1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/graphKit.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 //----------------------------GraphKit-----------------------------------------
  44 // Main utility constructor.
  45 GraphKit::GraphKit(JVMState* jvms)
  46   : Phase(Phase::Parser),
  47     _env(C->env()),
  48     _gvn(*C->initial_gvn())
  49 {
  50   _exceptions = jvms->map()->next_exception();
  51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  52   set_jvms(jvms);
  53 }
  54 
  55 // Private constructor for parser.
  56 GraphKit::GraphKit()
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn())
  60 {
  61   _exceptions = NULL;
  62   set_map(NULL);
  63   debug_only(_sp = -99);
  64   debug_only(set_bci(-99));
  65 }
  66 
  67 
  68 
  69 //---------------------------clean_stack---------------------------------------
  70 // Clear away rubbish from the stack area of the JVM state.
  71 // This destroys any arguments that may be waiting on the stack.
  72 void GraphKit::clean_stack(int from_sp) {
  73   SafePointNode* map      = this->map();
  74   JVMState*      jvms     = this->jvms();
  75   int            stk_size = jvms->stk_size();
  76   int            stkoff   = jvms->stkoff();
  77   Node*          top      = this->top();
  78   for (int i = from_sp; i < stk_size; i++) {
  79     if (map->in(stkoff + i) != top) {
  80       map->set_req(stkoff + i, top);
  81     }
  82   }
  83 }
  84 
  85 
  86 //--------------------------------sync_jvms-----------------------------------
  87 // Make sure our current jvms agrees with our parse state.
  88 JVMState* GraphKit::sync_jvms() const {
  89   JVMState* jvms = this->jvms();
  90   jvms->set_bci(bci());       // Record the new bci in the JVMState
  91   jvms->set_sp(sp());         // Record the new sp in the JVMState
  92   assert(jvms_in_sync(), "jvms is now in sync");
  93   return jvms;
  94 }
  95 
  96 #ifdef ASSERT
  97 bool GraphKit::jvms_in_sync() const {
  98   Parse* parse = is_Parse();
  99   if (parse == NULL) {
 100     if (bci() !=      jvms()->bci())          return false;
 101     if (sp()  != (int)jvms()->sp())           return false;
 102     return true;
 103   }
 104   if (jvms()->method() != parse->method())    return false;
 105   if (jvms()->bci()    != parse->bci())       return false;
 106   int jvms_sp = jvms()->sp();
 107   if (jvms_sp          != parse->sp())        return false;
 108   int jvms_depth = jvms()->depth();
 109   if (jvms_depth       != parse->depth())     return false;
 110   return true;
 111 }
 112 
 113 // Local helper checks for special internal merge points
 114 // used to accumulate and merge exception states.
 115 // They are marked by the region's in(0) edge being the map itself.
 116 // Such merge points must never "escape" into the parser at large,
 117 // until they have been handed to gvn.transform.
 118 static bool is_hidden_merge(Node* reg) {
 119   if (reg == NULL)  return false;
 120   if (reg->is_Phi()) {
 121     reg = reg->in(0);
 122     if (reg == NULL)  return false;
 123   }
 124   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 125 }
 126 
 127 void GraphKit::verify_map() const {
 128   if (map() == NULL)  return;  // null map is OK
 129   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 130   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 131   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 132 }
 133 
 134 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 135   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 136   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 137 }
 138 #endif
 139 
 140 //---------------------------stop_and_kill_map---------------------------------
 141 // Set _map to NULL, signalling a stop to further bytecode execution.
 142 // First smash the current map's control to a constant, to mark it dead.
 143 void GraphKit::stop_and_kill_map() {
 144   SafePointNode* dead_map = stop();
 145   if (dead_map != NULL) {
 146     dead_map->disconnect_inputs(NULL); // Mark the map as killed.
 147     assert(dead_map->is_killed(), "must be so marked");
 148   }
 149 }
 150 
 151 
 152 //--------------------------------stopped--------------------------------------
 153 // Tell if _map is NULL, or control is top.
 154 bool GraphKit::stopped() {
 155   if (map() == NULL)           return true;
 156   else if (control() == top()) return true;
 157   else                         return false;
 158 }
 159 
 160 
 161 //-----------------------------has_ex_handler----------------------------------
 162 // Tell if this method or any caller method has exception handlers.
 163 bool GraphKit::has_ex_handler() {
 164   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 165     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 166       return true;
 167     }
 168   }
 169   return false;
 170 }
 171 
 172 //------------------------------save_ex_oop------------------------------------
 173 // Save an exception without blowing stack contents or other JVM state.
 174 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 175   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 176   ex_map->add_req(ex_oop);
 177   debug_only(verify_exception_state(ex_map));
 178 }
 179 
 180 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 181   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 182   Node* ex_oop = ex_map->in(ex_map->req()-1);
 183   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 184   return ex_oop;
 185 }
 186 
 187 //-----------------------------saved_ex_oop------------------------------------
 188 // Recover a saved exception from its map.
 189 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 190   return common_saved_ex_oop(ex_map, false);
 191 }
 192 
 193 //--------------------------clear_saved_ex_oop---------------------------------
 194 // Erase a previously saved exception from its map.
 195 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 196   return common_saved_ex_oop(ex_map, true);
 197 }
 198 
 199 #ifdef ASSERT
 200 //---------------------------has_saved_ex_oop----------------------------------
 201 // Erase a previously saved exception from its map.
 202 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 203   return ex_map->req() == ex_map->jvms()->endoff()+1;
 204 }
 205 #endif
 206 
 207 //-------------------------make_exception_state--------------------------------
 208 // Turn the current JVM state into an exception state, appending the ex_oop.
 209 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 210   sync_jvms();
 211   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 212   set_saved_ex_oop(ex_map, ex_oop);
 213   return ex_map;
 214 }
 215 
 216 
 217 //--------------------------add_exception_state--------------------------------
 218 // Add an exception to my list of exceptions.
 219 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 220   if (ex_map == NULL || ex_map->control() == top()) {
 221     return;
 222   }
 223 #ifdef ASSERT
 224   verify_exception_state(ex_map);
 225   if (has_exceptions()) {
 226     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 227   }
 228 #endif
 229 
 230   // If there is already an exception of exactly this type, merge with it.
 231   // In particular, null-checks and other low-level exceptions common up here.
 232   Node*       ex_oop  = saved_ex_oop(ex_map);
 233   const Type* ex_type = _gvn.type(ex_oop);
 234   if (ex_oop == top()) {
 235     // No action needed.
 236     return;
 237   }
 238   assert(ex_type->isa_instptr(), "exception must be an instance");
 239   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 240     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 241     // We check sp also because call bytecodes can generate exceptions
 242     // both before and after arguments are popped!
 243     if (ex_type2 == ex_type
 244         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 245       combine_exception_states(ex_map, e2);
 246       return;
 247     }
 248   }
 249 
 250   // No pre-existing exception of the same type.  Chain it on the list.
 251   push_exception_state(ex_map);
 252 }
 253 
 254 //-----------------------add_exception_states_from-----------------------------
 255 void GraphKit::add_exception_states_from(JVMState* jvms) {
 256   SafePointNode* ex_map = jvms->map()->next_exception();
 257   if (ex_map != NULL) {
 258     jvms->map()->set_next_exception(NULL);
 259     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 260       next_map = ex_map->next_exception();
 261       ex_map->set_next_exception(NULL);
 262       add_exception_state(ex_map);
 263     }
 264   }
 265 }
 266 
 267 //-----------------------transfer_exceptions_into_jvms-------------------------
 268 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 269   if (map() == NULL) {
 270     // We need a JVMS to carry the exceptions, but the map has gone away.
 271     // Create a scratch JVMS, cloned from any of the exception states...
 272     if (has_exceptions()) {
 273       _map = _exceptions;
 274       _map = clone_map();
 275       _map->set_next_exception(NULL);
 276       clear_saved_ex_oop(_map);
 277       debug_only(verify_map());
 278     } else {
 279       // ...or created from scratch
 280       JVMState* jvms = new (C) JVMState(_method, NULL);
 281       jvms->set_bci(_bci);
 282       jvms->set_sp(_sp);
 283       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 284       set_jvms(jvms);
 285       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 286       set_all_memory(top());
 287       while (map()->req() < jvms->endoff())  map()->add_req(top());
 288     }
 289     // (This is a kludge, in case you didn't notice.)
 290     set_control(top());
 291   }
 292   JVMState* jvms = sync_jvms();
 293   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 294   jvms->map()->set_next_exception(_exceptions);
 295   _exceptions = NULL;   // done with this set of exceptions
 296   return jvms;
 297 }
 298 
 299 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 300   assert(is_hidden_merge(dstphi), "must be a special merge node");
 301   assert(is_hidden_merge(srcphi), "must be a special merge node");
 302   uint limit = srcphi->req();
 303   for (uint i = PhiNode::Input; i < limit; i++) {
 304     dstphi->add_req(srcphi->in(i));
 305   }
 306 }
 307 static inline void add_one_req(Node* dstphi, Node* src) {
 308   assert(is_hidden_merge(dstphi), "must be a special merge node");
 309   assert(!is_hidden_merge(src), "must not be a special merge node");
 310   dstphi->add_req(src);
 311 }
 312 
 313 //-----------------------combine_exception_states------------------------------
 314 // This helper function combines exception states by building phis on a
 315 // specially marked state-merging region.  These regions and phis are
 316 // untransformed, and can build up gradually.  The region is marked by
 317 // having a control input of its exception map, rather than NULL.  Such
 318 // regions do not appear except in this function, and in use_exception_state.
 319 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 320   if (failing())  return;  // dying anyway...
 321   JVMState* ex_jvms = ex_map->_jvms;
 322   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 323   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 324   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 325   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 326   assert(ex_map->req() == phi_map->req(), "matching maps");
 327   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 328   Node*         hidden_merge_mark = root();
 329   Node*         region  = phi_map->control();
 330   MergeMemNode* phi_mem = phi_map->merged_memory();
 331   MergeMemNode* ex_mem  = ex_map->merged_memory();
 332   if (region->in(0) != hidden_merge_mark) {
 333     // The control input is not (yet) a specially-marked region in phi_map.
 334     // Make it so, and build some phis.
 335     region = new (C) RegionNode(2);
 336     _gvn.set_type(region, Type::CONTROL);
 337     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 338     region->init_req(1, phi_map->control());
 339     phi_map->set_control(region);
 340     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 341     record_for_igvn(io_phi);
 342     _gvn.set_type(io_phi, Type::ABIO);
 343     phi_map->set_i_o(io_phi);
 344     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 345       Node* m = mms.memory();
 346       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 347       record_for_igvn(m_phi);
 348       _gvn.set_type(m_phi, Type::MEMORY);
 349       mms.set_memory(m_phi);
 350     }
 351   }
 352 
 353   // Either or both of phi_map and ex_map might already be converted into phis.
 354   Node* ex_control = ex_map->control();
 355   // if there is special marking on ex_map also, we add multiple edges from src
 356   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 357   // how wide was the destination phi_map, originally?
 358   uint orig_width = region->req();
 359 
 360   if (add_multiple) {
 361     add_n_reqs(region, ex_control);
 362     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 363   } else {
 364     // ex_map has no merges, so we just add single edges everywhere
 365     add_one_req(region, ex_control);
 366     add_one_req(phi_map->i_o(), ex_map->i_o());
 367   }
 368   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 369     if (mms.is_empty()) {
 370       // get a copy of the base memory, and patch some inputs into it
 371       const TypePtr* adr_type = mms.adr_type(C);
 372       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 373       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 374       mms.set_memory(phi);
 375       // Prepare to append interesting stuff onto the newly sliced phi:
 376       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 377     }
 378     // Append stuff from ex_map:
 379     if (add_multiple) {
 380       add_n_reqs(mms.memory(), mms.memory2());
 381     } else {
 382       add_one_req(mms.memory(), mms.memory2());
 383     }
 384   }
 385   uint limit = ex_map->req();
 386   for (uint i = TypeFunc::Parms; i < limit; i++) {
 387     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 388     if (i == tos)  i = ex_jvms->monoff();
 389     Node* src = ex_map->in(i);
 390     Node* dst = phi_map->in(i);
 391     if (src != dst) {
 392       PhiNode* phi;
 393       if (dst->in(0) != region) {
 394         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 395         record_for_igvn(phi);
 396         _gvn.set_type(phi, phi->type());
 397         phi_map->set_req(i, dst);
 398         // Prepare to append interesting stuff onto the new phi:
 399         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 400       } else {
 401         assert(dst->is_Phi(), "nobody else uses a hidden region");
 402         phi = (PhiNode*)dst;
 403       }
 404       if (add_multiple && src->in(0) == ex_control) {
 405         // Both are phis.
 406         add_n_reqs(dst, src);
 407       } else {
 408         while (dst->req() < region->req())  add_one_req(dst, src);
 409       }
 410       const Type* srctype = _gvn.type(src);
 411       if (phi->type() != srctype) {
 412         const Type* dsttype = phi->type()->meet(srctype);
 413         if (phi->type() != dsttype) {
 414           phi->set_type(dsttype);
 415           _gvn.set_type(phi, dsttype);
 416         }
 417       }
 418     }
 419   }
 420 }
 421 
 422 //--------------------------use_exception_state--------------------------------
 423 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 424   if (failing()) { stop(); return top(); }
 425   Node* region = phi_map->control();
 426   Node* hidden_merge_mark = root();
 427   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 428   Node* ex_oop = clear_saved_ex_oop(phi_map);
 429   if (region->in(0) == hidden_merge_mark) {
 430     // Special marking for internal ex-states.  Process the phis now.
 431     region->set_req(0, region);  // now it's an ordinary region
 432     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 433     // Note: Setting the jvms also sets the bci and sp.
 434     set_control(_gvn.transform(region));
 435     uint tos = jvms()->stkoff() + sp();
 436     for (uint i = 1; i < tos; i++) {
 437       Node* x = phi_map->in(i);
 438       if (x->in(0) == region) {
 439         assert(x->is_Phi(), "expected a special phi");
 440         phi_map->set_req(i, _gvn.transform(x));
 441       }
 442     }
 443     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 444       Node* x = mms.memory();
 445       if (x->in(0) == region) {
 446         assert(x->is_Phi(), "nobody else uses a hidden region");
 447         mms.set_memory(_gvn.transform(x));
 448       }
 449     }
 450     if (ex_oop->in(0) == region) {
 451       assert(ex_oop->is_Phi(), "expected a special phi");
 452       ex_oop = _gvn.transform(ex_oop);
 453     }
 454   } else {
 455     set_jvms(phi_map->jvms());
 456   }
 457 
 458   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 459   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 460   return ex_oop;
 461 }
 462 
 463 //---------------------------------java_bc-------------------------------------
 464 Bytecodes::Code GraphKit::java_bc() const {
 465   ciMethod* method = this->method();
 466   int       bci    = this->bci();
 467   if (method != NULL && bci != InvocationEntryBci)
 468     return method->java_code_at_bci(bci);
 469   else
 470     return Bytecodes::_illegal;
 471 }
 472 
 473 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 474                                                           bool must_throw) {
 475     // if the exception capability is set, then we will generate code
 476     // to check the JavaThread.should_post_on_exceptions flag to see
 477     // if we actually need to report exception events (for this
 478     // thread).  If we don't need to report exception events, we will
 479     // take the normal fast path provided by add_exception_events.  If
 480     // exception event reporting is enabled for this thread, we will
 481     // take the uncommon_trap in the BuildCutout below.
 482 
 483     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 484     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 485     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 486     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, false);
 487 
 488     // Test the should_post_on_exceptions_flag vs. 0
 489     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 490     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 491 
 492     // Branch to slow_path if should_post_on_exceptions_flag was true
 493     { BuildCutout unless(this, tst, PROB_MAX);
 494       // Do not try anything fancy if we're notifying the VM on every throw.
 495       // Cf. case Bytecodes::_athrow in parse2.cpp.
 496       uncommon_trap(reason, Deoptimization::Action_none,
 497                     (ciKlass*)NULL, (char*)NULL, must_throw);
 498     }
 499 
 500 }
 501 
 502 //------------------------------builtin_throw----------------------------------
 503 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 504   bool must_throw = true;
 505 
 506   if (env()->jvmti_can_post_on_exceptions()) {
 507     // check if we must post exception events, take uncommon trap if so
 508     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 509     // here if should_post_on_exceptions is false
 510     // continue on with the normal codegen
 511   }
 512 
 513   // If this particular condition has not yet happened at this
 514   // bytecode, then use the uncommon trap mechanism, and allow for
 515   // a future recompilation if several traps occur here.
 516   // If the throw is hot, try to use a more complicated inline mechanism
 517   // which keeps execution inside the compiled code.
 518   bool treat_throw_as_hot = false;
 519   ciMethodData* md = method()->method_data();
 520 
 521   if (ProfileTraps) {
 522     if (too_many_traps(reason)) {
 523       treat_throw_as_hot = true;
 524     }
 525     // (If there is no MDO at all, assume it is early in
 526     // execution, and that any deopts are part of the
 527     // startup transient, and don't need to be remembered.)
 528 
 529     // Also, if there is a local exception handler, treat all throws
 530     // as hot if there has been at least one in this method.
 531     if (C->trap_count(reason) != 0
 532         && method()->method_data()->trap_count(reason) != 0
 533         && has_ex_handler()) {
 534         treat_throw_as_hot = true;
 535     }
 536   }
 537 
 538   // If this throw happens frequently, an uncommon trap might cause
 539   // a performance pothole.  If there is a local exception handler,
 540   // and if this particular bytecode appears to be deoptimizing often,
 541   // let us handle the throw inline, with a preconstructed instance.
 542   // Note:   If the deopt count has blown up, the uncommon trap
 543   // runtime is going to flush this nmethod, not matter what.
 544   if (treat_throw_as_hot
 545       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 546     // If the throw is local, we use a pre-existing instance and
 547     // punt on the backtrace.  This would lead to a missing backtrace
 548     // (a repeat of 4292742) if the backtrace object is ever asked
 549     // for its backtrace.
 550     // Fixing this remaining case of 4292742 requires some flavor of
 551     // escape analysis.  Leave that for the future.
 552     ciInstance* ex_obj = NULL;
 553     switch (reason) {
 554     case Deoptimization::Reason_null_check:
 555       ex_obj = env()->NullPointerException_instance();
 556       break;
 557     case Deoptimization::Reason_div0_check:
 558       ex_obj = env()->ArithmeticException_instance();
 559       break;
 560     case Deoptimization::Reason_range_check:
 561       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 562       break;
 563     case Deoptimization::Reason_class_check:
 564       if (java_bc() == Bytecodes::_aastore) {
 565         ex_obj = env()->ArrayStoreException_instance();
 566       } else {
 567         ex_obj = env()->ClassCastException_instance();
 568       }
 569       break;
 570     }
 571     if (failing()) { stop(); return; }  // exception allocation might fail
 572     if (ex_obj != NULL) {
 573       // Cheat with a preallocated exception object.
 574       if (C->log() != NULL)
 575         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 576                        Deoptimization::trap_reason_name(reason));
 577       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 578       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 579 
 580       // Clear the detail message of the preallocated exception object.
 581       // Weblogic sometimes mutates the detail message of exceptions
 582       // using reflection.
 583       int offset = java_lang_Throwable::get_detailMessage_offset();
 584       const TypePtr* adr_typ = ex_con->add_offset(offset);
 585 
 586       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 587       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 588       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT);
 589 
 590       add_exception_state(make_exception_state(ex_node));
 591       return;
 592     }
 593   }
 594 
 595   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 596   // It won't be much cheaper than bailing to the interp., since we'll
 597   // have to pass up all the debug-info, and the runtime will have to
 598   // create the stack trace.
 599 
 600   // Usual case:  Bail to interpreter.
 601   // Reserve the right to recompile if we haven't seen anything yet.
 602 
 603   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 604   if (treat_throw_as_hot
 605       && (method()->method_data()->trap_recompiled_at(bci())
 606           || C->too_many_traps(reason))) {
 607     // We cannot afford to take more traps here.  Suffer in the interpreter.
 608     if (C->log() != NULL)
 609       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 610                      Deoptimization::trap_reason_name(reason),
 611                      C->trap_count(reason));
 612     action = Deoptimization::Action_none;
 613   }
 614 
 615   // "must_throw" prunes the JVM state to include only the stack, if there
 616   // are no local exception handlers.  This should cut down on register
 617   // allocation time and code size, by drastically reducing the number
 618   // of in-edges on the call to the uncommon trap.
 619 
 620   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 621 }
 622 
 623 
 624 //----------------------------PreserveJVMState---------------------------------
 625 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 626   debug_only(kit->verify_map());
 627   _kit    = kit;
 628   _map    = kit->map();   // preserve the map
 629   _sp     = kit->sp();
 630   kit->set_map(clone_map ? kit->clone_map() : NULL);
 631 #ifdef ASSERT
 632   _bci    = kit->bci();
 633   Parse* parser = kit->is_Parse();
 634   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 635   _block  = block;
 636 #endif
 637 }
 638 PreserveJVMState::~PreserveJVMState() {
 639   GraphKit* kit = _kit;
 640 #ifdef ASSERT
 641   assert(kit->bci() == _bci, "bci must not shift");
 642   Parse* parser = kit->is_Parse();
 643   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 644   assert(block == _block,    "block must not shift");
 645 #endif
 646   kit->set_map(_map);
 647   kit->set_sp(_sp);
 648 }
 649 
 650 
 651 //-----------------------------BuildCutout-------------------------------------
 652 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 653   : PreserveJVMState(kit)
 654 {
 655   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 656   SafePointNode* outer_map = _map;   // preserved map is caller's
 657   SafePointNode* inner_map = kit->map();
 658   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 659   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 660   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 661 }
 662 BuildCutout::~BuildCutout() {
 663   GraphKit* kit = _kit;
 664   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 665 }
 666 
 667 //---------------------------PreserveReexecuteState----------------------------
 668 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 669   assert(!kit->stopped(), "must call stopped() before");
 670   _kit    =    kit;
 671   _sp     =    kit->sp();
 672   _reexecute = kit->jvms()->_reexecute;
 673 }
 674 PreserveReexecuteState::~PreserveReexecuteState() {
 675   if (_kit->stopped()) return;
 676   _kit->jvms()->_reexecute = _reexecute;
 677   _kit->set_sp(_sp);
 678 }
 679 
 680 //------------------------------clone_map--------------------------------------
 681 // Implementation of PreserveJVMState
 682 //
 683 // Only clone_map(...) here. If this function is only used in the
 684 // PreserveJVMState class we may want to get rid of this extra
 685 // function eventually and do it all there.
 686 
 687 SafePointNode* GraphKit::clone_map() {
 688   if (map() == NULL)  return NULL;
 689 
 690   // Clone the memory edge first
 691   Node* mem = MergeMemNode::make(C, map()->memory());
 692   gvn().set_type_bottom(mem);
 693 
 694   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 695   JVMState* jvms = this->jvms();
 696   JVMState* clonejvms = jvms->clone_shallow(C);
 697   clonemap->set_memory(mem);
 698   clonemap->set_jvms(clonejvms);
 699   clonejvms->set_map(clonemap);
 700   record_for_igvn(clonemap);
 701   gvn().set_type_bottom(clonemap);
 702   return clonemap;
 703 }
 704 
 705 
 706 //-----------------------------set_map_clone-----------------------------------
 707 void GraphKit::set_map_clone(SafePointNode* m) {
 708   _map = m;
 709   _map = clone_map();
 710   _map->set_next_exception(NULL);
 711   debug_only(verify_map());
 712 }
 713 
 714 
 715 //----------------------------kill_dead_locals---------------------------------
 716 // Detect any locals which are known to be dead, and force them to top.
 717 void GraphKit::kill_dead_locals() {
 718   // Consult the liveness information for the locals.  If any
 719   // of them are unused, then they can be replaced by top().  This
 720   // should help register allocation time and cut down on the size
 721   // of the deoptimization information.
 722 
 723   // This call is made from many of the bytecode handling
 724   // subroutines called from the Big Switch in do_one_bytecode.
 725   // Every bytecode which might include a slow path is responsible
 726   // for killing its dead locals.  The more consistent we
 727   // are about killing deads, the fewer useless phis will be
 728   // constructed for them at various merge points.
 729 
 730   // bci can be -1 (InvocationEntryBci).  We return the entry
 731   // liveness for the method.
 732 
 733   if (method() == NULL || method()->code_size() == 0) {
 734     // We are building a graph for a call to a native method.
 735     // All locals are live.
 736     return;
 737   }
 738 
 739   ResourceMark rm;
 740 
 741   // Consult the liveness information for the locals.  If any
 742   // of them are unused, then they can be replaced by top().  This
 743   // should help register allocation time and cut down on the size
 744   // of the deoptimization information.
 745   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 746 
 747   int len = (int)live_locals.size();
 748   assert(len <= jvms()->loc_size(), "too many live locals");
 749   for (int local = 0; local < len; local++) {
 750     if (!live_locals.at(local)) {
 751       set_local(local, top());
 752     }
 753   }
 754 }
 755 
 756 #ifdef ASSERT
 757 //-------------------------dead_locals_are_killed------------------------------
 758 // Return true if all dead locals are set to top in the map.
 759 // Used to assert "clean" debug info at various points.
 760 bool GraphKit::dead_locals_are_killed() {
 761   if (method() == NULL || method()->code_size() == 0) {
 762     // No locals need to be dead, so all is as it should be.
 763     return true;
 764   }
 765 
 766   // Make sure somebody called kill_dead_locals upstream.
 767   ResourceMark rm;
 768   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 769     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 770     SafePointNode* map = jvms->map();
 771     ciMethod* method = jvms->method();
 772     int       bci    = jvms->bci();
 773     if (jvms == this->jvms()) {
 774       bci = this->bci();  // it might not yet be synched
 775     }
 776     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 777     int len = (int)live_locals.size();
 778     if (!live_locals.is_valid() || len == 0)
 779       // This method is trivial, or is poisoned by a breakpoint.
 780       return true;
 781     assert(len == jvms->loc_size(), "live map consistent with locals map");
 782     for (int local = 0; local < len; local++) {
 783       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 784         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 785           tty->print_cr("Zombie local %d: ", local);
 786           jvms->dump();
 787         }
 788         return false;
 789       }
 790     }
 791   }
 792   return true;
 793 }
 794 
 795 #endif //ASSERT
 796 
 797 // Helper function for enforcing certain bytecodes to reexecute if
 798 // deoptimization happens
 799 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 800   ciMethod* cur_method = jvms->method();
 801   int       cur_bci   = jvms->bci();
 802   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 803     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 804     return Interpreter::bytecode_should_reexecute(code) ||
 805            is_anewarray && code == Bytecodes::_multianewarray;
 806     // Reexecute _multianewarray bytecode which was replaced with
 807     // sequence of [a]newarray. See Parse::do_multianewarray().
 808     //
 809     // Note: interpreter should not have it set since this optimization
 810     // is limited by dimensions and guarded by flag so in some cases
 811     // multianewarray() runtime calls will be generated and
 812     // the bytecode should not be reexecutes (stack will not be reset).
 813   } else
 814     return false;
 815 }
 816 
 817 // Helper function for adding JVMState and debug information to node
 818 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 819   // Add the safepoint edges to the call (or other safepoint).
 820 
 821   // Make sure dead locals are set to top.  This
 822   // should help register allocation time and cut down on the size
 823   // of the deoptimization information.
 824   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 825 
 826   // Walk the inline list to fill in the correct set of JVMState's
 827   // Also fill in the associated edges for each JVMState.
 828 
 829   JVMState* youngest_jvms = sync_jvms();
 830 
 831   // If we are guaranteed to throw, we can prune everything but the
 832   // input to the current bytecode.
 833   bool can_prune_locals = false;
 834   uint stack_slots_not_pruned = 0;
 835   int inputs = 0, depth = 0;
 836   if (must_throw) {
 837     assert(method() == youngest_jvms->method(), "sanity");
 838     if (compute_stack_effects(inputs, depth)) {
 839       can_prune_locals = true;
 840       stack_slots_not_pruned = inputs;
 841     }
 842   }
 843 
 844   if (env()->jvmti_can_access_local_variables()) {
 845     // At any safepoint, this method can get breakpointed, which would
 846     // then require an immediate deoptimization.
 847     can_prune_locals = false;  // do not prune locals
 848     stack_slots_not_pruned = 0;
 849   }
 850 
 851   // do not scribble on the input jvms
 852   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 853   call->set_jvms(out_jvms); // Start jvms list for call node
 854 
 855   // For a known set of bytecodes, the interpreter should reexecute them if
 856   // deoptimization happens. We set the reexecute state for them here
 857   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 858       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 859     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 860   }
 861 
 862   // Presize the call:
 863   debug_only(uint non_debug_edges = call->req());
 864   call->add_req_batch(top(), youngest_jvms->debug_depth());
 865   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 866 
 867   // Set up edges so that the call looks like this:
 868   //  Call [state:] ctl io mem fptr retadr
 869   //       [parms:] parm0 ... parmN
 870   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 871   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 872   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 873   // Note that caller debug info precedes callee debug info.
 874 
 875   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 876   uint debug_ptr = call->req();
 877 
 878   // Loop over the map input edges associated with jvms, add them
 879   // to the call node, & reset all offsets to match call node array.
 880   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 881     uint debug_end   = debug_ptr;
 882     uint debug_start = debug_ptr - in_jvms->debug_size();
 883     debug_ptr = debug_start;  // back up the ptr
 884 
 885     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 886     uint j, k, l;
 887     SafePointNode* in_map = in_jvms->map();
 888     out_jvms->set_map(call);
 889 
 890     if (can_prune_locals) {
 891       assert(in_jvms->method() == out_jvms->method(), "sanity");
 892       // If the current throw can reach an exception handler in this JVMS,
 893       // then we must keep everything live that can reach that handler.
 894       // As a quick and dirty approximation, we look for any handlers at all.
 895       if (in_jvms->method()->has_exception_handlers()) {
 896         can_prune_locals = false;
 897       }
 898     }
 899 
 900     // Add the Locals
 901     k = in_jvms->locoff();
 902     l = in_jvms->loc_size();
 903     out_jvms->set_locoff(p);
 904     if (!can_prune_locals) {
 905       for (j = 0; j < l; j++)
 906         call->set_req(p++, in_map->in(k+j));
 907     } else {
 908       p += l;  // already set to top above by add_req_batch
 909     }
 910 
 911     // Add the Expression Stack
 912     k = in_jvms->stkoff();
 913     l = in_jvms->sp();
 914     out_jvms->set_stkoff(p);
 915     if (!can_prune_locals) {
 916       for (j = 0; j < l; j++)
 917         call->set_req(p++, in_map->in(k+j));
 918     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 919       // Divide stack into {S0,...,S1}, where S0 is set to top.
 920       uint s1 = stack_slots_not_pruned;
 921       stack_slots_not_pruned = 0;  // for next iteration
 922       if (s1 > l)  s1 = l;
 923       uint s0 = l - s1;
 924       p += s0;  // skip the tops preinstalled by add_req_batch
 925       for (j = s0; j < l; j++)
 926         call->set_req(p++, in_map->in(k+j));
 927     } else {
 928       p += l;  // already set to top above by add_req_batch
 929     }
 930 
 931     // Add the Monitors
 932     k = in_jvms->monoff();
 933     l = in_jvms->mon_size();
 934     out_jvms->set_monoff(p);
 935     for (j = 0; j < l; j++)
 936       call->set_req(p++, in_map->in(k+j));
 937 
 938     // Copy any scalar object fields.
 939     k = in_jvms->scloff();
 940     l = in_jvms->scl_size();
 941     out_jvms->set_scloff(p);
 942     for (j = 0; j < l; j++)
 943       call->set_req(p++, in_map->in(k+j));
 944 
 945     // Finish the new jvms.
 946     out_jvms->set_endoff(p);
 947 
 948     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 949     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 950     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 951     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 952     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 953     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 954 
 955     // Update the two tail pointers in parallel.
 956     out_jvms = out_jvms->caller();
 957     in_jvms  = in_jvms->caller();
 958   }
 959 
 960   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 961 
 962   // Test the correctness of JVMState::debug_xxx accessors:
 963   assert(call->jvms()->debug_start() == non_debug_edges, "");
 964   assert(call->jvms()->debug_end()   == call->req(), "");
 965   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 966 }
 967 
 968 bool GraphKit::compute_stack_effects(int& inputs, int& depth, bool for_parse) {
 969   Bytecodes::Code code = java_bc();
 970   if (code == Bytecodes::_wide) {
 971     code = method()->java_code_at_bci(bci() + 1);
 972   }
 973 
 974   BasicType rtype = T_ILLEGAL;
 975   int       rsize = 0;
 976 
 977   if (code != Bytecodes::_illegal) {
 978     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
 979     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
 980     if (rtype < T_CONFLICT)
 981       rsize = type2size[rtype];
 982   }
 983 
 984   switch (code) {
 985   case Bytecodes::_illegal:
 986     return false;
 987 
 988   case Bytecodes::_ldc:
 989   case Bytecodes::_ldc_w:
 990   case Bytecodes::_ldc2_w:
 991     inputs = 0;
 992     break;
 993 
 994   case Bytecodes::_dup:         inputs = 1;  break;
 995   case Bytecodes::_dup_x1:      inputs = 2;  break;
 996   case Bytecodes::_dup_x2:      inputs = 3;  break;
 997   case Bytecodes::_dup2:        inputs = 2;  break;
 998   case Bytecodes::_dup2_x1:     inputs = 3;  break;
 999   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1000   case Bytecodes::_swap:        inputs = 2;  break;
1001   case Bytecodes::_arraylength: inputs = 1;  break;
1002 
1003   case Bytecodes::_getstatic:
1004   case Bytecodes::_putstatic:
1005   case Bytecodes::_getfield:
1006   case Bytecodes::_putfield:
1007     {
1008       bool is_get = (depth >= 0), is_static = (depth & 1);
1009       ciBytecodeStream iter(method());
1010       iter.reset_to_bci(bci());
1011       iter.next();
1012       bool ignored_will_link;
1013       ciField* field = iter.get_field(ignored_will_link);
1014       int      size  = field->type()->size();
1015       inputs  = (is_static ? 0 : 1);
1016       if (is_get) {
1017         depth = size - inputs;
1018       } else {
1019         inputs += size;        // putxxx pops the value from the stack
1020         depth = - inputs;
1021       }
1022     }
1023     break;
1024 
1025   case Bytecodes::_invokevirtual:
1026   case Bytecodes::_invokespecial:
1027   case Bytecodes::_invokestatic:
1028   case Bytecodes::_invokedynamic:
1029   case Bytecodes::_invokeinterface:
1030     {
1031       ciBytecodeStream iter(method());
1032       iter.reset_to_bci(bci());
1033       iter.next();
1034       bool ignored_will_link;
1035       ciSignature* declared_signature = NULL;
1036       ciMethod* callee = iter.get_method(ignored_will_link, &declared_signature);
1037       assert(declared_signature != NULL, "cannot be null");
1038       // (Do not use ciMethod::arg_size(), because
1039       // it might be an unloaded method, which doesn't
1040       // know whether it is static or not.)
1041       if (for_parse) {
1042         // Case 1: When called from parse we are *before* the invoke (in the
1043         //         caller) and need to to adjust the inputs by an appendix
1044         //         argument that will be pushed implicitly.
1045         inputs = callee->invoke_arg_size(code) - (iter.has_appendix() ? 1 : 0);
1046       } else {
1047         // Case 2: Here we are *after* the invoke (in the callee) and need to
1048         //         remove any appendix arguments that were popped.
1049         inputs = callee->invoke_arg_size(code) - (callee->has_member_arg() ? 1 : 0);
1050       }
1051       int size = declared_signature->return_type()->size();
1052       depth = size - inputs;
1053     }
1054     break;
1055 
1056   case Bytecodes::_multianewarray:
1057     {
1058       ciBytecodeStream iter(method());
1059       iter.reset_to_bci(bci());
1060       iter.next();
1061       inputs = iter.get_dimensions();
1062       assert(rsize == 1, "");
1063       depth = rsize - inputs;
1064     }
1065     break;
1066 
1067   case Bytecodes::_ireturn:
1068   case Bytecodes::_lreturn:
1069   case Bytecodes::_freturn:
1070   case Bytecodes::_dreturn:
1071   case Bytecodes::_areturn:
1072     assert(rsize = -depth, "");
1073     inputs = rsize;
1074     break;
1075 
1076   case Bytecodes::_jsr:
1077   case Bytecodes::_jsr_w:
1078     inputs = 0;
1079     depth  = 1;                  // S.B. depth=1, not zero
1080     break;
1081 
1082   default:
1083     // bytecode produces a typed result
1084     inputs = rsize - depth;
1085     assert(inputs >= 0, "");
1086     break;
1087   }
1088 
1089 #ifdef ASSERT
1090   // spot check
1091   int outputs = depth + inputs;
1092   assert(outputs >= 0, "sanity");
1093   switch (code) {
1094   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1095   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1096   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1097   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1098   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1099   }
1100 #endif //ASSERT
1101 
1102   return true;
1103 }
1104 
1105 
1106 
1107 //------------------------------basic_plus_adr---------------------------------
1108 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1109   // short-circuit a common case
1110   if (offset == intcon(0))  return ptr;
1111   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1112 }
1113 
1114 Node* GraphKit::ConvI2L(Node* offset) {
1115   // short-circuit a common case
1116   jint offset_con = find_int_con(offset, Type::OffsetBot);
1117   if (offset_con != Type::OffsetBot) {
1118     return longcon((jlong) offset_con);
1119   }
1120   return _gvn.transform( new (C) ConvI2LNode(offset));
1121 }
1122 Node* GraphKit::ConvL2I(Node* offset) {
1123   // short-circuit a common case
1124   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1125   if (offset_con != (jlong)Type::OffsetBot) {
1126     return intcon((int) offset_con);
1127   }
1128   return _gvn.transform( new (C) ConvL2INode(offset));
1129 }
1130 
1131 //-------------------------load_object_klass-----------------------------------
1132 Node* GraphKit::load_object_klass(Node* obj) {
1133   // Special-case a fresh allocation to avoid building nodes:
1134   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1135   if (akls != NULL)  return akls;
1136   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1137   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1138 }
1139 
1140 //-------------------------load_array_length-----------------------------------
1141 Node* GraphKit::load_array_length(Node* array) {
1142   // Special-case a fresh allocation to avoid building nodes:
1143   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1144   Node *alen;
1145   if (alloc == NULL) {
1146     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1147     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1148   } else {
1149     alen = alloc->Ideal_length();
1150     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1151     if (ccast != alen) {
1152       alen = _gvn.transform(ccast);
1153     }
1154   }
1155   return alen;
1156 }
1157 
1158 //------------------------------do_null_check----------------------------------
1159 // Helper function to do a NULL pointer check.  Returned value is
1160 // the incoming address with NULL casted away.  You are allowed to use the
1161 // not-null value only if you are control dependent on the test.
1162 extern int explicit_null_checks_inserted,
1163            explicit_null_checks_elided;
1164 Node* GraphKit::null_check_common(Node* value, BasicType type,
1165                                   // optional arguments for variations:
1166                                   bool assert_null,
1167                                   Node* *null_control) {
1168   assert(!assert_null || null_control == NULL, "not both at once");
1169   if (stopped())  return top();
1170   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1171     // For some performance testing, we may wish to suppress null checking.
1172     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1173     return value;
1174   }
1175   explicit_null_checks_inserted++;
1176 
1177   // Construct NULL check
1178   Node *chk = NULL;
1179   switch(type) {
1180     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1181     case T_INT    : chk = new (C) CmpINode( value, _gvn.intcon(0)); break;
1182     case T_ARRAY  : // fall through
1183       type = T_OBJECT;  // simplify further tests
1184     case T_OBJECT : {
1185       const Type *t = _gvn.type( value );
1186 
1187       const TypeOopPtr* tp = t->isa_oopptr();
1188       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1189           // Only for do_null_check, not any of its siblings:
1190           && !assert_null && null_control == NULL) {
1191         // Usually, any field access or invocation on an unloaded oop type
1192         // will simply fail to link, since the statically linked class is
1193         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1194         // the static class is loaded but the sharper oop type is not.
1195         // Rather than checking for this obscure case in lots of places,
1196         // we simply observe that a null check on an unloaded class
1197         // will always be followed by a nonsense operation, so we
1198         // can just issue the uncommon trap here.
1199         // Our access to the unloaded class will only be correct
1200         // after it has been loaded and initialized, which requires
1201         // a trip through the interpreter.
1202 #ifndef PRODUCT
1203         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1204 #endif
1205         uncommon_trap(Deoptimization::Reason_unloaded,
1206                       Deoptimization::Action_reinterpret,
1207                       tp->klass(), "!loaded");
1208         return top();
1209       }
1210 
1211       if (assert_null) {
1212         // See if the type is contained in NULL_PTR.
1213         // If so, then the value is already null.
1214         if (t->higher_equal(TypePtr::NULL_PTR)) {
1215           explicit_null_checks_elided++;
1216           return value;           // Elided null assert quickly!
1217         }
1218       } else {
1219         // See if mixing in the NULL pointer changes type.
1220         // If so, then the NULL pointer was not allowed in the original
1221         // type.  In other words, "value" was not-null.
1222         if (t->meet(TypePtr::NULL_PTR) != t) {
1223           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1224           explicit_null_checks_elided++;
1225           return value;           // Elided null check quickly!
1226         }
1227       }
1228       chk = new (C) CmpPNode( value, null() );
1229       break;
1230     }
1231 
1232     default      : ShouldNotReachHere();
1233   }
1234   assert(chk != NULL, "sanity check");
1235   chk = _gvn.transform(chk);
1236 
1237   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1238   BoolNode *btst = new (C) BoolNode( chk, btest);
1239   Node   *tst = _gvn.transform( btst );
1240 
1241   //-----------
1242   // if peephole optimizations occurred, a prior test existed.
1243   // If a prior test existed, maybe it dominates as we can avoid this test.
1244   if (tst != btst && type == T_OBJECT) {
1245     // At this point we want to scan up the CFG to see if we can
1246     // find an identical test (and so avoid this test altogether).
1247     Node *cfg = control();
1248     int depth = 0;
1249     while( depth < 16 ) {       // Limit search depth for speed
1250       if( cfg->Opcode() == Op_IfTrue &&
1251           cfg->in(0)->in(1) == tst ) {
1252         // Found prior test.  Use "cast_not_null" to construct an identical
1253         // CastPP (and hence hash to) as already exists for the prior test.
1254         // Return that casted value.
1255         if (assert_null) {
1256           replace_in_map(value, null());
1257           return null();  // do not issue the redundant test
1258         }
1259         Node *oldcontrol = control();
1260         set_control(cfg);
1261         Node *res = cast_not_null(value);
1262         set_control(oldcontrol);
1263         explicit_null_checks_elided++;
1264         return res;
1265       }
1266       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1267       if (cfg == NULL)  break;  // Quit at region nodes
1268       depth++;
1269     }
1270   }
1271 
1272   //-----------
1273   // Branch to failure if null
1274   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1275   Deoptimization::DeoptReason reason;
1276   if (assert_null)
1277     reason = Deoptimization::Reason_null_assert;
1278   else if (type == T_OBJECT)
1279     reason = Deoptimization::Reason_null_check;
1280   else
1281     reason = Deoptimization::Reason_div0_check;
1282 
1283   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1284   // ciMethodData::has_trap_at will return a conservative -1 if any
1285   // must-be-null assertion has failed.  This could cause performance
1286   // problems for a method after its first do_null_assert failure.
1287   // Consider using 'Reason_class_check' instead?
1288 
1289   // To cause an implicit null check, we set the not-null probability
1290   // to the maximum (PROB_MAX).  For an explicit check the probability
1291   // is set to a smaller value.
1292   if (null_control != NULL || too_many_traps(reason)) {
1293     // probability is less likely
1294     ok_prob =  PROB_LIKELY_MAG(3);
1295   } else if (!assert_null &&
1296              (ImplicitNullCheckThreshold > 0) &&
1297              method() != NULL &&
1298              (method()->method_data()->trap_count(reason)
1299               >= (uint)ImplicitNullCheckThreshold)) {
1300     ok_prob =  PROB_LIKELY_MAG(3);
1301   }
1302 
1303   if (null_control != NULL) {
1304     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1305     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1306     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1307     if (null_true == top())
1308       explicit_null_checks_elided++;
1309     (*null_control) = null_true;
1310   } else {
1311     BuildCutout unless(this, tst, ok_prob);
1312     // Check for optimizer eliding test at parse time
1313     if (stopped()) {
1314       // Failure not possible; do not bother making uncommon trap.
1315       explicit_null_checks_elided++;
1316     } else if (assert_null) {
1317       uncommon_trap(reason,
1318                     Deoptimization::Action_make_not_entrant,
1319                     NULL, "assert_null");
1320     } else {
1321       replace_in_map(value, zerocon(type));
1322       builtin_throw(reason);
1323     }
1324   }
1325 
1326   // Must throw exception, fall-thru not possible?
1327   if (stopped()) {
1328     return top();               // No result
1329   }
1330 
1331   if (assert_null) {
1332     // Cast obj to null on this path.
1333     replace_in_map(value, zerocon(type));
1334     return zerocon(type);
1335   }
1336 
1337   // Cast obj to not-null on this path, if there is no null_control.
1338   // (If there is a null_control, a non-null value may come back to haunt us.)
1339   if (type == T_OBJECT) {
1340     Node* cast = cast_not_null(value, false);
1341     if (null_control == NULL || (*null_control) == top())
1342       replace_in_map(value, cast);
1343     value = cast;
1344   }
1345 
1346   return value;
1347 }
1348 
1349 
1350 //------------------------------cast_not_null----------------------------------
1351 // Cast obj to not-null on this path
1352 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1353   const Type *t = _gvn.type(obj);
1354   const Type *t_not_null = t->join(TypePtr::NOTNULL);
1355   // Object is already not-null?
1356   if( t == t_not_null ) return obj;
1357 
1358   Node *cast = new (C) CastPPNode(obj,t_not_null);
1359   cast->init_req(0, control());
1360   cast = _gvn.transform( cast );
1361 
1362   // Scan for instances of 'obj' in the current JVM mapping.
1363   // These instances are known to be not-null after the test.
1364   if (do_replace_in_map)
1365     replace_in_map(obj, cast);
1366 
1367   return cast;                  // Return casted value
1368 }
1369 
1370 
1371 //--------------------------replace_in_map-------------------------------------
1372 void GraphKit::replace_in_map(Node* old, Node* neww) {
1373   this->map()->replace_edge(old, neww);
1374 
1375   // Note: This operation potentially replaces any edge
1376   // on the map.  This includes locals, stack, and monitors
1377   // of the current (innermost) JVM state.
1378 
1379   // We can consider replacing in caller maps.
1380   // The idea would be that an inlined function's null checks
1381   // can be shared with the entire inlining tree.
1382   // The expense of doing this is that the PreserveJVMState class
1383   // would have to preserve caller states too, with a deep copy.
1384 }
1385 
1386 
1387 //=============================================================================
1388 //--------------------------------memory---------------------------------------
1389 Node* GraphKit::memory(uint alias_idx) {
1390   MergeMemNode* mem = merged_memory();
1391   Node* p = mem->memory_at(alias_idx);
1392   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1393   return p;
1394 }
1395 
1396 //-----------------------------reset_memory------------------------------------
1397 Node* GraphKit::reset_memory() {
1398   Node* mem = map()->memory();
1399   // do not use this node for any more parsing!
1400   debug_only( map()->set_memory((Node*)NULL) );
1401   return _gvn.transform( mem );
1402 }
1403 
1404 //------------------------------set_all_memory---------------------------------
1405 void GraphKit::set_all_memory(Node* newmem) {
1406   Node* mergemem = MergeMemNode::make(C, newmem);
1407   gvn().set_type_bottom(mergemem);
1408   map()->set_memory(mergemem);
1409 }
1410 
1411 //------------------------------set_all_memory_call----------------------------
1412 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1413   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1414   set_all_memory(newmem);
1415 }
1416 
1417 //=============================================================================
1418 //
1419 // parser factory methods for MemNodes
1420 //
1421 // These are layered on top of the factory methods in LoadNode and StoreNode,
1422 // and integrate with the parser's memory state and _gvn engine.
1423 //
1424 
1425 // factory methods in "int adr_idx"
1426 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1427                           int adr_idx,
1428                           bool require_atomic_access) {
1429   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1430   const TypePtr* adr_type = NULL; // debug-mode-only argument
1431   debug_only(adr_type = C->get_adr_type(adr_idx));
1432   Node* mem = memory(adr_idx);
1433   Node* ld;
1434   if (require_atomic_access && bt == T_LONG) {
1435     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
1436   } else {
1437     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
1438   }
1439   return _gvn.transform(ld);
1440 }
1441 
1442 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1443                                 int adr_idx,
1444                                 bool require_atomic_access) {
1445   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1446   const TypePtr* adr_type = NULL;
1447   debug_only(adr_type = C->get_adr_type(adr_idx));
1448   Node *mem = memory(adr_idx);
1449   Node* st;
1450   if (require_atomic_access && bt == T_LONG) {
1451     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
1452   } else {
1453     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
1454   }
1455   st = _gvn.transform(st);
1456   set_memory(st, adr_idx);
1457   // Back-to-back stores can only remove intermediate store with DU info
1458   // so push on worklist for optimizer.
1459   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1460     record_for_igvn(st);
1461 
1462   return st;
1463 }
1464 
1465 
1466 void GraphKit::pre_barrier(bool do_load,
1467                            Node* ctl,
1468                            Node* obj,
1469                            Node* adr,
1470                            uint  adr_idx,
1471                            Node* val,
1472                            const TypeOopPtr* val_type,
1473                            Node* pre_val,
1474                            BasicType bt) {
1475 
1476   BarrierSet* bs = Universe::heap()->barrier_set();
1477   set_control(ctl);
1478   switch (bs->kind()) {
1479     case BarrierSet::G1SATBCT:
1480     case BarrierSet::G1SATBCTLogging:
1481       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1482       break;
1483 
1484     case BarrierSet::CardTableModRef:
1485     case BarrierSet::CardTableExtension:
1486     case BarrierSet::ModRef:
1487       break;
1488 
1489     case BarrierSet::Other:
1490     default      :
1491       ShouldNotReachHere();
1492 
1493   }
1494 }
1495 
1496 void GraphKit::post_barrier(Node* ctl,
1497                             Node* store,
1498                             Node* obj,
1499                             Node* adr,
1500                             uint  adr_idx,
1501                             Node* val,
1502                             BasicType bt,
1503                             bool use_precise) {
1504   BarrierSet* bs = Universe::heap()->barrier_set();
1505   set_control(ctl);
1506   switch (bs->kind()) {
1507     case BarrierSet::G1SATBCT:
1508     case BarrierSet::G1SATBCTLogging:
1509       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1510       break;
1511 
1512     case BarrierSet::CardTableModRef:
1513     case BarrierSet::CardTableExtension:
1514       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1515       break;
1516 
1517     case BarrierSet::ModRef:
1518       break;
1519 
1520     case BarrierSet::Other:
1521     default      :
1522       ShouldNotReachHere();
1523 
1524   }
1525 }
1526 
1527 Node* GraphKit::store_oop(Node* ctl,
1528                           Node* obj,
1529                           Node* adr,
1530                           const TypePtr* adr_type,
1531                           Node* val,
1532                           const TypeOopPtr* val_type,
1533                           BasicType bt,
1534                           bool use_precise) {
1535   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1536   // could be delayed during Parse (for example, in adjust_map_after_if()).
1537   // Execute transformation here to avoid barrier generation in such case.
1538   if (_gvn.type(val) == TypePtr::NULL_PTR)
1539     val = _gvn.makecon(TypePtr::NULL_PTR);
1540 
1541   set_control(ctl);
1542   if (stopped()) return top(); // Dead path ?
1543 
1544   assert(bt == T_OBJECT, "sanity");
1545   assert(val != NULL, "not dead path");
1546   uint adr_idx = C->get_alias_index(adr_type);
1547   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1548 
1549   pre_barrier(true /* do_load */,
1550               control(), obj, adr, adr_idx, val, val_type,
1551               NULL /* pre_val */,
1552               bt);
1553 
1554   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
1555   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1556   return store;
1557 }
1558 
1559 // Could be an array or object we don't know at compile time (unsafe ref.)
1560 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1561                              Node* obj,   // containing obj
1562                              Node* adr,  // actual adress to store val at
1563                              const TypePtr* adr_type,
1564                              Node* val,
1565                              BasicType bt) {
1566   Compile::AliasType* at = C->alias_type(adr_type);
1567   const TypeOopPtr* val_type = NULL;
1568   if (adr_type->isa_instptr()) {
1569     if (at->field() != NULL) {
1570       // known field.  This code is a copy of the do_put_xxx logic.
1571       ciField* field = at->field();
1572       if (!field->type()->is_loaded()) {
1573         val_type = TypeInstPtr::BOTTOM;
1574       } else {
1575         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1576       }
1577     }
1578   } else if (adr_type->isa_aryptr()) {
1579     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1580   }
1581   if (val_type == NULL) {
1582     val_type = TypeInstPtr::BOTTOM;
1583   }
1584   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
1585 }
1586 
1587 
1588 //-------------------------array_element_address-------------------------
1589 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1590                                       const TypeInt* sizetype) {
1591   uint shift  = exact_log2(type2aelembytes(elembt));
1592   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1593 
1594   // short-circuit a common case (saves lots of confusing waste motion)
1595   jint idx_con = find_int_con(idx, -1);
1596   if (idx_con >= 0) {
1597     intptr_t offset = header + ((intptr_t)idx_con << shift);
1598     return basic_plus_adr(ary, offset);
1599   }
1600 
1601   // must be correct type for alignment purposes
1602   Node* base  = basic_plus_adr(ary, header);
1603 #ifdef _LP64
1604   // The scaled index operand to AddP must be a clean 64-bit value.
1605   // Java allows a 32-bit int to be incremented to a negative
1606   // value, which appears in a 64-bit register as a large
1607   // positive number.  Using that large positive number as an
1608   // operand in pointer arithmetic has bad consequences.
1609   // On the other hand, 32-bit overflow is rare, and the possibility
1610   // can often be excluded, if we annotate the ConvI2L node with
1611   // a type assertion that its value is known to be a small positive
1612   // number.  (The prior range check has ensured this.)
1613   // This assertion is used by ConvI2LNode::Ideal.
1614   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1615   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1616   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1617   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1618 #endif
1619   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1620   return basic_plus_adr(ary, base, scale);
1621 }
1622 
1623 //-------------------------load_array_element-------------------------
1624 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1625   const Type* elemtype = arytype->elem();
1626   BasicType elembt = elemtype->array_element_basic_type();
1627   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1628   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1629   return ld;
1630 }
1631 
1632 //-------------------------set_arguments_for_java_call-------------------------
1633 // Arguments (pre-popped from the stack) are taken from the JVMS.
1634 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1635   // Add the call arguments:
1636   uint nargs = call->method()->arg_size();
1637   for (uint i = 0; i < nargs; i++) {
1638     Node* arg = argument(i);
1639     call->init_req(i + TypeFunc::Parms, arg);
1640   }
1641 }
1642 
1643 //---------------------------set_edges_for_java_call---------------------------
1644 // Connect a newly created call into the current JVMS.
1645 // A return value node (if any) is returned from set_edges_for_java_call.
1646 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1647 
1648   // Add the predefined inputs:
1649   call->init_req( TypeFunc::Control, control() );
1650   call->init_req( TypeFunc::I_O    , i_o() );
1651   call->init_req( TypeFunc::Memory , reset_memory() );
1652   call->init_req( TypeFunc::FramePtr, frameptr() );
1653   call->init_req( TypeFunc::ReturnAdr, top() );
1654 
1655   add_safepoint_edges(call, must_throw);
1656 
1657   Node* xcall = _gvn.transform(call);
1658 
1659   if (xcall == top()) {
1660     set_control(top());
1661     return;
1662   }
1663   assert(xcall == call, "call identity is stable");
1664 
1665   // Re-use the current map to produce the result.
1666 
1667   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1668   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1669   set_all_memory_call(xcall, separate_io_proj);
1670 
1671   //return xcall;   // no need, caller already has it
1672 }
1673 
1674 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1675   if (stopped())  return top();  // maybe the call folded up?
1676 
1677   // Capture the return value, if any.
1678   Node* ret;
1679   if (call->method() == NULL ||
1680       call->method()->return_type()->basic_type() == T_VOID)
1681         ret = top();
1682   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1683 
1684   // Note:  Since any out-of-line call can produce an exception,
1685   // we always insert an I_O projection from the call into the result.
1686 
1687   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1688 
1689   if (separate_io_proj) {
1690     // The caller requested separate projections be used by the fall
1691     // through and exceptional paths, so replace the projections for
1692     // the fall through path.
1693     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1694     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1695   }
1696   return ret;
1697 }
1698 
1699 //--------------------set_predefined_input_for_runtime_call--------------------
1700 // Reading and setting the memory state is way conservative here.
1701 // The real problem is that I am not doing real Type analysis on memory,
1702 // so I cannot distinguish card mark stores from other stores.  Across a GC
1703 // point the Store Barrier and the card mark memory has to agree.  I cannot
1704 // have a card mark store and its barrier split across the GC point from
1705 // either above or below.  Here I get that to happen by reading ALL of memory.
1706 // A better answer would be to separate out card marks from other memory.
1707 // For now, return the input memory state, so that it can be reused
1708 // after the call, if this call has restricted memory effects.
1709 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1710   // Set fixed predefined input arguments
1711   Node* memory = reset_memory();
1712   call->init_req( TypeFunc::Control,   control()  );
1713   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1714   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1715   call->init_req( TypeFunc::FramePtr,  frameptr() );
1716   call->init_req( TypeFunc::ReturnAdr, top()      );
1717   return memory;
1718 }
1719 
1720 //-------------------set_predefined_output_for_runtime_call--------------------
1721 // Set control and memory (not i_o) from the call.
1722 // If keep_mem is not NULL, use it for the output state,
1723 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1724 // If hook_mem is NULL, this call produces no memory effects at all.
1725 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1726 // then only that memory slice is taken from the call.
1727 // In the last case, we must put an appropriate memory barrier before
1728 // the call, so as to create the correct anti-dependencies on loads
1729 // preceding the call.
1730 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1731                                                       Node* keep_mem,
1732                                                       const TypePtr* hook_mem) {
1733   // no i/o
1734   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1735   if (keep_mem) {
1736     // First clone the existing memory state
1737     set_all_memory(keep_mem);
1738     if (hook_mem != NULL) {
1739       // Make memory for the call
1740       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1741       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1742       // We also use hook_mem to extract specific effects from arraycopy stubs.
1743       set_memory(mem, hook_mem);
1744     }
1745     // ...else the call has NO memory effects.
1746 
1747     // Make sure the call advertises its memory effects precisely.
1748     // This lets us build accurate anti-dependences in gcm.cpp.
1749     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1750            "call node must be constructed correctly");
1751   } else {
1752     assert(hook_mem == NULL, "");
1753     // This is not a "slow path" call; all memory comes from the call.
1754     set_all_memory_call(call);
1755   }
1756 }
1757 
1758 
1759 // Replace the call with the current state of the kit.
1760 void GraphKit::replace_call(CallNode* call, Node* result) {
1761   JVMState* ejvms = NULL;
1762   if (has_exceptions()) {
1763     ejvms = transfer_exceptions_into_jvms();
1764   }
1765 
1766   SafePointNode* final_state = stop();
1767 
1768   // Find all the needed outputs of this call
1769   CallProjections callprojs;
1770   call->extract_projections(&callprojs, true);
1771 
1772   // Replace all the old call edges with the edges from the inlining result
1773   C->gvn_replace_by(callprojs.fallthrough_catchproj, final_state->in(TypeFunc::Control));
1774   C->gvn_replace_by(callprojs.fallthrough_memproj,   final_state->in(TypeFunc::Memory));
1775   C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_state->in(TypeFunc::I_O));
1776   Node* final_mem = final_state->in(TypeFunc::Memory);
1777 
1778   // Replace the result with the new result if it exists and is used
1779   if (callprojs.resproj != NULL && result != NULL) {
1780     C->gvn_replace_by(callprojs.resproj, result);
1781   }
1782 
1783   if (ejvms == NULL) {
1784     // No exception edges to simply kill off those paths
1785     C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1786     C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1787     C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1788 
1789     // Replace the old exception object with top
1790     if (callprojs.exobj != NULL) {
1791       C->gvn_replace_by(callprojs.exobj, C->top());
1792     }
1793   } else {
1794     GraphKit ekit(ejvms);
1795 
1796     // Load my combined exception state into the kit, with all phis transformed:
1797     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1798 
1799     Node* ex_oop = ekit.use_exception_state(ex_map);
1800 
1801     C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1802     C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1803     C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1804 
1805     // Replace the old exception object with the newly created one
1806     if (callprojs.exobj != NULL) {
1807       C->gvn_replace_by(callprojs.exobj, ex_oop);
1808     }
1809   }
1810 
1811   // Disconnect the call from the graph
1812   call->disconnect_inputs(NULL);
1813   C->gvn_replace_by(call, C->top());
1814 
1815   // Clean up any MergeMems that feed other MergeMems since the
1816   // optimizer doesn't like that.
1817   if (final_mem->is_MergeMem()) {
1818     Node_List wl;
1819     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1820       Node* m = i.get();
1821       if (m->is_MergeMem() && !wl.contains(m)) {
1822         wl.push(m);
1823       }
1824     }
1825     while (wl.size()  > 0) {
1826       _gvn.transform(wl.pop());
1827     }
1828   }
1829 }
1830 
1831 
1832 //------------------------------increment_counter------------------------------
1833 // for statistics: increment a VM counter by 1
1834 
1835 void GraphKit::increment_counter(address counter_addr) {
1836   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1837   increment_counter(adr1);
1838 }
1839 
1840 void GraphKit::increment_counter(Node* counter_addr) {
1841   int adr_type = Compile::AliasIdxRaw;
1842   Node* ctrl = control();
1843   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type);
1844   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1845   store_to_memory( ctrl, counter_addr, incr, T_INT, adr_type );
1846 }
1847 
1848 
1849 //------------------------------uncommon_trap----------------------------------
1850 // Bail out to the interpreter in mid-method.  Implemented by calling the
1851 // uncommon_trap blob.  This helper function inserts a runtime call with the
1852 // right debug info.
1853 void GraphKit::uncommon_trap(int trap_request,
1854                              ciKlass* klass, const char* comment,
1855                              bool must_throw,
1856                              bool keep_exact_action) {
1857   if (failing())  stop();
1858   if (stopped())  return; // trap reachable?
1859 
1860   // Note:  If ProfileTraps is true, and if a deopt. actually
1861   // occurs here, the runtime will make sure an MDO exists.  There is
1862   // no need to call method()->ensure_method_data() at this point.
1863 
1864 #ifdef ASSERT
1865   if (!must_throw) {
1866     // Make sure the stack has at least enough depth to execute
1867     // the current bytecode.
1868     int inputs, ignore;
1869     if (compute_stack_effects(inputs, ignore)) {
1870       assert(sp() >= inputs, "must have enough JVMS stack to execute");
1871       // It is a frequent error in library_call.cpp to issue an
1872       // uncommon trap with the _sp value already popped.
1873     }
1874   }
1875 #endif
1876 
1877   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1878   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1879 
1880   switch (action) {
1881   case Deoptimization::Action_maybe_recompile:
1882   case Deoptimization::Action_reinterpret:
1883     // Temporary fix for 6529811 to allow virtual calls to be sure they
1884     // get the chance to go from mono->bi->mega
1885     if (!keep_exact_action &&
1886         Deoptimization::trap_request_index(trap_request) < 0 &&
1887         too_many_recompiles(reason)) {
1888       // This BCI is causing too many recompilations.
1889       action = Deoptimization::Action_none;
1890       trap_request = Deoptimization::make_trap_request(reason, action);
1891     } else {
1892       C->set_trap_can_recompile(true);
1893     }
1894     break;
1895   case Deoptimization::Action_make_not_entrant:
1896     C->set_trap_can_recompile(true);
1897     break;
1898 #ifdef ASSERT
1899   case Deoptimization::Action_none:
1900   case Deoptimization::Action_make_not_compilable:
1901     break;
1902   default:
1903     assert(false, "bad action");
1904 #endif
1905   }
1906 
1907   if (TraceOptoParse) {
1908     char buf[100];
1909     tty->print_cr("Uncommon trap %s at bci:%d",
1910                   Deoptimization::format_trap_request(buf, sizeof(buf),
1911                                                       trap_request), bci());
1912   }
1913 
1914   CompileLog* log = C->log();
1915   if (log != NULL) {
1916     int kid = (klass == NULL)? -1: log->identify(klass);
1917     log->begin_elem("uncommon_trap bci='%d'", bci());
1918     char buf[100];
1919     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
1920                                                           trap_request));
1921     if (kid >= 0)         log->print(" klass='%d'", kid);
1922     if (comment != NULL)  log->print(" comment='%s'", comment);
1923     log->end_elem();
1924   }
1925 
1926   // Make sure any guarding test views this path as very unlikely
1927   Node *i0 = control()->in(0);
1928   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
1929     IfNode *iff = i0->as_If();
1930     float f = iff->_prob;   // Get prob
1931     if (control()->Opcode() == Op_IfTrue) {
1932       if (f > PROB_UNLIKELY_MAG(4))
1933         iff->_prob = PROB_MIN;
1934     } else {
1935       if (f < PROB_LIKELY_MAG(4))
1936         iff->_prob = PROB_MAX;
1937     }
1938   }
1939 
1940   // Clear out dead values from the debug info.
1941   kill_dead_locals();
1942 
1943   // Now insert the uncommon trap subroutine call
1944   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
1945   const TypePtr* no_memory_effects = NULL;
1946   // Pass the index of the class to be loaded
1947   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
1948                                  (must_throw ? RC_MUST_THROW : 0),
1949                                  OptoRuntime::uncommon_trap_Type(),
1950                                  call_addr, "uncommon_trap", no_memory_effects,
1951                                  intcon(trap_request));
1952   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
1953          "must extract request correctly from the graph");
1954   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
1955 
1956   call->set_req(TypeFunc::ReturnAdr, returnadr());
1957   // The debug info is the only real input to this call.
1958 
1959   // Halt-and-catch fire here.  The above call should never return!
1960   HaltNode* halt = new(C) HaltNode(control(), frameptr());
1961   _gvn.set_type_bottom(halt);
1962   root()->add_req(halt);
1963 
1964   stop_and_kill_map();
1965 }
1966 
1967 
1968 //--------------------------just_allocated_object------------------------------
1969 // Report the object that was just allocated.
1970 // It must be the case that there are no intervening safepoints.
1971 // We use this to determine if an object is so "fresh" that
1972 // it does not require card marks.
1973 Node* GraphKit::just_allocated_object(Node* current_control) {
1974   if (C->recent_alloc_ctl() == current_control)
1975     return C->recent_alloc_obj();
1976   return NULL;
1977 }
1978 
1979 
1980 void GraphKit::round_double_arguments(ciMethod* dest_method) {
1981   // (Note:  TypeFunc::make has a cache that makes this fast.)
1982   const TypeFunc* tf    = TypeFunc::make(dest_method);
1983   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
1984   for (int j = 0; j < nargs; j++) {
1985     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
1986     if( targ->basic_type() == T_DOUBLE ) {
1987       // If any parameters are doubles, they must be rounded before
1988       // the call, dstore_rounding does gvn.transform
1989       Node *arg = argument(j);
1990       arg = dstore_rounding(arg);
1991       set_argument(j, arg);
1992     }
1993   }
1994 }
1995 
1996 void GraphKit::round_double_result(ciMethod* dest_method) {
1997   // A non-strict method may return a double value which has an extended
1998   // exponent, but this must not be visible in a caller which is 'strict'
1999   // If a strict caller invokes a non-strict callee, round a double result
2000 
2001   BasicType result_type = dest_method->return_type()->basic_type();
2002   assert( method() != NULL, "must have caller context");
2003   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2004     // Destination method's return value is on top of stack
2005     // dstore_rounding() does gvn.transform
2006     Node *result = pop_pair();
2007     result = dstore_rounding(result);
2008     push_pair(result);
2009   }
2010 }
2011 
2012 // rounding for strict float precision conformance
2013 Node* GraphKit::precision_rounding(Node* n) {
2014   return UseStrictFP && _method->flags().is_strict()
2015     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2016     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2017     : n;
2018 }
2019 
2020 // rounding for strict double precision conformance
2021 Node* GraphKit::dprecision_rounding(Node *n) {
2022   return UseStrictFP && _method->flags().is_strict()
2023     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2024     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2025     : n;
2026 }
2027 
2028 // rounding for non-strict double stores
2029 Node* GraphKit::dstore_rounding(Node* n) {
2030   return Matcher::strict_fp_requires_explicit_rounding
2031     && UseSSE <= 1
2032     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2033     : n;
2034 }
2035 
2036 //=============================================================================
2037 // Generate a fast path/slow path idiom.  Graph looks like:
2038 // [foo] indicates that 'foo' is a parameter
2039 //
2040 //              [in]     NULL
2041 //                 \    /
2042 //                  CmpP
2043 //                  Bool ne
2044 //                   If
2045 //                  /  \
2046 //              True    False-<2>
2047 //              / |
2048 //             /  cast_not_null
2049 //           Load  |    |   ^
2050 //        [fast_test]   |   |
2051 // gvn to   opt_test    |   |
2052 //          /    \      |  <1>
2053 //      True     False  |
2054 //        |         \\  |
2055 //   [slow_call]     \[fast_result]
2056 //    Ctl   Val       \      \
2057 //     |               \      \
2058 //    Catch       <1>   \      \
2059 //   /    \        ^     \      \
2060 //  Ex    No_Ex    |      \      \
2061 //  |       \   \  |       \ <2>  \
2062 //  ...      \  [slow_res] |  |    \   [null_result]
2063 //            \         \--+--+---  |  |
2064 //             \           | /    \ | /
2065 //              --------Region     Phi
2066 //
2067 //=============================================================================
2068 // Code is structured as a series of driver functions all called 'do_XXX' that
2069 // call a set of helper functions.  Helper functions first, then drivers.
2070 
2071 //------------------------------null_check_oop---------------------------------
2072 // Null check oop.  Set null-path control into Region in slot 3.
2073 // Make a cast-not-nullness use the other not-null control.  Return cast.
2074 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2075                                bool never_see_null) {
2076   // Initial NULL check taken path
2077   (*null_control) = top();
2078   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2079 
2080   // Generate uncommon_trap:
2081   if (never_see_null && (*null_control) != top()) {
2082     // If we see an unexpected null at a check-cast we record it and force a
2083     // recompile; the offending check-cast will be compiled to handle NULLs.
2084     // If we see more than one offending BCI, then all checkcasts in the
2085     // method will be compiled to handle NULLs.
2086     PreserveJVMState pjvms(this);
2087     set_control(*null_control);
2088     replace_in_map(value, null());
2089     uncommon_trap(Deoptimization::Reason_null_check,
2090                   Deoptimization::Action_make_not_entrant);
2091     (*null_control) = top();    // NULL path is dead
2092   }
2093 
2094   // Cast away null-ness on the result
2095   return cast;
2096 }
2097 
2098 //------------------------------opt_iff----------------------------------------
2099 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2100 // Return slow-path control.
2101 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2102   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2103 
2104   // Fast path taken; set region slot 2
2105   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2106   region->init_req(2,fast_taken); // Capture fast-control
2107 
2108   // Fast path not-taken, i.e. slow path
2109   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2110   return slow_taken;
2111 }
2112 
2113 //-----------------------------make_runtime_call-------------------------------
2114 Node* GraphKit::make_runtime_call(int flags,
2115                                   const TypeFunc* call_type, address call_addr,
2116                                   const char* call_name,
2117                                   const TypePtr* adr_type,
2118                                   // The following parms are all optional.
2119                                   // The first NULL ends the list.
2120                                   Node* parm0, Node* parm1,
2121                                   Node* parm2, Node* parm3,
2122                                   Node* parm4, Node* parm5,
2123                                   Node* parm6, Node* parm7) {
2124   // Slow-path call
2125   bool is_leaf = !(flags & RC_NO_LEAF);
2126   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2127   if (call_name == NULL) {
2128     assert(!is_leaf, "must supply name for leaf");
2129     call_name = OptoRuntime::stub_name(call_addr);
2130   }
2131   CallNode* call;
2132   if (!is_leaf) {
2133     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2134                                            bci(), adr_type);
2135   } else if (flags & RC_NO_FP) {
2136     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2137   } else {
2138     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2139   }
2140 
2141   // The following is similar to set_edges_for_java_call,
2142   // except that the memory effects of the call are restricted to AliasIdxRaw.
2143 
2144   // Slow path call has no side-effects, uses few values
2145   bool wide_in  = !(flags & RC_NARROW_MEM);
2146   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2147 
2148   Node* prev_mem = NULL;
2149   if (wide_in) {
2150     prev_mem = set_predefined_input_for_runtime_call(call);
2151   } else {
2152     assert(!wide_out, "narrow in => narrow out");
2153     Node* narrow_mem = memory(adr_type);
2154     prev_mem = reset_memory();
2155     map()->set_memory(narrow_mem);
2156     set_predefined_input_for_runtime_call(call);
2157   }
2158 
2159   // Hook each parm in order.  Stop looking at the first NULL.
2160   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2161   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2162   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2163   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2164   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2165   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2166   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2167   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2168     /* close each nested if ===> */  } } } } } } } }
2169   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2170 
2171   if (!is_leaf) {
2172     // Non-leaves can block and take safepoints:
2173     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2174   }
2175   // Non-leaves can throw exceptions:
2176   if (has_io) {
2177     call->set_req(TypeFunc::I_O, i_o());
2178   }
2179 
2180   if (flags & RC_UNCOMMON) {
2181     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2182     // (An "if" probability corresponds roughly to an unconditional count.
2183     // Sort of.)
2184     call->set_cnt(PROB_UNLIKELY_MAG(4));
2185   }
2186 
2187   Node* c = _gvn.transform(call);
2188   assert(c == call, "cannot disappear");
2189 
2190   if (wide_out) {
2191     // Slow path call has full side-effects.
2192     set_predefined_output_for_runtime_call(call);
2193   } else {
2194     // Slow path call has few side-effects, and/or sets few values.
2195     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2196   }
2197 
2198   if (has_io) {
2199     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2200   }
2201   return call;
2202 
2203 }
2204 
2205 //------------------------------merge_memory-----------------------------------
2206 // Merge memory from one path into the current memory state.
2207 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2208   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2209     Node* old_slice = mms.force_memory();
2210     Node* new_slice = mms.memory2();
2211     if (old_slice != new_slice) {
2212       PhiNode* phi;
2213       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2214         phi = new_slice->as_Phi();
2215         #ifdef ASSERT
2216         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2217           old_slice = old_slice->in(new_path);
2218         // Caller is responsible for ensuring that any pre-existing
2219         // phis are already aware of old memory.
2220         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2221         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2222         #endif
2223         mms.set_memory(phi);
2224       } else {
2225         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2226         _gvn.set_type(phi, Type::MEMORY);
2227         phi->set_req(new_path, new_slice);
2228         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2229       }
2230     }
2231   }
2232 }
2233 
2234 //------------------------------make_slow_call_ex------------------------------
2235 // Make the exception handler hookups for the slow call
2236 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2237   if (stopped())  return;
2238 
2239   // Make a catch node with just two handlers:  fall-through and catch-all
2240   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2241   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2242   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2243   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2244 
2245   { PreserveJVMState pjvms(this);
2246     set_control(excp);
2247     set_i_o(i_o);
2248 
2249     if (excp != top()) {
2250       // Create an exception state also.
2251       // Use an exact type if the caller has specified a specific exception.
2252       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2253       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2254       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2255     }
2256   }
2257 
2258   // Get the no-exception control from the CatchNode.
2259   set_control(norm);
2260 }
2261 
2262 
2263 //-------------------------------gen_subtype_check-----------------------------
2264 // Generate a subtyping check.  Takes as input the subtype and supertype.
2265 // Returns 2 values: sets the default control() to the true path and returns
2266 // the false path.  Only reads invariant memory; sets no (visible) memory.
2267 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2268 // but that's not exposed to the optimizer.  This call also doesn't take in an
2269 // Object; if you wish to check an Object you need to load the Object's class
2270 // prior to coming here.
2271 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2272   // Fast check for identical types, perhaps identical constants.
2273   // The types can even be identical non-constants, in cases
2274   // involving Array.newInstance, Object.clone, etc.
2275   if (subklass == superklass)
2276     return top();             // false path is dead; no test needed.
2277 
2278   if (_gvn.type(superklass)->singleton()) {
2279     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2280     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2281 
2282     // In the common case of an exact superklass, try to fold up the
2283     // test before generating code.  You may ask, why not just generate
2284     // the code and then let it fold up?  The answer is that the generated
2285     // code will necessarily include null checks, which do not always
2286     // completely fold away.  If they are also needless, then they turn
2287     // into a performance loss.  Example:
2288     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2289     // Here, the type of 'fa' is often exact, so the store check
2290     // of fa[1]=x will fold up, without testing the nullness of x.
2291     switch (static_subtype_check(superk, subk)) {
2292     case SSC_always_false:
2293       {
2294         Node* always_fail = control();
2295         set_control(top());
2296         return always_fail;
2297       }
2298     case SSC_always_true:
2299       return top();
2300     case SSC_easy_test:
2301       {
2302         // Just do a direct pointer compare and be done.
2303         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2304         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2305         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2306         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2307         return       _gvn.transform( new(C) IfFalseNode(iff) );
2308       }
2309     case SSC_full_test:
2310       break;
2311     default:
2312       ShouldNotReachHere();
2313     }
2314   }
2315 
2316   // %%% Possible further optimization:  Even if the superklass is not exact,
2317   // if the subklass is the unique subtype of the superklass, the check
2318   // will always succeed.  We could leave a dependency behind to ensure this.
2319 
2320   // First load the super-klass's check-offset
2321   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2322   Node *chk_off = _gvn.transform( new (C) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2323   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2324   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2325 
2326   // Load from the sub-klass's super-class display list, or a 1-word cache of
2327   // the secondary superclass list, or a failing value with a sentinel offset
2328   // if the super-klass is an interface or exceptionally deep in the Java
2329   // hierarchy and we have to scan the secondary superclass list the hard way.
2330   // Worst-case type is a little odd: NULL is allowed as a result (usually
2331   // klass loads can never produce a NULL).
2332   Node *chk_off_X = ConvI2X(chk_off);
2333   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2334   // For some types like interfaces the following loadKlass is from a 1-word
2335   // cache which is mutable so can't use immutable memory.  Other
2336   // types load from the super-class display table which is immutable.
2337   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2338   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2339 
2340   // Compile speed common case: ARE a subtype and we canNOT fail
2341   if( superklass == nkls )
2342     return top();             // false path is dead; no test needed.
2343 
2344   // See if we get an immediate positive hit.  Happens roughly 83% of the
2345   // time.  Test to see if the value loaded just previously from the subklass
2346   // is exactly the superklass.
2347   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2348   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2349   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2350   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2351   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2352 
2353   // Compile speed common case: Check for being deterministic right now.  If
2354   // chk_off is a constant and not equal to cacheoff then we are NOT a
2355   // subklass.  In this case we need exactly the 1 test above and we can
2356   // return those results immediately.
2357   if (!might_be_cache) {
2358     Node* not_subtype_ctrl = control();
2359     set_control(iftrue1); // We need exactly the 1 test above
2360     return not_subtype_ctrl;
2361   }
2362 
2363   // Gather the various success & failures here
2364   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2365   record_for_igvn(r_ok_subtype);
2366   RegionNode *r_not_subtype = new (C) RegionNode(3);
2367   record_for_igvn(r_not_subtype);
2368 
2369   r_ok_subtype->init_req(1, iftrue1);
2370 
2371   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2372   // is roughly 63% of the remaining cases).  Test to see if the loaded
2373   // check-offset points into the subklass display list or the 1-element
2374   // cache.  If it points to the display (and NOT the cache) and the display
2375   // missed then it's not a subtype.
2376   Node *cacheoff = _gvn.intcon(cacheoff_con);
2377   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2378   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2379   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2380   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2381   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2382 
2383   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2384   // No performance impact (too rare) but allows sharing of secondary arrays
2385   // which has some footprint reduction.
2386   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2387   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2388   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2389   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2390   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2391 
2392   // -- Roads not taken here: --
2393   // We could also have chosen to perform the self-check at the beginning
2394   // of this code sequence, as the assembler does.  This would not pay off
2395   // the same way, since the optimizer, unlike the assembler, can perform
2396   // static type analysis to fold away many successful self-checks.
2397   // Non-foldable self checks work better here in second position, because
2398   // the initial primary superclass check subsumes a self-check for most
2399   // types.  An exception would be a secondary type like array-of-interface,
2400   // which does not appear in its own primary supertype display.
2401   // Finally, we could have chosen to move the self-check into the
2402   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2403   // dependent manner.  But it is worthwhile to have the check here,
2404   // where it can be perhaps be optimized.  The cost in code space is
2405   // small (register compare, branch).
2406 
2407   // Now do a linear scan of the secondary super-klass array.  Again, no real
2408   // performance impact (too rare) but it's gotta be done.
2409   // Since the code is rarely used, there is no penalty for moving it
2410   // out of line, and it can only improve I-cache density.
2411   // The decision to inline or out-of-line this final check is platform
2412   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2413   Node* psc = _gvn.transform(
2414     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2415 
2416   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2417   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2418   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2419   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2420   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2421 
2422   // Return false path; set default control to true path.
2423   set_control( _gvn.transform(r_ok_subtype) );
2424   return _gvn.transform(r_not_subtype);
2425 }
2426 
2427 //----------------------------static_subtype_check-----------------------------
2428 // Shortcut important common cases when superklass is exact:
2429 // (0) superklass is java.lang.Object (can occur in reflective code)
2430 // (1) subklass is already limited to a subtype of superklass => always ok
2431 // (2) subklass does not overlap with superklass => always fail
2432 // (3) superklass has NO subtypes and we can check with a simple compare.
2433 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2434   if (StressReflectiveCode) {
2435     return SSC_full_test;       // Let caller generate the general case.
2436   }
2437 
2438   if (superk == env()->Object_klass()) {
2439     return SSC_always_true;     // (0) this test cannot fail
2440   }
2441 
2442   ciType* superelem = superk;
2443   if (superelem->is_array_klass())
2444     superelem = superelem->as_array_klass()->base_element_type();
2445 
2446   if (!subk->is_interface()) {  // cannot trust static interface types yet
2447     if (subk->is_subtype_of(superk)) {
2448       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2449     }
2450     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2451         !superk->is_subtype_of(subk)) {
2452       return SSC_always_false;
2453     }
2454   }
2455 
2456   // If casting to an instance klass, it must have no subtypes
2457   if (superk->is_interface()) {
2458     // Cannot trust interfaces yet.
2459     // %%% S.B. superk->nof_implementors() == 1
2460   } else if (superelem->is_instance_klass()) {
2461     ciInstanceKlass* ik = superelem->as_instance_klass();
2462     if (!ik->has_subklass() && !ik->is_interface()) {
2463       if (!ik->is_final()) {
2464         // Add a dependency if there is a chance of a later subclass.
2465         C->dependencies()->assert_leaf_type(ik);
2466       }
2467       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2468     }
2469   } else {
2470     // A primitive array type has no subtypes.
2471     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2472   }
2473 
2474   return SSC_full_test;
2475 }
2476 
2477 // Profile-driven exact type check:
2478 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2479                                     float prob,
2480                                     Node* *casted_receiver) {
2481   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2482   Node* recv_klass = load_object_klass(receiver);
2483   Node* want_klass = makecon(tklass);
2484   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2485   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2486   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2487   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2488   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2489 
2490   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2491   assert(recv_xtype->klass_is_exact(), "");
2492 
2493   // Subsume downstream occurrences of receiver with a cast to
2494   // recv_xtype, since now we know what the type will be.
2495   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2496   (*casted_receiver) = _gvn.transform(cast);
2497   // (User must make the replace_in_map call.)
2498 
2499   return fail;
2500 }
2501 
2502 
2503 //------------------------------seems_never_null-------------------------------
2504 // Use null_seen information if it is available from the profile.
2505 // If we see an unexpected null at a type check we record it and force a
2506 // recompile; the offending check will be recompiled to handle NULLs.
2507 // If we see several offending BCIs, then all checks in the
2508 // method will be recompiled.
2509 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2510   if (UncommonNullCast               // Cutout for this technique
2511       && obj != null()               // And not the -Xcomp stupid case?
2512       && !too_many_traps(Deoptimization::Reason_null_check)
2513       ) {
2514     if (data == NULL)
2515       // Edge case:  no mature data.  Be optimistic here.
2516       return true;
2517     // If the profile has not seen a null, assume it won't happen.
2518     assert(java_bc() == Bytecodes::_checkcast ||
2519            java_bc() == Bytecodes::_instanceof ||
2520            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2521     return !data->as_BitData()->null_seen();
2522   }
2523   return false;
2524 }
2525 
2526 //------------------------maybe_cast_profiled_receiver-------------------------
2527 // If the profile has seen exactly one type, narrow to exactly that type.
2528 // Subsequent type checks will always fold up.
2529 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2530                                              ciProfileData* data,
2531                                              ciKlass* require_klass) {
2532   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2533   if (data == NULL)  return NULL;
2534 
2535   // Make sure we haven't already deoptimized from this tactic.
2536   if (too_many_traps(Deoptimization::Reason_class_check))
2537     return NULL;
2538 
2539   // (No, this isn't a call, but it's enough like a virtual call
2540   // to use the same ciMethod accessor to get the profile info...)
2541   ciCallProfile profile = method()->call_profile_at_bci(bci());
2542   if (profile.count() >= 0 &&         // no cast failures here
2543       profile.has_receiver(0) &&
2544       profile.morphism() == 1) {
2545     ciKlass* exact_kls = profile.receiver(0);
2546     if (require_klass == NULL ||
2547         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2548       // If we narrow the type to match what the type profile sees,
2549       // we can then remove the rest of the cast.
2550       // This is a win, even if the exact_kls is very specific,
2551       // because downstream operations, such as method calls,
2552       // will often benefit from the sharper type.
2553       Node* exact_obj = not_null_obj; // will get updated in place...
2554       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2555                                             &exact_obj);
2556       { PreserveJVMState pjvms(this);
2557         set_control(slow_ctl);
2558         uncommon_trap(Deoptimization::Reason_class_check,
2559                       Deoptimization::Action_maybe_recompile);
2560       }
2561       replace_in_map(not_null_obj, exact_obj);
2562       return exact_obj;
2563     }
2564     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2565   }
2566 
2567   return NULL;
2568 }
2569 
2570 
2571 //-------------------------------gen_instanceof--------------------------------
2572 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2573 // and the reflective instance-of call.
2574 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass) {
2575   kill_dead_locals();           // Benefit all the uncommon traps
2576   assert( !stopped(), "dead parse path should be checked in callers" );
2577   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2578          "must check for not-null not-dead klass in callers");
2579 
2580   // Make the merge point
2581   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2582   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2583   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2584   C->set_has_split_ifs(true); // Has chance for split-if optimization
2585 
2586   ciProfileData* data = NULL;
2587   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2588     data = method()->method_data()->bci_to_data(bci());
2589   }
2590   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2591                          && seems_never_null(obj, data));
2592 
2593   // Null check; get casted pointer; set region slot 3
2594   Node* null_ctl = top();
2595   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2596 
2597   // If not_null_obj is dead, only null-path is taken
2598   if (stopped()) {              // Doing instance-of on a NULL?
2599     set_control(null_ctl);
2600     return intcon(0);
2601   }
2602   region->init_req(_null_path, null_ctl);
2603   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2604   if (null_ctl == top()) {
2605     // Do this eagerly, so that pattern matches like is_diamond_phi
2606     // will work even during parsing.
2607     assert(_null_path == PATH_LIMIT-1, "delete last");
2608     region->del_req(_null_path);
2609     phi   ->del_req(_null_path);
2610   }
2611 
2612   if (ProfileDynamicTypes && data != NULL) {
2613     Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, NULL);
2614     if (stopped()) {            // Profile disagrees with this path.
2615       set_control(null_ctl);    // Null is the only remaining possibility.
2616       return intcon(0);
2617     }
2618     if (cast_obj != NULL)
2619       not_null_obj = cast_obj;
2620   }
2621 
2622   // Load the object's klass
2623   Node* obj_klass = load_object_klass(not_null_obj);
2624 
2625   // Generate the subtype check
2626   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2627 
2628   // Plug in the success path to the general merge in slot 1.
2629   region->init_req(_obj_path, control());
2630   phi   ->init_req(_obj_path, intcon(1));
2631 
2632   // Plug in the failing path to the general merge in slot 2.
2633   region->init_req(_fail_path, not_subtype_ctrl);
2634   phi   ->init_req(_fail_path, intcon(0));
2635 
2636   // Return final merged results
2637   set_control( _gvn.transform(region) );
2638   record_for_igvn(region);
2639   return _gvn.transform(phi);
2640 }
2641 
2642 //-------------------------------gen_checkcast---------------------------------
2643 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2644 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2645 // uncommon-trap paths work.  Adjust stack after this call.
2646 // If failure_control is supplied and not null, it is filled in with
2647 // the control edge for the cast failure.  Otherwise, an appropriate
2648 // uncommon trap or exception is thrown.
2649 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2650                               Node* *failure_control) {
2651   kill_dead_locals();           // Benefit all the uncommon traps
2652   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2653   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2654 
2655   // Fast cutout:  Check the case that the cast is vacuously true.
2656   // This detects the common cases where the test will short-circuit
2657   // away completely.  We do this before we perform the null check,
2658   // because if the test is going to turn into zero code, we don't
2659   // want a residual null check left around.  (Causes a slowdown,
2660   // for example, in some objArray manipulations, such as a[i]=a[j].)
2661   if (tk->singleton()) {
2662     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2663     if (objtp != NULL && objtp->klass() != NULL) {
2664       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2665       case SSC_always_true:
2666         return obj;
2667       case SSC_always_false:
2668         // It needs a null check because a null will *pass* the cast check.
2669         // A non-null value will always produce an exception.
2670         return do_null_assert(obj, T_OBJECT);
2671       }
2672     }
2673   }
2674 
2675   ciProfileData* data = NULL;
2676   if (failure_control == NULL) {        // use MDO in regular case only
2677     assert(java_bc() == Bytecodes::_aastore ||
2678            java_bc() == Bytecodes::_checkcast,
2679            "interpreter profiles type checks only for these BCs");
2680     data = method()->method_data()->bci_to_data(bci());
2681   }
2682 
2683   // Make the merge point
2684   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2685   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
2686   Node*       phi    = new (C) PhiNode(region, toop);
2687   C->set_has_split_ifs(true); // Has chance for split-if optimization
2688 
2689   // Use null-cast information if it is available
2690   bool never_see_null = ((failure_control == NULL)  // regular case only
2691                          && seems_never_null(obj, data));
2692 
2693   // Null check; get casted pointer; set region slot 3
2694   Node* null_ctl = top();
2695   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2696 
2697   // If not_null_obj is dead, only null-path is taken
2698   if (stopped()) {              // Doing instance-of on a NULL?
2699     set_control(null_ctl);
2700     return null();
2701   }
2702   region->init_req(_null_path, null_ctl);
2703   phi   ->init_req(_null_path, null());  // Set null path value
2704   if (null_ctl == top()) {
2705     // Do this eagerly, so that pattern matches like is_diamond_phi
2706     // will work even during parsing.
2707     assert(_null_path == PATH_LIMIT-1, "delete last");
2708     region->del_req(_null_path);
2709     phi   ->del_req(_null_path);
2710   }
2711 
2712   Node* cast_obj = NULL;
2713   if (data != NULL &&
2714       // Counter has never been decremented (due to cast failure).
2715       // ...This is a reasonable thing to expect.  It is true of
2716       // all casts inserted by javac to implement generic types.
2717       data->as_CounterData()->count() >= 0) {
2718     cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, tk->klass());
2719     if (cast_obj != NULL) {
2720       if (failure_control != NULL) // failure is now impossible
2721         (*failure_control) = top();
2722       // adjust the type of the phi to the exact klass:
2723       phi->raise_bottom_type(_gvn.type(cast_obj)->meet(TypePtr::NULL_PTR));
2724     }
2725   }
2726 
2727   if (cast_obj == NULL) {
2728     // Load the object's klass
2729     Node* obj_klass = load_object_klass(not_null_obj);
2730 
2731     // Generate the subtype check
2732     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
2733 
2734     // Plug in success path into the merge
2735     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
2736                                                          not_null_obj, toop));
2737     // Failure path ends in uncommon trap (or may be dead - failure impossible)
2738     if (failure_control == NULL) {
2739       if (not_subtype_ctrl != top()) { // If failure is possible
2740         PreserveJVMState pjvms(this);
2741         set_control(not_subtype_ctrl);
2742         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
2743       }
2744     } else {
2745       (*failure_control) = not_subtype_ctrl;
2746     }
2747   }
2748 
2749   region->init_req(_obj_path, control());
2750   phi   ->init_req(_obj_path, cast_obj);
2751 
2752   // A merge of NULL or Casted-NotNull obj
2753   Node* res = _gvn.transform(phi);
2754 
2755   // Note I do NOT always 'replace_in_map(obj,result)' here.
2756   //  if( tk->klass()->can_be_primary_super()  )
2757     // This means that if I successfully store an Object into an array-of-String
2758     // I 'forget' that the Object is really now known to be a String.  I have to
2759     // do this because we don't have true union types for interfaces - if I store
2760     // a Baz into an array-of-Interface and then tell the optimizer it's an
2761     // Interface, I forget that it's also a Baz and cannot do Baz-like field
2762     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
2763   //  replace_in_map( obj, res );
2764 
2765   // Return final merged results
2766   set_control( _gvn.transform(region) );
2767   record_for_igvn(region);
2768   return res;
2769 }
2770 
2771 //------------------------------next_monitor-----------------------------------
2772 // What number should be given to the next monitor?
2773 int GraphKit::next_monitor() {
2774   int current = jvms()->monitor_depth()* C->sync_stack_slots();
2775   int next = current + C->sync_stack_slots();
2776   // Keep the toplevel high water mark current:
2777   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
2778   return current;
2779 }
2780 
2781 //------------------------------insert_mem_bar---------------------------------
2782 // Memory barrier to avoid floating things around
2783 // The membar serves as a pinch point between both control and all memory slices.
2784 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
2785   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
2786   mb->init_req(TypeFunc::Control, control());
2787   mb->init_req(TypeFunc::Memory,  reset_memory());
2788   Node* membar = _gvn.transform(mb);
2789   set_control(_gvn.transform(new (C) ProjNode(membar,TypeFunc::Control) ));
2790   set_all_memory_call(membar);
2791   return membar;
2792 }
2793 
2794 //-------------------------insert_mem_bar_volatile----------------------------
2795 // Memory barrier to avoid floating things around
2796 // The membar serves as a pinch point between both control and memory(alias_idx).
2797 // If you want to make a pinch point on all memory slices, do not use this
2798 // function (even with AliasIdxBot); use insert_mem_bar() instead.
2799 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
2800   // When Parse::do_put_xxx updates a volatile field, it appends a series
2801   // of MemBarVolatile nodes, one for *each* volatile field alias category.
2802   // The first membar is on the same memory slice as the field store opcode.
2803   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
2804   // All the other membars (for other volatile slices, including AliasIdxBot,
2805   // which stands for all unknown volatile slices) are control-dependent
2806   // on the first membar.  This prevents later volatile loads or stores
2807   // from sliding up past the just-emitted store.
2808 
2809   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
2810   mb->set_req(TypeFunc::Control,control());
2811   if (alias_idx == Compile::AliasIdxBot) {
2812     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
2813   } else {
2814     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
2815     mb->set_req(TypeFunc::Memory, memory(alias_idx));
2816   }
2817   Node* membar = _gvn.transform(mb);
2818   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
2819   if (alias_idx == Compile::AliasIdxBot) {
2820     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
2821   } else {
2822     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
2823   }
2824   return membar;
2825 }
2826 
2827 //------------------------------shared_lock------------------------------------
2828 // Emit locking code.
2829 FastLockNode* GraphKit::shared_lock(Node* obj) {
2830   // bci is either a monitorenter bc or InvocationEntryBci
2831   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2832   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2833 
2834   if( !GenerateSynchronizationCode )
2835     return NULL;                // Not locking things?
2836   if (stopped())                // Dead monitor?
2837     return NULL;
2838 
2839   assert(dead_locals_are_killed(), "should kill locals before sync. point");
2840 
2841   // Box the stack location
2842   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
2843   Node* mem = reset_memory();
2844 
2845   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
2846   if (PrintPreciseBiasedLockingStatistics) {
2847     // Create the counters for this fast lock.
2848     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
2849   }
2850   // Add monitor to debug info for the slow path.  If we block inside the
2851   // slow path and de-opt, we need the monitor hanging around
2852   map()->push_monitor( flock );
2853 
2854   const TypeFunc *tf = LockNode::lock_type();
2855   LockNode *lock = new (C) LockNode(C, tf);
2856 
2857   lock->init_req( TypeFunc::Control, control() );
2858   lock->init_req( TypeFunc::Memory , mem );
2859   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2860   lock->init_req( TypeFunc::FramePtr, frameptr() );
2861   lock->init_req( TypeFunc::ReturnAdr, top() );
2862 
2863   lock->init_req(TypeFunc::Parms + 0, obj);
2864   lock->init_req(TypeFunc::Parms + 1, box);
2865   lock->init_req(TypeFunc::Parms + 2, flock);
2866   add_safepoint_edges(lock);
2867 
2868   lock = _gvn.transform( lock )->as_Lock();
2869 
2870   // lock has no side-effects, sets few values
2871   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
2872 
2873   insert_mem_bar(Op_MemBarAcquireLock);
2874 
2875   // Add this to the worklist so that the lock can be eliminated
2876   record_for_igvn(lock);
2877 
2878 #ifndef PRODUCT
2879   if (PrintLockStatistics) {
2880     // Update the counter for this lock.  Don't bother using an atomic
2881     // operation since we don't require absolute accuracy.
2882     lock->create_lock_counter(map()->jvms());
2883     increment_counter(lock->counter()->addr());
2884   }
2885 #endif
2886 
2887   return flock;
2888 }
2889 
2890 
2891 //------------------------------shared_unlock----------------------------------
2892 // Emit unlocking code.
2893 void GraphKit::shared_unlock(Node* box, Node* obj) {
2894   // bci is either a monitorenter bc or InvocationEntryBci
2895   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2896   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2897 
2898   if( !GenerateSynchronizationCode )
2899     return;
2900   if (stopped()) {               // Dead monitor?
2901     map()->pop_monitor();        // Kill monitor from debug info
2902     return;
2903   }
2904 
2905   // Memory barrier to avoid floating things down past the locked region
2906   insert_mem_bar(Op_MemBarReleaseLock);
2907 
2908   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
2909   UnlockNode *unlock = new (C) UnlockNode(C, tf);
2910   uint raw_idx = Compile::AliasIdxRaw;
2911   unlock->init_req( TypeFunc::Control, control() );
2912   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
2913   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2914   unlock->init_req( TypeFunc::FramePtr, frameptr() );
2915   unlock->init_req( TypeFunc::ReturnAdr, top() );
2916 
2917   unlock->init_req(TypeFunc::Parms + 0, obj);
2918   unlock->init_req(TypeFunc::Parms + 1, box);
2919   unlock = _gvn.transform(unlock)->as_Unlock();
2920 
2921   Node* mem = reset_memory();
2922 
2923   // unlock has no side-effects, sets few values
2924   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
2925 
2926   // Kill monitor from debug info
2927   map()->pop_monitor( );
2928 }
2929 
2930 //-------------------------------get_layout_helper-----------------------------
2931 // If the given klass is a constant or known to be an array,
2932 // fetch the constant layout helper value into constant_value
2933 // and return (Node*)NULL.  Otherwise, load the non-constant
2934 // layout helper value, and return the node which represents it.
2935 // This two-faced routine is useful because allocation sites
2936 // almost always feature constant types.
2937 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
2938   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
2939   if (!StressReflectiveCode && inst_klass != NULL) {
2940     ciKlass* klass = inst_klass->klass();
2941     bool    xklass = inst_klass->klass_is_exact();
2942     if (xklass || klass->is_array_klass()) {
2943       jint lhelper = klass->layout_helper();
2944       if (lhelper != Klass::_lh_neutral_value) {
2945         constant_value = lhelper;
2946         return (Node*) NULL;
2947       }
2948     }
2949   }
2950   constant_value = Klass::_lh_neutral_value;  // put in a known value
2951   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
2952   return make_load(NULL, lhp, TypeInt::INT, T_INT);
2953 }
2954 
2955 // We just put in an allocate/initialize with a big raw-memory effect.
2956 // Hook selected additional alias categories on the initialization.
2957 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
2958                                 MergeMemNode* init_in_merge,
2959                                 Node* init_out_raw) {
2960   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
2961   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
2962 
2963   Node* prevmem = kit.memory(alias_idx);
2964   init_in_merge->set_memory_at(alias_idx, prevmem);
2965   kit.set_memory(init_out_raw, alias_idx);
2966 }
2967 
2968 //---------------------------set_output_for_allocation-------------------------
2969 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
2970                                           const TypeOopPtr* oop_type) {
2971   int rawidx = Compile::AliasIdxRaw;
2972   alloc->set_req( TypeFunc::FramePtr, frameptr() );
2973   add_safepoint_edges(alloc);
2974   Node* allocx = _gvn.transform(alloc);
2975   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
2976   // create memory projection for i_o
2977   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
2978   make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
2979 
2980   // create a memory projection as for the normal control path
2981   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
2982   set_memory(malloc, rawidx);
2983 
2984   // a normal slow-call doesn't change i_o, but an allocation does
2985   // we create a separate i_o projection for the normal control path
2986   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
2987   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
2988 
2989   // put in an initialization barrier
2990   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
2991                                                  rawoop)->as_Initialize();
2992   assert(alloc->initialization() == init,  "2-way macro link must work");
2993   assert(init ->allocation()     == alloc, "2-way macro link must work");
2994   {
2995     // Extract memory strands which may participate in the new object's
2996     // initialization, and source them from the new InitializeNode.
2997     // This will allow us to observe initializations when they occur,
2998     // and link them properly (as a group) to the InitializeNode.
2999     assert(init->in(InitializeNode::Memory) == malloc, "");
3000     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3001     init->set_req(InitializeNode::Memory, minit_in);
3002     record_for_igvn(minit_in); // fold it up later, if possible
3003     Node* minit_out = memory(rawidx);
3004     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3005     if (oop_type->isa_aryptr()) {
3006       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3007       int            elemidx  = C->get_alias_index(telemref);
3008       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3009     } else if (oop_type->isa_instptr()) {
3010       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3011       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3012         ciField* field = ik->nonstatic_field_at(i);
3013         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3014           continue;  // do not bother to track really large numbers of fields
3015         // Find (or create) the alias category for this field:
3016         int fieldidx = C->alias_type(field)->index();
3017         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3018       }
3019     }
3020   }
3021 
3022   // Cast raw oop to the real thing...
3023   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3024   javaoop = _gvn.transform(javaoop);
3025   C->set_recent_alloc(control(), javaoop);
3026   assert(just_allocated_object(control()) == javaoop, "just allocated");
3027 
3028 #ifdef ASSERT
3029   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3030     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3031            "Ideal_allocation works");
3032     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3033            "Ideal_allocation works");
3034     if (alloc->is_AllocateArray()) {
3035       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3036              "Ideal_allocation works");
3037       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3038              "Ideal_allocation works");
3039     } else {
3040       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3041     }
3042   }
3043 #endif //ASSERT
3044 
3045   return javaoop;
3046 }
3047 
3048 //---------------------------new_instance--------------------------------------
3049 // This routine takes a klass_node which may be constant (for a static type)
3050 // or may be non-constant (for reflective code).  It will work equally well
3051 // for either, and the graph will fold nicely if the optimizer later reduces
3052 // the type to a constant.
3053 // The optional arguments are for specialized use by intrinsics:
3054 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3055 //  - If 'return_size_val', report the the total object size to the caller.
3056 Node* GraphKit::new_instance(Node* klass_node,
3057                              Node* extra_slow_test,
3058                              Node* *return_size_val) {
3059   // Compute size in doublewords
3060   // The size is always an integral number of doublewords, represented
3061   // as a positive bytewise size stored in the klass's layout_helper.
3062   // The layout_helper also encodes (in a low bit) the need for a slow path.
3063   jint  layout_con = Klass::_lh_neutral_value;
3064   Node* layout_val = get_layout_helper(klass_node, layout_con);
3065   int   layout_is_con = (layout_val == NULL);
3066 
3067   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3068   // Generate the initial go-slow test.  It's either ALWAYS (return a
3069   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3070   // case) a computed value derived from the layout_helper.
3071   Node* initial_slow_test = NULL;
3072   if (layout_is_con) {
3073     assert(!StressReflectiveCode, "stress mode does not use these paths");
3074     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3075     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3076 
3077   } else {   // reflective case
3078     // This reflective path is used by Unsafe.allocateInstance.
3079     // (It may be stress-tested by specifying StressReflectiveCode.)
3080     // Basically, we want to get into the VM is there's an illegal argument.
3081     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3082     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3083     if (extra_slow_test != intcon(0)) {
3084       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3085     }
3086     // (Macro-expander will further convert this to a Bool, if necessary.)
3087   }
3088 
3089   // Find the size in bytes.  This is easy; it's the layout_helper.
3090   // The size value must be valid even if the slow path is taken.
3091   Node* size = NULL;
3092   if (layout_is_con) {
3093     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3094   } else {   // reflective case
3095     // This reflective path is used by clone and Unsafe.allocateInstance.
3096     size = ConvI2X(layout_val);
3097 
3098     // Clear the low bits to extract layout_helper_size_in_bytes:
3099     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3100     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3101     size = _gvn.transform( new (C) AndXNode(size, mask) );
3102   }
3103   if (return_size_val != NULL) {
3104     (*return_size_val) = size;
3105   }
3106 
3107   // This is a precise notnull oop of the klass.
3108   // (Actually, it need not be precise if this is a reflective allocation.)
3109   // It's what we cast the result to.
3110   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3111   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3112   const TypeOopPtr* oop_type = tklass->as_instance_type();
3113 
3114   // Now generate allocation code
3115 
3116   // The entire memory state is needed for slow path of the allocation
3117   // since GC and deoptimization can happened.
3118   Node *mem = reset_memory();
3119   set_all_memory(mem); // Create new memory state
3120 
3121   AllocateNode* alloc
3122     = new (C) AllocateNode(C, AllocateNode::alloc_type(),
3123                            control(), mem, i_o(),
3124                            size, klass_node,
3125                            initial_slow_test);
3126 
3127   return set_output_for_allocation(alloc, oop_type);
3128 }
3129 
3130 //-------------------------------new_array-------------------------------------
3131 // helper for both newarray and anewarray
3132 // The 'length' parameter is (obviously) the length of the array.
3133 // See comments on new_instance for the meaning of the other arguments.
3134 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3135                           Node* length,         // number of array elements
3136                           int   nargs,          // number of arguments to push back for uncommon trap
3137                           Node* *return_size_val) {
3138   jint  layout_con = Klass::_lh_neutral_value;
3139   Node* layout_val = get_layout_helper(klass_node, layout_con);
3140   int   layout_is_con = (layout_val == NULL);
3141 
3142   if (!layout_is_con && !StressReflectiveCode &&
3143       !too_many_traps(Deoptimization::Reason_class_check)) {
3144     // This is a reflective array creation site.
3145     // Optimistically assume that it is a subtype of Object[],
3146     // so that we can fold up all the address arithmetic.
3147     layout_con = Klass::array_layout_helper(T_OBJECT);
3148     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3149     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3150     { BuildCutout unless(this, bol_lh, PROB_MAX);
3151       _sp += nargs;
3152       uncommon_trap(Deoptimization::Reason_class_check,
3153                     Deoptimization::Action_maybe_recompile);
3154     }
3155     layout_val = NULL;
3156     layout_is_con = true;
3157   }
3158 
3159   // Generate the initial go-slow test.  Make sure we do not overflow
3160   // if length is huge (near 2Gig) or negative!  We do not need
3161   // exact double-words here, just a close approximation of needed
3162   // double-words.  We can't add any offset or rounding bits, lest we
3163   // take a size -1 of bytes and make it positive.  Use an unsigned
3164   // compare, so negative sizes look hugely positive.
3165   int fast_size_limit = FastAllocateSizeLimit;
3166   if (layout_is_con) {
3167     assert(!StressReflectiveCode, "stress mode does not use these paths");
3168     // Increase the size limit if we have exact knowledge of array type.
3169     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3170     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3171   }
3172 
3173   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3174   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3175   if (initial_slow_test->is_Bool()) {
3176     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3177     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3178   }
3179 
3180   // --- Size Computation ---
3181   // array_size = round_to_heap(array_header + (length << elem_shift));
3182   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3183   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3184   // The rounding mask is strength-reduced, if possible.
3185   int round_mask = MinObjAlignmentInBytes - 1;
3186   Node* header_size = NULL;
3187   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3188   // (T_BYTE has the weakest alignment and size restrictions...)
3189   if (layout_is_con) {
3190     int       hsize  = Klass::layout_helper_header_size(layout_con);
3191     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3192     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3193     if ((round_mask & ~right_n_bits(eshift)) == 0)
3194       round_mask = 0;  // strength-reduce it if it goes away completely
3195     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3196     assert(header_size_min <= hsize, "generic minimum is smallest");
3197     header_size_min = hsize;
3198     header_size = intcon(hsize + round_mask);
3199   } else {
3200     Node* hss   = intcon(Klass::_lh_header_size_shift);
3201     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3202     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3203     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3204     Node* mask  = intcon(round_mask);
3205     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3206   }
3207 
3208   Node* elem_shift = NULL;
3209   if (layout_is_con) {
3210     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3211     if (eshift != 0)
3212       elem_shift = intcon(eshift);
3213   } else {
3214     // There is no need to mask or shift this value.
3215     // The semantics of LShiftINode include an implicit mask to 0x1F.
3216     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3217     elem_shift = layout_val;
3218   }
3219 
3220   // Transition to native address size for all offset calculations:
3221   Node* lengthx = ConvI2X(length);
3222   Node* headerx = ConvI2X(header_size);
3223 #ifdef _LP64
3224   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3225     if (tllen != NULL && tllen->_lo < 0) {
3226       // Add a manual constraint to a positive range.  Cf. array_element_address.
3227       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3228       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3229       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3230       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3231     }
3232   }
3233 #endif
3234 
3235   // Combine header size (plus rounding) and body size.  Then round down.
3236   // This computation cannot overflow, because it is used only in two
3237   // places, one where the length is sharply limited, and the other
3238   // after a successful allocation.
3239   Node* abody = lengthx;
3240   if (elem_shift != NULL)
3241     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3242   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3243   if (round_mask != 0) {
3244     Node* mask = MakeConX(~round_mask);
3245     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3246   }
3247   // else if round_mask == 0, the size computation is self-rounding
3248 
3249   if (return_size_val != NULL) {
3250     // This is the size
3251     (*return_size_val) = size;
3252   }
3253 
3254   // Now generate allocation code
3255 
3256   // The entire memory state is needed for slow path of the allocation
3257   // since GC and deoptimization can happened.
3258   Node *mem = reset_memory();
3259   set_all_memory(mem); // Create new memory state
3260 
3261   // Create the AllocateArrayNode and its result projections
3262   AllocateArrayNode* alloc
3263     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
3264                                 control(), mem, i_o(),
3265                                 size, klass_node,
3266                                 initial_slow_test,
3267                                 length);
3268 
3269   // Cast to correct type.  Note that the klass_node may be constant or not,
3270   // and in the latter case the actual array type will be inexact also.
3271   // (This happens via a non-constant argument to inline_native_newArray.)
3272   // In any case, the value of klass_node provides the desired array type.
3273   const TypeInt* length_type = _gvn.find_int_type(length);
3274   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3275   if (ary_type->isa_aryptr() && length_type != NULL) {
3276     // Try to get a better type than POS for the size
3277     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3278   }
3279 
3280   Node* javaoop = set_output_for_allocation(alloc, ary_type);
3281 
3282   // Cast length on remaining path to be as narrow as possible
3283   if (map()->find_edge(length) >= 0) {
3284     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3285     if (ccast != length) {
3286       _gvn.set_type_bottom(ccast);
3287       record_for_igvn(ccast);
3288       replace_in_map(length, ccast);
3289     }
3290   }
3291 
3292   return javaoop;
3293 }
3294 
3295 // The following "Ideal_foo" functions are placed here because they recognize
3296 // the graph shapes created by the functions immediately above.
3297 
3298 //---------------------------Ideal_allocation----------------------------------
3299 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3300 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3301   if (ptr == NULL) {     // reduce dumb test in callers
3302     return NULL;
3303   }
3304   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
3305     ptr = ptr->in(1);
3306     if (ptr == NULL)  return NULL;
3307   }
3308   if (ptr->is_Proj()) {
3309     Node* allo = ptr->in(0);
3310     if (allo != NULL && allo->is_Allocate()) {
3311       return allo->as_Allocate();
3312     }
3313   }
3314   // Report failure to match.
3315   return NULL;
3316 }
3317 
3318 // Fancy version which also strips off an offset (and reports it to caller).
3319 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3320                                              intptr_t& offset) {
3321   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3322   if (base == NULL)  return NULL;
3323   return Ideal_allocation(base, phase);
3324 }
3325 
3326 // Trace Initialize <- Proj[Parm] <- Allocate
3327 AllocateNode* InitializeNode::allocation() {
3328   Node* rawoop = in(InitializeNode::RawAddress);
3329   if (rawoop->is_Proj()) {
3330     Node* alloc = rawoop->in(0);
3331     if (alloc->is_Allocate()) {
3332       return alloc->as_Allocate();
3333     }
3334   }
3335   return NULL;
3336 }
3337 
3338 // Trace Allocate -> Proj[Parm] -> Initialize
3339 InitializeNode* AllocateNode::initialization() {
3340   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3341   if (rawoop == NULL)  return NULL;
3342   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3343     Node* init = rawoop->fast_out(i);
3344     if (init->is_Initialize()) {
3345       assert(init->as_Initialize()->allocation() == this, "2-way link");
3346       return init->as_Initialize();
3347     }
3348   }
3349   return NULL;
3350 }
3351 
3352 // Trace Allocate -> Proj[Parm] -> MemBarStoreStore
3353 MemBarStoreStoreNode* AllocateNode::storestore() {
3354   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3355   if (rawoop == NULL)  return NULL;
3356   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3357     Node* storestore = rawoop->fast_out(i);
3358     if (storestore->is_MemBarStoreStore()) {
3359       return storestore->as_MemBarStoreStore();
3360     }
3361   }
3362   return NULL;
3363 }
3364 
3365 //----------------------------- loop predicates ---------------------------
3366 
3367 //------------------------------add_predicate_impl----------------------------
3368 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3369   // Too many traps seen?
3370   if (too_many_traps(reason)) {
3371 #ifdef ASSERT
3372     if (TraceLoopPredicate) {
3373       int tc = C->trap_count(reason);
3374       tty->print("too many traps=%s tcount=%d in ",
3375                     Deoptimization::trap_reason_name(reason), tc);
3376       method()->print(); // which method has too many predicate traps
3377       tty->cr();
3378     }
3379 #endif
3380     // We cannot afford to take more traps here,
3381     // do not generate predicate.
3382     return;
3383   }
3384 
3385   Node *cont    = _gvn.intcon(1);
3386   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3387   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3388   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3389   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3390   C->add_predicate_opaq(opq);
3391   {
3392     PreserveJVMState pjvms(this);
3393     set_control(iffalse);
3394     _sp += nargs;
3395     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3396   }
3397   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3398   set_control(iftrue);
3399 }
3400 
3401 //------------------------------add_predicate---------------------------------
3402 void GraphKit::add_predicate(int nargs) {
3403   if (UseLoopPredicate) {
3404     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3405   }
3406   // loop's limit check predicate should be near the loop.
3407   if (LoopLimitCheck) {
3408     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3409   }
3410 }
3411 
3412 //----------------------------- store barriers ----------------------------
3413 #define __ ideal.
3414 
3415 void GraphKit::sync_kit(IdealKit& ideal) {
3416   set_all_memory(__ merged_memory());
3417   set_i_o(__ i_o());
3418   set_control(__ ctrl());
3419 }
3420 
3421 void GraphKit::final_sync(IdealKit& ideal) {
3422   // Final sync IdealKit and graphKit.
3423   __ drain_delay_transform();
3424   sync_kit(ideal);
3425 }
3426 
3427 // vanilla/CMS post barrier
3428 // Insert a write-barrier store.  This is to let generational GC work; we have
3429 // to flag all oop-stores before the next GC point.
3430 void GraphKit::write_barrier_post(Node* oop_store,
3431                                   Node* obj,
3432                                   Node* adr,
3433                                   uint  adr_idx,
3434                                   Node* val,
3435                                   bool use_precise) {
3436   // No store check needed if we're storing a NULL or an old object
3437   // (latter case is probably a string constant). The concurrent
3438   // mark sweep garbage collector, however, needs to have all nonNull
3439   // oop updates flagged via card-marks.
3440   if (val != NULL && val->is_Con()) {
3441     // must be either an oop or NULL
3442     const Type* t = val->bottom_type();
3443     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3444       // stores of null never (?) need barriers
3445       return;
3446   }
3447 
3448   if (use_ReduceInitialCardMarks()
3449       && obj == just_allocated_object(control())) {
3450     // We can skip marks on a freshly-allocated object in Eden.
3451     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3452     // That routine informs GC to take appropriate compensating steps,
3453     // upon a slow-path allocation, so as to make this card-mark
3454     // elision safe.
3455     return;
3456   }
3457 
3458   if (!use_precise) {
3459     // All card marks for a (non-array) instance are in one place:
3460     adr = obj;
3461   }
3462   // (Else it's an array (or unknown), and we want more precise card marks.)
3463   assert(adr != NULL, "");
3464 
3465   IdealKit ideal(this, true);
3466 
3467   // Convert the pointer to an int prior to doing math on it
3468   Node* cast = __ CastPX(__ ctrl(), adr);
3469 
3470   // Divide by card size
3471   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3472          "Only one we handle so far.");
3473   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3474 
3475   // Combine card table base and card offset
3476   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3477 
3478   // Get the alias_index for raw card-mark memory
3479   int adr_type = Compile::AliasIdxRaw;
3480   Node*   zero = __ ConI(0); // Dirty card value
3481   BasicType bt = T_BYTE;
3482 
3483   if (UseCondCardMark) {
3484     // The classic GC reference write barrier is typically implemented
3485     // as a store into the global card mark table.  Unfortunately
3486     // unconditional stores can result in false sharing and excessive
3487     // coherence traffic as well as false transactional aborts.
3488     // UseCondCardMark enables MP "polite" conditional card mark
3489     // stores.  In theory we could relax the load from ctrl() to
3490     // no_ctrl, but that doesn't buy much latitude.
3491     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3492     __ if_then(card_val, BoolTest::ne, zero);
3493   }
3494 
3495   // Smash zero into card
3496   if( !UseConcMarkSweepGC ) {
3497     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
3498   } else {
3499     // Specialized path for CM store barrier
3500     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3501   }
3502 
3503   if (UseCondCardMark) {
3504     __ end_if();
3505   }
3506 
3507   // Final sync IdealKit and GraphKit.
3508   final_sync(ideal);
3509 }
3510 
3511 // G1 pre/post barriers
3512 void GraphKit::g1_write_barrier_pre(bool do_load,
3513                                     Node* obj,
3514                                     Node* adr,
3515                                     uint alias_idx,
3516                                     Node* val,
3517                                     const TypeOopPtr* val_type,
3518                                     Node* pre_val,
3519                                     BasicType bt) {
3520 
3521   // Some sanity checks
3522   // Note: val is unused in this routine.
3523 
3524   if (do_load) {
3525     // We need to generate the load of the previous value
3526     assert(obj != NULL, "must have a base");
3527     assert(adr != NULL, "where are loading from?");
3528     assert(pre_val == NULL, "loaded already?");
3529     assert(val_type != NULL, "need a type");
3530   } else {
3531     // In this case both val_type and alias_idx are unused.
3532     assert(pre_val != NULL, "must be loaded already");
3533     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3534   }
3535   assert(bt == T_OBJECT, "or we shouldn't be here");
3536 
3537   IdealKit ideal(this, true);
3538 
3539   Node* tls = __ thread(); // ThreadLocalStorage
3540 
3541   Node* no_ctrl = NULL;
3542   Node* no_base = __ top();
3543   Node* zero = __ ConI(0);
3544 
3545   float likely  = PROB_LIKELY(0.999);
3546   float unlikely  = PROB_UNLIKELY(0.999);
3547 
3548   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3549   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3550 
3551   // Offsets into the thread
3552   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3553                                           PtrQueue::byte_offset_of_active());
3554   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3555                                           PtrQueue::byte_offset_of_index());
3556   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3557                                           PtrQueue::byte_offset_of_buf());
3558 
3559   // Now the actual pointers into the thread
3560   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3561   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3562   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3563 
3564   // Now some of the values
3565   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3566 
3567   // if (!marking)
3568   __ if_then(marking, BoolTest::ne, zero); {
3569     Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3570 
3571     if (do_load) {
3572       // load original value
3573       // alias_idx correct??
3574       pre_val = __ load(no_ctrl, adr, val_type, bt, alias_idx);
3575     }
3576 
3577     // if (pre_val != NULL)
3578     __ if_then(pre_val, BoolTest::ne, null()); {
3579       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3580 
3581       // is the queue for this thread full?
3582       __ if_then(index, BoolTest::ne, zero, likely); {
3583 
3584         // decrement the index
3585         Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
3586         Node* next_indexX = next_index;
3587 #ifdef _LP64
3588         // We could refine the type for what it's worth
3589         // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3590         next_indexX = _gvn.transform( new (C) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3591 #endif
3592 
3593         // Now get the buffer location we will log the previous value into and store it
3594         Node *log_addr = __ AddP(no_base, buffer, next_indexX);
3595         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw);
3596         // update the index
3597         __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3598 
3599       } __ else_(); {
3600 
3601         // logging buffer is full, call the runtime
3602         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3603         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3604       } __ end_if();  // (!index)
3605     } __ end_if();  // (pre_val != NULL)
3606   } __ end_if();  // (!marking)
3607 
3608   // Final sync IdealKit and GraphKit.
3609   final_sync(ideal);
3610 }
3611 
3612 //
3613 // Update the card table and add card address to the queue
3614 //
3615 void GraphKit::g1_mark_card(IdealKit& ideal,
3616                             Node* card_adr,
3617                             Node* oop_store,
3618                             uint oop_alias_idx,
3619                             Node* index,
3620                             Node* index_adr,
3621                             Node* buffer,
3622                             const TypeFunc* tf) {
3623 
3624   Node* zero = __ ConI(0);
3625   Node* no_base = __ top();
3626   BasicType card_bt = T_BYTE;
3627   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3628   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3629 
3630   //  Now do the queue work
3631   __ if_then(index, BoolTest::ne, zero); {
3632 
3633     Node* next_index = __ SubI(index, __ ConI(sizeof(intptr_t)));
3634     Node* next_indexX = next_index;
3635 #ifdef _LP64
3636     // We could refine the type for what it's worth
3637     // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3638     next_indexX = _gvn.transform( new (C) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3639 #endif // _LP64
3640     Node* log_addr = __ AddP(no_base, buffer, next_indexX);
3641 
3642     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
3643     __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3644 
3645   } __ else_(); {
3646     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3647   } __ end_if();
3648 
3649 }
3650 
3651 void GraphKit::g1_write_barrier_post(Node* oop_store,
3652                                      Node* obj,
3653                                      Node* adr,
3654                                      uint alias_idx,
3655                                      Node* val,
3656                                      BasicType bt,
3657                                      bool use_precise) {
3658   // If we are writing a NULL then we need no post barrier
3659 
3660   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3661     // Must be NULL
3662     const Type* t = val->bottom_type();
3663     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3664     // No post barrier if writing NULLx
3665     return;
3666   }
3667 
3668   if (!use_precise) {
3669     // All card marks for a (non-array) instance are in one place:
3670     adr = obj;
3671   }
3672   // (Else it's an array (or unknown), and we want more precise card marks.)
3673   assert(adr != NULL, "");
3674 
3675   IdealKit ideal(this, true);
3676 
3677   Node* tls = __ thread(); // ThreadLocalStorage
3678 
3679   Node* no_base = __ top();
3680   float likely  = PROB_LIKELY(0.999);
3681   float unlikely  = PROB_UNLIKELY(0.999);
3682   Node* zero = __ ConI(0);
3683   Node* zeroX = __ ConX(0);
3684 
3685   // Get the alias_index for raw card-mark memory
3686   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3687 
3688   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3689 
3690   // Offsets into the thread
3691   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3692                                      PtrQueue::byte_offset_of_index());
3693   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3694                                      PtrQueue::byte_offset_of_buf());
3695 
3696   // Pointers into the thread
3697 
3698   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3699   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3700 
3701   // Now some values
3702   // Use ctrl to avoid hoisting these values past a safepoint, which could
3703   // potentially reset these fields in the JavaThread.
3704   Node* index  = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3705   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3706 
3707   // Convert the store obj pointer to an int prior to doing math on it
3708   // Must use ctrl to prevent "integerized oop" existing across safepoint
3709   Node* cast =  __ CastPX(__ ctrl(), adr);
3710 
3711   // Divide pointer by card size
3712   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3713 
3714   // Combine card table base and card offset
3715   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3716 
3717   // If we know the value being stored does it cross regions?
3718 
3719   if (val != NULL) {
3720     // Does the store cause us to cross regions?
3721 
3722     // Should be able to do an unsigned compare of region_size instead of
3723     // and extra shift. Do we have an unsigned compare??
3724     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3725     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
3726 
3727     // if (xor_res == 0) same region so skip
3728     __ if_then(xor_res, BoolTest::ne, zeroX); {
3729 
3730       // No barrier if we are storing a NULL
3731       __ if_then(val, BoolTest::ne, null(), unlikely); {
3732 
3733         // Ok must mark the card if not already dirty
3734 
3735         // load the original value of the card
3736         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3737 
3738         __ if_then(card_val, BoolTest::ne, zero); {
3739           g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
3740         } __ end_if();
3741       } __ end_if();
3742     } __ end_if();
3743   } else {
3744     // Object.clone() instrinsic uses this path.
3745     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
3746   }
3747 
3748   // Final sync IdealKit and GraphKit.
3749   final_sync(ideal);
3750 }
3751 #undef __
3752 
3753 
3754 
3755 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
3756   if (java_lang_String::has_offset_field()) {
3757     int offset_offset = java_lang_String::offset_offset_in_bytes();
3758     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3759                                                        false, NULL, 0);
3760     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
3761     int offset_field_idx = C->get_alias_index(offset_field_type);
3762     return make_load(ctrl,
3763                      basic_plus_adr(str, str, offset_offset),
3764                      TypeInt::INT, T_INT, offset_field_idx);
3765   } else {
3766     return intcon(0);
3767   }
3768 }
3769 
3770 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
3771   if (java_lang_String::has_count_field()) {
3772     int count_offset = java_lang_String::count_offset_in_bytes();
3773     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3774                                                        false, NULL, 0);
3775     const TypePtr* count_field_type = string_type->add_offset(count_offset);
3776     int count_field_idx = C->get_alias_index(count_field_type);
3777     return make_load(ctrl,
3778                      basic_plus_adr(str, str, count_offset),
3779                      TypeInt::INT, T_INT, count_field_idx);
3780   } else {
3781     return load_array_length(load_String_value(ctrl, str));
3782   }
3783 }
3784 
3785 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
3786   int value_offset = java_lang_String::value_offset_in_bytes();
3787   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3788                                                      false, NULL, 0);
3789   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3790   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
3791                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
3792                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
3793   int value_field_idx = C->get_alias_index(value_field_type);
3794   return make_load(ctrl, basic_plus_adr(str, str, value_offset),
3795                    value_type, T_OBJECT, value_field_idx);
3796 }
3797 
3798 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
3799   int offset_offset = java_lang_String::offset_offset_in_bytes();
3800   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3801                                                      false, NULL, 0);
3802   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
3803   int offset_field_idx = C->get_alias_index(offset_field_type);
3804   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
3805                   value, T_INT, offset_field_idx);
3806 }
3807 
3808 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
3809   int value_offset = java_lang_String::value_offset_in_bytes();
3810   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3811                                                      false, NULL, 0);
3812   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3813   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
3814                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
3815                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
3816   int value_field_idx = C->get_alias_index(value_field_type);
3817   store_to_memory(ctrl, basic_plus_adr(str, value_offset),
3818                   value, T_OBJECT, value_field_idx);
3819 }
3820 
3821 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
3822   int count_offset = java_lang_String::count_offset_in_bytes();
3823   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3824                                                      false, NULL, 0);
3825   const TypePtr* count_field_type = string_type->add_offset(count_offset);
3826   int count_field_idx = C->get_alias_index(count_field_type);
3827   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
3828                   value, T_INT, count_field_idx);
3829 }