1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/connode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/idealGraphPrinter.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/superword.hpp"
  39 
  40 //=============================================================================
  41 //------------------------------is_loop_iv-------------------------------------
  42 // Determine if a node is Counted loop induction variable.
  43 // The method is declared in node.hpp.
  44 const Node* Node::is_loop_iv() const {
  45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  46       this->as_Phi()->region()->is_CountedLoop() &&
  47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  48     return this;
  49   } else {
  50     return NULL;
  51   }
  52 }
  53 
  54 //=============================================================================
  55 //------------------------------dump_spec--------------------------------------
  56 // Dump special per-node info
  57 #ifndef PRODUCT
  58 void LoopNode::dump_spec(outputStream *st) const {
  59   if (is_inner_loop()) st->print( "inner " );
  60   if (is_partial_peel_loop()) st->print( "partial_peel " );
  61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
  62 }
  63 #endif
  64 
  65 //------------------------------is_valid_counted_loop-------------------------
  66 bool LoopNode::is_valid_counted_loop() const {
  67   if (is_CountedLoop()) {
  68     CountedLoopNode*    l  = as_CountedLoop();
  69     CountedLoopEndNode* le = l->loopexit();
  70     if (le != NULL &&
  71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
  72       Node* phi  = l->phi();
  73       Node* exit = le->proj_out(0 /* false */);
  74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
  75           phi != NULL && phi->is_Phi() &&
  76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
  77           le->loopnode() == l && le->stride_is_con()) {
  78         return true;
  79       }
  80     }
  81   }
  82   return false;
  83 }
  84 
  85 //------------------------------get_early_ctrl---------------------------------
  86 // Compute earliest legal control
  87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  89   uint i;
  90   Node *early;
  91   if( n->in(0) ) {
  92     early = n->in(0);
  93     if( !early->is_CFG() ) // Might be a non-CFG multi-def
  94       early = get_ctrl(early);        // So treat input as a straight data input
  95     i = 1;
  96   } else {
  97     early = get_ctrl(n->in(1));
  98     i = 2;
  99   }
 100   uint e_d = dom_depth(early);
 101   assert( early, "" );
 102   for( ; i < n->req(); i++ ) {
 103     Node *cin = get_ctrl(n->in(i));
 104     assert( cin, "" );
 105     // Keep deepest dominator depth
 106     uint c_d = dom_depth(cin);
 107     if( c_d > e_d ) {           // Deeper guy?
 108       early = cin;              // Keep deepest found so far
 109       e_d = c_d;
 110     } else if( c_d == e_d &&    // Same depth?
 111                early != cin ) { // If not equal, must use slower algorithm
 112       // If same depth but not equal, one _must_ dominate the other
 113       // and we want the deeper (i.e., dominated) guy.
 114       Node *n1 = early;
 115       Node *n2 = cin;
 116       while( 1 ) {
 117         n1 = idom(n1);          // Walk up until break cycle
 118         n2 = idom(n2);
 119         if( n1 == cin ||        // Walked early up to cin
 120             dom_depth(n2) < c_d )
 121           break;                // early is deeper; keep him
 122         if( n2 == early ||      // Walked cin up to early
 123             dom_depth(n1) < c_d ) {
 124           early = cin;          // cin is deeper; keep him
 125           break;
 126         }
 127       }
 128       e_d = dom_depth(early);   // Reset depth register cache
 129     }
 130   }
 131 
 132   // Return earliest legal location
 133   assert(early == find_non_split_ctrl(early), "unexpected early control");
 134 
 135   return early;
 136 }
 137 
 138 //------------------------------set_early_ctrl---------------------------------
 139 // Set earliest legal control
 140 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 141   Node *early = get_early_ctrl(n);
 142 
 143   // Record earliest legal location
 144   set_ctrl(n, early);
 145 }
 146 
 147 //------------------------------set_subtree_ctrl-------------------------------
 148 // set missing _ctrl entries on new nodes
 149 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 150   // Already set?  Get out.
 151   if( _nodes[n->_idx] ) return;
 152   // Recursively set _nodes array to indicate where the Node goes
 153   uint i;
 154   for( i = 0; i < n->req(); ++i ) {
 155     Node *m = n->in(i);
 156     if( m && m != C->root() )
 157       set_subtree_ctrl( m );
 158   }
 159 
 160   // Fixup self
 161   set_early_ctrl( n );
 162 }
 163 
 164 //------------------------------is_counted_loop--------------------------------
 165 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
 166   PhaseGVN *gvn = &_igvn;
 167 
 168   // Counted loop head must be a good RegionNode with only 3 not NULL
 169   // control input edges: Self, Entry, LoopBack.
 170   if (x->in(LoopNode::Self) == NULL || x->req() != 3)
 171     return false;
 172 
 173   Node *init_control = x->in(LoopNode::EntryControl);
 174   Node *back_control = x->in(LoopNode::LoopBackControl);
 175   if (init_control == NULL || back_control == NULL)    // Partially dead
 176     return false;
 177   // Must also check for TOP when looking for a dead loop
 178   if (init_control->is_top() || back_control->is_top())
 179     return false;
 180 
 181   // Allow funny placement of Safepoint
 182   if (back_control->Opcode() == Op_SafePoint)
 183     back_control = back_control->in(TypeFunc::Control);
 184 
 185   // Controlling test for loop
 186   Node *iftrue = back_control;
 187   uint iftrue_op = iftrue->Opcode();
 188   if (iftrue_op != Op_IfTrue &&
 189       iftrue_op != Op_IfFalse)
 190     // I have a weird back-control.  Probably the loop-exit test is in
 191     // the middle of the loop and I am looking at some trailing control-flow
 192     // merge point.  To fix this I would have to partially peel the loop.
 193     return false; // Obscure back-control
 194 
 195   // Get boolean guarding loop-back test
 196   Node *iff = iftrue->in(0);
 197   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
 198     return false;
 199   BoolNode *test = iff->in(1)->as_Bool();
 200   BoolTest::mask bt = test->_test._test;
 201   float cl_prob = iff->as_If()->_prob;
 202   if (iftrue_op == Op_IfFalse) {
 203     bt = BoolTest(bt).negate();
 204     cl_prob = 1.0 - cl_prob;
 205   }
 206   // Get backedge compare
 207   Node *cmp = test->in(1);
 208   int cmp_op = cmp->Opcode();
 209   if (cmp_op != Op_CmpI)
 210     return false;                // Avoid pointer & float compares
 211 
 212   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 213   Node *incr  = cmp->in(1);
 214   Node *limit = cmp->in(2);
 215 
 216   // ---------
 217   // need 'loop()' test to tell if limit is loop invariant
 218   // ---------
 219 
 220   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
 221     Node *tmp = incr;            // Then reverse order into the CmpI
 222     incr = limit;
 223     limit = tmp;
 224     bt = BoolTest(bt).commute(); // And commute the exit test
 225   }
 226   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
 227     return false;
 228   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 229     return false;
 230 
 231   Node* phi_incr = NULL;
 232   // Trip-counter increment must be commutative & associative.
 233   if (incr->is_Phi()) {
 234     if (incr->as_Phi()->region() != x || incr->req() != 3)
 235       return false; // Not simple trip counter expression
 236     phi_incr = incr;
 237     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
 238     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
 239       return false;
 240   }
 241 
 242   Node* trunc1 = NULL;
 243   Node* trunc2 = NULL;
 244   const TypeInt* iv_trunc_t = NULL;
 245   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 246     return false; // Funny increment opcode
 247   }
 248   assert(incr->Opcode() == Op_AddI, "wrong increment code");
 249 
 250   // Get merge point
 251   Node *xphi = incr->in(1);
 252   Node *stride = incr->in(2);
 253   if (!stride->is_Con()) {     // Oops, swap these
 254     if (!xphi->is_Con())       // Is the other guy a constant?
 255       return false;             // Nope, unknown stride, bail out
 256     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 257     xphi = stride;
 258     stride = tmp;
 259   }
 260   // Stride must be constant
 261   int stride_con = stride->get_int();
 262   if (stride_con == 0)
 263     return false; // missed some peephole opt
 264 
 265   if (!xphi->is_Phi())
 266     return false; // Too much math on the trip counter
 267   if (phi_incr != NULL && phi_incr != xphi)
 268     return false;
 269   PhiNode *phi = xphi->as_Phi();
 270 
 271   // Phi must be of loop header; backedge must wrap to increment
 272   if (phi->region() != x)
 273     return false;
 274   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
 275       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
 276     return false;
 277   }
 278   Node *init_trip = phi->in(LoopNode::EntryControl);
 279 
 280   // If iv trunc type is smaller than int, check for possible wrap.
 281   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 282     assert(trunc1 != NULL, "must have found some truncation");
 283 
 284     // Get a better type for the phi (filtered thru if's)
 285     const TypeInt* phi_ft = filtered_type(phi);
 286 
 287     // Can iv take on a value that will wrap?
 288     //
 289     // Ensure iv's limit is not within "stride" of the wrap value.
 290     //
 291     // Example for "short" type
 292     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 293     //    If the stride is +10, then the last value of the induction
 294     //    variable before the increment (phi_ft->_hi) must be
 295     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 296     //    ensure no truncation occurs after the increment.
 297 
 298     if (stride_con > 0) {
 299       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 300           iv_trunc_t->_lo > phi_ft->_lo) {
 301         return false;  // truncation may occur
 302       }
 303     } else if (stride_con < 0) {
 304       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 305           iv_trunc_t->_hi < phi_ft->_hi) {
 306         return false;  // truncation may occur
 307       }
 308     }
 309     // No possibility of wrap so truncation can be discarded
 310     // Promote iv type to Int
 311   } else {
 312     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 313   }
 314 
 315   // If the condition is inverted and we will be rolling
 316   // through MININT to MAXINT, then bail out.
 317   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
 318       // Odd stride
 319       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
 320       // Count down loop rolls through MAXINT
 321       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
 322       // Count up loop rolls through MININT
 323       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
 324     return false; // Bail out
 325   }
 326 
 327   const TypeInt* init_t = gvn->type(init_trip)->is_int();
 328   const TypeInt* limit_t = gvn->type(limit)->is_int();
 329 
 330   if (stride_con > 0) {
 331     jlong init_p = (jlong)init_t->_lo + stride_con;
 332     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
 333       return false; // cyclic loop or this loop trips only once
 334   } else {
 335     jlong init_p = (jlong)init_t->_hi + stride_con;
 336     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
 337       return false; // cyclic loop or this loop trips only once
 338   }
 339 
 340   // =================================================
 341   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 342   //
 343   assert(x->Opcode() == Op_Loop, "regular loops only");
 344   C->print_method("Before CountedLoop", 3);
 345 
 346   Node *hook = new (C) Node(6);
 347 
 348   if (LoopLimitCheck) {
 349 
 350   // ===================================================
 351   // Generate loop limit check to avoid integer overflow
 352   // in cases like next (cyclic loops):
 353   //
 354   // for (i=0; i <= max_jint; i++) {}
 355   // for (i=0; i <  max_jint; i+=2) {}
 356   //
 357   //
 358   // Limit check predicate depends on the loop test:
 359   //
 360   // for(;i != limit; i++)       --> limit <= (max_jint)
 361   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
 362   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
 363   //
 364 
 365   // Check if limit is excluded to do more precise int overflow check.
 366   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
 367   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
 368 
 369   // If compare points directly to the phi we need to adjust
 370   // the compare so that it points to the incr. Limit have
 371   // to be adjusted to keep trip count the same and the
 372   // adjusted limit should be checked for int overflow.
 373   if (phi_incr != NULL) {
 374     stride_m  += stride_con;
 375   }
 376 
 377   if (limit->is_Con()) {
 378     int limit_con = limit->get_int();
 379     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
 380         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
 381       // Bailout: it could be integer overflow.
 382       return false;
 383     }
 384   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
 385              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
 386       // Limit's type may satisfy the condition, for example,
 387       // when it is an array length.
 388   } else {
 389     // Generate loop's limit check.
 390     // Loop limit check predicate should be near the loop.
 391     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
 392     if (!limit_check_proj) {
 393       // The limit check predicate is not generated if this method trapped here before.
 394 #ifdef ASSERT
 395       if (TraceLoopLimitCheck) {
 396         tty->print("missing loop limit check:");
 397         loop->dump_head();
 398         x->dump(1);
 399       }
 400 #endif
 401       return false;
 402     }
 403 
 404     IfNode* check_iff = limit_check_proj->in(0)->as_If();
 405     Node* cmp_limit;
 406     Node* bol;
 407 
 408     if (stride_con > 0) {
 409       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
 410       bol = new (C) BoolNode(cmp_limit, BoolTest::le);
 411     } else {
 412       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
 413       bol = new (C) BoolNode(cmp_limit, BoolTest::ge);
 414     }
 415     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
 416     bol = _igvn.register_new_node_with_optimizer(bol);
 417     set_subtree_ctrl(bol);
 418 
 419     // Replace condition in original predicate but preserve Opaque node
 420     // so that previous predicates could be found.
 421     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
 422            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
 423     Node* opq = check_iff->in(1)->in(1);
 424     _igvn.hash_delete(opq);
 425     opq->set_req(1, bol);
 426     // Update ctrl.
 427     set_ctrl(opq, check_iff->in(0));
 428     set_ctrl(check_iff->in(1), check_iff->in(0));
 429 
 430 #ifndef PRODUCT
 431     // report that the loop predication has been actually performed
 432     // for this loop
 433     if (TraceLoopLimitCheck) {
 434       tty->print_cr("Counted Loop Limit Check generated:");
 435       debug_only( bol->dump(2); )
 436     }
 437 #endif
 438   }
 439 
 440   if (phi_incr != NULL) {
 441     // If compare points directly to the phi we need to adjust
 442     // the compare so that it points to the incr. Limit have
 443     // to be adjusted to keep trip count the same and we
 444     // should avoid int overflow.
 445     //
 446     //   i = init; do {} while(i++ < limit);
 447     // is converted to
 448     //   i = init; do {} while(++i < limit+1);
 449     //
 450     limit = gvn->transform(new (C) AddINode(limit, stride));
 451   }
 452 
 453   // Now we need to canonicalize loop condition.
 454   if (bt == BoolTest::ne) {
 455     assert(stride_con == 1 || stride_con == -1, "simple increment only");
 456     // 'ne' can be replaced with 'lt' only when init < limit.
 457     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
 458       bt = BoolTest::lt;
 459     // 'ne' can be replaced with 'gt' only when init > limit.
 460     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
 461       bt = BoolTest::gt;
 462   }
 463 
 464   if (incl_limit) {
 465     // The limit check guaranties that 'limit <= (max_jint - stride)' so
 466     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
 467     //
 468     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
 469     limit = gvn->transform(new (C) AddINode(limit, one));
 470     if (bt == BoolTest::le)
 471       bt = BoolTest::lt;
 472     else if (bt == BoolTest::ge)
 473       bt = BoolTest::gt;
 474     else
 475       ShouldNotReachHere();
 476   }
 477   set_subtree_ctrl( limit );
 478 
 479   } else { // LoopLimitCheck
 480 
 481   // If compare points to incr, we are ok.  Otherwise the compare
 482   // can directly point to the phi; in this case adjust the compare so that
 483   // it points to the incr by adjusting the limit.
 484   if (cmp->in(1) == phi || cmp->in(2) == phi)
 485     limit = gvn->transform(new (C) AddINode(limit,stride));
 486 
 487   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
 488   // Final value for iterator should be: trip_count * stride + init_trip.
 489   Node *one_p = gvn->intcon( 1);
 490   Node *one_m = gvn->intcon(-1);
 491 
 492   Node *trip_count = NULL;
 493   switch( bt ) {
 494   case BoolTest::eq:
 495     ShouldNotReachHere();
 496   case BoolTest::ne:            // Ahh, the case we desire
 497     if (stride_con == 1)
 498       trip_count = gvn->transform(new (C) SubINode(limit,init_trip));
 499     else if (stride_con == -1)
 500       trip_count = gvn->transform(new (C) SubINode(init_trip,limit));
 501     else
 502       ShouldNotReachHere();
 503     set_subtree_ctrl(trip_count);
 504     //_loop.map(trip_count->_idx,loop(limit));
 505     break;
 506   case BoolTest::le:            // Maybe convert to '<' case
 507     limit = gvn->transform(new (C) AddINode(limit,one_p));
 508     set_subtree_ctrl( limit );
 509     hook->init_req(4, limit);
 510 
 511     bt = BoolTest::lt;
 512     // Make the new limit be in the same loop nest as the old limit
 513     //_loop.map(limit->_idx,limit_loop);
 514     // Fall into next case
 515   case BoolTest::lt: {          // Maybe convert to '!=' case
 516     if (stride_con < 0) // Count down loop rolls through MAXINT
 517       ShouldNotReachHere();
 518     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
 519     set_subtree_ctrl( range );
 520     hook->init_req(0, range);
 521 
 522     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
 523     set_subtree_ctrl( bias );
 524     hook->init_req(1, bias);
 525 
 526     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_m));
 527     set_subtree_ctrl( bias1 );
 528     hook->init_req(2, bias1);
 529 
 530     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
 531     set_subtree_ctrl( trip_count );
 532     hook->init_req(3, trip_count);
 533     break;
 534   }
 535 
 536   case BoolTest::ge:            // Maybe convert to '>' case
 537     limit = gvn->transform(new (C) AddINode(limit,one_m));
 538     set_subtree_ctrl( limit );
 539     hook->init_req(4 ,limit);
 540 
 541     bt = BoolTest::gt;
 542     // Make the new limit be in the same loop nest as the old limit
 543     //_loop.map(limit->_idx,limit_loop);
 544     // Fall into next case
 545   case BoolTest::gt: {          // Maybe convert to '!=' case
 546     if (stride_con > 0) // count up loop rolls through MININT
 547       ShouldNotReachHere();
 548     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
 549     set_subtree_ctrl( range );
 550     hook->init_req(0, range);
 551 
 552     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
 553     set_subtree_ctrl( bias );
 554     hook->init_req(1, bias);
 555 
 556     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_p));
 557     set_subtree_ctrl( bias1 );
 558     hook->init_req(2, bias1);
 559 
 560     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
 561     set_subtree_ctrl( trip_count );
 562     hook->init_req(3, trip_count);
 563     break;
 564   }
 565   } // switch( bt )
 566 
 567   Node *span = gvn->transform(new (C) MulINode(trip_count,stride));
 568   set_subtree_ctrl( span );
 569   hook->init_req(5, span);
 570 
 571   limit = gvn->transform(new (C) AddINode(span,init_trip));
 572   set_subtree_ctrl( limit );
 573 
 574   } // LoopLimitCheck
 575 
 576   // Check for SafePoint on backedge and remove
 577   Node *sfpt = x->in(LoopNode::LoopBackControl);
 578   if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 579     lazy_replace( sfpt, iftrue );
 580     if (loop->_safepts != NULL) {
 581       loop->_safepts->yank(sfpt);
 582     }
 583     loop->_tail = iftrue;
 584   }
 585 
 586   // Build a canonical trip test.
 587   // Clone code, as old values may be in use.
 588   incr = incr->clone();
 589   incr->set_req(1,phi);
 590   incr->set_req(2,stride);
 591   incr = _igvn.register_new_node_with_optimizer(incr);
 592   set_early_ctrl( incr );
 593   _igvn.hash_delete(phi);
 594   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 595 
 596   // If phi type is more restrictive than Int, raise to
 597   // Int to prevent (almost) infinite recursion in igvn
 598   // which can only handle integer types for constants or minint..maxint.
 599   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 600     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 601     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 602     nphi = _igvn.register_new_node_with_optimizer(nphi);
 603     set_ctrl(nphi, get_ctrl(phi));
 604     _igvn.replace_node(phi, nphi);
 605     phi = nphi->as_Phi();
 606   }
 607   cmp = cmp->clone();
 608   cmp->set_req(1,incr);
 609   cmp->set_req(2,limit);
 610   cmp = _igvn.register_new_node_with_optimizer(cmp);
 611   set_ctrl(cmp, iff->in(0));
 612 
 613   test = test->clone()->as_Bool();
 614   (*(BoolTest*)&test->_test)._test = bt;
 615   test->set_req(1,cmp);
 616   _igvn.register_new_node_with_optimizer(test);
 617   set_ctrl(test, iff->in(0));
 618 
 619   // Replace the old IfNode with a new LoopEndNode
 620   Node *lex = _igvn.register_new_node_with_optimizer(new (C) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
 621   IfNode *le = lex->as_If();
 622   uint dd = dom_depth(iff);
 623   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 624   set_loop(le, loop);
 625 
 626   // Get the loop-exit control
 627   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 628 
 629   // Need to swap loop-exit and loop-back control?
 630   if (iftrue_op == Op_IfFalse) {
 631     Node *ift2=_igvn.register_new_node_with_optimizer(new (C) IfTrueNode (le));
 632     Node *iff2=_igvn.register_new_node_with_optimizer(new (C) IfFalseNode(le));
 633 
 634     loop->_tail = back_control = ift2;
 635     set_loop(ift2, loop);
 636     set_loop(iff2, get_loop(iffalse));
 637 
 638     // Lazy update of 'get_ctrl' mechanism.
 639     lazy_replace_proj( iffalse, iff2 );
 640     lazy_replace_proj( iftrue,  ift2 );
 641 
 642     // Swap names
 643     iffalse = iff2;
 644     iftrue  = ift2;
 645   } else {
 646     _igvn.hash_delete(iffalse);
 647     _igvn.hash_delete(iftrue);
 648     iffalse->set_req_X( 0, le, &_igvn );
 649     iftrue ->set_req_X( 0, le, &_igvn );
 650   }
 651 
 652   set_idom(iftrue,  le, dd+1);
 653   set_idom(iffalse, le, dd+1);
 654   assert(iff->outcnt() == 0, "should be dead now");
 655   lazy_replace( iff, le ); // fix 'get_ctrl'
 656 
 657   // Now setup a new CountedLoopNode to replace the existing LoopNode
 658   CountedLoopNode *l = new (C) CountedLoopNode(init_control, back_control);
 659   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
 660   // The following assert is approximately true, and defines the intention
 661   // of can_be_counted_loop.  It fails, however, because phase->type
 662   // is not yet initialized for this loop and its parts.
 663   //assert(l->can_be_counted_loop(this), "sanity");
 664   _igvn.register_new_node_with_optimizer(l);
 665   set_loop(l, loop);
 666   loop->_head = l;
 667   // Fix all data nodes placed at the old loop head.
 668   // Uses the lazy-update mechanism of 'get_ctrl'.
 669   lazy_replace( x, l );
 670   set_idom(l, init_control, dom_depth(x));
 671 
 672   // Check for immediately preceding SafePoint and remove
 673   Node *sfpt2 = le->in(0);
 674   if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
 675     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 676     if (loop->_safepts != NULL) {
 677       loop->_safepts->yank(sfpt2);
 678     }
 679   }
 680 
 681   // Free up intermediate goo
 682   _igvn.remove_dead_node(hook);
 683 
 684 #ifdef ASSERT
 685   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
 686   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
 687 #endif
 688 #ifndef PRODUCT
 689   if (TraceLoopOpts) {
 690     tty->print("Counted      ");
 691     loop->dump_head();
 692   }
 693 #endif
 694 
 695   C->print_method("After CountedLoop", 3);
 696 
 697   return true;
 698 }
 699 
 700 //----------------------exact_limit-------------------------------------------
 701 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
 702   assert(loop->_head->is_CountedLoop(), "");
 703   CountedLoopNode *cl = loop->_head->as_CountedLoop();
 704   assert(cl->is_valid_counted_loop(), "");
 705 
 706   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
 707       cl->limit()->Opcode() == Op_LoopLimit) {
 708     // Old code has exact limit (it could be incorrect in case of int overflow).
 709     // Loop limit is exact with stride == 1. And loop may already have exact limit.
 710     return cl->limit();
 711   }
 712   Node *limit = NULL;
 713 #ifdef ASSERT
 714   BoolTest::mask bt = cl->loopexit()->test_trip();
 715   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
 716 #endif
 717   if (cl->has_exact_trip_count()) {
 718     // Simple case: loop has constant boundaries.
 719     // Use jlongs to avoid integer overflow.
 720     int stride_con = cl->stride_con();
 721     jlong  init_con = cl->init_trip()->get_int();
 722     jlong limit_con = cl->limit()->get_int();
 723     julong trip_cnt = cl->trip_count();
 724     jlong final_con = init_con + trip_cnt*stride_con;
 725     int final_int = (int)final_con;
 726     // The final value should be in integer range since the loop
 727     // is counted and the limit was checked for overflow.
 728     assert(final_con == (jlong)final_int, "final value should be integer");
 729     limit = _igvn.intcon(final_int);
 730   } else {
 731     // Create new LoopLimit node to get exact limit (final iv value).
 732     limit = new (C) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
 733     register_new_node(limit, cl->in(LoopNode::EntryControl));
 734   }
 735   assert(limit != NULL, "sanity");
 736   return limit;
 737 }
 738 
 739 //------------------------------Ideal------------------------------------------
 740 // Return a node which is more "ideal" than the current node.
 741 // Attempt to convert into a counted-loop.
 742 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 743   if (!can_be_counted_loop(phase)) {
 744     phase->C->set_major_progress();
 745   }
 746   return RegionNode::Ideal(phase, can_reshape);
 747 }
 748 
 749 
 750 //=============================================================================
 751 //------------------------------Ideal------------------------------------------
 752 // Return a node which is more "ideal" than the current node.
 753 // Attempt to convert into a counted-loop.
 754 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 755   return RegionNode::Ideal(phase, can_reshape);
 756 }
 757 
 758 //------------------------------dump_spec--------------------------------------
 759 // Dump special per-node info
 760 #ifndef PRODUCT
 761 void CountedLoopNode::dump_spec(outputStream *st) const {
 762   LoopNode::dump_spec(st);
 763   if (stride_is_con()) {
 764     st->print("stride: %d ",stride_con());
 765   }
 766   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
 767   if (is_main_loop()) st->print("main of N%d", _idx);
 768   if (is_post_loop()) st->print("post of N%d", _main_idx);
 769 }
 770 #endif
 771 
 772 //=============================================================================
 773 int CountedLoopEndNode::stride_con() const {
 774   return stride()->bottom_type()->is_int()->get_con();
 775 }
 776 
 777 //=============================================================================
 778 //------------------------------Value-----------------------------------------
 779 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
 780   const Type* init_t   = phase->type(in(Init));
 781   const Type* limit_t  = phase->type(in(Limit));
 782   const Type* stride_t = phase->type(in(Stride));
 783   // Either input is TOP ==> the result is TOP
 784   if (init_t   == Type::TOP) return Type::TOP;
 785   if (limit_t  == Type::TOP) return Type::TOP;
 786   if (stride_t == Type::TOP) return Type::TOP;
 787 
 788   int stride_con = stride_t->is_int()->get_con();
 789   if (stride_con == 1)
 790     return NULL;  // Identity
 791 
 792   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
 793     // Use jlongs to avoid integer overflow.
 794     jlong init_con   =  init_t->is_int()->get_con();
 795     jlong limit_con  = limit_t->is_int()->get_con();
 796     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
 797     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 798     jlong final_con  = init_con + stride_con*trip_count;
 799     int final_int = (int)final_con;
 800     // The final value should be in integer range since the loop
 801     // is counted and the limit was checked for overflow.
 802     assert(final_con == (jlong)final_int, "final value should be integer");
 803     return TypeInt::make(final_int);
 804   }
 805 
 806   return bottom_type(); // TypeInt::INT
 807 }
 808 
 809 //------------------------------Ideal------------------------------------------
 810 // Return a node which is more "ideal" than the current node.
 811 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 812   if (phase->type(in(Init))   == Type::TOP ||
 813       phase->type(in(Limit))  == Type::TOP ||
 814       phase->type(in(Stride)) == Type::TOP)
 815     return NULL;  // Dead
 816 
 817   int stride_con = phase->type(in(Stride))->is_int()->get_con();
 818   if (stride_con == 1)
 819     return NULL;  // Identity
 820 
 821   if (in(Init)->is_Con() && in(Limit)->is_Con())
 822     return NULL;  // Value
 823 
 824   // Delay following optimizations until all loop optimizations
 825   // done to keep Ideal graph simple.
 826   if (!can_reshape || phase->C->major_progress())
 827     return NULL;
 828 
 829   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
 830   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
 831   int stride_p;
 832   jlong lim, ini;
 833   julong max;
 834   if (stride_con > 0) {
 835     stride_p = stride_con;
 836     lim = limit_t->_hi;
 837     ini = init_t->_lo;
 838     max = (julong)max_jint;
 839   } else {
 840     stride_p = -stride_con;
 841     lim = init_t->_hi;
 842     ini = limit_t->_lo;
 843     max = (julong)min_jint;
 844   }
 845   julong range = lim - ini + stride_p;
 846   if (range <= max) {
 847     // Convert to integer expression if it is not overflow.
 848     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
 849     Node *range = phase->transform(new (phase->C) SubINode(in(Limit), in(Init)));
 850     Node *bias  = phase->transform(new (phase->C) AddINode(range, stride_m));
 851     Node *trip  = phase->transform(new (phase->C) DivINode(0, bias, in(Stride)));
 852     Node *span  = phase->transform(new (phase->C) MulINode(trip, in(Stride)));
 853     return new (phase->C) AddINode(span, in(Init)); // exact limit
 854   }
 855 
 856   if (is_power_of_2(stride_p) ||                // divisor is 2^n
 857       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
 858     // Convert to long expression to avoid integer overflow
 859     // and let igvn optimizer convert this division.
 860     //
 861     Node*   init   = phase->transform( new (phase->C) ConvI2LNode(in(Init)));
 862     Node*  limit   = phase->transform( new (phase->C) ConvI2LNode(in(Limit)));
 863     Node* stride   = phase->longcon(stride_con);
 864     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
 865 
 866     Node *range = phase->transform(new (phase->C) SubLNode(limit, init));
 867     Node *bias  = phase->transform(new (phase->C) AddLNode(range, stride_m));
 868     Node *span;
 869     if (stride_con > 0 && is_power_of_2(stride_p)) {
 870       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
 871       // and avoid generating rounding for division. Zero trip guard should
 872       // guarantee that init < limit but sometimes the guard is missing and
 873       // we can get situation when init > limit. Note, for the empty loop
 874       // optimization zero trip guard is generated explicitly which leaves
 875       // only RCE predicate where exact limit is used and the predicate
 876       // will simply fail forcing recompilation.
 877       Node* neg_stride   = phase->longcon(-stride_con);
 878       span = phase->transform(new (phase->C) AndLNode(bias, neg_stride));
 879     } else {
 880       Node *trip  = phase->transform(new (phase->C) DivLNode(0, bias, stride));
 881       span = phase->transform(new (phase->C) MulLNode(trip, stride));
 882     }
 883     // Convert back to int
 884     Node *span_int = phase->transform(new (phase->C) ConvL2INode(span));
 885     return new (phase->C) AddINode(span_int, in(Init)); // exact limit
 886   }
 887 
 888   return NULL;    // No progress
 889 }
 890 
 891 //------------------------------Identity---------------------------------------
 892 // If stride == 1 return limit node.
 893 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
 894   int stride_con = phase->type(in(Stride))->is_int()->get_con();
 895   if (stride_con == 1 || stride_con == -1)
 896     return in(Limit);
 897   return this;
 898 }
 899 
 900 //=============================================================================
 901 //----------------------match_incr_with_optional_truncation--------------------
 902 // Match increment with optional truncation:
 903 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
 904 // Return NULL for failure. Success returns the increment node.
 905 Node* CountedLoopNode::match_incr_with_optional_truncation(
 906                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
 907   // Quick cutouts:
 908   if (expr == NULL || expr->req() != 3)  return NULL;
 909 
 910   Node *t1 = NULL;
 911   Node *t2 = NULL;
 912   const TypeInt* trunc_t = TypeInt::INT;
 913   Node* n1 = expr;
 914   int   n1op = n1->Opcode();
 915 
 916   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
 917   if (n1op == Op_AndI &&
 918       n1->in(2)->is_Con() &&
 919       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
 920     // %%% This check should match any mask of 2**K-1.
 921     t1 = n1;
 922     n1 = t1->in(1);
 923     n1op = n1->Opcode();
 924     trunc_t = TypeInt::CHAR;
 925   } else if (n1op == Op_RShiftI &&
 926              n1->in(1) != NULL &&
 927              n1->in(1)->Opcode() == Op_LShiftI &&
 928              n1->in(2) == n1->in(1)->in(2) &&
 929              n1->in(2)->is_Con()) {
 930     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
 931     // %%% This check should match any shift in [1..31].
 932     if (shift == 16 || shift == 8) {
 933       t1 = n1;
 934       t2 = t1->in(1);
 935       n1 = t2->in(1);
 936       n1op = n1->Opcode();
 937       if (shift == 16) {
 938         trunc_t = TypeInt::SHORT;
 939       } else if (shift == 8) {
 940         trunc_t = TypeInt::BYTE;
 941       }
 942     }
 943   }
 944 
 945   // If (maybe after stripping) it is an AddI, we won:
 946   if (n1op == Op_AddI) {
 947     *trunc1 = t1;
 948     *trunc2 = t2;
 949     *trunc_type = trunc_t;
 950     return n1;
 951   }
 952 
 953   // failed
 954   return NULL;
 955 }
 956 
 957 
 958 //------------------------------filtered_type--------------------------------
 959 // Return a type based on condition control flow
 960 // A successful return will be a type that is restricted due
 961 // to a series of dominating if-tests, such as:
 962 //    if (i < 10) {
 963 //       if (i > 0) {
 964 //          here: "i" type is [1..10)
 965 //       }
 966 //    }
 967 // or a control flow merge
 968 //    if (i < 10) {
 969 //       do {
 970 //          phi( , ) -- at top of loop type is [min_int..10)
 971 //         i = ?
 972 //       } while ( i < 10)
 973 //
 974 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
 975   assert(n && n->bottom_type()->is_int(), "must be int");
 976   const TypeInt* filtered_t = NULL;
 977   if (!n->is_Phi()) {
 978     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
 979     filtered_t = filtered_type_from_dominators(n, n_ctrl);
 980 
 981   } else {
 982     Node* phi    = n->as_Phi();
 983     Node* region = phi->in(0);
 984     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
 985     if (region && region != C->top()) {
 986       for (uint i = 1; i < phi->req(); i++) {
 987         Node* val   = phi->in(i);
 988         Node* use_c = region->in(i);
 989         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
 990         if (val_t != NULL) {
 991           if (filtered_t == NULL) {
 992             filtered_t = val_t;
 993           } else {
 994             filtered_t = filtered_t->meet(val_t)->is_int();
 995           }
 996         }
 997       }
 998     }
 999   }
1000   const TypeInt* n_t = _igvn.type(n)->is_int();
1001   if (filtered_t != NULL) {
1002     n_t = n_t->join(filtered_t)->is_int();
1003   }
1004   return n_t;
1005 }
1006 
1007 
1008 //------------------------------filtered_type_from_dominators--------------------------------
1009 // Return a possibly more restrictive type for val based on condition control flow of dominators
1010 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1011   if (val->is_Con()) {
1012      return val->bottom_type()->is_int();
1013   }
1014   uint if_limit = 10; // Max number of dominating if's visited
1015   const TypeInt* rtn_t = NULL;
1016 
1017   if (use_ctrl && use_ctrl != C->top()) {
1018     Node* val_ctrl = get_ctrl(val);
1019     uint val_dom_depth = dom_depth(val_ctrl);
1020     Node* pred = use_ctrl;
1021     uint if_cnt = 0;
1022     while (if_cnt < if_limit) {
1023       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1024         if_cnt++;
1025         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1026         if (if_t != NULL) {
1027           if (rtn_t == NULL) {
1028             rtn_t = if_t;
1029           } else {
1030             rtn_t = rtn_t->join(if_t)->is_int();
1031           }
1032         }
1033       }
1034       pred = idom(pred);
1035       if (pred == NULL || pred == C->top()) {
1036         break;
1037       }
1038       // Stop if going beyond definition block of val
1039       if (dom_depth(pred) < val_dom_depth) {
1040         break;
1041       }
1042     }
1043   }
1044   return rtn_t;
1045 }
1046 
1047 
1048 //------------------------------dump_spec--------------------------------------
1049 // Dump special per-node info
1050 #ifndef PRODUCT
1051 void CountedLoopEndNode::dump_spec(outputStream *st) const {
1052   if( in(TestValue)->is_Bool() ) {
1053     BoolTest bt( test_trip()); // Added this for g++.
1054 
1055     st->print("[");
1056     bt.dump_on(st);
1057     st->print("]");
1058   }
1059   st->print(" ");
1060   IfNode::dump_spec(st);
1061 }
1062 #endif
1063 
1064 //=============================================================================
1065 //------------------------------is_member--------------------------------------
1066 // Is 'l' a member of 'this'?
1067 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
1068   while( l->_nest > _nest ) l = l->_parent;
1069   return l == this;
1070 }
1071 
1072 //------------------------------set_nest---------------------------------------
1073 // Set loop tree nesting depth.  Accumulate _has_call bits.
1074 int IdealLoopTree::set_nest( uint depth ) {
1075   _nest = depth;
1076   int bits = _has_call;
1077   if( _child ) bits |= _child->set_nest(depth+1);
1078   if( bits ) _has_call = 1;
1079   if( _next  ) bits |= _next ->set_nest(depth  );
1080   return bits;
1081 }
1082 
1083 //------------------------------split_fall_in----------------------------------
1084 // Split out multiple fall-in edges from the loop header.  Move them to a
1085 // private RegionNode before the loop.  This becomes the loop landing pad.
1086 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1087   PhaseIterGVN &igvn = phase->_igvn;
1088   uint i;
1089 
1090   // Make a new RegionNode to be the landing pad.
1091   Node *landing_pad = new (phase->C) RegionNode( fall_in_cnt+1 );
1092   phase->set_loop(landing_pad,_parent);
1093   // Gather all the fall-in control paths into the landing pad
1094   uint icnt = fall_in_cnt;
1095   uint oreq = _head->req();
1096   for( i = oreq-1; i>0; i-- )
1097     if( !phase->is_member( this, _head->in(i) ) )
1098       landing_pad->set_req(icnt--,_head->in(i));
1099 
1100   // Peel off PhiNode edges as well
1101   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1102     Node *oj = _head->fast_out(j);
1103     if( oj->is_Phi() ) {
1104       PhiNode* old_phi = oj->as_Phi();
1105       assert( old_phi->region() == _head, "" );
1106       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1107       Node *p = PhiNode::make_blank(landing_pad, old_phi);
1108       uint icnt = fall_in_cnt;
1109       for( i = oreq-1; i>0; i-- ) {
1110         if( !phase->is_member( this, _head->in(i) ) ) {
1111           p->init_req(icnt--, old_phi->in(i));
1112           // Go ahead and clean out old edges from old phi
1113           old_phi->del_req(i);
1114         }
1115       }
1116       // Search for CSE's here, because ZKM.jar does a lot of
1117       // loop hackery and we need to be a little incremental
1118       // with the CSE to avoid O(N^2) node blow-up.
1119       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1120       if( p2 ) {                // Found CSE
1121         p->destruct();          // Recover useless new node
1122         p = p2;                 // Use old node
1123       } else {
1124         igvn.register_new_node_with_optimizer(p, old_phi);
1125       }
1126       // Make old Phi refer to new Phi.
1127       old_phi->add_req(p);
1128       // Check for the special case of making the old phi useless and
1129       // disappear it.  In JavaGrande I have a case where this useless
1130       // Phi is the loop limit and prevents recognizing a CountedLoop
1131       // which in turn prevents removing an empty loop.
1132       Node *id_old_phi = old_phi->Identity( &igvn );
1133       if( id_old_phi != old_phi ) { // Found a simple identity?
1134         // Note that I cannot call 'replace_node' here, because
1135         // that will yank the edge from old_phi to the Region and
1136         // I'm mid-iteration over the Region's uses.
1137         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1138           Node* use = old_phi->last_out(i);
1139           igvn.rehash_node_delayed(use);
1140           uint uses_found = 0;
1141           for (uint j = 0; j < use->len(); j++) {
1142             if (use->in(j) == old_phi) {
1143               if (j < use->req()) use->set_req (j, id_old_phi);
1144               else                use->set_prec(j, id_old_phi);
1145               uses_found++;
1146             }
1147           }
1148           i -= uses_found;    // we deleted 1 or more copies of this edge
1149         }
1150       }
1151       igvn._worklist.push(old_phi);
1152     }
1153   }
1154   // Finally clean out the fall-in edges from the RegionNode
1155   for( i = oreq-1; i>0; i-- ) {
1156     if( !phase->is_member( this, _head->in(i) ) ) {
1157       _head->del_req(i);
1158     }
1159   }
1160   // Transform landing pad
1161   igvn.register_new_node_with_optimizer(landing_pad, _head);
1162   // Insert landing pad into the header
1163   _head->add_req(landing_pad);
1164 }
1165 
1166 //------------------------------split_outer_loop-------------------------------
1167 // Split out the outermost loop from this shared header.
1168 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1169   PhaseIterGVN &igvn = phase->_igvn;
1170 
1171   // Find index of outermost loop; it should also be my tail.
1172   uint outer_idx = 1;
1173   while( _head->in(outer_idx) != _tail ) outer_idx++;
1174 
1175   // Make a LoopNode for the outermost loop.
1176   Node *ctl = _head->in(LoopNode::EntryControl);
1177   Node *outer = new (phase->C) LoopNode( ctl, _head->in(outer_idx) );
1178   outer = igvn.register_new_node_with_optimizer(outer, _head);
1179   phase->set_created_loop_node();
1180 
1181   // Outermost loop falls into '_head' loop
1182   _head->set_req(LoopNode::EntryControl, outer);
1183   _head->del_req(outer_idx);
1184   // Split all the Phis up between '_head' loop and 'outer' loop.
1185   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1186     Node *out = _head->fast_out(j);
1187     if( out->is_Phi() ) {
1188       PhiNode *old_phi = out->as_Phi();
1189       assert( old_phi->region() == _head, "" );
1190       Node *phi = PhiNode::make_blank(outer, old_phi);
1191       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1192       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1193       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1194       // Make old Phi point to new Phi on the fall-in path
1195       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1196       old_phi->del_req(outer_idx);
1197     }
1198   }
1199 
1200   // Use the new loop head instead of the old shared one
1201   _head = outer;
1202   phase->set_loop(_head, this);
1203 }
1204 
1205 //------------------------------fix_parent-------------------------------------
1206 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1207   loop->_parent = parent;
1208   if( loop->_child ) fix_parent( loop->_child, loop   );
1209   if( loop->_next  ) fix_parent( loop->_next , parent );
1210 }
1211 
1212 //------------------------------estimate_path_freq-----------------------------
1213 static float estimate_path_freq( Node *n ) {
1214   // Try to extract some path frequency info
1215   IfNode *iff;
1216   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1217     uint nop = n->Opcode();
1218     if( nop == Op_SafePoint ) {   // Skip any safepoint
1219       n = n->in(0);
1220       continue;
1221     }
1222     if( nop == Op_CatchProj ) {   // Get count from a prior call
1223       // Assume call does not always throw exceptions: means the call-site
1224       // count is also the frequency of the fall-through path.
1225       assert( n->is_CatchProj(), "" );
1226       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1227         return 0.0f;            // Assume call exception path is rare
1228       Node *call = n->in(0)->in(0)->in(0);
1229       assert( call->is_Call(), "expect a call here" );
1230       const JVMState *jvms = ((CallNode*)call)->jvms();
1231       ciMethodData* methodData = jvms->method()->method_data();
1232       if (!methodData->is_mature())  return 0.0f; // No call-site data
1233       ciProfileData* data = methodData->bci_to_data(jvms->bci());
1234       if ((data == NULL) || !data->is_CounterData()) {
1235         // no call profile available, try call's control input
1236         n = n->in(0);
1237         continue;
1238       }
1239       return data->as_CounterData()->count()/FreqCountInvocations;
1240     }
1241     // See if there's a gating IF test
1242     Node *n_c = n->in(0);
1243     if( !n_c->is_If() ) break;       // No estimate available
1244     iff = n_c->as_If();
1245     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1246       // Compute how much count comes on this path
1247       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1248     // Have no count info.  Skip dull uncommon-trap like branches.
1249     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1250         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1251       break;
1252     // Skip through never-taken branch; look for a real loop exit.
1253     n = iff->in(0);
1254   }
1255   return 0.0f;                  // No estimate available
1256 }
1257 
1258 //------------------------------merge_many_backedges---------------------------
1259 // Merge all the backedges from the shared header into a private Region.
1260 // Feed that region as the one backedge to this loop.
1261 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1262   uint i;
1263 
1264   // Scan for the top 2 hottest backedges
1265   float hotcnt = 0.0f;
1266   float warmcnt = 0.0f;
1267   uint hot_idx = 0;
1268   // Loop starts at 2 because slot 1 is the fall-in path
1269   for( i = 2; i < _head->req(); i++ ) {
1270     float cnt = estimate_path_freq(_head->in(i));
1271     if( cnt > hotcnt ) {       // Grab hottest path
1272       warmcnt = hotcnt;
1273       hotcnt = cnt;
1274       hot_idx = i;
1275     } else if( cnt > warmcnt ) { // And 2nd hottest path
1276       warmcnt = cnt;
1277     }
1278   }
1279 
1280   // See if the hottest backedge is worthy of being an inner loop
1281   // by being much hotter than the next hottest backedge.
1282   if( hotcnt <= 0.0001 ||
1283       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1284 
1285   // Peel out the backedges into a private merge point; peel
1286   // them all except optionally hot_idx.
1287   PhaseIterGVN &igvn = phase->_igvn;
1288 
1289   Node *hot_tail = NULL;
1290   // Make a Region for the merge point
1291   Node *r = new (phase->C) RegionNode(1);
1292   for( i = 2; i < _head->req(); i++ ) {
1293     if( i != hot_idx )
1294       r->add_req( _head->in(i) );
1295     else hot_tail = _head->in(i);
1296   }
1297   igvn.register_new_node_with_optimizer(r, _head);
1298   // Plug region into end of loop _head, followed by hot_tail
1299   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1300   _head->set_req(2, r);
1301   if( hot_idx ) _head->add_req(hot_tail);
1302 
1303   // Split all the Phis up between '_head' loop and the Region 'r'
1304   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1305     Node *out = _head->fast_out(j);
1306     if( out->is_Phi() ) {
1307       PhiNode* n = out->as_Phi();
1308       igvn.hash_delete(n);      // Delete from hash before hacking edges
1309       Node *hot_phi = NULL;
1310       Node *phi = new (phase->C) PhiNode(r, n->type(), n->adr_type());
1311       // Check all inputs for the ones to peel out
1312       uint j = 1;
1313       for( uint i = 2; i < n->req(); i++ ) {
1314         if( i != hot_idx )
1315           phi->set_req( j++, n->in(i) );
1316         else hot_phi = n->in(i);
1317       }
1318       // Register the phi but do not transform until whole place transforms
1319       igvn.register_new_node_with_optimizer(phi, n);
1320       // Add the merge phi to the old Phi
1321       while( n->req() > 3 ) n->del_req( n->req()-1 );
1322       n->set_req(2, phi);
1323       if( hot_idx ) n->add_req(hot_phi);
1324     }
1325   }
1326 
1327 
1328   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1329   // of self loop tree.  Turn self into a loop headed by _head and with
1330   // tail being the new merge point.
1331   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1332   phase->set_loop(_tail,ilt);   // Adjust tail
1333   _tail = r;                    // Self's tail is new merge point
1334   phase->set_loop(r,this);
1335   ilt->_child = _child;         // New guy has my children
1336   _child = ilt;                 // Self has new guy as only child
1337   ilt->_parent = this;          // new guy has self for parent
1338   ilt->_nest = _nest;           // Same nesting depth (for now)
1339 
1340   // Starting with 'ilt', look for child loop trees using the same shared
1341   // header.  Flatten these out; they will no longer be loops in the end.
1342   IdealLoopTree **pilt = &_child;
1343   while( ilt ) {
1344     if( ilt->_head == _head ) {
1345       uint i;
1346       for( i = 2; i < _head->req(); i++ )
1347         if( _head->in(i) == ilt->_tail )
1348           break;                // Still a loop
1349       if( i == _head->req() ) { // No longer a loop
1350         // Flatten ilt.  Hang ilt's "_next" list from the end of
1351         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1352         IdealLoopTree **cp = &ilt->_child;
1353         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1354         *cp = ilt->_next;       // Hang next list at end of child list
1355         *pilt = ilt->_child;    // Move child up to replace ilt
1356         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1357         ilt = ilt->_child;      // Repeat using new ilt
1358         continue;               // do not advance over ilt->_child
1359       }
1360       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1361       phase->set_loop(_head,ilt);
1362     }
1363     pilt = &ilt->_child;        // Advance to next
1364     ilt = *pilt;
1365   }
1366 
1367   if( _child ) fix_parent( _child, this );
1368 }
1369 
1370 //------------------------------beautify_loops---------------------------------
1371 // Split shared headers and insert loop landing pads.
1372 // Insert a LoopNode to replace the RegionNode.
1373 // Return TRUE if loop tree is structurally changed.
1374 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1375   bool result = false;
1376   // Cache parts in locals for easy
1377   PhaseIterGVN &igvn = phase->_igvn;
1378 
1379   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1380 
1381   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1382   int fall_in_cnt = 0;
1383   for( uint i = 1; i < _head->req(); i++ )
1384     if( !phase->is_member( this, _head->in(i) ) )
1385       fall_in_cnt++;
1386   assert( fall_in_cnt, "at least 1 fall-in path" );
1387   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1388     split_fall_in( phase, fall_in_cnt );
1389 
1390   // Swap inputs to the _head and all Phis to move the fall-in edge to
1391   // the left.
1392   fall_in_cnt = 1;
1393   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1394     fall_in_cnt++;
1395   if( fall_in_cnt > 1 ) {
1396     // Since I am just swapping inputs I do not need to update def-use info
1397     Node *tmp = _head->in(1);
1398     _head->set_req( 1, _head->in(fall_in_cnt) );
1399     _head->set_req( fall_in_cnt, tmp );
1400     // Swap also all Phis
1401     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1402       Node* phi = _head->fast_out(i);
1403       if( phi->is_Phi() ) {
1404         igvn.hash_delete(phi); // Yank from hash before hacking edges
1405         tmp = phi->in(1);
1406         phi->set_req( 1, phi->in(fall_in_cnt) );
1407         phi->set_req( fall_in_cnt, tmp );
1408       }
1409     }
1410   }
1411   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1412   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1413 
1414   // If I am a shared header (multiple backedges), peel off the many
1415   // backedges into a private merge point and use the merge point as
1416   // the one true backedge.
1417   if( _head->req() > 3 ) {
1418     // Merge the many backedges into a single backedge but leave
1419     // the hottest backedge as separate edge for the following peel.
1420     merge_many_backedges( phase );
1421     result = true;
1422   }
1423 
1424   // If I have one hot backedge, peel off myself loop.
1425   // I better be the outermost loop.
1426   if( _head->req() > 3 ) {
1427     split_outer_loop( phase );
1428     result = true;
1429 
1430   } else if( !_head->is_Loop() && !_irreducible ) {
1431     // Make a new LoopNode to replace the old loop head
1432     Node *l = new (phase->C) LoopNode( _head->in(1), _head->in(2) );
1433     l = igvn.register_new_node_with_optimizer(l, _head);
1434     phase->set_created_loop_node();
1435     // Go ahead and replace _head
1436     phase->_igvn.replace_node( _head, l );
1437     _head = l;
1438     phase->set_loop(_head, this);
1439   }
1440 
1441   // Now recursively beautify nested loops
1442   if( _child ) result |= _child->beautify_loops( phase );
1443   if( _next  ) result |= _next ->beautify_loops( phase );
1444   return result;
1445 }
1446 
1447 //------------------------------allpaths_check_safepts----------------------------
1448 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
1449 // encountered.  Helper for check_safepts.
1450 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1451   assert(stack.size() == 0, "empty stack");
1452   stack.push(_tail);
1453   visited.Clear();
1454   visited.set(_tail->_idx);
1455   while (stack.size() > 0) {
1456     Node* n = stack.pop();
1457     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1458       // Terminate this path
1459     } else if (n->Opcode() == Op_SafePoint) {
1460       if (_phase->get_loop(n) != this) {
1461         if (_required_safept == NULL) _required_safept = new Node_List();
1462         _required_safept->push(n);  // save the one closest to the tail
1463       }
1464       // Terminate this path
1465     } else {
1466       uint start = n->is_Region() ? 1 : 0;
1467       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1468       for (uint i = start; i < end; i++) {
1469         Node* in = n->in(i);
1470         assert(in->is_CFG(), "must be");
1471         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1472           stack.push(in);
1473         }
1474       }
1475     }
1476   }
1477 }
1478 
1479 //------------------------------check_safepts----------------------------
1480 // Given dominators, try to find loops with calls that must always be
1481 // executed (call dominates loop tail).  These loops do not need non-call
1482 // safepoints (ncsfpt).
1483 //
1484 // A complication is that a safepoint in a inner loop may be needed
1485 // by an outer loop. In the following, the inner loop sees it has a
1486 // call (block 3) on every path from the head (block 2) to the
1487 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1488 // in block 2, _but_ this leaves the outer loop without a safepoint.
1489 //
1490 //          entry  0
1491 //                 |
1492 //                 v
1493 // outer 1,2    +->1
1494 //              |  |
1495 //              |  v
1496 //              |  2<---+  ncsfpt in 2
1497 //              |_/|\   |
1498 //                 | v  |
1499 // inner 2,3      /  3  |  call in 3
1500 //               /   |  |
1501 //              v    +--+
1502 //        exit  4
1503 //
1504 //
1505 // This method creates a list (_required_safept) of ncsfpt nodes that must
1506 // be protected is created for each loop. When a ncsfpt maybe deleted, it
1507 // is first looked for in the lists for the outer loops of the current loop.
1508 //
1509 // The insights into the problem:
1510 //  A) counted loops are okay
1511 //  B) innermost loops are okay (only an inner loop can delete
1512 //     a ncsfpt needed by an outer loop)
1513 //  C) a loop is immune from an inner loop deleting a safepoint
1514 //     if the loop has a call on the idom-path
1515 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1516 //     idom-path that is not in a nested loop
1517 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1518 //     loop needs to be prevented from deletion by an inner loop
1519 //
1520 // There are two analyses:
1521 //  1) The first, and cheaper one, scans the loop body from
1522 //     tail to head following the idom (immediate dominator)
1523 //     chain, looking for the cases (C,D,E) above.
1524 //     Since inner loops are scanned before outer loops, there is summary
1525 //     information about inner loops.  Inner loops can be skipped over
1526 //     when the tail of an inner loop is encountered.
1527 //
1528 //  2) The second, invoked if the first fails to find a call or ncsfpt on
1529 //     the idom path (which is rare), scans all predecessor control paths
1530 //     from the tail to the head, terminating a path when a call or sfpt
1531 //     is encountered, to find the ncsfpt's that are closest to the tail.
1532 //
1533 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1534   // Bottom up traversal
1535   IdealLoopTree* ch = _child;
1536   if (_child) _child->check_safepts(visited, stack);
1537   if (_next)  _next ->check_safepts(visited, stack);
1538 
1539   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1540     bool  has_call         = false; // call on dom-path
1541     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1542     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1543     // Scan the dom-path nodes from tail to head
1544     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1545       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1546         has_call = true;
1547         _has_sfpt = 1;          // Then no need for a safept!
1548         break;
1549       } else if (n->Opcode() == Op_SafePoint) {
1550         if (_phase->get_loop(n) == this) {
1551           has_local_ncsfpt = true;
1552           break;
1553         }
1554         if (nonlocal_ncsfpt == NULL) {
1555           nonlocal_ncsfpt = n; // save the one closest to the tail
1556         }
1557       } else {
1558         IdealLoopTree* nlpt = _phase->get_loop(n);
1559         if (this != nlpt) {
1560           // If at an inner loop tail, see if the inner loop has already
1561           // recorded seeing a call on the dom-path (and stop.)  If not,
1562           // jump to the head of the inner loop.
1563           assert(is_member(nlpt), "nested loop");
1564           Node* tail = nlpt->_tail;
1565           if (tail->in(0)->is_If()) tail = tail->in(0);
1566           if (n == tail) {
1567             // If inner loop has call on dom-path, so does outer loop
1568             if (nlpt->_has_sfpt) {
1569               has_call = true;
1570               _has_sfpt = 1;
1571               break;
1572             }
1573             // Skip to head of inner loop
1574             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1575             n = nlpt->_head;
1576           }
1577         }
1578       }
1579     }
1580     // Record safept's that this loop needs preserved when an
1581     // inner loop attempts to delete it's safepoints.
1582     if (_child != NULL && !has_call && !has_local_ncsfpt) {
1583       if (nonlocal_ncsfpt != NULL) {
1584         if (_required_safept == NULL) _required_safept = new Node_List();
1585         _required_safept->push(nonlocal_ncsfpt);
1586       } else {
1587         // Failed to find a suitable safept on the dom-path.  Now use
1588         // an all paths walk from tail to head, looking for safepoints to preserve.
1589         allpaths_check_safepts(visited, stack);
1590       }
1591     }
1592   }
1593 }
1594 
1595 //---------------------------is_deleteable_safept----------------------------
1596 // Is safept not required by an outer loop?
1597 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1598   assert(sfpt->Opcode() == Op_SafePoint, "");
1599   IdealLoopTree* lp = get_loop(sfpt)->_parent;
1600   while (lp != NULL) {
1601     Node_List* sfpts = lp->_required_safept;
1602     if (sfpts != NULL) {
1603       for (uint i = 0; i < sfpts->size(); i++) {
1604         if (sfpt == sfpts->at(i))
1605           return false;
1606       }
1607     }
1608     lp = lp->_parent;
1609   }
1610   return true;
1611 }
1612 
1613 //---------------------------replace_parallel_iv-------------------------------
1614 // Replace parallel induction variable (parallel to trip counter)
1615 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
1616   assert(loop->_head->is_CountedLoop(), "");
1617   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1618   if (!cl->is_valid_counted_loop())
1619     return;         // skip malformed counted loop
1620   Node *incr = cl->incr();
1621   if (incr == NULL)
1622     return;         // Dead loop?
1623   Node *init = cl->init_trip();
1624   Node *phi  = cl->phi();
1625   int stride_con = cl->stride_con();
1626 
1627   // Visit all children, looking for Phis
1628   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
1629     Node *out = cl->out(i);
1630     // Look for other phis (secondary IVs). Skip dead ones
1631     if (!out->is_Phi() || out == phi || !has_node(out))
1632       continue;
1633     PhiNode* phi2 = out->as_Phi();
1634     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
1635     // Look for induction variables of the form:  X += constant
1636     if (phi2->region() != loop->_head ||
1637         incr2->req() != 3 ||
1638         incr2->in(1) != phi2 ||
1639         incr2 == incr ||
1640         incr2->Opcode() != Op_AddI ||
1641         !incr2->in(2)->is_Con())
1642       continue;
1643 
1644     // Check for parallel induction variable (parallel to trip counter)
1645     // via an affine function.  In particular, count-down loops with
1646     // count-up array indices are common. We only RCE references off
1647     // the trip-counter, so we need to convert all these to trip-counter
1648     // expressions.
1649     Node *init2 = phi2->in( LoopNode::EntryControl );
1650     int stride_con2 = incr2->in(2)->get_int();
1651 
1652     // The general case here gets a little tricky.  We want to find the
1653     // GCD of all possible parallel IV's and make a new IV using this
1654     // GCD for the loop.  Then all possible IVs are simple multiples of
1655     // the GCD.  In practice, this will cover very few extra loops.
1656     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
1657     // where +/-1 is the common case, but other integer multiples are
1658     // also easy to handle.
1659     int ratio_con = stride_con2/stride_con;
1660 
1661     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
1662 #ifndef PRODUCT
1663       if (TraceLoopOpts) {
1664         tty->print("Parallel IV: %d ", phi2->_idx);
1665         loop->dump_head();
1666       }
1667 #endif
1668       // Convert to using the trip counter.  The parallel induction
1669       // variable differs from the trip counter by a loop-invariant
1670       // amount, the difference between their respective initial values.
1671       // It is scaled by the 'ratio_con'.
1672       Node* ratio = _igvn.intcon(ratio_con);
1673       set_ctrl(ratio, C->root());
1674       Node* ratio_init = new (C) MulINode(init, ratio);
1675       _igvn.register_new_node_with_optimizer(ratio_init, init);
1676       set_early_ctrl(ratio_init);
1677       Node* diff = new (C) SubINode(init2, ratio_init);
1678       _igvn.register_new_node_with_optimizer(diff, init2);
1679       set_early_ctrl(diff);
1680       Node* ratio_idx = new (C) MulINode(phi, ratio);
1681       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
1682       set_ctrl(ratio_idx, cl);
1683       Node* add = new (C) AddINode(ratio_idx, diff);
1684       _igvn.register_new_node_with_optimizer(add);
1685       set_ctrl(add, cl);
1686       _igvn.replace_node( phi2, add );
1687       // Sometimes an induction variable is unused
1688       if (add->outcnt() == 0) {
1689         _igvn.remove_dead_node(add);
1690       }
1691       --i; // deleted this phi; rescan starting with next position
1692       continue;
1693     }
1694   }
1695 }
1696 
1697 //------------------------------counted_loop-----------------------------------
1698 // Convert to counted loops where possible
1699 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
1700 
1701   // For grins, set the inner-loop flag here
1702   if (!_child) {
1703     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
1704   }
1705 
1706   if (_head->is_CountedLoop() ||
1707       phase->is_counted_loop(_head, this)) {
1708     _has_sfpt = 1;              // Indicate we do not need a safepoint here
1709 
1710     // Look for safepoints to remove.
1711     Node_List* sfpts = _safepts;
1712     if (sfpts != NULL) {
1713       for (uint i = 0; i < sfpts->size(); i++) {
1714         Node* n = sfpts->at(i);
1715         assert(phase->get_loop(n) == this, "");
1716         if (phase->is_deleteable_safept(n)) {
1717           phase->lazy_replace(n, n->in(TypeFunc::Control));
1718         }
1719       }
1720     }
1721 
1722     // Look for induction variables
1723     phase->replace_parallel_iv(this);
1724 
1725   } else if (_parent != NULL && !_irreducible) {
1726     // Not a counted loop.
1727     // Look for a safepoint on the idom-path.
1728     Node* sfpt = tail();
1729     for (; sfpt != _head; sfpt = phase->idom(sfpt)) {
1730       if (sfpt->Opcode() == Op_SafePoint && phase->get_loop(sfpt) == this)
1731         break; // Found one
1732     }
1733     // Delete other safepoints in this loop.
1734     Node_List* sfpts = _safepts;
1735     if (sfpts != NULL && sfpt != _head && sfpt->Opcode() == Op_SafePoint) {
1736       for (uint i = 0; i < sfpts->size(); i++) {
1737         Node* n = sfpts->at(i);
1738         assert(phase->get_loop(n) == this, "");
1739         if (n != sfpt && phase->is_deleteable_safept(n)) {
1740           phase->lazy_replace(n, n->in(TypeFunc::Control));
1741         }
1742       }
1743     }
1744   }
1745 
1746   // Recursively
1747   if (_child) _child->counted_loop( phase );
1748   if (_next)  _next ->counted_loop( phase );
1749 }
1750 
1751 #ifndef PRODUCT
1752 //------------------------------dump_head--------------------------------------
1753 // Dump 1 liner for loop header info
1754 void IdealLoopTree::dump_head( ) const {
1755   for (uint i=0; i<_nest; i++)
1756     tty->print("  ");
1757   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
1758   if (_irreducible) tty->print(" IRREDUCIBLE");
1759   Node* entry = _head->in(LoopNode::EntryControl);
1760   if (LoopLimitCheck) {
1761     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
1762     if (predicate != NULL ) {
1763       tty->print(" limit_check");
1764       entry = entry->in(0)->in(0);
1765     }
1766   }
1767   if (UseLoopPredicate) {
1768     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
1769     if (entry != NULL) {
1770       tty->print(" predicated");
1771     }
1772   }
1773   if (_head->is_CountedLoop()) {
1774     CountedLoopNode *cl = _head->as_CountedLoop();
1775     tty->print(" counted");
1776 
1777     Node* init_n = cl->init_trip();
1778     if (init_n  != NULL &&  init_n->is_Con())
1779       tty->print(" [%d,", cl->init_trip()->get_int());
1780     else
1781       tty->print(" [int,");
1782     Node* limit_n = cl->limit();
1783     if (limit_n  != NULL &&  limit_n->is_Con())
1784       tty->print("%d),", cl->limit()->get_int());
1785     else
1786       tty->print("int),");
1787     int stride_con  = cl->stride_con();
1788     if (stride_con > 0) tty->print("+");
1789     tty->print("%d", stride_con);
1790 
1791     tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
1792 
1793     if (cl->is_pre_loop ()) tty->print(" pre" );
1794     if (cl->is_main_loop()) tty->print(" main");
1795     if (cl->is_post_loop()) tty->print(" post");
1796   }
1797   tty->cr();
1798 }
1799 
1800 //------------------------------dump-------------------------------------------
1801 // Dump loops by loop tree
1802 void IdealLoopTree::dump( ) const {
1803   dump_head();
1804   if (_child) _child->dump();
1805   if (_next)  _next ->dump();
1806 }
1807 
1808 #endif
1809 
1810 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
1811   if (loop == root) {
1812     if (loop->_child != NULL) {
1813       log->begin_head("loop_tree");
1814       log->end_head();
1815       if( loop->_child ) log_loop_tree(root, loop->_child, log);
1816       log->tail("loop_tree");
1817       assert(loop->_next == NULL, "what?");
1818     }
1819   } else {
1820     Node* head = loop->_head;
1821     log->begin_head("loop");
1822     log->print(" idx='%d' ", head->_idx);
1823     if (loop->_irreducible) log->print("irreducible='1' ");
1824     if (head->is_Loop()) {
1825       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
1826       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
1827     }
1828     if (head->is_CountedLoop()) {
1829       CountedLoopNode* cl = head->as_CountedLoop();
1830       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
1831       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
1832       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
1833     }
1834     log->end_head();
1835     if( loop->_child ) log_loop_tree(root, loop->_child, log);
1836     log->tail("loop");
1837     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
1838   }
1839 }
1840 
1841 //---------------------collect_potentially_useful_predicates-----------------------
1842 // Helper function to collect potentially useful predicates to prevent them from
1843 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
1844 void PhaseIdealLoop::collect_potentially_useful_predicates(
1845                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
1846   if (loop->_child) { // child
1847     collect_potentially_useful_predicates(loop->_child, useful_predicates);
1848   }
1849 
1850   // self (only loops that we can apply loop predication may use their predicates)
1851   if (loop->_head->is_Loop() &&
1852       !loop->_irreducible    &&
1853       !loop->tail()->is_top()) {
1854     LoopNode* lpn = loop->_head->as_Loop();
1855     Node* entry = lpn->in(LoopNode::EntryControl);
1856     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
1857     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
1858       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
1859       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1860       entry = entry->in(0)->in(0);
1861     }
1862     predicate_proj = find_predicate(entry); // Predicate
1863     if (predicate_proj != NULL ) {
1864       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1865     }
1866   }
1867 
1868   if (loop->_next) { // sibling
1869     collect_potentially_useful_predicates(loop->_next, useful_predicates);
1870   }
1871 }
1872 
1873 //------------------------eliminate_useless_predicates-----------------------------
1874 // Eliminate all inserted predicates if they could not be used by loop predication.
1875 // Note: it will also eliminates loop limits check predicate since it also uses
1876 // Opaque1 node (see Parse::add_predicate()).
1877 void PhaseIdealLoop::eliminate_useless_predicates() {
1878   if (C->predicate_count() == 0)
1879     return; // no predicate left
1880 
1881   Unique_Node_List useful_predicates; // to store useful predicates
1882   if (C->has_loops()) {
1883     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
1884   }
1885 
1886   for (int i = C->predicate_count(); i > 0; i--) {
1887      Node * n = C->predicate_opaque1_node(i-1);
1888      assert(n->Opcode() == Op_Opaque1, "must be");
1889      if (!useful_predicates.member(n)) { // not in the useful list
1890        _igvn.replace_node(n, n->in(1));
1891      }
1892   }
1893 }
1894 
1895 //=============================================================================
1896 //----------------------------build_and_optimize-------------------------------
1897 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
1898 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
1899 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
1900   ResourceMark rm;
1901 
1902   int old_progress = C->major_progress();
1903   uint orig_worklist_size = _igvn._worklist.size();
1904 
1905   // Reset major-progress flag for the driver's heuristics
1906   C->clear_major_progress();
1907 
1908 #ifndef PRODUCT
1909   // Capture for later assert
1910   uint unique = C->unique();
1911   _loop_invokes++;
1912   _loop_work += unique;
1913 #endif
1914 
1915   // True if the method has at least 1 irreducible loop
1916   _has_irreducible_loops = false;
1917 
1918   _created_loop_node = false;
1919 
1920   Arena *a = Thread::current()->resource_area();
1921   VectorSet visited(a);
1922   // Pre-grow the mapping from Nodes to IdealLoopTrees.
1923   _nodes.map(C->unique(), NULL);
1924   memset(_nodes.adr(), 0, wordSize * C->unique());
1925 
1926   // Pre-build the top-level outermost loop tree entry
1927   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
1928   // Do not need a safepoint at the top level
1929   _ltree_root->_has_sfpt = 1;
1930 
1931   // Initialize Dominators.
1932   // Checked in clone_loop_predicate() during beautify_loops().
1933   _idom_size = 0;
1934   _idom      = NULL;
1935   _dom_depth = NULL;
1936   _dom_stk   = NULL;
1937 
1938   // Empty pre-order array
1939   allocate_preorders();
1940 
1941   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
1942   // IdealLoopTree entries.  Data nodes are NOT walked.
1943   build_loop_tree();
1944   // Check for bailout, and return
1945   if (C->failing()) {
1946     return;
1947   }
1948 
1949   // No loops after all
1950   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
1951 
1952   // There should always be an outer loop containing the Root and Return nodes.
1953   // If not, we have a degenerate empty program.  Bail out in this case.
1954   if (!has_node(C->root())) {
1955     if (!_verify_only) {
1956       C->clear_major_progress();
1957       C->record_method_not_compilable("empty program detected during loop optimization");
1958     }
1959     return;
1960   }
1961 
1962   // Nothing to do, so get out
1963   if( !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only ) {
1964     _igvn.optimize();           // Cleanup NeverBranches
1965     return;
1966   }
1967 
1968   // Set loop nesting depth
1969   _ltree_root->set_nest( 0 );
1970 
1971   // Split shared headers and insert loop landing pads.
1972   // Do not bother doing this on the Root loop of course.
1973   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
1974     C->print_method("Before beautify loops", 3);
1975     if( _ltree_root->_child->beautify_loops( this ) ) {
1976       // Re-build loop tree!
1977       _ltree_root->_child = NULL;
1978       _nodes.clear();
1979       reallocate_preorders();
1980       build_loop_tree();
1981       // Check for bailout, and return
1982       if (C->failing()) {
1983         return;
1984       }
1985       // Reset loop nesting depth
1986       _ltree_root->set_nest( 0 );
1987 
1988       C->print_method("After beautify loops", 3);
1989     }
1990   }
1991 
1992   // Build Dominators for elision of NULL checks & loop finding.
1993   // Since nodes do not have a slot for immediate dominator, make
1994   // a persistent side array for that info indexed on node->_idx.
1995   _idom_size = C->unique();
1996   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
1997   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
1998   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
1999   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
2000 
2001   Dominators();
2002 
2003   if (!_verify_only) {
2004     // As a side effect, Dominators removed any unreachable CFG paths
2005     // into RegionNodes.  It doesn't do this test against Root, so
2006     // we do it here.
2007     for( uint i = 1; i < C->root()->req(); i++ ) {
2008       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
2009         _igvn.delete_input_of(C->root(), i);
2010         i--;                      // Rerun same iteration on compressed edges
2011       }
2012     }
2013 
2014     // Given dominators, try to find inner loops with calls that must
2015     // always be executed (call dominates loop tail).  These loops do
2016     // not need a separate safepoint.
2017     Node_List cisstack(a);
2018     _ltree_root->check_safepts(visited, cisstack);
2019   }
2020 
2021   // Walk the DATA nodes and place into loops.  Find earliest control
2022   // node.  For CFG nodes, the _nodes array starts out and remains
2023   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2024   // _nodes array holds the earliest legal controlling CFG node.
2025 
2026   // Allocate stack with enough space to avoid frequent realloc
2027   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
2028   Node_Stack nstack( a, stack_size );
2029 
2030   visited.Clear();
2031   Node_List worklist(a);
2032   // Don't need C->root() on worklist since
2033   // it will be processed among C->top() inputs
2034   worklist.push( C->top() );
2035   visited.set( C->top()->_idx ); // Set C->top() as visited now
2036   build_loop_early( visited, worklist, nstack );
2037 
2038   // Given early legal placement, try finding counted loops.  This placement
2039   // is good enough to discover most loop invariants.
2040   if( !_verify_me && !_verify_only )
2041     _ltree_root->counted_loop( this );
2042 
2043   // Find latest loop placement.  Find ideal loop placement.
2044   visited.Clear();
2045   init_dom_lca_tags();
2046   // Need C->root() on worklist when processing outs
2047   worklist.push( C->root() );
2048   NOT_PRODUCT( C->verify_graph_edges(); )
2049   worklist.push( C->top() );
2050   build_loop_late( visited, worklist, nstack );
2051 
2052   if (_verify_only) {
2053     // restore major progress flag
2054     for (int i = 0; i < old_progress; i++)
2055       C->set_major_progress();
2056     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2057     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2058     return;
2059   }
2060 
2061   // Some parser-inserted loop predicates could never be used by loop
2062   // predication or they were moved away from loop during some optimizations.
2063   // For example, peeling. Eliminate them before next loop optimizations.
2064   if (UseLoopPredicate || LoopLimitCheck) {
2065     eliminate_useless_predicates();
2066   }
2067 
2068   // clear out the dead code
2069   while(_deadlist.size()) {
2070     _igvn.remove_globally_dead_node(_deadlist.pop());
2071   }
2072 
2073 #ifndef PRODUCT
2074   C->verify_graph_edges();
2075   if (_verify_me) {             // Nested verify pass?
2076     // Check to see if the verify mode is broken
2077     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2078     return;
2079   }
2080   if(VerifyLoopOptimizations) verify();
2081   if(TraceLoopOpts && C->has_loops()) {
2082     _ltree_root->dump();
2083   }
2084 #endif
2085 
2086   if (skip_loop_opts) {
2087     // Cleanup any modified bits
2088     _igvn.optimize();
2089 
2090     if (C->log() != NULL) {
2091       log_loop_tree(_ltree_root, _ltree_root, C->log());
2092     }
2093     return;
2094   }
2095 
2096   if (ReassociateInvariants) {
2097     // Reassociate invariants and prep for split_thru_phi
2098     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2099       IdealLoopTree* lpt = iter.current();
2100       if (!lpt->is_counted() || !lpt->is_inner()) continue;
2101 
2102       lpt->reassociate_invariants(this);
2103 
2104       // Because RCE opportunities can be masked by split_thru_phi,
2105       // look for RCE candidates and inhibit split_thru_phi
2106       // on just their loop-phi's for this pass of loop opts
2107       if (SplitIfBlocks && do_split_ifs) {
2108         if (lpt->policy_range_check(this)) {
2109           lpt->_rce_candidate = 1; // = true
2110         }
2111       }
2112     }
2113   }
2114 
2115   // Check for aggressive application of split-if and other transforms
2116   // that require basic-block info (like cloning through Phi's)
2117   if( SplitIfBlocks && do_split_ifs ) {
2118     visited.Clear();
2119     split_if_with_blocks( visited, nstack );
2120     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2121   }
2122 
2123   // Perform loop predication before iteration splitting
2124   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2125     _ltree_root->_child->loop_predication(this);
2126   }
2127 
2128   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2129     if (do_intrinsify_fill()) {
2130       C->set_major_progress();
2131     }
2132   }
2133 
2134   // Perform iteration-splitting on inner loops.  Split iterations to avoid
2135   // range checks or one-shot null checks.
2136 
2137   // If split-if's didn't hack the graph too bad (no CFG changes)
2138   // then do loop opts.
2139   if (C->has_loops() && !C->major_progress()) {
2140     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2141     _ltree_root->_child->iteration_split( this, worklist );
2142     // No verify after peeling!  GCM has hoisted code out of the loop.
2143     // After peeling, the hoisted code could sink inside the peeled area.
2144     // The peeling code does not try to recompute the best location for
2145     // all the code before the peeled area, so the verify pass will always
2146     // complain about it.
2147   }
2148   // Do verify graph edges in any case
2149   NOT_PRODUCT( C->verify_graph_edges(); );
2150 
2151   if (!do_split_ifs) {
2152     // We saw major progress in Split-If to get here.  We forced a
2153     // pass with unrolling and not split-if, however more split-if's
2154     // might make progress.  If the unrolling didn't make progress
2155     // then the major-progress flag got cleared and we won't try
2156     // another round of Split-If.  In particular the ever-common
2157     // instance-of/check-cast pattern requires at least 2 rounds of
2158     // Split-If to clear out.
2159     C->set_major_progress();
2160   }
2161 
2162   // Repeat loop optimizations if new loops were seen
2163   if (created_loop_node()) {
2164     C->set_major_progress();
2165   }
2166 
2167   // Keep loop predicates and perform optimizations with them
2168   // until no more loop optimizations could be done.
2169   // After that switch predicates off and do more loop optimizations.
2170   if (!C->major_progress() && (C->predicate_count() > 0)) {
2171      C->cleanup_loop_predicates(_igvn);
2172 #ifndef PRODUCT
2173      if (TraceLoopOpts) {
2174        tty->print_cr("PredicatesOff");
2175      }
2176 #endif
2177      C->set_major_progress();
2178   }
2179 
2180   // Convert scalar to superword operations at the end of all loop opts.
2181   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2182     // SuperWord transform
2183     SuperWord sw(this);
2184     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2185       IdealLoopTree* lpt = iter.current();
2186       if (lpt->is_counted()) {
2187         sw.transform_loop(lpt);
2188       }
2189     }
2190   }
2191 
2192   // Cleanup any modified bits
2193   _igvn.optimize();
2194 
2195   // disable assert until issue with split_flow_path is resolved (6742111)
2196   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2197   //        "shouldn't introduce irreducible loops");
2198 
2199   if (C->log() != NULL) {
2200     log_loop_tree(_ltree_root, _ltree_root, C->log());
2201   }
2202 }
2203 
2204 #ifndef PRODUCT
2205 //------------------------------print_statistics-------------------------------
2206 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2207 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2208 void PhaseIdealLoop::print_statistics() {
2209   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2210 }
2211 
2212 //------------------------------verify-----------------------------------------
2213 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2214 static int fail;                // debug only, so its multi-thread dont care
2215 void PhaseIdealLoop::verify() const {
2216   int old_progress = C->major_progress();
2217   ResourceMark rm;
2218   PhaseIdealLoop loop_verify( _igvn, this );
2219   VectorSet visited(Thread::current()->resource_area());
2220 
2221   fail = 0;
2222   verify_compare( C->root(), &loop_verify, visited );
2223   assert( fail == 0, "verify loops failed" );
2224   // Verify loop structure is the same
2225   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2226   // Reset major-progress.  It was cleared by creating a verify version of
2227   // PhaseIdealLoop.
2228   for( int i=0; i<old_progress; i++ )
2229     C->set_major_progress();
2230 }
2231 
2232 //------------------------------verify_compare---------------------------------
2233 // Make sure me and the given PhaseIdealLoop agree on key data structures
2234 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2235   if( !n ) return;
2236   if( visited.test_set( n->_idx ) ) return;
2237   if( !_nodes[n->_idx] ) {      // Unreachable
2238     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
2239     return;
2240   }
2241 
2242   uint i;
2243   for( i = 0; i < n->req(); i++ )
2244     verify_compare( n->in(i), loop_verify, visited );
2245 
2246   // Check the '_nodes' block/loop structure
2247   i = n->_idx;
2248   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
2249     if( _nodes[i] != loop_verify->_nodes[i] &&
2250         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
2251       tty->print("Mismatched control setting for: ");
2252       n->dump();
2253       if( fail++ > 10 ) return;
2254       Node *c = get_ctrl_no_update(n);
2255       tty->print("We have it as: ");
2256       if( c->in(0) ) c->dump();
2257         else tty->print_cr("N%d",c->_idx);
2258       tty->print("Verify thinks: ");
2259       if( loop_verify->has_ctrl(n) )
2260         loop_verify->get_ctrl_no_update(n)->dump();
2261       else
2262         loop_verify->get_loop_idx(n)->dump();
2263       tty->cr();
2264     }
2265   } else {                    // We have a loop
2266     IdealLoopTree *us = get_loop_idx(n);
2267     if( loop_verify->has_ctrl(n) ) {
2268       tty->print("Mismatched loop setting for: ");
2269       n->dump();
2270       if( fail++ > 10 ) return;
2271       tty->print("We have it as: ");
2272       us->dump();
2273       tty->print("Verify thinks: ");
2274       loop_verify->get_ctrl_no_update(n)->dump();
2275       tty->cr();
2276     } else if (!C->major_progress()) {
2277       // Loop selection can be messed up if we did a major progress
2278       // operation, like split-if.  Do not verify in that case.
2279       IdealLoopTree *them = loop_verify->get_loop_idx(n);
2280       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
2281         tty->print("Unequals loops for: ");
2282         n->dump();
2283         if( fail++ > 10 ) return;
2284         tty->print("We have it as: ");
2285         us->dump();
2286         tty->print("Verify thinks: ");
2287         them->dump();
2288         tty->cr();
2289       }
2290     }
2291   }
2292 
2293   // Check for immediate dominators being equal
2294   if( i >= _idom_size ) {
2295     if( !n->is_CFG() ) return;
2296     tty->print("CFG Node with no idom: ");
2297     n->dump();
2298     return;
2299   }
2300   if( !n->is_CFG() ) return;
2301   if( n == C->root() ) return; // No IDOM here
2302 
2303   assert(n->_idx == i, "sanity");
2304   Node *id = idom_no_update(n);
2305   if( id != loop_verify->idom_no_update(n) ) {
2306     tty->print("Unequals idoms for: ");
2307     n->dump();
2308     if( fail++ > 10 ) return;
2309     tty->print("We have it as: ");
2310     id->dump();
2311     tty->print("Verify thinks: ");
2312     loop_verify->idom_no_update(n)->dump();
2313     tty->cr();
2314   }
2315 
2316 }
2317 
2318 //------------------------------verify_tree------------------------------------
2319 // Verify that tree structures match.  Because the CFG can change, siblings
2320 // within the loop tree can be reordered.  We attempt to deal with that by
2321 // reordering the verify's loop tree if possible.
2322 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
2323   assert( _parent == parent, "Badly formed loop tree" );
2324 
2325   // Siblings not in same order?  Attempt to re-order.
2326   if( _head != loop->_head ) {
2327     // Find _next pointer to update
2328     IdealLoopTree **pp = &loop->_parent->_child;
2329     while( *pp != loop )
2330       pp = &((*pp)->_next);
2331     // Find proper sibling to be next
2332     IdealLoopTree **nn = &loop->_next;
2333     while( (*nn) && (*nn)->_head != _head )
2334       nn = &((*nn)->_next);
2335 
2336     // Check for no match.
2337     if( !(*nn) ) {
2338       // Annoyingly, irreducible loops can pick different headers
2339       // after a major_progress operation, so the rest of the loop
2340       // tree cannot be matched.
2341       if (_irreducible && Compile::current()->major_progress())  return;
2342       assert( 0, "failed to match loop tree" );
2343     }
2344 
2345     // Move (*nn) to (*pp)
2346     IdealLoopTree *hit = *nn;
2347     *nn = hit->_next;
2348     hit->_next = loop;
2349     *pp = loop;
2350     loop = hit;
2351     // Now try again to verify
2352   }
2353 
2354   assert( _head  == loop->_head , "mismatched loop head" );
2355   Node *tail = _tail;           // Inline a non-updating version of
2356   while( !tail->in(0) )         // the 'tail()' call.
2357     tail = tail->in(1);
2358   assert( tail == loop->_tail, "mismatched loop tail" );
2359 
2360   // Counted loops that are guarded should be able to find their guards
2361   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
2362     CountedLoopNode *cl = _head->as_CountedLoop();
2363     Node *init = cl->init_trip();
2364     Node *ctrl = cl->in(LoopNode::EntryControl);
2365     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
2366     Node *iff  = ctrl->in(0);
2367     assert( iff->Opcode() == Op_If, "" );
2368     Node *bol  = iff->in(1);
2369     assert( bol->Opcode() == Op_Bool, "" );
2370     Node *cmp  = bol->in(1);
2371     assert( cmp->Opcode() == Op_CmpI, "" );
2372     Node *add  = cmp->in(1);
2373     Node *opaq;
2374     if( add->Opcode() == Op_Opaque1 ) {
2375       opaq = add;
2376     } else {
2377       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
2378       assert( add == init, "" );
2379       opaq = cmp->in(2);
2380     }
2381     assert( opaq->Opcode() == Op_Opaque1, "" );
2382 
2383   }
2384 
2385   if (_child != NULL)  _child->verify_tree(loop->_child, this);
2386   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
2387   // Innermost loops need to verify loop bodies,
2388   // but only if no 'major_progress'
2389   int fail = 0;
2390   if (!Compile::current()->major_progress() && _child == NULL) {
2391     for( uint i = 0; i < _body.size(); i++ ) {
2392       Node *n = _body.at(i);
2393       if (n->outcnt() == 0)  continue; // Ignore dead
2394       uint j;
2395       for( j = 0; j < loop->_body.size(); j++ )
2396         if( loop->_body.at(j) == n )
2397           break;
2398       if( j == loop->_body.size() ) { // Not found in loop body
2399         // Last ditch effort to avoid assertion: Its possible that we
2400         // have some users (so outcnt not zero) but are still dead.
2401         // Try to find from root.
2402         if (Compile::current()->root()->find(n->_idx)) {
2403           fail++;
2404           tty->print("We have that verify does not: ");
2405           n->dump();
2406         }
2407       }
2408     }
2409     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
2410       Node *n = loop->_body.at(i2);
2411       if (n->outcnt() == 0)  continue; // Ignore dead
2412       uint j;
2413       for( j = 0; j < _body.size(); j++ )
2414         if( _body.at(j) == n )
2415           break;
2416       if( j == _body.size() ) { // Not found in loop body
2417         // Last ditch effort to avoid assertion: Its possible that we
2418         // have some users (so outcnt not zero) but are still dead.
2419         // Try to find from root.
2420         if (Compile::current()->root()->find(n->_idx)) {
2421           fail++;
2422           tty->print("Verify has that we do not: ");
2423           n->dump();
2424         }
2425       }
2426     }
2427     assert( !fail, "loop body mismatch" );
2428   }
2429 }
2430 
2431 #endif
2432 
2433 //------------------------------set_idom---------------------------------------
2434 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
2435   uint idx = d->_idx;
2436   if (idx >= _idom_size) {
2437     uint newsize = _idom_size<<1;
2438     while( idx >= newsize ) {
2439       newsize <<= 1;
2440     }
2441     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
2442     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
2443     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
2444     _idom_size = newsize;
2445   }
2446   _idom[idx] = n;
2447   _dom_depth[idx] = dom_depth;
2448 }
2449 
2450 //------------------------------recompute_dom_depth---------------------------------------
2451 // The dominator tree is constructed with only parent pointers.
2452 // This recomputes the depth in the tree by first tagging all
2453 // nodes as "no depth yet" marker.  The next pass then runs up
2454 // the dom tree from each node marked "no depth yet", and computes
2455 // the depth on the way back down.
2456 void PhaseIdealLoop::recompute_dom_depth() {
2457   uint no_depth_marker = C->unique();
2458   uint i;
2459   // Initialize depth to "no depth yet"
2460   for (i = 0; i < _idom_size; i++) {
2461     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
2462      _dom_depth[i] = no_depth_marker;
2463     }
2464   }
2465   if (_dom_stk == NULL) {
2466     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
2467     if (init_size < 10) init_size = 10;
2468     _dom_stk = new GrowableArray<uint>(init_size);
2469   }
2470   // Compute new depth for each node.
2471   for (i = 0; i < _idom_size; i++) {
2472     uint j = i;
2473     // Run up the dom tree to find a node with a depth
2474     while (_dom_depth[j] == no_depth_marker) {
2475       _dom_stk->push(j);
2476       j = _idom[j]->_idx;
2477     }
2478     // Compute the depth on the way back down this tree branch
2479     uint dd = _dom_depth[j] + 1;
2480     while (_dom_stk->length() > 0) {
2481       uint j = _dom_stk->pop();
2482       _dom_depth[j] = dd;
2483       dd++;
2484     }
2485   }
2486 }
2487 
2488 //------------------------------sort-------------------------------------------
2489 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
2490 // loop tree, not the root.
2491 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
2492   if( !innermost ) return loop; // New innermost loop
2493 
2494   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
2495   assert( loop_preorder, "not yet post-walked loop" );
2496   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
2497   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
2498 
2499   // Insert at start of list
2500   while( l ) {                  // Insertion sort based on pre-order
2501     if( l == loop ) return innermost; // Already on list!
2502     int l_preorder = get_preorder(l->_head); // Cache pre-order number
2503     assert( l_preorder, "not yet post-walked l" );
2504     // Check header pre-order number to figure proper nesting
2505     if( loop_preorder > l_preorder )
2506       break;                    // End of insertion
2507     // If headers tie (e.g., shared headers) check tail pre-order numbers.
2508     // Since I split shared headers, you'd think this could not happen.
2509     // BUT: I must first do the preorder numbering before I can discover I
2510     // have shared headers, so the split headers all get the same preorder
2511     // number as the RegionNode they split from.
2512     if( loop_preorder == l_preorder &&
2513         get_preorder(loop->_tail) < get_preorder(l->_tail) )
2514       break;                    // Also check for shared headers (same pre#)
2515     pp = &l->_parent;           // Chain up list
2516     l = *pp;
2517   }
2518   // Link into list
2519   // Point predecessor to me
2520   *pp = loop;
2521   // Point me to successor
2522   IdealLoopTree *p = loop->_parent;
2523   loop->_parent = l;            // Point me to successor
2524   if( p ) sort( p, innermost ); // Insert my parents into list as well
2525   return innermost;
2526 }
2527 
2528 //------------------------------build_loop_tree--------------------------------
2529 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
2530 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
2531 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
2532 // tightest enclosing IdealLoopTree for post-walked.
2533 //
2534 // During my forward walk I do a short 1-layer lookahead to see if I can find
2535 // a loop backedge with that doesn't have any work on the backedge.  This
2536 // helps me construct nested loops with shared headers better.
2537 //
2538 // Once I've done the forward recursion, I do the post-work.  For each child
2539 // I check to see if there is a backedge.  Backedges define a loop!  I
2540 // insert an IdealLoopTree at the target of the backedge.
2541 //
2542 // During the post-work I also check to see if I have several children
2543 // belonging to different loops.  If so, then this Node is a decision point
2544 // where control flow can choose to change loop nests.  It is at this
2545 // decision point where I can figure out how loops are nested.  At this
2546 // time I can properly order the different loop nests from my children.
2547 // Note that there may not be any backedges at the decision point!
2548 //
2549 // Since the decision point can be far removed from the backedges, I can't
2550 // order my loops at the time I discover them.  Thus at the decision point
2551 // I need to inspect loop header pre-order numbers to properly nest my
2552 // loops.  This means I need to sort my childrens' loops by pre-order.
2553 // The sort is of size number-of-control-children, which generally limits
2554 // it to size 2 (i.e., I just choose between my 2 target loops).
2555 void PhaseIdealLoop::build_loop_tree() {
2556   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2557   GrowableArray <Node *> bltstack(C->unique() >> 1);
2558   Node *n = C->root();
2559   bltstack.push(n);
2560   int pre_order = 1;
2561   int stack_size;
2562 
2563   while ( ( stack_size = bltstack.length() ) != 0 ) {
2564     n = bltstack.top(); // Leave node on stack
2565     if ( !is_visited(n) ) {
2566       // ---- Pre-pass Work ----
2567       // Pre-walked but not post-walked nodes need a pre_order number.
2568 
2569       set_preorder_visited( n, pre_order ); // set as visited
2570 
2571       // ---- Scan over children ----
2572       // Scan first over control projections that lead to loop headers.
2573       // This helps us find inner-to-outer loops with shared headers better.
2574 
2575       // Scan children's children for loop headers.
2576       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
2577         Node* m = n->raw_out(i);       // Child
2578         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
2579           // Scan over children's children to find loop
2580           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2581             Node* l = m->fast_out(j);
2582             if( is_visited(l) &&       // Been visited?
2583                 !is_postvisited(l) &&  // But not post-visited
2584                 get_preorder(l) < pre_order ) { // And smaller pre-order
2585               // Found!  Scan the DFS down this path before doing other paths
2586               bltstack.push(m);
2587               break;
2588             }
2589           }
2590         }
2591       }
2592       pre_order++;
2593     }
2594     else if ( !is_postvisited(n) ) {
2595       // Note: build_loop_tree_impl() adds out edges on rare occasions,
2596       // such as com.sun.rsasign.am::a.
2597       // For non-recursive version, first, process current children.
2598       // On next iteration, check if additional children were added.
2599       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
2600         Node* u = n->raw_out(k);
2601         if ( u->is_CFG() && !is_visited(u) ) {
2602           bltstack.push(u);
2603         }
2604       }
2605       if ( bltstack.length() == stack_size ) {
2606         // There were no additional children, post visit node now
2607         (void)bltstack.pop(); // Remove node from stack
2608         pre_order = build_loop_tree_impl( n, pre_order );
2609         // Check for bailout
2610         if (C->failing()) {
2611           return;
2612         }
2613         // Check to grow _preorders[] array for the case when
2614         // build_loop_tree_impl() adds new nodes.
2615         check_grow_preorders();
2616       }
2617     }
2618     else {
2619       (void)bltstack.pop(); // Remove post-visited node from stack
2620     }
2621   }
2622 }
2623 
2624 //------------------------------build_loop_tree_impl---------------------------
2625 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
2626   // ---- Post-pass Work ----
2627   // Pre-walked but not post-walked nodes need a pre_order number.
2628 
2629   // Tightest enclosing loop for this Node
2630   IdealLoopTree *innermost = NULL;
2631 
2632   // For all children, see if any edge is a backedge.  If so, make a loop
2633   // for it.  Then find the tightest enclosing loop for the self Node.
2634   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2635     Node* m = n->fast_out(i);   // Child
2636     if( n == m ) continue;      // Ignore control self-cycles
2637     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
2638 
2639     IdealLoopTree *l;           // Child's loop
2640     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
2641       // Found a backedge
2642       assert( get_preorder(m) < pre_order, "should be backedge" );
2643       // Check for the RootNode, which is already a LoopNode and is allowed
2644       // to have multiple "backedges".
2645       if( m == C->root()) {     // Found the root?
2646         l = _ltree_root;        // Root is the outermost LoopNode
2647       } else {                  // Else found a nested loop
2648         // Insert a LoopNode to mark this loop.
2649         l = new IdealLoopTree(this, m, n);
2650       } // End of Else found a nested loop
2651       if( !has_loop(m) )        // If 'm' does not already have a loop set
2652         set_loop(m, l);         // Set loop header to loop now
2653 
2654     } else {                    // Else not a nested loop
2655       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
2656       l = get_loop(m);          // Get previously determined loop
2657       // If successor is header of a loop (nest), move up-loop till it
2658       // is a member of some outer enclosing loop.  Since there are no
2659       // shared headers (I've split them already) I only need to go up
2660       // at most 1 level.
2661       while( l && l->_head == m ) // Successor heads loop?
2662         l = l->_parent;         // Move up 1 for me
2663       // If this loop is not properly parented, then this loop
2664       // has no exit path out, i.e. its an infinite loop.
2665       if( !l ) {
2666         // Make loop "reachable" from root so the CFG is reachable.  Basically
2667         // insert a bogus loop exit that is never taken.  'm', the loop head,
2668         // points to 'n', one (of possibly many) fall-in paths.  There may be
2669         // many backedges as well.
2670 
2671         // Here I set the loop to be the root loop.  I could have, after
2672         // inserting a bogus loop exit, restarted the recursion and found my
2673         // new loop exit.  This would make the infinite loop a first-class
2674         // loop and it would then get properly optimized.  What's the use of
2675         // optimizing an infinite loop?
2676         l = _ltree_root;        // Oops, found infinite loop
2677 
2678         if (!_verify_only) {
2679           // Insert the NeverBranch between 'm' and it's control user.
2680           NeverBranchNode *iff = new (C) NeverBranchNode( m );
2681           _igvn.register_new_node_with_optimizer(iff);
2682           set_loop(iff, l);
2683           Node *if_t = new (C) CProjNode( iff, 0 );
2684           _igvn.register_new_node_with_optimizer(if_t);
2685           set_loop(if_t, l);
2686 
2687           Node* cfg = NULL;       // Find the One True Control User of m
2688           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2689             Node* x = m->fast_out(j);
2690             if (x->is_CFG() && x != m && x != iff)
2691               { cfg = x; break; }
2692           }
2693           assert(cfg != NULL, "must find the control user of m");
2694           uint k = 0;             // Probably cfg->in(0)
2695           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
2696           cfg->set_req( k, if_t ); // Now point to NeverBranch
2697 
2698           // Now create the never-taken loop exit
2699           Node *if_f = new (C) CProjNode( iff, 1 );
2700           _igvn.register_new_node_with_optimizer(if_f);
2701           set_loop(if_f, l);
2702           // Find frame ptr for Halt.  Relies on the optimizer
2703           // V-N'ing.  Easier and quicker than searching through
2704           // the program structure.
2705           Node *frame = new (C) ParmNode( C->start(), TypeFunc::FramePtr );
2706           _igvn.register_new_node_with_optimizer(frame);
2707           // Halt & Catch Fire
2708           Node *halt = new (C) HaltNode( if_f, frame );
2709           _igvn.register_new_node_with_optimizer(halt);
2710           set_loop(halt, l);
2711           C->root()->add_req(halt);
2712         }
2713         set_loop(C->root(), _ltree_root);
2714       }
2715     }
2716     // Weeny check for irreducible.  This child was already visited (this
2717     // IS the post-work phase).  Is this child's loop header post-visited
2718     // as well?  If so, then I found another entry into the loop.
2719     if (!_verify_only) {
2720       while( is_postvisited(l->_head) ) {
2721         // found irreducible
2722         l->_irreducible = 1; // = true
2723         l = l->_parent;
2724         _has_irreducible_loops = true;
2725         // Check for bad CFG here to prevent crash, and bailout of compile
2726         if (l == NULL) {
2727           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
2728           return pre_order;
2729         }
2730       }
2731     }
2732 
2733     // This Node might be a decision point for loops.  It is only if
2734     // it's children belong to several different loops.  The sort call
2735     // does a trivial amount of work if there is only 1 child or all
2736     // children belong to the same loop.  If however, the children
2737     // belong to different loops, the sort call will properly set the
2738     // _parent pointers to show how the loops nest.
2739     //
2740     // In any case, it returns the tightest enclosing loop.
2741     innermost = sort( l, innermost );
2742   }
2743 
2744   // Def-use info will have some dead stuff; dead stuff will have no
2745   // loop decided on.
2746 
2747   // Am I a loop header?  If so fix up my parent's child and next ptrs.
2748   if( innermost && innermost->_head == n ) {
2749     assert( get_loop(n) == innermost, "" );
2750     IdealLoopTree *p = innermost->_parent;
2751     IdealLoopTree *l = innermost;
2752     while( p && l->_head == n ) {
2753       l->_next = p->_child;     // Put self on parents 'next child'
2754       p->_child = l;            // Make self as first child of parent
2755       l = p;                    // Now walk up the parent chain
2756       p = l->_parent;
2757     }
2758   } else {
2759     // Note that it is possible for a LoopNode to reach here, if the
2760     // backedge has been made unreachable (hence the LoopNode no longer
2761     // denotes a Loop, and will eventually be removed).
2762 
2763     // Record tightest enclosing loop for self.  Mark as post-visited.
2764     set_loop(n, innermost);
2765     // Also record has_call flag early on
2766     if( innermost ) {
2767       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
2768         // Do not count uncommon calls
2769         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
2770           Node *iff = n->in(0)->in(0);
2771           // No any calls for vectorized loops.
2772           if( UseSuperWord || !iff->is_If() ||
2773               (n->in(0)->Opcode() == Op_IfFalse &&
2774                (1.0 - iff->as_If()->_prob) >= 0.01) ||
2775               (iff->as_If()->_prob >= 0.01) )
2776             innermost->_has_call = 1;
2777         }
2778       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
2779         // Disable loop optimizations if the loop has a scalar replaceable
2780         // allocation. This disabling may cause a potential performance lost
2781         // if the allocation is not eliminated for some reason.
2782         innermost->_allow_optimizations = false;
2783         innermost->_has_call = 1; // = true
2784       } else if (n->Opcode() == Op_SafePoint) {
2785         // Record all safepoints in this loop.
2786         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
2787         innermost->_safepts->push(n);
2788       }
2789     }
2790   }
2791 
2792   // Flag as post-visited now
2793   set_postvisited(n);
2794   return pre_order;
2795 }
2796 
2797 
2798 //------------------------------build_loop_early-------------------------------
2799 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2800 // First pass computes the earliest controlling node possible.  This is the
2801 // controlling input with the deepest dominating depth.
2802 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
2803   while (worklist.size() != 0) {
2804     // Use local variables nstack_top_n & nstack_top_i to cache values
2805     // on nstack's top.
2806     Node *nstack_top_n = worklist.pop();
2807     uint  nstack_top_i = 0;
2808 //while_nstack_nonempty:
2809     while (true) {
2810       // Get parent node and next input's index from stack's top.
2811       Node  *n = nstack_top_n;
2812       uint   i = nstack_top_i;
2813       uint cnt = n->req(); // Count of inputs
2814       if (i == 0) {        // Pre-process the node.
2815         if( has_node(n) &&            // Have either loop or control already?
2816             !has_ctrl(n) ) {          // Have loop picked out already?
2817           // During "merge_many_backedges" we fold up several nested loops
2818           // into a single loop.  This makes the members of the original
2819           // loop bodies pointing to dead loops; they need to move up
2820           // to the new UNION'd larger loop.  I set the _head field of these
2821           // dead loops to NULL and the _parent field points to the owning
2822           // loop.  Shades of UNION-FIND algorithm.
2823           IdealLoopTree *ilt;
2824           while( !(ilt = get_loop(n))->_head ) {
2825             // Normally I would use a set_loop here.  But in this one special
2826             // case, it is legal (and expected) to change what loop a Node
2827             // belongs to.
2828             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
2829           }
2830           // Remove safepoints ONLY if I've already seen I don't need one.
2831           // (the old code here would yank a 2nd safepoint after seeing a
2832           // first one, even though the 1st did not dominate in the loop body
2833           // and thus could be avoided indefinitely)
2834           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
2835               is_deleteable_safept(n)) {
2836             Node *in = n->in(TypeFunc::Control);
2837             lazy_replace(n,in);       // Pull safepoint now
2838             if (ilt->_safepts != NULL) {
2839               ilt->_safepts->yank(n);
2840             }
2841             // Carry on with the recursion "as if" we are walking
2842             // only the control input
2843             if( !visited.test_set( in->_idx ) ) {
2844               worklist.push(in);      // Visit this guy later, using worklist
2845             }
2846             // Get next node from nstack:
2847             // - skip n's inputs processing by setting i > cnt;
2848             // - we also will not call set_early_ctrl(n) since
2849             //   has_node(n) == true (see the condition above).
2850             i = cnt + 1;
2851           }
2852         }
2853       } // if (i == 0)
2854 
2855       // Visit all inputs
2856       bool done = true;       // Assume all n's inputs will be processed
2857       while (i < cnt) {
2858         Node *in = n->in(i);
2859         ++i;
2860         if (in == NULL) continue;
2861         if (in->pinned() && !in->is_CFG())
2862           set_ctrl(in, in->in(0));
2863         int is_visited = visited.test_set( in->_idx );
2864         if (!has_node(in)) {  // No controlling input yet?
2865           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
2866           assert( !is_visited, "visit only once" );
2867           nstack.push(n, i);  // Save parent node and next input's index.
2868           nstack_top_n = in;  // Process current input now.
2869           nstack_top_i = 0;
2870           done = false;       // Not all n's inputs processed.
2871           break; // continue while_nstack_nonempty;
2872         } else if (!is_visited) {
2873           // This guy has a location picked out for him, but has not yet
2874           // been visited.  Happens to all CFG nodes, for instance.
2875           // Visit him using the worklist instead of recursion, to break
2876           // cycles.  Since he has a location already we do not need to
2877           // find his location before proceeding with the current Node.
2878           worklist.push(in);  // Visit this guy later, using worklist
2879         }
2880       }
2881       if (done) {
2882         // All of n's inputs have been processed, complete post-processing.
2883 
2884         // Compute earliest point this Node can go.
2885         // CFG, Phi, pinned nodes already know their controlling input.
2886         if (!has_node(n)) {
2887           // Record earliest legal location
2888           set_early_ctrl( n );
2889         }
2890         if (nstack.is_empty()) {
2891           // Finished all nodes on stack.
2892           // Process next node on the worklist.
2893           break;
2894         }
2895         // Get saved parent node and next input's index.
2896         nstack_top_n = nstack.node();
2897         nstack_top_i = nstack.index();
2898         nstack.pop();
2899       }
2900     } // while (true)
2901   }
2902 }
2903 
2904 //------------------------------dom_lca_internal--------------------------------
2905 // Pair-wise LCA
2906 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
2907   if( !n1 ) return n2;          // Handle NULL original LCA
2908   assert( n1->is_CFG(), "" );
2909   assert( n2->is_CFG(), "" );
2910   // find LCA of all uses
2911   uint d1 = dom_depth(n1);
2912   uint d2 = dom_depth(n2);
2913   while (n1 != n2) {
2914     if (d1 > d2) {
2915       n1 =      idom(n1);
2916       d1 = dom_depth(n1);
2917     } else if (d1 < d2) {
2918       n2 =      idom(n2);
2919       d2 = dom_depth(n2);
2920     } else {
2921       // Here d1 == d2.  Due to edits of the dominator-tree, sections
2922       // of the tree might have the same depth.  These sections have
2923       // to be searched more carefully.
2924 
2925       // Scan up all the n1's with equal depth, looking for n2.
2926       Node *t1 = idom(n1);
2927       while (dom_depth(t1) == d1) {
2928         if (t1 == n2)  return n2;
2929         t1 = idom(t1);
2930       }
2931       // Scan up all the n2's with equal depth, looking for n1.
2932       Node *t2 = idom(n2);
2933       while (dom_depth(t2) == d2) {
2934         if (t2 == n1)  return n1;
2935         t2 = idom(t2);
2936       }
2937       // Move up to a new dominator-depth value as well as up the dom-tree.
2938       n1 = t1;
2939       n2 = t2;
2940       d1 = dom_depth(n1);
2941       d2 = dom_depth(n2);
2942     }
2943   }
2944   return n1;
2945 }
2946 
2947 //------------------------------compute_idom-----------------------------------
2948 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
2949 // IDOMs are correct.
2950 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
2951   assert( region->is_Region(), "" );
2952   Node *LCA = NULL;
2953   for( uint i = 1; i < region->req(); i++ ) {
2954     if( region->in(i) != C->top() )
2955       LCA = dom_lca( LCA, region->in(i) );
2956   }
2957   return LCA;
2958 }
2959 
2960 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
2961   bool had_error = false;
2962 #ifdef ASSERT
2963   if (early != C->root()) {
2964     // Make sure that there's a dominance path from use to LCA
2965     Node* d = use;
2966     while (d != LCA) {
2967       d = idom(d);
2968       if (d == C->root()) {
2969         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
2970         n->dump();
2971         use->dump();
2972         had_error = true;
2973         break;
2974       }
2975     }
2976   }
2977 #endif
2978   return had_error;
2979 }
2980 
2981 
2982 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
2983   // Compute LCA over list of uses
2984   bool had_error = false;
2985   Node *LCA = NULL;
2986   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
2987     Node* c = n->fast_out(i);
2988     if (_nodes[c->_idx] == NULL)
2989       continue;                 // Skip the occasional dead node
2990     if( c->is_Phi() ) {         // For Phis, we must land above on the path
2991       for( uint j=1; j<c->req(); j++ ) {// For all inputs
2992         if( c->in(j) == n ) {   // Found matching input?
2993           Node *use = c->in(0)->in(j);
2994           if (_verify_only && use->is_top()) continue;
2995           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2996           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2997         }
2998       }
2999     } else {
3000       // For CFG data-users, use is in the block just prior
3001       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
3002       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3003       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3004     }
3005   }
3006   assert(!had_error, "bad dominance");
3007   return LCA;
3008 }
3009 
3010 //------------------------------get_late_ctrl----------------------------------
3011 // Compute latest legal control.
3012 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
3013   assert(early != NULL, "early control should not be NULL");
3014 
3015   Node* LCA = compute_lca_of_uses(n, early);
3016 #ifdef ASSERT
3017   if (LCA == C->root() && LCA != early) {
3018     // def doesn't dominate uses so print some useful debugging output
3019     compute_lca_of_uses(n, early, true);
3020   }
3021 #endif
3022 
3023   // if this is a load, check for anti-dependent stores
3024   // We use a conservative algorithm to identify potential interfering
3025   // instructions and for rescheduling the load.  The users of the memory
3026   // input of this load are examined.  Any use which is not a load and is
3027   // dominated by early is considered a potentially interfering store.
3028   // This can produce false positives.
3029   if (n->is_Load() && LCA != early) {
3030     Node_List worklist;
3031 
3032     Node *mem = n->in(MemNode::Memory);
3033     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3034       Node* s = mem->fast_out(i);
3035       worklist.push(s);
3036     }
3037     while(worklist.size() != 0 && LCA != early) {
3038       Node* s = worklist.pop();
3039       if (s->is_Load()) {
3040         continue;
3041       } else if (s->is_MergeMem()) {
3042         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3043           Node* s1 = s->fast_out(i);
3044           worklist.push(s1);
3045         }
3046       } else {
3047         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3048         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3049         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3050           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3051         }
3052       }
3053     }
3054   }
3055 
3056   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3057   return LCA;
3058 }
3059 
3060 // true if CFG node d dominates CFG node n
3061 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3062   if (d == n)
3063     return true;
3064   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3065   uint dd = dom_depth(d);
3066   while (dom_depth(n) >= dd) {
3067     if (n == d)
3068       return true;
3069     n = idom(n);
3070   }
3071   return false;
3072 }
3073 
3074 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
3075 // Pair-wise LCA with tags.
3076 // Tag each index with the node 'tag' currently being processed
3077 // before advancing up the dominator chain using idom().
3078 // Later calls that find a match to 'tag' know that this path has already
3079 // been considered in the current LCA (which is input 'n1' by convention).
3080 // Since get_late_ctrl() is only called once for each node, the tag array
3081 // does not need to be cleared between calls to get_late_ctrl().
3082 // Algorithm trades a larger constant factor for better asymptotic behavior
3083 //
3084 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3085   uint d1 = dom_depth(n1);
3086   uint d2 = dom_depth(n2);
3087 
3088   do {
3089     if (d1 > d2) {
3090       // current lca is deeper than n2
3091       _dom_lca_tags.map(n1->_idx, tag);
3092       n1 =      idom(n1);
3093       d1 = dom_depth(n1);
3094     } else if (d1 < d2) {
3095       // n2 is deeper than current lca
3096       Node *memo = _dom_lca_tags[n2->_idx];
3097       if( memo == tag ) {
3098         return n1;    // Return the current LCA
3099       }
3100       _dom_lca_tags.map(n2->_idx, tag);
3101       n2 =      idom(n2);
3102       d2 = dom_depth(n2);
3103     } else {
3104       // Here d1 == d2.  Due to edits of the dominator-tree, sections
3105       // of the tree might have the same depth.  These sections have
3106       // to be searched more carefully.
3107 
3108       // Scan up all the n1's with equal depth, looking for n2.
3109       _dom_lca_tags.map(n1->_idx, tag);
3110       Node *t1 = idom(n1);
3111       while (dom_depth(t1) == d1) {
3112         if (t1 == n2)  return n2;
3113         _dom_lca_tags.map(t1->_idx, tag);
3114         t1 = idom(t1);
3115       }
3116       // Scan up all the n2's with equal depth, looking for n1.
3117       _dom_lca_tags.map(n2->_idx, tag);
3118       Node *t2 = idom(n2);
3119       while (dom_depth(t2) == d2) {
3120         if (t2 == n1)  return n1;
3121         _dom_lca_tags.map(t2->_idx, tag);
3122         t2 = idom(t2);
3123       }
3124       // Move up to a new dominator-depth value as well as up the dom-tree.
3125       n1 = t1;
3126       n2 = t2;
3127       d1 = dom_depth(n1);
3128       d2 = dom_depth(n2);
3129     }
3130   } while (n1 != n2);
3131   return n1;
3132 }
3133 
3134 //------------------------------init_dom_lca_tags------------------------------
3135 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3136 // Intended use does not involve any growth for the array, so it could
3137 // be of fixed size.
3138 void PhaseIdealLoop::init_dom_lca_tags() {
3139   uint limit = C->unique() + 1;
3140   _dom_lca_tags.map( limit, NULL );
3141 #ifdef ASSERT
3142   for( uint i = 0; i < limit; ++i ) {
3143     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3144   }
3145 #endif // ASSERT
3146 }
3147 
3148 //------------------------------clear_dom_lca_tags------------------------------
3149 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
3150 // Intended use does not involve any growth for the array, so it could
3151 // be of fixed size.
3152 void PhaseIdealLoop::clear_dom_lca_tags() {
3153   uint limit = C->unique() + 1;
3154   _dom_lca_tags.map( limit, NULL );
3155   _dom_lca_tags.clear();
3156 #ifdef ASSERT
3157   for( uint i = 0; i < limit; ++i ) {
3158     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3159   }
3160 #endif // ASSERT
3161 }
3162 
3163 //------------------------------build_loop_late--------------------------------
3164 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3165 // Second pass finds latest legal placement, and ideal loop placement.
3166 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3167   while (worklist.size() != 0) {
3168     Node *n = worklist.pop();
3169     // Only visit once
3170     if (visited.test_set(n->_idx)) continue;
3171     uint cnt = n->outcnt();
3172     uint   i = 0;
3173     while (true) {
3174       assert( _nodes[n->_idx], "no dead nodes" );
3175       // Visit all children
3176       if (i < cnt) {
3177         Node* use = n->raw_out(i);
3178         ++i;
3179         // Check for dead uses.  Aggressively prune such junk.  It might be
3180         // dead in the global sense, but still have local uses so I cannot
3181         // easily call 'remove_dead_node'.
3182         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3183           // Due to cycles, we might not hit the same fixed point in the verify
3184           // pass as we do in the regular pass.  Instead, visit such phis as
3185           // simple uses of the loop head.
3186           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3187             if( !visited.test(use->_idx) )
3188               worklist.push(use);
3189           } else if( !visited.test_set(use->_idx) ) {
3190             nstack.push(n, i); // Save parent and next use's index.
3191             n   = use;         // Process all children of current use.
3192             cnt = use->outcnt();
3193             i   = 0;
3194           }
3195         } else {
3196           // Do not visit around the backedge of loops via data edges.
3197           // push dead code onto a worklist
3198           _deadlist.push(use);
3199         }
3200       } else {
3201         // All of n's children have been processed, complete post-processing.
3202         build_loop_late_post(n);
3203         if (nstack.is_empty()) {
3204           // Finished all nodes on stack.
3205           // Process next node on the worklist.
3206           break;
3207         }
3208         // Get saved parent node and next use's index. Visit the rest of uses.
3209         n   = nstack.node();
3210         cnt = n->outcnt();
3211         i   = nstack.index();
3212         nstack.pop();
3213       }
3214     }
3215   }
3216 }
3217 
3218 //------------------------------build_loop_late_post---------------------------
3219 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3220 // Second pass finds latest legal placement, and ideal loop placement.
3221 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
3222 
3223   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
3224     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
3225   }
3226 
3227   // CFG and pinned nodes already handled
3228   if( n->in(0) ) {
3229     if( n->in(0)->is_top() ) return; // Dead?
3230 
3231     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
3232     // _must_ be pinned (they have to observe their control edge of course).
3233     // Unlike Stores (which modify an unallocable resource, the memory
3234     // state), Mods/Loads can float around.  So free them up.
3235     bool pinned = true;
3236     switch( n->Opcode() ) {
3237     case Op_DivI:
3238     case Op_DivF:
3239     case Op_DivD:
3240     case Op_ModI:
3241     case Op_ModF:
3242     case Op_ModD:
3243     case Op_LoadB:              // Same with Loads; they can sink
3244     case Op_LoadUB:             // during loop optimizations.
3245     case Op_LoadUS:
3246     case Op_LoadD:
3247     case Op_LoadF:
3248     case Op_LoadI:
3249     case Op_LoadKlass:
3250     case Op_LoadNKlass:
3251     case Op_LoadL:
3252     case Op_LoadS:
3253     case Op_LoadP:
3254     case Op_LoadN:
3255     case Op_LoadRange:
3256     case Op_LoadD_unaligned:
3257     case Op_LoadL_unaligned:
3258     case Op_StrComp:            // Does a bunch of load-like effects
3259     case Op_StrEquals:
3260     case Op_StrIndexOf:
3261     case Op_AryEq:
3262       pinned = false;
3263     }
3264     if( pinned ) {
3265       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
3266       if( !chosen_loop->_child )       // Inner loop?
3267         chosen_loop->_body.push(n); // Collect inner loops
3268       return;
3269     }
3270   } else {                      // No slot zero
3271     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
3272       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
3273       return;
3274     }
3275     assert(!n->is_CFG() || n->outcnt() == 0, "");
3276   }
3277 
3278   // Do I have a "safe range" I can select over?
3279   Node *early = get_ctrl(n);// Early location already computed
3280 
3281   // Compute latest point this Node can go
3282   Node *LCA = get_late_ctrl( n, early );
3283   // LCA is NULL due to uses being dead
3284   if( LCA == NULL ) {
3285 #ifdef ASSERT
3286     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
3287       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
3288     }
3289 #endif
3290     _nodes.map(n->_idx, 0);     // This node is useless
3291     _deadlist.push(n);
3292     return;
3293   }
3294   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
3295 
3296   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
3297   Node *least = legal;          // Best legal position so far
3298   while( early != legal ) {     // While not at earliest legal
3299 #ifdef ASSERT
3300     if (legal->is_Start() && !early->is_Root()) {
3301       // Bad graph. Print idom path and fail.
3302       dump_bad_graph(n, early, LCA);
3303       assert(false, "Bad graph detected in build_loop_late");
3304     }
3305 #endif
3306     // Find least loop nesting depth
3307     legal = idom(legal);        // Bump up the IDOM tree
3308     // Check for lower nesting depth
3309     if( get_loop(legal)->_nest < get_loop(least)->_nest )
3310       least = legal;
3311   }
3312   assert(early == legal || legal != C->root(), "bad dominance of inputs");
3313 
3314   // Try not to place code on a loop entry projection
3315   // which can inhibit range check elimination.
3316   if (least != early) {
3317     Node* ctrl_out = least->unique_ctrl_out();
3318     if (ctrl_out && ctrl_out->is_CountedLoop() &&
3319         least == ctrl_out->in(LoopNode::EntryControl)) {
3320       Node* least_dom = idom(least);
3321       if (get_loop(least_dom)->is_member(get_loop(least))) {
3322         least = least_dom;
3323       }
3324     }
3325   }
3326 
3327 #ifdef ASSERT
3328   // If verifying, verify that 'verify_me' has a legal location
3329   // and choose it as our location.
3330   if( _verify_me ) {
3331     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
3332     Node *legal = LCA;
3333     while( early != legal ) {   // While not at earliest legal
3334       if( legal == v_ctrl ) break;  // Check for prior good location
3335       legal = idom(legal)      ;// Bump up the IDOM tree
3336     }
3337     // Check for prior good location
3338     if( legal == v_ctrl ) least = legal; // Keep prior if found
3339   }
3340 #endif
3341 
3342   // Assign discovered "here or above" point
3343   least = find_non_split_ctrl(least);
3344   set_ctrl(n, least);
3345 
3346   // Collect inner loop bodies
3347   IdealLoopTree *chosen_loop = get_loop(least);
3348   if( !chosen_loop->_child )   // Inner loop?
3349     chosen_loop->_body.push(n);// Collect inner loops
3350 }
3351 
3352 #ifdef ASSERT
3353 void PhaseIdealLoop::dump_bad_graph(Node* n, Node* early, Node* LCA) {
3354   tty->print_cr( "Bad graph detected in build_loop_late");
3355   tty->print("n: "); n->dump();
3356   tty->print("early(n): "); early->dump();
3357   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
3358       n->in(0) != early && !n->in(0)->is_Root()) {
3359     tty->print("n->in(0): "); n->in(0)->dump();
3360   }
3361   for (uint i = 1; i < n->req(); i++) {
3362     Node* in1 = n->in(i);
3363     if (in1 != NULL && in1 != n && !in1->is_top()) {
3364       tty->print("n->in(%d): ", i); in1->dump();
3365       Node* in1_early = get_ctrl(in1);
3366       tty->print("early(n->in(%d)): ", i); in1_early->dump();
3367       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
3368           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
3369         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
3370       }
3371       for (uint j = 1; j < in1->req(); j++) {
3372         Node* in2 = in1->in(j);
3373         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
3374           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
3375           Node* in2_early = get_ctrl(in2);
3376           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
3377           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
3378               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
3379             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
3380           }
3381         }
3382       }
3383     }
3384   }
3385   tty->cr();
3386   tty->print("LCA(n): "); LCA->dump();
3387   for (uint i = 0; i < n->outcnt(); i++) {
3388     Node* u1 = n->raw_out(i);
3389     if (u1 == n)
3390       continue;
3391     tty->print("n->out(%d): ", i); u1->dump();
3392     if (u1->is_CFG()) {
3393       for (uint j = 0; j < u1->outcnt(); j++) {
3394         Node* u2 = u1->raw_out(j);
3395         if (u2 != u1 && u2 != n && u2->is_CFG()) {
3396           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3397         }
3398       }
3399     } else {
3400       Node* u1_later = get_ctrl(u1);
3401       tty->print("later(n->out(%d)): ", i); u1_later->dump();
3402       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
3403           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
3404         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
3405       }
3406       for (uint j = 0; j < u1->outcnt(); j++) {
3407         Node* u2 = u1->raw_out(j);
3408         if (u2 == n || u2 == u1)
3409           continue;
3410         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3411         if (!u2->is_CFG()) {
3412           Node* u2_later = get_ctrl(u2);
3413           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
3414           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
3415               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
3416             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
3417           }
3418         }
3419       }
3420     }
3421   }
3422   tty->cr();
3423   int ct = 0;
3424   Node *dbg_legal = LCA;
3425   while(!dbg_legal->is_Start() && ct < 100) {
3426     tty->print("idom[%d] ",ct); dbg_legal->dump();
3427     ct++;
3428     dbg_legal = idom(dbg_legal);
3429   }
3430   tty->cr();
3431 }
3432 #endif
3433 
3434 #ifndef PRODUCT
3435 //------------------------------dump-------------------------------------------
3436 void PhaseIdealLoop::dump( ) const {
3437   ResourceMark rm;
3438   Arena* arena = Thread::current()->resource_area();
3439   Node_Stack stack(arena, C->unique() >> 2);
3440   Node_List rpo_list;
3441   VectorSet visited(arena);
3442   visited.set(C->top()->_idx);
3443   rpo( C->root(), stack, visited, rpo_list );
3444   // Dump root loop indexed by last element in PO order
3445   dump( _ltree_root, rpo_list.size(), rpo_list );
3446 }
3447 
3448 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
3449   loop->dump_head();
3450 
3451   // Now scan for CFG nodes in the same loop
3452   for( uint j=idx; j > 0;  j-- ) {
3453     Node *n = rpo_list[j-1];
3454     if( !_nodes[n->_idx] )      // Skip dead nodes
3455       continue;
3456     if( get_loop(n) != loop ) { // Wrong loop nest
3457       if( get_loop(n)->_head == n &&    // Found nested loop?
3458           get_loop(n)->_parent == loop )
3459         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
3460       continue;
3461     }
3462 
3463     // Dump controlling node
3464     for( uint x = 0; x < loop->_nest; x++ )
3465       tty->print("  ");
3466     tty->print("C");
3467     if( n == C->root() ) {
3468       n->dump();
3469     } else {
3470       Node* cached_idom   = idom_no_update(n);
3471       Node *computed_idom = n->in(0);
3472       if( n->is_Region() ) {
3473         computed_idom = compute_idom(n);
3474         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
3475         // any MultiBranch ctrl node), so apply a similar transform to
3476         // the cached idom returned from idom_no_update.
3477         cached_idom = find_non_split_ctrl(cached_idom);
3478       }
3479       tty->print(" ID:%d",computed_idom->_idx);
3480       n->dump();
3481       if( cached_idom != computed_idom ) {
3482         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
3483                       computed_idom->_idx, cached_idom->_idx);
3484       }
3485     }
3486     // Dump nodes it controls
3487     for( uint k = 0; k < _nodes.Size(); k++ ) {
3488       // (k < C->unique() && get_ctrl(find(k)) == n)
3489       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
3490         Node *m = C->root()->find(k);
3491         if( m && m->outcnt() > 0 ) {
3492           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
3493             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
3494                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
3495           }
3496           for( uint j = 0; j < loop->_nest; j++ )
3497             tty->print("  ");
3498           tty->print(" ");
3499           m->dump();
3500         }
3501       }
3502     }
3503   }
3504 }
3505 
3506 // Collect a R-P-O for the whole CFG.
3507 // Result list is in post-order (scan backwards for RPO)
3508 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
3509   stk.push(start, 0);
3510   visited.set(start->_idx);
3511 
3512   while (stk.is_nonempty()) {
3513     Node* m   = stk.node();
3514     uint  idx = stk.index();
3515     if (idx < m->outcnt()) {
3516       stk.set_index(idx + 1);
3517       Node* n = m->raw_out(idx);
3518       if (n->is_CFG() && !visited.test_set(n->_idx)) {
3519         stk.push(n, 0);
3520       }
3521     } else {
3522       rpo_list.push(m);
3523       stk.pop();
3524     }
3525   }
3526 }
3527 #endif
3528 
3529 
3530 //=============================================================================
3531 //------------------------------LoopTreeIterator-----------------------------------
3532 
3533 // Advance to next loop tree using a preorder, left-to-right traversal.
3534 void LoopTreeIterator::next() {
3535   assert(!done(), "must not be done.");
3536   if (_curnt->_child != NULL) {
3537     _curnt = _curnt->_child;
3538   } else if (_curnt->_next != NULL) {
3539     _curnt = _curnt->_next;
3540   } else {
3541     while (_curnt != _root && _curnt->_next == NULL) {
3542       _curnt = _curnt->_parent;
3543     }
3544     if (_curnt == _root) {
3545       _curnt = NULL;
3546       assert(done(), "must be done.");
3547     } else {
3548       assert(_curnt->_next != NULL, "must be more to do");
3549       _curnt = _curnt->_next;
3550     }
3551   }
3552 }