KILL cr);
6858 
6859   ins_cost(125); // XXX
6860   format %{ "addl    $dst, $src\t# int" %}
6861   opcode(0x03);
6862   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
6863   ins_pipe(ialu_reg_mem);
6864 %}
6865 
6866 instruct addI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
6867 %{
6868   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6869   effect(KILL cr);
6870 
6871   ins_cost(150); // XXX
6872   format %{ "addl    $dst, $src\t# int" %}
6873   opcode(0x01); /* Opcode 01 /r */
6874   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
6875   ins_pipe(ialu_mem_reg);
6876 %}
6877 
6878 instruct addI_mem_imm(memory dst, immI src, rFlagsReg cr)
6879 %{
6880   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6881   effect(KILL cr);
6882 
6883   ins_cost(125); // XXX
6884   format %{ "addl    $dst, $src\t# int" %}
6885   opcode(0x81); /* Opcode 81 /0 id */
6886   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
6887   ins_pipe(ialu_mem_imm);
6888 %}
6889 
6890 instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
6891 %{
6892   predicate(UseIncDec);
6893   match(Set dst (AddI dst src));
6894   effect(KILL cr);
6895 
6896   format %{ "incl    $dst\t# int" %}
6897   opcode(0xFF, 0x00); // FF /0
6898   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
6899   ins_pipe(ialu_reg);
6900 %}
6901 
6902 instruct incI_mem(memory dst, immI1 src, rFlagsReg cr)
6903 %{
6904   predicate(UseIncDec);
6905   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6906   effect(KILL cr);
6907 
6908   ins_cost(125); // XXX
6909   format %{ "incl    $dst\t# int" %}
6910   opcode(0xFF); /* Opcode FF /0 */
6911   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x00, dst));
6912   ins_pipe(ialu_mem_imm);
6913 %}
6914 
6915 // XXX why does that use AddI
6916 instruct decI_rReg(rRegI dst, immI_M1 src, rFlagsReg cr)
6917 %{
6918   predicate(UseIncDec);
6919   match(Set dst (AddI dst src));
6920   effect(KILL cr);
6921 
6922   format %{ "decl    $dst\t# int" %}
6923   opcode(0xFF, 0x01); // FF /1
6924   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
6925   ins_pipe(ialu_reg);
6926 %}
6927 
6928 // XXX why does that use AddI
6929 instruct decI_mem(memory dst, immI_M1 src, rFlagsReg cr)
6930 %{
6931   predicate(UseIncDec);
6932   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
6933   effect(KILL cr);
6934 
6935   ins_cost(125); // XXX
6936   format %{ "decl    $dst\t# int" %}
6937   opcode(0xFF); /* Opcode FF /1 */
6938   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(0x01, dst));
6939   ins_pipe(ialu_mem_imm);
6940 %}
6941 
6942 instruct leaI_rReg_immI(rRegI dst, rRegI src0, immI src1)
6943 %{
6944   match(Set dst (AddI src0 src1));
6945 
6946   ins_cost(110);
6947   format %{ "addr32 leal $dst, [$src0 + $src1]\t# int" %}
6948   opcode(0x8D); /* 0x8D /r */
6949   ins_encode(Opcode(0x67), REX_reg_reg(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
6950   ins_pipe(ialu_reg_reg);
6951 %}
6952 
6953 instruct addL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
6954 %{
6955   match(Set dst (AddL dst src));
6956   effect(KILL cr);
6957 
6958   format %{ "addq    $dst, $src\t# long" %}
6959   opcode(0x03);
6960   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
6961   ins_pipe(ialu_reg_reg);
6962 %}
6963 
6964 instruct addL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
6965 %{
6966   match(Set dst (AddL dst src));
6967   effect(KILL cr);
6968 
6969   format %{ "addq    $dst, $src\t# long" %}
6970   opcode(0x81, 0x00); /* /0 id */
6971   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
6972   ins_pipe( ialu_reg );
6973 %}
6974 
6975 instruct addL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
6976 %{
6977   match(Set dst (AddL dst (LoadL src)));
6978   effect(KILL cr);
6979 
6980   ins_cost(125); // XXX
6981   format %{ "addq    $dst, $src\t# long" %}
6982   opcode(0x03);
6983   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
6984   ins_pipe(ialu_reg_mem);
6985 %}
6986 
6987 instruct addL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
6988 %{
6989   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
6990   effect(KILL cr);
6991 
6992   ins_cost(150); // XXX
6993   format %{ "addq    $dst, $src\t# long" %}
6994   opcode(0x01); /* Opcode 01 /r */
6995   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
6996   ins_pipe(ialu_mem_reg);
6997 %}
6998 
6999 instruct addL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7000 %{
7001   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7002   effect(KILL cr);
7003 
7004   ins_cost(125); // XXX
7005   format %{ "addq    $dst, $src\t# long" %}
7006   opcode(0x81); /* Opcode 81 /0 id */
7007   ins_encode(REX_mem_wide(dst),
7008              OpcSE(src), RM_opc_mem(0x00, dst), Con8or32(src));
7009   ins_pipe(ialu_mem_imm);
7010 %}
7011 
7012 instruct incL_rReg(rRegI dst, immL1 src, rFlagsReg cr)
7013 %{
7014   predicate(UseIncDec);
7015   match(Set dst (AddL dst src));
7016   effect(KILL cr);
7017 
7018   format %{ "incq    $dst\t# long" %}
7019   opcode(0xFF, 0x00); // FF /0
7020   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7021   ins_pipe(ialu_reg);
7022 %}
7023 
7024 instruct incL_mem(memory dst, immL1 src, rFlagsReg cr)
7025 %{
7026   predicate(UseIncDec);
7027   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7028   effect(KILL cr);
7029 
7030   ins_cost(125); // XXX
7031   format %{ "incq    $dst\t# long" %}
7032   opcode(0xFF); /* Opcode FF /0 */
7033   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x00, dst));
7034   ins_pipe(ialu_mem_imm);
7035 %}
7036 
7037 // XXX why does that use AddL
7038 instruct decL_rReg(rRegL dst, immL_M1 src, rFlagsReg cr)
7039 %{
7040   predicate(UseIncDec);
7041   match(Set dst (AddL dst src));
7042   effect(KILL cr);
7043 
7044   format %{ "decq    $dst\t# long" %}
7045   opcode(0xFF, 0x01); // FF /1
7046   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7047   ins_pipe(ialu_reg);
7048 %}
7049 
7050 // XXX why does that use AddL
7051 instruct decL_mem(memory dst, immL_M1 src, rFlagsReg cr)
7052 %{
7053   predicate(UseIncDec);
7054   match(Set dst (StoreL dst (AddL (LoadL dst) src)));
7055   effect(KILL cr);
7056 
7057   ins_cost(125); // XXX
7058   format %{ "decq    $dst\t# long" %}
7059   opcode(0xFF); /* Opcode FF /1 */
7060   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(0x01, dst));
7061   ins_pipe(ialu_mem_imm);
7062 %}
7063 
7064 instruct leaL_rReg_immL(rRegL dst, rRegL src0, immL32 src1)
7065 %{
7066   match(Set dst (AddL src0 src1));
7067 
7068   ins_cost(110);
7069   format %{ "leaq    $dst, [$src0 + $src1]\t# long" %}
7070   opcode(0x8D); /* 0x8D /r */
7071   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1)); // XXX
7072   ins_pipe(ialu_reg_reg);
7073 %}
7074 
7075 instruct addP_rReg(rRegP dst, rRegL src, rFlagsReg cr)
7076 %{
7077   match(Set dst (AddP dst src));
7078   effect(KILL cr);
7079 
7080   format %{ "addq    $dst, $src\t# ptr" %}
7081   opcode(0x03);
7082   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7083   ins_pipe(ialu_reg_reg);
7084 %}
7085 
7086 instruct addP_rReg_imm(rRegP dst, immL32 src, rFlagsReg cr)
7087 %{
7088   match(Set dst (AddP dst src));
7089   effect(KILL cr);
7090 
7091   format %{ "addq    $dst, $src\t# ptr" %}
7092   opcode(0x81, 0x00); /* /0 id */
7093   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7094   ins_pipe( ialu_reg );
7095 %}
7096 
7097 // XXX addP mem ops ????
7098 
7099 instruct leaP_rReg_imm(rRegP dst, rRegP src0, immL32 src1)
7100 %{
7101   match(Set dst (AddP src0 src1));
7102 
7103   ins_cost(110);
7104   format %{ "leaq    $dst, [$src0 + $src1]\t# ptr" %}
7105   opcode(0x8D); /* 0x8D /r */
7106   ins_encode(REX_reg_reg_wide(dst, src0), OpcP, reg_lea(dst, src0, src1));// XXX
7107   ins_pipe(ialu_reg_reg);
7108 %}
7109 
7110 instruct checkCastPP(rRegP dst)
7111 %{
7112   match(Set dst (CheckCastPP dst));
7113 
7114   size(0);
7115   format %{ "# checkcastPP of $dst" %}
7116   ins_encode(/* empty encoding */);
7117   ins_pipe(empty);
7118 %}
7119 
7120 instruct castPP(rRegP dst)
7121 %{
7122   match(Set dst (CastPP dst));
7123 
7124   size(0);
7125   format %{ "# castPP of $dst" %}
7126   ins_encode(/* empty encoding */);
7127   ins_pipe(empty);
7128 %}
7129 
7130 instruct castII(rRegI dst)
7131 %{
7132   match(Set dst (CastII dst));
7133 
7134   size(0);
7135   format %{ "# castII of $dst" %}
7136   ins_encode(/* empty encoding */);
7137   ins_cost(0);
7138   ins_pipe(empty);
7139 %}
7140 
7141 // LoadP-locked same as a regular LoadP when used with compare-swap
7142 instruct loadPLocked(rRegP dst, memory mem)
7143 %{
7144   match(Set dst (LoadPLocked mem));
7145 
7146   ins_cost(125); // XXX
7147   format %{ "movq    $dst, $mem\t# ptr locked" %}
7148   opcode(0x8B);
7149   ins_encode(REX_reg_mem_wide(dst, mem), OpcP, reg_mem(dst, mem));
7150   ins_pipe(ialu_reg_mem); // XXX
7151 %}
7152 
7153 // Conditional-store of the updated heap-top.
7154 // Used during allocation of the shared heap.
7155 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7156 
7157 instruct storePConditional(memory heap_top_ptr,
7158                            rax_RegP oldval, rRegP newval,
7159                            rFlagsReg cr)
7160 %{
7161   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7162 
7163   format %{ "cmpxchgq $heap_top_ptr, $newval\t# (ptr) "
7164             "If rax == $heap_top_ptr then store $newval into $heap_top_ptr" %}
7165   opcode(0x0F, 0xB1);
7166   ins_encode(lock_prefix,
7167              REX_reg_mem_wide(newval, heap_top_ptr),
7168              OpcP, OpcS,
7169              reg_mem(newval, heap_top_ptr));
7170   ins_pipe(pipe_cmpxchg);
7171 %}
7172 
7173 // Conditional-store of an int value.
7174 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7175 instruct storeIConditional(memory mem, rax_RegI oldval, rRegI newval, rFlagsReg cr)
7176 %{
7177   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7178   effect(KILL oldval);
7179 
7180   format %{ "cmpxchgl $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7181   opcode(0x0F, 0xB1);
7182   ins_encode(lock_prefix,
7183              REX_reg_mem(newval, mem),
7184              OpcP, OpcS,
7185              reg_mem(newval, mem));
7186   ins_pipe(pipe_cmpxchg);
7187 %}
7188 
7189 // Conditional-store of a long value.
7190 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG.
7191 instruct storeLConditional(memory mem, rax_RegL oldval, rRegL newval, rFlagsReg cr)
7192 %{
7193   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7194   effect(KILL oldval);
7195 
7196   format %{ "cmpxchgq $mem, $newval\t# If rax == $mem then store $newval into $mem" %}
7197   opcode(0x0F, 0xB1);
7198   ins_encode(lock_prefix,
7199              REX_reg_mem_wide(newval, mem),
7200              OpcP, OpcS,
7201              reg_mem(newval, mem));
7202   ins_pipe(pipe_cmpxchg);
7203 %}
7204 
7205 
7206 // XXX No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7207 instruct compareAndSwapP(rRegI res,
7208                          memory mem_ptr,
7209                          rax_RegP oldval, rRegP newval,
7210                          rFlagsReg cr)
7211 %{
7212   predicate(VM_Version::supports_cx8());
7213   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7214   effect(KILL cr, KILL oldval);
7215 
7216   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7217             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7218             "sete    $res\n\t"
7219             "movzbl  $res, $res" %}
7220   opcode(0x0F, 0xB1);
7221   ins_encode(lock_prefix,
7222              REX_reg_mem_wide(newval, mem_ptr),
7223              OpcP, OpcS,
7224              reg_mem(newval, mem_ptr),
7225              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7226              REX_reg_breg(res, res), // movzbl
7227              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7228   ins_pipe( pipe_cmpxchg );
7229 %}
7230 
7231 instruct compareAndSwapL(rRegI res,
7232                          memory mem_ptr,
7233                          rax_RegL oldval, rRegL newval,
7234                          rFlagsReg cr)
7235 %{
7236   predicate(VM_Version::supports_cx8());
7237   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7238   effect(KILL cr, KILL oldval);
7239 
7240   format %{ "cmpxchgq $mem_ptr,$newval\t# "
7241             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7242             "sete    $res\n\t"
7243             "movzbl  $res, $res" %}
7244   opcode(0x0F, 0xB1);
7245   ins_encode(lock_prefix,
7246              REX_reg_mem_wide(newval, mem_ptr),
7247              OpcP, OpcS,
7248              reg_mem(newval, mem_ptr),
7249              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7250              REX_reg_breg(res, res), // movzbl
7251              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7252   ins_pipe( pipe_cmpxchg );
7253 %}
7254 
7255 instruct compareAndSwapI(rRegI res,
7256                          memory mem_ptr,
7257                          rax_RegI oldval, rRegI newval,
7258                          rFlagsReg cr)
7259 %{
7260   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7261   effect(KILL cr, KILL oldval);
7262 
7263   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7264             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7265             "sete    $res\n\t"
7266             "movzbl  $res, $res" %}
7267   opcode(0x0F, 0xB1);
7268   ins_encode(lock_prefix,
7269              REX_reg_mem(newval, mem_ptr),
7270              OpcP, OpcS,
7271              reg_mem(newval, mem_ptr),
7272              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7273              REX_reg_breg(res, res), // movzbl
7274              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7275   ins_pipe( pipe_cmpxchg );
7276 %}
7277 
7278 
7279 instruct compareAndSwapN(rRegI res,
7280                           memory mem_ptr,
7281                           rax_RegN oldval, rRegN newval,
7282                           rFlagsReg cr) %{
7283   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7284   effect(KILL cr, KILL oldval);
7285 
7286   format %{ "cmpxchgl $mem_ptr,$newval\t# "
7287             "If rax == $mem_ptr then store $newval into $mem_ptr\n\t"
7288             "sete    $res\n\t"
7289             "movzbl  $res, $res" %}
7290   opcode(0x0F, 0xB1);
7291   ins_encode(lock_prefix,
7292              REX_reg_mem(newval, mem_ptr),
7293              OpcP, OpcS,
7294              reg_mem(newval, mem_ptr),
7295              REX_breg(res), Opcode(0x0F), Opcode(0x94), reg(res), // sete
7296              REX_reg_breg(res, res), // movzbl
7297              Opcode(0xF), Opcode(0xB6), reg_reg(res, res));
7298   ins_pipe( pipe_cmpxchg );
7299 %}
7300 
7301 instruct xaddI_no_res( memory mem, Universe dummy, immI add, rFlagsReg cr) %{
7302   predicate(n->as_LoadStore()->result_not_used());
7303   match(Set dummy (GetAndAddI mem add));
7304   effect(KILL cr);
7305   format %{ "ADDL  [$mem],$add" %}
7306   ins_encode %{
7307     if (os::is_MP()) { __ lock(); }
7308     __ addl($mem$$Address, $add$$constant);
7309   %}
7310   ins_pipe( pipe_cmpxchg );
7311 %}
7312 
7313 instruct xaddI( memory mem, rRegI newval, rFlagsReg cr) %{
7314   match(Set newval (GetAndAddI mem newval));
7315   effect(KILL cr);
7316   format %{ "XADDL  [$mem],$newval" %}
7317   ins_encode %{
7318     if (os::is_MP()) { __ lock(); }
7319     __ xaddl($mem$$Address, $newval$$Register);
7320   %}
7321   ins_pipe( pipe_cmpxchg );
7322 %}
7323 
7324 instruct xaddL_no_res( memory mem, Universe dummy, immL32 add, rFlagsReg cr) %{
7325   predicate(n->as_LoadStore()->result_not_used());
7326   match(Set dummy (GetAndAddL mem add));
7327   effect(KILL cr);
7328   format %{ "ADDQ  [$mem],$add" %}
7329   ins_encode %{
7330     if (os::is_MP()) { __ lock(); }
7331     __ addq($mem$$Address, $add$$constant);
7332   %}
7333   ins_pipe( pipe_cmpxchg );
7334 %}
7335 
7336 instruct xaddL( memory mem, rRegL newval, rFlagsReg cr) %{
7337   match(Set newval (GetAndAddL mem newval));
7338   effect(KILL cr);
7339   format %{ "XADDQ  [$mem],$newval" %}
7340   ins_encode %{
7341     if (os::is_MP()) { __ lock(); }
7342     __ xaddq($mem$$Address, $newval$$Register);
7343   %}
7344   ins_pipe( pipe_cmpxchg );
7345 %}
7346 
7347 instruct xchgI( memory mem, rRegI newval) %{
7348   match(Set newval (GetAndSetI mem newval));
7349   format %{ "XCHGL  $newval,[$mem]" %}
7350   ins_encode %{
7351     __ xchgl($newval$$Register, $mem$$Address);
7352   %}
7353   ins_pipe( pipe_cmpxchg );
7354 %}
7355 
7356 instruct xchgL( memory mem, rRegL newval) %{
7357   match(Set newval (GetAndSetL mem newval));
7358   format %{ "XCHGL  $newval,[$mem]" %}
7359   ins_encode %{
7360     __ xchgq($newval$$Register, $mem$$Address);
7361   %}
7362   ins_pipe( pipe_cmpxchg );
7363 %}
7364 
7365 instruct xchgP( memory mem, rRegP newval) %{
7366   match(Set newval (GetAndSetP mem newval));
7367   format %{ "XCHGQ  $newval,[$mem]" %}
7368   ins_encode %{
7369     __ xchgq($newval$$Register, $mem$$Address);
7370   %}
7371   ins_pipe( pipe_cmpxchg );
7372 %}
7373 
7374 instruct xchgN( memory mem, rRegN newval) %{
7375   match(Set newval (GetAndSetN mem newval));
7376   format %{ "XCHGL  $newval,$mem]" %}
7377   ins_encode %{
7378     __ xchgl($newval$$Register, $mem$$Address);
7379   %}
7380   ins_pipe( pipe_cmpxchg );
7381 %}
7382 
7383 //----------Subtraction Instructions-------------------------------------------
7384 
7385 // Integer Subtraction Instructions
7386 instruct subI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7387 %{
7388   match(Set dst (SubI dst src));
7389   effect(KILL cr);
7390 
7391   format %{ "subl    $dst, $src\t# int" %}
7392   opcode(0x2B);
7393   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
7394   ins_pipe(ialu_reg_reg);
7395 %}
7396 
7397 instruct subI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
7398 %{
7399   match(Set dst (SubI dst src));
7400   effect(KILL cr);
7401 
7402   format %{ "subl    $dst, $src\t# int" %}
7403   opcode(0x81, 0x05);  /* Opcode 81 /5 */
7404   ins_encode(OpcSErm(dst, src), Con8or32(src));
7405   ins_pipe(ialu_reg);
7406 %}
7407 
7408 instruct subI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
7409 %{
7410   match(Set dst (SubI dst (LoadI src)));
7411   effect(KILL cr);
7412 
7413   ins_cost(125);
7414   format %{ "subl    $dst, $src\t# int" %}
7415   opcode(0x2B);
7416   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
7417   ins_pipe(ialu_reg_mem);
7418 %}
7419 
7420 instruct subI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
7421 %{
7422   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7423   effect(KILL cr);
7424 
7425   ins_cost(150);
7426   format %{ "subl    $dst, $src\t# int" %}
7427   opcode(0x29); /* Opcode 29 /r */
7428   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
7429   ins_pipe(ialu_mem_reg);
7430 %}
7431 
7432 instruct subI_mem_imm(memory dst, immI src, rFlagsReg cr)
7433 %{
7434   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
7435   effect(KILL cr);
7436 
7437   ins_cost(125); // XXX
7438   format %{ "subl    $dst, $src\t# int" %}
7439   opcode(0x81); /* Opcode 81 /5 id */
7440   ins_encode(REX_mem(dst), OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7441   ins_pipe(ialu_mem_imm);
7442 %}
7443 
7444 instruct subL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7445 %{
7446   match(Set dst (SubL dst src));
7447   effect(KILL cr);
7448 
7449   format %{ "subq    $dst, $src\t# long" %}
7450   opcode(0x2B);
7451   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7452   ins_pipe(ialu_reg_reg);
7453 %}
7454 
7455 instruct subL_rReg_imm(rRegI dst, immL32 src, rFlagsReg cr)
7456 %{
7457   match(Set dst (SubL dst src));
7458   effect(KILL cr);
7459 
7460   format %{ "subq    $dst, $src\t# long" %}
7461   opcode(0x81, 0x05);  /* Opcode 81 /5 */
7462   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
7463   ins_pipe(ialu_reg);
7464 %}
7465 
7466 instruct subL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
7467 %{
7468   match(Set dst (SubL dst (LoadL src)));
7469   effect(KILL cr);
7470 
7471   ins_cost(125);
7472   format %{ "subq    $dst, $src\t# long" %}
7473   opcode(0x2B);
7474   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
7475   ins_pipe(ialu_reg_mem);
7476 %}
7477 
7478 instruct subL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
7479 %{
7480   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7481   effect(KILL cr);
7482 
7483   ins_cost(150);
7484   format %{ "subq    $dst, $src\t# long" %}
7485   opcode(0x29); /* Opcode 29 /r */
7486   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
7487   ins_pipe(ialu_mem_reg);
7488 %}
7489 
7490 instruct subL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
7491 %{
7492   match(Set dst (StoreL dst (SubL (LoadL dst) src)));
7493   effect(KILL cr);
7494 
7495   ins_cost(125); // XXX
7496   format %{ "subq    $dst, $src\t# long" %}
7497   opcode(0x81); /* Opcode 81 /5 id */
7498   ins_encode(REX_mem_wide(dst),
7499              OpcSE(src), RM_opc_mem(0x05, dst), Con8or32(src));
7500   ins_pipe(ialu_mem_imm);
7501 %}
7502 
7503 // Subtract from a pointer
7504 // XXX hmpf???
7505 instruct subP_rReg(rRegP dst, rRegI src, immI0 zero, rFlagsReg cr)
7506 %{
7507   match(Set dst (AddP dst (SubI zero src)));
7508   effect(KILL cr);
7509 
7510   format %{ "subq    $dst, $src\t# ptr - int" %}
7511   opcode(0x2B);
7512   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
7513   ins_pipe(ialu_reg_reg);
7514 %}
7515 
7516 instruct negI_rReg(rRegI dst, immI0 zero, rFlagsReg cr)
7517 %{
7518   match(Set dst (SubI zero dst));
7519   effect(KILL cr);
7520 
7521   format %{ "negl    $dst\t# int" %}
7522   opcode(0xF7, 0x03);  // Opcode F7 /3
7523   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7524   ins_pipe(ialu_reg);
7525 %}
7526 
7527 instruct negI_mem(memory dst, immI0 zero, rFlagsReg cr)
7528 %{
7529   match(Set dst (StoreI dst (SubI zero (LoadI dst))));
7530   effect(KILL cr);
7531 
7532   format %{ "negl    $dst\t# int" %}
7533   opcode(0xF7, 0x03);  // Opcode F7 /3
7534   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7535   ins_pipe(ialu_reg);
7536 %}
7537 
7538 instruct negL_rReg(rRegL dst, immL0 zero, rFlagsReg cr)
7539 %{
7540   match(Set dst (SubL zero dst));
7541   effect(KILL cr);
7542 
7543   format %{ "negq    $dst\t# long" %}
7544   opcode(0xF7, 0x03);  // Opcode F7 /3
7545   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
7546   ins_pipe(ialu_reg);
7547 %}
7548 
7549 instruct negL_mem(memory dst, immL0 zero, rFlagsReg cr)
7550 %{
7551   match(Set dst (StoreL dst (SubL zero (LoadL dst))));
7552   effect(KILL cr);
7553 
7554   format %{ "negq    $dst\t# long" %}
7555   opcode(0xF7, 0x03);  // Opcode F7 /3
7556   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
7557   ins_pipe(ialu_reg);
7558 %}
7559 
7560 //----------Multiplication/Division Instructions-------------------------------
7561 // Integer Multiplication Instructions
7562 // Multiply Register
7563 
7564 instruct mulI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
7565 %{
7566   match(Set dst (MulI dst src));
7567   effect(KILL cr);
7568 
7569   ins_cost(300);
7570   format %{ "imull   $dst, $src\t# int" %}
7571   opcode(0x0F, 0xAF);
7572   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
7573   ins_pipe(ialu_reg_reg_alu0);
7574 %}
7575 
7576 instruct mulI_rReg_imm(rRegI dst, rRegI src, immI imm, rFlagsReg cr)
7577 %{
7578   match(Set dst (MulI src imm));
7579   effect(KILL cr);
7580 
7581   ins_cost(300);
7582   format %{ "imull   $dst, $src, $imm\t# int" %}
7583   opcode(0x69); /* 69 /r id */
7584   ins_encode(REX_reg_reg(dst, src),
7585              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
7586   ins_pipe(ialu_reg_reg_alu0);
7587 %}
7588 
7589 instruct mulI_mem(rRegI dst, memory src, rFlagsReg cr)
7590 %{
7591   match(Set dst (MulI dst (LoadI src)));
7592   effect(KILL cr);
7593 
7594   ins_cost(350);
7595   format %{ "imull   $dst, $src\t# int" %}
7596   opcode(0x0F, 0xAF);
7597   ins_encode(REX_reg_mem(dst, src), OpcP, OpcS, reg_mem(dst, src));
7598   ins_pipe(ialu_reg_mem_alu0);
7599 %}
7600 
7601 instruct mulI_mem_imm(rRegI dst, memory src, immI imm, rFlagsReg cr)
7602 %{
7603   match(Set dst (MulI (LoadI src) imm));
7604   effect(KILL cr);
7605 
7606   ins_cost(300);
7607   format %{ "imull   $dst, $src, $imm\t# int" %}
7608   opcode(0x69); /* 69 /r id */
7609   ins_encode(REX_reg_mem(dst, src),
7610              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
7611   ins_pipe(ialu_reg_mem_alu0);
7612 %}
7613 
7614 instruct mulL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
7615 %{
7616   match(Set dst (MulL dst src));
7617   effect(KILL cr);
7618 
7619   ins_cost(300);
7620   format %{ "imulq   $dst, $src\t# long" %}
7621   opcode(0x0F, 0xAF);
7622   ins_encode(REX_reg_reg_wide(dst, src), OpcP, OpcS, reg_reg(dst, src));
7623   ins_pipe(ialu_reg_reg_alu0);
7624 %}
7625 
7626 instruct mulL_rReg_imm(rRegL dst, rRegL src, immL32 imm, rFlagsReg cr)
7627 %{
7628   match(Set dst (MulL src imm));
7629   effect(KILL cr);
7630 
7631   ins_cost(300);
7632   format %{ "imulq   $dst, $src, $imm\t# long" %}
7633   opcode(0x69); /* 69 /r id */
7634   ins_encode(REX_reg_reg_wide(dst, src),
7635              OpcSE(imm), reg_reg(dst, src), Con8or32(imm));
7636   ins_pipe(ialu_reg_reg_alu0);
7637 %}
7638 
7639 instruct mulL_mem(rRegL dst, memory src, rFlagsReg cr)
7640 %{
7641   match(Set dst (MulL dst (LoadL src)));
7642   effect(KILL cr);
7643 
7644   ins_cost(350);
7645   format %{ "imulq   $dst, $src\t# long" %}
7646   opcode(0x0F, 0xAF);
7647   ins_encode(REX_reg_mem_wide(dst, src), OpcP, OpcS, reg_mem(dst, src));
7648   ins_pipe(ialu_reg_mem_alu0);
7649 %}
7650 
7651 instruct mulL_mem_imm(rRegL dst, memory src, immL32 imm, rFlagsReg cr)
7652 %{
7653   match(Set dst (MulL (LoadL src) imm));
7654   effect(KILL cr);
7655 
7656   ins_cost(300);
7657   format %{ "imulq   $dst, $src, $imm\t# long" %}
7658   opcode(0x69); /* 69 /r id */
7659   ins_encode(REX_reg_mem_wide(dst, src),
7660              OpcSE(imm), reg_mem(dst, src), Con8or32(imm));
7661   ins_pipe(ialu_reg_mem_alu0);
7662 %}
7663 
7664 instruct mulHiL_rReg(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
7665 %{
7666   match(Set dst (MulHiL src rax));
7667   effect(USE_KILL rax, KILL cr);
7668 
7669   ins_cost(300);
7670   format %{ "imulq   RDX:RAX, RAX, $src\t# mulhi" %}
7671   opcode(0xF7, 0x5); /* Opcode F7 /5 */
7672   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
7673   ins_pipe(ialu_reg_reg_alu0);
7674 %}
7675 
7676 instruct divI_rReg(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
7677                    rFlagsReg cr)
7678 %{
7679   match(Set rax (DivI rax div));
7680   effect(KILL rdx, KILL cr);
7681 
7682   ins_cost(30*100+10*100); // XXX
7683   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
7684             "jne,s   normal\n\t"
7685             "xorl    rdx, rdx\n\t"
7686             "cmpl    $div, -1\n\t"
7687             "je,s    done\n"
7688     "normal: cdql\n\t"
7689             "idivl   $div\n"
7690     "done:"        %}
7691   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7692   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7693   ins_pipe(ialu_reg_reg_alu0);
7694 %}
7695 
7696 instruct divL_rReg(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
7697                    rFlagsReg cr)
7698 %{
7699   match(Set rax (DivL rax div));
7700   effect(KILL rdx, KILL cr);
7701 
7702   ins_cost(30*100+10*100); // XXX
7703   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
7704             "cmpq    rax, rdx\n\t"
7705             "jne,s   normal\n\t"
7706             "xorl    rdx, rdx\n\t"
7707             "cmpq    $div, -1\n\t"
7708             "je,s    done\n"
7709     "normal: cdqq\n\t"
7710             "idivq   $div\n"
7711     "done:"        %}
7712   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7713   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7714   ins_pipe(ialu_reg_reg_alu0);
7715 %}
7716 
7717 // Integer DIVMOD with Register, both quotient and mod results
7718 instruct divModI_rReg_divmod(rax_RegI rax, rdx_RegI rdx, no_rax_rdx_RegI div,
7719                              rFlagsReg cr)
7720 %{
7721   match(DivModI rax div);
7722   effect(KILL cr);
7723 
7724   ins_cost(30*100+10*100); // XXX
7725   format %{ "cmpl    rax, 0x80000000\t# idiv\n\t"
7726             "jne,s   normal\n\t"
7727             "xorl    rdx, rdx\n\t"
7728             "cmpl    $div, -1\n\t"
7729             "je,s    done\n"
7730     "normal: cdql\n\t"
7731             "idivl   $div\n"
7732     "done:"        %}
7733   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7734   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7735   ins_pipe(pipe_slow);
7736 %}
7737 
7738 // Long DIVMOD with Register, both quotient and mod results
7739 instruct divModL_rReg_divmod(rax_RegL rax, rdx_RegL rdx, no_rax_rdx_RegL div,
7740                              rFlagsReg cr)
7741 %{
7742   match(DivModL rax div);
7743   effect(KILL cr);
7744 
7745   ins_cost(30*100+10*100); // XXX
7746   format %{ "movq    rdx, 0x8000000000000000\t# ldiv\n\t"
7747             "cmpq    rax, rdx\n\t"
7748             "jne,s   normal\n\t"
7749             "xorl    rdx, rdx\n\t"
7750             "cmpq    $div, -1\n\t"
7751             "je,s    done\n"
7752     "normal: cdqq\n\t"
7753             "idivq   $div\n"
7754     "done:"        %}
7755   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7756   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7757   ins_pipe(pipe_slow);
7758 %}
7759 
7760 //----------- DivL-By-Constant-Expansions--------------------------------------
7761 // DivI cases are handled by the compiler
7762 
7763 // Magic constant, reciprocal of 10
7764 instruct loadConL_0x6666666666666667(rRegL dst)
7765 %{
7766   effect(DEF dst);
7767 
7768   format %{ "movq    $dst, #0x666666666666667\t# Used in div-by-10" %}
7769   ins_encode(load_immL(dst, 0x6666666666666667));
7770   ins_pipe(ialu_reg);
7771 %}
7772 
7773 instruct mul_hi(rdx_RegL dst, no_rax_RegL src, rax_RegL rax, rFlagsReg cr)
7774 %{
7775   effect(DEF dst, USE src, USE_KILL rax, KILL cr);
7776 
7777   format %{ "imulq   rdx:rax, rax, $src\t# Used in div-by-10" %}
7778   opcode(0xF7, 0x5); /* Opcode F7 /5 */
7779   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src));
7780   ins_pipe(ialu_reg_reg_alu0);
7781 %}
7782 
7783 instruct sarL_rReg_63(rRegL dst, rFlagsReg cr)
7784 %{
7785   effect(USE_DEF dst, KILL cr);
7786 
7787   format %{ "sarq    $dst, #63\t# Used in div-by-10" %}
7788   opcode(0xC1, 0x7); /* C1 /7 ib */
7789   ins_encode(reg_opc_imm_wide(dst, 0x3F));
7790   ins_pipe(ialu_reg);
7791 %}
7792 
7793 instruct sarL_rReg_2(rRegL dst, rFlagsReg cr)
7794 %{
7795   effect(USE_DEF dst, KILL cr);
7796 
7797   format %{ "sarq    $dst, #2\t# Used in div-by-10" %}
7798   opcode(0xC1, 0x7); /* C1 /7 ib */
7799   ins_encode(reg_opc_imm_wide(dst, 0x2));
7800   ins_pipe(ialu_reg);
7801 %}
7802 
7803 instruct divL_10(rdx_RegL dst, no_rax_RegL src, immL10 div)
7804 %{
7805   match(Set dst (DivL src div));
7806 
7807   ins_cost((5+8)*100);
7808   expand %{
7809     rax_RegL rax;                     // Killed temp
7810     rFlagsReg cr;                     // Killed
7811     loadConL_0x6666666666666667(rax); // movq  rax, 0x6666666666666667
7812     mul_hi(dst, src, rax, cr);        // mulq  rdx:rax <= rax * $src
7813     sarL_rReg_63(src, cr);            // sarq  src, 63
7814     sarL_rReg_2(dst, cr);             // sarq  rdx, 2
7815     subL_rReg(dst, src, cr);          // subl  rdx, src
7816   %}
7817 %}
7818 
7819 //-----------------------------------------------------------------------------
7820 
7821 instruct modI_rReg(rdx_RegI rdx, rax_RegI rax, no_rax_rdx_RegI div,
7822                    rFlagsReg cr)
7823 %{
7824   match(Set rdx (ModI rax div));
7825   effect(KILL rax, KILL cr);
7826 
7827   ins_cost(300); // XXX
7828   format %{ "cmpl    rax, 0x80000000\t# irem\n\t"
7829             "jne,s   normal\n\t"
7830             "xorl    rdx, rdx\n\t"
7831             "cmpl    $div, -1\n\t"
7832             "je,s    done\n"
7833     "normal: cdql\n\t"
7834             "idivl   $div\n"
7835     "done:"        %}
7836   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7837   ins_encode(cdql_enc(div), REX_reg(div), OpcP, reg_opc(div));
7838   ins_pipe(ialu_reg_reg_alu0);
7839 %}
7840 
7841 instruct modL_rReg(rdx_RegL rdx, rax_RegL rax, no_rax_rdx_RegL div,
7842                    rFlagsReg cr)
7843 %{
7844   match(Set rdx (ModL rax div));
7845   effect(KILL rax, KILL cr);
7846 
7847   ins_cost(300); // XXX
7848   format %{ "movq    rdx, 0x8000000000000000\t# lrem\n\t"
7849             "cmpq    rax, rdx\n\t"
7850             "jne,s   normal\n\t"
7851             "xorl    rdx, rdx\n\t"
7852             "cmpq    $div, -1\n\t"
7853             "je,s    done\n"
7854     "normal: cdqq\n\t"
7855             "idivq   $div\n"
7856     "done:"        %}
7857   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
7858   ins_encode(cdqq_enc(div), REX_reg_wide(div), OpcP, reg_opc(div));
7859   ins_pipe(ialu_reg_reg_alu0);
7860 %}
7861 
7862 // Integer Shift Instructions
7863 // Shift Left by one
7864 instruct salI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
7865 %{
7866   match(Set dst (LShiftI dst shift));
7867   effect(KILL cr);
7868 
7869   format %{ "sall    $dst, $shift" %}
7870   opcode(0xD1, 0x4); /* D1 /4 */
7871   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7872   ins_pipe(ialu_reg);
7873 %}
7874 
7875 // Shift Left by one
7876 instruct salI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
7877 %{
7878   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
7879   effect(KILL cr);
7880 
7881   format %{ "sall    $dst, $shift\t" %}
7882   opcode(0xD1, 0x4); /* D1 /4 */
7883   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7884   ins_pipe(ialu_mem_imm);
7885 %}
7886 
7887 // Shift Left by 8-bit immediate
7888 instruct salI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
7889 %{
7890   match(Set dst (LShiftI dst shift));
7891   effect(KILL cr);
7892 
7893   format %{ "sall    $dst, $shift" %}
7894   opcode(0xC1, 0x4); /* C1 /4 ib */
7895   ins_encode(reg_opc_imm(dst, shift));
7896   ins_pipe(ialu_reg);
7897 %}
7898 
7899 // Shift Left by 8-bit immediate
7900 instruct salI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
7901 %{
7902   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
7903   effect(KILL cr);
7904 
7905   format %{ "sall    $dst, $shift" %}
7906   opcode(0xC1, 0x4); /* C1 /4 ib */
7907   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
7908   ins_pipe(ialu_mem_imm);
7909 %}
7910 
7911 // Shift Left by variable
7912 instruct salI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
7913 %{
7914   match(Set dst (LShiftI dst shift));
7915   effect(KILL cr);
7916 
7917   format %{ "sall    $dst, $shift" %}
7918   opcode(0xD3, 0x4); /* D3 /4 */
7919   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7920   ins_pipe(ialu_reg_reg);
7921 %}
7922 
7923 // Shift Left by variable
7924 instruct salI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
7925 %{
7926   match(Set dst (StoreI dst (LShiftI (LoadI dst) shift)));
7927   effect(KILL cr);
7928 
7929   format %{ "sall    $dst, $shift" %}
7930   opcode(0xD3, 0x4); /* D3 /4 */
7931   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7932   ins_pipe(ialu_mem_reg);
7933 %}
7934 
7935 // Arithmetic shift right by one
7936 instruct sarI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
7937 %{
7938   match(Set dst (RShiftI dst shift));
7939   effect(KILL cr);
7940 
7941   format %{ "sarl    $dst, $shift" %}
7942   opcode(0xD1, 0x7); /* D1 /7 */
7943   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7944   ins_pipe(ialu_reg);
7945 %}
7946 
7947 // Arithmetic shift right by one
7948 instruct sarI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
7949 %{
7950   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7951   effect(KILL cr);
7952 
7953   format %{ "sarl    $dst, $shift" %}
7954   opcode(0xD1, 0x7); /* D1 /7 */
7955   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
7956   ins_pipe(ialu_mem_imm);
7957 %}
7958 
7959 // Arithmetic Shift Right by 8-bit immediate
7960 instruct sarI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
7961 %{
7962   match(Set dst (RShiftI dst shift));
7963   effect(KILL cr);
7964 
7965   format %{ "sarl    $dst, $shift" %}
7966   opcode(0xC1, 0x7); /* C1 /7 ib */
7967   ins_encode(reg_opc_imm(dst, shift));
7968   ins_pipe(ialu_mem_imm);
7969 %}
7970 
7971 // Arithmetic Shift Right by 8-bit immediate
7972 instruct sarI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
7973 %{
7974   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7975   effect(KILL cr);
7976 
7977   format %{ "sarl    $dst, $shift" %}
7978   opcode(0xC1, 0x7); /* C1 /7 ib */
7979   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
7980   ins_pipe(ialu_mem_imm);
7981 %}
7982 
7983 // Arithmetic Shift Right by variable
7984 instruct sarI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
7985 %{
7986   match(Set dst (RShiftI dst shift));
7987   effect(KILL cr);
7988 
7989   format %{ "sarl    $dst, $shift" %}
7990   opcode(0xD3, 0x7); /* D3 /7 */
7991   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
7992   ins_pipe(ialu_reg_reg);
7993 %}
7994 
7995 // Arithmetic Shift Right by variable
7996 instruct sarI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
7997 %{
7998   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
7999   effect(KILL cr);
8000 
8001   format %{ "sarl    $dst, $shift" %}
8002   opcode(0xD3, 0x7); /* D3 /7 */
8003   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8004   ins_pipe(ialu_mem_reg);
8005 %}
8006 
8007 // Logical shift right by one
8008 instruct shrI_rReg_1(rRegI dst, immI1 shift, rFlagsReg cr)
8009 %{
8010   match(Set dst (URShiftI dst shift));
8011   effect(KILL cr);
8012 
8013   format %{ "shrl    $dst, $shift" %}
8014   opcode(0xD1, 0x5); /* D1 /5 */
8015   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8016   ins_pipe(ialu_reg);
8017 %}
8018 
8019 // Logical shift right by one
8020 instruct shrI_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8021 %{
8022   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8023   effect(KILL cr);
8024 
8025   format %{ "shrl    $dst, $shift" %}
8026   opcode(0xD1, 0x5); /* D1 /5 */
8027   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8028   ins_pipe(ialu_mem_imm);
8029 %}
8030 
8031 // Logical Shift Right by 8-bit immediate
8032 instruct shrI_rReg_imm(rRegI dst, immI8 shift, rFlagsReg cr)
8033 %{
8034   match(Set dst (URShiftI dst shift));
8035   effect(KILL cr);
8036 
8037   format %{ "shrl    $dst, $shift" %}
8038   opcode(0xC1, 0x5); /* C1 /5 ib */
8039   ins_encode(reg_opc_imm(dst, shift));
8040   ins_pipe(ialu_reg);
8041 %}
8042 
8043 // Logical Shift Right by 8-bit immediate
8044 instruct shrI_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8045 %{
8046   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8047   effect(KILL cr);
8048 
8049   format %{ "shrl    $dst, $shift" %}
8050   opcode(0xC1, 0x5); /* C1 /5 ib */
8051   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst), Con8or32(shift));
8052   ins_pipe(ialu_mem_imm);
8053 %}
8054 
8055 // Logical Shift Right by variable
8056 instruct shrI_rReg_CL(rRegI dst, rcx_RegI shift, rFlagsReg cr)
8057 %{
8058   match(Set dst (URShiftI dst shift));
8059   effect(KILL cr);
8060 
8061   format %{ "shrl    $dst, $shift" %}
8062   opcode(0xD3, 0x5); /* D3 /5 */
8063   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8064   ins_pipe(ialu_reg_reg);
8065 %}
8066 
8067 // Logical Shift Right by variable
8068 instruct shrI_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8069 %{
8070   match(Set dst (StoreI dst (URShiftI (LoadI dst) shift)));
8071   effect(KILL cr);
8072 
8073   format %{ "shrl    $dst, $shift" %}
8074   opcode(0xD3, 0x5); /* D3 /5 */
8075   ins_encode(REX_mem(dst), OpcP, RM_opc_mem(secondary, dst));
8076   ins_pipe(ialu_mem_reg);
8077 %}
8078 
8079 // Long Shift Instructions
8080 // Shift Left by one
8081 instruct salL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8082 %{
8083   match(Set dst (LShiftL dst shift));
8084   effect(KILL cr);
8085 
8086   format %{ "salq    $dst, $shift" %}
8087   opcode(0xD1, 0x4); /* D1 /4 */
8088   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8089   ins_pipe(ialu_reg);
8090 %}
8091 
8092 // Shift Left by one
8093 instruct salL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8094 %{
8095   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8096   effect(KILL cr);
8097 
8098   format %{ "salq    $dst, $shift" %}
8099   opcode(0xD1, 0x4); /* D1 /4 */
8100   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8101   ins_pipe(ialu_mem_imm);
8102 %}
8103 
8104 // Shift Left by 8-bit immediate
8105 instruct salL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8106 %{
8107   match(Set dst (LShiftL dst shift));
8108   effect(KILL cr);
8109 
8110   format %{ "salq    $dst, $shift" %}
8111   opcode(0xC1, 0x4); /* C1 /4 ib */
8112   ins_encode(reg_opc_imm_wide(dst, shift));
8113   ins_pipe(ialu_reg);
8114 %}
8115 
8116 // Shift Left by 8-bit immediate
8117 instruct salL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8118 %{
8119   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8120   effect(KILL cr);
8121 
8122   format %{ "salq    $dst, $shift" %}
8123   opcode(0xC1, 0x4); /* C1 /4 ib */
8124   ins_encode(REX_mem_wide(dst), OpcP,
8125              RM_opc_mem(secondary, dst), Con8or32(shift));
8126   ins_pipe(ialu_mem_imm);
8127 %}
8128 
8129 // Shift Left by variable
8130 instruct salL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8131 %{
8132   match(Set dst (LShiftL dst shift));
8133   effect(KILL cr);
8134 
8135   format %{ "salq    $dst, $shift" %}
8136   opcode(0xD3, 0x4); /* D3 /4 */
8137   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8138   ins_pipe(ialu_reg_reg);
8139 %}
8140 
8141 // Shift Left by variable
8142 instruct salL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8143 %{
8144   match(Set dst (StoreL dst (LShiftL (LoadL dst) shift)));
8145   effect(KILL cr);
8146 
8147   format %{ "salq    $dst, $shift" %}
8148   opcode(0xD3, 0x4); /* D3 /4 */
8149   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8150   ins_pipe(ialu_mem_reg);
8151 %}
8152 
8153 // Arithmetic shift right by one
8154 instruct sarL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8155 %{
8156   match(Set dst (RShiftL dst shift));
8157   effect(KILL cr);
8158 
8159   format %{ "sarq    $dst, $shift" %}
8160   opcode(0xD1, 0x7); /* D1 /7 */
8161   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8162   ins_pipe(ialu_reg);
8163 %}
8164 
8165 // Arithmetic shift right by one
8166 instruct sarL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8167 %{
8168   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8169   effect(KILL cr);
8170 
8171   format %{ "sarq    $dst, $shift" %}
8172   opcode(0xD1, 0x7); /* D1 /7 */
8173   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8174   ins_pipe(ialu_mem_imm);
8175 %}
8176 
8177 // Arithmetic Shift Right by 8-bit immediate
8178 instruct sarL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8179 %{
8180   match(Set dst (RShiftL dst shift));
8181   effect(KILL cr);
8182 
8183   format %{ "sarq    $dst, $shift" %}
8184   opcode(0xC1, 0x7); /* C1 /7 ib */
8185   ins_encode(reg_opc_imm_wide(dst, shift));
8186   ins_pipe(ialu_mem_imm);
8187 %}
8188 
8189 // Arithmetic Shift Right by 8-bit immediate
8190 instruct sarL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8191 %{
8192   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8193   effect(KILL cr);
8194 
8195   format %{ "sarq    $dst, $shift" %}
8196   opcode(0xC1, 0x7); /* C1 /7 ib */
8197   ins_encode(REX_mem_wide(dst), OpcP,
8198              RM_opc_mem(secondary, dst), Con8or32(shift));
8199   ins_pipe(ialu_mem_imm);
8200 %}
8201 
8202 // Arithmetic Shift Right by variable
8203 instruct sarL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8204 %{
8205   match(Set dst (RShiftL dst shift));
8206   effect(KILL cr);
8207 
8208   format %{ "sarq    $dst, $shift" %}
8209   opcode(0xD3, 0x7); /* D3 /7 */
8210   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8211   ins_pipe(ialu_reg_reg);
8212 %}
8213 
8214 // Arithmetic Shift Right by variable
8215 instruct sarL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8216 %{
8217   match(Set dst (StoreL dst (RShiftL (LoadL dst) shift)));
8218   effect(KILL cr);
8219 
8220   format %{ "sarq    $dst, $shift" %}
8221   opcode(0xD3, 0x7); /* D3 /7 */
8222   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8223   ins_pipe(ialu_mem_reg);
8224 %}
8225 
8226 // Logical shift right by one
8227 instruct shrL_rReg_1(rRegL dst, immI1 shift, rFlagsReg cr)
8228 %{
8229   match(Set dst (URShiftL dst shift));
8230   effect(KILL cr);
8231 
8232   format %{ "shrq    $dst, $shift" %}
8233   opcode(0xD1, 0x5); /* D1 /5 */
8234   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst ));
8235   ins_pipe(ialu_reg);
8236 %}
8237 
8238 // Logical shift right by one
8239 instruct shrL_mem_1(memory dst, immI1 shift, rFlagsReg cr)
8240 %{
8241   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8242   effect(KILL cr);
8243 
8244   format %{ "shrq    $dst, $shift" %}
8245   opcode(0xD1, 0x5); /* D1 /5 */
8246   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8247   ins_pipe(ialu_mem_imm);
8248 %}
8249 
8250 // Logical Shift Right by 8-bit immediate
8251 instruct shrL_rReg_imm(rRegL dst, immI8 shift, rFlagsReg cr)
8252 %{
8253   match(Set dst (URShiftL dst shift));
8254   effect(KILL cr);
8255 
8256   format %{ "shrq    $dst, $shift" %}
8257   opcode(0xC1, 0x5); /* C1 /5 ib */
8258   ins_encode(reg_opc_imm_wide(dst, shift));
8259   ins_pipe(ialu_reg);
8260 %}
8261 
8262 
8263 // Logical Shift Right by 8-bit immediate
8264 instruct shrL_mem_imm(memory dst, immI8 shift, rFlagsReg cr)
8265 %{
8266   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8267   effect(KILL cr);
8268 
8269   format %{ "shrq    $dst, $shift" %}
8270   opcode(0xC1, 0x5); /* C1 /5 ib */
8271   ins_encode(REX_mem_wide(dst), OpcP,
8272              RM_opc_mem(secondary, dst), Con8or32(shift));
8273   ins_pipe(ialu_mem_imm);
8274 %}
8275 
8276 // Logical Shift Right by variable
8277 instruct shrL_rReg_CL(rRegL dst, rcx_RegI shift, rFlagsReg cr)
8278 %{
8279   match(Set dst (URShiftL dst shift));
8280   effect(KILL cr);
8281 
8282   format %{ "shrq    $dst, $shift" %}
8283   opcode(0xD3, 0x5); /* D3 /5 */
8284   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8285   ins_pipe(ialu_reg_reg);
8286 %}
8287 
8288 // Logical Shift Right by variable
8289 instruct shrL_mem_CL(memory dst, rcx_RegI shift, rFlagsReg cr)
8290 %{
8291   match(Set dst (StoreL dst (URShiftL (LoadL dst) shift)));
8292   effect(KILL cr);
8293 
8294   format %{ "shrq    $dst, $shift" %}
8295   opcode(0xD3, 0x5); /* D3 /5 */
8296   ins_encode(REX_mem_wide(dst), OpcP, RM_opc_mem(secondary, dst));
8297   ins_pipe(ialu_mem_reg);
8298 %}
8299 
8300 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8301 // This idiom is used by the compiler for the i2b bytecode.
8302 instruct i2b(rRegI dst, rRegI src, immI_24 twentyfour)
8303 %{
8304   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8305 
8306   format %{ "movsbl  $dst, $src\t# i2b" %}
8307   opcode(0x0F, 0xBE);
8308   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8309   ins_pipe(ialu_reg_reg);
8310 %}
8311 
8312 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8313 // This idiom is used by the compiler the i2s bytecode.
8314 instruct i2s(rRegI dst, rRegI src, immI_16 sixteen)
8315 %{
8316   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8317 
8318   format %{ "movswl  $dst, $src\t# i2s" %}
8319   opcode(0x0F, 0xBF);
8320   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8321   ins_pipe(ialu_reg_reg);
8322 %}
8323 
8324 // ROL/ROR instructions
8325 
8326 // ROL expand
8327 instruct rolI_rReg_imm1(rRegI dst, rFlagsReg cr) %{
8328   effect(KILL cr, USE_DEF dst);
8329 
8330   format %{ "roll    $dst" %}
8331   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8332   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8333   ins_pipe(ialu_reg);
8334 %}
8335 
8336 instruct rolI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr) %{
8337   effect(USE_DEF dst, USE shift, KILL cr);
8338 
8339   format %{ "roll    $dst, $shift" %}
8340   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8341   ins_encode( reg_opc_imm(dst, shift) );
8342   ins_pipe(ialu_reg);
8343 %}
8344 
8345 instruct rolI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8346 %{
8347   effect(USE_DEF dst, USE shift, KILL cr);
8348 
8349   format %{ "roll    $dst, $shift" %}
8350   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8351   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8352   ins_pipe(ialu_reg_reg);
8353 %}
8354 // end of ROL expand
8355 
8356 // Rotate Left by one
8357 instruct rolI_rReg_i1(rRegI dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8358 %{
8359   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8360 
8361   expand %{
8362     rolI_rReg_imm1(dst, cr);
8363   %}
8364 %}
8365 
8366 // Rotate Left by 8-bit immediate
8367 instruct rolI_rReg_i8(rRegI dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8368 %{
8369   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8370   match(Set dst (OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8371 
8372   expand %{
8373     rolI_rReg_imm8(dst, lshift, cr);
8374   %}
8375 %}
8376 
8377 // Rotate Left by variable
8378 instruct rolI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8379 %{
8380   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8381 
8382   expand %{
8383     rolI_rReg_CL(dst, shift, cr);
8384   %}
8385 %}
8386 
8387 // Rotate Left by variable
8388 instruct rolI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8389 %{
8390   match(Set dst (OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8391 
8392   expand %{
8393     rolI_rReg_CL(dst, shift, cr);
8394   %}
8395 %}
8396 
8397 // ROR expand
8398 instruct rorI_rReg_imm1(rRegI dst, rFlagsReg cr)
8399 %{
8400   effect(USE_DEF dst, KILL cr);
8401 
8402   format %{ "rorl    $dst" %}
8403   opcode(0xD1, 0x1); /* D1 /1 */
8404   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8405   ins_pipe(ialu_reg);
8406 %}
8407 
8408 instruct rorI_rReg_imm8(rRegI dst, immI8 shift, rFlagsReg cr)
8409 %{
8410   effect(USE_DEF dst, USE shift, KILL cr);
8411 
8412   format %{ "rorl    $dst, $shift" %}
8413   opcode(0xC1, 0x1); /* C1 /1 ib */
8414   ins_encode(reg_opc_imm(dst, shift));
8415   ins_pipe(ialu_reg);
8416 %}
8417 
8418 instruct rorI_rReg_CL(no_rcx_RegI dst, rcx_RegI shift, rFlagsReg cr)
8419 %{
8420   effect(USE_DEF dst, USE shift, KILL cr);
8421 
8422   format %{ "rorl    $dst, $shift" %}
8423   opcode(0xD3, 0x1); /* D3 /1 */
8424   ins_encode(REX_reg(dst), OpcP, reg_opc(dst));
8425   ins_pipe(ialu_reg_reg);
8426 %}
8427 // end of ROR expand
8428 
8429 // Rotate Right by one
8430 instruct rorI_rReg_i1(rRegI dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8431 %{
8432   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8433 
8434   expand %{
8435     rorI_rReg_imm1(dst, cr);
8436   %}
8437 %}
8438 
8439 // Rotate Right by 8-bit immediate
8440 instruct rorI_rReg_i8(rRegI dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8441 %{
8442   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8443   match(Set dst (OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8444 
8445   expand %{
8446     rorI_rReg_imm8(dst, rshift, cr);
8447   %}
8448 %}
8449 
8450 // Rotate Right by variable
8451 instruct rorI_rReg_Var_C0(no_rcx_RegI dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8452 %{
8453   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8454 
8455   expand %{
8456     rorI_rReg_CL(dst, shift, cr);
8457   %}
8458 %}
8459 
8460 // Rotate Right by variable
8461 instruct rorI_rReg_Var_C32(no_rcx_RegI dst, rcx_RegI shift, immI_32 c32, rFlagsReg cr)
8462 %{
8463   match(Set dst (OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8464 
8465   expand %{
8466     rorI_rReg_CL(dst, shift, cr);
8467   %}
8468 %}
8469 
8470 // for long rotate
8471 // ROL expand
8472 instruct rolL_rReg_imm1(rRegL dst, rFlagsReg cr) %{
8473   effect(USE_DEF dst, KILL cr);
8474 
8475   format %{ "rolq    $dst" %}
8476   opcode(0xD1, 0x0); /* Opcode  D1 /0 */
8477   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8478   ins_pipe(ialu_reg);
8479 %}
8480 
8481 instruct rolL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr) %{
8482   effect(USE_DEF dst, USE shift, KILL cr);
8483 
8484   format %{ "rolq    $dst, $shift" %}
8485   opcode(0xC1, 0x0); /* Opcode C1 /0 ib */
8486   ins_encode( reg_opc_imm_wide(dst, shift) );
8487   ins_pipe(ialu_reg);
8488 %}
8489 
8490 instruct rolL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8491 %{
8492   effect(USE_DEF dst, USE shift, KILL cr);
8493 
8494   format %{ "rolq    $dst, $shift" %}
8495   opcode(0xD3, 0x0); /* Opcode D3 /0 */
8496   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8497   ins_pipe(ialu_reg_reg);
8498 %}
8499 // end of ROL expand
8500 
8501 // Rotate Left by one
8502 instruct rolL_rReg_i1(rRegL dst, immI1 lshift, immI_M1 rshift, rFlagsReg cr)
8503 %{
8504   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8505 
8506   expand %{
8507     rolL_rReg_imm1(dst, cr);
8508   %}
8509 %}
8510 
8511 // Rotate Left by 8-bit immediate
8512 instruct rolL_rReg_i8(rRegL dst, immI8 lshift, immI8 rshift, rFlagsReg cr)
8513 %{
8514   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8515   match(Set dst (OrL (LShiftL dst lshift) (URShiftL dst rshift)));
8516 
8517   expand %{
8518     rolL_rReg_imm8(dst, lshift, cr);
8519   %}
8520 %}
8521 
8522 // Rotate Left by variable
8523 instruct rolL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8524 %{
8525   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI zero shift))));
8526 
8527   expand %{
8528     rolL_rReg_CL(dst, shift, cr);
8529   %}
8530 %}
8531 
8532 // Rotate Left by variable
8533 instruct rolL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
8534 %{
8535   match(Set dst (OrL (LShiftL dst shift) (URShiftL dst (SubI c64 shift))));
8536 
8537   expand %{
8538     rolL_rReg_CL(dst, shift, cr);
8539   %}
8540 %}
8541 
8542 // ROR expand
8543 instruct rorL_rReg_imm1(rRegL dst, rFlagsReg cr)
8544 %{
8545   effect(USE_DEF dst, KILL cr);
8546 
8547   format %{ "rorq    $dst" %}
8548   opcode(0xD1, 0x1); /* D1 /1 */
8549   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8550   ins_pipe(ialu_reg);
8551 %}
8552 
8553 instruct rorL_rReg_imm8(rRegL dst, immI8 shift, rFlagsReg cr)
8554 %{
8555   effect(USE_DEF dst, USE shift, KILL cr);
8556 
8557   format %{ "rorq    $dst, $shift" %}
8558   opcode(0xC1, 0x1); /* C1 /1 ib */
8559   ins_encode(reg_opc_imm_wide(dst, shift));
8560   ins_pipe(ialu_reg);
8561 %}
8562 
8563 instruct rorL_rReg_CL(no_rcx_RegL dst, rcx_RegI shift, rFlagsReg cr)
8564 %{
8565   effect(USE_DEF dst, USE shift, KILL cr);
8566 
8567   format %{ "rorq    $dst, $shift" %}
8568   opcode(0xD3, 0x1); /* D3 /1 */
8569   ins_encode(REX_reg_wide(dst), OpcP, reg_opc(dst));
8570   ins_pipe(ialu_reg_reg);
8571 %}
8572 // end of ROR expand
8573 
8574 // Rotate Right by one
8575 instruct rorL_rReg_i1(rRegL dst, immI1 rshift, immI_M1 lshift, rFlagsReg cr)
8576 %{
8577   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
8578 
8579   expand %{
8580     rorL_rReg_imm1(dst, cr);
8581   %}
8582 %}
8583 
8584 // Rotate Right by 8-bit immediate
8585 instruct rorL_rReg_i8(rRegL dst, immI8 rshift, immI8 lshift, rFlagsReg cr)
8586 %{
8587   predicate(0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x3f));
8588   match(Set dst (OrL (URShiftL dst rshift) (LShiftL dst lshift)));
8589 
8590   expand %{
8591     rorL_rReg_imm8(dst, rshift, cr);
8592   %}
8593 %}
8594 
8595 // Rotate Right by variable
8596 instruct rorL_rReg_Var_C0(no_rcx_RegL dst, rcx_RegI shift, immI0 zero, rFlagsReg cr)
8597 %{
8598   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI zero shift))));
8599 
8600   expand %{
8601     rorL_rReg_CL(dst, shift, cr);
8602   %}
8603 %}
8604 
8605 // Rotate Right by variable
8606 instruct rorL_rReg_Var_C64(no_rcx_RegL dst, rcx_RegI shift, immI_64 c64, rFlagsReg cr)
8607 %{
8608   match(Set dst (OrL (URShiftL dst shift) (LShiftL dst (SubI c64 shift))));
8609 
8610   expand %{
8611     rorL_rReg_CL(dst, shift, cr);
8612   %}
8613 %}
8614 
8615 // Logical Instructions
8616 
8617 // Integer Logical Instructions
8618 
8619 // And Instructions
8620 // And Register with Register
8621 instruct andI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8622 %{
8623   match(Set dst (AndI dst src));
8624   effect(KILL cr);
8625 
8626   format %{ "andl    $dst, $src\t# int" %}
8627   opcode(0x23);
8628   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8629   ins_pipe(ialu_reg_reg);
8630 %}
8631 
8632 // And Register with Immediate 255
8633 instruct andI_rReg_imm255(rRegI dst, immI_255 src)
8634 %{
8635   match(Set dst (AndI dst src));
8636 
8637   format %{ "movzbl  $dst, $dst\t# int & 0xFF" %}
8638   opcode(0x0F, 0xB6);
8639   ins_encode(REX_reg_breg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8640   ins_pipe(ialu_reg);
8641 %}
8642 
8643 // And Register with Immediate 255 and promote to long
8644 instruct andI2L_rReg_imm255(rRegL dst, rRegI src, immI_255 mask)
8645 %{
8646   match(Set dst (ConvI2L (AndI src mask)));
8647 
8648   format %{ "movzbl  $dst, $src\t# int & 0xFF -> long" %}
8649   opcode(0x0F, 0xB6);
8650   ins_encode(REX_reg_breg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8651   ins_pipe(ialu_reg);
8652 %}
8653 
8654 // And Register with Immediate 65535
8655 instruct andI_rReg_imm65535(rRegI dst, immI_65535 src)
8656 %{
8657   match(Set dst (AndI dst src));
8658 
8659   format %{ "movzwl  $dst, $dst\t# int & 0xFFFF" %}
8660   opcode(0x0F, 0xB7);
8661   ins_encode(REX_reg_reg(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
8662   ins_pipe(ialu_reg);
8663 %}
8664 
8665 // And Register with Immediate 65535 and promote to long
8666 instruct andI2L_rReg_imm65535(rRegL dst, rRegI src, immI_65535 mask)
8667 %{
8668   match(Set dst (ConvI2L (AndI src mask)));
8669 
8670   format %{ "movzwl  $dst, $src\t# int & 0xFFFF -> long" %}
8671   opcode(0x0F, 0xB7);
8672   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
8673   ins_pipe(ialu_reg);
8674 %}
8675 
8676 // And Register with Immediate
8677 instruct andI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8678 %{
8679   match(Set dst (AndI dst src));
8680   effect(KILL cr);
8681 
8682   format %{ "andl    $dst, $src\t# int" %}
8683   opcode(0x81, 0x04); /* Opcode 81 /4 */
8684   ins_encode(OpcSErm(dst, src), Con8or32(src));
8685   ins_pipe(ialu_reg);
8686 %}
8687 
8688 // And Register with Memory
8689 instruct andI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8690 %{
8691   match(Set dst (AndI dst (LoadI src)));
8692   effect(KILL cr);
8693 
8694   ins_cost(125);
8695   format %{ "andl    $dst, $src\t# int" %}
8696   opcode(0x23);
8697   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8698   ins_pipe(ialu_reg_mem);
8699 %}
8700 
8701 // And Memory with Register
8702 instruct andI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8703 %{
8704   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8705   effect(KILL cr);
8706 
8707   ins_cost(150);
8708   format %{ "andl    $dst, $src\t# int" %}
8709   opcode(0x21); /* Opcode 21 /r */
8710   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8711   ins_pipe(ialu_mem_reg);
8712 %}
8713 
8714 // And Memory with Immediate
8715 instruct andI_mem_imm(memory dst, immI src, rFlagsReg cr)
8716 %{
8717   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8718   effect(KILL cr);
8719 
8720   ins_cost(125);
8721   format %{ "andl    $dst, $src\t# int" %}
8722   opcode(0x81, 0x4); /* Opcode 81 /4 id */
8723   ins_encode(REX_mem(dst), OpcSE(src),
8724              RM_opc_mem(secondary, dst), Con8or32(src));
8725   ins_pipe(ialu_mem_imm);
8726 %}
8727 
8728 // BMI1 instructions
8729 instruct andnI_rReg_rReg_mem(rRegI dst, rRegI src1, memory src2, immI_M1 minus_1, rFlagsReg cr) %{
8730   match(Set dst (AndI (XorI src1 minus_1) (LoadI src2)));
8731   predicate(UseBMI1Instructions);
8732   effect(KILL cr);
8733 
8734   ins_cost(125);
8735   format %{ "andnl  $dst, $src1, $src2" %}
8736 
8737   ins_encode %{
8738     __ andnl($dst$$Register, $src1$$Register, $src2$$Address);
8739   %}
8740   ins_pipe(ialu_reg_mem);
8741 %}
8742 
8743 instruct andnI_rReg_rReg_rReg(rRegI dst, rRegI src1, rRegI src2, immI_M1 minus_1, rFlagsReg cr) %{
8744   match(Set dst (AndI (XorI src1 minus_1) src2));
8745   predicate(UseBMI1Instructions);
8746   effect(KILL cr);
8747 
8748   format %{ "andnl  $dst, $src1, $src2" %}
8749 
8750   ins_encode %{
8751     __ andnl($dst$$Register, $src1$$Register, $src2$$Register);
8752   %}
8753   ins_pipe(ialu_reg);
8754 %}
8755 
8756 instruct blsiI_rReg_rReg(rRegI dst, rRegI src, immI0 imm_zero, rFlagsReg cr) %{
8757   match(Set dst (AndI (SubI imm_zero src) src));
8758   predicate(UseBMI1Instructions);
8759   effect(KILL cr);
8760 
8761   format %{ "blsil  $dst, $src" %}
8762 
8763   ins_encode %{
8764     __ blsil($dst$$Register, $src$$Register);
8765   %}
8766   ins_pipe(ialu_reg);
8767 %}
8768 
8769 instruct blsiI_rReg_mem(rRegI dst, memory src, immI0 imm_zero, rFlagsReg cr) %{
8770   match(Set dst (AndI (SubI imm_zero (LoadI src) ) (LoadI src) ));
8771   predicate(UseBMI1Instructions);
8772   effect(KILL cr);
8773 
8774   ins_cost(125);
8775   format %{ "blsil  $dst, $src" %}
8776 
8777   ins_encode %{
8778     __ blsil($dst$$Register, $src$$Address);
8779   %}
8780   ins_pipe(ialu_reg_mem);
8781 %}
8782 
8783 instruct blsmskI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
8784 %{
8785   match(Set dst (XorI (AddI (LoadI src) minus_1) (LoadI src) ) );
8786   predicate(UseBMI1Instructions);
8787   effect(KILL cr);
8788 
8789   ins_cost(125);
8790   format %{ "blsmskl $dst, $src" %}
8791 
8792   ins_encode %{
8793     __ blsmskl($dst$$Register, $src$$Address);
8794   %}
8795   ins_pipe(ialu_reg_mem);
8796 %}
8797 
8798 instruct blsmskI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
8799 %{
8800   match(Set dst (XorI (AddI src minus_1) src));
8801   predicate(UseBMI1Instructions);
8802   effect(KILL cr);
8803 
8804   format %{ "blsmskl $dst, $src" %}
8805 
8806   ins_encode %{
8807     __ blsmskl($dst$$Register, $src$$Register);
8808   %}
8809 
8810   ins_pipe(ialu_reg);
8811 %}
8812 
8813 instruct blsrI_rReg_rReg(rRegI dst, rRegI src, immI_M1 minus_1, rFlagsReg cr)
8814 %{
8815   match(Set dst (AndI (AddI src minus_1) src) );
8816   predicate(UseBMI1Instructions);
8817   effect(KILL cr);
8818 
8819   format %{ "blsrl  $dst, $src" %}
8820 
8821   ins_encode %{
8822     __ blsrl($dst$$Register, $src$$Register);
8823   %}
8824 
8825   ins_pipe(ialu_reg_mem);
8826 %}
8827 
8828 instruct blsrI_rReg_mem(rRegI dst, memory src, immI_M1 minus_1, rFlagsReg cr)
8829 %{
8830   match(Set dst (AndI (AddI (LoadI src) minus_1) (LoadI src) ) );
8831   predicate(UseBMI1Instructions);
8832   effect(KILL cr);
8833 
8834   ins_cost(125);
8835   format %{ "blsrl  $dst, $src" %}
8836 
8837   ins_encode %{
8838     __ blsrl($dst$$Register, $src$$Address);
8839   %}
8840 
8841   ins_pipe(ialu_reg);
8842 %}
8843 
8844 // Or Instructions
8845 // Or Register with Register
8846 instruct orI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8847 %{
8848   match(Set dst (OrI dst src));
8849   effect(KILL cr);
8850 
8851   format %{ "orl     $dst, $src\t# int" %}
8852   opcode(0x0B);
8853   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8854   ins_pipe(ialu_reg_reg);
8855 %}
8856 
8857 // Or Register with Immediate
8858 instruct orI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8859 %{
8860   match(Set dst (OrI dst src));
8861   effect(KILL cr);
8862 
8863   format %{ "orl     $dst, $src\t# int" %}
8864   opcode(0x81, 0x01); /* Opcode 81 /1 id */
8865   ins_encode(OpcSErm(dst, src), Con8or32(src));
8866   ins_pipe(ialu_reg);
8867 %}
8868 
8869 // Or Register with Memory
8870 instruct orI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8871 %{
8872   match(Set dst (OrI dst (LoadI src)));
8873   effect(KILL cr);
8874 
8875   ins_cost(125);
8876   format %{ "orl     $dst, $src\t# int" %}
8877   opcode(0x0B);
8878   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8879   ins_pipe(ialu_reg_mem);
8880 %}
8881 
8882 // Or Memory with Register
8883 instruct orI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8884 %{
8885   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8886   effect(KILL cr);
8887 
8888   ins_cost(150);
8889   format %{ "orl     $dst, $src\t# int" %}
8890   opcode(0x09); /* Opcode 09 /r */
8891   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8892   ins_pipe(ialu_mem_reg);
8893 %}
8894 
8895 // Or Memory with Immediate
8896 instruct orI_mem_imm(memory dst, immI src, rFlagsReg cr)
8897 %{
8898   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8899   effect(KILL cr);
8900 
8901   ins_cost(125);
8902   format %{ "orl     $dst, $src\t# int" %}
8903   opcode(0x81, 0x1); /* Opcode 81 /1 id */
8904   ins_encode(REX_mem(dst), OpcSE(src),
8905              RM_opc_mem(secondary, dst), Con8or32(src));
8906   ins_pipe(ialu_mem_imm);
8907 %}
8908 
8909 // Xor Instructions
8910 // Xor Register with Register
8911 instruct xorI_rReg(rRegI dst, rRegI src, rFlagsReg cr)
8912 %{
8913   match(Set dst (XorI dst src));
8914   effect(KILL cr);
8915 
8916   format %{ "xorl    $dst, $src\t# int" %}
8917   opcode(0x33);
8918   ins_encode(REX_reg_reg(dst, src), OpcP, reg_reg(dst, src));
8919   ins_pipe(ialu_reg_reg);
8920 %}
8921 
8922 // Xor Register with Immediate -1
8923 instruct xorI_rReg_im1(rRegI dst, immI_M1 imm) %{
8924   match(Set dst (XorI dst imm));
8925 
8926   format %{ "not    $dst" %}
8927   ins_encode %{
8928      __ notl($dst$$Register);
8929   %}
8930   ins_pipe(ialu_reg);
8931 %}
8932 
8933 // Xor Register with Immediate
8934 instruct xorI_rReg_imm(rRegI dst, immI src, rFlagsReg cr)
8935 %{
8936   match(Set dst (XorI dst src));
8937   effect(KILL cr);
8938 
8939   format %{ "xorl    $dst, $src\t# int" %}
8940   opcode(0x81, 0x06); /* Opcode 81 /6 id */
8941   ins_encode(OpcSErm(dst, src), Con8or32(src));
8942   ins_pipe(ialu_reg);
8943 %}
8944 
8945 // Xor Register with Memory
8946 instruct xorI_rReg_mem(rRegI dst, memory src, rFlagsReg cr)
8947 %{
8948   match(Set dst (XorI dst (LoadI src)));
8949   effect(KILL cr);
8950 
8951   ins_cost(125);
8952   format %{ "xorl    $dst, $src\t# int" %}
8953   opcode(0x33);
8954   ins_encode(REX_reg_mem(dst, src), OpcP, reg_mem(dst, src));
8955   ins_pipe(ialu_reg_mem);
8956 %}
8957 
8958 // Xor Memory with Register
8959 instruct xorI_mem_rReg(memory dst, rRegI src, rFlagsReg cr)
8960 %{
8961   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8962   effect(KILL cr);
8963 
8964   ins_cost(150);
8965   format %{ "xorl    $dst, $src\t# int" %}
8966   opcode(0x31); /* Opcode 31 /r */
8967   ins_encode(REX_reg_mem(src, dst), OpcP, reg_mem(src, dst));
8968   ins_pipe(ialu_mem_reg);
8969 %}
8970 
8971 // Xor Memory with Immediate
8972 instruct xorI_mem_imm(memory dst, immI src, rFlagsReg cr)
8973 %{
8974   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8975   effect(KILL cr);
8976 
8977   ins_cost(125);
8978   format %{ "xorl    $dst, $src\t# int" %}
8979   opcode(0x81, 0x6); /* Opcode 81 /6 id */
8980   ins_encode(REX_mem(dst), OpcSE(src),
8981              RM_opc_mem(secondary, dst), Con8or32(src));
8982   ins_pipe(ialu_mem_imm);
8983 %}
8984 
8985 
8986 // Long Logical Instructions
8987 
8988 // And Instructions
8989 // And Register with Register
8990 instruct andL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
8991 %{
8992   match(Set dst (AndL dst src));
8993   effect(KILL cr);
8994 
8995   format %{ "andq    $dst, $src\t# long" %}
8996   opcode(0x23);
8997   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
8998   ins_pipe(ialu_reg_reg);
8999 %}
9000 
9001 // And Register with Immediate 255
9002 instruct andL_rReg_imm255(rRegL dst, immL_255 src)
9003 %{
9004   match(Set dst (AndL dst src));
9005 
9006   format %{ "movzbq  $dst, $dst\t# long & 0xFF" %}
9007   opcode(0x0F, 0xB6);
9008   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9009   ins_pipe(ialu_reg);
9010 %}
9011 
9012 // And Register with Immediate 65535
9013 instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
9014 %{
9015   match(Set dst (AndL dst src));
9016 
9017   format %{ "movzwq  $dst, $dst\t# long & 0xFFFF" %}
9018   opcode(0x0F, 0xB7);
9019   ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
9020   ins_pipe(ialu_reg);
9021 %}
9022 
9023 // And Register with Immediate
9024 instruct andL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9025 %{
9026   match(Set dst (AndL dst src));
9027   effect(KILL cr);
9028 
9029   format %{ "andq    $dst, $src\t# long" %}
9030   opcode(0x81, 0x04); /* Opcode 81 /4 */
9031   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9032   ins_pipe(ialu_reg);
9033 %}
9034 
9035 // And Register with Memory
9036 instruct andL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9037 %{
9038   match(Set dst (AndL dst (LoadL src)));
9039   effect(KILL cr);
9040 
9041   ins_cost(125);
9042   format %{ "andq    $dst, $src\t# long" %}
9043   opcode(0x23);
9044   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9045   ins_pipe(ialu_reg_mem);
9046 %}
9047 
9048 // And Memory with Register
9049 instruct andL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9050 %{
9051   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9052   effect(KILL cr);
9053 
9054   ins_cost(150);
9055   format %{ "andq    $dst, $src\t# long" %}
9056   opcode(0x21); /* Opcode 21 /r */
9057   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9058   ins_pipe(ialu_mem_reg);
9059 %}
9060 
9061 // And Memory with Immediate
9062 instruct andL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9063 %{
9064   match(Set dst (StoreL dst (AndL (LoadL dst) src)));
9065   effect(KILL cr);
9066 
9067   ins_cost(125);
9068   format %{ "andq    $dst, $src\t# long" %}
9069   opcode(0x81, 0x4); /* Opcode 81 /4 id */
9070   ins_encode(REX_mem_wide(dst), OpcSE(src),
9071              RM_opc_mem(secondary, dst), Con8or32(src));
9072   ins_pipe(ialu_mem_imm);
9073 %}
9074 
9075 // BMI1 instructions
9076 instruct andnL_rReg_rReg_mem(rRegL dst, rRegL src1, memory src2, immL_M1 minus_1, rFlagsReg cr) %{
9077   match(Set dst (AndL (XorL src1 minus_1) (LoadL src2)));
9078   predicate(UseBMI1Instructions);
9079   effect(KILL cr);
9080 
9081   ins_cost(125);
9082   format %{ "andnq  $dst, $src1, $src2" %}
9083 
9084   ins_encode %{
9085     __ andnq($dst$$Register, $src1$$Register, $src2$$Address);
9086   %}
9087   ins_pipe(ialu_reg_mem);
9088 %}
9089 
9090 instruct andnL_rReg_rReg_rReg(rRegL dst, rRegL src1, rRegL src2, immL_M1 minus_1, rFlagsReg cr) %{
9091   match(Set dst (AndL (XorL src1 minus_1) src2));
9092   predicate(UseBMI1Instructions);
9093   effect(KILL cr);
9094 
9095   format %{ "andnq  $dst, $src1, $src2" %}
9096 
9097   ins_encode %{
9098   __ andnq($dst$$Register, $src1$$Register, $src2$$Register);
9099   %}
9100   ins_pipe(ialu_reg_mem);
9101 %}
9102 
9103 instruct blsiL_rReg_rReg(rRegL dst, rRegL src, immL0 imm_zero, rFlagsReg cr) %{
9104   match(Set dst (AndL (SubL imm_zero src) src));
9105   predicate(UseBMI1Instructions);
9106   effect(KILL cr);
9107 
9108   format %{ "blsiq  $dst, $src" %}
9109 
9110   ins_encode %{
9111     __ blsiq($dst$$Register, $src$$Register);
9112   %}
9113   ins_pipe(ialu_reg);
9114 %}
9115 
9116 instruct blsiL_rReg_mem(rRegL dst, memory src, immL0 imm_zero, rFlagsReg cr) %{
9117   match(Set dst (AndL (SubL imm_zero (LoadL src) ) (LoadL src) ));
9118   predicate(UseBMI1Instructions);
9119   effect(KILL cr);
9120 
9121   ins_cost(125);
9122   format %{ "blsiq  $dst, $src" %}
9123 
9124   ins_encode %{
9125     __ blsiq($dst$$Register, $src$$Address);
9126   %}
9127   ins_pipe(ialu_reg_mem);
9128 %}
9129 
9130 instruct blsmskL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9131 %{
9132   match(Set dst (XorL (AddL (LoadL src) minus_1) (LoadL src) ) );
9133   predicate(UseBMI1Instructions);
9134   effect(KILL cr);
9135 
9136   ins_cost(125);
9137   format %{ "blsmskq $dst, $src" %}
9138 
9139   ins_encode %{
9140     __ blsmskq($dst$$Register, $src$$Address);
9141   %}
9142   ins_pipe(ialu_reg_mem);
9143 %}
9144 
9145 instruct blsmskL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9146 %{
9147   match(Set dst (XorL (AddL src minus_1) src));
9148   predicate(UseBMI1Instructions);
9149   effect(KILL cr);
9150 
9151   format %{ "blsmskq $dst, $src" %}
9152 
9153   ins_encode %{
9154     __ blsmskq($dst$$Register, $src$$Register);
9155   %}
9156 
9157   ins_pipe(ialu_reg);
9158 %}
9159 
9160 instruct blsrL_rReg_rReg(rRegL dst, rRegL src, immL_M1 minus_1, rFlagsReg cr)
9161 %{
9162   match(Set dst (AndL (AddL src minus_1) src) );
9163   predicate(UseBMI1Instructions);
9164   effect(KILL cr);
9165 
9166   format %{ "blsrq  $dst, $src" %}
9167 
9168   ins_encode %{
9169     __ blsrq($dst$$Register, $src$$Register);
9170   %}
9171 
9172   ins_pipe(ialu_reg);
9173 %}
9174 
9175 instruct blsrL_rReg_mem(rRegL dst, memory src, immL_M1 minus_1, rFlagsReg cr)
9176 %{
9177   match(Set dst (AndL (AddL (LoadL src) minus_1) (LoadL src)) );
9178   predicate(UseBMI1Instructions);
9179   effect(KILL cr);
9180 
9181   ins_cost(125);
9182   format %{ "blsrq  $dst, $src" %}
9183 
9184   ins_encode %{
9185     __ blsrq($dst$$Register, $src$$Address);
9186   %}
9187 
9188   ins_pipe(ialu_reg);
9189 %}
9190 
9191 // Or Instructions
9192 // Or Register with Register
9193 instruct orL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9194 %{
9195   match(Set dst (OrL dst src));
9196   effect(KILL cr);
9197 
9198   format %{ "orq     $dst, $src\t# long" %}
9199   opcode(0x0B);
9200   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9201   ins_pipe(ialu_reg_reg);
9202 %}
9203 
9204 // Use any_RegP to match R15 (TLS register) without spilling.
9205 instruct orL_rReg_castP2X(rRegL dst, any_RegP src, rFlagsReg cr) %{
9206   match(Set dst (OrL dst (CastP2X src)));
9207   effect(KILL cr);
9208 
9209   format %{ "orq     $dst, $src\t# long" %}
9210   opcode(0x0B);
9211   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9212   ins_pipe(ialu_reg_reg);
9213 %}
9214 
9215 
9216 // Or Register with Immediate
9217 instruct orL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9218 %{
9219   match(Set dst (OrL dst src));
9220   effect(KILL cr);
9221 
9222   format %{ "orq     $dst, $src\t# long" %}
9223   opcode(0x81, 0x01); /* Opcode 81 /1 id */
9224   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9225   ins_pipe(ialu_reg);
9226 %}
9227 
9228 // Or Register with Memory
9229 instruct orL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9230 %{
9231   match(Set dst (OrL dst (LoadL src)));
9232   effect(KILL cr);
9233 
9234   ins_cost(125);
9235   format %{ "orq     $dst, $src\t# long" %}
9236   opcode(0x0B);
9237   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9238   ins_pipe(ialu_reg_mem);
9239 %}
9240 
9241 // Or Memory with Register
9242 instruct orL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9243 %{
9244   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9245   effect(KILL cr);
9246 
9247   ins_cost(150);
9248   format %{ "orq     $dst, $src\t# long" %}
9249   opcode(0x09); /* Opcode 09 /r */
9250   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9251   ins_pipe(ialu_mem_reg);
9252 %}
9253 
9254 // Or Memory with Immediate
9255 instruct orL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9256 %{
9257   match(Set dst (StoreL dst (OrL (LoadL dst) src)));
9258   effect(KILL cr);
9259 
9260   ins_cost(125);
9261   format %{ "orq     $dst, $src\t# long" %}
9262   opcode(0x81, 0x1); /* Opcode 81 /1 id */
9263   ins_encode(REX_mem_wide(dst), OpcSE(src),
9264              RM_opc_mem(secondary, dst), Con8or32(src));
9265   ins_pipe(ialu_mem_imm);
9266 %}
9267 
9268 // Xor Instructions
9269 // Xor Register with Register
9270 instruct xorL_rReg(rRegL dst, rRegL src, rFlagsReg cr)
9271 %{
9272   match(Set dst (XorL dst src));
9273   effect(KILL cr);
9274 
9275   format %{ "xorq    $dst, $src\t# long" %}
9276   opcode(0x33);
9277   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst, src));
9278   ins_pipe(ialu_reg_reg);
9279 %}
9280 
9281 // Xor Register with Immediate -1
9282 instruct xorL_rReg_im1(rRegL dst, immL_M1 imm) %{
9283   match(Set dst (XorL dst imm));
9284 
9285   format %{ "notq   $dst" %}
9286   ins_encode %{
9287      __ notq($dst$$Register);
9288   %}
9289   ins_pipe(ialu_reg);
9290 %}
9291 
9292 // Xor Register with Immediate
9293 instruct xorL_rReg_imm(rRegL dst, immL32 src, rFlagsReg cr)
9294 %{
9295   match(Set dst (XorL dst src));
9296   effect(KILL cr);
9297 
9298   format %{ "xorq    $dst, $src\t# long" %}
9299   opcode(0x81, 0x06); /* Opcode 81 /6 id */
9300   ins_encode(OpcSErm_wide(dst, src), Con8or32(src));
9301   ins_pipe(ialu_reg);
9302 %}
9303 
9304 // Xor Register with Memory
9305 instruct xorL_rReg_mem(rRegL dst, memory src, rFlagsReg cr)
9306 %{
9307   match(Set dst (XorL dst (LoadL src)));
9308   effect(KILL cr);
9309 
9310   ins_cost(125);
9311   format %{ "xorq    $dst, $src\t# long" %}
9312   opcode(0x33);
9313   ins_encode(REX_reg_mem_wide(dst, src), OpcP, reg_mem(dst, src));
9314   ins_pipe(ialu_reg_mem);
9315 %}
9316 
9317 // Xor Memory with Register
9318 instruct xorL_mem_rReg(memory dst, rRegL src, rFlagsReg cr)
9319 %{
9320   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9321   effect(KILL cr);
9322 
9323   ins_cost(150);
9324   format %{ "xorq    $dst, $src\t# long" %}
9325   opcode(0x31); /* Opcode 31 /r */
9326   ins_encode(REX_reg_mem_wide(src, dst), OpcP, reg_mem(src, dst));
9327   ins_pipe(ialu_mem_reg);
9328 %}
9329 
9330 // Xor Memory with Immediate
9331 instruct xorL_mem_imm(memory dst, immL32 src, rFlagsReg cr)
9332 %{
9333   match(Set dst (StoreL dst (XorL (LoadL dst) src)));
9334   effect(KILL cr);
9335 
9336   ins_cost(125);
9337   format %{ "xorq    $dst, $src\t# long" %}
9338   opcode(0x81, 0x6); /* Opcode 81 /6 id */
9339   ins_encode(REX_mem_wide(dst), OpcSE(src),
9340              RM_opc_mem(secondary, dst), Con8or32(src));
9341   ins_pipe(ialu_mem_imm);
9342 %}
9343 
9344 // Convert Int to Boolean
9345 instruct convI2B(rRegI dst, rRegI src, rFlagsReg cr)
9346 %{
9347   match(Set dst (Conv2B src));
9348   effect(KILL cr);
9349 
9350   format %{ "testl   $src, $src\t# ci2b\n\t"
9351             "setnz   $dst\n\t"
9352             "movzbl  $dst, $dst" %}
9353   ins_encode(REX_reg_reg(src, src), opc_reg_reg(0x85, src, src), // testl
9354              setNZ_reg(dst),
9355              REX_reg_breg(dst, dst), // movzbl
9356              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9357   ins_pipe(pipe_slow); // XXX
9358 %}
9359 
9360 // Convert Pointer to Boolean
9361 instruct convP2B(rRegI dst, rRegP src, rFlagsReg cr)
9362 %{
9363   match(Set dst (Conv2B src));
9364   effect(KILL cr);
9365 
9366   format %{ "testq   $src, $src\t# cp2b\n\t"
9367             "setnz   $dst\n\t"
9368             "movzbl  $dst, $dst" %}
9369   ins_encode(REX_reg_reg_wide(src, src), opc_reg_reg(0x85, src, src), // testq
9370              setNZ_reg(dst),
9371              REX_reg_breg(dst, dst), // movzbl
9372              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst));
9373   ins_pipe(pipe_slow); // XXX
9374 %}
9375 
9376 instruct cmpLTMask(rRegI dst, rRegI p, rRegI q, rFlagsReg cr)
9377 %{
9378   match(Set dst (CmpLTMask p q));
9379   effect(KILL cr);
9380 
9381   ins_cost(400);
9382   format %{ "cmpl    $p, $q\t# cmpLTMask\n\t"
9383             "setlt   $dst\n\t"
9384             "movzbl  $dst, $dst\n\t"
9385             "negl    $dst" %}
9386   ins_encode(REX_reg_reg(p, q), opc_reg_reg(0x3B, p, q), // cmpl
9387              setLT_reg(dst),
9388              REX_reg_breg(dst, dst), // movzbl
9389              Opcode(0x0F), Opcode(0xB6), reg_reg(dst, dst),
9390              neg_reg(dst));
9391   ins_pipe(pipe_slow);
9392 %}
9393 
9394 instruct cmpLTMask0(rRegI dst, immI0 zero, rFlagsReg cr)
9395 %{
9396   match(Set dst (CmpLTMask dst zero));
9397   effect(KILL cr);
9398 
9399   ins_cost(100);
9400   format %{ "sarl    $dst, #31\t# cmpLTMask0" %}
9401   ins_encode %{
9402   __ sarl($dst$$Register, 31);
9403   %}
9404   ins_pipe(ialu_reg);
9405 %}
9406 
9407 /* Better to save a register than avoid a branch */
9408 instruct cadd_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
9409 %{
9410   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
9411   effect(KILL cr);
9412   ins_cost(300);
9413   format %{ "subl   $p,$q\t# cadd_cmpLTMask\n\t"
9414             "jge    done\n\t"
9415             "addl   $p,$y\n"
9416             "done:  " %}
9417   ins_encode %{
9418     Register Rp = $p$$Register;
9419     Register Rq = $q$$Register;
9420     Register Ry = $y$$Register;
9421     Label done;
9422     __ subl(Rp, Rq);
9423     __ jccb(Assembler::greaterEqual, done);
9424     __ addl(Rp, Ry);
9425     __ bind(done);
9426   %}
9427   ins_pipe(pipe_cmplt);
9428 %}
9429 
9430 /* Better to save a register than avoid a branch */
9431 instruct and_cmpLTMask(rRegI p, rRegI q, rRegI y, rFlagsReg cr)
9432 %{
9433   match(Set y (AndI (CmpLTMask p q) y));
9434   effect(KILL cr);
9435 
9436   ins_cost(300);
9437 
9438   format %{ "cmpl     $p, $q\t# and_cmpLTMask\n\t"
9439             "jlt      done\n\t"
9440             "xorl     $y, $y\n"
9441             "done:  " %}
9442   ins_encode %{
9443     Register Rp = $p$$Register;
9444     Register Rq = $q$$Register;
9445     Register Ry = $y$$Register;
9446     Label done;
9447     __ cmpl(Rp, Rq);
9448     __ jccb(Assembler::less, done);
9449     __ xorl(Ry, Ry);
9450     __ bind(done);
9451   %}
9452   ins_pipe(pipe_cmplt);
9453 %}
9454 
9455 
9456 //---------- FP Instructions------------------------------------------------
9457 
9458 instruct cmpF_cc_reg(rFlagsRegU cr, regF src1, regF src2)
9459 %{
9460   match(Set cr (CmpF src1 src2));
9461 
9462   ins_cost(145);
9463   format %{ "ucomiss $src1, $src2\n\t"
9464             "jnp,s   exit\n\t"
9465             "pushfq\t# saw NaN, set CF\n\t"
9466             "andq    [rsp], #0xffffff2b\n\t"
9467             "popfq\n"
9468     "exit:" %}
9469   ins_encode %{
9470     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9471     emit_cmpfp_fixup(_masm);
9472   %}
9473   ins_pipe(pipe_slow);
9474 %}
9475 
9476 instruct cmpF_cc_reg_CF(rFlagsRegUCF cr, regF src1, regF src2) %{
9477   match(Set cr (CmpF src1 src2));
9478 
9479   ins_cost(100);
9480   format %{ "ucomiss $src1, $src2" %}
9481   ins_encode %{
9482     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9483   %}
9484   ins_pipe(pipe_slow);
9485 %}
9486 
9487 instruct cmpF_cc_mem(rFlagsRegU cr, regF src1, memory src2)
9488 %{
9489   match(Set cr (CmpF src1 (LoadF src2)));
9490 
9491   ins_cost(145);
9492   format %{ "ucomiss $src1, $src2\n\t"
9493             "jnp,s   exit\n\t"
9494             "pushfq\t# saw NaN, set CF\n\t"
9495             "andq    [rsp], #0xffffff2b\n\t"
9496             "popfq\n"
9497     "exit:" %}
9498   ins_encode %{
9499     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9500     emit_cmpfp_fixup(_masm);
9501   %}
9502   ins_pipe(pipe_slow);
9503 %}
9504 
9505 instruct cmpF_cc_memCF(rFlagsRegUCF cr, regF src1, memory src2) %{
9506   match(Set cr (CmpF src1 (LoadF src2)));
9507 
9508   ins_cost(100);
9509   format %{ "ucomiss $src1, $src2" %}
9510   ins_encode %{
9511     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9512   %}
9513   ins_pipe(pipe_slow);
9514 %}
9515 
9516 instruct cmpF_cc_imm(rFlagsRegU cr, regF src, immF con) %{
9517   match(Set cr (CmpF src con));
9518 
9519   ins_cost(145);
9520   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
9521             "jnp,s   exit\n\t"
9522             "pushfq\t# saw NaN, set CF\n\t"
9523             "andq    [rsp], #0xffffff2b\n\t"
9524             "popfq\n"
9525     "exit:" %}
9526   ins_encode %{
9527     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9528     emit_cmpfp_fixup(_masm);
9529   %}
9530   ins_pipe(pipe_slow);
9531 %}
9532 
9533 instruct cmpF_cc_immCF(rFlagsRegUCF cr, regF src, immF con) %{
9534   match(Set cr (CmpF src con));
9535   ins_cost(100);
9536   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con" %}
9537   ins_encode %{
9538     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9539   %}
9540   ins_pipe(pipe_slow);
9541 %}
9542 
9543 instruct cmpD_cc_reg(rFlagsRegU cr, regD src1, regD src2)
9544 %{
9545   match(Set cr (CmpD src1 src2));
9546 
9547   ins_cost(145);
9548   format %{ "ucomisd $src1, $src2\n\t"
9549             "jnp,s   exit\n\t"
9550             "pushfq\t# saw NaN, set CF\n\t"
9551             "andq    [rsp], #0xffffff2b\n\t"
9552             "popfq\n"
9553     "exit:" %}
9554   ins_encode %{
9555     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9556     emit_cmpfp_fixup(_masm);
9557   %}
9558   ins_pipe(pipe_slow);
9559 %}
9560 
9561 instruct cmpD_cc_reg_CF(rFlagsRegUCF cr, regD src1, regD src2) %{
9562   match(Set cr (CmpD src1 src2));
9563 
9564   ins_cost(100);
9565   format %{ "ucomisd $src1, $src2 test" %}
9566   ins_encode %{
9567     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9568   %}
9569   ins_pipe(pipe_slow);
9570 %}
9571 
9572 instruct cmpD_cc_mem(rFlagsRegU cr, regD src1, memory src2)
9573 %{
9574   match(Set cr (CmpD src1 (LoadD src2)));
9575 
9576   ins_cost(145);
9577   format %{ "ucomisd $src1, $src2\n\t"
9578             "jnp,s   exit\n\t"
9579             "pushfq\t# saw NaN, set CF\n\t"
9580             "andq    [rsp], #0xffffff2b\n\t"
9581             "popfq\n"
9582     "exit:" %}
9583   ins_encode %{
9584     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9585     emit_cmpfp_fixup(_masm);
9586   %}
9587   ins_pipe(pipe_slow);
9588 %}
9589 
9590 instruct cmpD_cc_memCF(rFlagsRegUCF cr, regD src1, memory src2) %{
9591   match(Set cr (CmpD src1 (LoadD src2)));
9592 
9593   ins_cost(100);
9594   format %{ "ucomisd $src1, $src2" %}
9595   ins_encode %{
9596     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9597   %}
9598   ins_pipe(pipe_slow);
9599 %}
9600 
9601 instruct cmpD_cc_imm(rFlagsRegU cr, regD src, immD con) %{
9602   match(Set cr (CmpD src con));
9603 
9604   ins_cost(145);
9605   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
9606             "jnp,s   exit\n\t"
9607             "pushfq\t# saw NaN, set CF\n\t"
9608             "andq    [rsp], #0xffffff2b\n\t"
9609             "popfq\n"
9610     "exit:" %}
9611   ins_encode %{
9612     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9613     emit_cmpfp_fixup(_masm);
9614   %}
9615   ins_pipe(pipe_slow);
9616 %}
9617 
9618 instruct cmpD_cc_immCF(rFlagsRegUCF cr, regD src, immD con) %{
9619   match(Set cr (CmpD src con));
9620   ins_cost(100);
9621   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con" %}
9622   ins_encode %{
9623     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9624   %}
9625   ins_pipe(pipe_slow);
9626 %}
9627 
9628 // Compare into -1,0,1
9629 instruct cmpF_reg(rRegI dst, regF src1, regF src2, rFlagsReg cr)
9630 %{
9631   match(Set dst (CmpF3 src1 src2));
9632   effect(KILL cr);
9633 
9634   ins_cost(275);
9635   format %{ "ucomiss $src1, $src2\n\t"
9636             "movl    $dst, #-1\n\t"
9637             "jp,s    done\n\t"
9638             "jb,s    done\n\t"
9639             "setne   $dst\n\t"
9640             "movzbl  $dst, $dst\n"
9641     "done:" %}
9642   ins_encode %{
9643     __ ucomiss($src1$$XMMRegister, $src2$$XMMRegister);
9644     emit_cmpfp3(_masm, $dst$$Register);
9645   %}
9646   ins_pipe(pipe_slow);
9647 %}
9648 
9649 // Compare into -1,0,1
9650 instruct cmpF_mem(rRegI dst, regF src1, memory src2, rFlagsReg cr)
9651 %{
9652   match(Set dst (CmpF3 src1 (LoadF src2)));
9653   effect(KILL cr);
9654 
9655   ins_cost(275);
9656   format %{ "ucomiss $src1, $src2\n\t"
9657             "movl    $dst, #-1\n\t"
9658             "jp,s    done\n\t"
9659             "jb,s    done\n\t"
9660             "setne   $dst\n\t"
9661             "movzbl  $dst, $dst\n"
9662     "done:" %}
9663   ins_encode %{
9664     __ ucomiss($src1$$XMMRegister, $src2$$Address);
9665     emit_cmpfp3(_masm, $dst$$Register);
9666   %}
9667   ins_pipe(pipe_slow);
9668 %}
9669 
9670 // Compare into -1,0,1
9671 instruct cmpF_imm(rRegI dst, regF src, immF con, rFlagsReg cr) %{
9672   match(Set dst (CmpF3 src con));
9673   effect(KILL cr);
9674 
9675   ins_cost(275);
9676   format %{ "ucomiss $src, [$constantaddress]\t# load from constant table: float=$con\n\t"
9677             "movl    $dst, #-1\n\t"
9678             "jp,s    done\n\t"
9679             "jb,s    done\n\t"
9680             "setne   $dst\n\t"
9681             "movzbl  $dst, $dst\n"
9682     "done:" %}
9683   ins_encode %{
9684     __ ucomiss($src$$XMMRegister, $constantaddress($con));
9685     emit_cmpfp3(_masm, $dst$$Register);
9686   %}
9687   ins_pipe(pipe_slow);
9688 %}
9689 
9690 // Compare into -1,0,1
9691 instruct cmpD_reg(rRegI dst, regD src1, regD src2, rFlagsReg cr)
9692 %{
9693   match(Set dst (CmpD3 src1 src2));
9694   effect(KILL cr);
9695 
9696   ins_cost(275);
9697   format %{ "ucomisd $src1, $src2\n\t"
9698             "movl    $dst, #-1\n\t"
9699             "jp,s    done\n\t"
9700             "jb,s    done\n\t"
9701             "setne   $dst\n\t"
9702             "movzbl  $dst, $dst\n"
9703     "done:" %}
9704   ins_encode %{
9705     __ ucomisd($src1$$XMMRegister, $src2$$XMMRegister);
9706     emit_cmpfp3(_masm, $dst$$Register);
9707   %}
9708   ins_pipe(pipe_slow);
9709 %}
9710 
9711 // Compare into -1,0,1
9712 instruct cmpD_mem(rRegI dst, regD src1, memory src2, rFlagsReg cr)
9713 %{
9714   match(Set dst (CmpD3 src1 (LoadD src2)));
9715   effect(KILL cr);
9716 
9717   ins_cost(275);
9718   format %{ "ucomisd $src1, $src2\n\t"
9719             "movl    $dst, #-1\n\t"
9720             "jp,s    done\n\t"
9721             "jb,s    done\n\t"
9722             "setne   $dst\n\t"
9723             "movzbl  $dst, $dst\n"
9724     "done:" %}
9725   ins_encode %{
9726     __ ucomisd($src1$$XMMRegister, $src2$$Address);
9727     emit_cmpfp3(_masm, $dst$$Register);
9728   %}
9729   ins_pipe(pipe_slow);
9730 %}
9731 
9732 // Compare into -1,0,1
9733 instruct cmpD_imm(rRegI dst, regD src, immD con, rFlagsReg cr) %{
9734   match(Set dst (CmpD3 src con));
9735   effect(KILL cr);
9736 
9737   ins_cost(275);
9738   format %{ "ucomisd $src, [$constantaddress]\t# load from constant table: double=$con\n\t"
9739             "movl    $dst, #-1\n\t"
9740             "jp,s    done\n\t"
9741             "jb,s    done\n\t"
9742             "setne   $dst\n\t"
9743             "movzbl  $dst, $dst\n"
9744     "done:" %}
9745   ins_encode %{
9746     __ ucomisd($src$$XMMRegister, $constantaddress($con));
9747     emit_cmpfp3(_masm, $dst$$Register);
9748   %}
9749   ins_pipe(pipe_slow);
9750 %}
9751 
9752 // -----------Trig and Trancendental Instructions------------------------------
9753 instruct cosD_reg(regD dst) %{
9754   match(Set dst (CosD dst));
9755 
9756   format %{ "dcos   $dst\n\t" %}
9757   opcode(0xD9, 0xFF);
9758   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9759   ins_pipe( pipe_slow );
9760 %}
9761 
9762 instruct sinD_reg(regD dst) %{
9763   match(Set dst (SinD dst));
9764 
9765   format %{ "dsin   $dst\n\t" %}
9766   opcode(0xD9, 0xFE);
9767   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9768   ins_pipe( pipe_slow );
9769 %}
9770 
9771 instruct tanD_reg(regD dst) %{
9772   match(Set dst (TanD dst));
9773 
9774   format %{ "dtan   $dst\n\t" %}
9775   ins_encode( Push_SrcXD(dst),
9776               Opcode(0xD9), Opcode(0xF2),   //fptan
9777               Opcode(0xDD), Opcode(0xD8),   //fstp st
9778               Push_ResultXD(dst) );
9779   ins_pipe( pipe_slow );
9780 %}
9781 
9782 instruct log10D_reg(regD dst) %{
9783   // The source and result Double operands in XMM registers
9784   match(Set dst (Log10D dst));
9785   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
9786   // fyl2x        ; compute log_10(2) * log_2(x)
9787   format %{ "fldlg2\t\t\t#Log10\n\t"
9788             "fyl2x\t\t\t# Q=Log10*Log_2(x)\n\t"
9789          %}
9790    ins_encode(Opcode(0xD9), Opcode(0xEC),   // fldlg2
9791               Push_SrcXD(dst),
9792               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9793               Push_ResultXD(dst));
9794 
9795   ins_pipe( pipe_slow );
9796 %}
9797 
9798 instruct logD_reg(regD dst) %{
9799   // The source and result Double operands in XMM registers
9800   match(Set dst (LogD dst));
9801   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
9802   // fyl2x        ; compute log_e(2) * log_2(x)
9803   format %{ "fldln2\t\t\t#Log_e\n\t"
9804             "fyl2x\t\t\t# Q=Log_e*Log_2(x)\n\t"
9805          %}
9806   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
9807               Push_SrcXD(dst),
9808               Opcode(0xD9), Opcode(0xF1),   // fyl2x
9809               Push_ResultXD(dst));
9810   ins_pipe( pipe_slow );
9811 %}
9812 
9813 instruct powD_reg(regD dst, regD src0, regD src1, rax_RegI rax, rdx_RegI rdx, rcx_RegI rcx, rFlagsReg cr) %{
9814   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
9815   effect(KILL rax, KILL rdx, KILL rcx, KILL cr);
9816   format %{ "fast_pow $src0 $src1 -> $dst  // KILL $rax, $rcx, $rdx" %}
9817   ins_encode %{
9818     __ subptr(rsp, 8);
9819     __ movdbl(Address(rsp, 0), $src1$$XMMRegister);
9820     __ fld_d(Address(rsp, 0));
9821     __ movdbl(Address(rsp, 0), $src0$$XMMRegister);
9822     __ fld_d(Address(rsp, 0));
9823     __ fast_pow();
9824     __ fstp_d(Address(rsp, 0));
9825     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9826     __ addptr(rsp, 8);
9827   %}
9828   ins_pipe( pipe_slow );
9829 %}
9830 
9831 instruct expD_reg(regD dst, regD src, rax_RegI rax, rdx_RegI rdx, rcx_RegI rcx, rFlagsReg cr) %{
9832   match(Set dst (ExpD src));
9833   effect(KILL rax, KILL rcx, KILL rdx, KILL cr);
9834   format %{ "fast_exp $dst -> $src  // KILL $rax, $rcx, $rdx" %}
9835   ins_encode %{
9836     __ subptr(rsp, 8);
9837     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9838     __ fld_d(Address(rsp, 0));
9839     __ fast_exp();
9840     __ fstp_d(Address(rsp, 0));
9841     __ movdbl($dst$$XMMRegister, Address(rsp, 0));
9842     __ addptr(rsp, 8);
9843   %}
9844   ins_pipe( pipe_slow );
9845 %}
9846 
9847 //----------Arithmetic Conversion Instructions---------------------------------
9848 
9849 instruct roundFloat_nop(regF dst)
9850 %{
9851   match(Set dst (RoundFloat dst));
9852 
9853   ins_cost(0);
9854   ins_encode();
9855   ins_pipe(empty);
9856 %}
9857 
9858 instruct roundDouble_nop(regD dst)
9859 %{
9860   match(Set dst (RoundDouble dst));
9861 
9862   ins_cost(0);
9863   ins_encode();
9864   ins_pipe(empty);
9865 %}
9866 
9867 instruct convF2D_reg_reg(regD dst, regF src)
9868 %{
9869   match(Set dst (ConvF2D src));
9870 
9871   format %{ "cvtss2sd $dst, $src" %}
9872   ins_encode %{
9873     __ cvtss2sd ($dst$$XMMRegister, $src$$XMMRegister);
9874   %}
9875   ins_pipe(pipe_slow); // XXX
9876 %}
9877 
9878 instruct convF2D_reg_mem(regD dst, memory src)
9879 %{
9880   match(Set dst (ConvF2D (LoadF src)));
9881 
9882   format %{ "cvtss2sd $dst, $src" %}
9883   ins_encode %{
9884     __ cvtss2sd ($dst$$XMMRegister, $src$$Address);
9885   %}
9886   ins_pipe(pipe_slow); // XXX
9887 %}
9888 
9889 instruct convD2F_reg_reg(regF dst, regD src)
9890 %{
9891   match(Set dst (ConvD2F src));
9892 
9893   format %{ "cvtsd2ss $dst, $src" %}
9894   ins_encode %{
9895     __ cvtsd2ss ($dst$$XMMRegister, $src$$XMMRegister);
9896   %}
9897   ins_pipe(pipe_slow); // XXX
9898 %}
9899 
9900 instruct convD2F_reg_mem(regF dst, memory src)
9901 %{
9902   match(Set dst (ConvD2F (LoadD src)));
9903 
9904   format %{ "cvtsd2ss $dst, $src" %}
9905   ins_encode %{
9906     __ cvtsd2ss ($dst$$XMMRegister, $src$$Address);
9907   %}
9908   ins_pipe(pipe_slow); // XXX
9909 %}
9910 
9911 // XXX do mem variants
9912 instruct convF2I_reg_reg(rRegI dst, regF src, rFlagsReg cr)
9913 %{
9914   match(Set dst (ConvF2I src));
9915   effect(KILL cr);
9916 
9917   format %{ "cvttss2sil $dst, $src\t# f2i\n\t"
9918             "cmpl    $dst, #0x80000000\n\t"
9919             "jne,s   done\n\t"
9920             "subq    rsp, #8\n\t"
9921             "movss   [rsp], $src\n\t"
9922             "call    f2i_fixup\n\t"
9923             "popq    $dst\n"
9924     "done:   "%}
9925   ins_encode %{
9926     Label done;
9927     __ cvttss2sil($dst$$Register, $src$$XMMRegister);
9928     __ cmpl($dst$$Register, 0x80000000);
9929     __ jccb(Assembler::notEqual, done);
9930     __ subptr(rsp, 8);
9931     __ movflt(Address(rsp, 0), $src$$XMMRegister);
9932     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup())));
9933     __ pop($dst$$Register);
9934     __ bind(done);
9935   %}
9936   ins_pipe(pipe_slow);
9937 %}
9938 
9939 instruct convF2L_reg_reg(rRegL dst, regF src, rFlagsReg cr)
9940 %{
9941   match(Set dst (ConvF2L src));
9942   effect(KILL cr);
9943 
9944   format %{ "cvttss2siq $dst, $src\t# f2l\n\t"
9945             "cmpq    $dst, [0x8000000000000000]\n\t"
9946             "jne,s   done\n\t"
9947             "subq    rsp, #8\n\t"
9948             "movss   [rsp], $src\n\t"
9949             "call    f2l_fixup\n\t"
9950             "popq    $dst\n"
9951     "done:   "%}
9952   ins_encode %{
9953     Label done;
9954     __ cvttss2siq($dst$$Register, $src$$XMMRegister);
9955     __ cmp64($dst$$Register,
9956              ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
9957     __ jccb(Assembler::notEqual, done);
9958     __ subptr(rsp, 8);
9959     __ movflt(Address(rsp, 0), $src$$XMMRegister);
9960     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup())));
9961     __ pop($dst$$Register);
9962     __ bind(done);
9963   %}
9964   ins_pipe(pipe_slow);
9965 %}
9966 
9967 instruct convD2I_reg_reg(rRegI dst, regD src, rFlagsReg cr)
9968 %{
9969   match(Set dst (ConvD2I src));
9970   effect(KILL cr);
9971 
9972   format %{ "cvttsd2sil $dst, $src\t# d2i\n\t"
9973             "cmpl    $dst, #0x80000000\n\t"
9974             "jne,s   done\n\t"
9975             "subq    rsp, #8\n\t"
9976             "movsd   [rsp], $src\n\t"
9977             "call    d2i_fixup\n\t"
9978             "popq    $dst\n"
9979     "done:   "%}
9980   ins_encode %{
9981     Label done;
9982     __ cvttsd2sil($dst$$Register, $src$$XMMRegister);
9983     __ cmpl($dst$$Register, 0x80000000);
9984     __ jccb(Assembler::notEqual, done);
9985     __ subptr(rsp, 8);
9986     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
9987     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup())));
9988     __ pop($dst$$Register);
9989     __ bind(done);
9990   %}
9991   ins_pipe(pipe_slow);
9992 %}
9993 
9994 instruct convD2L_reg_reg(rRegL dst, regD src, rFlagsReg cr)
9995 %{
9996   match(Set dst (ConvD2L src));
9997   effect(KILL cr);
9998 
9999   format %{ "cvttsd2siq $dst, $src\t# d2l\n\t"
10000             "cmpq    $dst, [0x8000000000000000]\n\t"
10001             "jne,s   done\n\t"
10002             "subq    rsp, #8\n\t"
10003             "movsd   [rsp], $src\n\t"
10004             "call    d2l_fixup\n\t"
10005             "popq    $dst\n"
10006     "done:   "%}
10007   ins_encode %{
10008     Label done;
10009     __ cvttsd2siq($dst$$Register, $src$$XMMRegister);
10010     __ cmp64($dst$$Register,
10011              ExternalAddress((address) StubRoutines::x86::double_sign_flip()));
10012     __ jccb(Assembler::notEqual, done);
10013     __ subptr(rsp, 8);
10014     __ movdbl(Address(rsp, 0), $src$$XMMRegister);
10015     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup())));
10016     __ pop($dst$$Register);
10017     __ bind(done);
10018   %}
10019   ins_pipe(pipe_slow);
10020 %}
10021 
10022 instruct convI2F_reg_reg(regF dst, rRegI src)
10023 %{
10024   predicate(!UseXmmI2F);
10025   match(Set dst (ConvI2F src));
10026 
10027   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10028   ins_encode %{
10029     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Register);
10030   %}
10031   ins_pipe(pipe_slow); // XXX
10032 %}
10033 
10034 instruct convI2F_reg_mem(regF dst, memory src)
10035 %{
10036   match(Set dst (ConvI2F (LoadI src)));
10037 
10038   format %{ "cvtsi2ssl $dst, $src\t# i2f" %}
10039   ins_encode %{
10040     __ cvtsi2ssl ($dst$$XMMRegister, $src$$Address);
10041   %}
10042   ins_pipe(pipe_slow); // XXX
10043 %}
10044 
10045 instruct convI2D_reg_reg(regD dst, rRegI src)
10046 %{
10047   predicate(!UseXmmI2D);
10048   match(Set dst (ConvI2D src));
10049 
10050   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10051   ins_encode %{
10052     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Register);
10053   %}
10054   ins_pipe(pipe_slow); // XXX
10055 %}
10056 
10057 instruct convI2D_reg_mem(regD dst, memory src)
10058 %{
10059   match(Set dst (ConvI2D (LoadI src)));
10060 
10061   format %{ "cvtsi2sdl $dst, $src\t# i2d" %}
10062   ins_encode %{
10063     __ cvtsi2sdl ($dst$$XMMRegister, $src$$Address);
10064   %}
10065   ins_pipe(pipe_slow); // XXX
10066 %}
10067 
10068 instruct convXI2F_reg(regF dst, rRegI src)
10069 %{
10070   predicate(UseXmmI2F);
10071   match(Set dst (ConvI2F src));
10072 
10073   format %{ "movdl $dst, $src\n\t"
10074             "cvtdq2psl $dst, $dst\t# i2f" %}
10075   ins_encode %{
10076     __ movdl($dst$$XMMRegister, $src$$Register);
10077     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
10078   %}
10079   ins_pipe(pipe_slow); // XXX
10080 %}
10081 
10082 instruct convXI2D_reg(regD dst, rRegI src)
10083 %{
10084   predicate(UseXmmI2D);
10085   match(Set dst (ConvI2D src));
10086 
10087   format %{ "movdl $dst, $src\n\t"
10088             "cvtdq2pdl $dst, $dst\t# i2d" %}
10089   ins_encode %{
10090     __ movdl($dst$$XMMRegister, $src$$Register);
10091     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
10092   %}
10093   ins_pipe(pipe_slow); // XXX
10094 %}
10095 
10096 instruct convL2F_reg_reg(regF dst, rRegL src)
10097 %{
10098   match(Set dst (ConvL2F src));
10099 
10100   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10101   ins_encode %{
10102     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Register);
10103   %}
10104   ins_pipe(pipe_slow); // XXX
10105 %}
10106 
10107 instruct convL2F_reg_mem(regF dst, memory src)
10108 %{
10109   match(Set dst (ConvL2F (LoadL src)));
10110 
10111   format %{ "cvtsi2ssq $dst, $src\t# l2f" %}
10112   ins_encode %{
10113     __ cvtsi2ssq ($dst$$XMMRegister, $src$$Address);
10114   %}
10115   ins_pipe(pipe_slow); // XXX
10116 %}
10117 
10118 instruct convL2D_reg_reg(regD dst, rRegL src)
10119 %{
10120   match(Set dst (ConvL2D src));
10121 
10122   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10123   ins_encode %{
10124     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Register);
10125   %}
10126   ins_pipe(pipe_slow); // XXX
10127 %}
10128 
10129 instruct convL2D_reg_mem(regD dst, memory src)
10130 %{
10131   match(Set dst (ConvL2D (LoadL src)));
10132 
10133   format %{ "cvtsi2sdq $dst, $src\t# l2d" %}
10134   ins_encode %{
10135     __ cvtsi2sdq ($dst$$XMMRegister, $src$$Address);
10136   %}
10137   ins_pipe(pipe_slow); // XXX
10138 %}
10139 
10140 instruct convI2L_reg_reg(rRegL dst, rRegI src)
10141 %{
10142   match(Set dst (ConvI2L src));
10143 
10144   ins_cost(125);
10145   format %{ "movslq  $dst, $src\t# i2l" %}
10146   ins_encode %{
10147     __ movslq($dst$$Register, $src$$Register);
10148   %}
10149   ins_pipe(ialu_reg_reg);
10150 %}
10151 
10152 // instruct convI2L_reg_reg_foo(rRegL dst, rRegI src)
10153 // %{
10154 //   match(Set dst (ConvI2L src));
10155 // //   predicate(_kids[0]->_leaf->as_Type()->type()->is_int()->_lo >= 0 &&
10156 // //             _kids[0]->_leaf->as_Type()->type()->is_int()->_hi >= 0);
10157 //   predicate(((const TypeNode*) n)->type()->is_long()->_hi ==
10158 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_hi &&
10159 //             ((const TypeNode*) n)->type()->is_long()->_lo ==
10160 //             (unsigned int) ((const TypeNode*) n)->type()->is_long()->_lo);
10161 
10162 //   format %{ "movl    $dst, $src\t# unsigned i2l" %}
10163 //   ins_encode(enc_copy(dst, src));
10164 // //   opcode(0x63); // needs REX.W
10165 // //   ins_encode(REX_reg_reg_wide(dst, src), OpcP, reg_reg(dst,src));
10166 //   ins_pipe(ialu_reg_reg);
10167 // %}
10168 
10169 // Zero-extend convert int to long
10170 instruct convI2L_reg_reg_zex(rRegL dst, rRegI src, immL_32bits mask)
10171 %{
10172   match(Set dst (AndL (ConvI2L src) mask));
10173 
10174   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10175   ins_encode %{
10176     if ($dst$$reg != $src$$reg) {
10177       __ movl($dst$$Register, $src$$Register);
10178     }
10179   %}
10180   ins_pipe(ialu_reg_reg);
10181 %}
10182 
10183 // Zero-extend convert int to long
10184 instruct convI2L_reg_mem_zex(rRegL dst, memory src, immL_32bits mask)
10185 %{
10186   match(Set dst (AndL (ConvI2L (LoadI src)) mask));
10187 
10188   format %{ "movl    $dst, $src\t# i2l zero-extend\n\t" %}
10189   ins_encode %{
10190     __ movl($dst$$Register, $src$$Address);
10191   %}
10192   ins_pipe(ialu_reg_mem);
10193 %}
10194 
10195 instruct zerox_long_reg_reg(rRegL dst, rRegL src, immL_32bits mask)
10196 %{
10197   match(Set dst (AndL src mask));
10198 
10199   format %{ "movl    $dst, $src\t# zero-extend long" %}
10200   ins_encode %{
10201     __ movl($dst$$Register, $src$$Register);
10202   %}
10203   ins_pipe(ialu_reg_reg);
10204 %}
10205 
10206 instruct convL2I_reg_reg(rRegI dst, rRegL src)
10207 %{
10208   match(Set dst (ConvL2I src));
10209 
10210   format %{ "movl    $dst, $src\t# l2i" %}
10211   ins_encode %{
10212     __ movl($dst$$Register, $src$$Register);
10213   %}
10214   ins_pipe(ialu_reg_reg);
10215 %}
10216 
10217 
10218 instruct MoveF2I_stack_reg(rRegI dst, stackSlotF src) %{
10219   match(Set dst (MoveF2I src));
10220   effect(DEF dst, USE src);
10221 
10222   ins_cost(125);
10223   format %{ "movl    $dst, $src\t# MoveF2I_stack_reg" %}
10224   ins_encode %{
10225     __ movl($dst$$Register, Address(rsp, $src$$disp));
10226   %}
10227   ins_pipe(ialu_reg_mem);
10228 %}
10229 
10230 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
10231   match(Set dst (MoveI2F src));
10232   effect(DEF dst, USE src);
10233 
10234   ins_cost(125);
10235   format %{ "movss   $dst, $src\t# MoveI2F_stack_reg" %}
10236   ins_encode %{
10237     __ movflt($dst$$XMMRegister, Address(rsp, $src$$disp));
10238   %}
10239   ins_pipe(pipe_slow);
10240 %}
10241 
10242 instruct MoveD2L_stack_reg(rRegL dst, stackSlotD src) %{
10243   match(Set dst (MoveD2L src));
10244   effect(DEF dst, USE src);
10245 
10246   ins_cost(125);
10247   format %{ "movq    $dst, $src\t# MoveD2L_stack_reg" %}
10248   ins_encode %{
10249     __ movq($dst$$Register, Address(rsp, $src$$disp));
10250   %}
10251   ins_pipe(ialu_reg_mem);
10252 %}
10253 
10254 instruct MoveL2D_stack_reg_partial(regD dst, stackSlotL src) %{
10255   predicate(!UseXmmLoadAndClearUpper);
10256   match(Set dst (MoveL2D src));
10257   effect(DEF dst, USE src);
10258 
10259   ins_cost(125);
10260   format %{ "movlpd  $dst, $src\t# MoveL2D_stack_reg" %}
10261   ins_encode %{
10262     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10263   %}
10264   ins_pipe(pipe_slow);
10265 %}
10266 
10267 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
10268   predicate(UseXmmLoadAndClearUpper);
10269   match(Set dst (MoveL2D src));
10270   effect(DEF dst, USE src);
10271 
10272   ins_cost(125);
10273   format %{ "movsd   $dst, $src\t# MoveL2D_stack_reg" %}
10274   ins_encode %{
10275     __ movdbl($dst$$XMMRegister, Address(rsp, $src$$disp));
10276   %}
10277   ins_pipe(pipe_slow);
10278 %}
10279 
10280 
10281 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
10282   match(Set dst (MoveF2I src));
10283   effect(DEF dst, USE src);
10284 
10285   ins_cost(95); // XXX
10286   format %{ "movss   $dst, $src\t# MoveF2I_reg_stack" %}
10287   ins_encode %{
10288     __ movflt(Address(rsp, $dst$$disp), $src$$XMMRegister);
10289   %}
10290   ins_pipe(pipe_slow);
10291 %}
10292 
10293 instruct MoveI2F_reg_stack(stackSlotF dst, rRegI src) %{
10294   match(Set dst (MoveI2F src));
10295   effect(DEF dst, USE src);
10296 
10297   ins_cost(100);
10298   format %{ "movl    $dst, $src\t# MoveI2F_reg_stack" %}
10299   ins_encode %{
10300     __ movl(Address(rsp, $dst$$disp), $src$$Register);
10301   %}
10302   ins_pipe( ialu_mem_reg );
10303 %}
10304 
10305 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
10306   match(Set dst (MoveD2L src));
10307   effect(DEF dst, USE src);
10308 
10309   ins_cost(95); // XXX
10310   format %{ "movsd   $dst, $src\t# MoveL2D_reg_stack" %}
10311   ins_encode %{
10312     __ movdbl(Address(rsp, $dst$$disp), $src$$XMMRegister);
10313   %}
10314   ins_pipe(pipe_slow);
10315 %}
10316 
10317 instruct MoveL2D_reg_stack(stackSlotD dst, rRegL src) %{
10318   match(Set dst (MoveL2D src));
10319   effect(DEF dst, USE src);
10320 
10321   ins_cost(100);
10322   format %{ "movq    $dst, $src\t# MoveL2D_reg_stack" %}
10323   ins_encode %{
10324     __ movq(Address(rsp, $dst$$disp), $src$$Register);
10325   %}
10326   ins_pipe(ialu_mem_reg);
10327 %}
10328 
10329 instruct MoveF2I_reg_reg(rRegI dst, regF src) %{
10330   match(Set dst (MoveF2I src));
10331   effect(DEF dst, USE src);
10332   ins_cost(85);
10333   format %{ "movd    $dst,$src\t# MoveF2I" %}
10334   ins_encode %{
10335     __ movdl($dst$$Register, $src$$XMMRegister);
10336   %}
10337   ins_pipe( pipe_slow );
10338 %}
10339 
10340 instruct MoveD2L_reg_reg(rRegL dst, regD src) %{
10341   match(Set dst (MoveD2L src));
10342   effect(DEF dst, USE src);
10343   ins_cost(85);
10344   format %{ "movd    $dst,$src\t# MoveD2L" %}
10345   ins_encode %{
10346     __ movdq($dst$$Register, $src$$XMMRegister);
10347   %}
10348   ins_pipe( pipe_slow );
10349 %}
10350 
10351 instruct MoveI2F_reg_reg(regF dst, rRegI src) %{
10352   match(Set dst (MoveI2F src));
10353   effect(DEF dst, USE src);
10354   ins_cost(100);
10355   format %{ "movd    $dst,$src\t# MoveI2F" %}
10356   ins_encode %{
10357     __ movdl($dst$$XMMRegister, $src$$Register);
10358   %}
10359   ins_pipe( pipe_slow );
10360 %}
10361 
10362 instruct MoveL2D_reg_reg(regD dst, rRegL src) %{
10363   match(Set dst (MoveL2D src));
10364   effect(DEF dst, USE src);
10365   ins_cost(100);
10366   format %{ "movd    $dst,$src\t# MoveL2D" %}
10367   ins_encode %{
10368      __ movdq($dst$$XMMRegister, $src$$Register);
10369   %}
10370   ins_pipe( pipe_slow );
10371 %}
10372 
10373 
10374 // =======================================================================
10375 // fast clearing of an array
10376 instruct rep_stos(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
10377                   rFlagsReg cr)
10378 %{
10379   predicate(!UseFastStosb);
10380   match(Set dummy (ClearArray cnt base));
10381   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
10382 
10383   format %{ "xorq    rax, rax\t# ClearArray:\n\t"
10384             "rep     stosq\t# Store rax to *rdi++ while rcx--" %}
10385   ins_encode %{ 
10386     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
10387   %}
10388   ins_pipe(pipe_slow);
10389 %}
10390 
10391 instruct rep_fast_stosb(rcx_RegL cnt, rdi_RegP base, rax_RegI zero, Universe dummy,
10392                         rFlagsReg cr)
10393 %{
10394   predicate(UseFastStosb);
10395   match(Set dummy (ClearArray cnt base));
10396   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
10397   format %{ "xorq    rax, rax\t# ClearArray:\n\t"
10398             "shlq    rcx,3\t# Convert doublewords to bytes\n\t"
10399             "rep     stosb\t# Store rax to *rdi++ while rcx--" %}
10400   ins_encode %{ 
10401     __ clear_mem($base$$Register, $cnt$$Register, $zero$$Register);
10402   %}
10403   ins_pipe( pipe_slow );
10404 %}
10405 
10406 instruct string_compare(rdi_RegP str1, rcx_RegI cnt1, rsi_RegP str2, rdx_RegI cnt2,
10407                         rax_RegI result, regD tmp1, rFlagsReg cr)
10408 %{
10409   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10410   effect(TEMP tmp1, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
10411 
10412   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1" %}
10413   ins_encode %{
10414     __ string_compare($str1$$Register, $str2$$Register,
10415                       $cnt1$$Register, $cnt2$$Register, $result$$Register,
10416                       $tmp1$$XMMRegister);
10417   %}
10418   ins_pipe( pipe_slow );
10419 %}
10420 
10421 // fast search of substring with known size.
10422 instruct string_indexof_con(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, immI int_cnt2,
10423                             rbx_RegI result, regD vec, rax_RegI cnt2, rcx_RegI tmp, rFlagsReg cr)
10424 %{
10425   predicate(UseSSE42Intrinsics);
10426   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
10427   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, KILL cnt2, KILL tmp, KILL cr);
10428 
10429   format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result   // KILL $vec, $cnt1, $cnt2, $tmp" %}
10430   ins_encode %{
10431     int icnt2 = (int)$int_cnt2$$constant;
10432     if (icnt2 >= 8) {
10433       // IndexOf for constant substrings with size >= 8 elements
10434       // which don't need to be loaded through stack.
10435       __ string_indexofC8($str1$$Register, $str2$$Register,
10436                           $cnt1$$Register, $cnt2$$Register,
10437                           icnt2, $result$$Register,
10438                           $vec$$XMMRegister, $tmp$$Register);
10439     } else {
10440       // Small strings are loaded through stack if they cross page boundary.
10441       __ string_indexof($str1$$Register, $str2$$Register,
10442                         $cnt1$$Register, $cnt2$$Register,
10443                         icnt2, $result$$Register,
10444                         $vec$$XMMRegister, $tmp$$Register);
10445     }
10446   %}
10447   ins_pipe( pipe_slow );
10448 %}
10449 
10450 instruct string_indexof(rdi_RegP str1, rdx_RegI cnt1, rsi_RegP str2, rax_RegI cnt2,
10451                         rbx_RegI result, regD vec, rcx_RegI tmp, rFlagsReg cr)
10452 %{
10453   predicate(UseSSE42Intrinsics);
10454   match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
10455   effect(TEMP vec, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL tmp, KILL cr);
10456 
10457   format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result   // KILL all" %}
10458   ins_encode %{
10459     __ string_indexof($str1$$Register, $str2$$Register,
10460                       $cnt1$$Register, $cnt2$$Register,
10461                       (-1), $result$$Register,
10462                       $vec$$XMMRegister, $tmp$$Register);
10463   %}
10464   ins_pipe( pipe_slow );
10465 %}
10466 
10467 // fast string equals
10468 instruct string_equals(rdi_RegP str1, rsi_RegP str2, rcx_RegI cnt, rax_RegI result,
10469                        regD tmp1, regD tmp2, rbx_RegI tmp3, rFlagsReg cr)
10470 %{
10471   match(Set result (StrEquals (Binary str1 str2) cnt));
10472   effect(TEMP tmp1, TEMP tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp3, KILL cr);
10473 
10474   format %{ "String Equals $str1,$str2,$cnt -> $result    // KILL $tmp1, $tmp2, $tmp3" %}
10475   ins_encode %{
10476     __ char_arrays_equals(false, $str1$$Register, $str2$$Register,
10477                           $cnt$$Register, $result$$Register, $tmp3$$Register,
10478                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
10479   %}
10480   ins_pipe( pipe_slow );
10481 %}
10482 
10483 // fast array equals
10484 instruct array_equals(rdi_RegP ary1, rsi_RegP ary2, rax_RegI result,
10485                       regD tmp1, regD tmp2, rcx_RegI tmp3, rbx_RegI tmp4, rFlagsReg cr)
10486 %{
10487   match(Set result (AryEq ary1 ary2));
10488   effect(TEMP tmp1, TEMP tmp2, USE_KILL ary1, USE_KILL ary2, KILL tmp3, KILL tmp4, KILL cr);
10489   //ins_cost(300);
10490 
10491   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1, $tmp2, $tmp3, $tmp4" %}
10492   ins_encode %{
10493     __ char_arrays_equals(true, $ary1$$Register, $ary2$$Register,
10494                           $tmp3$$Register, $result$$Register, $tmp4$$Register,
10495                           $tmp1$$XMMRegister, $tmp2$$XMMRegister);
10496   %}
10497   ins_pipe( pipe_slow );
10498 %}
10499 
10500 // encode char[] to byte[] in ISO_8859_1
10501 instruct encode_iso_array(rsi_RegP src, rdi_RegP dst, rdx_RegI len,
10502                           regD tmp1, regD tmp2, regD tmp3, regD tmp4,
10503                           rcx_RegI tmp5, rax_RegI result, rFlagsReg cr) %{
10504   match(Set result (EncodeISOArray src (Binary dst len)));
10505   effect(TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL tmp5, KILL cr);
10506 
10507   format %{ "Encode array $src,$dst,$len -> $result    // KILL RCX, RDX, $tmp1, $tmp2, $tmp3, $tmp4, RSI, RDI " %}
10508   ins_encode %{
10509     __ encode_iso_array($src$$Register, $dst$$Register, $len$$Register,
10510                         $tmp1$$XMMRegister, $tmp2$$XMMRegister, $tmp3$$XMMRegister,
10511                         $tmp4$$XMMRegister, $tmp5$$Register, $result$$Register);
10512   %}
10513   ins_pipe( pipe_slow );
10514 %}
10515 
10516 //----------Overflow Math Instructions-----------------------------------------
10517 
10518 instruct overflowAddI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
10519 %{
10520   match(Set cr (OverflowAddI op1 op2));
10521   effect(DEF cr, USE_KILL op1, USE op2);
10522 
10523   format %{ "addl    $op1, $op2\t# overflow check int" %}
10524 
10525   ins_encode %{
10526     __ addl($op1$$Register, $op2$$Register);
10527   %}
10528   ins_pipe(ialu_reg_reg);
10529 %}
10530 
10531 instruct overflowAddI_rReg_imm(rFlagsReg cr, rax_RegI op1, immI op2)
10532 %{
10533   match(Set cr (OverflowAddI op1 op2));
10534   effect(DEF cr, USE_KILL op1, USE op2);
10535 
10536   format %{ "addl    $op1, $op2\t# overflow check int" %}
10537 
10538   ins_encode %{
10539     __ addl($op1$$Register, $op2$$constant);
10540   %}
10541   ins_pipe(ialu_reg_reg);
10542 %}
10543 
10544 instruct overflowAddL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
10545 %{
10546   match(Set cr (OverflowAddL op1 op2));
10547   effect(DEF cr, USE_KILL op1, USE op2);
10548 
10549   format %{ "addq    $op1, $op2\t# overflow check long" %}
10550   ins_encode %{
10551     __ addq($op1$$Register, $op2$$Register);
10552   %}
10553   ins_pipe(ialu_reg_reg);
10554 %}
10555 
10556 instruct overflowAddL_rReg_imm(rFlagsReg cr, rax_RegL op1, immL32 op2)
10557 %{
10558   match(Set cr (OverflowAddL op1 op2));
10559   effect(DEF cr, USE_KILL op1, USE op2);
10560 
10561   format %{ "addq    $op1, $op2\t# overflow check long" %}
10562   ins_encode %{
10563     __ addq($op1$$Register, $op2$$constant);
10564   %}
10565   ins_pipe(ialu_reg_reg);
10566 %}
10567 
10568 instruct overflowSubI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
10569 %{
10570   match(Set cr (OverflowSubI op1 op2));
10571 
10572   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
10573   ins_encode %{
10574     __ cmpl($op1$$Register, $op2$$Register);
10575   %}
10576   ins_pipe(ialu_reg_reg);
10577 %}
10578 
10579 instruct overflowSubI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
10580 %{
10581   match(Set cr (OverflowSubI op1 op2));
10582 
10583   format %{ "cmpl    $op1, $op2\t# overflow check int" %}
10584   ins_encode %{
10585     __ cmpl($op1$$Register, $op2$$constant);
10586   %}
10587   ins_pipe(ialu_reg_reg);
10588 %}
10589 
10590 instruct overflowSubL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
10591 %{
10592   match(Set cr (OverflowSubL op1 op2));
10593 
10594   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
10595   ins_encode %{
10596     __ cmpq($op1$$Register, $op2$$Register);
10597   %}
10598   ins_pipe(ialu_reg_reg);
10599 %}
10600 
10601 instruct overflowSubL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
10602 %{
10603   match(Set cr (OverflowSubL op1 op2));
10604 
10605   format %{ "cmpq    $op1, $op2\t# overflow check long" %}
10606   ins_encode %{
10607     __ cmpq($op1$$Register, $op2$$constant);
10608   %}
10609   ins_pipe(ialu_reg_reg);
10610 %}
10611 
10612 instruct overflowNegI_rReg(rFlagsReg cr, immI0 zero, rax_RegI op2)
10613 %{
10614   match(Set cr (OverflowSubI zero op2));
10615   effect(DEF cr, USE_KILL op2);
10616 
10617   format %{ "negl    $op2\t# overflow check int" %}
10618   ins_encode %{
10619     __ negl($op2$$Register);
10620   %}
10621   ins_pipe(ialu_reg_reg);
10622 %}
10623 
10624 instruct overflowNegL_rReg(rFlagsReg cr, immL0 zero, rax_RegL op2)
10625 %{
10626   match(Set cr (OverflowSubL zero op2));
10627   effect(DEF cr, USE_KILL op2);
10628 
10629   format %{ "negq    $op2\t# overflow check long" %}
10630   ins_encode %{
10631     __ negq($op2$$Register);
10632   %}
10633   ins_pipe(ialu_reg_reg);
10634 %}
10635 
10636 instruct overflowMulI_rReg(rFlagsReg cr, rax_RegI op1, rRegI op2)
10637 %{
10638   match(Set cr (OverflowMulI op1 op2));
10639   effect(DEF cr, USE_KILL op1, USE op2);
10640 
10641   format %{ "imull    $op1, $op2\t# overflow check int" %}
10642   ins_encode %{
10643     __ imull($op1$$Register, $op2$$Register);
10644   %}
10645   ins_pipe(ialu_reg_reg_alu0);
10646 %}
10647 
10648 instruct overflowMulI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2, rRegI tmp)
10649 %{
10650   match(Set cr (OverflowMulI op1 op2));
10651   effect(DEF cr, TEMP tmp, USE op1, USE op2);
10652 
10653   format %{ "imull    $tmp, $op1, $op2\t# overflow check int" %}
10654   ins_encode %{
10655     __ imull($tmp$$Register, $op1$$Register, $op2$$constant);
10656   %}
10657   ins_pipe(ialu_reg_reg_alu0);
10658 %}
10659 
10660 instruct overflowMulL_rReg(rFlagsReg cr, rax_RegL op1, rRegL op2)
10661 %{
10662   match(Set cr (OverflowMulL op1 op2));
10663   effect(DEF cr, USE_KILL op1, USE op2);
10664 
10665   format %{ "imulq    $op1, $op2\t# overflow check long" %}
10666   ins_encode %{
10667     __ imulq($op1$$Register, $op2$$Register);
10668   %}
10669   ins_pipe(ialu_reg_reg_alu0);
10670 %}
10671 
10672 instruct overflowMulL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2, rRegL tmp)
10673 %{
10674   match(Set cr (OverflowMulL op1 op2));
10675   effect(DEF cr, TEMP tmp, USE op1, USE op2);
10676 
10677   format %{ "imulq    $tmp, $op1, $op2\t# overflow check long" %}
10678   ins_encode %{
10679     __ imulq($tmp$$Register, $op1$$Register, $op2$$constant);
10680   %}
10681   ins_pipe(ialu_reg_reg_alu0);
10682 %}
10683 
10684 
10685 //----------Control Flow Instructions------------------------------------------
10686 // Signed compare Instructions
10687 
10688 // XXX more variants!!
10689 instruct compI_rReg(rFlagsReg cr, rRegI op1, rRegI op2)
10690 %{
10691   match(Set cr (CmpI op1 op2));
10692   effect(DEF cr, USE op1, USE op2);
10693 
10694   format %{ "cmpl    $op1, $op2" %}
10695   opcode(0x3B);  /* Opcode 3B /r */
10696   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
10697   ins_pipe(ialu_cr_reg_reg);
10698 %}
10699 
10700 instruct compI_rReg_imm(rFlagsReg cr, rRegI op1, immI op2)
10701 %{
10702   match(Set cr (CmpI op1 op2));
10703 
10704   format %{ "cmpl    $op1, $op2" %}
10705   opcode(0x81, 0x07); /* Opcode 81 /7 */
10706   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
10707   ins_pipe(ialu_cr_reg_imm);
10708 %}
10709 
10710 instruct compI_rReg_mem(rFlagsReg cr, rRegI op1, memory op2)
10711 %{
10712   match(Set cr (CmpI op1 (LoadI op2)));
10713 
10714   ins_cost(500); // XXX
10715   format %{ "cmpl    $op1, $op2" %}
10716   opcode(0x3B); /* Opcode 3B /r */
10717   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
10718   ins_pipe(ialu_cr_reg_mem);
10719 %}
10720 
10721 instruct testI_reg(rFlagsReg cr, rRegI src, immI0 zero)
10722 %{
10723   match(Set cr (CmpI src zero));
10724 
10725   format %{ "testl   $src, $src" %}
10726   opcode(0x85);
10727   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
10728   ins_pipe(ialu_cr_reg_imm);
10729 %}
10730 
10731 instruct testI_reg_imm(rFlagsReg cr, rRegI src, immI con, immI0 zero)
10732 %{
10733   match(Set cr (CmpI (AndI src con) zero));
10734 
10735   format %{ "testl   $src, $con" %}
10736   opcode(0xF7, 0x00);
10737   ins_encode(REX_reg(src), OpcP, reg_opc(src), Con32(con));
10738   ins_pipe(ialu_cr_reg_imm);
10739 %}
10740 
10741 instruct testI_reg_mem(rFlagsReg cr, rRegI src, memory mem, immI0 zero)
10742 %{
10743   match(Set cr (CmpI (AndI src (LoadI mem)) zero));
10744 
10745   format %{ "testl   $src, $mem" %}
10746   opcode(0x85);
10747   ins_encode(REX_reg_mem(src, mem), OpcP, reg_mem(src, mem));
10748   ins_pipe(ialu_cr_reg_mem);
10749 %}
10750 
10751 // Unsigned compare Instructions; really, same as signed except they
10752 // produce an rFlagsRegU instead of rFlagsReg.
10753 instruct compU_rReg(rFlagsRegU cr, rRegI op1, rRegI op2)
10754 %{
10755   match(Set cr (CmpU op1 op2));
10756 
10757   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10758   opcode(0x3B); /* Opcode 3B /r */
10759   ins_encode(REX_reg_reg(op1, op2), OpcP, reg_reg(op1, op2));
10760   ins_pipe(ialu_cr_reg_reg);
10761 %}
10762 
10763 instruct compU_rReg_imm(rFlagsRegU cr, rRegI op1, immI op2)
10764 %{
10765   match(Set cr (CmpU op1 op2));
10766 
10767   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10768   opcode(0x81,0x07); /* Opcode 81 /7 */
10769   ins_encode(OpcSErm(op1, op2), Con8or32(op2));
10770   ins_pipe(ialu_cr_reg_imm);
10771 %}
10772 
10773 instruct compU_rReg_mem(rFlagsRegU cr, rRegI op1, memory op2)
10774 %{
10775   match(Set cr (CmpU op1 (LoadI op2)));
10776 
10777   ins_cost(500); // XXX
10778   format %{ "cmpl    $op1, $op2\t# unsigned" %}
10779   opcode(0x3B); /* Opcode 3B /r */
10780   ins_encode(REX_reg_mem(op1, op2), OpcP, reg_mem(op1, op2));
10781   ins_pipe(ialu_cr_reg_mem);
10782 %}
10783 
10784 // // // Cisc-spilled version of cmpU_rReg
10785 // //instruct compU_mem_rReg(rFlagsRegU cr, memory op1, rRegI op2)
10786 // //%{
10787 // //  match(Set cr (CmpU (LoadI op1) op2));
10788 // //
10789 // //  format %{ "CMPu   $op1,$op2" %}
10790 // //  ins_cost(500);
10791 // //  opcode(0x39);  /* Opcode 39 /r */
10792 // //  ins_encode( OpcP, reg_mem( op1, op2) );
10793 // //%}
10794 
10795 instruct testU_reg(rFlagsRegU cr, rRegI src, immI0 zero)
10796 %{
10797   match(Set cr (CmpU src zero));
10798 
10799   format %{ "testl  $src, $src\t# unsigned" %}
10800   opcode(0x85);
10801   ins_encode(REX_reg_reg(src, src), OpcP, reg_reg(src, src));
10802   ins_pipe(ialu_cr_reg_imm);
10803 %}
10804 
10805 instruct compP_rReg(rFlagsRegU cr, rRegP op1, rRegP op2)
10806 %{
10807   match(Set cr (CmpP op1 op2));
10808 
10809   format %{ "cmpq    $op1, $op2\t# ptr" %}
10810   opcode(0x3B); /* Opcode 3B /r */
10811   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
10812   ins_pipe(ialu_cr_reg_reg);
10813 %}
10814 
10815 instruct compP_rReg_mem(rFlagsRegU cr, rRegP op1, memory op2)
10816 %{
10817   match(Set cr (CmpP op1 (LoadP op2)));
10818 
10819   ins_cost(500); // XXX
10820   format %{ "cmpq    $op1, $op2\t# ptr" %}
10821   opcode(0x3B); /* Opcode 3B /r */
10822   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10823   ins_pipe(ialu_cr_reg_mem);
10824 %}
10825 
10826 // // // Cisc-spilled version of cmpP_rReg
10827 // //instruct compP_mem_rReg(rFlagsRegU cr, memory op1, rRegP op2)
10828 // //%{
10829 // //  match(Set cr (CmpP (LoadP op1) op2));
10830 // //
10831 // //  format %{ "CMPu   $op1,$op2" %}
10832 // //  ins_cost(500);
10833 // //  opcode(0x39);  /* Opcode 39 /r */
10834 // //  ins_encode( OpcP, reg_mem( op1, op2) );
10835 // //%}
10836 
10837 // XXX this is generalized by compP_rReg_mem???
10838 // Compare raw pointer (used in out-of-heap check).
10839 // Only works because non-oop pointers must be raw pointers
10840 // and raw pointers have no anti-dependencies.
10841 instruct compP_mem_rReg(rFlagsRegU cr, rRegP op1, memory op2)
10842 %{
10843   predicate(n->in(2)->in(2)->bottom_type()->reloc() == relocInfo::none);
10844   match(Set cr (CmpP op1 (LoadP op2)));
10845 
10846   format %{ "cmpq    $op1, $op2\t# raw ptr" %}
10847   opcode(0x3B); /* Opcode 3B /r */
10848   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
10849   ins_pipe(ialu_cr_reg_mem);
10850 %}
10851 
10852 // This will generate a signed flags result. This should be OK since
10853 // any compare to a zero should be eq/neq.
10854 instruct testP_reg(rFlagsReg cr, rRegP src, immP0 zero)
10855 %{
10856   match(Set cr (CmpP src zero));
10857 
10858   format %{ "testq   $src, $src\t# ptr" %}
10859   opcode(0x85);
10860   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
10861   ins_pipe(ialu_cr_reg_imm);
10862 %}
10863 
10864 // This will generate a signed flags result. This should be OK since
10865 // any compare to a zero should be eq/neq.
10866 instruct testP_mem(rFlagsReg cr, memory op, immP0 zero)
10867 %{
10868   predicate(!UseCompressedOops || (Universe::narrow_oop_base() != NULL));
10869   match(Set cr (CmpP (LoadP op) zero));
10870 
10871   ins_cost(500); // XXX
10872   format %{ "testq   $op, 0xffffffffffffffff\t# ptr" %}
10873   opcode(0xF7); /* Opcode F7 /0 */
10874   ins_encode(REX_mem_wide(op),
10875              OpcP, RM_opc_mem(0x00, op), Con_d32(0xFFFFFFFF));
10876   ins_pipe(ialu_cr_reg_imm);
10877 %}
10878 
10879 instruct testP_mem_reg0(rFlagsReg cr, memory mem, immP0 zero)
10880 %{
10881   predicate(UseCompressedOops && (Universe::narrow_oop_base() == NULL) && (Universe::narrow_klass_base() == NULL));
10882   match(Set cr (CmpP (LoadP mem) zero));
10883 
10884   format %{ "cmpq    R12, $mem\t# ptr (R12_heapbase==0)" %}
10885   ins_encode %{
10886     __ cmpq(r12, $mem$$Address);
10887   %}
10888   ins_pipe(ialu_cr_reg_mem);
10889 %}
10890 
10891 instruct compN_rReg(rFlagsRegU cr, rRegN op1, rRegN op2)
10892 %{
10893   match(Set cr (CmpN op1 op2));
10894 
10895   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
10896   ins_encode %{ __ cmpl($op1$$Register, $op2$$Register); %}
10897   ins_pipe(ialu_cr_reg_reg);
10898 %}
10899 
10900 instruct compN_rReg_mem(rFlagsRegU cr, rRegN src, memory mem)
10901 %{
10902   match(Set cr (CmpN src (LoadN mem)));
10903 
10904   format %{ "cmpl    $src, $mem\t# compressed ptr" %}
10905   ins_encode %{
10906     __ cmpl($src$$Register, $mem$$Address);
10907   %}
10908   ins_pipe(ialu_cr_reg_mem);
10909 %}
10910 
10911 instruct compN_rReg_imm(rFlagsRegU cr, rRegN op1, immN op2) %{
10912   match(Set cr (CmpN op1 op2));
10913 
10914   format %{ "cmpl    $op1, $op2\t# compressed ptr" %}
10915   ins_encode %{
10916     __ cmp_narrow_oop($op1$$Register, (jobject)$op2$$constant);
10917   %}
10918   ins_pipe(ialu_cr_reg_imm);
10919 %}
10920 
10921 instruct compN_mem_imm(rFlagsRegU cr, memory mem, immN src)
10922 %{
10923   match(Set cr (CmpN src (LoadN mem)));
10924 
10925   format %{ "cmpl    $mem, $src\t# compressed ptr" %}
10926   ins_encode %{
10927     __ cmp_narrow_oop($mem$$Address, (jobject)$src$$constant);
10928   %}
10929   ins_pipe(ialu_cr_reg_mem);
10930 %}
10931 
10932 instruct compN_rReg_imm_klass(rFlagsRegU cr, rRegN op1, immNKlass op2) %{
10933   match(Set cr (CmpN op1 op2));
10934 
10935   format %{ "cmpl    $op1, $op2\t# compressed klass ptr" %}
10936   ins_encode %{
10937     __ cmp_narrow_klass($op1$$Register, (Klass*)$op2$$constant);
10938   %}
10939   ins_pipe(ialu_cr_reg_imm);
10940 %}
10941 
10942 instruct compN_mem_imm_klass(rFlagsRegU cr, memory mem, immNKlass src)
10943 %{
10944   match(Set cr (CmpN src (LoadNKlass mem)));
10945 
10946   format %{ "cmpl    $mem, $src\t# compressed klass ptr" %}
10947   ins_encode %{
10948     __ cmp_narrow_klass($mem$$Address, (Klass*)$src$$constant);
10949   %}
10950   ins_pipe(ialu_cr_reg_mem);
10951 %}
10952 
10953 instruct testN_reg(rFlagsReg cr, rRegN src, immN0 zero) %{
10954   match(Set cr (CmpN src zero));
10955 
10956   format %{ "testl   $src, $src\t# compressed ptr" %}
10957   ins_encode %{ __ testl($src$$Register, $src$$Register); %}
10958   ins_pipe(ialu_cr_reg_imm);
10959 %}
10960 
10961 instruct testN_mem(rFlagsReg cr, memory mem, immN0 zero)
10962 %{
10963   predicate(Universe::narrow_oop_base() != NULL);
10964   match(Set cr (CmpN (LoadN mem) zero));
10965 
10966   ins_cost(500); // XXX
10967   format %{ "testl   $mem, 0xffffffff\t# compressed ptr" %}
10968   ins_encode %{
10969     __ cmpl($mem$$Address, (int)0xFFFFFFFF);
10970   %}
10971   ins_pipe(ialu_cr_reg_mem);
10972 %}
10973 
10974 instruct testN_mem_reg0(rFlagsReg cr, memory mem, immN0 zero)
10975 %{
10976   predicate(Universe::narrow_oop_base() == NULL && (Universe::narrow_klass_base() == NULL));
10977   match(Set cr (CmpN (LoadN mem) zero));
10978 
10979   format %{ "cmpl    R12, $mem\t# compressed ptr (R12_heapbase==0)" %}
10980   ins_encode %{
10981     __ cmpl(r12, $mem$$Address);
10982   %}
10983   ins_pipe(ialu_cr_reg_mem);
10984 %}
10985 
10986 // Yanked all unsigned pointer compare operations.
10987 // Pointer compares are done with CmpP which is already unsigned.
10988 
10989 instruct compL_rReg(rFlagsReg cr, rRegL op1, rRegL op2)
10990 %{
10991   match(Set cr (CmpL op1 op2));
10992 
10993   format %{ "cmpq    $op1, $op2" %}
10994   opcode(0x3B);  /* Opcode 3B /r */
10995   ins_encode(REX_reg_reg_wide(op1, op2), OpcP, reg_reg(op1, op2));
10996   ins_pipe(ialu_cr_reg_reg);
10997 %}
10998 
10999 instruct compL_rReg_imm(rFlagsReg cr, rRegL op1, immL32 op2)
11000 %{
11001   match(Set cr (CmpL op1 op2));
11002 
11003   format %{ "cmpq    $op1, $op2" %}
11004   opcode(0x81, 0x07); /* Opcode 81 /7 */
11005   ins_encode(OpcSErm_wide(op1, op2), Con8or32(op2));
11006   ins_pipe(ialu_cr_reg_imm);
11007 %}
11008 
11009 instruct compL_rReg_mem(rFlagsReg cr, rRegL op1, memory op2)
11010 %{
11011   match(Set cr (CmpL op1 (LoadL op2)));
11012 
11013   format %{ "cmpq    $op1, $op2" %}
11014   opcode(0x3B); /* Opcode 3B /r */
11015   ins_encode(REX_reg_mem_wide(op1, op2), OpcP, reg_mem(op1, op2));
11016   ins_pipe(ialu_cr_reg_mem);
11017 %}
11018 
11019 instruct testL_reg(rFlagsReg cr, rRegL src, immL0 zero)
11020 %{
11021   match(Set cr (CmpL src zero));
11022 
11023   format %{ "testq   $src, $src" %}
11024   opcode(0x85);
11025   ins_encode(REX_reg_reg_wide(src, src), OpcP, reg_reg(src, src));
11026   ins_pipe(ialu_cr_reg_imm);
11027 %}
11028 
11029 instruct testL_reg_imm(rFlagsReg cr, rRegL src, immL32 con, immL0 zero)
11030 %{
11031   match(Set cr (CmpL (AndL src con) zero));
11032 
11033   format %{ "testq   $src, $con\t# long" %}
11034   opcode(0xF7, 0x00);
11035   ins_encode(REX_reg_wide(src), OpcP, reg_opc(src), Con32(con));
11036   ins_pipe(ialu_cr_reg_imm);
11037 %}
11038 
11039 instruct testL_reg_mem(rFlagsReg cr, rRegL src, memory mem, immL0 zero)
11040 %{
11041   match(Set cr (CmpL (AndL src (LoadL mem)) zero));
11042 
11043   format %{ "testq   $src, $mem" %}
11044   opcode(0x85);
11045   ins_encode(REX_reg_mem_wide(src, mem), OpcP, reg_mem(src, mem));
11046   ins_pipe(ialu_cr_reg_mem);
11047 %}
11048 
11049 // Manifest a CmpL result in an integer register.  Very painful.
11050 // This is the test to avoid.
11051 instruct cmpL3_reg_reg(rRegI dst, rRegL src1, rRegL src2, rFlagsReg flags)
11052 %{
11053   match(Set dst (CmpL3 src1 src2));
11054   effect(KILL flags);
11055 
11056   ins_cost(275); // XXX
11057   format %{ "cmpq    $src1, $src2\t# CmpL3\n\t"
11058             "movl    $dst, -1\n\t"
11059             "jl,s    done\n\t"
11060             "setne   $dst\n\t"
11061             "movzbl  $dst, $dst\n\t"
11062     "done:" %}
11063   ins_encode(cmpl3_flag(src1, src2, dst));
11064   ins_pipe(pipe_slow);
11065 %}
11066 
11067 //----------Max and Min--------------------------------------------------------
11068 // Min Instructions
11069 
11070 instruct cmovI_reg_g(rRegI dst, rRegI src, rFlagsReg cr)
11071 %{
11072   effect(USE_DEF dst, USE src, USE cr);
11073 
11074   format %{ "cmovlgt $dst, $src\t# min" %}
11075   opcode(0x0F, 0x4F);
11076   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11077   ins_pipe(pipe_cmov_reg);
11078 %}
11079 
11080 
11081 instruct minI_rReg(rRegI dst, rRegI src)
11082 %{
11083   match(Set dst (MinI dst src));
11084 
11085   ins_cost(200);
11086   expand %{
11087     rFlagsReg cr;
11088     compI_rReg(cr, dst, src);
11089     cmovI_reg_g(dst, src, cr);
11090   %}
11091 %}
11092 
11093 instruct cmovI_reg_l(rRegI dst, rRegI src, rFlagsReg cr)
11094 %{
11095   effect(USE_DEF dst, USE src, USE cr);
11096 
11097   format %{ "cmovllt $dst, $src\t# max" %}
11098   opcode(0x0F, 0x4C);
11099   ins_encode(REX_reg_reg(dst, src), OpcP, OpcS, reg_reg(dst, src));
11100   ins_pipe(pipe_cmov_reg);
11101 %}
11102 
11103 
11104 instruct maxI_rReg(rRegI dst, rRegI src)
11105 %{
11106   match(Set dst (MaxI dst src));
11107 
11108   ins_cost(200);
11109   expand %{
11110     rFlagsReg cr;
11111     compI_rReg(cr, dst, src);
11112     cmovI_reg_l(dst, src, cr);
11113   %}
11114 %}
11115 
11116 // ============================================================================
11117 // Branch Instructions
11118 
11119 // Jump Direct - Label defines a relative address from JMP+1
11120 instruct jmpDir(label labl)
11121 %{
11122   match(Goto);
11123   effect(USE labl);
11124 
11125   ins_cost(300);
11126   format %{ "jmp     $labl" %}
11127   size(5);
11128   ins_encode %{
11129     Label* L = $labl$$label;
11130     __ jmp(*L, false); // Always long jump
11131   %}
11132   ins_pipe(pipe_jmp);
11133 %}
11134 
11135 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11136 instruct jmpCon(cmpOp cop, rFlagsReg cr, label labl)
11137 %{
11138   match(If cop cr);
11139   effect(USE labl);
11140 
11141   ins_cost(300);
11142   format %{ "j$cop     $labl" %}
11143   size(6);
11144   ins_encode %{
11145     Label* L = $labl$$label;
11146     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11147   %}
11148   ins_pipe(pipe_jcc);
11149 %}
11150 
11151 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11152 instruct jmpLoopEnd(cmpOp cop, rFlagsReg cr, label labl)
11153 %{
11154   match(CountedLoopEnd cop cr);
11155   effect(USE labl);
11156 
11157   ins_cost(300);
11158   format %{ "j$cop     $labl\t# loop end" %}
11159   size(6);
11160   ins_encode %{
11161     Label* L = $labl$$label;
11162     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11163   %}
11164   ins_pipe(pipe_jcc);
11165 %}
11166 
11167 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11168 instruct jmpLoopEndU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11169   match(CountedLoopEnd cop cmp);
11170   effect(USE labl);
11171 
11172   ins_cost(300);
11173   format %{ "j$cop,u   $labl\t# loop end" %}
11174   size(6);
11175   ins_encode %{
11176     Label* L = $labl$$label;
11177     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11178   %}
11179   ins_pipe(pipe_jcc);
11180 %}
11181 
11182 instruct jmpLoopEndUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11183   match(CountedLoopEnd cop cmp);
11184   effect(USE labl);
11185 
11186   ins_cost(200);
11187   format %{ "j$cop,u   $labl\t# loop end" %}
11188   size(6);
11189   ins_encode %{
11190     Label* L = $labl$$label;
11191     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11192   %}
11193   ins_pipe(pipe_jcc);
11194 %}
11195 
11196 // Jump Direct Conditional - using unsigned comparison
11197 instruct jmpConU(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11198   match(If cop cmp);
11199   effect(USE labl);
11200 
11201   ins_cost(300);
11202   format %{ "j$cop,u  $labl" %}
11203   size(6);
11204   ins_encode %{
11205     Label* L = $labl$$label;
11206     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11207   %}
11208   ins_pipe(pipe_jcc);
11209 %}
11210 
11211 instruct jmpConUCF(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11212   match(If cop cmp);
11213   effect(USE labl);
11214 
11215   ins_cost(200);
11216   format %{ "j$cop,u  $labl" %}
11217   size(6);
11218   ins_encode %{
11219     Label* L = $labl$$label;
11220     __ jcc((Assembler::Condition)($cop$$cmpcode), *L, false); // Always long jump
11221   %}
11222   ins_pipe(pipe_jcc);
11223 %}
11224 
11225 instruct jmpConUCF2(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
11226   match(If cop cmp);
11227   effect(USE labl);
11228 
11229   ins_cost(200);
11230   format %{ $$template
11231     if ($cop$$cmpcode == Assembler::notEqual) {
11232       $$emit$$"jp,u   $labl\n\t"
11233       $$emit$$"j$cop,u   $labl"
11234     } else {
11235       $$emit$$"jp,u   done\n\t"
11236       $$emit$$"j$cop,u   $labl\n\t"
11237       $$emit$$"done:"
11238     }
11239   %}
11240   ins_encode %{
11241     Label* l = $labl$$label;
11242     if ($cop$$cmpcode == Assembler::notEqual) {
11243       __ jcc(Assembler::parity, *l, false);
11244       __ jcc(Assembler::notEqual, *l, false);
11245     } else if ($cop$$cmpcode == Assembler::equal) {
11246       Label done;
11247       __ jccb(Assembler::parity, done);
11248       __ jcc(Assembler::equal, *l, false);
11249       __ bind(done);
11250     } else {
11251        ShouldNotReachHere();
11252     }
11253   %}
11254   ins_pipe(pipe_jcc);
11255 %}
11256 
11257 // ============================================================================
11258 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary
11259 // superklass array for an instance of the superklass.  Set a hidden
11260 // internal cache on a hit (cache is checked with exposed code in
11261 // gen_subtype_check()).  Return NZ for a miss or zero for a hit.  The
11262 // encoding ALSO sets flags.
11263 
11264 instruct partialSubtypeCheck(rdi_RegP result,
11265                              rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
11266                              rFlagsReg cr)
11267 %{
11268   match(Set result (PartialSubtypeCheck sub super));
11269   effect(KILL rcx, KILL cr);
11270 
11271   ins_cost(1100);  // slightly larger than the next version
11272   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
11273             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
11274             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
11275             "repne   scasq\t# Scan *rdi++ for a match with rax while rcx--\n\t"
11276             "jne,s   miss\t\t# Missed: rdi not-zero\n\t"
11277             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
11278             "xorq    $result, $result\t\t Hit: rdi zero\n\t"
11279     "miss:\t" %}
11280 
11281   opcode(0x1); // Force a XOR of RDI
11282   ins_encode(enc_PartialSubtypeCheck());
11283   ins_pipe(pipe_slow);
11284 %}
11285 
11286 instruct partialSubtypeCheck_vs_Zero(rFlagsReg cr,
11287                                      rsi_RegP sub, rax_RegP super, rcx_RegI rcx,
11288                                      immP0 zero,
11289                                      rdi_RegP result)
11290 %{
11291   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
11292   effect(KILL rcx, KILL result);
11293 
11294   ins_cost(1000);
11295   format %{ "movq    rdi, [$sub + in_bytes(Klass::secondary_supers_offset())]\n\t"
11296             "movl    rcx, [rdi + Array<Klass*>::length_offset_in_bytes()]\t# length to scan\n\t"
11297             "addq    rdi, Array<Klass*>::base_offset_in_bytes()\t# Skip to start of data; set NZ in case count is zero\n\t"
11298             "repne   scasq\t# Scan *rdi++ for a match with rax while cx-- != 0\n\t"
11299             "jne,s   miss\t\t# Missed: flags nz\n\t"
11300             "movq    [$sub + in_bytes(Klass::secondary_super_cache_offset())], $super\t# Hit: update cache\n\t"
11301     "miss:\t" %}
11302 
11303   opcode(0x0); // No need to XOR RDI
11304   ins_encode(enc_PartialSubtypeCheck());
11305   ins_pipe(pipe_slow);
11306 %}
11307 
11308 // ============================================================================
11309 // Branch Instructions -- short offset versions
11310 //
11311 // These instructions are used to replace jumps of a long offset (the default
11312 // match) with jumps of a shorter offset.  These instructions are all tagged
11313 // with the ins_short_branch attribute, which causes the ADLC to suppress the
11314 // match rules in general matching.  Instead, the ADLC generates a conversion
11315 // method in the MachNode which can be used to do in-place replacement of the
11316 // long variant with the shorter variant.  The compiler will determine if a
11317 // branch can be taken by the is_short_branch_offset() predicate in the machine
11318 // specific code section of the file.
11319 
11320 // Jump Direct - Label defines a relative address from JMP+1
11321 instruct jmpDir_short(label labl) %{
11322   match(Goto);
11323   effect(USE labl);
11324 
11325   ins_cost(300);
11326   format %{ "jmp,s   $labl" %}
11327   size(2);
11328   ins_encode %{
11329     Label* L = $labl$$label;
11330     __ jmpb(*L);
11331   %}
11332   ins_pipe(pipe_jmp);
11333   ins_short_branch(1);
11334 %}
11335 
11336 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11337 instruct jmpCon_short(cmpOp cop, rFlagsReg cr, label labl) %{
11338   match(If cop cr);
11339   effect(USE labl);
11340 
11341   ins_cost(300);
11342   format %{ "j$cop,s   $labl" %}
11343   size(2);
11344   ins_encode %{
11345     Label* L = $labl$$label;
11346     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11347   %}
11348   ins_pipe(pipe_jcc);
11349   ins_short_branch(1);
11350 %}
11351 
11352 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11353 instruct jmpLoopEnd_short(cmpOp cop, rFlagsReg cr, label labl) %{
11354   match(CountedLoopEnd cop cr);
11355   effect(USE labl);
11356 
11357   ins_cost(300);
11358   format %{ "j$cop,s   $labl\t# loop end" %}
11359   size(2);
11360   ins_encode %{
11361     Label* L = $labl$$label;
11362     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11363   %}
11364   ins_pipe(pipe_jcc);
11365   ins_short_branch(1);
11366 %}
11367 
11368 // Jump Direct Conditional - Label defines a relative address from Jcc+1
11369 instruct jmpLoopEndU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11370   match(CountedLoopEnd cop cmp);
11371   effect(USE labl);
11372 
11373   ins_cost(300);
11374   format %{ "j$cop,us  $labl\t# loop end" %}
11375   size(2);
11376   ins_encode %{
11377     Label* L = $labl$$label;
11378     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11379   %}
11380   ins_pipe(pipe_jcc);
11381   ins_short_branch(1);
11382 %}
11383 
11384 instruct jmpLoopEndUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11385   match(CountedLoopEnd cop cmp);
11386   effect(USE labl);
11387 
11388   ins_cost(300);
11389   format %{ "j$cop,us  $labl\t# loop end" %}
11390   size(2);
11391   ins_encode %{
11392     Label* L = $labl$$label;
11393     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11394   %}
11395   ins_pipe(pipe_jcc);
11396   ins_short_branch(1);
11397 %}
11398 
11399 // Jump Direct Conditional - using unsigned comparison
11400 instruct jmpConU_short(cmpOpU cop, rFlagsRegU cmp, label labl) %{
11401   match(If cop cmp);
11402   effect(USE labl);
11403 
11404   ins_cost(300);
11405   format %{ "j$cop,us  $labl" %}
11406   size(2);
11407   ins_encode %{
11408     Label* L = $labl$$label;
11409     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11410   %}
11411   ins_pipe(pipe_jcc);
11412   ins_short_branch(1);
11413 %}
11414 
11415 instruct jmpConUCF_short(cmpOpUCF cop, rFlagsRegUCF cmp, label labl) %{
11416   match(If cop cmp);
11417   effect(USE labl);
11418 
11419   ins_cost(300);
11420   format %{ "j$cop,us  $labl" %}
11421   size(2);
11422   ins_encode %{
11423     Label* L = $labl$$label;
11424     __ jccb((Assembler::Condition)($cop$$cmpcode), *L);
11425   %}
11426   ins_pipe(pipe_jcc);
11427   ins_short_branch(1);
11428 %}
11429 
11430 instruct jmpConUCF2_short(cmpOpUCF2 cop, rFlagsRegUCF cmp, label labl) %{
11431   match(If cop cmp);
11432   effect(USE labl);
11433 
11434   ins_cost(300);
11435   format %{ $$template
11436     if ($cop$$cmpcode == Assembler::notEqual) {
11437       $$emit$$"jp,u,s   $labl\n\t"
11438       $$emit$$"j$cop,u,s   $labl"
11439     } else {
11440       $$emit$$"jp,u,s   done\n\t"
11441       $$emit$$"j$cop,u,s  $labl\n\t"
11442       $$emit$$"done:"
11443     }
11444   %}
11445   size(4);
11446   ins_encode %{
11447     Label* l = $labl$$label;
11448     if ($cop$$cmpcode == Assembler::notEqual) {
11449       __ jccb(Assembler::parity, *l);
11450       __ jccb(Assembler::notEqual, *l);
11451     } else if ($cop$$cmpcode == Assembler::equal) {
11452       Label done;
11453       __ jccb(Assembler::parity, done);
11454       __ jccb(Assembler::equal, *l);
11455       __ bind(done);
11456     } else {
11457        ShouldNotReachHere();
11458     }
11459   %}
11460   ins_pipe(pipe_jcc);
11461   ins_short_branch(1);
11462 %}
11463 
11464 // ============================================================================
11465 // inlined locking and unlocking
11466 
11467 instruct cmpFastLockRTM(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rdx_RegI scr, rRegI cx1, rRegI cx2) %{
11468   predicate(Compile::current()->use_rtm());
11469   match(Set cr (FastLock object box));
11470   effect(TEMP tmp, TEMP scr, TEMP cx1, TEMP cx2, USE_KILL box);
11471   ins_cost(300);
11472   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr,$cx1,$cx2" %}
11473   ins_encode %{
11474     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
11475                  $scr$$Register, $cx1$$Register, $cx2$$Register,
11476                  _counters, _rtm_counters, _stack_rtm_counters,
11477                  ((Method*)(ra_->C->method()->constant_encoding()))->method_data(),
11478                  true, ra_->C->profile_rtm());
11479   %}
11480   ins_pipe(pipe_slow);
11481 %}
11482 
11483 instruct cmpFastLock(rFlagsReg cr, rRegP object, rbx_RegP box, rax_RegI tmp, rRegP scr) %{
11484   predicate(!Compile::current()->use_rtm());
11485   match(Set cr (FastLock object box));
11486   effect(TEMP tmp, TEMP scr, USE_KILL box);
11487   ins_cost(300);
11488   format %{ "fastlock $object,$box\t! kills $box,$tmp,$scr" %}
11489   ins_encode %{
11490     __ fast_lock($object$$Register, $box$$Register, $tmp$$Register,
11491                  $scr$$Register, noreg, noreg, _counters, NULL, NULL, NULL, false, false);
11492   %}
11493   ins_pipe(pipe_slow);
11494 %}
11495 
11496 instruct cmpFastUnlock(rFlagsReg cr, rRegP object, rax_RegP box, rRegP tmp) %{
11497   match(Set cr (FastUnlock object box));
11498   effect(TEMP tmp, USE_KILL box);
11499   ins_cost(300);
11500   format %{ "fastunlock $object,$box\t! kills $box,$tmp" %}
11501   ins_encode %{
11502     __ fast_unlock($object$$Register, $box$$Register, $tmp$$Register, ra_->C->use_rtm());
11503   %}
11504   ins_pipe(pipe_slow);
11505 %}
11506 
11507 
11508 // ============================================================================
11509 // Safepoint Instructions
11510 instruct safePoint_poll(rFlagsReg cr)
11511 %{
11512   predicate(!Assembler::is_polling_page_far());
11513   match(SafePoint);
11514   effect(KILL cr);
11515 
11516   format %{ "testl  rax, [rip + #offset_to_poll_page]\t"
11517             "# Safepoint: poll for GC" %}
11518   ins_cost(125);
11519   ins_encode %{
11520     AddressLiteral addr(os::get_polling_page(), relocInfo::poll_type);
11521     __ testl(rax, addr);
11522   %}
11523   ins_pipe(ialu_reg_mem);
11524 %}
11525 
11526 instruct safePoint_poll_far(rFlagsReg cr, rRegP poll)
11527 %{
11528   predicate(Assembler::is_polling_page_far());
11529   match(SafePoint poll);
11530   effect(KILL cr, USE poll);
11531 
11532   format %{ "testl  rax, [$poll]\t"
11533             "# Safepoint: poll for GC" %}
11534   ins_cost(125);
11535   ins_encode %{
11536     __ relocate(relocInfo::poll_type);
11537     __ testl(rax, Address($poll$$Register, 0));
11538   %}
11539   ins_pipe(ialu_reg_mem);
11540 %}
11541 
11542 // ============================================================================
11543 // Procedure Call/Return Instructions
11544 // Call Java Static Instruction
11545 // Note: If this code changes, the corresponding ret_addr_offset() and
11546 //       compute_padding() functions will have to be adjusted.
11547 instruct CallStaticJavaDirect(method meth) %{
11548   match(CallStaticJava);
11549   effect(USE meth);
11550 
11551   ins_cost(300);
11552   format %{ "call,static " %}
11553   opcode(0xE8); /* E8 cd */
11554   ins_encode(clear_avx, Java_Static_Call(meth), call_epilog);
11555   ins_pipe(pipe_slow);
11556   ins_alignment(4);
11557 %}
11558 
11559 // Call Java Dynamic Instruction
11560 // Note: If this code changes, the corresponding ret_addr_offset() and
11561 //       compute_padding() functions will have to be adjusted.
11562 instruct CallDynamicJavaDirect(method meth)
11563 %{
11564   match(CallDynamicJava);
11565   effect(USE meth);
11566 
11567   ins_cost(300);
11568   format %{ "movq    rax, #Universe::non_oop_word()\n\t"
11569             "call,dynamic " %}
11570   ins_encode(clear_avx, Java_Dynamic_Call(meth), call_epilog);
11571   ins_pipe(pipe_slow);
11572   ins_alignment(4);
11573 %}
11574 
11575 // Call Runtime Instruction
11576 instruct CallRuntimeDirect(method meth)
11577 %{
11578   match(CallRuntime);
11579   effect(USE meth);
11580 
11581   ins_cost(300);
11582   format %{ "call,runtime " %}
11583   ins_encode(clear_avx, Java_To_Runtime(meth));
11584   ins_pipe(pipe_slow);
11585 %}
11586 
11587 // Call runtime without safepoint
11588 instruct CallLeafDirect(method meth)
11589 %{
11590   match(CallLeaf);
11591   effect(USE meth);
11592 
11593   ins_cost(300);
11594   format %{ "call_leaf,runtime " %}
11595   ins_encode(clear_avx, Java_To_Runtime(meth));
11596   ins_pipe(pipe_slow);
11597 %}
11598 
11599 // Call runtime without safepoint
11600 instruct CallLeafNoFPDirect(method meth)
11601 %{
11602   match(CallLeafNoFP);
11603   effect(USE meth);
11604 
11605   ins_cost(300);
11606   format %{ "call_leaf_nofp,runtime " %}
11607   ins_encode(Java_To_Runtime(meth));
11608   ins_pipe(pipe_slow);
11609 %}
11610 
11611 // Return Instruction
11612 // Remove the return address & jump to it.
11613 // Notice: We always emit a nop after a ret to make sure there is room
11614 // for safepoint patching
11615 instruct Ret()
11616 %{
11617   match(Return);
11618 
11619   format %{ "ret" %}
11620   opcode(0xC3);
11621   ins_encode(OpcP);
11622   ins_pipe(pipe_jmp);
11623 %}
11624 
11625 // Tail Call; Jump from runtime stub to Java code.
11626 // Also known as an 'interprocedural jump'.
11627 // Target of jump will eventually return to caller.
11628 // TailJump below removes the return address.
11629 instruct TailCalljmpInd(no_rbp_RegP jump_target, rbx_RegP method_oop)
11630 %{
11631   match(TailCall jump_target method_oop);
11632 
11633   ins_cost(300);
11634   format %{ "jmp     $jump_target\t# rbx holds method oop" %}
11635   opcode(0xFF, 0x4); /* Opcode FF /4 */
11636   ins_encode(REX_reg(jump_target), OpcP, reg_opc(jump_target));
11637   ins_pipe(pipe_jmp);
11638 %}
11639 
11640 // Tail Jump; remove the return address; jump to target.
11641 // TailCall above leaves the return address around.
11642 instruct tailjmpInd(no_rbp_RegP jump_target, rax_RegP ex_oop)
11643 %{
11644   match(TailJump jump_target ex_oop);
11645 
11646   ins_cost(300);
11647   format %{ "popq    rdx\t# pop return address\n\t"
11648             "jmp     $jump_target" %}
11649   opcode(0xFF, 0x4); /* Opcode FF /4 */
11650   ins_encode(Opcode(0x5a), // popq rdx
11651              REX_reg(jump_target), OpcP, reg_opc(jump_target));
11652   ins_pipe(pipe_jmp);
11653 %}
11654 
11655 // Create exception oop: created by stack-crawling runtime code.
11656 // Created exception is now available to this handler, and is setup
11657 // just prior to jumping to this handler.  No code emitted.
11658 instruct CreateException(rax_RegP ex_oop)
11659 %{
11660   match(Set ex_oop (CreateEx));
11661 
11662   size(0);
11663   // use the following format syntax
11664   format %{ "# exception oop is in rax; no code emitted" %}
11665   ins_encode();
11666   ins_pipe(empty);
11667 %}
11668 
11669 // Rethrow exception:
11670 // The exception oop will come in the first argument position.
11671 // Then JUMP (not call) to the rethrow stub code.
11672 instruct RethrowException()
11673 %{
11674   match(Rethrow);
11675 
11676   // use the following format syntax
11677   format %{ "jmp     rethrow_stub" %}
11678   ins_encode(enc_rethrow);
11679   ins_pipe(pipe_jmp);
11680 %}
11681 
11682 
11683 // ============================================================================
11684 // This name is KNOWN by the ADLC and cannot be changed.
11685 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
11686 // for this guy.
11687 instruct tlsLoadP(r15_RegP dst) %{
11688   match(Set dst (ThreadLocal));
11689   effect(DEF dst);
11690 
11691   size(0);
11692   format %{ "# TLS is in R15" %}
11693   ins_encode( /*empty encoding*/ );
11694   ins_pipe(ialu_reg_reg);
11695 %}
11696 
11697 
11698 //----------PEEPHOLE RULES-----------------------------------------------------
11699 // These must follow all instruction definitions as they use the names
11700 // defined in the instructions definitions.
11701 //
11702 // peepmatch ( root_instr_name [preceding_instruction]* );
11703 //
11704 // peepconstraint %{
11705 // (instruction_number.operand_name relational_op instruction_number.operand_name
11706 //  [, ...] );
11707 // // instruction numbers are zero-based using left to right order in peepmatch
11708 //
11709 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
11710 // // provide an instruction_number.operand_name for each operand that appears
11711 // // in the replacement instruction's match rule
11712 //
11713 // ---------VM FLAGS---------------------------------------------------------
11714 //
11715 // All peephole optimizations can be turned off using -XX:-OptoPeephole
11716 //
11717 // Each peephole rule is given an identifying number starting with zero and
11718 // increasing by one in the order seen by the parser.  An individual peephole
11719 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
11720 // on the command-line.
11721 //
11722 // ---------CURRENT LIMITATIONS----------------------------------------------
11723 //
11724 // Only match adjacent instructions in same basic block
11725 // Only equality constraints
11726 // Only constraints between operands, not (0.dest_reg == RAX_enc)
11727 // Only one replacement instruction
11728 //
11729 // ---------EXAMPLE----------------------------------------------------------
11730 //
11731 // // pertinent parts of existing instructions in architecture description
11732 // instruct movI(rRegI dst, rRegI src)
11733 // %{
11734 //   match(Set dst (CopyI src));
11735 // %}
11736 //
11737 // instruct incI_rReg(rRegI dst, immI1 src, rFlagsReg cr)
11738 // %{
11739 //   match(Set dst (AddI dst src));
11740 //   effect(KILL cr);
11741 // %}
11742 //
11743 // // Change (inc mov) to lea
11744 // peephole %{
11745 //   // increment preceeded by register-register move
11746 //   peepmatch ( incI_rReg movI );
11747 //   // require that the destination register of the increment
11748 //   // match the destination register of the move
11749 //   peepconstraint ( 0.dst == 1.dst );
11750 //   // construct a replacement instruction that sets
11751 //   // the destination to ( move's source register + one )
11752 //   peepreplace ( leaI_rReg_immI( 0.dst 1.src 0.src ) );
11753 // %}
11754 //
11755 
11756 // Implementation no longer uses movX instructions since
11757 // machine-independent system no longer uses CopyX nodes.
11758 //
11759 // peephole
11760 // %{
11761 //   peepmatch (incI_rReg movI);
11762 //   peepconstraint (0.dst == 1.dst);
11763 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11764 // %}
11765 
11766 // peephole
11767 // %{
11768 //   peepmatch (decI_rReg movI);
11769 //   peepconstraint (0.dst == 1.dst);
11770 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11771 // %}
11772 
11773 // peephole
11774 // %{
11775 //   peepmatch (addI_rReg_imm movI);
11776 //   peepconstraint (0.dst == 1.dst);
11777 //   peepreplace (leaI_rReg_immI(0.dst 1.src 0.src));
11778 // %}
11779 
11780 // peephole
11781 // %{
11782 //   peepmatch (incL_rReg movL);
11783 //   peepconstraint (0.dst == 1.dst);
11784 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11785 // %}
11786 
11787 // peephole
11788 // %{
11789 //   peepmatch (decL_rReg movL);
11790 //   peepconstraint (0.dst == 1.dst);
11791 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11792 // %}
11793 
11794 // peephole
11795 // %{
11796 //   peepmatch (addL_rReg_imm movL);
11797 //   peepconstraint (0.dst == 1.dst);
11798 //   peepreplace (leaL_rReg_immL(0.dst 1.src 0.src));
11799 // %}
11800 
11801 // peephole
11802 // %{
11803 //   peepmatch (addP_rReg_imm movP);
11804 //   peepconstraint (0.dst == 1.dst);
11805 //   peepreplace (leaP_rReg_imm(0.dst 1.src 0.src));
11806 // %}
11807 
11808 // // Change load of spilled value to only a spill
11809 // instruct storeI(memory mem, rRegI src)
11810 // %{
11811 //   match(Set mem (StoreI mem src));
11812 // %}
11813 //
11814 // instruct loadI(rRegI dst, memory mem)
11815 // %{
11816 //   match(Set dst (LoadI mem));
11817 // %}
11818 //
11819 
11820 peephole
11821 %{
11822   peepmatch (loadI storeI);
11823   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
11824   peepreplace (storeI(1.mem 1.mem 1.src));
11825 %}
11826 
11827 peephole
11828 %{
11829   peepmatch (loadL storeL);
11830   peepconstraint (1.src == 0.dst, 1.mem == 0.mem);
11831   peepreplace (storeL(1.mem 1.mem 1.src));
11832 %}
11833 
11834 //----------SMARTSPILL RULES---------------------------------------------------
11835 // These must follow all instruction definitions as they use the names
11836 // defined in the instructions definitions.