1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/connode.hpp"
  29 #include "opto/memnode.hpp"
  30 #include "opto/mulnode.hpp"
  31 #include "opto/phaseX.hpp"
  32 #include "opto/subnode.hpp"
  33 
  34 // Portions of code courtesy of Clifford Click
  35 
  36 
  37 //=============================================================================
  38 //------------------------------hash-------------------------------------------
  39 // Hash function over MulNodes.  Needs to be commutative; i.e., I swap
  40 // (commute) inputs to MulNodes willy-nilly so the hash function must return
  41 // the same value in the presence of edge swapping.
  42 uint MulNode::hash() const {
  43   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  44 }
  45 
  46 //------------------------------Identity---------------------------------------
  47 // Multiplying a one preserves the other argument
  48 Node *MulNode::Identity( PhaseTransform *phase ) {
  49   register const Type *one = mul_id();  // The multiplicative identity
  50   if( phase->type( in(1) )->higher_equal( one ) ) return in(2);
  51   if( phase->type( in(2) )->higher_equal( one ) ) return in(1);
  52 
  53   return this;
  54 }
  55 
  56 //------------------------------Ideal------------------------------------------
  57 // We also canonicalize the Node, moving constants to the right input,
  58 // and flatten expressions (so that 1+x+2 becomes x+3).
  59 Node *MulNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  60   const Type *t1 = phase->type( in(1) );
  61   const Type *t2 = phase->type( in(2) );
  62   Node *progress = NULL;        // Progress flag
  63   // We are OK if right is a constant, or right is a load and
  64   // left is a non-constant.
  65   if( !(t2->singleton() ||
  66         (in(2)->is_Load() && !(t1->singleton() || in(1)->is_Load())) ) ) {
  67     if( t1->singleton() ||       // Left input is a constant?
  68         // Otherwise, sort inputs (commutativity) to help value numbering.
  69         (in(1)->_idx > in(2)->_idx) ) {
  70       swap_edges(1, 2);
  71       const Type *t = t1;
  72       t1 = t2;
  73       t2 = t;
  74       progress = this;            // Made progress
  75     }
  76   }
  77 
  78   // If the right input is a constant, and the left input is a product of a
  79   // constant, flatten the expression tree.
  80   uint op = Opcode();
  81   if( t2->singleton() &&        // Right input is a constant?
  82       op != Op_MulF &&          // Float & double cannot reassociate
  83       op != Op_MulD ) {
  84     if( t2 == Type::TOP ) return NULL;
  85     Node *mul1 = in(1);
  86 #ifdef ASSERT
  87     // Check for dead loop
  88     int   op1 = mul1->Opcode();
  89     if( phase->eqv( mul1, this ) || phase->eqv( in(2), this ) ||
  90         ( op1 == mul_opcode() || op1 == add_opcode() ) &&
  91         ( phase->eqv( mul1->in(1), this ) || phase->eqv( mul1->in(2), this ) ||
  92           phase->eqv( mul1->in(1), mul1 ) || phase->eqv( mul1->in(2), mul1 ) ) )
  93       assert(false, "dead loop in MulNode::Ideal");
  94 #endif
  95 
  96     if( mul1->Opcode() == mul_opcode() ) {  // Left input is a multiply?
  97       // Mul of a constant?
  98       const Type *t12 = phase->type( mul1->in(2) );
  99       if( t12->singleton() && t12 != Type::TOP) { // Left input is an add of a constant?
 100         // Compute new constant; check for overflow
 101         const Type *tcon01 = ((MulNode*)mul1)->mul_ring(t2,t12);
 102         if( tcon01->singleton() ) {
 103           // The Mul of the flattened expression
 104           set_req(1, mul1->in(1));
 105           set_req(2, phase->makecon( tcon01 ));
 106           t2 = tcon01;
 107           progress = this;      // Made progress
 108         }
 109       }
 110     }
 111     // If the right input is a constant, and the left input is an add of a
 112     // constant, flatten the tree: (X+con1)*con0 ==> X*con0 + con1*con0
 113     const Node *add1 = in(1);
 114     if( add1->Opcode() == add_opcode() ) {      // Left input is an add?
 115       // Add of a constant?
 116       const Type *t12 = phase->type( add1->in(2) );
 117       if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 118         assert( add1->in(1) != add1, "dead loop in MulNode::Ideal" );
 119         // Compute new constant; check for overflow
 120         const Type *tcon01 = mul_ring(t2,t12);
 121         if( tcon01->singleton() ) {
 122 
 123         // Convert (X+con1)*con0 into X*con0
 124           Node *mul = clone();    // mul = ()*con0
 125           mul->set_req(1,add1->in(1));  // mul = X*con0
 126           mul = phase->transform(mul);
 127 
 128           Node *add2 = add1->clone();
 129           add2->set_req(1, mul);        // X*con0 + con0*con1
 130           add2->set_req(2, phase->makecon(tcon01) );
 131           progress = add2;
 132         }
 133       }
 134     } // End of is left input an add
 135   } // End of is right input a Mul
 136 
 137   return progress;
 138 }
 139 
 140 //------------------------------Value-----------------------------------------
 141 const Type *MulNode::Value( PhaseTransform *phase ) const {
 142   const Type *t1 = phase->type( in(1) );
 143   const Type *t2 = phase->type( in(2) );
 144   // Either input is TOP ==> the result is TOP
 145   if( t1 == Type::TOP ) return Type::TOP;
 146   if( t2 == Type::TOP ) return Type::TOP;
 147 
 148   // Either input is ZERO ==> the result is ZERO.
 149   // Not valid for floats or doubles since +0.0 * -0.0 --> +0.0
 150   int op = Opcode();
 151   if( op == Op_MulI || op == Op_AndI || op == Op_MulL || op == Op_AndL ) {
 152     const Type *zero = add_id();        // The multiplicative zero
 153     if( t1->higher_equal( zero ) ) return zero;
 154     if( t2->higher_equal( zero ) ) return zero;
 155   }
 156 
 157   // Either input is BOTTOM ==> the result is the local BOTTOM
 158   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
 159     return bottom_type();
 160 
 161 #if defined(IA32)
 162   // Can't trust native compilers to properly fold strict double
 163   // multiplication with round-to-zero on this platform.
 164   if (op == Op_MulD && phase->C->method()->is_strict()) {
 165     return TypeD::DOUBLE;
 166   }
 167 #endif
 168 
 169   return mul_ring(t1,t2);            // Local flavor of type multiplication
 170 }
 171 
 172 
 173 //=============================================================================
 174 //------------------------------Ideal------------------------------------------
 175 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 176 Node *MulINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 177   // Swap constant to right
 178   jint con;
 179   if ((con = in(1)->find_int_con(0)) != 0) {
 180     swap_edges(1, 2);
 181     // Finish rest of method to use info in 'con'
 182   } else if ((con = in(2)->find_int_con(0)) == 0) {
 183     return MulNode::Ideal(phase, can_reshape);
 184   }
 185 
 186   // Now we have a constant Node on the right and the constant in con
 187   if( con == 0 ) return NULL;   // By zero is handled by Value call
 188   if( con == 1 ) return NULL;   // By one  is handled by Identity call
 189 
 190   // Check for negative constant; if so negate the final result
 191   bool sign_flip = false;
 192   if( con < 0 ) {
 193     con = -con;
 194     sign_flip = true;
 195   }
 196 
 197   // Get low bit; check for being the only bit
 198   Node *res = NULL;
 199   jint bit1 = con & -con;       // Extract low bit
 200   if( bit1 == con ) {           // Found a power of 2?
 201     res = new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) );
 202   } else {
 203 
 204     // Check for constant with 2 bits set
 205     jint bit2 = con-bit1;
 206     bit2 = bit2 & -bit2;          // Extract 2nd bit
 207     if( bit2 + bit1 == con ) {    // Found all bits in con?
 208       Node *n1 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit1)) ) );
 209       Node *n2 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(bit2)) ) );
 210       res = new (phase->C) AddINode( n2, n1 );
 211 
 212     } else if (is_power_of_2(con+1)) {
 213       // Sleezy: power-of-2 -1.  Next time be generic.
 214       jint temp = (jint) (con + 1);
 215       Node *n1 = phase->transform( new (phase->C) LShiftINode( in(1), phase->intcon(log2_intptr(temp)) ) );
 216       res = new (phase->C) SubINode( n1, in(1) );
 217     } else {
 218       return MulNode::Ideal(phase, can_reshape);
 219     }
 220   }
 221 
 222   if( sign_flip ) {             // Need to negate result?
 223     res = phase->transform(res);// Transform, before making the zero con
 224     res = new (phase->C) SubINode(phase->intcon(0),res);
 225   }
 226 
 227   return res;                   // Return final result
 228 }
 229 
 230 //------------------------------mul_ring---------------------------------------
 231 // Compute the product type of two integer ranges into this node.
 232 const Type *MulINode::mul_ring(const Type *t0, const Type *t1) const {
 233   const TypeInt *r0 = t0->is_int(); // Handy access
 234   const TypeInt *r1 = t1->is_int();
 235 
 236   // Fetch endpoints of all ranges
 237   int32 lo0 = r0->_lo;
 238   double a = (double)lo0;
 239   int32 hi0 = r0->_hi;
 240   double b = (double)hi0;
 241   int32 lo1 = r1->_lo;
 242   double c = (double)lo1;
 243   int32 hi1 = r1->_hi;
 244   double d = (double)hi1;
 245 
 246   // Compute all endpoints & check for overflow
 247   int32 A = lo0*lo1;
 248   if( (double)A != a*c ) return TypeInt::INT; // Overflow?
 249   int32 B = lo0*hi1;
 250   if( (double)B != a*d ) return TypeInt::INT; // Overflow?
 251   int32 C = hi0*lo1;
 252   if( (double)C != b*c ) return TypeInt::INT; // Overflow?
 253   int32 D = hi0*hi1;
 254   if( (double)D != b*d ) return TypeInt::INT; // Overflow?
 255 
 256   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 257   else { lo0 = B; hi0 = A; }
 258   if( C < D ) {
 259     if( C < lo0 ) lo0 = C;
 260     if( D > hi0 ) hi0 = D;
 261   } else {
 262     if( D < lo0 ) lo0 = D;
 263     if( C > hi0 ) hi0 = C;
 264   }
 265   return TypeInt::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 266 }
 267 
 268 
 269 //=============================================================================
 270 //------------------------------Ideal------------------------------------------
 271 // Check for power-of-2 multiply, then try the regular MulNode::Ideal
 272 Node *MulLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 273   // Swap constant to right
 274   jlong con;
 275   if ((con = in(1)->find_long_con(0)) != 0) {
 276     swap_edges(1, 2);
 277     // Finish rest of method to use info in 'con'
 278   } else if ((con = in(2)->find_long_con(0)) == 0) {
 279     return MulNode::Ideal(phase, can_reshape);
 280   }
 281 
 282   // Now we have a constant Node on the right and the constant in con
 283   if( con == CONST64(0) ) return NULL;  // By zero is handled by Value call
 284   if( con == CONST64(1) ) return NULL;  // By one  is handled by Identity call
 285 
 286   // Check for negative constant; if so negate the final result
 287   bool sign_flip = false;
 288   if( con < 0 ) {
 289     con = -con;
 290     sign_flip = true;
 291   }
 292 
 293   // Get low bit; check for being the only bit
 294   Node *res = NULL;
 295   jlong bit1 = con & -con;      // Extract low bit
 296   if( bit1 == con ) {           // Found a power of 2?
 297     res = new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) );
 298   } else {
 299 
 300     // Check for constant with 2 bits set
 301     jlong bit2 = con-bit1;
 302     bit2 = bit2 & -bit2;          // Extract 2nd bit
 303     if( bit2 + bit1 == con ) {    // Found all bits in con?
 304       Node *n1 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit1)) ) );
 305       Node *n2 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(bit2)) ) );
 306       res = new (phase->C) AddLNode( n2, n1 );
 307 
 308     } else if (is_power_of_2_long(con+1)) {
 309       // Sleezy: power-of-2 -1.  Next time be generic.
 310       jlong temp = (jlong) (con + 1);
 311       Node *n1 = phase->transform( new (phase->C) LShiftLNode( in(1), phase->intcon(log2_long(temp)) ) );
 312       res = new (phase->C) SubLNode( n1, in(1) );
 313     } else {
 314       return MulNode::Ideal(phase, can_reshape);
 315     }
 316   }
 317 
 318   if( sign_flip ) {             // Need to negate result?
 319     res = phase->transform(res);// Transform, before making the zero con
 320     res = new (phase->C) SubLNode(phase->longcon(0),res);
 321   }
 322 
 323   return res;                   // Return final result
 324 }
 325 
 326 //------------------------------mul_ring---------------------------------------
 327 // Compute the product type of two integer ranges into this node.
 328 const Type *MulLNode::mul_ring(const Type *t0, const Type *t1) const {
 329   const TypeLong *r0 = t0->is_long(); // Handy access
 330   const TypeLong *r1 = t1->is_long();
 331 
 332   // Fetch endpoints of all ranges
 333   jlong lo0 = r0->_lo;
 334   double a = (double)lo0;
 335   jlong hi0 = r0->_hi;
 336   double b = (double)hi0;
 337   jlong lo1 = r1->_lo;
 338   double c = (double)lo1;
 339   jlong hi1 = r1->_hi;
 340   double d = (double)hi1;
 341 
 342   // Compute all endpoints & check for overflow
 343   jlong A = lo0*lo1;
 344   if( (double)A != a*c ) return TypeLong::LONG; // Overflow?
 345   jlong B = lo0*hi1;
 346   if( (double)B != a*d ) return TypeLong::LONG; // Overflow?
 347   jlong C = hi0*lo1;
 348   if( (double)C != b*c ) return TypeLong::LONG; // Overflow?
 349   jlong D = hi0*hi1;
 350   if( (double)D != b*d ) return TypeLong::LONG; // Overflow?
 351 
 352   if( A < B ) { lo0 = A; hi0 = B; } // Sort range endpoints
 353   else { lo0 = B; hi0 = A; }
 354   if( C < D ) {
 355     if( C < lo0 ) lo0 = C;
 356     if( D > hi0 ) hi0 = D;
 357   } else {
 358     if( D < lo0 ) lo0 = D;
 359     if( C > hi0 ) hi0 = C;
 360   }
 361   return TypeLong::make(lo0, hi0, MAX2(r0->_widen,r1->_widen));
 362 }
 363 
 364 //=============================================================================
 365 //------------------------------mul_ring---------------------------------------
 366 // Compute the product type of two double ranges into this node.
 367 const Type *MulFNode::mul_ring(const Type *t0, const Type *t1) const {
 368   if( t0 == Type::FLOAT || t1 == Type::FLOAT ) return Type::FLOAT;
 369   return TypeF::make( t0->getf() * t1->getf() );
 370 }
 371 
 372 //=============================================================================
 373 //------------------------------mul_ring---------------------------------------
 374 // Compute the product type of two double ranges into this node.
 375 const Type *MulDNode::mul_ring(const Type *t0, const Type *t1) const {
 376   if( t0 == Type::DOUBLE || t1 == Type::DOUBLE ) return Type::DOUBLE;
 377   // We must be multiplying 2 double constants.
 378   return TypeD::make( t0->getd() * t1->getd() );
 379 }
 380 
 381 //=============================================================================
 382 //------------------------------Value------------------------------------------
 383 const Type *MulHiLNode::Value( PhaseTransform *phase ) const {
 384   // Either input is TOP ==> the result is TOP
 385   const Type *t1 = phase->type( in(1) );
 386   const Type *t2 = phase->type( in(2) );
 387   if( t1 == Type::TOP ) return Type::TOP;
 388   if( t2 == Type::TOP ) return Type::TOP;
 389 
 390   // Either input is BOTTOM ==> the result is the local BOTTOM
 391   const Type *bot = bottom_type();
 392   if( (t1 == bot) || (t2 == bot) ||
 393       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 394     return bot;
 395 
 396   // It is not worth trying to constant fold this stuff!
 397   return TypeLong::LONG;
 398 }
 399 
 400 //=============================================================================
 401 //------------------------------mul_ring---------------------------------------
 402 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 403 // For the logical operations the ring's MUL is really a logical AND function.
 404 // This also type-checks the inputs for sanity.  Guaranteed never to
 405 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 406 const Type *AndINode::mul_ring( const Type *t0, const Type *t1 ) const {
 407   const TypeInt *r0 = t0->is_int(); // Handy access
 408   const TypeInt *r1 = t1->is_int();
 409   int widen = MAX2(r0->_widen,r1->_widen);
 410 
 411   // If either input is a constant, might be able to trim cases
 412   if( !r0->is_con() && !r1->is_con() )
 413     return TypeInt::INT;        // No constants to be had
 414 
 415   // Both constants?  Return bits
 416   if( r0->is_con() && r1->is_con() )
 417     return TypeInt::make( r0->get_con() & r1->get_con() );
 418 
 419   if( r0->is_con() && r0->get_con() > 0 )
 420     return TypeInt::make(0, r0->get_con(), widen);
 421 
 422   if( r1->is_con() && r1->get_con() > 0 )
 423     return TypeInt::make(0, r1->get_con(), widen);
 424 
 425   if( r0 == TypeInt::BOOL || r1 == TypeInt::BOOL ) {
 426     return TypeInt::BOOL;
 427   }
 428 
 429   return TypeInt::INT;          // No constants to be had
 430 }
 431 
 432 //------------------------------Identity---------------------------------------
 433 // Masking off the high bits of an unsigned load is not required
 434 Node *AndINode::Identity( PhaseTransform *phase ) {
 435 
 436   // x & x => x
 437   if (phase->eqv(in(1), in(2))) return in(1);
 438 
 439   Node* in1 = in(1);
 440   uint op = in1->Opcode();
 441   const TypeInt* t2 = phase->type(in(2))->isa_int();
 442   if (t2 && t2->is_con()) {
 443     int con = t2->get_con();
 444     // Masking off high bits which are always zero is useless.
 445     const TypeInt* t1 = phase->type( in(1) )->isa_int();
 446     if (t1 != NULL && t1->_lo >= 0) {
 447       jint t1_support = right_n_bits(1 + log2_intptr(t1->_hi));
 448       if ((t1_support & con) == t1_support)
 449         return in1;
 450     }
 451     // Masking off the high bits of a unsigned-shift-right is not
 452     // needed either.
 453     if (op == Op_URShiftI) {
 454       const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 455       if (t12 && t12->is_con()) {  // Shift is by a constant
 456         int shift = t12->get_con();
 457         shift &= BitsPerJavaInteger - 1;  // semantics of Java shifts
 458         int mask = max_juint >> shift;
 459         if ((mask & con) == mask)  // If AND is useless, skip it
 460           return in1;
 461       }
 462     }
 463   }
 464   return MulNode::Identity(phase);
 465 }
 466 
 467 //------------------------------Ideal------------------------------------------
 468 Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 469   // Special case constant AND mask
 470   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 471   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 472   const int mask = t2->get_con();
 473   Node *load = in(1);
 474   uint lop = load->Opcode();
 475 
 476   // Masking bits off of a Character?  Hi bits are already zero.
 477   if( lop == Op_LoadUS &&
 478       (mask & 0xFFFF0000) )     // Can we make a smaller mask?
 479     return new (phase->C) AndINode(load,phase->intcon(mask&0xFFFF));
 480 
 481   // Masking off sign bits?  Dont make them!
 482   if( lop == Op_RShiftI ) {
 483     const TypeInt *t12 = phase->type(load->in(2))->isa_int();
 484     if( t12 && t12->is_con() ) { // Shift is by a constant
 485       int shift = t12->get_con();
 486       shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 487       const int sign_bits_mask = ~right_n_bits(BitsPerJavaInteger - shift);
 488       // If the AND'ing of the 2 masks has no bits, then only original shifted
 489       // bits survive.  NO sign-extension bits survive the maskings.
 490       if( (sign_bits_mask & mask) == 0 ) {
 491         // Use zero-fill shift instead
 492         Node *zshift = phase->transform(new (phase->C) URShiftINode(load->in(1),load->in(2)));
 493         return new (phase->C) AndINode( zshift, in(2) );
 494       }
 495     }
 496   }
 497 
 498   // Check for 'negate/and-1', a pattern emitted when someone asks for
 499   // 'mod 2'.  Negate leaves the low order bit unchanged (think: complement
 500   // plus 1) and the mask is of the low order bit.  Skip the negate.
 501   if( lop == Op_SubI && mask == 1 && load->in(1) &&
 502       phase->type(load->in(1)) == TypeInt::ZERO )
 503     return new (phase->C) AndINode( load->in(2), in(2) );
 504 
 505   return MulNode::Ideal(phase, can_reshape);
 506 }
 507 
 508 //=============================================================================
 509 //------------------------------mul_ring---------------------------------------
 510 // Supplied function returns the product of the inputs IN THE CURRENT RING.
 511 // For the logical operations the ring's MUL is really a logical AND function.
 512 // This also type-checks the inputs for sanity.  Guaranteed never to
 513 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 514 const Type *AndLNode::mul_ring( const Type *t0, const Type *t1 ) const {
 515   const TypeLong *r0 = t0->is_long(); // Handy access
 516   const TypeLong *r1 = t1->is_long();
 517   int widen = MAX2(r0->_widen,r1->_widen);
 518 
 519   // If either input is a constant, might be able to trim cases
 520   if( !r0->is_con() && !r1->is_con() )
 521     return TypeLong::LONG;      // No constants to be had
 522 
 523   // Both constants?  Return bits
 524   if( r0->is_con() && r1->is_con() )
 525     return TypeLong::make( r0->get_con() & r1->get_con() );
 526 
 527   if( r0->is_con() && r0->get_con() > 0 )
 528     return TypeLong::make(CONST64(0), r0->get_con(), widen);
 529 
 530   if( r1->is_con() && r1->get_con() > 0 )
 531     return TypeLong::make(CONST64(0), r1->get_con(), widen);
 532 
 533   return TypeLong::LONG;        // No constants to be had
 534 }
 535 
 536 //------------------------------Identity---------------------------------------
 537 // Masking off the high bits of an unsigned load is not required
 538 Node *AndLNode::Identity( PhaseTransform *phase ) {
 539 
 540   // x & x => x
 541   if (phase->eqv(in(1), in(2))) return in(1);
 542 
 543   Node *usr = in(1);
 544   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 545   if( t2 && t2->is_con() ) {
 546     jlong con = t2->get_con();
 547     // Masking off high bits which are always zero is useless.
 548     const TypeLong* t1 = phase->type( in(1) )->isa_long();
 549     if (t1 != NULL && t1->_lo >= 0) {
 550       jlong t1_support = ((jlong)1 << (1 + log2_long(t1->_hi))) - 1;
 551       if ((t1_support & con) == t1_support)
 552         return usr;
 553     }
 554     uint lop = usr->Opcode();
 555     // Masking off the high bits of a unsigned-shift-right is not
 556     // needed either.
 557     if( lop == Op_URShiftL ) {
 558       const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
 559       if( t12 && t12->is_con() ) {  // Shift is by a constant
 560         int shift = t12->get_con();
 561         shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 562         jlong mask = max_julong >> shift;
 563         if( (mask&con) == mask )  // If AND is useless, skip it
 564           return usr;
 565       }
 566     }
 567   }
 568   return MulNode::Identity(phase);
 569 }
 570 
 571 //------------------------------Ideal------------------------------------------
 572 Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 573   // Special case constant AND mask
 574   const TypeLong *t2 = phase->type( in(2) )->isa_long();
 575   if( !t2 || !t2->is_con() ) return MulNode::Ideal(phase, can_reshape);
 576   const jlong mask = t2->get_con();
 577 
 578   Node* in1 = in(1);
 579   uint op = in1->Opcode();
 580 
 581   // Are we masking a long that was converted from an int with a mask
 582   // that fits in 32-bits?  Commute them and use an AndINode.  Don't
 583   // convert masks which would cause a sign extension of the integer
 584   // value.  This check includes UI2L masks (0x00000000FFFFFFFF) which
 585   // would be optimized away later in Identity.
 586   if (op == Op_ConvI2L && (mask & CONST64(0xFFFFFFFF80000000)) == 0) {
 587     Node* andi = new (phase->C) AndINode(in1->in(1), phase->intcon(mask));
 588     andi = phase->transform(andi);
 589     return new (phase->C) ConvI2LNode(andi);
 590   }
 591 
 592   // Masking off sign bits?  Dont make them!
 593   if (op == Op_RShiftL) {
 594     const TypeInt* t12 = phase->type(in1->in(2))->isa_int();
 595     if( t12 && t12->is_con() ) { // Shift is by a constant
 596       int shift = t12->get_con();
 597       shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 598       const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
 599       // If the AND'ing of the 2 masks has no bits, then only original shifted
 600       // bits survive.  NO sign-extension bits survive the maskings.
 601       if( (sign_bits_mask & mask) == 0 ) {
 602         // Use zero-fill shift instead
 603         Node *zshift = phase->transform(new (phase->C) URShiftLNode(in1->in(1), in1->in(2)));
 604         return new (phase->C) AndLNode(zshift, in(2));
 605       }
 606     }
 607   }
 608 
 609   return MulNode::Ideal(phase, can_reshape);
 610 }
 611 
 612 //=============================================================================
 613 //------------------------------Identity---------------------------------------
 614 Node *LShiftINode::Identity( PhaseTransform *phase ) {
 615   const TypeInt *ti = phase->type( in(2) )->isa_int();  // shift count is an int
 616   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) ? in(1) : this;
 617 }
 618 
 619 //------------------------------Ideal------------------------------------------
 620 // If the right input is a constant, and the left input is an add of a
 621 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 622 Node *LShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 623   const Type *t  = phase->type( in(2) );
 624   if( t == Type::TOP ) return NULL;       // Right input is dead
 625   const TypeInt *t2 = t->isa_int();
 626   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 627   const int con = t2->get_con() & ( BitsPerInt - 1 );  // masked shift count
 628 
 629   if ( con == 0 )  return NULL; // let Identity() handle 0 shift count
 630 
 631   // Left input is an add of a constant?
 632   Node *add1 = in(1);
 633   int add1_op = add1->Opcode();
 634   if( add1_op == Op_AddI ) {    // Left input is an add?
 635     assert( add1 != add1->in(1), "dead loop in LShiftINode::Ideal" );
 636     const TypeInt *t12 = phase->type(add1->in(2))->isa_int();
 637     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 638       // Transform is legal, but check for profit.  Avoid breaking 'i2s'
 639       // and 'i2b' patterns which typically fold into 'StoreC/StoreB'.
 640       if( con < 16 ) {
 641         // Compute X << con0
 642         Node *lsh = phase->transform( new (phase->C) LShiftINode( add1->in(1), in(2) ) );
 643         // Compute X<<con0 + (con1<<con0)
 644         return new (phase->C) AddINode( lsh, phase->intcon(t12->get_con() << con));
 645       }
 646     }
 647   }
 648 
 649   // Check for "(x>>c0)<<c0" which just masks off low bits
 650   if( (add1_op == Op_RShiftI || add1_op == Op_URShiftI ) &&
 651       add1->in(2) == in(2) )
 652     // Convert to "(x & -(1<<c0))"
 653     return new (phase->C) AndINode(add1->in(1),phase->intcon( -(1<<con)));
 654 
 655   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 656   if( add1_op == Op_AndI ) {
 657     Node *add2 = add1->in(1);
 658     int add2_op = add2->Opcode();
 659     if( (add2_op == Op_RShiftI || add2_op == Op_URShiftI ) &&
 660         add2->in(2) == in(2) ) {
 661       // Convert to "(x & (Y<<c0))"
 662       Node *y_sh = phase->transform( new (phase->C) LShiftINode( add1->in(2), in(2) ) );
 663       return new (phase->C) AndINode( add2->in(1), y_sh );
 664     }
 665   }
 666 
 667   // Check for ((x & ((1<<(32-c0))-1)) << c0) which ANDs off high bits
 668   // before shifting them away.
 669   const jint bits_mask = right_n_bits(BitsPerJavaInteger-con);
 670   if( add1_op == Op_AndI &&
 671       phase->type(add1->in(2)) == TypeInt::make( bits_mask ) )
 672     return new (phase->C) LShiftINode( add1->in(1), in(2) );
 673 
 674   return NULL;
 675 }
 676 
 677 //------------------------------Value------------------------------------------
 678 // A LShiftINode shifts its input2 left by input1 amount.
 679 const Type *LShiftINode::Value( PhaseTransform *phase ) const {
 680   const Type *t1 = phase->type( in(1) );
 681   const Type *t2 = phase->type( in(2) );
 682   // Either input is TOP ==> the result is TOP
 683   if( t1 == Type::TOP ) return Type::TOP;
 684   if( t2 == Type::TOP ) return Type::TOP;
 685 
 686   // Left input is ZERO ==> the result is ZERO.
 687   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 688   // Shift by zero does nothing
 689   if( t2 == TypeInt::ZERO ) return t1;
 690 
 691   // Either input is BOTTOM ==> the result is BOTTOM
 692   if( (t1 == TypeInt::INT) || (t2 == TypeInt::INT) ||
 693       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 694     return TypeInt::INT;
 695 
 696   const TypeInt *r1 = t1->is_int(); // Handy access
 697   const TypeInt *r2 = t2->is_int(); // Handy access
 698 
 699   if (!r2->is_con())
 700     return TypeInt::INT;
 701 
 702   uint shift = r2->get_con();
 703   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 704   // Shift by a multiple of 32 does nothing:
 705   if (shift == 0)  return t1;
 706 
 707   // If the shift is a constant, shift the bounds of the type,
 708   // unless this could lead to an overflow.
 709   if (!r1->is_con()) {
 710     jint lo = r1->_lo, hi = r1->_hi;
 711     if (((lo << shift) >> shift) == lo &&
 712         ((hi << shift) >> shift) == hi) {
 713       // No overflow.  The range shifts up cleanly.
 714       return TypeInt::make((jint)lo << (jint)shift,
 715                            (jint)hi << (jint)shift,
 716                            MAX2(r1->_widen,r2->_widen));
 717     }
 718     return TypeInt::INT;
 719   }
 720 
 721   return TypeInt::make( (jint)r1->get_con() << (jint)shift );
 722 }
 723 
 724 //=============================================================================
 725 //------------------------------Identity---------------------------------------
 726 Node *LShiftLNode::Identity( PhaseTransform *phase ) {
 727   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
 728   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
 729 }
 730 
 731 //------------------------------Ideal------------------------------------------
 732 // If the right input is a constant, and the left input is an add of a
 733 // constant, flatten the tree: (X+con1)<<con0 ==> X<<con0 + con1<<con0
 734 Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 735   const Type *t  = phase->type( in(2) );
 736   if( t == Type::TOP ) return NULL;       // Right input is dead
 737   const TypeInt *t2 = t->isa_int();
 738   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 739   const int con = t2->get_con() & ( BitsPerLong - 1 );  // masked shift count
 740 
 741   if ( con == 0 ) return NULL;  // let Identity() handle 0 shift count
 742 
 743   // Left input is an add of a constant?
 744   Node *add1 = in(1);
 745   int add1_op = add1->Opcode();
 746   if( add1_op == Op_AddL ) {    // Left input is an add?
 747     // Avoid dead data cycles from dead loops
 748     assert( add1 != add1->in(1), "dead loop in LShiftLNode::Ideal" );
 749     const TypeLong *t12 = phase->type(add1->in(2))->isa_long();
 750     if( t12 && t12->is_con() ){ // Left input is an add of a con?
 751       // Compute X << con0
 752       Node *lsh = phase->transform( new (phase->C) LShiftLNode( add1->in(1), in(2) ) );
 753       // Compute X<<con0 + (con1<<con0)
 754       return new (phase->C) AddLNode( lsh, phase->longcon(t12->get_con() << con));
 755     }
 756   }
 757 
 758   // Check for "(x>>c0)<<c0" which just masks off low bits
 759   if( (add1_op == Op_RShiftL || add1_op == Op_URShiftL ) &&
 760       add1->in(2) == in(2) )
 761     // Convert to "(x & -(1<<c0))"
 762     return new (phase->C) AndLNode(add1->in(1),phase->longcon( -(CONST64(1)<<con)));
 763 
 764   // Check for "((x>>c0) & Y)<<c0" which just masks off more low bits
 765   if( add1_op == Op_AndL ) {
 766     Node *add2 = add1->in(1);
 767     int add2_op = add2->Opcode();
 768     if( (add2_op == Op_RShiftL || add2_op == Op_URShiftL ) &&
 769         add2->in(2) == in(2) ) {
 770       // Convert to "(x & (Y<<c0))"
 771       Node *y_sh = phase->transform( new (phase->C) LShiftLNode( add1->in(2), in(2) ) );
 772       return new (phase->C) AndLNode( add2->in(1), y_sh );
 773     }
 774   }
 775 
 776   // Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
 777   // before shifting them away.
 778   const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) - CONST64(1);
 779   if( add1_op == Op_AndL &&
 780       phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
 781     return new (phase->C) LShiftLNode( add1->in(1), in(2) );
 782 
 783   return NULL;
 784 }
 785 
 786 //------------------------------Value------------------------------------------
 787 // A LShiftLNode shifts its input2 left by input1 amount.
 788 const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
 789   const Type *t1 = phase->type( in(1) );
 790   const Type *t2 = phase->type( in(2) );
 791   // Either input is TOP ==> the result is TOP
 792   if( t1 == Type::TOP ) return Type::TOP;
 793   if( t2 == Type::TOP ) return Type::TOP;
 794 
 795   // Left input is ZERO ==> the result is ZERO.
 796   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
 797   // Shift by zero does nothing
 798   if( t2 == TypeInt::ZERO ) return t1;
 799 
 800   // Either input is BOTTOM ==> the result is BOTTOM
 801   if( (t1 == TypeLong::LONG) || (t2 == TypeInt::INT) ||
 802       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 803     return TypeLong::LONG;
 804 
 805   const TypeLong *r1 = t1->is_long(); // Handy access
 806   const TypeInt  *r2 = t2->is_int();  // Handy access
 807 
 808   if (!r2->is_con())
 809     return TypeLong::LONG;
 810 
 811   uint shift = r2->get_con();
 812   shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
 813   // Shift by a multiple of 64 does nothing:
 814   if (shift == 0)  return t1;
 815 
 816   // If the shift is a constant, shift the bounds of the type,
 817   // unless this could lead to an overflow.
 818   if (!r1->is_con()) {
 819     jlong lo = r1->_lo, hi = r1->_hi;
 820     if (((lo << shift) >> shift) == lo &&
 821         ((hi << shift) >> shift) == hi) {
 822       // No overflow.  The range shifts up cleanly.
 823       return TypeLong::make((jlong)lo << (jint)shift,
 824                             (jlong)hi << (jint)shift,
 825                             MAX2(r1->_widen,r2->_widen));
 826     }
 827     return TypeLong::LONG;
 828   }
 829 
 830   return TypeLong::make( (jlong)r1->get_con() << (jint)shift );
 831 }
 832 
 833 //=============================================================================
 834 //------------------------------Identity---------------------------------------
 835 Node *RShiftINode::Identity( PhaseTransform *phase ) {
 836   const TypeInt *t2 = phase->type(in(2))->isa_int();
 837   if( !t2 ) return this;
 838   if ( t2->is_con() && ( t2->get_con() & ( BitsPerInt - 1 ) ) == 0 )
 839     return in(1);
 840 
 841   // Check for useless sign-masking
 842   if( in(1)->Opcode() == Op_LShiftI &&
 843       in(1)->req() == 3 &&
 844       in(1)->in(2) == in(2) &&
 845       t2->is_con() ) {
 846     uint shift = t2->get_con();
 847     shift &= BitsPerJavaInteger-1; // semantics of Java shifts
 848     // Compute masks for which this shifting doesn't change
 849     int lo = (-1 << (BitsPerJavaInteger - shift-1)); // FFFF8000
 850     int hi = ~lo;               // 00007FFF
 851     const TypeInt *t11 = phase->type(in(1)->in(1))->isa_int();
 852     if( !t11 ) return this;
 853     // Does actual value fit inside of mask?
 854     if( lo <= t11->_lo && t11->_hi <= hi )
 855       return in(1)->in(1);      // Then shifting is a nop
 856   }
 857 
 858   return this;
 859 }
 860 
 861 //------------------------------Ideal------------------------------------------
 862 Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 863   // Inputs may be TOP if they are dead.
 864   const TypeInt *t1 = phase->type( in(1) )->isa_int();
 865   if( !t1 ) return NULL;        // Left input is an integer
 866   const TypeInt *t2 = phase->type( in(2) )->isa_int();
 867   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
 868   const TypeInt *t3;  // type of in(1).in(2)
 869   int shift = t2->get_con();
 870   shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 871 
 872   if ( shift == 0 ) return NULL;  // let Identity() handle 0 shift count
 873 
 874   // Check for (x & 0xFF000000) >> 24, whose mask can be made smaller.
 875   // Such expressions arise normally from shift chains like (byte)(x >> 24).
 876   const Node *mask = in(1);
 877   if( mask->Opcode() == Op_AndI &&
 878       (t3 = phase->type(mask->in(2))->isa_int()) &&
 879       t3->is_con() ) {
 880     Node *x = mask->in(1);
 881     jint maskbits = t3->get_con();
 882     // Convert to "(x >> shift) & (mask >> shift)"
 883     Node *shr_nomask = phase->transform( new (phase->C) RShiftINode(mask->in(1), in(2)) );
 884     return new (phase->C) AndINode(shr_nomask, phase->intcon( maskbits >> shift));
 885   }
 886 
 887   // Check for "(short[i] <<16)>>16" which simply sign-extends
 888   const Node *shl = in(1);
 889   if( shl->Opcode() != Op_LShiftI ) return NULL;
 890 
 891   if( shift == 16 &&
 892       (t3 = phase->type(shl->in(2))->isa_int()) &&
 893       t3->is_con(16) ) {
 894     Node *ld = shl->in(1);
 895     if( ld->Opcode() == Op_LoadS ) {
 896       // Sign extension is just useless here.  Return a RShiftI of zero instead
 897       // returning 'ld' directly.  We cannot return an old Node directly as
 898       // that is the job of 'Identity' calls and Identity calls only work on
 899       // direct inputs ('ld' is an extra Node removed from 'this').  The
 900       // combined optimization requires Identity only return direct inputs.
 901       set_req(1, ld);
 902       set_req(2, phase->intcon(0));
 903       return this;
 904     }
 905   }
 906 
 907   // Check for "(byte[i] <<24)>>24" which simply sign-extends
 908   if( shift == 24 &&
 909       (t3 = phase->type(shl->in(2))->isa_int()) &&
 910       t3->is_con(24) ) {
 911     Node *ld = shl->in(1);
 912     if( ld->Opcode() == Op_LoadB ) {
 913       // Sign extension is just useless here
 914       set_req(1, ld);
 915       set_req(2, phase->intcon(0));
 916       return this;
 917     }
 918   }
 919 
 920   return NULL;
 921 }
 922 
 923 //------------------------------Value------------------------------------------
 924 // A RShiftINode shifts its input2 right by input1 amount.
 925 const Type *RShiftINode::Value( PhaseTransform *phase ) const {
 926   const Type *t1 = phase->type( in(1) );
 927   const Type *t2 = phase->type( in(2) );
 928   // Either input is TOP ==> the result is TOP
 929   if( t1 == Type::TOP ) return Type::TOP;
 930   if( t2 == Type::TOP ) return Type::TOP;
 931 
 932   // Left input is ZERO ==> the result is ZERO.
 933   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
 934   // Shift by zero does nothing
 935   if( t2 == TypeInt::ZERO ) return t1;
 936 
 937   // Either input is BOTTOM ==> the result is BOTTOM
 938   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
 939     return TypeInt::INT;
 940 
 941   if (t2 == TypeInt::INT)
 942     return TypeInt::INT;
 943 
 944   const TypeInt *r1 = t1->is_int(); // Handy access
 945   const TypeInt *r2 = t2->is_int(); // Handy access
 946 
 947   // If the shift is a constant, just shift the bounds of the type.
 948   // For example, if the shift is 31, we just propagate sign bits.
 949   if (r2->is_con()) {
 950     uint shift = r2->get_con();
 951     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
 952     // Shift by a multiple of 32 does nothing:
 953     if (shift == 0)  return t1;
 954     // Calculate reasonably aggressive bounds for the result.
 955     // This is necessary if we are to correctly type things
 956     // like (x<<24>>24) == ((byte)x).
 957     jint lo = (jint)r1->_lo >> (jint)shift;
 958     jint hi = (jint)r1->_hi >> (jint)shift;
 959     assert(lo <= hi, "must have valid bounds");
 960     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
 961 #ifdef ASSERT
 962     // Make sure we get the sign-capture idiom correct.
 963     if (shift == BitsPerJavaInteger-1) {
 964       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO,    ">>31 of + is  0");
 965       if (r1->_hi <  0) assert(ti == TypeInt::MINUS_1, ">>31 of - is -1");
 966     }
 967 #endif
 968     return ti;
 969   }
 970 
 971   if( !r1->is_con() || !r2->is_con() )
 972     return TypeInt::INT;
 973 
 974   // Signed shift right
 975   return TypeInt::make( r1->get_con() >> (r2->get_con()&31) );
 976 }
 977 
 978 //=============================================================================
 979 //------------------------------Identity---------------------------------------
 980 Node *RShiftLNode::Identity( PhaseTransform *phase ) {
 981   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
 982   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
 983 }
 984 
 985 //------------------------------Value------------------------------------------
 986 // A RShiftLNode shifts its input2 right by input1 amount.
 987 const Type *RShiftLNode::Value( PhaseTransform *phase ) const {
 988   const Type *t1 = phase->type( in(1) );
 989   const Type *t2 = phase->type( in(2) );
 990   // Either input is TOP ==> the result is TOP
 991   if( t1 == Type::TOP ) return Type::TOP;
 992   if( t2 == Type::TOP ) return Type::TOP;
 993 
 994   // Left input is ZERO ==> the result is ZERO.
 995   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
 996   // Shift by zero does nothing
 997   if( t2 == TypeInt::ZERO ) return t1;
 998 
 999   // Either input is BOTTOM ==> the result is BOTTOM
1000   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1001     return TypeLong::LONG;
1002 
1003   if (t2 == TypeInt::INT)
1004     return TypeLong::LONG;
1005 
1006   const TypeLong *r1 = t1->is_long(); // Handy access
1007   const TypeInt  *r2 = t2->is_int (); // Handy access
1008 
1009   // If the shift is a constant, just shift the bounds of the type.
1010   // For example, if the shift is 63, we just propagate sign bits.
1011   if (r2->is_con()) {
1012     uint shift = r2->get_con();
1013     shift &= (2*BitsPerJavaInteger)-1;  // semantics of Java shifts
1014     // Shift by a multiple of 64 does nothing:
1015     if (shift == 0)  return t1;
1016     // Calculate reasonably aggressive bounds for the result.
1017     // This is necessary if we are to correctly type things
1018     // like (x<<24>>24) == ((byte)x).
1019     jlong lo = (jlong)r1->_lo >> (jlong)shift;
1020     jlong hi = (jlong)r1->_hi >> (jlong)shift;
1021     assert(lo <= hi, "must have valid bounds");
1022     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1023     #ifdef ASSERT
1024     // Make sure we get the sign-capture idiom correct.
1025     if (shift == (2*BitsPerJavaInteger)-1) {
1026       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO,    ">>63 of + is 0");
1027       if (r1->_hi < 0)  assert(tl == TypeLong::MINUS_1, ">>63 of - is -1");
1028     }
1029     #endif
1030     return tl;
1031   }
1032 
1033   return TypeLong::LONG;                // Give up
1034 }
1035 
1036 //=============================================================================
1037 //------------------------------Identity---------------------------------------
1038 Node *URShiftINode::Identity( PhaseTransform *phase ) {
1039   const TypeInt *ti = phase->type( in(2) )->isa_int();
1040   if ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerInt - 1 ) ) == 0 ) return in(1);
1041 
1042   // Check for "((x << LogBytesPerWord) + (wordSize-1)) >> LogBytesPerWord" which is just "x".
1043   // Happens during new-array length computation.
1044   // Safe if 'x' is in the range [0..(max_int>>LogBytesPerWord)]
1045   Node *add = in(1);
1046   if( add->Opcode() == Op_AddI ) {
1047     const TypeInt *t2  = phase->type(add->in(2))->isa_int();
1048     if( t2 && t2->is_con(wordSize - 1) &&
1049         add->in(1)->Opcode() == Op_LShiftI ) {
1050       // Check that shift_counts are LogBytesPerWord
1051       Node          *lshift_count   = add->in(1)->in(2);
1052       const TypeInt *t_lshift_count = phase->type(lshift_count)->isa_int();
1053       if( t_lshift_count && t_lshift_count->is_con(LogBytesPerWord) &&
1054           t_lshift_count == phase->type(in(2)) ) {
1055         Node          *x   = add->in(1)->in(1);
1056         const TypeInt *t_x = phase->type(x)->isa_int();
1057         if( t_x != NULL && 0 <= t_x->_lo && t_x->_hi <= (max_jint>>LogBytesPerWord) ) {
1058           return x;
1059         }
1060       }
1061     }
1062   }
1063 
1064   return (phase->type(in(2))->higher_equal(TypeInt::ZERO)) ? in(1) : this;
1065 }
1066 
1067 //------------------------------Ideal------------------------------------------
1068 Node *URShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
1069   const TypeInt *t2 = phase->type( in(2) )->isa_int();
1070   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1071   const int con = t2->get_con() & 31; // Shift count is always masked
1072   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1073   // We'll be wanting the right-shift amount as a mask of that many bits
1074   const int mask = right_n_bits(BitsPerJavaInteger - con);
1075 
1076   int in1_op = in(1)->Opcode();
1077 
1078   // Check for ((x>>>a)>>>b) and replace with (x>>>(a+b)) when a+b < 32
1079   if( in1_op == Op_URShiftI ) {
1080     const TypeInt *t12 = phase->type( in(1)->in(2) )->isa_int();
1081     if( t12 && t12->is_con() ) { // Right input is a constant
1082       assert( in(1) != in(1)->in(1), "dead loop in URShiftINode::Ideal" );
1083       const int con2 = t12->get_con() & 31; // Shift count is always masked
1084       const int con3 = con+con2;
1085       if( con3 < 32 )           // Only merge shifts if total is < 32
1086         return new (phase->C) URShiftINode( in(1)->in(1), phase->intcon(con3) );
1087     }
1088   }
1089 
1090   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1091   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1092   // If Q is "X << z" the rounding is useless.  Look for patterns like
1093   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1094   Node *add = in(1);
1095   if( in1_op == Op_AddI ) {
1096     Node *lshl = add->in(1);
1097     if( lshl->Opcode() == Op_LShiftI &&
1098         phase->type(lshl->in(2)) == t2 ) {
1099       Node *y_z = phase->transform( new (phase->C) URShiftINode(add->in(2),in(2)) );
1100       Node *sum = phase->transform( new (phase->C) AddINode( lshl->in(1), y_z ) );
1101       return new (phase->C) AndINode( sum, phase->intcon(mask) );
1102     }
1103   }
1104 
1105   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1106   // This shortens the mask.  Also, if we are extracting a high byte and
1107   // storing it to a buffer, the mask will be removed completely.
1108   Node *andi = in(1);
1109   if( in1_op == Op_AndI ) {
1110     const TypeInt *t3 = phase->type( andi->in(2) )->isa_int();
1111     if( t3 && t3->is_con() ) { // Right input is a constant
1112       jint mask2 = t3->get_con();
1113       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1114       Node *newshr = phase->transform( new (phase->C) URShiftINode(andi->in(1), in(2)) );
1115       return new (phase->C) AndINode(newshr, phase->intcon(mask2));
1116       // The negative values are easier to materialize than positive ones.
1117       // A typical case from address arithmetic is ((x & ~15) >> 4).
1118       // It's better to change that to ((x >> 4) & ~0) versus
1119       // ((x >> 4) & 0x0FFFFFFF).  The difference is greatest in LP64.
1120     }
1121   }
1122 
1123   // Check for "(X << z ) >>> z" which simply zero-extends
1124   Node *shl = in(1);
1125   if( in1_op == Op_LShiftI &&
1126       phase->type(shl->in(2)) == t2 )
1127     return new (phase->C) AndINode( shl->in(1), phase->intcon(mask) );
1128 
1129   return NULL;
1130 }
1131 
1132 //------------------------------Value------------------------------------------
1133 // A URShiftINode shifts its input2 right by input1 amount.
1134 const Type *URShiftINode::Value( PhaseTransform *phase ) const {
1135   // (This is a near clone of RShiftINode::Value.)
1136   const Type *t1 = phase->type( in(1) );
1137   const Type *t2 = phase->type( in(2) );
1138   // Either input is TOP ==> the result is TOP
1139   if( t1 == Type::TOP ) return Type::TOP;
1140   if( t2 == Type::TOP ) return Type::TOP;
1141 
1142   // Left input is ZERO ==> the result is ZERO.
1143   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO;
1144   // Shift by zero does nothing
1145   if( t2 == TypeInt::ZERO ) return t1;
1146 
1147   // Either input is BOTTOM ==> the result is BOTTOM
1148   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1149     return TypeInt::INT;
1150 
1151   if (t2 == TypeInt::INT)
1152     return TypeInt::INT;
1153 
1154   const TypeInt *r1 = t1->is_int();     // Handy access
1155   const TypeInt *r2 = t2->is_int();     // Handy access
1156 
1157   if (r2->is_con()) {
1158     uint shift = r2->get_con();
1159     shift &= BitsPerJavaInteger-1;  // semantics of Java shifts
1160     // Shift by a multiple of 32 does nothing:
1161     if (shift == 0)  return t1;
1162     // Calculate reasonably aggressive bounds for the result.
1163     jint lo = (juint)r1->_lo >> (juint)shift;
1164     jint hi = (juint)r1->_hi >> (juint)shift;
1165     if (r1->_hi >= 0 && r1->_lo < 0) {
1166       // If the type has both negative and positive values,
1167       // there are two separate sub-domains to worry about:
1168       // The positive half and the negative half.
1169       jint neg_lo = lo;
1170       jint neg_hi = (juint)-1 >> (juint)shift;
1171       jint pos_lo = (juint) 0 >> (juint)shift;
1172       jint pos_hi = hi;
1173       lo = MIN2(neg_lo, pos_lo);  // == 0
1174       hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1175     }
1176     assert(lo <= hi, "must have valid bounds");
1177     const TypeInt* ti = TypeInt::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1178     #ifdef ASSERT
1179     // Make sure we get the sign-capture idiom correct.
1180     if (shift == BitsPerJavaInteger-1) {
1181       if (r1->_lo >= 0) assert(ti == TypeInt::ZERO, ">>>31 of + is 0");
1182       if (r1->_hi < 0)  assert(ti == TypeInt::ONE,  ">>>31 of - is +1");
1183     }
1184     #endif
1185     return ti;
1186   }
1187 
1188   //
1189   // Do not support shifted oops in info for GC
1190   //
1191   // else if( t1->base() == Type::InstPtr ) {
1192   //
1193   //   const TypeInstPtr *o = t1->is_instptr();
1194   //   if( t1->singleton() )
1195   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
1196   // }
1197   // else if( t1->base() == Type::KlassPtr ) {
1198   //   const TypeKlassPtr *o = t1->is_klassptr();
1199   //   if( t1->singleton() )
1200   //     return TypeInt::make( ((uint32)o->const_oop() + o->_offset) >> shift );
1201   // }
1202 
1203   return TypeInt::INT;
1204 }
1205 
1206 //=============================================================================
1207 //------------------------------Identity---------------------------------------
1208 Node *URShiftLNode::Identity( PhaseTransform *phase ) {
1209   const TypeInt *ti = phase->type( in(2) )->isa_int(); // shift count is an int
1210   return ( ti && ti->is_con() && ( ti->get_con() & ( BitsPerLong - 1 ) ) == 0 ) ? in(1) : this;
1211 }
1212 
1213 //------------------------------Ideal------------------------------------------
1214 Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1215   const TypeInt *t2 = phase->type( in(2) )->isa_int();
1216   if( !t2 || !t2->is_con() ) return NULL; // Right input is a constant
1217   const int con = t2->get_con() & ( BitsPerLong - 1 ); // Shift count is always masked
1218   if ( con == 0 ) return NULL;  // let Identity() handle a 0 shift count
1219                               // note: mask computation below does not work for 0 shift count
1220   // We'll be wanting the right-shift amount as a mask of that many bits
1221   const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) -1);
1222 
1223   // Check for ((x << z) + Y) >>> z.  Replace with x + con>>>z
1224   // The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
1225   // If Q is "X << z" the rounding is useless.  Look for patterns like
1226   // ((X<<Z) + Y) >>> Z  and replace with (X + Y>>>Z) & Z-mask.
1227   Node *add = in(1);
1228   if( add->Opcode() == Op_AddL ) {
1229     Node *lshl = add->in(1);
1230     if( lshl->Opcode() == Op_LShiftL &&
1231         phase->type(lshl->in(2)) == t2 ) {
1232       Node *y_z = phase->transform( new (phase->C) URShiftLNode(add->in(2),in(2)) );
1233       Node *sum = phase->transform( new (phase->C) AddLNode( lshl->in(1), y_z ) );
1234       return new (phase->C) AndLNode( sum, phase->longcon(mask) );
1235     }
1236   }
1237 
1238   // Check for (x & mask) >>> z.  Replace with (x >>> z) & (mask >>> z)
1239   // This shortens the mask.  Also, if we are extracting a high byte and
1240   // storing it to a buffer, the mask will be removed completely.
1241   Node *andi = in(1);
1242   if( andi->Opcode() == Op_AndL ) {
1243     const TypeLong *t3 = phase->type( andi->in(2) )->isa_long();
1244     if( t3 && t3->is_con() ) { // Right input is a constant
1245       jlong mask2 = t3->get_con();
1246       mask2 >>= con;  // *signed* shift downward (high-order zeroes do not help)
1247       Node *newshr = phase->transform( new (phase->C) URShiftLNode(andi->in(1), in(2)) );
1248       return new (phase->C) AndLNode(newshr, phase->longcon(mask2));
1249     }
1250   }
1251 
1252   // Check for "(X << z ) >>> z" which simply zero-extends
1253   Node *shl = in(1);
1254   if( shl->Opcode() == Op_LShiftL &&
1255       phase->type(shl->in(2)) == t2 )
1256     return new (phase->C) AndLNode( shl->in(1), phase->longcon(mask) );
1257 
1258   return NULL;
1259 }
1260 
1261 //------------------------------Value------------------------------------------
1262 // A URShiftINode shifts its input2 right by input1 amount.
1263 const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
1264   // (This is a near clone of RShiftLNode::Value.)
1265   const Type *t1 = phase->type( in(1) );
1266   const Type *t2 = phase->type( in(2) );
1267   // Either input is TOP ==> the result is TOP
1268   if( t1 == Type::TOP ) return Type::TOP;
1269   if( t2 == Type::TOP ) return Type::TOP;
1270 
1271   // Left input is ZERO ==> the result is ZERO.
1272   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO;
1273   // Shift by zero does nothing
1274   if( t2 == TypeInt::ZERO ) return t1;
1275 
1276   // Either input is BOTTOM ==> the result is BOTTOM
1277   if (t1 == Type::BOTTOM || t2 == Type::BOTTOM)
1278     return TypeLong::LONG;
1279 
1280   if (t2 == TypeInt::INT)
1281     return TypeLong::LONG;
1282 
1283   const TypeLong *r1 = t1->is_long(); // Handy access
1284   const TypeInt  *r2 = t2->is_int (); // Handy access
1285 
1286   if (r2->is_con()) {
1287     uint shift = r2->get_con();
1288     shift &= BitsPerJavaLong - 1;  // semantics of Java shifts
1289     // Shift by a multiple of 64 does nothing:
1290     if (shift == 0)  return t1;
1291     // Calculate reasonably aggressive bounds for the result.
1292     jlong lo = (julong)r1->_lo >> (juint)shift;
1293     jlong hi = (julong)r1->_hi >> (juint)shift;
1294     if (r1->_hi >= 0 && r1->_lo < 0) {
1295       // If the type has both negative and positive values,
1296       // there are two separate sub-domains to worry about:
1297       // The positive half and the negative half.
1298       jlong neg_lo = lo;
1299       jlong neg_hi = (julong)-1 >> (juint)shift;
1300       jlong pos_lo = (julong) 0 >> (juint)shift;
1301       jlong pos_hi = hi;
1302       //lo = MIN2(neg_lo, pos_lo);  // == 0
1303       lo = neg_lo < pos_lo ? neg_lo : pos_lo;
1304       //hi = MAX2(neg_hi, pos_hi);  // == -1 >>> shift;
1305       hi = neg_hi > pos_hi ? neg_hi : pos_hi;
1306     }
1307     assert(lo <= hi, "must have valid bounds");
1308     const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
1309     #ifdef ASSERT
1310     // Make sure we get the sign-capture idiom correct.
1311     if (shift == BitsPerJavaLong - 1) {
1312       if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
1313       if (r1->_hi < 0)  assert(tl == TypeLong::ONE,  ">>>63 of - is +1");
1314     }
1315     #endif
1316     return tl;
1317   }
1318 
1319   return TypeLong::LONG;                // Give up
1320 }