1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciEnv.hpp"
  28 #include "ci/ciKlass.hpp"
  29 #include "ci/ciMethod.hpp"
  30 #include "code/dependencies.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/handles.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "utilities/copy.hpp"
  36 
  37 
  38 #ifdef ASSERT
  39 static bool must_be_in_vm() {
  40   Thread* thread = Thread::current();
  41   if (thread->is_Java_thread())
  42     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
  43   else
  44     return true;  //something like this: thread->is_VM_thread();
  45 }
  46 #endif //ASSERT
  47 
  48 void Dependencies::initialize(ciEnv* env) {
  49   Arena* arena = env->arena();
  50   _oop_recorder = env->oop_recorder();
  51   _log = env->log();
  52   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  53   DEBUG_ONLY(_deps[end_marker] = NULL);
  54   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  55     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
  56   }
  57   _content_bytes = NULL;
  58   _size_in_bytes = (size_t)-1;
  59 
  60   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  61 }
  62 
  63 void Dependencies::assert_evol_method(ciMethod* m) {
  64   assert_common_1(evol_method, m);
  65 }
  66 
  67 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
  68   if (ctxk->is_array_klass()) {
  69     // As a special case, support this assertion on an array type,
  70     // which reduces to an assertion on its element type.
  71     // Note that this cannot be done with assertions that
  72     // relate to concreteness or abstractness.
  73     ciType* elemt = ctxk->as_array_klass()->base_element_type();
  74     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
  75     ctxk = elemt->as_instance_klass();
  76     //if (ctxk->is_final())  return;            // Ex:  String[][]
  77   }
  78   check_ctxk(ctxk);
  79   assert_common_1(leaf_type, ctxk);
  80 }
  81 
  82 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
  83   check_ctxk_abstract(ctxk);
  84   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
  85 }
  86 
  87 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
  88   check_ctxk_abstract(ctxk);
  89   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
  90 }
  91 
  92 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
  93   check_ctxk_concrete(ctxk);
  94   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
  95 }
  96 
  97 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
  98   check_ctxk(ctxk);
  99   assert_common_2(unique_concrete_method, ctxk, uniqm);
 100 }
 101 
 102 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
 103   check_ctxk(ctxk);
 104   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
 105 }
 106 
 107 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
 108   check_ctxk(ctxk);
 109   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
 110 }
 111 
 112 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 113   check_ctxk(ctxk);
 114   assert_common_1(no_finalizable_subclasses, ctxk);
 115 }
 116 
 117 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 118   check_ctxk(call_site->klass());
 119   assert_common_2(call_site_target_value, call_site, method_handle);
 120 }
 121 
 122 // Helper function.  If we are adding a new dep. under ctxk2,
 123 // try to find an old dep. under a broader* ctxk1.  If there is
 124 //
 125 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 126                                     int ctxk_i, ciKlass* ctxk2) {
 127   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
 128   if (ctxk2->is_subtype_of(ctxk1)) {
 129     return true;  // success, and no need to change
 130   } else if (ctxk1->is_subtype_of(ctxk2)) {
 131     // new context class fully subsumes previous one
 132     deps->at_put(ctxk_i, ctxk2);
 133     return true;
 134   } else {
 135     return false;
 136   }
 137 }
 138 
 139 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
 140   assert(dep_args(dept) == 1, "sanity");
 141   log_dependency(dept, x);
 142   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 143 
 144   // see if the same (or a similar) dep is already recorded
 145   if (note_dep_seen(dept, x)) {
 146     assert(deps->find(x) >= 0, "sanity");
 147   } else {
 148     deps->append(x);
 149   }
 150 }
 151 
 152 void Dependencies::assert_common_2(DepType dept,
 153                                    ciBaseObject* x0, ciBaseObject* x1) {
 154   assert(dep_args(dept) == 2, "sanity");
 155   log_dependency(dept, x0, x1);
 156   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 157 
 158   // see if the same (or a similar) dep is already recorded
 159   bool has_ctxk = has_explicit_context_arg(dept);
 160   if (has_ctxk) {
 161     assert(dep_context_arg(dept) == 0, "sanity");
 162     if (note_dep_seen(dept, x1)) {
 163       // look in this bucket for redundant assertions
 164       const int stride = 2;
 165       for (int i = deps->length(); (i -= stride) >= 0; ) {
 166         ciBaseObject* y1 = deps->at(i+1);
 167         if (x1 == y1) {  // same subject; check the context
 168           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
 169             return;
 170           }
 171         }
 172       }
 173     }
 174   } else {
 175     assert(dep_implicit_context_arg(dept) == 0, "sanity");
 176     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
 177       // look in this bucket for redundant assertions
 178       const int stride = 2;
 179       for (int i = deps->length(); (i -= stride) >= 0; ) {
 180         ciBaseObject* y0 = deps->at(i+0);
 181         ciBaseObject* y1 = deps->at(i+1);
 182         if (x0 == y0 && x1 == y1) {
 183           return;
 184         }
 185       }
 186     }
 187   }
 188 
 189   // append the assertion in the correct bucket:
 190   deps->append(x0);
 191   deps->append(x1);
 192 }
 193 
 194 void Dependencies::assert_common_3(DepType dept,
 195                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
 196   assert(dep_context_arg(dept) == 0, "sanity");
 197   assert(dep_args(dept) == 3, "sanity");
 198   log_dependency(dept, ctxk, x, x2);
 199   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 200 
 201   // try to normalize an unordered pair:
 202   bool swap = false;
 203   switch (dept) {
 204   case abstract_with_exclusive_concrete_subtypes_2:
 205     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
 206     break;
 207   case exclusive_concrete_methods_2:
 208     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
 209     break;
 210   }
 211   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
 212 
 213   // see if the same (or a similar) dep is already recorded
 214   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
 215     // look in this bucket for redundant assertions
 216     const int stride = 3;
 217     for (int i = deps->length(); (i -= stride) >= 0; ) {
 218       ciBaseObject* y  = deps->at(i+1);
 219       ciBaseObject* y2 = deps->at(i+2);
 220       if (x == y && x2 == y2) {  // same subjects; check the context
 221         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 222           return;
 223         }
 224       }
 225     }
 226   }
 227   // append the assertion in the correct bucket:
 228   deps->append(ctxk);
 229   deps->append(x);
 230   deps->append(x2);
 231 }
 232 
 233 /// Support for encoding dependencies into an nmethod:
 234 
 235 void Dependencies::copy_to(nmethod* nm) {
 236   address beg = nm->dependencies_begin();
 237   address end = nm->dependencies_end();
 238   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 239   Copy::disjoint_words((HeapWord*) content_bytes(),
 240                        (HeapWord*) beg,
 241                        size_in_bytes() / sizeof(HeapWord));
 242   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 243 }
 244 
 245 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
 246   for (int i = 0; i < narg; i++) {
 247     int diff = p1[i]->ident() - p2[i]->ident();
 248     if (diff != 0)  return diff;
 249   }
 250   return 0;
 251 }
 252 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
 253 { return sort_dep(p1, p2, 1); }
 254 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
 255 { return sort_dep(p1, p2, 2); }
 256 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
 257 { return sort_dep(p1, p2, 3); }
 258 
 259 void Dependencies::sort_all_deps() {
 260   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 261     DepType dept = (DepType)deptv;
 262     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 263     if (deps->length() <= 1)  continue;
 264     switch (dep_args(dept)) {
 265     case 1: deps->sort(sort_dep_arg_1, 1); break;
 266     case 2: deps->sort(sort_dep_arg_2, 2); break;
 267     case 3: deps->sort(sort_dep_arg_3, 3); break;
 268     default: ShouldNotReachHere();
 269     }
 270   }
 271 }
 272 
 273 size_t Dependencies::estimate_size_in_bytes() {
 274   size_t est_size = 100;
 275   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 276     DepType dept = (DepType)deptv;
 277     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 278     est_size += deps->length()*2;  // tags and argument(s)
 279   }
 280   return est_size;
 281 }
 282 
 283 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
 284   switch (dept) {
 285   case abstract_with_exclusive_concrete_subtypes_2:
 286     return x->as_metadata()->as_klass();
 287   case unique_concrete_method:
 288   case exclusive_concrete_methods_2:
 289     return x->as_metadata()->as_method()->holder();
 290   }
 291   return NULL;  // let NULL be NULL
 292 }
 293 
 294 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 295   assert(must_be_in_vm(), "raw oops here");
 296   switch (dept) {
 297   case abstract_with_exclusive_concrete_subtypes_2:
 298     assert(x->is_klass(), "sanity");
 299     return (Klass*) x;
 300   case unique_concrete_method:
 301   case exclusive_concrete_methods_2:
 302     assert(x->is_method(), "sanity");
 303     return ((Method*)x)->method_holder();
 304   }
 305   return NULL;  // let NULL be NULL
 306 }
 307 
 308 void Dependencies::encode_content_bytes() {
 309   sort_all_deps();
 310 
 311   // cast is safe, no deps can overflow INT_MAX
 312   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 313 
 314   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 315     DepType dept = (DepType)deptv;
 316     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 317     if (deps->length() == 0)  continue;
 318     int stride = dep_args(dept);
 319     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 320     assert(stride > 0, "sanity");
 321     for (int i = 0; i < deps->length(); i += stride) {
 322       jbyte code_byte = (jbyte)dept;
 323       int skipj = -1;
 324       if (ctxkj >= 0 && ctxkj+1 < stride) {
 325         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
 326         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
 327         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 328           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 329           code_byte |= default_context_type_bit;
 330         }
 331       }
 332       bytes.write_byte(code_byte);
 333       for (int j = 0; j < stride; j++) {
 334         if (j == skipj)  continue;
 335         ciBaseObject* v = deps->at(i+j);
 336         if (v->is_object()) {
 337           bytes.write_int(_oop_recorder->find_index(v->as_object()->constant_encoding()));
 338         } else {
 339           ciMetadata* meta = v->as_metadata();
 340           bytes.write_int(_oop_recorder->find_index(meta->constant_encoding()));
 341         }
 342       }
 343     }
 344   }
 345 
 346   // write a sentinel byte to mark the end
 347   bytes.write_byte(end_marker);
 348 
 349   // round it out to a word boundary
 350   while (bytes.position() % sizeof(HeapWord) != 0) {
 351     bytes.write_byte(end_marker);
 352   }
 353 
 354   // check whether the dept byte encoding really works
 355   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 356 
 357   _content_bytes = bytes.buffer();
 358   _size_in_bytes = bytes.position();
 359 }
 360 
 361 
 362 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 363   "end_marker",
 364   "evol_method",
 365   "leaf_type",
 366   "abstract_with_unique_concrete_subtype",
 367   "abstract_with_no_concrete_subtype",
 368   "concrete_with_no_concrete_subtype",
 369   "unique_concrete_method",
 370   "abstract_with_exclusive_concrete_subtypes_2",
 371   "exclusive_concrete_methods_2",
 372   "no_finalizable_subclasses",
 373   "call_site_target_value"
 374 };
 375 
 376 int Dependencies::_dep_args[TYPE_LIMIT] = {
 377   -1,// end_marker
 378   1, // evol_method m
 379   1, // leaf_type ctxk
 380   2, // abstract_with_unique_concrete_subtype ctxk, k
 381   1, // abstract_with_no_concrete_subtype ctxk
 382   1, // concrete_with_no_concrete_subtype ctxk
 383   2, // unique_concrete_method ctxk, m
 384   3, // unique_concrete_subtypes_2 ctxk, k1, k2
 385   3, // unique_concrete_methods_2 ctxk, m1, m2
 386   1, // no_finalizable_subclasses ctxk
 387   2  // call_site_target_value call_site, method_handle
 388 };
 389 
 390 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 391   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 392   return _dep_name[dept];
 393 }
 394 
 395 int Dependencies::dep_args(Dependencies::DepType dept) {
 396   if (!dept_in_mask(dept, all_types))  return -1;
 397   return _dep_args[dept];
 398 }
 399 
 400 void Dependencies::check_valid_dependency_type(DepType dept) {
 401   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
 402 }
 403 
 404 // for the sake of the compiler log, print out current dependencies:
 405 void Dependencies::log_all_dependencies() {
 406   if (log() == NULL)  return;
 407   ciBaseObject* args[max_arg_count];
 408   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 409     DepType dept = (DepType)deptv;
 410     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 411     if (deps->length() == 0)  continue;
 412     int stride = dep_args(dept);
 413     for (int i = 0; i < deps->length(); i += stride) {
 414       for (int j = 0; j < stride; j++) {
 415         // flush out the identities before printing
 416         args[j] = deps->at(i+j);
 417       }
 418       write_dependency_to(log(), dept, stride, args);
 419     }
 420   }
 421 }
 422 
 423 void Dependencies::write_dependency_to(CompileLog* log,
 424                                        DepType dept,
 425                                        int nargs, DepArgument args[],
 426                                        Klass* witness) {
 427   if (log == NULL) {
 428     return;
 429   }
 430   ciEnv* env = ciEnv::current();
 431   ciBaseObject* ciargs[max_arg_count];
 432   assert(nargs <= max_arg_count, "oob");
 433   for (int j = 0; j < nargs; j++) {
 434     if (args[j].is_oop()) {
 435       ciargs[j] = env->get_object(args[j].oop_value());
 436     } else {
 437       ciargs[j] = env->get_metadata(args[j].metadata_value());
 438     }
 439   }
 440   Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
 441 }
 442 
 443 void Dependencies::write_dependency_to(CompileLog* log,
 444                                        DepType dept,
 445                                        int nargs, ciBaseObject* args[],
 446                                        Klass* witness) {
 447   if (log == NULL)  return;
 448   assert(nargs <= max_arg_count, "oob");
 449   int argids[max_arg_count];
 450   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 451   int j;
 452   for (j = 0; j < nargs; j++) {
 453     if (args[j]->is_object()) {
 454       argids[j] = log->identify(args[j]->as_object());
 455     } else {
 456       argids[j] = log->identify(args[j]->as_metadata());
 457     }
 458   }
 459   if (witness != NULL) {
 460     log->begin_elem("dependency_failed");
 461   } else {
 462     log->begin_elem("dependency");
 463   }
 464   log->print(" type='%s'", dep_name(dept));
 465   if (ctxkj >= 0) {
 466     log->print(" ctxk='%d'", argids[ctxkj]);
 467   }
 468   // write remaining arguments, if any.
 469   for (j = 0; j < nargs; j++) {
 470     if (j == ctxkj)  continue;  // already logged
 471     if (j == 1) {
 472       log->print(  " x='%d'",    argids[j]);
 473     } else {
 474       log->print(" x%d='%d'", j, argids[j]);
 475     }
 476   }
 477   if (witness != NULL) {
 478     log->object("witness", witness);
 479     log->stamp();
 480   }
 481   log->end_elem();
 482 }
 483 
 484 void Dependencies::write_dependency_to(xmlStream* xtty,
 485                                        DepType dept,
 486                                        int nargs, DepArgument args[],
 487                                        Klass* witness) {
 488   if (xtty == NULL)  return;
 489   ttyLocker ttyl;
 490   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 491   if (witness != NULL) {
 492     xtty->begin_elem("dependency_failed");
 493   } else {
 494     xtty->begin_elem("dependency");
 495   }
 496   xtty->print(" type='%s'", dep_name(dept));
 497   if (ctxkj >= 0) {
 498     xtty->object("ctxk", args[ctxkj].metadata_value());
 499   }
 500   // write remaining arguments, if any.
 501   for (int j = 0; j < nargs; j++) {
 502     if (j == ctxkj)  continue;  // already logged
 503     if (j == 1) {
 504       if (args[j].is_oop()) {
 505         xtty->object("x", args[j].oop_value());
 506       } else {
 507         xtty->object("x", args[j].metadata_value());
 508       }
 509     } else {
 510       char xn[10]; sprintf(xn, "x%d", j);
 511       if (args[j].is_oop()) {
 512         xtty->object(xn, args[j].oop_value());
 513       } else {
 514         xtty->object(xn, args[j].metadata_value());
 515       }
 516     }
 517   }
 518   if (witness != NULL) {
 519     xtty->object("witness", witness);
 520     xtty->stamp();
 521   }
 522   xtty->end_elem();
 523 }
 524 
 525 void Dependencies::print_dependency(DepType dept, int nargs, DepArgument args[],
 526                                     Klass* witness) {
 527   ResourceMark rm;
 528   ttyLocker ttyl;   // keep the following output all in one block
 529   tty->print_cr("%s of type %s",
 530                 (witness == NULL)? "Dependency": "Failed dependency",
 531                 dep_name(dept));
 532   // print arguments
 533   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 534   for (int j = 0; j < nargs; j++) {
 535     DepArgument arg = args[j];
 536     bool put_star = false;
 537     if (arg.is_null())  continue;
 538     const char* what;
 539     if (j == ctxkj) {
 540       assert(arg.is_metadata(), "must be");
 541       what = "context";
 542       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 543     } else if (arg.is_method()) {
 544       what = "method ";
 545       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value());
 546     } else if (arg.is_klass()) {
 547       what = "class  ";
 548     } else {
 549       what = "object ";
 550     }
 551     tty->print("  %s = %s", what, (put_star? "*": ""));
 552     if (arg.is_klass())
 553       tty->print("%s", Klass::cast((Klass*)arg.metadata_value())->external_name());
 554     else if (arg.is_method())
 555       ((Method*)arg.metadata_value())->print_value();
 556     else
 557       ShouldNotReachHere(); // Provide impl for this type.
 558     tty->cr();
 559   }
 560   if (witness != NULL) {
 561     bool put_star = !Dependencies::is_concrete_klass(witness);
 562     tty->print_cr("  witness = %s%s",
 563                   (put_star? "*": ""),
 564                   Klass::cast(witness)->external_name());
 565   }
 566 }
 567 
 568 void Dependencies::DepStream::log_dependency(Klass* witness) {
 569   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
 570   int nargs = argument_count();
 571   DepArgument args[max_arg_count];
 572   for (int j = 0; j < nargs; j++) {
 573     if (type() == call_site_target_value) {
 574       args[j] = argument_oop(j);
 575     } else {
 576     args[j] = argument(j);
 577   }
 578   }
 579   if (_deps != NULL && _deps->log() != NULL) {
 580     Dependencies::write_dependency_to(_deps->log(),
 581                                       type(), nargs, args, witness);
 582   } else {
 583     Dependencies::write_dependency_to(xtty,
 584                                       type(), nargs, args, witness);
 585   }
 586 }
 587 
 588 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
 589   int nargs = argument_count();
 590   DepArgument args[max_arg_count];
 591   for (int j = 0; j < nargs; j++) {
 592     args[j] = argument(j);
 593   }
 594   Dependencies::print_dependency(type(), nargs, args, witness);
 595   if (verbose) {
 596     if (_code != NULL) {
 597       tty->print("  code: ");
 598       _code->print_value_on(tty);
 599       tty->cr();
 600     }
 601   }
 602 }
 603 
 604 
 605 /// Dependency stream support (decodes dependencies from an nmethod):
 606 
 607 #ifdef ASSERT
 608 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 609   assert(must_be_in_vm(), "raw oops here");
 610   _byte_limit = byte_limit;
 611   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
 612   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
 613 }
 614 #endif //ASSERT
 615 
 616 bool Dependencies::DepStream::next() {
 617   assert(_type != end_marker, "already at end");
 618   if (_bytes.position() == 0 && _code != NULL
 619       && _code->dependencies_size() == 0) {
 620     // Method has no dependencies at all.
 621     return false;
 622   }
 623   int code_byte = (_bytes.read_byte() & 0xFF);
 624   if (code_byte == end_marker) {
 625     DEBUG_ONLY(_type = end_marker);
 626     return false;
 627   } else {
 628     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 629     code_byte -= ctxk_bit;
 630     DepType dept = (DepType)code_byte;
 631     _type = dept;
 632     Dependencies::check_valid_dependency_type(dept);
 633     int stride = _dep_args[dept];
 634     assert(stride == dep_args(dept), "sanity");
 635     int skipj = -1;
 636     if (ctxk_bit != 0) {
 637       skipj = 0;  // currently the only context argument is at zero
 638       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 639     }
 640     for (int j = 0; j < stride; j++) {
 641       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 642     }
 643     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 644     return true;
 645   }
 646 }
 647 
 648 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 649   Metadata* o = NULL;
 650   if (_code != NULL) {
 651     o = _code->metadata_at(i);
 652   } else {
 653     o = _deps->oop_recorder()->metadata_at(i);
 654   }
 655   assert(o == NULL || o->is_metadata(),
 656          err_msg("Should be perm " PTR_FORMAT, o));
 657   return o;
 658 }
 659 
 660 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 661   return (_code != NULL)
 662          ? _code->oop_at(i)
 663     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 664 }
 665 
 666 Metadata* Dependencies::DepStream::argument(int i) {
 667   Metadata* result = recorded_metadata_at(argument_index(i));
 668   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
 669   return result;
 670 }
 671 
 672 oop Dependencies::DepStream::argument_oop(int i) {
 673   oop result = recorded_oop_at(argument_index(i));
 674   assert(result == NULL || result->is_oop(), "must be");
 675   return result;
 676 }
 677 
 678 Klass* Dependencies::DepStream::context_type() {
 679   assert(must_be_in_vm(), "raw oops here");
 680 
 681   // Most dependencies have an explicit context type argument.
 682   {
 683     int ctxkj = dep_context_arg(_type);  // -1 if no explicit context arg
 684     if (ctxkj >= 0) {
 685       Metadata* k = argument(ctxkj);
 686       if (k != NULL) {       // context type was not compressed away
 687         assert(k->is_klass(), "type check");
 688         return (Klass*) k;
 689       }
 690       // recompute "default" context type
 691       return ctxk_encoded_as_null(_type, argument(ctxkj+1));
 692     }
 693   }
 694 
 695   // Some dependencies are using the klass of the first object
 696   // argument as implicit context type (e.g. call_site_target_value).
 697   {
 698     int ctxkj = dep_implicit_context_arg(_type);
 699     if (ctxkj >= 0) {
 700       Klass* k = argument_oop(ctxkj)->klass();
 701       assert(k->is_klass(), "type check");
 702       return (Klass*) k;
 703     }
 704   }
 705 
 706   // And some dependencies don't have a context type at all,
 707   // e.g. evol_method.
 708   return NULL;
 709 }
 710 
 711 /// Checking dependencies:
 712 
 713 // This hierarchy walker inspects subtypes of a given type,
 714 // trying to find a "bad" class which breaks a dependency.
 715 // Such a class is called a "witness" to the broken dependency.
 716 // While searching around, we ignore "participants", which
 717 // are already known to the dependency.
 718 class ClassHierarchyWalker {
 719  public:
 720   enum { PARTICIPANT_LIMIT = 3 };
 721 
 722  private:
 723   // optional method descriptor to check for:
 724   Symbol* _name;
 725   Symbol* _signature;
 726 
 727   // special classes which are not allowed to be witnesses:
 728   Klass*    _participants[PARTICIPANT_LIMIT+1];
 729   int       _num_participants;
 730 
 731   // cache of method lookups
 732   Method* _found_methods[PARTICIPANT_LIMIT+1];
 733 
 734   // if non-zero, tells how many witnesses to convert to participants
 735   int       _record_witnesses;
 736 
 737   void initialize(Klass* participant) {
 738     _record_witnesses = 0;
 739     _participants[0]  = participant;
 740     _found_methods[0] = NULL;
 741     _num_participants = 0;
 742     if (participant != NULL) {
 743       // Terminating NULL.
 744       _participants[1] = NULL;
 745       _found_methods[1] = NULL;
 746       _num_participants = 1;
 747     }
 748   }
 749 
 750   void initialize_from_method(Method* m) {
 751     assert(m != NULL && m->is_method(), "sanity");
 752     _name      = m->name();
 753     _signature = m->signature();
 754   }
 755 
 756  public:
 757   // The walker is initialized to recognize certain methods and/or types
 758   // as friendly participants.
 759   ClassHierarchyWalker(Klass* participant, Method* m) {
 760     initialize_from_method(m);
 761     initialize(participant);
 762   }
 763   ClassHierarchyWalker(Method* m) {
 764     initialize_from_method(m);
 765     initialize(NULL);
 766   }
 767   ClassHierarchyWalker(Klass* participant = NULL) {
 768     _name      = NULL;
 769     _signature = NULL;
 770     initialize(participant);
 771   }
 772 
 773   // This is common code for two searches:  One for concrete subtypes,
 774   // the other for concrete method implementations and overrides.
 775   bool doing_subtype_search() {
 776     return _name == NULL;
 777   }
 778 
 779   int num_participants() { return _num_participants; }
 780   Klass* participant(int n) {
 781     assert((uint)n <= (uint)_num_participants, "oob");
 782     return _participants[n];
 783   }
 784 
 785   // Note:  If n==num_participants, returns NULL.
 786   Method* found_method(int n) {
 787     assert((uint)n <= (uint)_num_participants, "oob");
 788     Method* fm = _found_methods[n];
 789     assert(n == _num_participants || fm != NULL, "proper usage");
 790     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
 791     return fm;
 792   }
 793 
 794 #ifdef ASSERT
 795   // Assert that m is inherited into ctxk, without intervening overrides.
 796   // (May return true even if this is not true, in corner cases where we punt.)
 797   bool check_method_context(Klass* ctxk, Method* m) {
 798     if (m->method_holder() == ctxk)
 799       return true;  // Quick win.
 800     if (m->is_private())
 801       return false; // Quick lose.  Should not happen.
 802     if (!(m->is_public() || m->is_protected()))
 803       // The override story is complex when packages get involved.
 804       return true;  // Must punt the assertion to true.
 805     Klass* k = Klass::cast(ctxk);
 806     Method* lm = k->lookup_method(m->name(), m->signature());
 807     if (lm == NULL && k->oop_is_instance()) {
 808       // It might be an abstract interface method, devoid of mirandas.
 809       lm = ((InstanceKlass*)k)->lookup_method_in_all_interfaces(m->name(),
 810                                                                 m->signature());
 811     }
 812     if (lm == m)
 813       // Method m is inherited into ctxk.
 814       return true;
 815     if (lm != NULL) {
 816       if (!(lm->is_public() || lm->is_protected())) {
 817         // Method is [package-]private, so the override story is complex.
 818         return true;  // Must punt the assertion to true.
 819       }
 820       if (lm->is_static()) {
 821         // Static methods don't override non-static so punt
 822         return true;
 823       }
 824       if (   !Dependencies::is_concrete_method(lm)
 825           && !Dependencies::is_concrete_method(m)
 826           && Klass::cast(lm->method_holder())->is_subtype_of(m->method_holder()))
 827         // Method m is overridden by lm, but both are non-concrete.
 828         return true;
 829     }
 830     ResourceMark rm;
 831     tty->print_cr("Dependency method not found in the associated context:");
 832     tty->print_cr("  context = %s", Klass::cast(ctxk)->external_name());
 833     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
 834     if (lm != NULL) {
 835       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
 836     }
 837     return false;
 838   }
 839 #endif
 840 
 841   void add_participant(Klass* participant) {
 842     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
 843     int np = _num_participants++;
 844     _participants[np] = participant;
 845     _participants[np+1] = NULL;
 846     _found_methods[np+1] = NULL;
 847   }
 848 
 849   void record_witnesses(int add) {
 850     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
 851     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
 852     _record_witnesses = add;
 853   }
 854 
 855   bool is_witness(Klass* k) {
 856     if (doing_subtype_search()) {
 857       return Dependencies::is_concrete_klass(k);
 858     } else {
 859       Method* m = InstanceKlass::cast(k)->find_method(_name, _signature);
 860       if (m == NULL || !Dependencies::is_concrete_method(m))  return false;
 861       _found_methods[_num_participants] = m;
 862       // Note:  If add_participant(k) is called,
 863       // the method m will already be memoized for it.
 864       return true;
 865     }
 866   }
 867 
 868   bool is_participant(Klass* k) {
 869     if (k == _participants[0]) {
 870       return true;
 871     } else if (_num_participants <= 1) {
 872       return false;
 873     } else {
 874       return in_list(k, &_participants[1]);
 875     }
 876   }
 877   bool ignore_witness(Klass* witness) {
 878     if (_record_witnesses == 0) {
 879       return false;
 880     } else {
 881       --_record_witnesses;
 882       add_participant(witness);
 883       return true;
 884     }
 885   }
 886   static bool in_list(Klass* x, Klass** list) {
 887     for (int i = 0; ; i++) {
 888       Klass* y = list[i];
 889       if (y == NULL)  break;
 890       if (y == x)  return true;
 891     }
 892     return false;  // not in list
 893   }
 894 
 895  private:
 896   // the actual search method:
 897   Klass* find_witness_anywhere(Klass* context_type,
 898                                  bool participants_hide_witnesses,
 899                                  bool top_level_call = true);
 900   // the spot-checking version:
 901   Klass* find_witness_in(KlassDepChange& changes,
 902                          Klass* context_type,
 903                            bool participants_hide_witnesses);
 904  public:
 905   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
 906     assert(doing_subtype_search(), "must set up a subtype search");
 907     // When looking for unexpected concrete types,
 908     // do not look beneath expected ones.
 909     const bool participants_hide_witnesses = true;
 910     // CX > CC > C' is OK, even if C' is new.
 911     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
 912     if (changes != NULL) {
 913       return find_witness_in(*changes, context_type, participants_hide_witnesses);
 914     } else {
 915       return find_witness_anywhere(context_type, participants_hide_witnesses);
 916     }
 917   }
 918   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
 919     assert(!doing_subtype_search(), "must set up a method definer search");
 920     // When looking for unexpected concrete methods,
 921     // look beneath expected ones, to see if there are overrides.
 922     const bool participants_hide_witnesses = true;
 923     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
 924     if (changes != NULL) {
 925       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
 926     } else {
 927       return find_witness_anywhere(context_type, !participants_hide_witnesses);
 928     }
 929   }
 930 };
 931 
 932 #ifndef PRODUCT
 933 static int deps_find_witness_calls = 0;
 934 static int deps_find_witness_steps = 0;
 935 static int deps_find_witness_recursions = 0;
 936 static int deps_find_witness_singles = 0;
 937 static int deps_find_witness_print = 0; // set to -1 to force a final print
 938 static bool count_find_witness_calls() {
 939   if (TraceDependencies || LogCompilation) {
 940     int pcount = deps_find_witness_print + 1;
 941     bool final_stats      = (pcount == 0);
 942     bool initial_call     = (pcount == 1);
 943     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
 944     if (pcount < 0)  pcount = 1; // crude overflow protection
 945     deps_find_witness_print = pcount;
 946     if (VerifyDependencies && initial_call) {
 947       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
 948     }
 949     if (occasional_print || final_stats) {
 950       // Every now and then dump a little info about dependency searching.
 951       if (xtty != NULL) {
 952        ttyLocker ttyl;
 953        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
 954                    deps_find_witness_calls,
 955                    deps_find_witness_steps,
 956                    deps_find_witness_recursions,
 957                    deps_find_witness_singles);
 958       }
 959       if (final_stats || (TraceDependencies && WizardMode)) {
 960         ttyLocker ttyl;
 961         tty->print_cr("Dependency check (find_witness) "
 962                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
 963                       deps_find_witness_calls,
 964                       deps_find_witness_steps,
 965                       (double)deps_find_witness_steps / deps_find_witness_calls,
 966                       deps_find_witness_recursions,
 967                       deps_find_witness_singles);
 968       }
 969     }
 970     return true;
 971   }
 972   return false;
 973 }
 974 #else
 975 #define count_find_witness_calls() (0)
 976 #endif //PRODUCT
 977 
 978 
 979 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
 980                                                Klass* context_type,
 981                                                bool participants_hide_witnesses) {
 982   assert(changes.involves_context(context_type), "irrelevant dependency");
 983   Klass* new_type = changes.new_type();
 984 
 985   count_find_witness_calls();
 986   NOT_PRODUCT(deps_find_witness_singles++);
 987 
 988   // Current thread must be in VM (not native mode, as in CI):
 989   assert(must_be_in_vm(), "raw oops here");
 990   // Must not move the class hierarchy during this check:
 991   assert_locked_or_safepoint(Compile_lock);
 992 
 993   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
 994   if (nof_impls > 1) {
 995     // Avoid this case: *I.m > { A.m, C }; B.m > C
 996     // %%% Until this is fixed more systematically, bail out.
 997     // See corresponding comment in find_witness_anywhere.
 998     return context_type;
 999   }
1000 
1001   assert(!is_participant(new_type), "only old classes are participants");
1002   if (participants_hide_witnesses) {
1003     // If the new type is a subtype of a participant, we are done.
1004     for (int i = 0; i < num_participants(); i++) {
1005       Klass* part = participant(i);
1006       if (part == NULL)  continue;
1007       assert(changes.involves_context(part) == Klass::cast(new_type)->is_subtype_of(part),
1008              "correct marking of participants, b/c new_type is unique");
1009       if (changes.involves_context(part)) {
1010         // new guy is protected from this check by previous participant
1011         return NULL;
1012       }
1013     }
1014   }
1015 
1016   if (is_witness(new_type) &&
1017       !ignore_witness(new_type)) {
1018     return new_type;
1019   }
1020 
1021   return NULL;
1022 }
1023 
1024 
1025 // Walk hierarchy under a context type, looking for unexpected types.
1026 // Do not report participant types, and recursively walk beneath
1027 // them only if participants_hide_witnesses is false.
1028 // If top_level_call is false, skip testing the context type,
1029 // because the caller has already considered it.
1030 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
1031                                                      bool participants_hide_witnesses,
1032                                                      bool top_level_call) {
1033   // Current thread must be in VM (not native mode, as in CI):
1034   assert(must_be_in_vm(), "raw oops here");
1035   // Must not move the class hierarchy during this check:
1036   assert_locked_or_safepoint(Compile_lock);
1037 
1038   bool do_counts = count_find_witness_calls();
1039 
1040   // Check the root of the sub-hierarchy first.
1041   if (top_level_call) {
1042     if (do_counts) {
1043       NOT_PRODUCT(deps_find_witness_calls++);
1044       NOT_PRODUCT(deps_find_witness_steps++);
1045     }
1046     if (is_participant(context_type)) {
1047       if (participants_hide_witnesses)  return NULL;
1048       // else fall through to search loop...
1049     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
1050       // The context is an abstract class or interface, to start with.
1051       return context_type;
1052     }
1053   }
1054 
1055   // Now we must check each implementor and each subclass.
1056   // Use a short worklist to avoid blowing the stack.
1057   // Each worklist entry is a *chain* of subklass siblings to process.
1058   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
1059   Klass* chains[CHAINMAX];
1060   int    chaini = 0;  // index into worklist
1061   Klass* chain;       // scratch variable
1062 #define ADD_SUBCLASS_CHAIN(k)                     {  \
1063     assert(chaini < CHAINMAX, "oob");                \
1064     chain = InstanceKlass::cast(k)->subklass();      \
1065     if (chain != NULL)  chains[chaini++] = chain;    }
1066 
1067   // Look for non-abstract subclasses.
1068   // (Note:  Interfaces do not have subclasses.)
1069   ADD_SUBCLASS_CHAIN(context_type);
1070 
1071   // If it is an interface, search its direct implementors.
1072   // (Their subclasses are additional indirect implementors.
1073   // See InstanceKlass::add_implementor.)
1074   // (Note:  nof_implementors is always zero for non-interfaces.)
1075   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1076   if (nof_impls > 1) {
1077     // Avoid this case: *I.m > { A.m, C }; B.m > C
1078     // Here, I.m has 2 concrete implementations, but m appears unique
1079     // as A.m, because the search misses B.m when checking C.
1080     // The inherited method B.m was getting missed by the walker
1081     // when interface 'I' was the starting point.
1082     // %%% Until this is fixed more systematically, bail out.
1083     // (Old CHA had the same limitation.)
1084     return context_type;
1085   }
1086   if (nof_impls > 0) {
1087     Klass* impl = InstanceKlass::cast(context_type)->implementor();
1088     assert(impl != NULL, "just checking");
1089     // If impl is the same as the context_type, then more than one
1090     // implementor has seen. No exact info in this case.
1091     if (impl == context_type) {
1092       return context_type;  // report an inexact witness to this sad affair
1093     }
1094     if (do_counts)
1095       { NOT_PRODUCT(deps_find_witness_steps++); }
1096     if (is_participant(impl)) {
1097       if (!participants_hide_witnesses) {
1098         ADD_SUBCLASS_CHAIN(impl);
1099       }
1100     } else if (is_witness(impl) && !ignore_witness(impl)) {
1101       return impl;
1102     } else {
1103       ADD_SUBCLASS_CHAIN(impl);
1104     }
1105   }
1106 
1107   // Recursively process each non-trivial sibling chain.
1108   while (chaini > 0) {
1109     Klass* chain = chains[--chaini];
1110     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
1111       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
1112       if (is_participant(sub)) {
1113         if (participants_hide_witnesses)  continue;
1114         // else fall through to process this guy's subclasses
1115       } else if (is_witness(sub) && !ignore_witness(sub)) {
1116         return sub;
1117       }
1118       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
1119         // Fast path.  (Partially disabled if VerifyDependencies.)
1120         ADD_SUBCLASS_CHAIN(sub);
1121       } else {
1122         // Worklist overflow.  Do a recursive call.  Should be rare.
1123         // The recursive call will have its own worklist, of course.
1124         // (Note that sub has already been tested, so that there is
1125         // no need for the recursive call to re-test.  That's handy,
1126         // since the recursive call sees sub as the context_type.)
1127         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
1128         Klass* witness = find_witness_anywhere(sub,
1129                                                  participants_hide_witnesses,
1130                                                  /*top_level_call=*/ false);
1131         if (witness != NULL)  return witness;
1132       }
1133     }
1134   }
1135 
1136   // No witness found.  The dependency remains unbroken.
1137   return NULL;
1138 #undef ADD_SUBCLASS_CHAIN
1139 }
1140 
1141 
1142 bool Dependencies::is_concrete_klass(Klass* k) {
1143   if (Klass::cast(k)->is_abstract())  return false;
1144   // %%% We could treat classes which are concrete but
1145   // have not yet been instantiated as virtually abstract.
1146   // This would require a deoptimization barrier on first instantiation.
1147   //if (k->is_not_instantiated())  return false;
1148   return true;
1149 }
1150 
1151 bool Dependencies::is_concrete_method(Method* m) {
1152   // Statics are irrelevant to virtual call sites.
1153   if (m->is_static())  return false;
1154 
1155   // We could also return false if m does not yet appear to be
1156   // executed, if the VM version supports this distinction also.
1157   return !m->is_abstract();
1158 }
1159 
1160 
1161 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
1162   if (k->is_interface())  return NULL;
1163   if (k->has_finalizer()) return k;
1164   k = k->subklass();
1165   while (k != NULL) {
1166     Klass* result = find_finalizable_subclass(k);
1167     if (result != NULL) return result;
1168     k = k->next_sibling();
1169   }
1170   return NULL;
1171 }
1172 
1173 
1174 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1175   if (k->is_abstract())  return false;
1176   // We could also return false if k does not yet appear to be
1177   // instantiated, if the VM version supports this distinction also.
1178   //if (k->is_not_instantiated())  return false;
1179   return true;
1180 }
1181 
1182 bool Dependencies::is_concrete_method(ciMethod* m) {
1183   // Statics are irrelevant to virtual call sites.
1184   if (m->is_static())  return false;
1185 
1186   // We could also return false if m does not yet appear to be
1187   // executed, if the VM version supports this distinction also.
1188   return !m->is_abstract();
1189 }
1190 
1191 
1192 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1193   return k->has_finalizable_subclass();
1194 }
1195 
1196 
1197 // Any use of the contents (bytecodes) of a method must be
1198 // marked by an "evol_method" dependency, if those contents
1199 // can change.  (Note: A method is always dependent on itself.)
1200 Klass* Dependencies::check_evol_method(Method* m) {
1201   assert(must_be_in_vm(), "raw oops here");
1202   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1203   // Or is there a now a breakpoint?
1204   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1205   if (m->is_old()
1206       || m->number_of_breakpoints() > 0) {
1207     return m->method_holder();
1208   } else {
1209     return NULL;
1210   }
1211 }
1212 
1213 // This is a strong assertion:  It is that the given type
1214 // has no subtypes whatever.  It is most useful for
1215 // optimizing checks on reflected types or on array types.
1216 // (Checks on types which are derived from real instances
1217 // can be optimized more strongly than this, because we
1218 // know that the checked type comes from a concrete type,
1219 // and therefore we can disregard abstract types.)
1220 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
1221   assert(must_be_in_vm(), "raw oops here");
1222   assert_locked_or_safepoint(Compile_lock);
1223   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
1224   Klass* sub = ctx->subklass();
1225   if (sub != NULL) {
1226     return sub;
1227   } else if (ctx->nof_implementors() != 0) {
1228     // if it is an interface, it must be unimplemented
1229     // (if it is not an interface, nof_implementors is always zero)
1230     Klass* impl = ctx->implementor();
1231     assert(impl != NULL, "must be set");
1232     return impl;
1233   } else {
1234     return NULL;
1235   }
1236 }
1237 
1238 // Test the assertion that conck is the only concrete subtype* of ctxk.
1239 // The type conck itself is allowed to have have further concrete subtypes.
1240 // This allows the compiler to narrow occurrences of ctxk by conck,
1241 // when dealing with the types of actual instances.
1242 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
1243                                                                    Klass* conck,
1244                                                                    KlassDepChange* changes) {
1245   ClassHierarchyWalker wf(conck);
1246   return wf.find_witness_subtype(ctxk, changes);
1247 }
1248 
1249 // If a non-concrete class has no concrete subtypes, it is not (yet)
1250 // instantiatable.  This can allow the compiler to make some paths go
1251 // dead, if they are gated by a test of the type.
1252 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
1253                                                                KlassDepChange* changes) {
1254   // Find any concrete subtype, with no participants:
1255   ClassHierarchyWalker wf;
1256   return wf.find_witness_subtype(ctxk, changes);
1257 }
1258 
1259 
1260 // If a concrete class has no concrete subtypes, it can always be
1261 // exactly typed.  This allows the use of a cheaper type test.
1262 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
1263                                                                KlassDepChange* changes) {
1264   // Find any concrete subtype, with only the ctxk as participant:
1265   ClassHierarchyWalker wf(ctxk);
1266   return wf.find_witness_subtype(ctxk, changes);
1267 }
1268 
1269 
1270 // Find the unique concrete proper subtype of ctxk, or NULL if there
1271 // is more than one concrete proper subtype.  If there are no concrete
1272 // proper subtypes, return ctxk itself, whether it is concrete or not.
1273 // The returned subtype is allowed to have have further concrete subtypes.
1274 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
1275 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
1276   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
1277   wf.record_witnesses(1);          // Record one other witness when walking.
1278   Klass* wit = wf.find_witness_subtype(ctxk);
1279   if (wit != NULL)  return NULL;   // Too many witnesses.
1280   Klass* conck = wf.participant(0);
1281   if (conck == NULL) {
1282 #ifndef PRODUCT
1283     // Make sure the dependency mechanism will pass this discovery:
1284     if (VerifyDependencies) {
1285       // Turn off dependency tracing while actually testing deps.
1286       FlagSetting fs(TraceDependencies, false);
1287       if (!Dependencies::is_concrete_klass(ctxk)) {
1288         guarantee(NULL ==
1289                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
1290                   "verify dep.");
1291       } else {
1292         guarantee(NULL ==
1293                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
1294                   "verify dep.");
1295       }
1296     }
1297 #endif //PRODUCT
1298     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1299   } else {
1300 #ifndef PRODUCT
1301     // Make sure the dependency mechanism will pass this discovery:
1302     if (VerifyDependencies) {
1303       // Turn off dependency tracing while actually testing deps.
1304       FlagSetting fs(TraceDependencies, false);
1305       if (!Dependencies::is_concrete_klass(ctxk)) {
1306         guarantee(NULL == (void *)
1307                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1308                   "verify dep.");
1309       }
1310     }
1311 #endif //PRODUCT
1312     return conck;
1313   }
1314 }
1315 
1316 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
1317 // except possibly for further subtypes of k[12] themselves.
1318 // The context type must be abstract.  The types k1 and k2 are themselves
1319 // allowed to have further concrete subtypes.
1320 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
1321                                                 Klass* ctxk,
1322                                                 Klass* k1,
1323                                                 Klass* k2,
1324                                                 KlassDepChange* changes) {
1325   ClassHierarchyWalker wf;
1326   wf.add_participant(k1);
1327   wf.add_participant(k2);
1328   return wf.find_witness_subtype(ctxk, changes);
1329 }
1330 
1331 // Search ctxk for concrete implementations.  If there are klen or fewer,
1332 // pack them into the given array and return the number.
1333 // Otherwise, return -1, meaning the given array would overflow.
1334 // (Note that a return of 0 means there are exactly no concrete subtypes.)
1335 // In this search, if ctxk is concrete, it will be reported alone.
1336 // For any type CC reported, no proper subtypes of CC will be reported.
1337 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
1338                                                    int klen,
1339                                                    Klass* karray[]) {
1340   ClassHierarchyWalker wf;
1341   wf.record_witnesses(klen);
1342   Klass* wit = wf.find_witness_subtype(ctxk);
1343   if (wit != NULL)  return -1;  // Too many witnesses.
1344   int num = wf.num_participants();
1345   assert(num <= klen, "oob");
1346   // Pack the result array with the good news.
1347   for (int i = 0; i < num; i++)
1348     karray[i] = wf.participant(i);
1349 #ifndef PRODUCT
1350   // Make sure the dependency mechanism will pass this discovery:
1351   if (VerifyDependencies) {
1352     // Turn off dependency tracing while actually testing deps.
1353     FlagSetting fs(TraceDependencies, false);
1354     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
1355     case -1: // ctxk was itself concrete
1356       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
1357       break;
1358     case 0:
1359       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
1360                 "verify dep.");
1361       break;
1362     case 1:
1363       guarantee(NULL == (void *)
1364                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
1365                 "verify dep.");
1366       break;
1367     case 2:
1368       guarantee(NULL == (void *)
1369                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
1370                                                                 karray[0],
1371                                                                 karray[1]),
1372                 "verify dep.");
1373       break;
1374     default:
1375       ShouldNotReachHere();  // klen > 2 yet supported
1376     }
1377   }
1378 #endif //PRODUCT
1379   return num;
1380 }
1381 
1382 // If a class (or interface) has a unique concrete method uniqm, return NULL.
1383 // Otherwise, return a class that contains an interfering method.
1384 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
1385                                                     KlassDepChange* changes) {
1386   // Here is a missing optimization:  If uniqm->is_final(),
1387   // we don't really need to search beneath it for overrides.
1388   // This is probably not important, since we don't use dependencies
1389   // to track final methods.  (They can't be "definalized".)
1390   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
1391   return wf.find_witness_definer(ctxk, changes);
1392 }
1393 
1394 // Find the set of all non-abstract methods under ctxk that match m.
1395 // (The method m must be defined or inherited in ctxk.)
1396 // Include m itself in the set, unless it is abstract.
1397 // If this set has exactly one element, return that element.
1398 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
1399   ClassHierarchyWalker wf(m);
1400   assert(wf.check_method_context(ctxk, m), "proper context");
1401   wf.record_witnesses(1);
1402   Klass* wit = wf.find_witness_definer(ctxk);
1403   if (wit != NULL)  return NULL;  // Too many witnesses.
1404   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
1405   if (Dependencies::is_concrete_method(m)) {
1406     if (fm == NULL) {
1407       // It turns out that m was always the only implementation.
1408       fm = m;
1409     } else if (fm != m) {
1410       // Two conflicting implementations after all.
1411       // (This can happen if m is inherited into ctxk and fm overrides it.)
1412       return NULL;
1413     }
1414   }
1415 #ifndef PRODUCT
1416   // Make sure the dependency mechanism will pass this discovery:
1417   if (VerifyDependencies && fm != NULL) {
1418     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
1419               "verify dep.");
1420   }
1421 #endif //PRODUCT
1422   return fm;
1423 }
1424 
1425 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
1426                                                         Method* m1,
1427                                                         Method* m2,
1428                                                         KlassDepChange* changes) {
1429   ClassHierarchyWalker wf(m1);
1430   wf.add_participant(m1->method_holder());
1431   wf.add_participant(m2->method_holder());
1432   return wf.find_witness_definer(ctxk, changes);
1433 }
1434 
1435 // Find the set of all non-abstract methods under ctxk that match m[0].
1436 // (The method m[0] must be defined or inherited in ctxk.)
1437 // Include m itself in the set, unless it is abstract.
1438 // Fill the given array m[0..(mlen-1)] with this set, and return the length.
1439 // (The length may be zero if no concrete methods are found anywhere.)
1440 // If there are too many concrete methods to fit in marray, return -1.
1441 int Dependencies::find_exclusive_concrete_methods(Klass* ctxk,
1442                                                   int mlen,
1443                                                   Method* marray[]) {
1444   Method* m0 = marray[0];
1445   ClassHierarchyWalker wf(m0);
1446   assert(wf.check_method_context(ctxk, m0), "proper context");
1447   wf.record_witnesses(mlen);
1448   bool participants_hide_witnesses = true;
1449   Klass* wit = wf.find_witness_definer(ctxk);
1450   if (wit != NULL)  return -1;  // Too many witnesses.
1451   int num = wf.num_participants();
1452   assert(num <= mlen, "oob");
1453   // Keep track of whether m is also part of the result set.
1454   int mfill = 0;
1455   assert(marray[mfill] == m0, "sanity");
1456   if (Dependencies::is_concrete_method(m0))
1457     mfill++;  // keep m0 as marray[0], the first result
1458   for (int i = 0; i < num; i++) {
1459     Method* fm = wf.found_method(i);
1460     if (fm == m0)  continue;  // Already put this guy in the list.
1461     if (mfill == mlen) {
1462       return -1;              // Oops.  Too many methods after all!
1463     }
1464     marray[mfill++] = fm;
1465   }
1466 #ifndef PRODUCT
1467   // Make sure the dependency mechanism will pass this discovery:
1468   if (VerifyDependencies) {
1469     // Turn off dependency tracing while actually testing deps.
1470     FlagSetting fs(TraceDependencies, false);
1471     switch (mfill) {
1472     case 1:
1473       guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]),
1474                 "verify dep.");
1475       break;
1476     case 2:
1477       guarantee(NULL == (void *)
1478                 check_exclusive_concrete_methods(ctxk, marray[0], marray[1]),
1479                 "verify dep.");
1480       break;
1481     default:
1482       ShouldNotReachHere();  // mlen > 2 yet supported
1483     }
1484   }
1485 #endif //PRODUCT
1486   return mfill;
1487 }
1488 
1489 
1490 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
1491   Klass* search_at = ctxk;
1492   if (changes != NULL)
1493     search_at = changes->new_type(); // just look at the new bit
1494   return find_finalizable_subclass(search_at);
1495 }
1496 
1497 
1498 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
1499   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
1500   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
1501   if (changes == NULL) {
1502     // Validate all CallSites
1503     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
1504       return call_site->klass();  // assertion failed
1505   } else {
1506     // Validate the given CallSite
1507     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
1508       assert(method_handle != changes->method_handle(), "must be");
1509       return call_site->klass();  // assertion failed
1510     }
1511   }
1512   return NULL;  // assertion still valid
1513 }
1514 
1515 
1516 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
1517   if (witness != NULL) {
1518     if (TraceDependencies) {
1519       print_dependency(witness, /*verbose=*/ true);
1520     }
1521     // The following is a no-op unless logging is enabled:
1522     log_dependency(witness);
1523   }
1524 }
1525 
1526 
1527 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
1528   assert_locked_or_safepoint(Compile_lock);
1529   Dependencies::check_valid_dependency_type(type());
1530 
1531   Klass* witness = NULL;
1532   switch (type()) {
1533   case evol_method:
1534     witness = check_evol_method(method_argument(0));
1535     break;
1536   case leaf_type:
1537     witness = check_leaf_type(context_type());
1538     break;
1539   case abstract_with_unique_concrete_subtype:
1540     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
1541     break;
1542   case abstract_with_no_concrete_subtype:
1543     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
1544     break;
1545   case concrete_with_no_concrete_subtype:
1546     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
1547     break;
1548   case unique_concrete_method:
1549     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
1550     break;
1551   case abstract_with_exclusive_concrete_subtypes_2:
1552     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
1553     break;
1554   case exclusive_concrete_methods_2:
1555     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
1556     break;
1557   case no_finalizable_subclasses:
1558     witness = check_has_no_finalizable_subclasses(context_type(), changes);
1559     break;
1560   default:
1561     witness = NULL;
1562     break;
1563   }
1564   trace_and_log_witness(witness);
1565   return witness;
1566 }
1567 
1568 
1569 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
1570   assert_locked_or_safepoint(Compile_lock);
1571   Dependencies::check_valid_dependency_type(type());
1572 
1573   Klass* witness = NULL;
1574   switch (type()) {
1575   case call_site_target_value:
1576     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
1577     break;
1578   default:
1579     witness = NULL;
1580     break;
1581   }
1582   trace_and_log_witness(witness);
1583   return witness;
1584 }
1585 
1586 
1587 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
1588   // Handle klass dependency
1589   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
1590     return check_klass_dependency(changes.as_klass_change());
1591 
1592   // Handle CallSite dependency
1593   if (changes.is_call_site_change())
1594     return check_call_site_dependency(changes.as_call_site_change());
1595 
1596   // irrelevant dependency; skip it
1597   return NULL;
1598 }
1599 
1600 
1601 void DepChange::print() {
1602   int nsup = 0, nint = 0;
1603   for (ContextStream str(*this); str.next(); ) {
1604     Klass* k = str.klass();
1605     switch (str.change_type()) {
1606     case Change_new_type:
1607       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
1608       break;
1609     case Change_new_sub:
1610       if (!WizardMode) {
1611         ++nsup;
1612       } else {
1613         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
1614       }
1615       break;
1616     case Change_new_impl:
1617       if (!WizardMode) {
1618         ++nint;
1619       } else {
1620         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
1621       }
1622       break;
1623     }
1624   }
1625   if (nsup + nint != 0) {
1626     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
1627   }
1628 }
1629 
1630 void DepChange::ContextStream::start() {
1631   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
1632   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
1633   _klass = new_type;
1634   _ti_base = NULL;
1635   _ti_index = 0;
1636   _ti_limit = 0;
1637 }
1638 
1639 bool DepChange::ContextStream::next() {
1640   switch (_change_type) {
1641   case Start_Klass:             // initial state; _klass is the new type
1642     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
1643     _ti_index = 0;
1644     _change_type = Change_new_type;
1645     return true;
1646   case Change_new_type:
1647     // fall through:
1648     _change_type = Change_new_sub;
1649   case Change_new_sub:
1650     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
1651     {
1652       _klass = InstanceKlass::cast(_klass)->super();
1653       if (_klass != NULL) {
1654         return true;
1655       }
1656     }
1657     // else set up _ti_limit and fall through:
1658     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
1659     _change_type = Change_new_impl;
1660   case Change_new_impl:
1661     if (_ti_index < _ti_limit) {
1662       _klass = _ti_base->at(_ti_index++);
1663       return true;
1664     }
1665     // fall through:
1666     _change_type = NO_CHANGE;  // iterator is exhausted
1667   case NO_CHANGE:
1668     break;
1669   default:
1670     ShouldNotReachHere();
1671   }
1672   return false;
1673 }
1674 
1675 void KlassDepChange::initialize() {
1676   // entire transaction must be under this lock:
1677   assert_lock_strong(Compile_lock);
1678 
1679   // Mark all dependee and all its superclasses
1680   // Mark transitive interfaces
1681   for (ContextStream str(*this); str.next(); ) {
1682     Klass* d = str.klass();
1683     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
1684     InstanceKlass::cast(d)->set_is_marked_dependent(true);
1685   }
1686 }
1687 
1688 KlassDepChange::~KlassDepChange() {
1689   // Unmark all dependee and all its superclasses
1690   // Unmark transitive interfaces
1691   for (ContextStream str(*this); str.next(); ) {
1692     Klass* d = str.klass();
1693     InstanceKlass::cast(d)->set_is_marked_dependent(false);
1694   }
1695 }
1696 
1697 bool KlassDepChange::involves_context(Klass* k) {
1698   if (k == NULL || !Klass::cast(k)->oop_is_instance()) {
1699     return false;
1700   }
1701   InstanceKlass* ik = InstanceKlass::cast(k);
1702   bool is_contained = ik->is_marked_dependent();
1703   assert(is_contained == Klass::cast(new_type())->is_subtype_of(k),
1704          "correct marking of potential context types");
1705   return is_contained;
1706 }
1707 
1708 #ifndef PRODUCT
1709 void Dependencies::print_statistics() {
1710   if (deps_find_witness_print != 0) {
1711     // Call one final time, to flush out the data.
1712     deps_find_witness_print = -1;
1713     count_find_witness_calls();
1714   }
1715 }
1716 #endif