1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "c1/c1_ValueType.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/bitMap.inline.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/heapRegion.hpp"
  42 #endif // INCLUDE_ALL_GCS
  43 
  44 #ifdef ASSERT
  45 #define __ gen()->lir(__FILE__, __LINE__)->
  46 #else
  47 #define __ gen()->lir()->
  48 #endif
  49 
  50 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  51 #ifdef ARM
  52 #define PATCHED_ADDR  (204)
  53 #else
  54 #define PATCHED_ADDR  (max_jint)
  55 #endif
  56 
  57 void PhiResolverState::reset(int max_vregs) {
  58   // Initialize array sizes
  59   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _virtual_operands.trunc_to(0);
  61   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _other_operands.trunc_to(0);
  63   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  64   _vreg_table.trunc_to(0);
  65 }
  66 
  67 
  68 
  69 //--------------------------------------------------------------
  70 // PhiResolver
  71 
  72 // Resolves cycles:
  73 //
  74 //  r1 := r2  becomes  temp := r1
  75 //  r2 := r1           r1 := r2
  76 //                     r2 := temp
  77 // and orders moves:
  78 //
  79 //  r2 := r3  becomes  r1 := r2
  80 //  r1 := r2           r2 := r3
  81 
  82 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  83  : _gen(gen)
  84  , _state(gen->resolver_state())
  85  , _temp(LIR_OprFact::illegalOpr)
  86 {
  87   // reinitialize the shared state arrays
  88   _state.reset(max_vregs);
  89 }
  90 
  91 
  92 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  93   assert(src->is_valid(), "");
  94   assert(dest->is_valid(), "");
  95   __ move(src, dest);
  96 }
  97 
  98 
  99 void PhiResolver::move_temp_to(LIR_Opr dest) {
 100   assert(_temp->is_valid(), "");
 101   emit_move(_temp, dest);
 102   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 103 }
 104 
 105 
 106 void PhiResolver::move_to_temp(LIR_Opr src) {
 107   assert(_temp->is_illegal(), "");
 108   _temp = _gen->new_register(src->type());
 109   emit_move(src, _temp);
 110 }
 111 
 112 
 113 // Traverse assignment graph in depth first order and generate moves in post order
 114 // ie. two assignments: b := c, a := b start with node c:
 115 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 116 // Generates moves in this order: move b to a and move c to b
 117 // ie. cycle a := b, b := a start with node a
 118 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 119 // Generates moves in this order: move b to temp, move a to b, move temp to a
 120 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 121   if (!dest->visited()) {
 122     dest->set_visited();
 123     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 124       move(dest, dest->destination_at(i));
 125     }
 126   } else if (!dest->start_node()) {
 127     // cylce in graph detected
 128     assert(_loop == NULL, "only one loop valid!");
 129     _loop = dest;
 130     move_to_temp(src->operand());
 131     return;
 132   } // else dest is a start node
 133 
 134   if (!dest->assigned()) {
 135     if (_loop == dest) {
 136       move_temp_to(dest->operand());
 137       dest->set_assigned();
 138     } else if (src != NULL) {
 139       emit_move(src->operand(), dest->operand());
 140       dest->set_assigned();
 141     }
 142   }
 143 }
 144 
 145 
 146 PhiResolver::~PhiResolver() {
 147   int i;
 148   // resolve any cycles in moves from and to virtual registers
 149   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 150     ResolveNode* node = virtual_operands()[i];
 151     if (!node->visited()) {
 152       _loop = NULL;
 153       move(NULL, node);
 154       node->set_start_node();
 155       assert(_temp->is_illegal(), "move_temp_to() call missing");
 156     }
 157   }
 158 
 159   // generate move for move from non virtual register to abitrary destination
 160   for (i = other_operands().length() - 1; i >= 0; i --) {
 161     ResolveNode* node = other_operands()[i];
 162     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 163       emit_move(node->operand(), node->destination_at(j)->operand());
 164     }
 165   }
 166 }
 167 
 168 
 169 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 170   ResolveNode* node;
 171   if (opr->is_virtual()) {
 172     int vreg_num = opr->vreg_number();
 173     node = vreg_table().at_grow(vreg_num, NULL);
 174     assert(node == NULL || node->operand() == opr, "");
 175     if (node == NULL) {
 176       node = new ResolveNode(opr);
 177       vreg_table()[vreg_num] = node;
 178     }
 179     // Make sure that all virtual operands show up in the list when
 180     // they are used as the source of a move.
 181     if (source && !virtual_operands().contains(node)) {
 182       virtual_operands().append(node);
 183     }
 184   } else {
 185     assert(source, "");
 186     node = new ResolveNode(opr);
 187     other_operands().append(node);
 188   }
 189   return node;
 190 }
 191 
 192 
 193 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 194   assert(dest->is_virtual(), "");
 195   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 196   assert(src->is_valid(), "");
 197   assert(dest->is_valid(), "");
 198   ResolveNode* source = source_node(src);
 199   source->append(destination_node(dest));
 200 }
 201 
 202 
 203 //--------------------------------------------------------------
 204 // LIRItem
 205 
 206 void LIRItem::set_result(LIR_Opr opr) {
 207   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 208   value()->set_operand(opr);
 209 
 210   if (opr->is_virtual()) {
 211     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 212   }
 213 
 214   _result = opr;
 215 }
 216 
 217 void LIRItem::load_item() {
 218   if (result()->is_illegal()) {
 219     // update the items result
 220     _result = value()->operand();
 221   }
 222   if (!result()->is_register()) {
 223     LIR_Opr reg = _gen->new_register(value()->type());
 224     __ move(result(), reg);
 225     if (result()->is_constant()) {
 226       _result = reg;
 227     } else {
 228       set_result(reg);
 229     }
 230   }
 231 }
 232 
 233 
 234 void LIRItem::load_for_store(BasicType type) {
 235   if (_gen->can_store_as_constant(value(), type)) {
 236     _result = value()->operand();
 237     if (!_result->is_constant()) {
 238       _result = LIR_OprFact::value_type(value()->type());
 239     }
 240   } else if (type == T_BYTE || type == T_BOOLEAN) {
 241     load_byte_item();
 242   } else {
 243     load_item();
 244   }
 245 }
 246 
 247 void LIRItem::load_item_force(LIR_Opr reg) {
 248   LIR_Opr r = result();
 249   if (r != reg) {
 250 #if !defined(ARM) && !defined(E500V2)
 251     if (r->type() != reg->type()) {
 252       // moves between different types need an intervening spill slot
 253       r = _gen->force_to_spill(r, reg->type());
 254     }
 255 #endif
 256     __ move(r, reg);
 257     _result = reg;
 258   }
 259 }
 260 
 261 ciObject* LIRItem::get_jobject_constant() const {
 262   ObjectType* oc = type()->as_ObjectType();
 263   if (oc) {
 264     return oc->constant_value();
 265   }
 266   return NULL;
 267 }
 268 
 269 
 270 jint LIRItem::get_jint_constant() const {
 271   assert(is_constant() && value() != NULL, "");
 272   assert(type()->as_IntConstant() != NULL, "type check");
 273   return type()->as_IntConstant()->value();
 274 }
 275 
 276 
 277 jint LIRItem::get_address_constant() const {
 278   assert(is_constant() && value() != NULL, "");
 279   assert(type()->as_AddressConstant() != NULL, "type check");
 280   return type()->as_AddressConstant()->value();
 281 }
 282 
 283 
 284 jfloat LIRItem::get_jfloat_constant() const {
 285   assert(is_constant() && value() != NULL, "");
 286   assert(type()->as_FloatConstant() != NULL, "type check");
 287   return type()->as_FloatConstant()->value();
 288 }
 289 
 290 
 291 jdouble LIRItem::get_jdouble_constant() const {
 292   assert(is_constant() && value() != NULL, "");
 293   assert(type()->as_DoubleConstant() != NULL, "type check");
 294   return type()->as_DoubleConstant()->value();
 295 }
 296 
 297 
 298 jlong LIRItem::get_jlong_constant() const {
 299   assert(is_constant() && value() != NULL, "");
 300   assert(type()->as_LongConstant() != NULL, "type check");
 301   return type()->as_LongConstant()->value();
 302 }
 303 
 304 
 305 
 306 //--------------------------------------------------------------
 307 
 308 
 309 void LIRGenerator::init() {
 310   _bs = Universe::heap()->barrier_set();
 311 }
 312 
 313 
 314 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 315 #ifndef PRODUCT
 316   if (PrintIRWithLIR) {
 317     block->print();
 318   }
 319 #endif
 320 
 321   // set up the list of LIR instructions
 322   assert(block->lir() == NULL, "LIR list already computed for this block");
 323   _lir = new LIR_List(compilation(), block);
 324   block->set_lir(_lir);
 325 
 326   __ branch_destination(block->label());
 327 
 328   if (LIRTraceExecution &&
 329       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 330       !block->is_set(BlockBegin::exception_entry_flag)) {
 331     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 332     trace_block_entry(block);
 333   }
 334 }
 335 
 336 
 337 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 338 #ifndef PRODUCT
 339   if (PrintIRWithLIR) {
 340     tty->cr();
 341   }
 342 #endif
 343 
 344   // LIR_Opr for unpinned constants shouldn't be referenced by other
 345   // blocks so clear them out after processing the block.
 346   for (int i = 0; i < _unpinned_constants.length(); i++) {
 347     _unpinned_constants.at(i)->clear_operand();
 348   }
 349   _unpinned_constants.trunc_to(0);
 350 
 351   // clear our any registers for other local constants
 352   _constants.trunc_to(0);
 353   _reg_for_constants.trunc_to(0);
 354 }
 355 
 356 
 357 void LIRGenerator::block_do(BlockBegin* block) {
 358   CHECK_BAILOUT();
 359 
 360   block_do_prolog(block);
 361   set_block(block);
 362 
 363   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 364     if (instr->is_pinned()) do_root(instr);
 365   }
 366 
 367   set_block(NULL);
 368   block_do_epilog(block);
 369 }
 370 
 371 
 372 //-------------------------LIRGenerator-----------------------------
 373 
 374 // This is where the tree-walk starts; instr must be root;
 375 void LIRGenerator::do_root(Value instr) {
 376   CHECK_BAILOUT();
 377 
 378   InstructionMark im(compilation(), instr);
 379 
 380   assert(instr->is_pinned(), "use only with roots");
 381   assert(instr->subst() == instr, "shouldn't have missed substitution");
 382 
 383   instr->visit(this);
 384 
 385   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 386          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 387 }
 388 
 389 
 390 // This is called for each node in tree; the walk stops if a root is reached
 391 void LIRGenerator::walk(Value instr) {
 392   InstructionMark im(compilation(), instr);
 393   //stop walk when encounter a root
 394   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 395     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 396   } else {
 397     assert(instr->subst() == instr, "shouldn't have missed substitution");
 398     instr->visit(this);
 399     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 400   }
 401 }
 402 
 403 
 404 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 405   assert(state != NULL, "state must be defined");
 406 
 407 #ifndef PRODUCT
 408   state->verify();
 409 #endif
 410 
 411   ValueStack* s = state;
 412   for_each_state(s) {
 413     if (s->kind() == ValueStack::EmptyExceptionState) {
 414       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 415       continue;
 416     }
 417 
 418     int index;
 419     Value value;
 420     for_each_stack_value(s, index, value) {
 421       assert(value->subst() == value, "missed substitution");
 422       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 423         walk(value);
 424         assert(value->operand()->is_valid(), "must be evaluated now");
 425       }
 426     }
 427 
 428     int bci = s->bci();
 429     IRScope* scope = s->scope();
 430     ciMethod* method = scope->method();
 431 
 432     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 433     if (bci == SynchronizationEntryBCI) {
 434       if (x->as_ExceptionObject() || x->as_Throw()) {
 435         // all locals are dead on exit from the synthetic unlocker
 436         liveness.clear();
 437       } else {
 438         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 439       }
 440     }
 441     if (!liveness.is_valid()) {
 442       // Degenerate or breakpointed method.
 443       bailout("Degenerate or breakpointed method");
 444     } else {
 445       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 446       for_each_local_value(s, index, value) {
 447         assert(value->subst() == value, "missed substition");
 448         if (liveness.at(index) && !value->type()->is_illegal()) {
 449           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 450             walk(value);
 451             assert(value->operand()->is_valid(), "must be evaluated now");
 452           }
 453         } else {
 454           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 455           s->invalidate_local(index);
 456         }
 457       }
 458     }
 459   }
 460 
 461   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 462 }
 463 
 464 
 465 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 466   return state_for(x, x->exception_state());
 467 }
 468 
 469 
 470 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
 471   if (info != NULL) {
 472     assert(!obj->is_loaded() || PatchALot || CacheCompiledCode, "if info is set there must be a reason");
 473     __ klass2reg_patch(NULL, r, info);
 474   } else {
 475     // no patching needed
 476     __ metadata2reg(obj->constant_encoding(), r);
 477   }
 478 }
 479 
 480 
 481 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 482                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 483   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 484   if (index->is_constant()) {
 485     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 486                 index->as_jint(), null_check_info);
 487     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 488   } else {
 489     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 490                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 491     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 492   }
 493 }
 494 
 495 
 496 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 497   CodeStub* stub = new RangeCheckStub(info, index, true);
 498   if (index->is_constant()) {
 499     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 500     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 501   } else {
 502     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 503                 java_nio_Buffer::limit_offset(), T_INT, info);
 504     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 505   }
 506   __ move(index, result);
 507 }
 508 
 509 
 510 
 511 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 512   LIR_Opr result_op = result;
 513   LIR_Opr left_op   = left;
 514   LIR_Opr right_op  = right;
 515 
 516   if (TwoOperandLIRForm && left_op != result_op) {
 517     assert(right_op != result_op, "malformed");
 518     __ move(left_op, result_op);
 519     left_op = result_op;
 520   }
 521 
 522   switch(code) {
 523     case Bytecodes::_dadd:
 524     case Bytecodes::_fadd:
 525     case Bytecodes::_ladd:
 526     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 527     case Bytecodes::_fmul:
 528     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 529 
 530     case Bytecodes::_dmul:
 531       {
 532         if (is_strictfp) {
 533           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 534         } else {
 535           __ mul(left_op, right_op, result_op); break;
 536         }
 537       }
 538       break;
 539 
 540     case Bytecodes::_imul:
 541       {
 542         bool    did_strength_reduce = false;
 543 
 544         if (right->is_constant()) {
 545           int c = right->as_jint();
 546           if (is_power_of_2(c)) {
 547             // do not need tmp here
 548             __ shift_left(left_op, exact_log2(c), result_op);
 549             did_strength_reduce = true;
 550           } else {
 551             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 552           }
 553         }
 554         // we couldn't strength reduce so just emit the multiply
 555         if (!did_strength_reduce) {
 556           __ mul(left_op, right_op, result_op);
 557         }
 558       }
 559       break;
 560 
 561     case Bytecodes::_dsub:
 562     case Bytecodes::_fsub:
 563     case Bytecodes::_lsub:
 564     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 565 
 566     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 567     // ldiv and lrem are implemented with a direct runtime call
 568 
 569     case Bytecodes::_ddiv:
 570       {
 571         if (is_strictfp) {
 572           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 573         } else {
 574           __ div (left_op, right_op, result_op); break;
 575         }
 576       }
 577       break;
 578 
 579     case Bytecodes::_drem:
 580     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 581 
 582     default: ShouldNotReachHere();
 583   }
 584 }
 585 
 586 
 587 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 588   arithmetic_op(code, result, left, right, false, tmp);
 589 }
 590 
 591 
 592 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 593   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 594 }
 595 
 596 
 597 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 598   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 599 }
 600 
 601 
 602 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 603   if (TwoOperandLIRForm && value != result_op) {
 604     assert(count != result_op, "malformed");
 605     __ move(value, result_op);
 606     value = result_op;
 607   }
 608 
 609   assert(count->is_constant() || count->is_register(), "must be");
 610   switch(code) {
 611   case Bytecodes::_ishl:
 612   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 613   case Bytecodes::_ishr:
 614   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 615   case Bytecodes::_iushr:
 616   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 617   default: ShouldNotReachHere();
 618   }
 619 }
 620 
 621 
 622 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 623   if (TwoOperandLIRForm && left_op != result_op) {
 624     assert(right_op != result_op, "malformed");
 625     __ move(left_op, result_op);
 626     left_op = result_op;
 627   }
 628 
 629   switch(code) {
 630     case Bytecodes::_iand:
 631     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 632 
 633     case Bytecodes::_ior:
 634     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 635 
 636     case Bytecodes::_ixor:
 637     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 638 
 639     default: ShouldNotReachHere();
 640   }
 641 }
 642 
 643 
 644 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 645   if (!GenerateSynchronizationCode) return;
 646   // for slow path, use debug info for state after successful locking
 647   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 648   __ load_stack_address_monitor(monitor_no, lock);
 649   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 650   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 651 }
 652 
 653 
 654 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 655   if (!GenerateSynchronizationCode) return;
 656   // setup registers
 657   LIR_Opr hdr = lock;
 658   lock = new_hdr;
 659   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 660   __ load_stack_address_monitor(monitor_no, lock);
 661   __ unlock_object(hdr, object, lock, scratch, slow_path);
 662 }
 663 
 664 
 665 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info, CodeEmitInfo* patching_info) {
 666   klass2reg_with_patching(klass_reg, klass, patching_info);
 667   // If klass is not loaded we do not know if the klass has finalizers:
 668   if (UseFastNewInstance && klass->is_loaded()
 669       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 670 
 671     bool is_initialized = klass->is_initialized();
 672 
 673     Runtime1::StubID stub_id = is_initialized ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 674 
 675     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 676 
 677     assert(klass->is_loaded(), "must be loaded");
 678     // allocate space for instance
 679     assert(klass->size_helper() >= 0, "illegal instance size");
 680     const int instance_size = align_object_size(klass->size_helper());
 681     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 682                        oopDesc::header_size(), instance_size, klass_reg, !is_initialized, slow_path);
 683   } else {
 684     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 685     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 686     __ branch_destination(slow_path->continuation());
 687   }
 688 }
 689 
 690 
 691 static bool is_constant_zero(Instruction* inst) {
 692   IntConstant* c = inst->type()->as_IntConstant();
 693   if (c) {
 694     return (c->value() == 0);
 695   }
 696   return false;
 697 }
 698 
 699 
 700 static bool positive_constant(Instruction* inst) {
 701   IntConstant* c = inst->type()->as_IntConstant();
 702   if (c) {
 703     return (c->value() >= 0);
 704   }
 705   return false;
 706 }
 707 
 708 
 709 static ciArrayKlass* as_array_klass(ciType* type) {
 710   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 711     return (ciArrayKlass*)type;
 712   } else {
 713     return NULL;
 714   }
 715 }
 716 
 717 static ciType* phi_declared_type(Phi* phi) {
 718   ciType* t = phi->operand_at(0)->declared_type();
 719   if (t == NULL) {
 720     return NULL;
 721   }
 722   for(int i = 1; i < phi->operand_count(); i++) {
 723     if (t != phi->operand_at(i)->declared_type()) {
 724       return NULL;
 725     }
 726   }
 727   return t;
 728 }
 729 
 730 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 731   Instruction* src     = x->argument_at(0);
 732   Instruction* src_pos = x->argument_at(1);
 733   Instruction* dst     = x->argument_at(2);
 734   Instruction* dst_pos = x->argument_at(3);
 735   Instruction* length  = x->argument_at(4);
 736 
 737   // first try to identify the likely type of the arrays involved
 738   ciArrayKlass* expected_type = NULL;
 739   bool is_exact = false, src_objarray = false, dst_objarray = false;
 740   {
 741     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 742     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 743     Phi* phi;
 744     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 745       src_declared_type = as_array_klass(phi_declared_type(phi));
 746     }
 747     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 748     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 749     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 750       dst_declared_type = as_array_klass(phi_declared_type(phi));
 751     }
 752 
 753     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 754       // the types exactly match so the type is fully known
 755       is_exact = true;
 756       expected_type = src_exact_type;
 757     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 758       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 759       ciArrayKlass* src_type = NULL;
 760       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 761         src_type = (ciArrayKlass*) src_exact_type;
 762       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 763         src_type = (ciArrayKlass*) src_declared_type;
 764       }
 765       if (src_type != NULL) {
 766         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 767           is_exact = true;
 768           expected_type = dst_type;
 769         }
 770       }
 771     }
 772     // at least pass along a good guess
 773     if (expected_type == NULL) expected_type = dst_exact_type;
 774     if (expected_type == NULL) expected_type = src_declared_type;
 775     if (expected_type == NULL) expected_type = dst_declared_type;
 776 
 777     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 778     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 779   }
 780 
 781   // if a probable array type has been identified, figure out if any
 782   // of the required checks for a fast case can be elided.
 783   int flags = LIR_OpArrayCopy::all_flags;
 784 
 785   if (!src_objarray)
 786     flags &= ~LIR_OpArrayCopy::src_objarray;
 787   if (!dst_objarray)
 788     flags &= ~LIR_OpArrayCopy::dst_objarray;
 789 
 790   if (!x->arg_needs_null_check(0))
 791     flags &= ~LIR_OpArrayCopy::src_null_check;
 792   if (!x->arg_needs_null_check(2))
 793     flags &= ~LIR_OpArrayCopy::dst_null_check;
 794 
 795 
 796   if (expected_type != NULL) {
 797     Value length_limit = NULL;
 798 
 799     IfOp* ifop = length->as_IfOp();
 800     if (ifop != NULL) {
 801       // look for expressions like min(v, a.length) which ends up as
 802       //   x > y ? y : x  or  x >= y ? y : x
 803       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 804           ifop->x() == ifop->fval() &&
 805           ifop->y() == ifop->tval()) {
 806         length_limit = ifop->y();
 807       }
 808     }
 809 
 810     // try to skip null checks and range checks
 811     NewArray* src_array = src->as_NewArray();
 812     if (src_array != NULL) {
 813       flags &= ~LIR_OpArrayCopy::src_null_check;
 814       if (length_limit != NULL &&
 815           src_array->length() == length_limit &&
 816           is_constant_zero(src_pos)) {
 817         flags &= ~LIR_OpArrayCopy::src_range_check;
 818       }
 819     }
 820 
 821     NewArray* dst_array = dst->as_NewArray();
 822     if (dst_array != NULL) {
 823       flags &= ~LIR_OpArrayCopy::dst_null_check;
 824       if (length_limit != NULL &&
 825           dst_array->length() == length_limit &&
 826           is_constant_zero(dst_pos)) {
 827         flags &= ~LIR_OpArrayCopy::dst_range_check;
 828       }
 829     }
 830 
 831     // check from incoming constant values
 832     if (positive_constant(src_pos))
 833       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 834     if (positive_constant(dst_pos))
 835       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 836     if (positive_constant(length))
 837       flags &= ~LIR_OpArrayCopy::length_positive_check;
 838 
 839     // see if the range check can be elided, which might also imply
 840     // that src or dst is non-null.
 841     ArrayLength* al = length->as_ArrayLength();
 842     if (al != NULL) {
 843       if (al->array() == src) {
 844         // it's the length of the source array
 845         flags &= ~LIR_OpArrayCopy::length_positive_check;
 846         flags &= ~LIR_OpArrayCopy::src_null_check;
 847         if (is_constant_zero(src_pos))
 848           flags &= ~LIR_OpArrayCopy::src_range_check;
 849       }
 850       if (al->array() == dst) {
 851         // it's the length of the destination array
 852         flags &= ~LIR_OpArrayCopy::length_positive_check;
 853         flags &= ~LIR_OpArrayCopy::dst_null_check;
 854         if (is_constant_zero(dst_pos))
 855           flags &= ~LIR_OpArrayCopy::dst_range_check;
 856       }
 857     }
 858     if (is_exact) {
 859       flags &= ~LIR_OpArrayCopy::type_check;
 860     }
 861   }
 862 
 863   IntConstant* src_int = src_pos->type()->as_IntConstant();
 864   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 865   if (src_int && dst_int) {
 866     int s_offs = src_int->value();
 867     int d_offs = dst_int->value();
 868     if (src_int->value() >= dst_int->value()) {
 869       flags &= ~LIR_OpArrayCopy::overlapping;
 870     }
 871     if (expected_type != NULL) {
 872       BasicType t = expected_type->element_type()->basic_type();
 873       int element_size = type2aelembytes(t);
 874       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 875           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 876         flags &= ~LIR_OpArrayCopy::unaligned;
 877       }
 878     }
 879   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 880     // src and dest positions are the same, or dst is zero so assume
 881     // nonoverlapping copy.
 882     flags &= ~LIR_OpArrayCopy::overlapping;
 883   }
 884 
 885   if (src == dst) {
 886     // moving within a single array so no type checks are needed
 887     if (flags & LIR_OpArrayCopy::type_check) {
 888       flags &= ~LIR_OpArrayCopy::type_check;
 889     }
 890   }
 891   *flagsp = flags;
 892   *expected_typep = (ciArrayKlass*)expected_type;
 893 }
 894 
 895 
 896 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 897   assert(opr->is_register(), "why spill if item is not register?");
 898 
 899   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 900     LIR_Opr result = new_register(T_FLOAT);
 901     set_vreg_flag(result, must_start_in_memory);
 902     assert(opr->is_register(), "only a register can be spilled");
 903     assert(opr->value_type()->is_float(), "rounding only for floats available");
 904     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 905     return result;
 906   }
 907   return opr;
 908 }
 909 
 910 
 911 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 912   assert(type2size[t] == type2size[value->type()],
 913          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 914   if (!value->is_register()) {
 915     // force into a register
 916     LIR_Opr r = new_register(value->type());
 917     __ move(value, r);
 918     value = r;
 919   }
 920 
 921   // create a spill location
 922   LIR_Opr tmp = new_register(t);
 923   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 924 
 925   // move from register to spill
 926   __ move(value, tmp);
 927   return tmp;
 928 }
 929 
 930 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 931   if (if_instr->should_profile()) {
 932     ciMethod* method = if_instr->profiled_method();
 933     assert(method != NULL, "method should be set if branch is profiled");
 934     ciMethodData* md = method->method_data_or_null();
 935     assert(md != NULL, "Sanity");
 936     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 937     assert(data != NULL, "must have profiling data");
 938     assert(data->is_BranchData(), "need BranchData for two-way branches");
 939     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 940     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 941     if (if_instr->is_swapped()) {
 942       int t = taken_count_offset;
 943       taken_count_offset = not_taken_count_offset;
 944       not_taken_count_offset = t;
 945     }
 946 
 947     LIR_Opr md_reg = new_register(T_METADATA);
 948     __ metadata2reg(md->constant_encoding(), md_reg);
 949 
 950     LIR_Opr data_offset_reg = new_pointer_register();
 951     __ cmove(lir_cond(cond),
 952              LIR_OprFact::intptrConst(taken_count_offset),
 953              LIR_OprFact::intptrConst(not_taken_count_offset),
 954              data_offset_reg, as_BasicType(if_instr->x()->type()));
 955 
 956     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 957     LIR_Opr data_reg = new_pointer_register();
 958     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 959     __ move(data_addr, data_reg);
 960     // Use leal instead of add to avoid destroying condition codes on x86
 961     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 962     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 963     __ move(data_reg, data_addr);
 964   }
 965 }
 966 
 967 // Phi technique:
 968 // This is about passing live values from one basic block to the other.
 969 // In code generated with Java it is rather rare that more than one
 970 // value is on the stack from one basic block to the other.
 971 // We optimize our technique for efficient passing of one value
 972 // (of type long, int, double..) but it can be extended.
 973 // When entering or leaving a basic block, all registers and all spill
 974 // slots are release and empty. We use the released registers
 975 // and spill slots to pass the live values from one block
 976 // to the other. The topmost value, i.e., the value on TOS of expression
 977 // stack is passed in registers. All other values are stored in spilling
 978 // area. Every Phi has an index which designates its spill slot
 979 // At exit of a basic block, we fill the register(s) and spill slots.
 980 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 981 // and locks necessary registers and spilling slots.
 982 
 983 
 984 // move current value to referenced phi function
 985 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 986   Phi* phi = sux_val->as_Phi();
 987   // cur_val can be null without phi being null in conjunction with inlining
 988   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 989     LIR_Opr operand = cur_val->operand();
 990     if (cur_val->operand()->is_illegal()) {
 991       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 992              "these can be produced lazily");
 993       operand = operand_for_instruction(cur_val);
 994     }
 995     resolver->move(operand, operand_for_instruction(phi));
 996   }
 997 }
 998 
 999 
1000 // Moves all stack values into their PHI position
1001 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1002   BlockBegin* bb = block();
1003   if (bb->number_of_sux() == 1) {
1004     BlockBegin* sux = bb->sux_at(0);
1005     assert(sux->number_of_preds() > 0, "invalid CFG");
1006 
1007     // a block with only one predecessor never has phi functions
1008     if (sux->number_of_preds() > 1) {
1009       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1010       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1011 
1012       ValueStack* sux_state = sux->state();
1013       Value sux_value;
1014       int index;
1015 
1016       assert(cur_state->scope() == sux_state->scope(), "not matching");
1017       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1018       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1019 
1020       for_each_stack_value(sux_state, index, sux_value) {
1021         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1022       }
1023 
1024       for_each_local_value(sux_state, index, sux_value) {
1025         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1026       }
1027 
1028       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1029     }
1030   }
1031 }
1032 
1033 
1034 LIR_Opr LIRGenerator::new_register(BasicType type) {
1035   int vreg = _virtual_register_number;
1036   // add a little fudge factor for the bailout, since the bailout is
1037   // only checked periodically.  This gives a few extra registers to
1038   // hand out before we really run out, which helps us keep from
1039   // tripping over assertions.
1040   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1041     bailout("out of virtual registers");
1042     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1043       // wrap it around
1044       _virtual_register_number = LIR_OprDesc::vreg_base;
1045     }
1046   }
1047   _virtual_register_number += 1;
1048   return LIR_OprFact::virtual_register(vreg, type);
1049 }
1050 
1051 
1052 // Try to lock using register in hint
1053 LIR_Opr LIRGenerator::rlock(Value instr) {
1054   return new_register(instr->type());
1055 }
1056 
1057 
1058 // does an rlock and sets result
1059 LIR_Opr LIRGenerator::rlock_result(Value x) {
1060   LIR_Opr reg = rlock(x);
1061   set_result(x, reg);
1062   return reg;
1063 }
1064 
1065 
1066 // does an rlock and sets result
1067 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1068   LIR_Opr reg;
1069   switch (type) {
1070   case T_BYTE:
1071   case T_BOOLEAN:
1072     reg = rlock_byte(type);
1073     break;
1074   default:
1075     reg = rlock(x);
1076     break;
1077   }
1078 
1079   set_result(x, reg);
1080   return reg;
1081 }
1082 
1083 
1084 //---------------------------------------------------------------------
1085 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1086   ObjectType* oc = value->type()->as_ObjectType();
1087   if (oc) {
1088     return oc->constant_value();
1089   }
1090   return NULL;
1091 }
1092 
1093 
1094 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1095   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1096   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1097 
1098   // no moves are created for phi functions at the begin of exception
1099   // handlers, so assign operands manually here
1100   for_each_phi_fun(block(), phi,
1101                    operand_for_instruction(phi));
1102 
1103   LIR_Opr thread_reg = getThreadPointer();
1104   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1105                exceptionOopOpr());
1106   __ move_wide(LIR_OprFact::oopConst(NULL),
1107                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1108   __ move_wide(LIR_OprFact::oopConst(NULL),
1109                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1110 
1111   LIR_Opr result = new_register(T_OBJECT);
1112   __ move(exceptionOopOpr(), result);
1113   set_result(x, result);
1114 }
1115 
1116 
1117 //----------------------------------------------------------------------
1118 //----------------------------------------------------------------------
1119 //----------------------------------------------------------------------
1120 //----------------------------------------------------------------------
1121 //                        visitor functions
1122 //----------------------------------------------------------------------
1123 //----------------------------------------------------------------------
1124 //----------------------------------------------------------------------
1125 //----------------------------------------------------------------------
1126 
1127 void LIRGenerator::do_Phi(Phi* x) {
1128   // phi functions are never visited directly
1129   ShouldNotReachHere();
1130 }
1131 
1132 
1133 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1134 void LIRGenerator::do_Constant(Constant* x) {
1135   if (x->state_before() != NULL) {
1136     // Any constant with a ValueStack requires patching so emit the patch here
1137     LIR_Opr reg = rlock_result(x);
1138     CodeEmitInfo* info = state_for(x, x->state_before());
1139     __ oop2reg_patch(NULL, reg, info);
1140   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1141     if (!x->is_pinned()) {
1142       // unpinned constants are handled specially so that they can be
1143       // put into registers when they are used multiple times within a
1144       // block.  After the block completes their operand will be
1145       // cleared so that other blocks can't refer to that register.
1146       set_result(x, load_constant(x));
1147     } else {
1148       LIR_Opr res = x->operand();
1149       if (!res->is_valid()) {
1150         res = LIR_OprFact::value_type(x->type());
1151       }
1152       if (res->is_constant()) {
1153         LIR_Opr reg = rlock_result(x);
1154         __ move(res, reg);
1155       } else {
1156         set_result(x, res);
1157       }
1158     }
1159   } else {
1160     set_result(x, LIR_OprFact::value_type(x->type()));
1161   }
1162 }
1163 
1164 
1165 void LIRGenerator::do_Local(Local* x) {
1166   // operand_for_instruction has the side effect of setting the result
1167   // so there's no need to do it here.
1168   operand_for_instruction(x);
1169 }
1170 
1171 
1172 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1173   Unimplemented();
1174 }
1175 
1176 
1177 void LIRGenerator::do_Return(Return* x) {
1178   if (compilation()->env()->dtrace_method_probes()) {
1179     BasicTypeList signature;
1180     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1181     signature.append(T_METADATA); // Method*
1182     LIR_OprList* args = new LIR_OprList();
1183     args->append(getThreadPointer());
1184     LIR_Opr meth = new_register(T_METADATA);
1185     __ metadata2reg(method()->constant_encoding(), meth);
1186     args->append(meth);
1187     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1188   }
1189 
1190   if (x->type()->is_void()) {
1191     __ return_op(LIR_OprFact::illegalOpr);
1192   } else {
1193     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1194     LIRItem result(x->result(), this);
1195 
1196     result.load_item_force(reg);
1197     __ return_op(result.result());
1198   }
1199   set_no_result(x);
1200 }
1201 
1202 // Examble: ref.get()
1203 // Combination of LoadField and g1 pre-write barrier
1204 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1205 
1206   const int referent_offset = java_lang_ref_Reference::referent_offset;
1207   guarantee(referent_offset > 0, "referent offset not initialized");
1208 
1209   assert(x->number_of_arguments() == 1, "wrong type");
1210 
1211   LIRItem reference(x->argument_at(0), this);
1212   reference.load_item();
1213 
1214   // need to perform the null check on the reference objecy
1215   CodeEmitInfo* info = NULL;
1216   if (x->needs_null_check()) {
1217     info = state_for(x);
1218   }
1219 
1220   LIR_Address* referent_field_adr =
1221     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1222 
1223   LIR_Opr result = rlock_result(x);
1224 
1225   __ load(referent_field_adr, result, info);
1226 
1227   // Register the value in the referent field with the pre-barrier
1228   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1229               result /* pre_val */,
1230               false  /* do_load */,
1231               false  /* patch */,
1232               NULL   /* info */);
1233 }
1234 
1235 // Example: clazz.isInstance(object)
1236 void LIRGenerator::do_isInstance(Intrinsic* x) {
1237   assert(x->number_of_arguments() == 2, "wrong type");
1238 
1239   // TODO could try to substitute this node with an equivalent InstanceOf
1240   // if clazz is known to be a constant Class. This will pick up newly found
1241   // constants after HIR construction. I'll leave this to a future change.
1242 
1243   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1244   // could follow the aastore example in a future change.
1245 
1246   LIRItem clazz(x->argument_at(0), this);
1247   LIRItem object(x->argument_at(1), this);
1248   clazz.load_item();
1249   object.load_item();
1250   LIR_Opr result = rlock_result(x);
1251 
1252   // need to perform null check on clazz
1253   if (x->needs_null_check()) {
1254     CodeEmitInfo* info = state_for(x);
1255     __ null_check(clazz.result(), info);
1256   }
1257 
1258   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1259                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1260                                      x->type(),
1261                                      NULL); // NULL CodeEmitInfo results in a leaf call
1262   __ move(call_result, result);
1263 }
1264 
1265 // Example: object.getClass ()
1266 void LIRGenerator::do_getClass(Intrinsic* x) {
1267   assert(x->number_of_arguments() == 1, "wrong type");
1268 
1269   LIRItem rcvr(x->argument_at(0), this);
1270   rcvr.load_item();
1271   LIR_Opr temp = new_register(T_METADATA);
1272   LIR_Opr result = rlock_result(x);
1273 
1274   // need to perform the null check on the rcvr
1275   CodeEmitInfo* info = NULL;
1276   if (x->needs_null_check()) {
1277     info = state_for(x);
1278   }
1279 
1280   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1281   // meaning of these two is mixed up (see JDK-8026837).
1282   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1283   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1284 }
1285 
1286 
1287 // Example: Thread.currentThread()
1288 void LIRGenerator::do_currentThread(Intrinsic* x) {
1289   assert(x->number_of_arguments() == 0, "wrong type");
1290   LIR_Opr reg = rlock_result(x);
1291   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1292 }
1293 
1294 
1295 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1296   assert(x->number_of_arguments() == 1, "wrong type");
1297   LIRItem receiver(x->argument_at(0), this);
1298 
1299   receiver.load_item();
1300   BasicTypeList signature;
1301   signature.append(T_OBJECT); // receiver
1302   LIR_OprList* args = new LIR_OprList();
1303   args->append(receiver.result());
1304   CodeEmitInfo* info = state_for(x, x->state());
1305   call_runtime(&signature, args,
1306                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1307                voidType, info);
1308 
1309   set_no_result(x);
1310 }
1311 
1312 
1313 //------------------------local access--------------------------------------
1314 
1315 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1316   if (x->operand()->is_illegal()) {
1317     Constant* c = x->as_Constant();
1318     if (c != NULL) {
1319       x->set_operand(LIR_OprFact::value_type(c->type()));
1320     } else {
1321       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1322       // allocate a virtual register for this local or phi
1323       x->set_operand(rlock(x));
1324       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1325     }
1326   }
1327   return x->operand();
1328 }
1329 
1330 
1331 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1332   if (opr->is_virtual()) {
1333     return instruction_for_vreg(opr->vreg_number());
1334   }
1335   return NULL;
1336 }
1337 
1338 
1339 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1340   if (reg_num < _instruction_for_operand.length()) {
1341     return _instruction_for_operand.at(reg_num);
1342   }
1343   return NULL;
1344 }
1345 
1346 
1347 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1348   if (_vreg_flags.size_in_bits() == 0) {
1349     BitMap2D temp(100, num_vreg_flags);
1350     temp.clear();
1351     _vreg_flags = temp;
1352   }
1353   _vreg_flags.at_put_grow(vreg_num, f, true);
1354 }
1355 
1356 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1357   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1358     return false;
1359   }
1360   return _vreg_flags.at(vreg_num, f);
1361 }
1362 
1363 
1364 // Block local constant handling.  This code is useful for keeping
1365 // unpinned constants and constants which aren't exposed in the IR in
1366 // registers.  Unpinned Constant instructions have their operands
1367 // cleared when the block is finished so that other blocks can't end
1368 // up referring to their registers.
1369 
1370 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1371   assert(!x->is_pinned(), "only for unpinned constants");
1372   _unpinned_constants.append(x);
1373   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1374 }
1375 
1376 
1377 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1378   BasicType t = c->type();
1379   for (int i = 0; i < _constants.length(); i++) {
1380     LIR_Const* other = _constants.at(i);
1381     if (t == other->type()) {
1382       switch (t) {
1383       case T_INT:
1384       case T_FLOAT:
1385         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1386         break;
1387       case T_LONG:
1388       case T_DOUBLE:
1389         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1390         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1391         break;
1392       case T_OBJECT:
1393         if (c->as_jobject() != other->as_jobject()) continue;
1394         break;
1395       }
1396       return _reg_for_constants.at(i);
1397     }
1398   }
1399 
1400   LIR_Opr result = new_register(t);
1401   __ move((LIR_Opr)c, result);
1402   _constants.append(c);
1403   _reg_for_constants.append(result);
1404   return result;
1405 }
1406 
1407 // Various barriers
1408 
1409 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1410                                bool do_load, bool patch, CodeEmitInfo* info) {
1411   // Do the pre-write barrier, if any.
1412   switch (_bs->kind()) {
1413 #if INCLUDE_ALL_GCS
1414     case BarrierSet::G1SATBCT:
1415     case BarrierSet::G1SATBCTLogging:
1416       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1417       break;
1418 #endif // INCLUDE_ALL_GCS
1419     case BarrierSet::CardTableModRef:
1420     case BarrierSet::CardTableExtension:
1421       // No pre barriers
1422       break;
1423     case BarrierSet::ModRef:
1424     case BarrierSet::Other:
1425       // No pre barriers
1426       break;
1427     default      :
1428       ShouldNotReachHere();
1429 
1430   }
1431 }
1432 
1433 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1434   switch (_bs->kind()) {
1435 #if INCLUDE_ALL_GCS
1436     case BarrierSet::G1SATBCT:
1437     case BarrierSet::G1SATBCTLogging:
1438       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1439       break;
1440 #endif // INCLUDE_ALL_GCS
1441     case BarrierSet::CardTableModRef:
1442     case BarrierSet::CardTableExtension:
1443       CardTableModRef_post_barrier(addr,  new_val);
1444       break;
1445     case BarrierSet::ModRef:
1446     case BarrierSet::Other:
1447       // No post barriers
1448       break;
1449     default      :
1450       ShouldNotReachHere();
1451     }
1452 }
1453 
1454 ////////////////////////////////////////////////////////////////////////
1455 #if INCLUDE_ALL_GCS
1456 
1457 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1458                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1459   // First we test whether marking is in progress.
1460   BasicType flag_type;
1461   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1462     flag_type = T_INT;
1463   } else {
1464     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1465               "Assumption");
1466     flag_type = T_BOOLEAN; // byte load, with no need for sign extension
1467   }
1468   LIR_Opr thrd = getThreadPointer();
1469   LIR_Address* mark_active_flag_addr =
1470     new LIR_Address(thrd,
1471                     in_bytes(JavaThread::satb_mark_queue_offset() +
1472                              PtrQueue::byte_offset_of_active()),
1473                     flag_type);
1474   // Read the marking-in-progress flag.
1475   LIR_Opr flag_val = new_register(T_INT);
1476   __ load(mark_active_flag_addr, flag_val);
1477   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1478 
1479   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1480 
1481   CodeStub* slow;
1482 
1483   if (do_load) {
1484     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1485     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1486 
1487     if (patch)
1488       pre_val_patch_code = lir_patch_normal;
1489 
1490     pre_val = new_register(T_OBJECT);
1491 
1492     if (!addr_opr->is_address()) {
1493       assert(addr_opr->is_register(), "must be");
1494       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1495     }
1496     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1497   } else {
1498     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1499     assert(pre_val->is_register(), "must be");
1500     assert(pre_val->type() == T_OBJECT, "must be an object");
1501     assert(info == NULL, "sanity");
1502 
1503     slow = new G1PreBarrierStub(pre_val);
1504   }
1505 
1506   __ branch(lir_cond_notEqual, T_INT, slow);
1507   __ branch_destination(slow->continuation());
1508 }
1509 
1510 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1511   // If the "new_val" is a constant NULL, no barrier is necessary.
1512   if (new_val->is_constant() &&
1513       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1514 
1515   if (!new_val->is_register()) {
1516     LIR_Opr new_val_reg = new_register(T_OBJECT);
1517     if (new_val->is_constant()) {
1518       __ move(new_val, new_val_reg);
1519     } else {
1520       __ leal(new_val, new_val_reg);
1521     }
1522     new_val = new_val_reg;
1523   }
1524   assert(new_val->is_register(), "must be a register at this point");
1525 
1526   if (addr->is_address()) {
1527     LIR_Address* address = addr->as_address_ptr();
1528     LIR_Opr ptr = new_pointer_register();
1529     if (!address->index()->is_valid() && address->disp() == 0) {
1530       __ move(address->base(), ptr);
1531     } else {
1532       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1533       __ leal(addr, ptr);
1534     }
1535     addr = ptr;
1536   }
1537   assert(addr->is_register(), "must be a register at this point");
1538 
1539   LIR_Opr xor_res = new_pointer_register();
1540   LIR_Opr xor_shift_res = new_pointer_register();
1541   if (TwoOperandLIRForm ) {
1542     __ move(addr, xor_res);
1543     __ logical_xor(xor_res, new_val, xor_res);
1544     __ move(xor_res, xor_shift_res);
1545     __ unsigned_shift_right(xor_shift_res,
1546                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1547                             xor_shift_res,
1548                             LIR_OprDesc::illegalOpr());
1549   } else {
1550     __ logical_xor(addr, new_val, xor_res);
1551     __ unsigned_shift_right(xor_res,
1552                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1553                             xor_shift_res,
1554                             LIR_OprDesc::illegalOpr());
1555   }
1556 
1557   if (!new_val->is_register()) {
1558     LIR_Opr new_val_reg = new_register(T_OBJECT);
1559     __ leal(new_val, new_val_reg);
1560     new_val = new_val_reg;
1561   }
1562   assert(new_val->is_register(), "must be a register at this point");
1563 
1564   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1565 
1566   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1567   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1568   __ branch_destination(slow->continuation());
1569 }
1570 
1571 #endif // INCLUDE_ALL_GCS
1572 ////////////////////////////////////////////////////////////////////////
1573 
1574 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1575 
1576   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1577   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1578   if (addr->is_address()) {
1579     LIR_Address* address = addr->as_address_ptr();
1580     // ptr cannot be an object because we use this barrier for array card marks
1581     // and addr can point in the middle of an array.
1582     LIR_Opr ptr = new_pointer_register();
1583     if (!address->index()->is_valid() && address->disp() == 0) {
1584       __ move(address->base(), ptr);
1585     } else {
1586       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1587       __ leal(addr, ptr);
1588     }
1589     addr = ptr;
1590   }
1591   assert(addr->is_register(), "must be a register at this point");
1592 
1593 #ifdef ARM
1594   // TODO: ARM - move to platform-dependent code
1595   LIR_Opr tmp = FrameMap::R14_opr;
1596   if (VM_Version::supports_movw() && ! (SaveGeneratedCode || CacheCompiledCode)) {
1597     // Rthread based load more efficient with cached compiled code
1598     __ move((LIR_Opr)card_table_base, tmp);
1599   } else {
1600     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1601   }
1602 
1603   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1604   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1605   if ((((int)ct->byte_map_base & 0xff) == 0) && (! CacheCompiledCode)) {
1606     // Note: low bits may no longer be 0 in the UseCachedCompiledCode context
1607     __ move(tmp, card_addr);
1608   } else {
1609     LIR_Opr tmp_zero = new_register(T_INT);
1610     __ move(LIR_OprFact::intConst(0), tmp_zero);
1611     __ move(tmp_zero, card_addr);
1612   }
1613 #else // ARM
1614   LIR_Opr tmp = new_pointer_register();
1615   if (TwoOperandLIRForm) {
1616     __ move(addr, tmp);
1617     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1618   } else {
1619     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1620   }
1621   if (CacheCompiledCode) {
1622     // Simple solution using a thread relative load for the card_table
1623     // instead of a symbolic_Relocation::card_table_reference load
1624     LIR_Opr thrd = getThreadPointer();
1625     LIR_Opr card = new_pointer_register();
1626     __ move(new LIR_Address(thrd, in_bytes(JavaThread::card_table_base_offset()), LP64_ONLY(T_LONG) NOT_LP64(T_INT)), card);
1627     __ move(LIR_OprFact::intConst(0),
1628             new LIR_Address(tmp, card, T_BYTE));
1629   } else if (can_inline_as_constant(card_table_base)) {
1630     __ move(LIR_OprFact::intConst(0),
1631               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1632   } else {
1633     __ move(LIR_OprFact::intConst(0),
1634               new LIR_Address(tmp, load_constant(card_table_base),
1635                               T_BYTE));
1636   }
1637 #endif // ARM
1638 }
1639 
1640 
1641 //------------------------field access--------------------------------------
1642 
1643 // Comment copied form templateTable_i486.cpp
1644 // ----------------------------------------------------------------------------
1645 // Volatile variables demand their effects be made known to all CPU's in
1646 // order.  Store buffers on most chips allow reads & writes to reorder; the
1647 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1648 // memory barrier (i.e., it's not sufficient that the interpreter does not
1649 // reorder volatile references, the hardware also must not reorder them).
1650 //
1651 // According to the new Java Memory Model (JMM):
1652 // (1) All volatiles are serialized wrt to each other.
1653 // ALSO reads & writes act as aquire & release, so:
1654 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1655 // the read float up to before the read.  It's OK for non-volatile memory refs
1656 // that happen before the volatile read to float down below it.
1657 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1658 // that happen BEFORE the write float down to after the write.  It's OK for
1659 // non-volatile memory refs that happen after the volatile write to float up
1660 // before it.
1661 //
1662 // We only put in barriers around volatile refs (they are expensive), not
1663 // _between_ memory refs (that would require us to track the flavor of the
1664 // previous memory refs).  Requirements (2) and (3) require some barriers
1665 // before volatile stores and after volatile loads.  These nearly cover
1666 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1667 // case is placed after volatile-stores although it could just as well go
1668 // before volatile-loads.
1669 
1670 
1671 void LIRGenerator::do_StoreField(StoreField* x) {
1672   bool needs_patching = x->needs_patching();
1673   bool is_volatile = x->field()->is_volatile();
1674   BasicType field_type = x->field_type();
1675   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1676 
1677   CodeEmitInfo* info = NULL;
1678   if (needs_patching) {
1679     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1680     info = state_for(x, x->state_before());
1681   } else if (x->needs_null_check()) {
1682     NullCheck* nc = x->explicit_null_check();
1683     if (nc == NULL) {
1684       info = state_for(x);
1685     } else {
1686       info = state_for(nc);
1687     }
1688   }
1689 
1690 
1691   LIRItem object(x->obj(), this);
1692   LIRItem value(x->value(),  this);
1693 
1694   object.load_item();
1695 
1696   if (is_volatile || needs_patching) {
1697     // load item if field is volatile (fewer special cases for volatiles)
1698     // load item if field not initialized
1699     // load item if field not constant
1700     // because of code patching we cannot inline constants
1701     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1702       value.load_byte_item();
1703     } else  {
1704       value.load_item();
1705     }
1706   } else {
1707     value.load_for_store(field_type);
1708   }
1709 
1710   set_no_result(x);
1711 
1712 #ifndef PRODUCT
1713   if (PrintNotLoaded && needs_patching) {
1714     tty->print_cr("   ###class not loaded at store_%s bci %d",
1715                   x->is_static() ?  "static" : "field", x->printable_bci());
1716   }
1717 #endif
1718 
1719   if (x->needs_null_check() &&
1720       (needs_patching ||
1721        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1722     // emit an explicit null check because the offset is too large
1723     __ null_check(object.result(), new CodeEmitInfo(info));
1724   }
1725 
1726   LIR_Address* address;
1727   if (needs_patching) {
1728     // we need to patch the offset in the instruction so don't allow
1729     // generate_address to try to be smart about emitting the -1.
1730     // Otherwise the patching code won't know how to find the
1731     // instruction to patch.
1732     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1733   } else {
1734     address = generate_address(object.result(), x->offset(), field_type);
1735   }
1736 
1737   if (is_volatile && os::is_MP()) {
1738     __ membar_release();
1739   }
1740 
1741   if (is_oop) {
1742     // Do the pre-write barrier, if any.
1743     pre_barrier(LIR_OprFact::address(address),
1744                 LIR_OprFact::illegalOpr /* pre_val */,
1745                 true /* do_load*/,
1746                 needs_patching,
1747                 (info ? new CodeEmitInfo(info) : NULL));
1748   }
1749 
1750   if (is_volatile && !needs_patching) {
1751     volatile_field_store(value.result(), address, info);
1752   } else {
1753     LIR_PatchCode patch_code = needs_patching ? (is_volatile ? lir_patch_volatile_normal : lir_patch_normal) : lir_patch_none;
1754     __ store(value.result(), address, info, patch_code);
1755   }
1756 
1757   if (is_oop) {
1758     // Store to object so mark the card of the header
1759     post_barrier(object.result(), value.result());
1760   }
1761 
1762   if (is_volatile && os::is_MP()) {
1763     __ membar();
1764   }
1765 }
1766 
1767 
1768 void LIRGenerator::do_LoadField(LoadField* x) {
1769   bool needs_patching = x->needs_patching();
1770   bool is_volatile = x->field()->is_volatile();
1771   BasicType field_type = x->field_type();
1772 
1773   CodeEmitInfo* info = NULL;
1774   if (needs_patching) {
1775     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1776     info = state_for(x, x->state_before());
1777   } else if (x->needs_null_check()) {
1778     NullCheck* nc = x->explicit_null_check();
1779     if (nc == NULL) {
1780       info = state_for(x);
1781     } else {
1782       info = state_for(nc);
1783     }
1784   }
1785 
1786   LIRItem object(x->obj(), this);
1787 
1788   object.load_item();
1789 
1790 #ifndef PRODUCT
1791   if (PrintNotLoaded && needs_patching) {
1792     tty->print_cr("   ###class not loaded at load_%s bci %d",
1793                   x->is_static() ?  "static" : "field", x->printable_bci());
1794   }
1795 #endif
1796 
1797   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1798   if (x->needs_null_check() &&
1799       (needs_patching ||
1800        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1801        stress_deopt)) {
1802     LIR_Opr obj = object.result();
1803     if (stress_deopt) {
1804       obj = new_register(T_OBJECT);
1805       __ move(LIR_OprFact::oopConst(NULL), obj);
1806     }
1807     // emit an explicit null check because the offset is too large
1808     __ null_check(obj, new CodeEmitInfo(info));
1809   }
1810 
1811   LIR_Opr reg = rlock_result(x, field_type);
1812   LIR_Address* address;
1813   if (needs_patching) {
1814     // we need to patch the offset in the instruction so don't allow
1815     // generate_address to try to be smart about emitting the -1.
1816     // Otherwise the patching code won't know how to find the
1817     // instruction to patch.
1818     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1819   } else {
1820     address = generate_address(object.result(), x->offset(), field_type);
1821   }
1822 
1823   if (is_volatile && !needs_patching) {
1824     volatile_field_load(address, reg, info);
1825   } else {
1826     LIR_PatchCode patch_code = needs_patching ? (is_volatile ? lir_patch_volatile_normal : lir_patch_normal) : lir_patch_none;
1827     __ load(address, reg, info, patch_code);
1828   }
1829 
1830   if (is_volatile && os::is_MP()) {
1831     __ membar_acquire();
1832   }
1833 }
1834 
1835 
1836 //------------------------java.nio.Buffer.checkIndex------------------------
1837 
1838 // int java.nio.Buffer.checkIndex(int)
1839 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1840   // NOTE: by the time we are in checkIndex() we are guaranteed that
1841   // the buffer is non-null (because checkIndex is package-private and
1842   // only called from within other methods in the buffer).
1843   assert(x->number_of_arguments() == 2, "wrong type");
1844   LIRItem buf  (x->argument_at(0), this);
1845   LIRItem index(x->argument_at(1), this);
1846   buf.load_item();
1847   index.load_item();
1848 
1849   LIR_Opr result = rlock_result(x);
1850   if (GenerateRangeChecks) {
1851     CodeEmitInfo* info = state_for(x);
1852     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1853     if (index.result()->is_constant()) {
1854       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1855       __ branch(lir_cond_belowEqual, T_INT, stub);
1856     } else {
1857       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1858                   java_nio_Buffer::limit_offset(), T_INT, info);
1859       __ branch(lir_cond_aboveEqual, T_INT, stub);
1860     }
1861     __ move(index.result(), result);
1862   } else {
1863     // Just load the index into the result register
1864     __ move(index.result(), result);
1865   }
1866 }
1867 
1868 
1869 //------------------------array access--------------------------------------
1870 
1871 
1872 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1873   LIRItem array(x->array(), this);
1874   array.load_item();
1875   LIR_Opr reg = rlock_result(x);
1876 
1877   CodeEmitInfo* info = NULL;
1878   if (x->needs_null_check()) {
1879     NullCheck* nc = x->explicit_null_check();
1880     if (nc == NULL) {
1881       info = state_for(x);
1882     } else {
1883       info = state_for(nc);
1884     }
1885     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1886       LIR_Opr obj = new_register(T_OBJECT);
1887       __ move(LIR_OprFact::oopConst(NULL), obj);
1888       __ null_check(obj, new CodeEmitInfo(info));
1889     }
1890   }
1891   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1892 }
1893 
1894 
1895 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1896   bool use_length = x->length() != NULL;
1897   LIRItem array(x->array(), this);
1898   LIRItem index(x->index(), this);
1899   LIRItem length(this);
1900   bool needs_range_check = x->compute_needs_range_check();
1901 
1902   if (use_length && needs_range_check) {
1903     length.set_instruction(x->length());
1904     length.load_item();
1905   }
1906 
1907   array.load_item();
1908   if (index.is_constant() && can_inline_as_constant(x->index())) {
1909     // let it be a constant
1910     index.dont_load_item();
1911   } else {
1912     index.load_item();
1913   }
1914 
1915   CodeEmitInfo* range_check_info = state_for(x);
1916   CodeEmitInfo* null_check_info = NULL;
1917   if (x->needs_null_check()) {
1918     NullCheck* nc = x->explicit_null_check();
1919     if (nc != NULL) {
1920       null_check_info = state_for(nc);
1921     } else {
1922       null_check_info = range_check_info;
1923     }
1924     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1925       LIR_Opr obj = new_register(T_OBJECT);
1926       __ move(LIR_OprFact::oopConst(NULL), obj);
1927       __ null_check(obj, new CodeEmitInfo(null_check_info));
1928     }
1929   }
1930 
1931   // emit array address setup early so it schedules better
1932   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1933 
1934   if (GenerateRangeChecks && needs_range_check) {
1935     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1936       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1937     } else if (use_length) {
1938       // TODO: use a (modified) version of array_range_check that does not require a
1939       //       constant length to be loaded to a register
1940       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1941       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1942     } else {
1943       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1944       // The range check performs the null check, so clear it out for the load
1945       null_check_info = NULL;
1946     }
1947   }
1948 
1949   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1950 }
1951 
1952 
1953 void LIRGenerator::do_NullCheck(NullCheck* x) {
1954   if (x->can_trap()) {
1955     LIRItem value(x->obj(), this);
1956     value.load_item();
1957     CodeEmitInfo* info = state_for(x);
1958     __ null_check(value.result(), info);
1959   }
1960 }
1961 
1962 
1963 void LIRGenerator::do_TypeCast(TypeCast* x) {
1964   LIRItem value(x->obj(), this);
1965   value.load_item();
1966   // the result is the same as from the node we are casting
1967   set_result(x, value.result());
1968 }
1969 
1970 
1971 void LIRGenerator::do_Throw(Throw* x) {
1972   LIRItem exception(x->exception(), this);
1973   exception.load_item();
1974   set_no_result(x);
1975   LIR_Opr exception_opr = exception.result();
1976   CodeEmitInfo* info = state_for(x, x->state());
1977 
1978 #ifndef PRODUCT
1979   if (PrintC1Statistics) {
1980     increment_counter(Runtime1::throw_count_address(), T_INT);
1981   }
1982 #endif
1983 
1984   // check if the instruction has an xhandler in any of the nested scopes
1985   bool unwind = false;
1986   if (info->exception_handlers()->length() == 0) {
1987     // this throw is not inside an xhandler
1988     unwind = true;
1989   } else {
1990     // get some idea of the throw type
1991     bool type_is_exact = true;
1992     ciType* throw_type = x->exception()->exact_type();
1993     if (throw_type == NULL) {
1994       type_is_exact = false;
1995       throw_type = x->exception()->declared_type();
1996     }
1997     if (throw_type != NULL && throw_type->is_instance_klass()) {
1998       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1999       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2000     }
2001   }
2002 
2003   // do null check before moving exception oop into fixed register
2004   // to avoid a fixed interval with an oop during the null check.
2005   // Use a copy of the CodeEmitInfo because debug information is
2006   // different for null_check and throw.
2007   if (GenerateCompilerNullChecks &&
2008       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2009     // if the exception object wasn't created using new then it might be null.
2010     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2011   }
2012 
2013   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2014     // we need to go through the exception lookup path to get JVMTI
2015     // notification done
2016     unwind = false;
2017   }
2018 
2019   // move exception oop into fixed register
2020   __ move(exception_opr, exceptionOopOpr());
2021 
2022   if (unwind) {
2023     __ unwind_exception(exceptionOopOpr());
2024   } else {
2025     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2026   }
2027 }
2028 
2029 
2030 void LIRGenerator::do_RoundFP(RoundFP* x) {
2031   LIRItem input(x->input(), this);
2032   input.load_item();
2033   LIR_Opr input_opr = input.result();
2034   assert(input_opr->is_register(), "why round if value is not in a register?");
2035   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2036   if (input_opr->is_single_fpu()) {
2037     set_result(x, round_item(input_opr)); // This code path not currently taken
2038   } else {
2039     LIR_Opr result = new_register(T_DOUBLE);
2040     set_vreg_flag(result, must_start_in_memory);
2041     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2042     set_result(x, result);
2043   }
2044 }
2045 
2046 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2047   LIRItem base(x->base(), this);
2048   LIRItem idx(this);
2049 
2050   base.load_item();
2051   if (x->has_index()) {
2052     idx.set_instruction(x->index());
2053     idx.load_nonconstant();
2054   }
2055 
2056   LIR_Opr reg = rlock_result(x, x->basic_type());
2057 
2058   int   log2_scale = 0;
2059   if (x->has_index()) {
2060     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2061     log2_scale = x->log2_scale();
2062   }
2063 
2064   assert(!x->has_index() || idx.value() == x->index(), "should match");
2065 
2066   LIR_Opr base_op = base.result();
2067 #ifndef _LP64
2068   if (x->base()->type()->tag() == longTag) {
2069     base_op = new_register(T_INT);
2070     __ convert(Bytecodes::_l2i, base.result(), base_op);
2071   } else {
2072     assert(x->base()->type()->tag() == intTag, "must be");
2073   }
2074 #endif
2075 
2076   BasicType dst_type = x->basic_type();
2077   LIR_Opr index_op = idx.result();
2078 
2079   LIR_Address* addr;
2080   if (index_op->is_constant()) {
2081     assert(log2_scale == 0, "must not have a scale");
2082     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2083   } else {
2084 #ifdef X86
2085 #ifdef _LP64
2086     if (!index_op->is_illegal() && index_op->type() == T_INT) {
2087       LIR_Opr tmp = new_pointer_register();
2088       __ convert(Bytecodes::_i2l, index_op, tmp);
2089       index_op = tmp;
2090     }
2091 #endif
2092     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2093 #elif defined(ARM)
2094     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2095 #else
2096     if (index_op->is_illegal() || log2_scale == 0) {
2097 #ifdef _LP64
2098       if (!index_op->is_illegal() && index_op->type() == T_INT) {
2099         LIR_Opr tmp = new_pointer_register();
2100         __ convert(Bytecodes::_i2l, index_op, tmp);
2101         index_op = tmp;
2102       }
2103 #endif
2104       addr = new LIR_Address(base_op, index_op, dst_type);
2105     } else {
2106       LIR_Opr tmp = new_pointer_register();
2107       __ shift_left(index_op, log2_scale, tmp);
2108       addr = new LIR_Address(base_op, tmp, dst_type);
2109     }
2110 #endif
2111   }
2112 
2113   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2114     __ unaligned_move(addr, reg);
2115   } else {
2116     if (dst_type == T_OBJECT && x->is_wide()) {
2117       __ move_wide(addr, reg);
2118     } else {
2119       __ move(addr, reg);
2120     }
2121   }
2122 }
2123 
2124 
2125 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2126   int  log2_scale = 0;
2127   BasicType type = x->basic_type();
2128 
2129   if (x->has_index()) {
2130     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2131     log2_scale = x->log2_scale();
2132   }
2133 
2134   LIRItem base(x->base(), this);
2135   LIRItem value(x->value(), this);
2136   LIRItem idx(this);
2137 
2138   base.load_item();
2139   if (x->has_index()) {
2140     idx.set_instruction(x->index());
2141     idx.load_item();
2142   }
2143 
2144   if (type == T_BYTE || type == T_BOOLEAN) {
2145     value.load_byte_item();
2146   } else {
2147     value.load_item();
2148   }
2149 
2150   set_no_result(x);
2151 
2152   LIR_Opr base_op = base.result();
2153 #ifndef _LP64
2154   if (x->base()->type()->tag() == longTag) {
2155     base_op = new_register(T_INT);
2156     __ convert(Bytecodes::_l2i, base.result(), base_op);
2157   } else {
2158     assert(x->base()->type()->tag() == intTag, "must be");
2159   }
2160 #endif
2161 
2162   LIR_Opr index_op = idx.result();
2163   if (log2_scale != 0) {
2164     // temporary fix (platform dependent code without shift on Intel would be better)
2165     index_op = new_pointer_register();
2166 #ifdef _LP64
2167     if(idx.result()->type() == T_INT) {
2168       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2169     } else {
2170 #endif
2171       // TODO: ARM also allows embedded shift in the address
2172       __ move(idx.result(), index_op);
2173 #ifdef _LP64
2174     }
2175 #endif
2176     __ shift_left(index_op, log2_scale, index_op);
2177   }
2178 #ifdef _LP64
2179   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2180     LIR_Opr tmp = new_pointer_register();
2181     __ convert(Bytecodes::_i2l, index_op, tmp);
2182     index_op = tmp;
2183   }
2184 #endif
2185 
2186   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2187   __ move(value.result(), addr);
2188 }
2189 
2190 
2191 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2192   BasicType type = x->basic_type();
2193   LIRItem src(x->object(), this);
2194   LIRItem off(x->offset(), this);
2195 
2196   off.load_item();
2197   src.load_item();
2198 
2199   LIR_Opr value = rlock_result(x, x->basic_type());
2200 
2201   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2202 
2203 #if INCLUDE_ALL_GCS
2204   // We might be reading the value of the referent field of a
2205   // Reference object in order to attach it back to the live
2206   // object graph. If G1 is enabled then we need to record
2207   // the value that is being returned in an SATB log buffer.
2208   //
2209   // We need to generate code similar to the following...
2210   //
2211   // if (offset == java_lang_ref_Reference::referent_offset) {
2212   //   if (src != NULL) {
2213   //     if (klass(src)->reference_type() != REF_NONE) {
2214   //       pre_barrier(..., value, ...);
2215   //     }
2216   //   }
2217   // }
2218 
2219   if (UseG1GC && type == T_OBJECT) {
2220     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2221     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2222     bool gen_source_check = true;    // Assume we need to check the src object for null.
2223     bool gen_type_check = true;      // Assume we need to check the reference_type.
2224 
2225     if (off.is_constant()) {
2226       jlong off_con = (off.type()->is_int() ?
2227                         (jlong) off.get_jint_constant() :
2228                         off.get_jlong_constant());
2229 
2230 
2231       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2232         // The constant offset is something other than referent_offset.
2233         // We can skip generating/checking the remaining guards and
2234         // skip generation of the code stub.
2235         gen_pre_barrier = false;
2236       } else {
2237         // The constant offset is the same as referent_offset -
2238         // we do not need to generate a runtime offset check.
2239         gen_offset_check = false;
2240       }
2241     }
2242 
2243     // We don't need to generate stub if the source object is an array
2244     if (gen_pre_barrier && src.type()->is_array()) {
2245       gen_pre_barrier = false;
2246     }
2247 
2248     if (gen_pre_barrier) {
2249       // We still need to continue with the checks.
2250       if (src.is_constant()) {
2251         ciObject* src_con = src.get_jobject_constant();
2252         guarantee(src_con != NULL, "no source constant");
2253 
2254         if (src_con->is_null_object()) {
2255           // The constant src object is null - We can skip
2256           // generating the code stub.
2257           gen_pre_barrier = false;
2258         } else {
2259           // Non-null constant source object. We still have to generate
2260           // the slow stub - but we don't need to generate the runtime
2261           // null object check.
2262           gen_source_check = false;
2263         }
2264       }
2265     }
2266     if (gen_pre_barrier && !PatchALot) {
2267       // Can the klass of object be statically determined to be
2268       // a sub-class of Reference?
2269       ciType* type = src.value()->declared_type();
2270       if ((type != NULL) && type->is_loaded()) {
2271         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2272           gen_type_check = false;
2273         } else if (type->is_klass() &&
2274                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2275           // Not Reference and not Object klass.
2276           gen_pre_barrier = false;
2277         }
2278       }
2279     }
2280 
2281     if (gen_pre_barrier) {
2282       LabelObj* Lcont = new LabelObj();
2283 
2284       // We can have generate one runtime check here. Let's start with
2285       // the offset check.
2286       if (gen_offset_check) {
2287         // if (offset != referent_offset) -> continue
2288         // If offset is an int then we can do the comparison with the
2289         // referent_offset constant; otherwise we need to move
2290         // referent_offset into a temporary register and generate
2291         // a reg-reg compare.
2292 
2293         LIR_Opr referent_off;
2294 
2295         if (off.type()->is_int()) {
2296           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2297         } else {
2298           assert(off.type()->is_long(), "what else?");
2299           referent_off = new_register(T_LONG);
2300           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2301         }
2302         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2303         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2304       }
2305       if (gen_source_check) {
2306         // offset is a const and equals referent offset
2307         // if (source == null) -> continue
2308         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2309         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2310       }
2311       LIR_Opr src_klass = new_register(T_OBJECT);
2312       if (gen_type_check) {
2313         // We have determined that offset == referent_offset && src != null.
2314         // if (src->_klass->_reference_type == REF_NONE) -> continue
2315         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2316         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2317         LIR_Opr reference_type = new_register(T_INT);
2318         __ move(reference_type_addr, reference_type);
2319         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2320         __ branch(lir_cond_equal, T_INT, Lcont->label());
2321       }
2322       {
2323         // We have determined that src->_klass->_reference_type != REF_NONE
2324         // so register the value in the referent field with the pre-barrier.
2325         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2326                     value  /* pre_val */,
2327                     false  /* do_load */,
2328                     false  /* patch */,
2329                     NULL   /* info */);
2330       }
2331       __ branch_destination(Lcont->label());
2332     }
2333   }
2334 #endif // INCLUDE_ALL_GCS
2335 
2336   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2337 }
2338 
2339 
2340 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2341   BasicType type = x->basic_type();
2342   LIRItem src(x->object(), this);
2343   LIRItem off(x->offset(), this);
2344   LIRItem data(x->value(), this);
2345 
2346   src.load_item();
2347   if (type == T_BOOLEAN || type == T_BYTE) {
2348     data.load_byte_item();
2349   } else {
2350     data.load_item();
2351   }
2352   off.load_item();
2353 
2354   set_no_result(x);
2355 
2356   if (x->is_volatile() && os::is_MP()) __ membar_release();
2357   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2358   if (x->is_volatile() && os::is_MP()) __ membar();
2359 }
2360 
2361 
2362 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2363   LIRItem src(x->object(), this);
2364   LIRItem off(x->offset(), this);
2365 
2366   src.load_item();
2367   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2368     // let it be a constant
2369     off.dont_load_item();
2370   } else {
2371     off.load_item();
2372   }
2373 
2374   set_no_result(x);
2375 
2376   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2377   __ prefetch(addr, is_store);
2378 }
2379 
2380 
2381 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2382   do_UnsafePrefetch(x, false);
2383 }
2384 
2385 
2386 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2387   do_UnsafePrefetch(x, true);
2388 }
2389 
2390 
2391 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2392   int lng = x->length();
2393 
2394   for (int i = 0; i < lng; i++) {
2395     SwitchRange* one_range = x->at(i);
2396     int low_key = one_range->low_key();
2397     int high_key = one_range->high_key();
2398     BlockBegin* dest = one_range->sux();
2399     if (low_key == high_key) {
2400       __ cmp(lir_cond_equal, value, low_key);
2401       __ branch(lir_cond_equal, T_INT, dest);
2402     } else if (high_key - low_key == 1) {
2403       __ cmp(lir_cond_equal, value, low_key);
2404       __ branch(lir_cond_equal, T_INT, dest);
2405       __ cmp(lir_cond_equal, value, high_key);
2406       __ branch(lir_cond_equal, T_INT, dest);
2407     } else {
2408       LabelObj* L = new LabelObj();
2409       __ cmp(lir_cond_less, value, low_key);
2410       __ branch(lir_cond_less, T_INT, L->label());
2411       __ cmp(lir_cond_lessEqual, value, high_key);
2412       __ branch(lir_cond_lessEqual, T_INT, dest);
2413       __ branch_destination(L->label());
2414     }
2415   }
2416   __ jump(default_sux);
2417 }
2418 
2419 
2420 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2421   SwitchRangeList* res = new SwitchRangeList();
2422   int len = x->length();
2423   if (len > 0) {
2424     BlockBegin* sux = x->sux_at(0);
2425     int key = x->lo_key();
2426     BlockBegin* default_sux = x->default_sux();
2427     SwitchRange* range = new SwitchRange(key, sux);
2428     for (int i = 0; i < len; i++, key++) {
2429       BlockBegin* new_sux = x->sux_at(i);
2430       if (sux == new_sux) {
2431         // still in same range
2432         range->set_high_key(key);
2433       } else {
2434         // skip tests which explicitly dispatch to the default
2435         if (sux != default_sux) {
2436           res->append(range);
2437         }
2438         range = new SwitchRange(key, new_sux);
2439       }
2440       sux = new_sux;
2441     }
2442     if (res->length() == 0 || res->last() != range)  res->append(range);
2443   }
2444   return res;
2445 }
2446 
2447 
2448 // we expect the keys to be sorted by increasing value
2449 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2450   SwitchRangeList* res = new SwitchRangeList();
2451   int len = x->length();
2452   if (len > 0) {
2453     BlockBegin* default_sux = x->default_sux();
2454     int key = x->key_at(0);
2455     BlockBegin* sux = x->sux_at(0);
2456     SwitchRange* range = new SwitchRange(key, sux);
2457     for (int i = 1; i < len; i++) {
2458       int new_key = x->key_at(i);
2459       BlockBegin* new_sux = x->sux_at(i);
2460       if (key+1 == new_key && sux == new_sux) {
2461         // still in same range
2462         range->set_high_key(new_key);
2463       } else {
2464         // skip tests which explicitly dispatch to the default
2465         if (range->sux() != default_sux) {
2466           res->append(range);
2467         }
2468         range = new SwitchRange(new_key, new_sux);
2469       }
2470       key = new_key;
2471       sux = new_sux;
2472     }
2473     if (res->length() == 0 || res->last() != range)  res->append(range);
2474   }
2475   return res;
2476 }
2477 
2478 
2479 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2480   LIRItem tag(x->tag(), this);
2481   tag.load_item();
2482   set_no_result(x);
2483 
2484   if (x->is_safepoint()) {
2485     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2486   }
2487 
2488   // move values into phi locations
2489   move_to_phi(x->state());
2490 
2491   int lo_key = x->lo_key();
2492   int hi_key = x->hi_key();
2493   int len = x->length();
2494   LIR_Opr value = tag.result();
2495   if (UseTableRanges) {
2496     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2497   } else {
2498     for (int i = 0; i < len; i++) {
2499       __ cmp(lir_cond_equal, value, i + lo_key);
2500       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2501     }
2502     __ jump(x->default_sux());
2503   }
2504 }
2505 
2506 
2507 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2508   LIRItem tag(x->tag(), this);
2509   tag.load_item();
2510   set_no_result(x);
2511 
2512   if (x->is_safepoint()) {
2513     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2514   }
2515 
2516   // move values into phi locations
2517   move_to_phi(x->state());
2518 
2519   LIR_Opr value = tag.result();
2520   if (UseTableRanges) {
2521     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2522   } else {
2523     int len = x->length();
2524     for (int i = 0; i < len; i++) {
2525       __ cmp(lir_cond_equal, value, x->key_at(i));
2526       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2527     }
2528     __ jump(x->default_sux());
2529   }
2530 }
2531 
2532 
2533 void LIRGenerator::do_Goto(Goto* x) {
2534   set_no_result(x);
2535 
2536   if (block()->next()->as_OsrEntry()) {
2537     // need to free up storage used for OSR entry point
2538     LIR_Opr osrBuffer = block()->next()->operand();
2539     BasicTypeList signature;
2540     signature.append(T_INT);
2541     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2542     __ move(osrBuffer, cc->args()->at(0));
2543     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2544                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2545   }
2546 
2547   if (x->is_safepoint()) {
2548     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2549 
2550     // increment backedge counter if needed
2551     CodeEmitInfo* info = state_for(x, state);
2552     increment_backedge_counter(info, x->profiled_bci());
2553     CodeEmitInfo* safepoint_info = state_for(x, state);
2554     __ safepoint(safepoint_poll_register(), safepoint_info);
2555   }
2556 
2557   // Gotos can be folded Ifs, handle this case.
2558   if (x->should_profile()) {
2559     ciMethod* method = x->profiled_method();
2560     assert(method != NULL, "method should be set if branch is profiled");
2561     ciMethodData* md = method->method_data_or_null();
2562     assert(md != NULL, "Sanity");
2563     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2564     assert(data != NULL, "must have profiling data");
2565     int offset;
2566     if (x->direction() == Goto::taken) {
2567       assert(data->is_BranchData(), "need BranchData for two-way branches");
2568       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2569     } else if (x->direction() == Goto::not_taken) {
2570       assert(data->is_BranchData(), "need BranchData for two-way branches");
2571       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2572     } else {
2573       assert(data->is_JumpData(), "need JumpData for branches");
2574       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2575     }
2576     LIR_Opr md_reg = new_register(T_METADATA);
2577     __ metadata2reg(md->constant_encoding(), md_reg);
2578 
2579     increment_counter(new LIR_Address(md_reg, offset,
2580                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2581   }
2582 
2583   // emit phi-instruction move after safepoint since this simplifies
2584   // describing the state as the safepoint.
2585   move_to_phi(x->state());
2586 
2587   __ jump(x->default_sux());
2588 }
2589 
2590 /**
2591  * Emit profiling code if needed for arguments, parameters, return value types
2592  *
2593  * @param md                    MDO the code will update at runtime
2594  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2595  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2596  * @param profiled_k            current profile
2597  * @param obj                   IR node for the object to be profiled
2598  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2599  *                              Set once we find an update to make and use for next ones.
2600  * @param not_null              true if we know obj cannot be null
2601  * @param signature_at_call_k   signature at call for obj
2602  * @param callee_signature_k    signature of callee for obj
2603  *                              at call and callee signatures differ at method handle call
2604  * @return                      the only klass we know will ever be seen at this profile point
2605  */
2606 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2607                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2608                                     ciKlass* callee_signature_k) {
2609   ciKlass* result = NULL;
2610   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2611   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2612   // known not to be null or null bit already set and already set to
2613   // unknown: nothing we can do to improve profiling
2614   if (!do_null && !do_update) {
2615     return result;
2616   }
2617 
2618   ciKlass* exact_klass = NULL;
2619   Compilation* comp = Compilation::current();
2620   if (do_update) {
2621     // try to find exact type, using CHA if possible, so that loading
2622     // the klass from the object can be avoided
2623     ciType* type = obj->exact_type();
2624     if (type == NULL) {
2625       type = obj->declared_type();
2626       type = comp->cha_exact_type(type);
2627     }
2628     assert(type == NULL || type->is_klass(), "type should be class");
2629     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2630 
2631     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2632   }
2633 
2634   if (!do_null && !do_update) {
2635     return result;
2636   }
2637 
2638   ciKlass* exact_signature_k = NULL;
2639   if (do_update) {
2640     // Is the type from the signature exact (the only one possible)?
2641     exact_signature_k = signature_at_call_k->exact_klass();
2642     if (exact_signature_k == NULL) {
2643       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2644     } else {
2645       result = exact_signature_k;
2646       // Known statically. No need to emit any code: prevent
2647       // LIR_Assembler::emit_profile_type() from emitting useless code
2648       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2649     }
2650     if (exact_signature_k != NULL && exact_klass != exact_signature_k) {
2651       assert(exact_klass == NULL, "obj and signature disagree?");
2652       // sometimes the type of the signature is better than the best type
2653       // the compiler has
2654       exact_klass = exact_signature_k;
2655     }
2656     if (callee_signature_k != NULL &&
2657         callee_signature_k != signature_at_call_k) {
2658       ciKlass* improved_klass = callee_signature_k->exact_klass();
2659       if (improved_klass == NULL) {
2660         improved_klass = comp->cha_exact_type(callee_signature_k);
2661       }
2662       if (improved_klass != NULL && exact_klass != improved_klass) {
2663         assert(exact_klass == NULL, "obj and signature disagree?");
2664         exact_klass = exact_signature_k;
2665       }
2666     }
2667     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2668   }
2669 
2670   if (!do_null && !do_update) {
2671     return result;
2672   }
2673 
2674   if (mdp == LIR_OprFact::illegalOpr) {
2675     mdp = new_register(T_METADATA);
2676     __ metadata2reg(md->constant_encoding(), mdp);
2677     if (md_base_offset != 0) {
2678       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2679       mdp = new_pointer_register();
2680       __ leal(LIR_OprFact::address(base_type_address), mdp);
2681     }
2682   }
2683   LIRItem value(obj, this);
2684   value.load_item();
2685   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2686                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2687   return result;
2688 }
2689 
2690 // profile parameters on entry to the root of the compilation
2691 void LIRGenerator::profile_parameters(Base* x) {
2692   if (compilation()->profile_parameters()) {
2693     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2694     ciMethodData* md = scope()->method()->method_data_or_null();
2695     assert(md != NULL, "Sanity");
2696 
2697     if (md->parameters_type_data() != NULL) {
2698       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2699       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2700       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2701       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2702         LIR_Opr src = args->at(i);
2703         assert(!src->is_illegal(), "check");
2704         BasicType t = src->type();
2705         if (t == T_OBJECT || t == T_ARRAY) {
2706           intptr_t profiled_k = parameters->type(j);
2707           Local* local = x->state()->local_at(java_index)->as_Local();
2708           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2709                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2710                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2711           // If the profile is known statically set it once for all and do not emit any code
2712           if (exact != NULL) {
2713             md->set_parameter_type(j, exact);
2714           }
2715           j++;
2716         }
2717         java_index += type2size[t];
2718       }
2719     }
2720   }
2721 }
2722 
2723 void LIRGenerator::do_Base(Base* x) {
2724   __ std_entry(LIR_OprFact::illegalOpr);
2725   // Emit moves from physical registers / stack slots to virtual registers
2726   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2727   IRScope* irScope = compilation()->hir()->top_scope();
2728   int java_index = 0;
2729   for (int i = 0; i < args->length(); i++) {
2730     LIR_Opr src = args->at(i);
2731     assert(!src->is_illegal(), "check");
2732     BasicType t = src->type();
2733 
2734     // Types which are smaller than int are passed as int, so
2735     // correct the type which passed.
2736     switch (t) {
2737     case T_BYTE:
2738     case T_BOOLEAN:
2739     case T_SHORT:
2740     case T_CHAR:
2741       t = T_INT;
2742       break;
2743     }
2744 
2745     LIR_Opr dest = new_register(t);
2746     __ move(src, dest);
2747 
2748     // Assign new location to Local instruction for this local
2749     Local* local = x->state()->local_at(java_index)->as_Local();
2750     assert(local != NULL, "Locals for incoming arguments must have been created");
2751 #ifndef __SOFTFP__
2752     // The java calling convention passes double as long and float as int.
2753     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2754 #endif // __SOFTFP__
2755     local->set_operand(dest);
2756     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2757     java_index += type2size[t];
2758   }
2759 
2760   if (compilation()->env()->dtrace_method_probes()) {
2761     BasicTypeList signature;
2762     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2763     signature.append(T_METADATA); // Method*
2764     LIR_OprList* args = new LIR_OprList();
2765     args->append(getThreadPointer());
2766     LIR_Opr meth = new_register(T_METADATA);
2767     __ metadata2reg(method()->constant_encoding(), meth);
2768     args->append(meth);
2769     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2770   }
2771 
2772   if (method()->is_synchronized()) {
2773     LIR_Opr obj;
2774     if (method()->is_static()) {
2775       obj = new_register(T_OBJECT);
2776       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2777     } else {
2778       Local* receiver = x->state()->local_at(0)->as_Local();
2779       assert(receiver != NULL, "must already exist");
2780       obj = receiver->operand();
2781     }
2782     assert(obj->is_valid(), "must be valid");
2783 
2784     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2785       LIR_Opr lock = new_register(T_INT);
2786       __ load_stack_address_monitor(0, lock);
2787 
2788       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2789       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2790 
2791       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2792       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2793     }
2794   }
2795 
2796   // increment invocation counters if needed
2797   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2798     profile_parameters(x);
2799     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2800     increment_invocation_counter(info);
2801   }
2802 
2803   // all blocks with a successor must end with an unconditional jump
2804   // to the successor even if they are consecutive
2805   __ jump(x->default_sux());
2806 }
2807 
2808 
2809 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2810   // construct our frame and model the production of incoming pointer
2811   // to the OSR buffer.
2812   __ osr_entry(LIR_Assembler::osrBufferPointer());
2813   LIR_Opr result = rlock_result(x);
2814   __ move(LIR_Assembler::osrBufferPointer(), result);
2815 }
2816 
2817 
2818 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2819   assert(args->length() == arg_list->length(),
2820          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2821   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2822     LIRItem* param = args->at(i);
2823     LIR_Opr loc = arg_list->at(i);
2824     if (loc->is_register()) {
2825       param->load_item_force(loc);
2826     } else {
2827       LIR_Address* addr = loc->as_address_ptr();
2828       param->load_for_store(addr->type());
2829       if (addr->type() == T_OBJECT) {
2830         __ move_wide(param->result(), addr);
2831       } else
2832         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2833           __ unaligned_move(param->result(), addr);
2834         } else {
2835           __ move(param->result(), addr);
2836         }
2837     }
2838   }
2839 
2840   if (x->has_receiver()) {
2841     LIRItem* receiver = args->at(0);
2842     LIR_Opr loc = arg_list->at(0);
2843     if (loc->is_register()) {
2844       receiver->load_item_force(loc);
2845     } else {
2846       assert(loc->is_address(), "just checking");
2847       receiver->load_for_store(T_OBJECT);
2848       __ move_wide(receiver->result(), loc->as_address_ptr());
2849     }
2850   }
2851 }
2852 
2853 
2854 // Visits all arguments, returns appropriate items without loading them
2855 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2856   LIRItemList* argument_items = new LIRItemList();
2857   if (x->has_receiver()) {
2858     LIRItem* receiver = new LIRItem(x->receiver(), this);
2859     argument_items->append(receiver);
2860   }
2861   for (int i = 0; i < x->number_of_arguments(); i++) {
2862     LIRItem* param = new LIRItem(x->argument_at(i), this);
2863     argument_items->append(param);
2864   }
2865   return argument_items;
2866 }
2867 
2868 
2869 // The invoke with receiver has following phases:
2870 //   a) traverse and load/lock receiver;
2871 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2872 //   c) push receiver on stack
2873 //   d) load each of the items and push on stack
2874 //   e) unlock receiver
2875 //   f) move receiver into receiver-register %o0
2876 //   g) lock result registers and emit call operation
2877 //
2878 // Before issuing a call, we must spill-save all values on stack
2879 // that are in caller-save register. "spill-save" moves thos registers
2880 // either in a free callee-save register or spills them if no free
2881 // callee save register is available.
2882 //
2883 // The problem is where to invoke spill-save.
2884 // - if invoked between e) and f), we may lock callee save
2885 //   register in "spill-save" that destroys the receiver register
2886 //   before f) is executed
2887 // - if we rearange the f) to be earlier, by loading %o0, it
2888 //   may destroy a value on the stack that is currently in %o0
2889 //   and is waiting to be spilled
2890 // - if we keep the receiver locked while doing spill-save,
2891 //   we cannot spill it as it is spill-locked
2892 //
2893 void LIRGenerator::do_Invoke(Invoke* x) {
2894   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2895 
2896   LIR_OprList* arg_list = cc->args();
2897   LIRItemList* args = invoke_visit_arguments(x);
2898   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2899 
2900   // setup result register
2901   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2902   if (x->type() != voidType) {
2903     result_register = result_register_for(x->type());
2904   }
2905 
2906   CodeEmitInfo* info = state_for(x, x->state());
2907 
2908   invoke_load_arguments(x, args, arg_list);
2909 
2910   if (x->has_receiver()) {
2911     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2912     receiver = args->at(0)->result();
2913   }
2914 
2915   // emit invoke code
2916   bool optimized = x->target_is_loaded() && x->target_is_final();
2917   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2918 
2919   // JSR 292
2920   // Preserve the SP over MethodHandle call sites.
2921   ciMethod* target = x->target();
2922   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2923                                   target->is_method_handle_intrinsic() ||
2924                                   target->is_compiled_lambda_form());
2925   if (is_method_handle_invoke) {
2926     info->set_is_method_handle_invoke(true);
2927     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2928   }
2929 
2930   info->set_profiled_call(x->is_profiled());
2931 
2932   switch (x->code()) {
2933     case Bytecodes::_invokestatic:
2934       __ call_static(target, result_register,
2935                      SharedRuntime::get_resolve_static_call_stub(),
2936                      arg_list, info);
2937       break;
2938     case Bytecodes::_invokespecial:
2939     case Bytecodes::_invokevirtual:
2940     case Bytecodes::_invokeinterface:
2941       // for final target we still produce an inline cache, in order
2942       // to be able to call mixed mode
2943       if (x->code() == Bytecodes::_invokespecial || optimized) {
2944         __ call_opt_virtual(target, receiver, result_register,
2945                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2946                             arg_list, info);
2947       } else if (x->vtable_index() < 0) {
2948         __ call_icvirtual(target, receiver, result_register,
2949                           SharedRuntime::get_resolve_virtual_call_stub(),
2950                           arg_list, info);
2951       } else {
2952         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2953         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2954         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2955       }
2956       break;
2957     case Bytecodes::_invokedynamic: {
2958       __ call_dynamic(target, receiver, result_register,
2959                       SharedRuntime::get_resolve_static_call_stub(),
2960                       arg_list, info);
2961       break;
2962     }
2963     default:
2964       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2965       break;
2966   }
2967 
2968   // JSR 292
2969   // Restore the SP after MethodHandle call sites.
2970   if (is_method_handle_invoke) {
2971     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2972   }
2973 
2974   if (x->type()->is_float() || x->type()->is_double()) {
2975     // Force rounding of results from non-strictfp when in strictfp
2976     // scope (or when we don't know the strictness of the callee, to
2977     // be safe.)
2978     if (method()->is_strict()) {
2979       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2980         result_register = round_item(result_register);
2981       }
2982     }
2983   }
2984 
2985   if (result_register->is_valid()) {
2986     LIR_Opr result = rlock_result(x);
2987     __ move(result_register, result);
2988   }
2989 }
2990 
2991 
2992 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2993   assert(x->number_of_arguments() == 1, "wrong type");
2994   LIRItem value       (x->argument_at(0), this);
2995   LIR_Opr reg = rlock_result(x);
2996   value.load_item();
2997   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2998   __ move(tmp, reg);
2999 }
3000 
3001 
3002 
3003 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3004 void LIRGenerator::do_IfOp(IfOp* x) {
3005 #ifdef ASSERT
3006   {
3007     ValueTag xtag = x->x()->type()->tag();
3008     ValueTag ttag = x->tval()->type()->tag();
3009     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3010     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3011     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3012   }
3013 #endif
3014 
3015   LIRItem left(x->x(), this);
3016   LIRItem right(x->y(), this);
3017   left.load_item();
3018   if (can_inline_as_constant(right.value())) {
3019     right.dont_load_item();
3020   } else {
3021     right.load_item();
3022   }
3023 
3024   LIRItem t_val(x->tval(), this);
3025   LIRItem f_val(x->fval(), this);
3026   t_val.dont_load_item();
3027   f_val.dont_load_item();
3028   LIR_Opr reg = rlock_result(x);
3029 
3030   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3031   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3032 }
3033 
3034 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3035     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3036     LIR_Opr reg = result_register_for(x->type());
3037     __ call_runtime_leaf(routine, getThreadTemp(),
3038                          reg, new LIR_OprList());
3039     LIR_Opr result = rlock_result(x);
3040     __ move(reg, result);
3041 }
3042 
3043 #ifdef TRACE_HAVE_INTRINSICS
3044 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3045     LIR_Opr thread = getThreadPointer();
3046     LIR_Opr osthread = new_pointer_register();
3047     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3048     size_t thread_id_size = OSThread::thread_id_size();
3049     if (thread_id_size == (size_t) BytesPerLong) {
3050       LIR_Opr id = new_register(T_LONG);
3051       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3052       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3053     } else if (thread_id_size == (size_t) BytesPerInt) {
3054       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3055     } else {
3056       ShouldNotReachHere();
3057     }
3058 }
3059 
3060 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3061     CodeEmitInfo* info = state_for(x);
3062     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3063     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3064     assert(info != NULL, "must have info");
3065     LIRItem arg(x->argument_at(1), this);
3066     arg.load_item();
3067     LIR_Opr klass = new_pointer_register();
3068     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3069     LIR_Opr id = new_register(T_LONG);
3070     ByteSize offset = TRACE_ID_OFFSET;
3071     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3072     __ move(trace_id_addr, id);
3073     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3074     __ store(id, trace_id_addr);
3075     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3076     __ move(id, rlock_result(x));
3077 }
3078 #endif
3079 
3080 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3081   switch (x->id()) {
3082   case vmIntrinsics::_intBitsToFloat      :
3083   case vmIntrinsics::_doubleToRawLongBits :
3084   case vmIntrinsics::_longBitsToDouble    :
3085   case vmIntrinsics::_floatToRawIntBits   : {
3086     do_FPIntrinsics(x);
3087     break;
3088   }
3089 
3090 #ifdef TRACE_HAVE_INTRINSICS
3091   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3092   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3093   case vmIntrinsics::_counterTime:
3094     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3095     break;
3096 #endif
3097 
3098   case vmIntrinsics::_currentTimeMillis:
3099     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3100     break;
3101 
3102   case vmIntrinsics::_nanoTime:
3103     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3104     break;
3105 
3106   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3107   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3108   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3109   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3110 
3111   case vmIntrinsics::_dlog:           // fall through
3112   case vmIntrinsics::_dlog10:         // fall through
3113   case vmIntrinsics::_dabs:           // fall through
3114   case vmIntrinsics::_dsqrt:          // fall through
3115   case vmIntrinsics::_dtan:           // fall through
3116   case vmIntrinsics::_dsin :          // fall through
3117   case vmIntrinsics::_dcos :          // fall through
3118   case vmIntrinsics::_dexp :          // fall through
3119   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3120   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3121 
3122   // java.nio.Buffer.checkIndex
3123   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3124 
3125   case vmIntrinsics::_compareAndSwapObject:
3126     do_CompareAndSwap(x, objectType);
3127     break;
3128   case vmIntrinsics::_compareAndSwapInt:
3129     do_CompareAndSwap(x, intType);
3130     break;
3131   case vmIntrinsics::_compareAndSwapLong:
3132     do_CompareAndSwap(x, longType);
3133     break;
3134 
3135   case vmIntrinsics::_loadFence :
3136     if (os::is_MP()) __ membar_acquire();
3137     break;
3138   case vmIntrinsics::_storeFence:
3139     if (os::is_MP()) __ membar_release();
3140     break;
3141   case vmIntrinsics::_fullFence :
3142     if (os::is_MP()) __ membar();
3143     break;
3144 
3145   case vmIntrinsics::_Reference_get:
3146     do_Reference_get(x);
3147     break;
3148 
3149   case vmIntrinsics::_updateCRC32:
3150   case vmIntrinsics::_updateBytesCRC32:
3151   case vmIntrinsics::_updateByteBufferCRC32:
3152     do_update_CRC32(x);
3153     break;
3154 
3155   default: ShouldNotReachHere(); break;
3156   }
3157 }
3158 
3159 void LIRGenerator::profile_arguments(ProfileCall* x) {
3160   if (compilation()->profile_arguments()) {
3161     int bci = x->bci_of_invoke();
3162     ciMethodData* md = x->method()->method_data_or_null();
3163     ciProfileData* data = md->bci_to_data(bci);
3164     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3165         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3166       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3167       int base_offset = md->byte_offset_of_slot(data, extra);
3168       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3169       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3170 
3171       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3172       int start = 0;
3173       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3174       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3175         // first argument is not profiled at call (method handle invoke)
3176         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3177         start = 1;
3178       }
3179       ciSignature* callee_signature = x->callee()->signature();
3180       // method handle call to virtual method
3181       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3182       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3183 
3184       bool ignored_will_link;
3185       ciSignature* signature_at_call = NULL;
3186       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3187       ciSignatureStream signature_at_call_stream(signature_at_call);
3188 
3189       // if called through method handle invoke, some arguments may have been popped
3190       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3191         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3192         ciKlass* exact = profile_type(md, base_offset, off,
3193                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3194                                       !x->arg_needs_null_check(i+start),
3195                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3196         if (exact != NULL) {
3197           md->set_argument_type(bci, i, exact);
3198         }
3199       }
3200     } else {
3201 #ifdef ASSERT
3202       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3203       int n = x->nb_profiled_args();
3204       assert(MethodData::profile_parameters() && x->inlined() &&
3205              ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)),
3206              "only at JSR292 bytecodes");
3207 #endif
3208     }
3209   }
3210 }
3211 
3212 // profile parameters on entry to an inlined method
3213 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3214   if (compilation()->profile_parameters() && x->inlined()) {
3215     ciMethodData* md = x->callee()->method_data_or_null();
3216     if (md != NULL) {
3217       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3218       if (parameters_type_data != NULL) {
3219         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3220         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3221         bool has_receiver = !x->callee()->is_static();
3222         ciSignature* sig = x->callee()->signature();
3223         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3224         int i = 0; // to iterate on the Instructions
3225         Value arg = x->recv();
3226         bool not_null = false;
3227         int bci = x->bci_of_invoke();
3228         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3229         // The first parameter is the receiver so that's what we start
3230         // with if it exists. One exception is method handle call to
3231         // virtual method: the receiver is in the args list
3232         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3233           i = 1;
3234           arg = x->profiled_arg_at(0);
3235           not_null = !x->arg_needs_null_check(0);
3236         }
3237         int k = 0; // to iterate on the profile data
3238         for (;;) {
3239           intptr_t profiled_k = parameters->type(k);
3240           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3241                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3242                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3243           // If the profile is known statically set it once for all and do not emit any code
3244           if (exact != NULL) {
3245             md->set_parameter_type(k, exact);
3246           }
3247           k++;
3248           if (k >= parameters_type_data->number_of_parameters()) {
3249 #ifdef ASSERT
3250             int extra = 0;
3251             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3252                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3253                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3254               extra += 1;
3255             }
3256             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3257 #endif
3258             break;
3259           }
3260           arg = x->profiled_arg_at(i);
3261           not_null = !x->arg_needs_null_check(i);
3262           i++;
3263         }
3264       }
3265     }
3266   }
3267 }
3268 
3269 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3270   // Need recv in a temporary register so it interferes with the other temporaries
3271   LIR_Opr recv = LIR_OprFact::illegalOpr;
3272   LIR_Opr mdo = new_register(T_OBJECT);
3273   // tmp is used to hold the counters on SPARC
3274   LIR_Opr tmp = new_pointer_register();
3275 
3276   if (x->nb_profiled_args() > 0) {
3277     profile_arguments(x);
3278   }
3279 
3280   // profile parameters on inlined method entry including receiver
3281   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3282     profile_parameters_at_call(x);
3283   }
3284 
3285   if (x->recv() != NULL) {
3286     LIRItem value(x->recv(), this);
3287     value.load_item();
3288     recv = new_register(T_OBJECT);
3289     __ move(value.result(), recv);
3290   }
3291   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3292 }
3293 
3294 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3295   int bci = x->bci_of_invoke();
3296   ciMethodData* md = x->method()->method_data_or_null();
3297   ciProfileData* data = md->bci_to_data(bci);
3298   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3299   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3300   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3301 
3302   bool ignored_will_link;
3303   ciSignature* signature_at_call = NULL;
3304   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3305 
3306   ciKlass* exact = profile_type(md, 0, md->byte_offset_of_slot(data, ret->type_offset()),
3307                                 ret->type(), x->ret(), mdp,
3308                                 !x->needs_null_check(),
3309                                 signature_at_call->return_type()->as_klass(),
3310                                 x->callee()->signature()->return_type()->as_klass());
3311   if (exact != NULL) {
3312     md->set_return_type(bci, exact);
3313   }
3314 }
3315 
3316 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3317   int level = compilation()->env()->comp_level();
3318   if (CacheCompiledCode && (level == CompLevel_simple)) {
3319     // Not critical and error prone.
3320     return;
3321   }
3322   // We can safely ignore accessors here, since c2 will inline them anyway,
3323   // accessors are also always mature.
3324   if (!x->inlinee()->is_accessor()) {
3325     CodeEmitInfo* info = state_for(x, x->state(), true);
3326     // Notify the runtime very infrequently only to take care of counter overflows
3327     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3328   }
3329 }
3330 
3331 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3332   int freq_log;
3333   int level = compilation()->env()->comp_level();
3334   if (CacheCompiledCode && RecompileCachedCompiledCode && (level == CompLevel_simple)) {
3335     // Implicit limited profiling
3336 
3337     // Note: Following code could be cleaned up and improved. This is
3338     // quick prototyping of a simple counter mechanism to recompile
3339     // cached methods that are hot (since cached code may be less
3340     // efficient). However, the counters further decrease the
3341     // performance of the cached code... reducing the startup gains.
3342     // Better mechanisms may be needed to preserve long term
3343     // performance without degrading startup performance:
3344     // - Asynchronously checking the counters to avoid reduce cost for loops
3345     //   (currently disabled by default because of theoverhead)
3346     // - Analysis at compile time to see whether the method would really
3347     //   benefit from recompilation, adding the profiling only when worth it
3348     // ...
3349     if (info->scope()->method()->is_accessor()) {
3350       // XXX TODO: should be refined, filtering other simple methods
3351       // like in SimpleThresholdPolicy::is_trivial. Activating
3352       // ProfileInterpreter might help detect simple methods.
3353       return;
3354     }
3355     if (info->scope()->level() != 0) {
3356       // Do not profile inlined methods. Else need to ensure we recompile the
3357       // caller, not the inlinee. Would also need to double check bci.
3358       // Probably useless, assuming inlined loops are small and thus
3359       // inexpensive. If this is not the case, it would be better not to
3360       // inline them.
3361       return;
3362     }
3363     level = CompLevel_pregenerated_profile;
3364     // for pregenerated C1 recompiles, use a single counter and frequency
3365     backedge = false;
3366     if (! RecompileOSR) {
3367       // XXX disables OSR, not critical and safer since the bci values
3368       // do not seem correct currently (always 0). May not be worth
3369       // trying to fix bci.
3370       bci = InvocationEntryBci;
3371     }
3372     // triggers the event between RecompileThreshold and 2*RecompileThreshold
3373     freq_log = log2_intptr((intptr_t) ((2*RecompileThreshold)-1));
3374   } else if (level == CompLevel_limited_profile) {
3375     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3376   } else if (level == CompLevel_full_profile) {
3377     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3378   } else {
3379     ShouldNotReachHere();
3380   }
3381   // Increment the appropriate invocation/backedge counter and notify the runtime.
3382   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3383 }
3384 
3385 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3386                                                 ciMethod *method, int frequency,
3387                                                 int bci, bool backedge, bool notify) {
3388   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3389   int level = _compilation->env()->comp_level();
3390   if (CacheCompiledCode && RecompileCachedCompiledCode && (level == CompLevel_simple)) {
3391     // implicit limited profiling
3392     level = CompLevel_pregenerated_profile;
3393   }
3394   assert(level > CompLevel_simple, "Shouldn't be here");
3395 
3396   int offset = -1;
3397   LIR_Opr counter_holder;
3398   LIR_Opr meth;
3399   bool meth_available = false;
3400   LabelObj* Lno_counters = new LabelObj(); // may happen for pregenerated code
3401   if ((level == CompLevel_limited_profile) || (level == CompLevel_pregenerated_profile)) {
3402     MethodCounters* counters_adr = method->ensure_method_counters();
3403     if (counters_adr == NULL) {
3404       bailout("method counters allocation failed");
3405       return;
3406     }
3407     counter_holder = new_pointer_register();
3408     if (CacheCompiledCode) {
3409       // Cannot cache arbitrary counters_adr, use cached Method*
3410       meth = new_register(T_METADATA);
3411       __ metadata2reg(method->constant_encoding(), meth);
3412       meth_available = true;
3413       LIR_Address* counters = new LIR_Address(meth, in_bytes(Method::method_counters_offset()), LP64_ONLY(T_LONG) NOT_LP64(T_INT));
3414       __ load(counters, counter_holder);
3415       __ cmp(lir_cond_equal, counter_holder, LIR_OprFact::intptrConst(NULL_WORD));
3416       __ branch(lir_cond_equal, LP64_ONLY(T_LONG) NOT_LP64(T_INT),  Lno_counters->label());
3417     } else {
3418       __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3419     }
3420     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3421                                  MethodCounters::invocation_counter_offset());
3422   } else if (level == CompLevel_full_profile) {
3423     counter_holder = new_register(T_METADATA);
3424     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3425                                  MethodData::invocation_counter_offset());
3426     ciMethodData* md = method->method_data_or_null();
3427     assert(md != NULL, "Sanity");
3428     __ metadata2reg(md->constant_encoding(), counter_holder);
3429   } else {
3430     ShouldNotReachHere();
3431   }
3432   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3433   LIR_Opr result = new_register(T_INT);
3434   __ load(counter, result);
3435   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3436   __ store(result, counter);
3437   if (notify) {
3438     frequency = (frequency << InvocationCounter::count_shift);
3439     if (level == CompLevel_pregenerated_profile) {
3440       // Ignore notifications if state is not 0.
3441       // XXX: the change may be worth it in the general case but was activated
3442       // only for pregenerated code to avoid regressions (in case the
3443       // notifications are used for other purposes than trigerring compiles)
3444       frequency |= ((1 << InvocationCounter::count_shift) - 1);
3445     }
3446     LIR_Opr mask = load_immediate(frequency, T_INT);
3447     if (! meth_available) {
3448       meth = new_register(T_METADATA);
3449       __ metadata2reg(method->constant_encoding(), meth);
3450     }
3451     __ logical_and(result, mask, result);
3452     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3453     // The bci for info can point to cmp for if's we want the if bci
3454     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3455     __ branch(lir_cond_equal, T_INT, overflow);
3456     __ branch_destination(overflow->continuation());
3457   }
3458   __ branch_destination(Lno_counters->label());
3459 }
3460 
3461 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3462   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3463   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3464 
3465   if (x->pass_thread()) {
3466     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3467     args->append(getThreadPointer());
3468   }
3469 
3470   for (int i = 0; i < x->number_of_arguments(); i++) {
3471     Value a = x->argument_at(i);
3472     LIRItem* item = new LIRItem(a, this);
3473     item->load_item();
3474     args->append(item->result());
3475     signature->append(as_BasicType(a->type()));
3476   }
3477 
3478   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3479   if (x->type() == voidType) {
3480     set_no_result(x);
3481   } else {
3482     __ move(result, rlock_result(x));
3483   }
3484 }
3485 
3486 #ifdef ASSERT
3487 void LIRGenerator::do_Assert(Assert *x) {
3488   ValueTag tag = x->x()->type()->tag();
3489   If::Condition cond = x->cond();
3490 
3491   LIRItem xitem(x->x(), this);
3492   LIRItem yitem(x->y(), this);
3493   LIRItem* xin = &xitem;
3494   LIRItem* yin = &yitem;
3495 
3496   assert(tag == intTag, "Only integer assertions are valid!");
3497 
3498   xin->load_item();
3499   yin->dont_load_item();
3500 
3501   set_no_result(x);
3502 
3503   LIR_Opr left = xin->result();
3504   LIR_Opr right = yin->result();
3505 
3506   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3507 }
3508 #endif
3509 
3510 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3511 
3512 
3513   Instruction *a = x->x();
3514   Instruction *b = x->y();
3515   if (!a || StressRangeCheckElimination) {
3516     assert(!b || StressRangeCheckElimination, "B must also be null");
3517 
3518     CodeEmitInfo *info = state_for(x, x->state());
3519     CodeStub* stub = new PredicateFailedStub(info);
3520 
3521     __ jump(stub);
3522   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3523     int a_int = a->type()->as_IntConstant()->value();
3524     int b_int = b->type()->as_IntConstant()->value();
3525 
3526     bool ok = false;
3527 
3528     switch(x->cond()) {
3529       case Instruction::eql: ok = (a_int == b_int); break;
3530       case Instruction::neq: ok = (a_int != b_int); break;
3531       case Instruction::lss: ok = (a_int < b_int); break;
3532       case Instruction::leq: ok = (a_int <= b_int); break;
3533       case Instruction::gtr: ok = (a_int > b_int); break;
3534       case Instruction::geq: ok = (a_int >= b_int); break;
3535       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3536       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3537       default: ShouldNotReachHere();
3538     }
3539 
3540     if (ok) {
3541 
3542       CodeEmitInfo *info = state_for(x, x->state());
3543       CodeStub* stub = new PredicateFailedStub(info);
3544 
3545       __ jump(stub);
3546     }
3547   } else {
3548 
3549     ValueTag tag = x->x()->type()->tag();
3550     If::Condition cond = x->cond();
3551     LIRItem xitem(x->x(), this);
3552     LIRItem yitem(x->y(), this);
3553     LIRItem* xin = &xitem;
3554     LIRItem* yin = &yitem;
3555 
3556     assert(tag == intTag, "Only integer deoptimizations are valid!");
3557 
3558     xin->load_item();
3559     yin->dont_load_item();
3560     set_no_result(x);
3561 
3562     LIR_Opr left = xin->result();
3563     LIR_Opr right = yin->result();
3564 
3565     CodeEmitInfo *info = state_for(x, x->state());
3566     CodeStub* stub = new PredicateFailedStub(info);
3567 
3568     __ cmp(lir_cond(cond), left, right);
3569     __ branch(lir_cond(cond), right->type(), stub);
3570   }
3571 }
3572 
3573 
3574 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3575   LIRItemList args(1);
3576   LIRItem value(arg1, this);
3577   args.append(&value);
3578   BasicTypeList signature;
3579   signature.append(as_BasicType(arg1->type()));
3580 
3581   return call_runtime(&signature, &args, entry, result_type, info);
3582 }
3583 
3584 
3585 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3586   LIRItemList args(2);
3587   LIRItem value1(arg1, this);
3588   LIRItem value2(arg2, this);
3589   args.append(&value1);
3590   args.append(&value2);
3591   BasicTypeList signature;
3592   signature.append(as_BasicType(arg1->type()));
3593   signature.append(as_BasicType(arg2->type()));
3594 
3595   return call_runtime(&signature, &args, entry, result_type, info);
3596 }
3597 
3598 
3599 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3600                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3601   // get a result register
3602   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3603   LIR_Opr result = LIR_OprFact::illegalOpr;
3604   if (result_type->tag() != voidTag) {
3605     result = new_register(result_type);
3606     phys_reg = result_register_for(result_type);
3607   }
3608 
3609   // move the arguments into the correct location
3610   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3611   assert(cc->length() == args->length(), "argument mismatch");
3612   for (int i = 0; i < args->length(); i++) {
3613     LIR_Opr arg = args->at(i);
3614     LIR_Opr loc = cc->at(i);
3615     if (loc->is_register()) {
3616       __ move(arg, loc);
3617     } else {
3618       LIR_Address* addr = loc->as_address_ptr();
3619 //           if (!can_store_as_constant(arg)) {
3620 //             LIR_Opr tmp = new_register(arg->type());
3621 //             __ move(arg, tmp);
3622 //             arg = tmp;
3623 //           }
3624       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3625         __ unaligned_move(arg, addr);
3626       } else {
3627         __ move(arg, addr);
3628       }
3629     }
3630   }
3631 
3632   if (info) {
3633     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3634   } else {
3635     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3636   }
3637   if (result->is_valid()) {
3638     __ move(phys_reg, result);
3639   }
3640   return result;
3641 }
3642 
3643 
3644 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3645                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3646   // get a result register
3647   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3648   LIR_Opr result = LIR_OprFact::illegalOpr;
3649   if (result_type->tag() != voidTag) {
3650     result = new_register(result_type);
3651     phys_reg = result_register_for(result_type);
3652   }
3653 
3654   // move the arguments into the correct location
3655   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3656 
3657   assert(cc->length() == args->length(), "argument mismatch");
3658   for (int i = 0; i < args->length(); i++) {
3659     LIRItem* arg = args->at(i);
3660     LIR_Opr loc = cc->at(i);
3661     if (loc->is_register()) {
3662       arg->load_item_force(loc);
3663     } else {
3664       LIR_Address* addr = loc->as_address_ptr();
3665       arg->load_for_store(addr->type());
3666       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3667         __ unaligned_move(arg->result(), addr);
3668       } else {
3669         __ move(arg->result(), addr);
3670       }
3671     }
3672   }
3673 
3674   if (info) {
3675     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3676   } else {
3677     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3678   }
3679   if (result->is_valid()) {
3680     __ move(phys_reg, result);
3681   }
3682   return result;
3683 }
3684 
3685 void LIRGenerator::do_MemBar(MemBar* x) {
3686   if (os::is_MP()) {
3687     LIR_Code code = x->code();
3688     switch(code) {
3689       case lir_membar_acquire   : __ membar_acquire(); break;
3690       case lir_membar_release   : __ membar_release(); break;
3691       case lir_membar           : __ membar(); break;
3692       case lir_membar_loadload  : __ membar_loadload(); break;
3693       case lir_membar_storestore: __ membar_storestore(); break;
3694       case lir_membar_loadstore : __ membar_loadstore(); break;
3695       case lir_membar_storeload : __ membar_storeload(); break;
3696       default                   : ShouldNotReachHere(); break;
3697     }
3698   }
3699 }