1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  47 
  48 //=============================================================================
  49 uint MemNode::size_of() const { return sizeof(*this); }
  50 
  51 const TypePtr *MemNode::adr_type() const {
  52   Node* adr = in(Address);
  53   const TypePtr* cross_check = NULL;
  54   DEBUG_ONLY(cross_check = _adr_type);
  55   return calculate_adr_type(adr->bottom_type(), cross_check);
  56 }
  57 
  58 #ifndef PRODUCT
  59 void MemNode::dump_spec(outputStream *st) const {
  60   if (in(Address) == NULL)  return; // node is dead
  61 #ifndef ASSERT
  62   // fake the missing field
  63   const TypePtr* _adr_type = NULL;
  64   if (in(Address) != NULL)
  65     _adr_type = in(Address)->bottom_type()->isa_ptr();
  66 #endif
  67   dump_adr_type(this, _adr_type, st);
  68 
  69   Compile* C = Compile::current();
  70   if( C->alias_type(_adr_type)->is_volatile() )
  71     st->print(" Volatile!");
  72 }
  73 
  74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  75   st->print(" @");
  76   if (adr_type == NULL) {
  77     st->print("NULL");
  78   } else {
  79     adr_type->dump_on(st);
  80     Compile* C = Compile::current();
  81     Compile::AliasType* atp = NULL;
  82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  83     if (atp == NULL)
  84       st->print(", idx=?\?;");
  85     else if (atp->index() == Compile::AliasIdxBot)
  86       st->print(", idx=Bot;");
  87     else if (atp->index() == Compile::AliasIdxTop)
  88       st->print(", idx=Top;");
  89     else if (atp->index() == Compile::AliasIdxRaw)
  90       st->print(", idx=Raw;");
  91     else {
  92       ciField* field = atp->field();
  93       if (field) {
  94         st->print(", name=");
  95         field->print_name_on(st);
  96       }
  97       st->print(", idx=%d;", atp->index());
  98     }
  99   }
 100 }
 101 
 102 extern void print_alias_types();
 103 
 104 #endif
 105 
 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 107   assert((t_oop != NULL), "sanity");
 108   bool is_instance = t_oop->is_known_instance_field();
 109   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 110                              (load != NULL) && load->is_Load() &&
 111                              (phase->is_IterGVN() != NULL);
 112   if (!(is_instance || is_boxed_value_load))
 113     return mchain;  // don't try to optimize non-instance types
 114   uint instance_id = t_oop->instance_id();
 115   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 116   Node *prev = NULL;
 117   Node *result = mchain;
 118   while (prev != result) {
 119     prev = result;
 120     if (result == start_mem)
 121       break;  // hit one of our sentinels
 122     // skip over a call which does not affect this memory slice
 123     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 124       Node *proj_in = result->in(0);
 125       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 126         break;  // hit one of our sentinels
 127       } else if (proj_in->is_Call()) {
 128         CallNode *call = proj_in->as_Call();
 129         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 130           result = call->in(TypeFunc::Memory);
 131         }
 132       } else if (proj_in->is_Initialize()) {
 133         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 134         // Stop if this is the initialization for the object instance which
 135         // which contains this memory slice, otherwise skip over it.
 136         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 137           break;
 138         }
 139         if (is_instance) {
 140           result = proj_in->in(TypeFunc::Memory);
 141         } else if (is_boxed_value_load) {
 142           Node* klass = alloc->in(AllocateNode::KlassNode);
 143           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 144           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 145             result = proj_in->in(TypeFunc::Memory); // not related allocation
 146           }
 147         }
 148       } else if (proj_in->is_MemBar()) {
 149         result = proj_in->in(TypeFunc::Memory);
 150       } else {
 151         assert(false, "unexpected projection");
 152       }
 153     } else if (result->is_ClearArray()) {
 154       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 155         // Can not bypass initialization of the instance
 156         // we are looking for.
 157         break;
 158       }
 159       // Otherwise skip it (the call updated 'result' value).
 160     } else if (result->is_MergeMem()) {
 161       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 162     }
 163   }
 164   return result;
 165 }
 166 
 167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 168   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 169   if (t_oop == NULL)
 170     return mchain;  // don't try to optimize non-oop types
 171   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 172   bool is_instance = t_oop->is_known_instance_field();
 173   PhaseIterGVN *igvn = phase->is_IterGVN();
 174   if (is_instance && igvn != NULL  && result->is_Phi()) {
 175     PhiNode *mphi = result->as_Phi();
 176     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 177     const TypePtr *t = mphi->adr_type();
 178     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 179         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 180         t->is_oopptr()->cast_to_exactness(true)
 181          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 182          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 183       // clone the Phi with our address type
 184       result = mphi->split_out_instance(t_adr, igvn);
 185     } else {
 186       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 187     }
 188   }
 189   return result;
 190 }
 191 
 192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 193   uint alias_idx = phase->C->get_alias_index(tp);
 194   Node *mem = mmem;
 195 #ifdef ASSERT
 196   {
 197     // Check that current type is consistent with the alias index used during graph construction
 198     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 199     bool consistent =  adr_check == NULL || adr_check->empty() ||
 200                        phase->C->must_alias(adr_check, alias_idx );
 201     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 202     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 203                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 204         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 205         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 206           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 207           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 208       // don't assert if it is dead code.
 209       consistent = true;
 210     }
 211     if( !consistent ) {
 212       st->print("alias_idx==%d, adr_check==", alias_idx);
 213       if( adr_check == NULL ) {
 214         st->print("NULL");
 215       } else {
 216         adr_check->dump();
 217       }
 218       st->cr();
 219       print_alias_types();
 220       assert(consistent, "adr_check must match alias idx");
 221     }
 222   }
 223 #endif
 224   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 225   // means an array I have not precisely typed yet.  Do not do any
 226   // alias stuff with it any time soon.
 227   const TypeOopPtr *toop = tp->isa_oopptr();
 228   if( tp->base() != Type::AnyPtr &&
 229       !(toop &&
 230         toop->klass() != NULL &&
 231         toop->klass()->is_java_lang_Object() &&
 232         toop->offset() == Type::OffsetBot) ) {
 233     // compress paths and change unreachable cycles to TOP
 234     // If not, we can update the input infinitely along a MergeMem cycle
 235     // Equivalent code in PhiNode::Ideal
 236     Node* m  = phase->transform(mmem);
 237     // If transformed to a MergeMem, get the desired slice
 238     // Otherwise the returned node represents memory for every slice
 239     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 240     // Update input if it is progress over what we have now
 241   }
 242   return mem;
 243 }
 244 
 245 //--------------------------Ideal_common---------------------------------------
 246 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 247 // Unhook non-raw memories from complete (macro-expanded) initializations.
 248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 249   // If our control input is a dead region, kill all below the region
 250   Node *ctl = in(MemNode::Control);
 251   if (ctl && remove_dead_region(phase, can_reshape))
 252     return this;
 253   ctl = in(MemNode::Control);
 254   // Don't bother trying to transform a dead node
 255   if (ctl && ctl->is_top())  return NodeSentinel;
 256 
 257   PhaseIterGVN *igvn = phase->is_IterGVN();
 258   // Wait if control on the worklist.
 259   if (ctl && can_reshape && igvn != NULL) {
 260     Node* bol = NULL;
 261     Node* cmp = NULL;
 262     if (ctl->in(0)->is_If()) {
 263       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 264       bol = ctl->in(0)->in(1);
 265       if (bol->is_Bool())
 266         cmp = ctl->in(0)->in(1)->in(1);
 267     }
 268     if (igvn->_worklist.member(ctl) ||
 269         (bol != NULL && igvn->_worklist.member(bol)) ||
 270         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 271       // This control path may be dead.
 272       // Delay this memory node transformation until the control is processed.
 273       phase->is_IterGVN()->_worklist.push(this);
 274       return NodeSentinel; // caller will return NULL
 275     }
 276   }
 277   // Ignore if memory is dead, or self-loop
 278   Node *mem = in(MemNode::Memory);
 279   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 280   assert(mem != this, "dead loop in MemNode::Ideal");
 281 
 282   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 283     // This memory slice may be dead.
 284     // Delay this mem node transformation until the memory is processed.
 285     phase->is_IterGVN()->_worklist.push(this);
 286     return NodeSentinel; // caller will return NULL
 287   }
 288 
 289   Node *address = in(MemNode::Address);
 290   const Type *t_adr = phase->type(address);
 291   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 292 
 293   if (can_reshape && igvn != NULL &&
 294       (igvn->_worklist.member(address) ||
 295        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 296     // The address's base and type may change when the address is processed.
 297     // Delay this mem node transformation until the address is processed.
 298     phase->is_IterGVN()->_worklist.push(this);
 299     return NodeSentinel; // caller will return NULL
 300   }
 301 
 302   // Do NOT remove or optimize the next lines: ensure a new alias index
 303   // is allocated for an oop pointer type before Escape Analysis.
 304   // Note: C++ will not remove it since the call has side effect.
 305   if (t_adr->isa_oopptr()) {
 306     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 307   }
 308 
 309 #ifdef ASSERT
 310   Node* base = NULL;
 311   if (address->is_AddP())
 312     base = address->in(AddPNode::Base);
 313   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 314       !t_adr->isa_rawptr()) {
 315     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 316     Compile* C = phase->C;
 317     tty->cr();
 318     tty->print_cr("===== NULL+offs not RAW address =====");
 319     if (C->is_dead_node(this->_idx))    tty->print_cr("'this' is dead");
 320     if ((ctl != NULL) && C->is_dead_node(ctl->_idx)) tty->print_cr("'ctl' is dead");
 321     if (C->is_dead_node(mem->_idx))     tty->print_cr("'mem' is dead");
 322     if (C->is_dead_node(address->_idx)) tty->print_cr("'address' is dead");
 323     if (C->is_dead_node(base->_idx))    tty->print_cr("'base' is dead");
 324     tty->cr();
 325     base->dump(1);
 326     tty->cr();
 327     this->dump(2);
 328     tty->print("this->adr_type():     "); adr_type()->dump(); tty->cr();
 329     tty->print("phase->type(address): "); t_adr->dump(); tty->cr();
 330     tty->print("phase->type(base):    "); phase->type(address)->dump(); tty->cr();
 331     tty->cr();
 332   }
 333   assert(base == NULL || t_adr->isa_rawptr() ||
 334         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 335 #endif
 336 
 337   // Avoid independent memory operations
 338   Node* old_mem = mem;
 339 
 340   // The code which unhooks non-raw memories from complete (macro-expanded)
 341   // initializations was removed. After macro-expansion all stores catched
 342   // by Initialize node became raw stores and there is no information
 343   // which memory slices they modify. So it is unsafe to move any memory
 344   // operation above these stores. Also in most cases hooked non-raw memories
 345   // were already unhooked by using information from detect_ptr_independence()
 346   // and find_previous_store().
 347 
 348   if (mem->is_MergeMem()) {
 349     MergeMemNode* mmem = mem->as_MergeMem();
 350     const TypePtr *tp = t_adr->is_ptr();
 351 
 352     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 353   }
 354 
 355   if (mem != old_mem) {
 356     set_req(MemNode::Memory, mem);
 357     if (can_reshape && old_mem->outcnt() == 0) {
 358         igvn->_worklist.push(old_mem);
 359     }
 360     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 361     return this;
 362   }
 363 
 364   // let the subclass continue analyzing...
 365   return NULL;
 366 }
 367 
 368 // Helper function for proving some simple control dominations.
 369 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 370 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 371 // is not a constant (dominated by the method's StartNode).
 372 // Used by MemNode::find_previous_store to prove that the
 373 // control input of a memory operation predates (dominates)
 374 // an allocation it wants to look past.
 375 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 376   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 377     return false; // Conservative answer for dead code
 378 
 379   // Check 'dom'. Skip Proj and CatchProj nodes.
 380   dom = dom->find_exact_control(dom);
 381   if (dom == NULL || dom->is_top())
 382     return false; // Conservative answer for dead code
 383 
 384   if (dom == sub) {
 385     // For the case when, for example, 'sub' is Initialize and the original
 386     // 'dom' is Proj node of the 'sub'.
 387     return false;
 388   }
 389 
 390   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 391     return true;
 392 
 393   // 'dom' dominates 'sub' if its control edge and control edges
 394   // of all its inputs dominate or equal to sub's control edge.
 395 
 396   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 397   // Or Region for the check in LoadNode::Ideal();
 398   // 'sub' should have sub->in(0) != NULL.
 399   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 400          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 401 
 402   // Get control edge of 'sub'.
 403   Node* orig_sub = sub;
 404   sub = sub->find_exact_control(sub->in(0));
 405   if (sub == NULL || sub->is_top())
 406     return false; // Conservative answer for dead code
 407 
 408   assert(sub->is_CFG(), "expecting control");
 409 
 410   if (sub == dom)
 411     return true;
 412 
 413   if (sub->is_Start() || sub->is_Root())
 414     return false;
 415 
 416   {
 417     // Check all control edges of 'dom'.
 418 
 419     ResourceMark rm;
 420     Arena* arena = Thread::current()->resource_area();
 421     Node_List nlist(arena);
 422     Unique_Node_List dom_list(arena);
 423 
 424     dom_list.push(dom);
 425     bool only_dominating_controls = false;
 426 
 427     for (uint next = 0; next < dom_list.size(); next++) {
 428       Node* n = dom_list.at(next);
 429       if (n == orig_sub)
 430         return false; // One of dom's inputs dominated by sub.
 431       if (!n->is_CFG() && n->pinned()) {
 432         // Check only own control edge for pinned non-control nodes.
 433         n = n->find_exact_control(n->in(0));
 434         if (n == NULL || n->is_top())
 435           return false; // Conservative answer for dead code
 436         assert(n->is_CFG(), "expecting control");
 437         dom_list.push(n);
 438       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 439         only_dominating_controls = true;
 440       } else if (n->is_CFG()) {
 441         if (n->dominates(sub, nlist))
 442           only_dominating_controls = true;
 443         else
 444           return false;
 445       } else {
 446         // First, own control edge.
 447         Node* m = n->find_exact_control(n->in(0));
 448         if (m != NULL) {
 449           if (m->is_top())
 450             return false; // Conservative answer for dead code
 451           dom_list.push(m);
 452         }
 453         // Now, the rest of edges.
 454         uint cnt = n->req();
 455         for (uint i = 1; i < cnt; i++) {
 456           m = n->find_exact_control(n->in(i));
 457           if (m == NULL || m->is_top())
 458             continue;
 459           dom_list.push(m);
 460         }
 461       }
 462     }
 463     return only_dominating_controls;
 464   }
 465 }
 466 
 467 //---------------------detect_ptr_independence---------------------------------
 468 // Used by MemNode::find_previous_store to prove that two base
 469 // pointers are never equal.
 470 // The pointers are accompanied by their associated allocations,
 471 // if any, which have been previously discovered by the caller.
 472 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 473                                       Node* p2, AllocateNode* a2,
 474                                       PhaseTransform* phase) {
 475   // Attempt to prove that these two pointers cannot be aliased.
 476   // They may both manifestly be allocations, and they should differ.
 477   // Or, if they are not both allocations, they can be distinct constants.
 478   // Otherwise, one is an allocation and the other a pre-existing value.
 479   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 480     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 481   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 482     return (a1 != a2);
 483   } else if (a1 != NULL) {                  // one allocation a1
 484     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 485     return all_controls_dominate(p2, a1);
 486   } else { //(a2 != NULL)                   // one allocation a2
 487     return all_controls_dominate(p1, a2);
 488   }
 489   return false;
 490 }
 491 
 492 
 493 // The logic for reordering loads and stores uses four steps:
 494 // (a) Walk carefully past stores and initializations which we
 495 //     can prove are independent of this load.
 496 // (b) Observe that the next memory state makes an exact match
 497 //     with self (load or store), and locate the relevant store.
 498 // (c) Ensure that, if we were to wire self directly to the store,
 499 //     the optimizer would fold it up somehow.
 500 // (d) Do the rewiring, and return, depending on some other part of
 501 //     the optimizer to fold up the load.
 502 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 503 // specific to loads and stores, so they are handled by the callers.
 504 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 505 //
 506 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 507   Node*         ctrl   = in(MemNode::Control);
 508   Node*         adr    = in(MemNode::Address);
 509   intptr_t      offset = 0;
 510   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 511   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 512 
 513   if (offset == Type::OffsetBot)
 514     return NULL;            // cannot unalias unless there are precise offsets
 515 
 516   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 517 
 518   intptr_t size_in_bytes = memory_size();
 519 
 520   Node* mem = in(MemNode::Memory);   // start searching here...
 521 
 522   int cnt = 50;             // Cycle limiter
 523   for (;;) {                // While we can dance past unrelated stores...
 524     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 525 
 526     if (mem->is_Store()) {
 527       Node* st_adr = mem->in(MemNode::Address);
 528       intptr_t st_offset = 0;
 529       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 530       if (st_base == NULL)
 531         break;              // inscrutable pointer
 532       if (st_offset != offset && st_offset != Type::OffsetBot) {
 533         const int MAX_STORE = BytesPerLong;
 534         if (st_offset >= offset + size_in_bytes ||
 535             st_offset <= offset - MAX_STORE ||
 536             st_offset <= offset - mem->as_Store()->memory_size()) {
 537           // Success:  The offsets are provably independent.
 538           // (You may ask, why not just test st_offset != offset and be done?
 539           // The answer is that stores of different sizes can co-exist
 540           // in the same sequence of RawMem effects.  We sometimes initialize
 541           // a whole 'tile' of array elements with a single jint or jlong.)
 542           mem = mem->in(MemNode::Memory);
 543           continue;           // (a) advance through independent store memory
 544         }
 545       }
 546       if (st_base != base &&
 547           detect_ptr_independence(base, alloc,
 548                                   st_base,
 549                                   AllocateNode::Ideal_allocation(st_base, phase),
 550                                   phase)) {
 551         // Success:  The bases are provably independent.
 552         mem = mem->in(MemNode::Memory);
 553         continue;           // (a) advance through independent store memory
 554       }
 555 
 556       // (b) At this point, if the bases or offsets do not agree, we lose,
 557       // since we have not managed to prove 'this' and 'mem' independent.
 558       if (st_base == base && st_offset == offset) {
 559         return mem;         // let caller handle steps (c), (d)
 560       }
 561 
 562     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 563       InitializeNode* st_init = mem->in(0)->as_Initialize();
 564       AllocateNode*  st_alloc = st_init->allocation();
 565       if (st_alloc == NULL)
 566         break;              // something degenerated
 567       bool known_identical = false;
 568       bool known_independent = false;
 569       if (alloc == st_alloc)
 570         known_identical = true;
 571       else if (alloc != NULL)
 572         known_independent = true;
 573       else if (all_controls_dominate(this, st_alloc))
 574         known_independent = true;
 575 
 576       if (known_independent) {
 577         // The bases are provably independent: Either they are
 578         // manifestly distinct allocations, or else the control
 579         // of this load dominates the store's allocation.
 580         int alias_idx = phase->C->get_alias_index(adr_type());
 581         if (alias_idx == Compile::AliasIdxRaw) {
 582           mem = st_alloc->in(TypeFunc::Memory);
 583         } else {
 584           mem = st_init->memory(alias_idx);
 585         }
 586         continue;           // (a) advance through independent store memory
 587       }
 588 
 589       // (b) at this point, if we are not looking at a store initializing
 590       // the same allocation we are loading from, we lose.
 591       if (known_identical) {
 592         // From caller, can_see_stored_value will consult find_captured_store.
 593         return mem;         // let caller handle steps (c), (d)
 594       }
 595 
 596     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 597       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 598       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 599         CallNode *call = mem->in(0)->as_Call();
 600         if (!call->may_modify(addr_t, phase)) {
 601           mem = call->in(TypeFunc::Memory);
 602           continue;         // (a) advance through independent call memory
 603         }
 604       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 605         mem = mem->in(0)->in(TypeFunc::Memory);
 606         continue;           // (a) advance through independent MemBar memory
 607       } else if (mem->is_ClearArray()) {
 608         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 609           // (the call updated 'mem' value)
 610           continue;         // (a) advance through independent allocation memory
 611         } else {
 612           // Can not bypass initialization of the instance
 613           // we are looking for.
 614           return mem;
 615         }
 616       } else if (mem->is_MergeMem()) {
 617         int alias_idx = phase->C->get_alias_index(adr_type());
 618         mem = mem->as_MergeMem()->memory_at(alias_idx);
 619         continue;           // (a) advance through independent MergeMem memory
 620       }
 621     }
 622 
 623     // Unless there is an explicit 'continue', we must bail out here,
 624     // because 'mem' is an inscrutable memory state (e.g., a call).
 625     break;
 626   }
 627 
 628   return NULL;              // bail out
 629 }
 630 
 631 //----------------------calculate_adr_type-------------------------------------
 632 // Helper function.  Notices when the given type of address hits top or bottom.
 633 // Also, asserts a cross-check of the type against the expected address type.
 634 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 635   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 636   #ifdef PRODUCT
 637   cross_check = NULL;
 638   #else
 639   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 640   #endif
 641   const TypePtr* tp = t->isa_ptr();
 642   if (tp == NULL) {
 643     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 644     return TypePtr::BOTTOM;           // touches lots of memory
 645   } else {
 646     #ifdef ASSERT
 647     // %%%% [phh] We don't check the alias index if cross_check is
 648     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 649     if (cross_check != NULL &&
 650         cross_check != TypePtr::BOTTOM &&
 651         cross_check != TypeRawPtr::BOTTOM) {
 652       // Recheck the alias index, to see if it has changed (due to a bug).
 653       Compile* C = Compile::current();
 654       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 655              "must stay in the original alias category");
 656       // The type of the address must be contained in the adr_type,
 657       // disregarding "null"-ness.
 658       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 659       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 660       assert(cross_check->meet(tp_notnull) == cross_check,
 661              "real address must not escape from expected memory type");
 662     }
 663     #endif
 664     return tp;
 665   }
 666 }
 667 
 668 //------------------------adr_phi_is_loop_invariant----------------------------
 669 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 670 // loop is loop invariant. Make a quick traversal of Phi and associated
 671 // CastPP nodes, looking to see if they are a closed group within the loop.
 672 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 673   // The idea is that the phi-nest must boil down to only CastPP nodes
 674   // with the same data. This implies that any path into the loop already
 675   // includes such a CastPP, and so the original cast, whatever its input,
 676   // must be covered by an equivalent cast, with an earlier control input.
 677   ResourceMark rm;
 678 
 679   // The loop entry input of the phi should be the unique dominating
 680   // node for every Phi/CastPP in the loop.
 681   Unique_Node_List closure;
 682   closure.push(adr_phi->in(LoopNode::EntryControl));
 683 
 684   // Add the phi node and the cast to the worklist.
 685   Unique_Node_List worklist;
 686   worklist.push(adr_phi);
 687   if( cast != NULL ){
 688     if( !cast->is_ConstraintCast() ) return false;
 689     worklist.push(cast);
 690   }
 691 
 692   // Begin recursive walk of phi nodes.
 693   while( worklist.size() ){
 694     // Take a node off the worklist
 695     Node *n = worklist.pop();
 696     if( !closure.member(n) ){
 697       // Add it to the closure.
 698       closure.push(n);
 699       // Make a sanity check to ensure we don't waste too much time here.
 700       if( closure.size() > 20) return false;
 701       // This node is OK if:
 702       //  - it is a cast of an identical value
 703       //  - or it is a phi node (then we add its inputs to the worklist)
 704       // Otherwise, the node is not OK, and we presume the cast is not invariant
 705       if( n->is_ConstraintCast() ){
 706         worklist.push(n->in(1));
 707       } else if( n->is_Phi() ) {
 708         for( uint i = 1; i < n->req(); i++ ) {
 709           worklist.push(n->in(i));
 710         }
 711       } else {
 712         return false;
 713       }
 714     }
 715   }
 716 
 717   // Quit when the worklist is empty, and we've found no offending nodes.
 718   return true;
 719 }
 720 
 721 //------------------------------Ideal_DU_postCCP-------------------------------
 722 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 723 // going away in this pass and we need to make this memory op depend on the
 724 // gating null check.
 725 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 726   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 727 }
 728 
 729 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 730 // some sense; we get to keep around the knowledge that an oop is not-null
 731 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 732 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 733 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 734 // some of the more trivial cases in the optimizer.  Removing more useless
 735 // Phi's started allowing Loads to illegally float above null checks.  I gave
 736 // up on this approach.  CNC 10/20/2000
 737 // This static method may be called not from MemNode (EncodePNode calls it).
 738 // Only the control edge of the node 'n' might be updated.
 739 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 740   Node *skipped_cast = NULL;
 741   // Need a null check?  Regular static accesses do not because they are
 742   // from constant addresses.  Array ops are gated by the range check (which
 743   // always includes a NULL check).  Just check field ops.
 744   if( n->in(MemNode::Control) == NULL ) {
 745     // Scan upwards for the highest location we can place this memory op.
 746     while( true ) {
 747       switch( adr->Opcode() ) {
 748 
 749       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 750         adr = adr->in(AddPNode::Base);
 751         continue;
 752 
 753       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 754       case Op_DecodeNKlass:
 755         adr = adr->in(1);
 756         continue;
 757 
 758       case Op_EncodeP:
 759       case Op_EncodePKlass:
 760         // EncodeP node's control edge could be set by this method
 761         // when EncodeP node depends on CastPP node.
 762         //
 763         // Use its control edge for memory op because EncodeP may go away
 764         // later when it is folded with following or preceding DecodeN node.
 765         if (adr->in(0) == NULL) {
 766           // Keep looking for cast nodes.
 767           adr = adr->in(1);
 768           continue;
 769         }
 770         ccp->hash_delete(n);
 771         n->set_req(MemNode::Control, adr->in(0));
 772         ccp->hash_insert(n);
 773         return n;
 774 
 775       case Op_CastPP:
 776         // If the CastPP is useless, just peek on through it.
 777         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 778           // Remember the cast that we've peeked though. If we peek
 779           // through more than one, then we end up remembering the highest
 780           // one, that is, if in a loop, the one closest to the top.
 781           skipped_cast = adr;
 782           adr = adr->in(1);
 783           continue;
 784         }
 785         // CastPP is going away in this pass!  We need this memory op to be
 786         // control-dependent on the test that is guarding the CastPP.
 787         ccp->hash_delete(n);
 788         n->set_req(MemNode::Control, adr->in(0));
 789         ccp->hash_insert(n);
 790         return n;
 791 
 792       case Op_Phi:
 793         // Attempt to float above a Phi to some dominating point.
 794         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 795           // If we've already peeked through a Cast (which could have set the
 796           // control), we can't float above a Phi, because the skipped Cast
 797           // may not be loop invariant.
 798           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 799             adr = adr->in(1);
 800             continue;
 801           }
 802         }
 803 
 804         // Intentional fallthrough!
 805 
 806         // No obvious dominating point.  The mem op is pinned below the Phi
 807         // by the Phi itself.  If the Phi goes away (no true value is merged)
 808         // then the mem op can float, but not indefinitely.  It must be pinned
 809         // behind the controls leading to the Phi.
 810       case Op_CheckCastPP:
 811         // These usually stick around to change address type, however a
 812         // useless one can be elided and we still need to pick up a control edge
 813         if (adr->in(0) == NULL) {
 814           // This CheckCastPP node has NO control and is likely useless. But we
 815           // need check further up the ancestor chain for a control input to keep
 816           // the node in place. 4959717.
 817           skipped_cast = adr;
 818           adr = adr->in(1);
 819           continue;
 820         }
 821         ccp->hash_delete(n);
 822         n->set_req(MemNode::Control, adr->in(0));
 823         ccp->hash_insert(n);
 824         return n;
 825 
 826         // List of "safe" opcodes; those that implicitly block the memory
 827         // op below any null check.
 828       case Op_CastX2P:          // no null checks on native pointers
 829       case Op_Parm:             // 'this' pointer is not null
 830       case Op_LoadP:            // Loading from within a klass
 831       case Op_LoadN:            // Loading from within a klass
 832       case Op_LoadKlass:        // Loading from within a klass
 833       case Op_LoadNKlass:       // Loading from within a klass
 834       case Op_ConP:             // Loading from a klass
 835       case Op_ConN:             // Loading from a klass
 836       case Op_ConNKlass:        // Loading from a klass
 837       case Op_CreateEx:         // Sucking up the guts of an exception oop
 838       case Op_Con:              // Reading from TLS
 839       case Op_CMoveP:           // CMoveP is pinned
 840       case Op_CMoveN:           // CMoveN is pinned
 841         break;                  // No progress
 842 
 843       case Op_Proj:             // Direct call to an allocation routine
 844       case Op_SCMemProj:        // Memory state from store conditional ops
 845 #ifdef ASSERT
 846         {
 847           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 848           const Node* call = adr->in(0);
 849           if (call->is_CallJava()) {
 850             const CallJavaNode* call_java = call->as_CallJava();
 851             const TypeTuple *r = call_java->tf()->range();
 852             assert(r->cnt() > TypeFunc::Parms, "must return value");
 853             const Type* ret_type = r->field_at(TypeFunc::Parms);
 854             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 855             // We further presume that this is one of
 856             // new_instance_Java, new_array_Java, or
 857             // the like, but do not assert for this.
 858           } else if (call->is_Allocate()) {
 859             // similar case to new_instance_Java, etc.
 860           } else if (!call->is_CallLeaf()) {
 861             // Projections from fetch_oop (OSR) are allowed as well.
 862             ShouldNotReachHere();
 863           }
 864         }
 865 #endif
 866         break;
 867       default:
 868         ShouldNotReachHere();
 869       }
 870       break;
 871     }
 872   }
 873 
 874   return  NULL;               // No progress
 875 }
 876 
 877 
 878 //=============================================================================
 879 uint LoadNode::size_of() const { return sizeof(*this); }
 880 uint LoadNode::cmp( const Node &n ) const
 881 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 882 const Type *LoadNode::bottom_type() const { return _type; }
 883 uint LoadNode::ideal_reg() const {
 884   return _type->ideal_reg();
 885 }
 886 
 887 #ifndef PRODUCT
 888 void LoadNode::dump_spec(outputStream *st) const {
 889   MemNode::dump_spec(st);
 890   if( !Verbose && !WizardMode ) {
 891     // standard dump does this in Verbose and WizardMode
 892     st->print(" #"); _type->dump_on(st);
 893   }
 894 }
 895 #endif
 896 
 897 #ifdef ASSERT
 898 //----------------------------is_immutable_value-------------------------------
 899 // Helper function to allow a raw load without control edge for some cases
 900 bool LoadNode::is_immutable_value(Node* adr) {
 901   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 902           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 903           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 904            in_bytes(JavaThread::osthread_offset())));
 905 }
 906 #endif
 907 
 908 //----------------------------LoadNode::make-----------------------------------
 909 // Polymorphic factory method:
 910 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 911   Compile* C = gvn.C;
 912 
 913   // sanity check the alias category against the created node type
 914   assert(!(adr_type->isa_oopptr() &&
 915            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 916          "use LoadKlassNode instead");
 917   assert(!(adr_type->isa_aryptr() &&
 918            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 919          "use LoadRangeNode instead");
 920   // Check control edge of raw loads
 921   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 922           // oop will be recorded in oop map if load crosses safepoint
 923           rt->isa_oopptr() || is_immutable_value(adr),
 924           "raw memory operations should have control edge");
 925   switch (bt) {
 926   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 927   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 928   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 929   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 930   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 931   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 932   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt              );
 933   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt              );
 934   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 935   case T_OBJECT:
 936 #ifdef _LP64
 937     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 938       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 939       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
 940     } else
 941 #endif
 942     {
 943       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 944       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 945     }
 946   }
 947   ShouldNotReachHere();
 948   return (LoadNode*)NULL;
 949 }
 950 
 951 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 952   bool require_atomic = true;
 953   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 954 }
 955 
 956 
 957 
 958 
 959 //------------------------------hash-------------------------------------------
 960 uint LoadNode::hash() const {
 961   // unroll addition of interesting fields
 962   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 963 }
 964 
 965 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 966   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 967     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 968     bool is_stable_ary = FoldStableValues &&
 969                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 970                          tp->isa_aryptr()->is_stable();
 971 
 972     return (eliminate_boxing && non_volatile) || is_stable_ary;
 973   }
 974 
 975   return false;
 976 }
 977 
 978 //---------------------------can_see_stored_value------------------------------
 979 // This routine exists to make sure this set of tests is done the same
 980 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 981 // will change the graph shape in a way which makes memory alive twice at the
 982 // same time (uses the Oracle model of aliasing), then some
 983 // LoadXNode::Identity will fold things back to the equivalence-class model
 984 // of aliasing.
 985 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 986   Node* ld_adr = in(MemNode::Address);
 987   intptr_t ld_off = 0;
 988   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 989   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 990   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 991   // This is more general than load from boxing objects.
 992   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 993     uint alias_idx = atp->index();
 994     bool final = !atp->is_rewritable();
 995     Node* result = NULL;
 996     Node* current = st;
 997     // Skip through chains of MemBarNodes checking the MergeMems for
 998     // new states for the slice of this load.  Stop once any other
 999     // kind of node is encountered.  Loads from final memory can skip
1000     // through any kind of MemBar but normal loads shouldn't skip
1001     // through MemBarAcquire since the could allow them to move out of
1002     // a synchronized region.
1003     while (current->is_Proj()) {
1004       int opc = current->in(0)->Opcode();
1005       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
1006           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
1007           opc == Op_MemBarReleaseLock) {
1008         Node* mem = current->in(0)->in(TypeFunc::Memory);
1009         if (mem->is_MergeMem()) {
1010           MergeMemNode* merge = mem->as_MergeMem();
1011           Node* new_st = merge->memory_at(alias_idx);
1012           if (new_st == merge->base_memory()) {
1013             // Keep searching
1014             current = new_st;
1015             continue;
1016           }
1017           // Save the new memory state for the slice and fall through
1018           // to exit.
1019           result = new_st;
1020         }
1021       }
1022       break;
1023     }
1024     if (result != NULL) {
1025       st = result;
1026     }
1027   }
1028 
1029   // Loop around twice in the case Load -> Initialize -> Store.
1030   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1031   for (int trip = 0; trip <= 1; trip++) {
1032 
1033     if (st->is_Store()) {
1034       Node* st_adr = st->in(MemNode::Address);
1035       if (!phase->eqv(st_adr, ld_adr)) {
1036         // Try harder before giving up...  Match raw and non-raw pointers.
1037         intptr_t st_off = 0;
1038         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1039         if (alloc == NULL)       return NULL;
1040         if (alloc != ld_alloc)   return NULL;
1041         if (ld_off != st_off)    return NULL;
1042         // At this point we have proven something like this setup:
1043         //  A = Allocate(...)
1044         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1045         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1046         // (Actually, we haven't yet proven the Q's are the same.)
1047         // In other words, we are loading from a casted version of
1048         // the same pointer-and-offset that we stored to.
1049         // Thus, we are able to replace L by V.
1050       }
1051       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1052       if (store_Opcode() != st->Opcode())
1053         return NULL;
1054       return st->in(MemNode::ValueIn);
1055     }
1056 
1057     // A load from a freshly-created object always returns zero.
1058     // (This can happen after LoadNode::Ideal resets the load's memory input
1059     // to find_captured_store, which returned InitializeNode::zero_memory.)
1060     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1061         (st->in(0) == ld_alloc) &&
1062         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1063       // return a zero value for the load's basic type
1064       // (This is one of the few places where a generic PhaseTransform
1065       // can create new nodes.  Think of it as lazily manifesting
1066       // virtually pre-existing constants.)
1067       return phase->zerocon(memory_type());
1068     }
1069 
1070     // A load from an initialization barrier can match a captured store.
1071     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1072       InitializeNode* init = st->in(0)->as_Initialize();
1073       AllocateNode* alloc = init->allocation();
1074       if ((alloc != NULL) && (alloc == ld_alloc)) {
1075         // examine a captured store value
1076         st = init->find_captured_store(ld_off, memory_size(), phase);
1077         if (st != NULL)
1078           continue;             // take one more trip around
1079       }
1080     }
1081 
1082     // Load boxed value from result of valueOf() call is input parameter.
1083     if (this->is_Load() && ld_adr->is_AddP() &&
1084         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1085       intptr_t ignore = 0;
1086       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1087       if (base != NULL && base->is_Proj() &&
1088           base->as_Proj()->_con == TypeFunc::Parms &&
1089           base->in(0)->is_CallStaticJava() &&
1090           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1091         return base->in(0)->in(TypeFunc::Parms);
1092       }
1093     }
1094 
1095     break;
1096   }
1097 
1098   return NULL;
1099 }
1100 
1101 //----------------------is_instance_field_load_with_local_phi------------------
1102 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1103   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1104       in(Address)->is_AddP() ) {
1105     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1106     // Only instances and boxed values.
1107     if( t_oop != NULL &&
1108         (t_oop->is_ptr_to_boxed_value() ||
1109          t_oop->is_known_instance_field()) &&
1110         t_oop->offset() != Type::OffsetBot &&
1111         t_oop->offset() != Type::OffsetTop) {
1112       return true;
1113     }
1114   }
1115   return false;
1116 }
1117 
1118 //------------------------------Identity---------------------------------------
1119 // Loads are identity if previous store is to same address
1120 Node *LoadNode::Identity( PhaseTransform *phase ) {
1121   // If the previous store-maker is the right kind of Store, and the store is
1122   // to the same address, then we are equal to the value stored.
1123   Node* mem = in(Memory);
1124   Node* value = can_see_stored_value(mem, phase);
1125   if( value ) {
1126     // byte, short & char stores truncate naturally.
1127     // A load has to load the truncated value which requires
1128     // some sort of masking operation and that requires an
1129     // Ideal call instead of an Identity call.
1130     if (memory_size() < BytesPerInt) {
1131       // If the input to the store does not fit with the load's result type,
1132       // it must be truncated via an Ideal call.
1133       if (!phase->type(value)->higher_equal(phase->type(this)))
1134         return this;
1135     }
1136     // (This works even when value is a Con, but LoadNode::Value
1137     // usually runs first, producing the singleton type of the Con.)
1138     return value;
1139   }
1140 
1141   // Search for an existing data phi which was generated before for the same
1142   // instance's field to avoid infinite generation of phis in a loop.
1143   Node *region = mem->in(0);
1144   if (is_instance_field_load_with_local_phi(region)) {
1145     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1146     int this_index  = phase->C->get_alias_index(addr_t);
1147     int this_offset = addr_t->offset();
1148     int this_iid    = addr_t->instance_id();
1149     if (!addr_t->is_known_instance() &&
1150          addr_t->is_ptr_to_boxed_value()) {
1151       // Use _idx of address base (could be Phi node) for boxed values.
1152       intptr_t   ignore = 0;
1153       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1154       this_iid = base->_idx;
1155     }
1156     const Type* this_type = bottom_type();
1157     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1158       Node* phi = region->fast_out(i);
1159       if (phi->is_Phi() && phi != mem &&
1160           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1161         return phi;
1162       }
1163     }
1164   }
1165 
1166   return this;
1167 }
1168 
1169 // We're loading from an object which has autobox behaviour.
1170 // If this object is result of a valueOf call we'll have a phi
1171 // merging a newly allocated object and a load from the cache.
1172 // We want to replace this load with the original incoming
1173 // argument to the valueOf call.
1174 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1175   assert(phase->C->eliminate_boxing(), "sanity");
1176   intptr_t ignore = 0;
1177   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1178   if ((base == NULL) || base->is_Phi()) {
1179     // Push the loads from the phi that comes from valueOf up
1180     // through it to allow elimination of the loads and the recovery
1181     // of the original value. It is done in split_through_phi().
1182     return NULL;
1183   } else if (base->is_Load() ||
1184              base->is_DecodeN() && base->in(1)->is_Load()) {
1185     // Eliminate the load of boxed value for integer types from the cache
1186     // array by deriving the value from the index into the array.
1187     // Capture the offset of the load and then reverse the computation.
1188 
1189     // Get LoadN node which loads a boxing object from 'cache' array.
1190     if (base->is_DecodeN()) {
1191       base = base->in(1);
1192     }
1193     if (!base->in(Address)->is_AddP()) {
1194       return NULL; // Complex address
1195     }
1196     AddPNode* address = base->in(Address)->as_AddP();
1197     Node* cache_base = address->in(AddPNode::Base);
1198     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1199       // Get ConP node which is static 'cache' field.
1200       cache_base = cache_base->in(1);
1201     }
1202     if ((cache_base != NULL) && cache_base->is_Con()) {
1203       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1204       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1205         Node* elements[4];
1206         int shift = exact_log2(type2aelembytes(T_OBJECT));
1207         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1208         if ((count >  0) && elements[0]->is_Con() &&
1209             ((count == 1) ||
1210              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1211                              elements[1]->in(2) == phase->intcon(shift))) {
1212           ciObjArray* array = base_type->const_oop()->as_obj_array();
1213           // Fetch the box object cache[0] at the base of the array and get its value
1214           ciInstance* box = array->obj_at(0)->as_instance();
1215           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1216           assert(ik->is_box_klass(), "sanity");
1217           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1218           if (ik->nof_nonstatic_fields() == 1) {
1219             // This should be true nonstatic_field_at requires calling
1220             // nof_nonstatic_fields so check it anyway
1221             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1222             BasicType bt = c.basic_type();
1223             // Only integer types have boxing cache.
1224             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1225                    bt == T_BYTE    || bt == T_SHORT ||
1226                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1227             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1228             if (cache_low != (int)cache_low) {
1229               return NULL; // should not happen since cache is array indexed by value
1230             }
1231             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1232             if (offset != (int)offset) {
1233               return NULL; // should not happen since cache is array indexed by value
1234             }
1235            // Add up all the offsets making of the address of the load
1236             Node* result = elements[0];
1237             for (int i = 1; i < count; i++) {
1238               result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1239             }
1240             // Remove the constant offset from the address and then
1241             result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1242             // remove the scaling of the offset to recover the original index.
1243             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1244               // Peel the shift off directly but wrap it in a dummy node
1245               // since Ideal can't return existing nodes
1246               result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1247             } else if (result->is_Add() && result->in(2)->is_Con() &&
1248                        result->in(1)->Opcode() == Op_LShiftX &&
1249                        result->in(1)->in(2) == phase->intcon(shift)) {
1250               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1251               // but for boxing cache access we know that X<<Z will not overflow
1252               // (there is range check) so we do this optimizatrion by hand here.
1253               Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1254               result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1255             } else {
1256               result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1257             }
1258 #ifdef _LP64
1259             if (bt != T_LONG) {
1260               result = new (phase->C) ConvL2INode(phase->transform(result));
1261             }
1262 #else
1263             if (bt == T_LONG) {
1264               result = new (phase->C) ConvI2LNode(phase->transform(result));
1265             }
1266 #endif
1267             return result;
1268           }
1269         }
1270       }
1271     }
1272   }
1273   return NULL;
1274 }
1275 
1276 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1277   Node* region = phi->in(0);
1278   if (region == NULL) {
1279     return false; // Wait stable graph
1280   }
1281   uint cnt = phi->req();
1282   for (uint i = 1; i < cnt; i++) {
1283     Node* rc = region->in(i);
1284     if (rc == NULL || phase->type(rc) == Type::TOP)
1285       return false; // Wait stable graph
1286     Node* in = phi->in(i);
1287     if (in == NULL || phase->type(in) == Type::TOP)
1288       return false; // Wait stable graph
1289   }
1290   return true;
1291 }
1292 //------------------------------split_through_phi------------------------------
1293 // Split instance or boxed field load through Phi.
1294 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1295   Node* mem     = in(Memory);
1296   Node* address = in(Address);
1297   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1298 
1299   assert((t_oop != NULL) &&
1300          (t_oop->is_known_instance_field() ||
1301           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1302 
1303   Compile* C = phase->C;
1304   intptr_t ignore = 0;
1305   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1306   bool base_is_phi = (base != NULL) && base->is_Phi();
1307   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1308                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1309                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1310 
1311   if (!((mem->is_Phi() || base_is_phi) &&
1312         (load_boxed_values || t_oop->is_known_instance_field()))) {
1313     return NULL; // memory is not Phi
1314   }
1315 
1316   if (mem->is_Phi()) {
1317     if (!stable_phi(mem->as_Phi(), phase)) {
1318       return NULL; // Wait stable graph
1319     }
1320     uint cnt = mem->req();
1321     // Check for loop invariant memory.
1322     if (cnt == 3) {
1323       for (uint i = 1; i < cnt; i++) {
1324         Node* in = mem->in(i);
1325         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1326         if (m == mem) {
1327           set_req(Memory, mem->in(cnt - i));
1328           return this; // made change
1329         }
1330       }
1331     }
1332   }
1333   if (base_is_phi) {
1334     if (!stable_phi(base->as_Phi(), phase)) {
1335       return NULL; // Wait stable graph
1336     }
1337     uint cnt = base->req();
1338     // Check for loop invariant memory.
1339     if (cnt == 3) {
1340       for (uint i = 1; i < cnt; i++) {
1341         if (base->in(i) == base) {
1342           return NULL; // Wait stable graph
1343         }
1344       }
1345     }
1346   }
1347 
1348   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1349 
1350   // Split through Phi (see original code in loopopts.cpp).
1351   assert(C->have_alias_type(t_oop), "instance should have alias type");
1352 
1353   // Do nothing here if Identity will find a value
1354   // (to avoid infinite chain of value phis generation).
1355   if (!phase->eqv(this, this->Identity(phase)))
1356     return NULL;
1357 
1358   // Select Region to split through.
1359   Node* region;
1360   if (!base_is_phi) {
1361     assert(mem->is_Phi(), "sanity");
1362     region = mem->in(0);
1363     // Skip if the region dominates some control edge of the address.
1364     if (!MemNode::all_controls_dominate(address, region))
1365       return NULL;
1366   } else if (!mem->is_Phi()) {
1367     assert(base_is_phi, "sanity");
1368     region = base->in(0);
1369     // Skip if the region dominates some control edge of the memory.
1370     if (!MemNode::all_controls_dominate(mem, region))
1371       return NULL;
1372   } else if (base->in(0) != mem->in(0)) {
1373     assert(base_is_phi && mem->is_Phi(), "sanity");
1374     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1375       region = base->in(0);
1376     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1377       region = mem->in(0);
1378     } else {
1379       return NULL; // complex graph
1380     }
1381   } else {
1382     assert(base->in(0) == mem->in(0), "sanity");
1383     region = mem->in(0);
1384   }
1385 
1386   const Type* this_type = this->bottom_type();
1387   int this_index  = C->get_alias_index(t_oop);
1388   int this_offset = t_oop->offset();
1389   int this_iid    = t_oop->instance_id();
1390   if (!t_oop->is_known_instance() && load_boxed_values) {
1391     // Use _idx of address base for boxed values.
1392     this_iid = base->_idx;
1393   }
1394   PhaseIterGVN* igvn = phase->is_IterGVN();
1395   Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1396   for (uint i = 1; i < region->req(); i++) {
1397     Node* x;
1398     Node* the_clone = NULL;
1399     if (region->in(i) == C->top()) {
1400       x = C->top();      // Dead path?  Use a dead data op
1401     } else {
1402       x = this->clone();        // Else clone up the data op
1403       the_clone = x;            // Remember for possible deletion.
1404       // Alter data node to use pre-phi inputs
1405       if (this->in(0) == region) {
1406         x->set_req(0, region->in(i));
1407       } else {
1408         x->set_req(0, NULL);
1409       }
1410       if (mem->is_Phi() && (mem->in(0) == region)) {
1411         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1412       }
1413       if (address->is_Phi() && address->in(0) == region) {
1414         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1415       }
1416       if (base_is_phi && (base->in(0) == region)) {
1417         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1418         Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1419         x->set_req(Address, adr_x);
1420       }
1421     }
1422     // Check for a 'win' on some paths
1423     const Type *t = x->Value(igvn);
1424 
1425     bool singleton = t->singleton();
1426 
1427     // See comments in PhaseIdealLoop::split_thru_phi().
1428     if (singleton && t == Type::TOP) {
1429       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1430     }
1431 
1432     if (singleton) {
1433       x = igvn->makecon(t);
1434     } else {
1435       // We now call Identity to try to simplify the cloned node.
1436       // Note that some Identity methods call phase->type(this).
1437       // Make sure that the type array is big enough for
1438       // our new node, even though we may throw the node away.
1439       // (This tweaking with igvn only works because x is a new node.)
1440       igvn->set_type(x, t);
1441       // If x is a TypeNode, capture any more-precise type permanently into Node
1442       // otherwise it will be not updated during igvn->transform since
1443       // igvn->type(x) is set to x->Value() already.
1444       x->raise_bottom_type(t);
1445       Node *y = x->Identity(igvn);
1446       if (y != x) {
1447         x = y;
1448       } else {
1449         y = igvn->hash_find_insert(x);
1450         if (y) {
1451           x = y;
1452         } else {
1453           // Else x is a new node we are keeping
1454           // We do not need register_new_node_with_optimizer
1455           // because set_type has already been called.
1456           igvn->_worklist.push(x);
1457         }
1458       }
1459     }
1460     if (x != the_clone && the_clone != NULL) {
1461       igvn->remove_dead_node(the_clone);
1462     }
1463     phi->set_req(i, x);
1464   }
1465   // Record Phi
1466   igvn->register_new_node_with_optimizer(phi);
1467   return phi;
1468 }
1469 
1470 //------------------------------Ideal------------------------------------------
1471 // If the load is from Field memory and the pointer is non-null, we can
1472 // zero out the control input.
1473 // If the offset is constant and the base is an object allocation,
1474 // try to hook me up to the exact initializing store.
1475 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1476   Node* p = MemNode::Ideal_common(phase, can_reshape);
1477   if (p)  return (p == NodeSentinel) ? NULL : p;
1478 
1479   Node* ctrl    = in(MemNode::Control);
1480   Node* address = in(MemNode::Address);
1481 
1482   // Skip up past a SafePoint control.  Cannot do this for Stores because
1483   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1484   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1485       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1486     ctrl = ctrl->in(0);
1487     set_req(MemNode::Control,ctrl);
1488   }
1489 
1490   intptr_t ignore = 0;
1491   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1492   if (base != NULL
1493       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1494     // Check for useless control edge in some common special cases
1495     if (in(MemNode::Control) != NULL
1496         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1497         && all_controls_dominate(base, phase->C->start())) {
1498       // A method-invariant, non-null address (constant or 'this' argument).
1499       set_req(MemNode::Control, NULL);
1500     }
1501   }
1502 
1503   Node* mem = in(MemNode::Memory);
1504   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1505 
1506   if (can_reshape && (addr_t != NULL)) {
1507     // try to optimize our memory input
1508     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1509     if (opt_mem != mem) {
1510       set_req(MemNode::Memory, opt_mem);
1511       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1512       return this;
1513     }
1514     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1515     if ((t_oop != NULL) &&
1516         (t_oop->is_known_instance_field() ||
1517          t_oop->is_ptr_to_boxed_value())) {
1518       PhaseIterGVN *igvn = phase->is_IterGVN();
1519       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1520         // Delay this transformation until memory Phi is processed.
1521         phase->is_IterGVN()->_worklist.push(this);
1522         return NULL;
1523       }
1524       // Split instance field load through Phi.
1525       Node* result = split_through_phi(phase);
1526       if (result != NULL) return result;
1527 
1528       if (t_oop->is_ptr_to_boxed_value()) {
1529         Node* result = eliminate_autobox(phase);
1530         if (result != NULL) return result;
1531       }
1532     }
1533   }
1534 
1535   // Check for prior store with a different base or offset; make Load
1536   // independent.  Skip through any number of them.  Bail out if the stores
1537   // are in an endless dead cycle and report no progress.  This is a key
1538   // transform for Reflection.  However, if after skipping through the Stores
1539   // we can't then fold up against a prior store do NOT do the transform as
1540   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1541   // array memory alive twice: once for the hoisted Load and again after the
1542   // bypassed Store.  This situation only works if EVERYBODY who does
1543   // anti-dependence work knows how to bypass.  I.e. we need all
1544   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1545   // the alias index stuff.  So instead, peek through Stores and IFF we can
1546   // fold up, do so.
1547   Node* prev_mem = find_previous_store(phase);
1548   // Steps (a), (b):  Walk past independent stores to find an exact match.
1549   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1550     // (c) See if we can fold up on the spot, but don't fold up here.
1551     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1552     // just return a prior value, which is done by Identity calls.
1553     if (can_see_stored_value(prev_mem, phase)) {
1554       // Make ready for step (d):
1555       set_req(MemNode::Memory, prev_mem);
1556       return this;
1557     }
1558   }
1559 
1560   return NULL;                  // No further progress
1561 }
1562 
1563 // Helper to recognize certain Klass fields which are invariant across
1564 // some group of array types (e.g., int[] or all T[] where T < Object).
1565 const Type*
1566 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1567                                  ciKlass* klass) const {
1568   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1569     // The field is Klass::_modifier_flags.  Return its (constant) value.
1570     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1571     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1572     return TypeInt::make(klass->modifier_flags());
1573   }
1574   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1575     // The field is Klass::_access_flags.  Return its (constant) value.
1576     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1577     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1578     return TypeInt::make(klass->access_flags());
1579   }
1580   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1581     // The field is Klass::_layout_helper.  Return its constant value if known.
1582     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1583     return TypeInt::make(klass->layout_helper());
1584   }
1585 
1586   // No match.
1587   return NULL;
1588 }
1589 
1590 // Try to constant-fold a stable array element.
1591 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, Node* adr, BasicType loadbt) {
1592   // Make sure the reference is not into the header, by comparing
1593   // the offset against the offset of the start of the array's data.
1594   // Different array types begin at slightly different offsets (12 vs. 16).
1595   // We choose T_BYTE as an example base type that is least restrictive
1596   // as to alignment, which will therefore produce the smallest
1597   // possible base offset.
1598   int off = ary->offset();
1599   const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1600   const bool off_in_header = ((uint)off < (uint)min_base_off);
1601   if (!off_in_header && off != Type::OffsetBot &&
1602       adr->is_AddP() && adr->in(AddPNode::Offset)->is_Con() &&
1603       ary->is_stable() && ary->const_oop() != NULL) {
1604     // Decode the results of GraphKit::array_element_address.
1605     ciArray* aobj = ary->const_oop()->as_array();
1606     ciConstant con = aobj->element_value_by_offset(off);
1607 
1608     if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1609       const Type* con_type = Type::make_from_constant(con);
1610       if (con_type != NULL) {
1611         if (con_type->isa_aryptr()) {
1612           // Join with the array element type, in case it is also stable.
1613           int dim = ary->stable_dimension();
1614           con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1615         }
1616         if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1617           con_type = con_type->make_narrowoop();
1618         }
1619 #ifndef PRODUCT
1620         if (TraceIterativeGVN) {
1621           tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1622           con_type->dump(); tty->cr();
1623         }
1624 #endif //PRODUCT
1625         return con_type;
1626       }
1627     }
1628   }
1629 
1630   return NULL;
1631 }
1632 
1633 //------------------------------Value-----------------------------------------
1634 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1635   // Either input is TOP ==> the result is TOP
1636   Node* mem = in(MemNode::Memory);
1637   const Type *t1 = phase->type(mem);
1638   if (t1 == Type::TOP)  return Type::TOP;
1639   Node* adr = in(MemNode::Address);
1640   const TypePtr* tp = phase->type(adr)->isa_ptr();
1641   if (tp == NULL || tp->empty())  return Type::TOP;
1642   int off = tp->offset();
1643   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1644   Compile* C = phase->C;
1645 
1646   // Try to guess loaded type from pointer type
1647   if (tp->isa_aryptr()) {
1648     const TypeAryPtr* ary = tp->is_aryptr();
1649     const Type *t = ary->elem();
1650 
1651     // Try to constant-fold a stable array element.
1652     if (FoldStableValues) {
1653       const Type* con_type = fold_stable_ary_elem(ary, adr, memory_type());
1654       if (con_type != NULL) {
1655         return con_type;
1656       }
1657     }
1658 
1659     // Don't do this for integer types. There is only potential profit if
1660     // the element type t is lower than _type; that is, for int types, if _type is
1661     // more restrictive than t.  This only happens here if one is short and the other
1662     // char (both 16 bits), and in those cases we've made an intentional decision
1663     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1664     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1665     //
1666     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1667     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1668     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1669     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1670     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1671     // In fact, that could have been the original type of p1, and p1 could have
1672     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1673     // expression (LShiftL quux 3) independently optimized to the constant 8.
1674     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1675         && (_type->isa_vect() == NULL)
1676         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1677       // t might actually be lower than _type, if _type is a unique
1678       // concrete subclass of abstract class t.
1679       // Make sure the reference is not into the header, by comparing
1680       // the offset against the offset of the start of the array's data.
1681       // Different array types begin at slightly different offsets (12 vs. 16).
1682       // We choose T_BYTE as an example base type that is least restrictive
1683       // as to alignment, which will therefore produce the smallest
1684       // possible base offset.
1685       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1686       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1687         const Type* jt = t->join(_type);
1688         // In any case, do not allow the join, per se, to empty out the type.
1689         if (jt->empty() && !t->empty()) {
1690           // This can happen if a interface-typed array narrows to a class type.
1691           jt = _type;
1692         }
1693 #ifdef ASSERT
1694         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1695           // The pointers in the autobox arrays are always non-null
1696           Node* base = adr->in(AddPNode::Base);
1697           if ((base != NULL) && base->is_DecodeN()) {
1698             // Get LoadN node which loads IntegerCache.cache field
1699             base = base->in(1);
1700           }
1701           if ((base != NULL) && base->is_Con()) {
1702             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1703             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1704               // It could be narrow oop
1705               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1706             }
1707           }
1708         }
1709 #endif
1710         return jt;
1711       }
1712     }
1713   } else if (tp->base() == Type::InstPtr) {
1714     ciEnv* env = C->env();
1715     const TypeInstPtr* tinst = tp->is_instptr();
1716     ciKlass* klass = tinst->klass();
1717     assert( off != Type::OffsetBot ||
1718             // arrays can be cast to Objects
1719             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1720             // unsafe field access may not have a constant offset
1721             C->has_unsafe_access(),
1722             "Field accesses must be precise" );
1723     // For oop loads, we expect the _type to be precise
1724     if (klass == env->String_klass() &&
1725         adr->is_AddP() && off != Type::OffsetBot) {
1726       // For constant Strings treat the final fields as compile time constants.
1727       Node* base = adr->in(AddPNode::Base);
1728       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1729       if (t != NULL && t->singleton()) {
1730         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1731         if (field != NULL && field->is_final()) {
1732           ciObject* string = t->const_oop();
1733           ciConstant constant = string->as_instance()->field_value(field);
1734           if (constant.basic_type() == T_INT) {
1735             return TypeInt::make(constant.as_int());
1736           } else if (constant.basic_type() == T_ARRAY) {
1737             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1738               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1739             } else {
1740               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1741             }
1742           }
1743         }
1744       }
1745     }
1746     // Optimizations for constant objects
1747     ciObject* const_oop = tinst->const_oop();
1748     if (const_oop != NULL) {
1749       // For constant Boxed value treat the target field as a compile time constant.
1750       if (tinst->is_ptr_to_boxed_value()) {
1751         return tinst->get_const_boxed_value();
1752       } else
1753       // For constant CallSites treat the target field as a compile time constant.
1754       if (const_oop->is_call_site()) {
1755         ciCallSite* call_site = const_oop->as_call_site();
1756         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1757         if (field != NULL && field->is_call_site_target()) {
1758           ciMethodHandle* target = call_site->get_target();
1759           if (target != NULL) {  // just in case
1760             ciConstant constant(T_OBJECT, target);
1761             const Type* t;
1762             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1763               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1764             } else {
1765               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1766             }
1767             // Add a dependence for invalidation of the optimization.
1768             if (!call_site->is_constant_call_site()) {
1769               C->dependencies()->assert_call_site_target_value(call_site, target);
1770             }
1771             return t;
1772           }
1773         }
1774       }
1775     }
1776   } else if (tp->base() == Type::KlassPtr) {
1777     assert( off != Type::OffsetBot ||
1778             // arrays can be cast to Objects
1779             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1780             // also allow array-loading from the primary supertype
1781             // array during subtype checks
1782             Opcode() == Op_LoadKlass,
1783             "Field accesses must be precise" );
1784     // For klass/static loads, we expect the _type to be precise
1785   }
1786 
1787   const TypeKlassPtr *tkls = tp->isa_klassptr();
1788   if (tkls != NULL && !StressReflectiveCode) {
1789     ciKlass* klass = tkls->klass();
1790     if (klass->is_loaded() && tkls->klass_is_exact()) {
1791       // We are loading a field from a Klass metaobject whose identity
1792       // is known at compile time (the type is "exact" or "precise").
1793       // Check for fields we know are maintained as constants by the VM.
1794       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1795         // The field is Klass::_super_check_offset.  Return its (constant) value.
1796         // (Folds up type checking code.)
1797         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1798         return TypeInt::make(klass->super_check_offset());
1799       }
1800       // Compute index into primary_supers array
1801       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1802       // Check for overflowing; use unsigned compare to handle the negative case.
1803       if( depth < ciKlass::primary_super_limit() ) {
1804         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1805         // (Folds up type checking code.)
1806         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1807         ciKlass *ss = klass->super_of_depth(depth);
1808         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1809       }
1810       const Type* aift = load_array_final_field(tkls, klass);
1811       if (aift != NULL)  return aift;
1812       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1813           && klass->is_array_klass()) {
1814         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1815         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1816         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1817         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1818       }
1819       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1820         // The field is Klass::_java_mirror.  Return its (constant) value.
1821         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1822         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1823         return TypeInstPtr::make(klass->java_mirror());
1824       }
1825     }
1826 
1827     // We can still check if we are loading from the primary_supers array at a
1828     // shallow enough depth.  Even though the klass is not exact, entries less
1829     // than or equal to its super depth are correct.
1830     if (klass->is_loaded() ) {
1831       ciType *inner = klass;
1832       while( inner->is_obj_array_klass() )
1833         inner = inner->as_obj_array_klass()->base_element_type();
1834       if( inner->is_instance_klass() &&
1835           !inner->as_instance_klass()->flags().is_interface() ) {
1836         // Compute index into primary_supers array
1837         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1838         // Check for overflowing; use unsigned compare to handle the negative case.
1839         if( depth < ciKlass::primary_super_limit() &&
1840             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1841           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1842           // (Folds up type checking code.)
1843           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1844           ciKlass *ss = klass->super_of_depth(depth);
1845           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1846         }
1847       }
1848     }
1849 
1850     // If the type is enough to determine that the thing is not an array,
1851     // we can give the layout_helper a positive interval type.
1852     // This will help short-circuit some reflective code.
1853     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1854         && !klass->is_array_klass() // not directly typed as an array
1855         && !klass->is_interface()  // specifically not Serializable & Cloneable
1856         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1857         ) {
1858       // Note:  When interfaces are reliable, we can narrow the interface
1859       // test to (klass != Serializable && klass != Cloneable).
1860       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1861       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1862       // The key property of this type is that it folds up tests
1863       // for array-ness, since it proves that the layout_helper is positive.
1864       // Thus, a generic value like the basic object layout helper works fine.
1865       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1866     }
1867   }
1868 
1869   // If we are loading from a freshly-allocated object, produce a zero,
1870   // if the load is provably beyond the header of the object.
1871   // (Also allow a variable load from a fresh array to produce zero.)
1872   const TypeOopPtr *tinst = tp->isa_oopptr();
1873   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1874   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1875   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1876     Node* value = can_see_stored_value(mem,phase);
1877     if (value != NULL && value->is_Con()) {
1878       assert(value->bottom_type()->higher_equal(_type),"sanity");
1879       return value->bottom_type();
1880     }
1881   }
1882 
1883   if (is_instance) {
1884     // If we have an instance type and our memory input is the
1885     // programs's initial memory state, there is no matching store,
1886     // so just return a zero of the appropriate type
1887     Node *mem = in(MemNode::Memory);
1888     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1889       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1890       return Type::get_zero_type(_type->basic_type());
1891     }
1892   }
1893   return _type;
1894 }
1895 
1896 //------------------------------match_edge-------------------------------------
1897 // Do we Match on this edge index or not?  Match only the address.
1898 uint LoadNode::match_edge(uint idx) const {
1899   return idx == MemNode::Address;
1900 }
1901 
1902 //--------------------------LoadBNode::Ideal--------------------------------------
1903 //
1904 //  If the previous store is to the same address as this load,
1905 //  and the value stored was larger than a byte, replace this load
1906 //  with the value stored truncated to a byte.  If no truncation is
1907 //  needed, the replacement is done in LoadNode::Identity().
1908 //
1909 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1910   Node* mem = in(MemNode::Memory);
1911   Node* value = can_see_stored_value(mem,phase);
1912   if( value && !phase->type(value)->higher_equal( _type ) ) {
1913     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1914     return new (phase->C) RShiftINode(result, phase->intcon(24));
1915   }
1916   // Identity call will handle the case where truncation is not needed.
1917   return LoadNode::Ideal(phase, can_reshape);
1918 }
1919 
1920 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1921   Node* mem = in(MemNode::Memory);
1922   Node* value = can_see_stored_value(mem,phase);
1923   if (value != NULL && value->is_Con() &&
1924       !value->bottom_type()->higher_equal(_type)) {
1925     // If the input to the store does not fit with the load's result type,
1926     // it must be truncated. We can't delay until Ideal call since
1927     // a singleton Value is needed for split_thru_phi optimization.
1928     int con = value->get_int();
1929     return TypeInt::make((con << 24) >> 24);
1930   }
1931   return LoadNode::Value(phase);
1932 }
1933 
1934 //--------------------------LoadUBNode::Ideal-------------------------------------
1935 //
1936 //  If the previous store is to the same address as this load,
1937 //  and the value stored was larger than a byte, replace this load
1938 //  with the value stored truncated to a byte.  If no truncation is
1939 //  needed, the replacement is done in LoadNode::Identity().
1940 //
1941 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1942   Node* mem = in(MemNode::Memory);
1943   Node* value = can_see_stored_value(mem, phase);
1944   if (value && !phase->type(value)->higher_equal(_type))
1945     return new (phase->C) AndINode(value, phase->intcon(0xFF));
1946   // Identity call will handle the case where truncation is not needed.
1947   return LoadNode::Ideal(phase, can_reshape);
1948 }
1949 
1950 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1951   Node* mem = in(MemNode::Memory);
1952   Node* value = can_see_stored_value(mem,phase);
1953   if (value != NULL && value->is_Con() &&
1954       !value->bottom_type()->higher_equal(_type)) {
1955     // If the input to the store does not fit with the load's result type,
1956     // it must be truncated. We can't delay until Ideal call since
1957     // a singleton Value is needed for split_thru_phi optimization.
1958     int con = value->get_int();
1959     return TypeInt::make(con & 0xFF);
1960   }
1961   return LoadNode::Value(phase);
1962 }
1963 
1964 //--------------------------LoadUSNode::Ideal-------------------------------------
1965 //
1966 //  If the previous store is to the same address as this load,
1967 //  and the value stored was larger than a char, replace this load
1968 //  with the value stored truncated to a char.  If no truncation is
1969 //  needed, the replacement is done in LoadNode::Identity().
1970 //
1971 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1972   Node* mem = in(MemNode::Memory);
1973   Node* value = can_see_stored_value(mem,phase);
1974   if( value && !phase->type(value)->higher_equal( _type ) )
1975     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1976   // Identity call will handle the case where truncation is not needed.
1977   return LoadNode::Ideal(phase, can_reshape);
1978 }
1979 
1980 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1981   Node* mem = in(MemNode::Memory);
1982   Node* value = can_see_stored_value(mem,phase);
1983   if (value != NULL && value->is_Con() &&
1984       !value->bottom_type()->higher_equal(_type)) {
1985     // If the input to the store does not fit with the load's result type,
1986     // it must be truncated. We can't delay until Ideal call since
1987     // a singleton Value is needed for split_thru_phi optimization.
1988     int con = value->get_int();
1989     return TypeInt::make(con & 0xFFFF);
1990   }
1991   return LoadNode::Value(phase);
1992 }
1993 
1994 //--------------------------LoadSNode::Ideal--------------------------------------
1995 //
1996 //  If the previous store is to the same address as this load,
1997 //  and the value stored was larger than a short, replace this load
1998 //  with the value stored truncated to a short.  If no truncation is
1999 //  needed, the replacement is done in LoadNode::Identity().
2000 //
2001 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2002   Node* mem = in(MemNode::Memory);
2003   Node* value = can_see_stored_value(mem,phase);
2004   if( value && !phase->type(value)->higher_equal( _type ) ) {
2005     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
2006     return new (phase->C) RShiftINode(result, phase->intcon(16));
2007   }
2008   // Identity call will handle the case where truncation is not needed.
2009   return LoadNode::Ideal(phase, can_reshape);
2010 }
2011 
2012 const Type* LoadSNode::Value(PhaseTransform *phase) const {
2013   Node* mem = in(MemNode::Memory);
2014   Node* value = can_see_stored_value(mem,phase);
2015   if (value != NULL && value->is_Con() &&
2016       !value->bottom_type()->higher_equal(_type)) {
2017     // If the input to the store does not fit with the load's result type,
2018     // it must be truncated. We can't delay until Ideal call since
2019     // a singleton Value is needed for split_thru_phi optimization.
2020     int con = value->get_int();
2021     return TypeInt::make((con << 16) >> 16);
2022   }
2023   return LoadNode::Value(phase);
2024 }
2025 
2026 //=============================================================================
2027 //----------------------------LoadKlassNode::make------------------------------
2028 // Polymorphic factory method:
2029 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
2030   Compile* C = gvn.C;
2031   Node *ctl = NULL;
2032   // sanity check the alias category against the created node type
2033   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2034   assert(adr_type != NULL, "expecting TypeKlassPtr");
2035 #ifdef _LP64
2036   if (adr_type->is_ptr_to_narrowklass()) {
2037     assert(UseCompressedKlassPointers, "no compressed klasses");
2038     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass()));
2039     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2040   }
2041 #endif
2042   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2043   return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
2044 }
2045 
2046 //------------------------------Value------------------------------------------
2047 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2048   return klass_value_common(phase);
2049 }
2050 
2051 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2052   // Either input is TOP ==> the result is TOP
2053   const Type *t1 = phase->type( in(MemNode::Memory) );
2054   if (t1 == Type::TOP)  return Type::TOP;
2055   Node *adr = in(MemNode::Address);
2056   const Type *t2 = phase->type( adr );
2057   if (t2 == Type::TOP)  return Type::TOP;
2058   const TypePtr *tp = t2->is_ptr();
2059   if (TypePtr::above_centerline(tp->ptr()) ||
2060       tp->ptr() == TypePtr::Null)  return Type::TOP;
2061 
2062   // Return a more precise klass, if possible
2063   const TypeInstPtr *tinst = tp->isa_instptr();
2064   if (tinst != NULL) {
2065     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2066     int offset = tinst->offset();
2067     if (ik == phase->C->env()->Class_klass()
2068         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2069             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2070       // We are loading a special hidden field from a Class mirror object,
2071       // the field which points to the VM's Klass metaobject.
2072       ciType* t = tinst->java_mirror_type();
2073       // java_mirror_type returns non-null for compile-time Class constants.
2074       if (t != NULL) {
2075         // constant oop => constant klass
2076         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2077           return TypeKlassPtr::make(ciArrayKlass::make(t));
2078         }
2079         if (!t->is_klass()) {
2080           // a primitive Class (e.g., int.class) has NULL for a klass field
2081           return TypePtr::NULL_PTR;
2082         }
2083         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2084         return TypeKlassPtr::make(t->as_klass());
2085       }
2086       // non-constant mirror, so we can't tell what's going on
2087     }
2088     if( !ik->is_loaded() )
2089       return _type;             // Bail out if not loaded
2090     if (offset == oopDesc::klass_offset_in_bytes()) {
2091       if (tinst->klass_is_exact()) {
2092         return TypeKlassPtr::make(ik);
2093       }
2094       // See if we can become precise: no subklasses and no interface
2095       // (Note:  We need to support verified interfaces.)
2096       if (!ik->is_interface() && !ik->has_subklass()) {
2097         //assert(!UseExactTypes, "this code should be useless with exact types");
2098         // Add a dependence; if any subclass added we need to recompile
2099         if (!ik->is_final()) {
2100           // %%% should use stronger assert_unique_concrete_subtype instead
2101           phase->C->dependencies()->assert_leaf_type(ik);
2102         }
2103         // Return precise klass
2104         return TypeKlassPtr::make(ik);
2105       }
2106 
2107       // Return root of possible klass
2108       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2109     }
2110   }
2111 
2112   // Check for loading klass from an array
2113   const TypeAryPtr *tary = tp->isa_aryptr();
2114   if( tary != NULL ) {
2115     ciKlass *tary_klass = tary->klass();
2116     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2117         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2118       if (tary->klass_is_exact()) {
2119         return TypeKlassPtr::make(tary_klass);
2120       }
2121       ciArrayKlass *ak = tary->klass()->as_array_klass();
2122       // If the klass is an object array, we defer the question to the
2123       // array component klass.
2124       if( ak->is_obj_array_klass() ) {
2125         assert( ak->is_loaded(), "" );
2126         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2127         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2128           ciInstanceKlass* ik = base_k->as_instance_klass();
2129           // See if we can become precise: no subklasses and no interface
2130           if (!ik->is_interface() && !ik->has_subklass()) {
2131             //assert(!UseExactTypes, "this code should be useless with exact types");
2132             // Add a dependence; if any subclass added we need to recompile
2133             if (!ik->is_final()) {
2134               phase->C->dependencies()->assert_leaf_type(ik);
2135             }
2136             // Return precise array klass
2137             return TypeKlassPtr::make(ak);
2138           }
2139         }
2140         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2141       } else {                  // Found a type-array?
2142         //assert(!UseExactTypes, "this code should be useless with exact types");
2143         assert( ak->is_type_array_klass(), "" );
2144         return TypeKlassPtr::make(ak); // These are always precise
2145       }
2146     }
2147   }
2148 
2149   // Check for loading klass from an array klass
2150   const TypeKlassPtr *tkls = tp->isa_klassptr();
2151   if (tkls != NULL && !StressReflectiveCode) {
2152     ciKlass* klass = tkls->klass();
2153     if( !klass->is_loaded() )
2154       return _type;             // Bail out if not loaded
2155     if( klass->is_obj_array_klass() &&
2156         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2157       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2158       // // Always returning precise element type is incorrect,
2159       // // e.g., element type could be object and array may contain strings
2160       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2161 
2162       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2163       // according to the element type's subclassing.
2164       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2165     }
2166     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2167         tkls->offset() == in_bytes(Klass::super_offset())) {
2168       ciKlass* sup = klass->as_instance_klass()->super();
2169       // The field is Klass::_super.  Return its (constant) value.
2170       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2171       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2172     }
2173   }
2174 
2175   // Bailout case
2176   return LoadNode::Value(phase);
2177 }
2178 
2179 //------------------------------Identity---------------------------------------
2180 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2181 // Also feed through the klass in Allocate(...klass...)._klass.
2182 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2183   return klass_identity_common(phase);
2184 }
2185 
2186 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2187   Node* x = LoadNode::Identity(phase);
2188   if (x != this)  return x;
2189 
2190   // Take apart the address into an oop and and offset.
2191   // Return 'this' if we cannot.
2192   Node*    adr    = in(MemNode::Address);
2193   intptr_t offset = 0;
2194   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2195   if (base == NULL)     return this;
2196   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2197   if (toop == NULL)     return this;
2198 
2199   // We can fetch the klass directly through an AllocateNode.
2200   // This works even if the klass is not constant (clone or newArray).
2201   if (offset == oopDesc::klass_offset_in_bytes()) {
2202     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2203     if (allocated_klass != NULL) {
2204       return allocated_klass;
2205     }
2206   }
2207 
2208   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2209   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2210   // See inline_native_Class_query for occurrences of these patterns.
2211   // Java Example:  x.getClass().isAssignableFrom(y)
2212   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2213   //
2214   // This improves reflective code, often making the Class
2215   // mirror go completely dead.  (Current exception:  Class
2216   // mirrors may appear in debug info, but we could clean them out by
2217   // introducing a new debug info operator for Klass*.java_mirror).
2218   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2219       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2220           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2221     // We are loading a special hidden field from a Class mirror,
2222     // the field which points to its Klass or ArrayKlass metaobject.
2223     if (base->is_Load()) {
2224       Node* adr2 = base->in(MemNode::Address);
2225       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2226       if (tkls != NULL && !tkls->empty()
2227           && (tkls->klass()->is_instance_klass() ||
2228               tkls->klass()->is_array_klass())
2229           && adr2->is_AddP()
2230           ) {
2231         int mirror_field = in_bytes(Klass::java_mirror_offset());
2232         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2233           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2234         }
2235         if (tkls->offset() == mirror_field) {
2236           return adr2->in(AddPNode::Base);
2237         }
2238       }
2239     }
2240   }
2241 
2242   return this;
2243 }
2244 
2245 
2246 //------------------------------Value------------------------------------------
2247 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2248   const Type *t = klass_value_common(phase);
2249   if (t == Type::TOP)
2250     return t;
2251 
2252   return t->make_narrowklass();
2253 }
2254 
2255 //------------------------------Identity---------------------------------------
2256 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2257 // Also feed through the klass in Allocate(...klass...)._klass.
2258 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2259   Node *x = klass_identity_common(phase);
2260 
2261   const Type *t = phase->type( x );
2262   if( t == Type::TOP ) return x;
2263   if( t->isa_narrowklass()) return x;
2264   assert (!t->isa_narrowoop(), "no narrow oop here");
2265 
2266   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2267 }
2268 
2269 //------------------------------Value-----------------------------------------
2270 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2271   // Either input is TOP ==> the result is TOP
2272   const Type *t1 = phase->type( in(MemNode::Memory) );
2273   if( t1 == Type::TOP ) return Type::TOP;
2274   Node *adr = in(MemNode::Address);
2275   const Type *t2 = phase->type( adr );
2276   if( t2 == Type::TOP ) return Type::TOP;
2277   const TypePtr *tp = t2->is_ptr();
2278   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2279   const TypeAryPtr *tap = tp->isa_aryptr();
2280   if( !tap ) return _type;
2281   return tap->size();
2282 }
2283 
2284 //-------------------------------Ideal---------------------------------------
2285 // Feed through the length in AllocateArray(...length...)._length.
2286 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2287   Node* p = MemNode::Ideal_common(phase, can_reshape);
2288   if (p)  return (p == NodeSentinel) ? NULL : p;
2289 
2290   // Take apart the address into an oop and and offset.
2291   // Return 'this' if we cannot.
2292   Node*    adr    = in(MemNode::Address);
2293   intptr_t offset = 0;
2294   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2295   if (base == NULL)     return NULL;
2296   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2297   if (tary == NULL)     return NULL;
2298 
2299   // We can fetch the length directly through an AllocateArrayNode.
2300   // This works even if the length is not constant (clone or newArray).
2301   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2302     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2303     if (alloc != NULL) {
2304       Node* allocated_length = alloc->Ideal_length();
2305       Node* len = alloc->make_ideal_length(tary, phase);
2306       if (allocated_length != len) {
2307         // New CastII improves on this.
2308         return len;
2309       }
2310     }
2311   }
2312 
2313   return NULL;
2314 }
2315 
2316 //------------------------------Identity---------------------------------------
2317 // Feed through the length in AllocateArray(...length...)._length.
2318 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2319   Node* x = LoadINode::Identity(phase);
2320   if (x != this)  return x;
2321 
2322   // Take apart the address into an oop and and offset.
2323   // Return 'this' if we cannot.
2324   Node*    adr    = in(MemNode::Address);
2325   intptr_t offset = 0;
2326   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2327   if (base == NULL)     return this;
2328   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2329   if (tary == NULL)     return this;
2330 
2331   // We can fetch the length directly through an AllocateArrayNode.
2332   // This works even if the length is not constant (clone or newArray).
2333   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2334     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2335     if (alloc != NULL) {
2336       Node* allocated_length = alloc->Ideal_length();
2337       // Do not allow make_ideal_length to allocate a CastII node.
2338       Node* len = alloc->make_ideal_length(tary, phase, false);
2339       if (allocated_length == len) {
2340         // Return allocated_length only if it would not be improved by a CastII.
2341         return allocated_length;
2342       }
2343     }
2344   }
2345 
2346   return this;
2347 
2348 }
2349 
2350 //=============================================================================
2351 //---------------------------StoreNode::make-----------------------------------
2352 // Polymorphic factory method:
2353 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2354   Compile* C = gvn.C;
2355   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2356           ctl != NULL, "raw memory operations should have control edge");
2357 
2358   switch (bt) {
2359   case T_BOOLEAN:
2360   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
2361   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val);
2362   case T_CHAR:
2363   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
2364   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
2365   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
2366   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
2367   case T_METADATA:
2368   case T_ADDRESS:
2369   case T_OBJECT:
2370 #ifdef _LP64
2371     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2372       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2373       return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
2374     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2375                (UseCompressedKlassPointers && val->bottom_type()->isa_klassptr() &&
2376                 adr->bottom_type()->isa_rawptr())) {
2377       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2378       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val);
2379     }
2380 #endif
2381     {
2382       return new (C) StorePNode(ctl, mem, adr, adr_type, val);
2383     }
2384   }
2385   ShouldNotReachHere();
2386   return (StoreNode*)NULL;
2387 }
2388 
2389 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2390   bool require_atomic = true;
2391   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2392 }
2393 
2394 
2395 //--------------------------bottom_type----------------------------------------
2396 const Type *StoreNode::bottom_type() const {
2397   return Type::MEMORY;
2398 }
2399 
2400 //------------------------------hash-------------------------------------------
2401 uint StoreNode::hash() const {
2402   // unroll addition of interesting fields
2403   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2404 
2405   // Since they are not commoned, do not hash them:
2406   return NO_HASH;
2407 }
2408 
2409 //------------------------------Ideal------------------------------------------
2410 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2411 // When a store immediately follows a relevant allocation/initialization,
2412 // try to capture it into the initialization, or hoist it above.
2413 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2414   Node* p = MemNode::Ideal_common(phase, can_reshape);
2415   if (p)  return (p == NodeSentinel) ? NULL : p;
2416 
2417   Node* mem     = in(MemNode::Memory);
2418   Node* address = in(MemNode::Address);
2419 
2420   // Back-to-back stores to same address?  Fold em up.  Generally
2421   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2422   // since they must follow each StoreP operation.  Redundant StoreCMs
2423   // are eliminated just before matching in final_graph_reshape.
2424   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2425       mem->Opcode() != Op_StoreCM) {
2426     // Looking at a dead closed cycle of memory?
2427     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2428 
2429     assert(Opcode() == mem->Opcode() ||
2430            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2431            "no mismatched stores, except on raw memory");
2432 
2433     if (mem->outcnt() == 1 &&           // check for intervening uses
2434         mem->as_Store()->memory_size() <= this->memory_size()) {
2435       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2436       // For example, 'mem' might be the final state at a conditional return.
2437       // Or, 'mem' might be used by some node which is live at the same time
2438       // 'this' is live, which might be unschedulable.  So, require exactly
2439       // ONE user, the 'this' store, until such time as we clone 'mem' for
2440       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2441       if (can_reshape) {  // (%%% is this an anachronism?)
2442         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2443                   phase->is_IterGVN());
2444       } else {
2445         // It's OK to do this in the parser, since DU info is always accurate,
2446         // and the parser always refers to nodes via SafePointNode maps.
2447         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2448       }
2449       return this;
2450     }
2451   }
2452 
2453   // Capture an unaliased, unconditional, simple store into an initializer.
2454   // Or, if it is independent of the allocation, hoist it above the allocation.
2455   if (ReduceFieldZeroing && /*can_reshape &&*/
2456       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2457     InitializeNode* init = mem->in(0)->as_Initialize();
2458     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2459     if (offset > 0) {
2460       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2461       // If the InitializeNode captured me, it made a raw copy of me,
2462       // and I need to disappear.
2463       if (moved != NULL) {
2464         // %%% hack to ensure that Ideal returns a new node:
2465         mem = MergeMemNode::make(phase->C, mem);
2466         return mem;             // fold me away
2467       }
2468     }
2469   }
2470 
2471   return NULL;                  // No further progress
2472 }
2473 
2474 //------------------------------Value-----------------------------------------
2475 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2476   // Either input is TOP ==> the result is TOP
2477   const Type *t1 = phase->type( in(MemNode::Memory) );
2478   if( t1 == Type::TOP ) return Type::TOP;
2479   const Type *t2 = phase->type( in(MemNode::Address) );
2480   if( t2 == Type::TOP ) return Type::TOP;
2481   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2482   if( t3 == Type::TOP ) return Type::TOP;
2483   return Type::MEMORY;
2484 }
2485 
2486 //------------------------------Identity---------------------------------------
2487 // Remove redundant stores:
2488 //   Store(m, p, Load(m, p)) changes to m.
2489 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2490 Node *StoreNode::Identity( PhaseTransform *phase ) {
2491   Node* mem = in(MemNode::Memory);
2492   Node* adr = in(MemNode::Address);
2493   Node* val = in(MemNode::ValueIn);
2494 
2495   // Load then Store?  Then the Store is useless
2496   if (val->is_Load() &&
2497       val->in(MemNode::Address)->eqv_uncast(adr) &&
2498       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2499       val->as_Load()->store_Opcode() == Opcode()) {
2500     return mem;
2501   }
2502 
2503   // Two stores in a row of the same value?
2504   if (mem->is_Store() &&
2505       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2506       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2507       mem->Opcode() == Opcode()) {
2508     return mem;
2509   }
2510 
2511   // Store of zero anywhere into a freshly-allocated object?
2512   // Then the store is useless.
2513   // (It must already have been captured by the InitializeNode.)
2514   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2515     // a newly allocated object is already all-zeroes everywhere
2516     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2517       return mem;
2518     }
2519 
2520     // the store may also apply to zero-bits in an earlier object
2521     Node* prev_mem = find_previous_store(phase);
2522     // Steps (a), (b):  Walk past independent stores to find an exact match.
2523     if (prev_mem != NULL) {
2524       Node* prev_val = can_see_stored_value(prev_mem, phase);
2525       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2526         // prev_val and val might differ by a cast; it would be good
2527         // to keep the more informative of the two.
2528         return mem;
2529       }
2530     }
2531   }
2532 
2533   return this;
2534 }
2535 
2536 //------------------------------match_edge-------------------------------------
2537 // Do we Match on this edge index or not?  Match only memory & value
2538 uint StoreNode::match_edge(uint idx) const {
2539   return idx == MemNode::Address || idx == MemNode::ValueIn;
2540 }
2541 
2542 //------------------------------cmp--------------------------------------------
2543 // Do not common stores up together.  They generally have to be split
2544 // back up anyways, so do not bother.
2545 uint StoreNode::cmp( const Node &n ) const {
2546   return (&n == this);          // Always fail except on self
2547 }
2548 
2549 //------------------------------Ideal_masked_input-----------------------------
2550 // Check for a useless mask before a partial-word store
2551 // (StoreB ... (AndI valIn conIa) )
2552 // If (conIa & mask == mask) this simplifies to
2553 // (StoreB ... (valIn) )
2554 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2555   Node *val = in(MemNode::ValueIn);
2556   if( val->Opcode() == Op_AndI ) {
2557     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2558     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2559       set_req(MemNode::ValueIn, val->in(1));
2560       return this;
2561     }
2562   }
2563   return NULL;
2564 }
2565 
2566 
2567 //------------------------------Ideal_sign_extended_input----------------------
2568 // Check for useless sign-extension before a partial-word store
2569 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2570 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2571 // (StoreB ... (valIn) )
2572 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2573   Node *val = in(MemNode::ValueIn);
2574   if( val->Opcode() == Op_RShiftI ) {
2575     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2576     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2577       Node *shl = val->in(1);
2578       if( shl->Opcode() == Op_LShiftI ) {
2579         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2580         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2581           set_req(MemNode::ValueIn, shl->in(1));
2582           return this;
2583         }
2584       }
2585     }
2586   }
2587   return NULL;
2588 }
2589 
2590 //------------------------------value_never_loaded-----------------------------------
2591 // Determine whether there are any possible loads of the value stored.
2592 // For simplicity, we actually check if there are any loads from the
2593 // address stored to, not just for loads of the value stored by this node.
2594 //
2595 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2596   Node *adr = in(Address);
2597   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2598   if (adr_oop == NULL)
2599     return false;
2600   if (!adr_oop->is_known_instance_field())
2601     return false; // if not a distinct instance, there may be aliases of the address
2602   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2603     Node *use = adr->fast_out(i);
2604     int opc = use->Opcode();
2605     if (use->is_Load() || use->is_LoadStore()) {
2606       return false;
2607     }
2608   }
2609   return true;
2610 }
2611 
2612 //=============================================================================
2613 //------------------------------Ideal------------------------------------------
2614 // If the store is from an AND mask that leaves the low bits untouched, then
2615 // we can skip the AND operation.  If the store is from a sign-extension
2616 // (a left shift, then right shift) we can skip both.
2617 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2618   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2619   if( progress != NULL ) return progress;
2620 
2621   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2622   if( progress != NULL ) return progress;
2623 
2624   // Finally check the default case
2625   return StoreNode::Ideal(phase, can_reshape);
2626 }
2627 
2628 //=============================================================================
2629 //------------------------------Ideal------------------------------------------
2630 // If the store is from an AND mask that leaves the low bits untouched, then
2631 // we can skip the AND operation
2632 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2633   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2634   if( progress != NULL ) return progress;
2635 
2636   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2637   if( progress != NULL ) return progress;
2638 
2639   // Finally check the default case
2640   return StoreNode::Ideal(phase, can_reshape);
2641 }
2642 
2643 //=============================================================================
2644 //------------------------------Identity---------------------------------------
2645 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2646   // No need to card mark when storing a null ptr
2647   Node* my_store = in(MemNode::OopStore);
2648   if (my_store->is_Store()) {
2649     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2650     if( t1 == TypePtr::NULL_PTR ) {
2651       return in(MemNode::Memory);
2652     }
2653   }
2654   return this;
2655 }
2656 
2657 //=============================================================================
2658 //------------------------------Ideal---------------------------------------
2659 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2660   Node* progress = StoreNode::Ideal(phase, can_reshape);
2661   if (progress != NULL) return progress;
2662 
2663   Node* my_store = in(MemNode::OopStore);
2664   if (my_store->is_MergeMem()) {
2665     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2666     set_req(MemNode::OopStore, mem);
2667     return this;
2668   }
2669 
2670   return NULL;
2671 }
2672 
2673 //------------------------------Value-----------------------------------------
2674 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2675   // Either input is TOP ==> the result is TOP
2676   const Type *t = phase->type( in(MemNode::Memory) );
2677   if( t == Type::TOP ) return Type::TOP;
2678   t = phase->type( in(MemNode::Address) );
2679   if( t == Type::TOP ) return Type::TOP;
2680   t = phase->type( in(MemNode::ValueIn) );
2681   if( t == Type::TOP ) return Type::TOP;
2682   // If extra input is TOP ==> the result is TOP
2683   t = phase->type( in(MemNode::OopStore) );
2684   if( t == Type::TOP ) return Type::TOP;
2685 
2686   return StoreNode::Value( phase );
2687 }
2688 
2689 
2690 //=============================================================================
2691 //----------------------------------SCMemProjNode------------------------------
2692 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2693 {
2694   return bottom_type();
2695 }
2696 
2697 //=============================================================================
2698 //----------------------------------LoadStoreNode------------------------------
2699 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2700   : Node(required),
2701     _type(rt),
2702     _adr_type(at)
2703 {
2704   init_req(MemNode::Control, c  );
2705   init_req(MemNode::Memory , mem);
2706   init_req(MemNode::Address, adr);
2707   init_req(MemNode::ValueIn, val);
2708   init_class_id(Class_LoadStore);
2709 }
2710 
2711 uint LoadStoreNode::ideal_reg() const {
2712   return _type->ideal_reg();
2713 }
2714 
2715 bool LoadStoreNode::result_not_used() const {
2716   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2717     Node *x = fast_out(i);
2718     if (x->Opcode() == Op_SCMemProj) continue;
2719     return false;
2720   }
2721   return true;
2722 }
2723 
2724 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2725 
2726 //=============================================================================
2727 //----------------------------------LoadStoreConditionalNode--------------------
2728 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2729   init_req(ExpectedIn, ex );
2730 }
2731 
2732 //=============================================================================
2733 //-------------------------------adr_type--------------------------------------
2734 // Do we Match on this edge index or not?  Do not match memory
2735 const TypePtr* ClearArrayNode::adr_type() const {
2736   Node *adr = in(3);
2737   return MemNode::calculate_adr_type(adr->bottom_type());
2738 }
2739 
2740 //------------------------------match_edge-------------------------------------
2741 // Do we Match on this edge index or not?  Do not match memory
2742 uint ClearArrayNode::match_edge(uint idx) const {
2743   return idx > 1;
2744 }
2745 
2746 //------------------------------Identity---------------------------------------
2747 // Clearing a zero length array does nothing
2748 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2749   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2750 }
2751 
2752 //------------------------------Idealize---------------------------------------
2753 // Clearing a short array is faster with stores
2754 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2755   const int unit = BytesPerLong;
2756   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2757   if (!t)  return NULL;
2758   if (!t->is_con())  return NULL;
2759   intptr_t raw_count = t->get_con();
2760   intptr_t size = raw_count;
2761   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2762   // Clearing nothing uses the Identity call.
2763   // Negative clears are possible on dead ClearArrays
2764   // (see jck test stmt114.stmt11402.val).
2765   if (size <= 0 || size % unit != 0)  return NULL;
2766   intptr_t count = size / unit;
2767   // Length too long; use fast hardware clear
2768   if (size > Matcher::init_array_short_size)  return NULL;
2769   Node *mem = in(1);
2770   if( phase->type(mem)==Type::TOP ) return NULL;
2771   Node *adr = in(3);
2772   const Type* at = phase->type(adr);
2773   if( at==Type::TOP ) return NULL;
2774   const TypePtr* atp = at->isa_ptr();
2775   // adjust atp to be the correct array element address type
2776   if (atp == NULL)  atp = TypePtr::BOTTOM;
2777   else              atp = atp->add_offset(Type::OffsetBot);
2778   // Get base for derived pointer purposes
2779   if( adr->Opcode() != Op_AddP ) Unimplemented();
2780   Node *base = adr->in(1);
2781 
2782   Node *zero = phase->makecon(TypeLong::ZERO);
2783   Node *off  = phase->MakeConX(BytesPerLong);
2784   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2785   count--;
2786   while( count-- ) {
2787     mem = phase->transform(mem);
2788     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2789     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2790   }
2791   return mem;
2792 }
2793 
2794 //----------------------------step_through----------------------------------
2795 // Return allocation input memory edge if it is different instance
2796 // or itself if it is the one we are looking for.
2797 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2798   Node* n = *np;
2799   assert(n->is_ClearArray(), "sanity");
2800   intptr_t offset;
2801   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2802   // This method is called only before Allocate nodes are expanded during
2803   // macro nodes expansion. Before that ClearArray nodes are only generated
2804   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2805   assert(alloc != NULL, "should have allocation");
2806   if (alloc->_idx == instance_id) {
2807     // Can not bypass initialization of the instance we are looking for.
2808     return false;
2809   }
2810   // Otherwise skip it.
2811   InitializeNode* init = alloc->initialization();
2812   if (init != NULL)
2813     *np = init->in(TypeFunc::Memory);
2814   else
2815     *np = alloc->in(TypeFunc::Memory);
2816   return true;
2817 }
2818 
2819 //----------------------------clear_memory-------------------------------------
2820 // Generate code to initialize object storage to zero.
2821 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2822                                    intptr_t start_offset,
2823                                    Node* end_offset,
2824                                    PhaseGVN* phase) {
2825   Compile* C = phase->C;
2826   intptr_t offset = start_offset;
2827 
2828   int unit = BytesPerLong;
2829   if ((offset % unit) != 0) {
2830     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2831     adr = phase->transform(adr);
2832     const TypePtr* atp = TypeRawPtr::BOTTOM;
2833     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2834     mem = phase->transform(mem);
2835     offset += BytesPerInt;
2836   }
2837   assert((offset % unit) == 0, "");
2838 
2839   // Initialize the remaining stuff, if any, with a ClearArray.
2840   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2841 }
2842 
2843 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2844                                    Node* start_offset,
2845                                    Node* end_offset,
2846                                    PhaseGVN* phase) {
2847   if (start_offset == end_offset) {
2848     // nothing to do
2849     return mem;
2850   }
2851 
2852   Compile* C = phase->C;
2853   int unit = BytesPerLong;
2854   Node* zbase = start_offset;
2855   Node* zend  = end_offset;
2856 
2857   // Scale to the unit required by the CPU:
2858   if (!Matcher::init_array_count_is_in_bytes) {
2859     Node* shift = phase->intcon(exact_log2(unit));
2860     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2861     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2862   }
2863 
2864   // Bulk clear double-words
2865   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2866   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2867   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2868   return phase->transform(mem);
2869 }
2870 
2871 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2872                                    intptr_t start_offset,
2873                                    intptr_t end_offset,
2874                                    PhaseGVN* phase) {
2875   if (start_offset == end_offset) {
2876     // nothing to do
2877     return mem;
2878   }
2879 
2880   Compile* C = phase->C;
2881   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2882   intptr_t done_offset = end_offset;
2883   if ((done_offset % BytesPerLong) != 0) {
2884     done_offset -= BytesPerInt;
2885   }
2886   if (done_offset > start_offset) {
2887     mem = clear_memory(ctl, mem, dest,
2888                        start_offset, phase->MakeConX(done_offset), phase);
2889   }
2890   if (done_offset < end_offset) { // emit the final 32-bit store
2891     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2892     adr = phase->transform(adr);
2893     const TypePtr* atp = TypeRawPtr::BOTTOM;
2894     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2895     mem = phase->transform(mem);
2896     done_offset += BytesPerInt;
2897   }
2898   assert(done_offset == end_offset, "");
2899   return mem;
2900 }
2901 
2902 //=============================================================================
2903 // Do not match memory edge.
2904 uint StrIntrinsicNode::match_edge(uint idx) const {
2905   return idx == 2 || idx == 3;
2906 }
2907 
2908 //------------------------------Ideal------------------------------------------
2909 // Return a node which is more "ideal" than the current node.  Strip out
2910 // control copies
2911 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2912   if (remove_dead_region(phase, can_reshape)) return this;
2913   // Don't bother trying to transform a dead node
2914   if (in(0) && in(0)->is_top())  return NULL;
2915 
2916   if (can_reshape) {
2917     Node* mem = phase->transform(in(MemNode::Memory));
2918     // If transformed to a MergeMem, get the desired slice
2919     uint alias_idx = phase->C->get_alias_index(adr_type());
2920     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2921     if (mem != in(MemNode::Memory)) {
2922       set_req(MemNode::Memory, mem);
2923       return this;
2924     }
2925   }
2926   return NULL;
2927 }
2928 
2929 //------------------------------Value------------------------------------------
2930 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2931   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2932   return bottom_type();
2933 }
2934 
2935 //=============================================================================
2936 //------------------------------match_edge-------------------------------------
2937 // Do not match memory edge
2938 uint EncodeISOArrayNode::match_edge(uint idx) const {
2939   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2940 }
2941 
2942 //------------------------------Ideal------------------------------------------
2943 // Return a node which is more "ideal" than the current node.  Strip out
2944 // control copies
2945 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2946   return remove_dead_region(phase, can_reshape) ? this : NULL;
2947 }
2948 
2949 //------------------------------Value------------------------------------------
2950 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2951   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2952   return bottom_type();
2953 }
2954 
2955 //=============================================================================
2956 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2957   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2958     _adr_type(C->get_adr_type(alias_idx))
2959 {
2960   init_class_id(Class_MemBar);
2961   Node* top = C->top();
2962   init_req(TypeFunc::I_O,top);
2963   init_req(TypeFunc::FramePtr,top);
2964   init_req(TypeFunc::ReturnAdr,top);
2965   if (precedent != NULL)
2966     init_req(TypeFunc::Parms, precedent);
2967 }
2968 
2969 //------------------------------cmp--------------------------------------------
2970 uint MemBarNode::hash() const { return NO_HASH; }
2971 uint MemBarNode::cmp( const Node &n ) const {
2972   return (&n == this);          // Always fail except on self
2973 }
2974 
2975 //------------------------------make-------------------------------------------
2976 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2977   switch (opcode) {
2978   case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
2979   case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
2980   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
2981   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
2982   case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
2983   case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
2984   case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
2985   case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
2986   default:                 ShouldNotReachHere(); return NULL;
2987   }
2988 }
2989 
2990 //------------------------------Ideal------------------------------------------
2991 // Return a node which is more "ideal" than the current node.  Strip out
2992 // control copies
2993 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2994   if (remove_dead_region(phase, can_reshape)) return this;
2995   // Don't bother trying to transform a dead node
2996   if (in(0) && in(0)->is_top()) {
2997     return NULL;
2998   }
2999 
3000   // Eliminate volatile MemBars for scalar replaced objects.
3001   if (can_reshape && req() == (Precedent+1)) {
3002     bool eliminate = false;
3003     int opc = Opcode();
3004     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3005       // Volatile field loads and stores.
3006       Node* my_mem = in(MemBarNode::Precedent);
3007       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3008       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3009         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3010         // replace this Precedent (decodeN) with the Load instead.
3011         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3012           Node* load_node = my_mem->in(1);
3013           set_req(MemBarNode::Precedent, load_node);
3014           phase->is_IterGVN()->_worklist.push(my_mem);
3015           my_mem = load_node;
3016         } else {
3017           assert(my_mem->unique_out() == this, "sanity");
3018           del_req(Precedent);
3019           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3020           my_mem = NULL;
3021         }
3022       }
3023       if (my_mem != NULL && my_mem->is_Mem()) {
3024         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3025         // Check for scalar replaced object reference.
3026         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3027             t_oop->offset() != Type::OffsetBot &&
3028             t_oop->offset() != Type::OffsetTop) {
3029           eliminate = true;
3030         }
3031       }
3032     } else if (opc == Op_MemBarRelease) {
3033       // Final field stores.
3034       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3035       if ((alloc != NULL) && alloc->is_Allocate() &&
3036           alloc->as_Allocate()->_is_non_escaping) {
3037         // The allocated object does not escape.
3038         eliminate = true;
3039       }
3040     }
3041     if (eliminate) {
3042       // Replace MemBar projections by its inputs.
3043       PhaseIterGVN* igvn = phase->is_IterGVN();
3044       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3045       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3046       // Must return either the original node (now dead) or a new node
3047       // (Do not return a top here, since that would break the uniqueness of top.)
3048       return new (phase->C) ConINode(TypeInt::ZERO);
3049     }
3050   }
3051   return NULL;
3052 }
3053 
3054 //------------------------------Value------------------------------------------
3055 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3056   if( !in(0) ) return Type::TOP;
3057   if( phase->type(in(0)) == Type::TOP )
3058     return Type::TOP;
3059   return TypeTuple::MEMBAR;
3060 }
3061 
3062 //------------------------------match------------------------------------------
3063 // Construct projections for memory.
3064 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3065   switch (proj->_con) {
3066   case TypeFunc::Control:
3067   case TypeFunc::Memory:
3068     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3069   }
3070   ShouldNotReachHere();
3071   return NULL;
3072 }
3073 
3074 //===========================InitializeNode====================================
3075 // SUMMARY:
3076 // This node acts as a memory barrier on raw memory, after some raw stores.
3077 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3078 // The Initialize can 'capture' suitably constrained stores as raw inits.
3079 // It can coalesce related raw stores into larger units (called 'tiles').
3080 // It can avoid zeroing new storage for memory units which have raw inits.
3081 // At macro-expansion, it is marked 'complete', and does not optimize further.
3082 //
3083 // EXAMPLE:
3084 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3085 //   ctl = incoming control; mem* = incoming memory
3086 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3087 // First allocate uninitialized memory and fill in the header:
3088 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3089 //   ctl := alloc.Control; mem* := alloc.Memory*
3090 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3091 // Then initialize to zero the non-header parts of the raw memory block:
3092 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3093 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3094 // After the initialize node executes, the object is ready for service:
3095 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3096 // Suppose its body is immediately initialized as {1,2}:
3097 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3098 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3099 //   mem.SLICE(#short[*]) := store2
3100 //
3101 // DETAILS:
3102 // An InitializeNode collects and isolates object initialization after
3103 // an AllocateNode and before the next possible safepoint.  As a
3104 // memory barrier (MemBarNode), it keeps critical stores from drifting
3105 // down past any safepoint or any publication of the allocation.
3106 // Before this barrier, a newly-allocated object may have uninitialized bits.
3107 // After this barrier, it may be treated as a real oop, and GC is allowed.
3108 //
3109 // The semantics of the InitializeNode include an implicit zeroing of
3110 // the new object from object header to the end of the object.
3111 // (The object header and end are determined by the AllocateNode.)
3112 //
3113 // Certain stores may be added as direct inputs to the InitializeNode.
3114 // These stores must update raw memory, and they must be to addresses
3115 // derived from the raw address produced by AllocateNode, and with
3116 // a constant offset.  They must be ordered by increasing offset.
3117 // The first one is at in(RawStores), the last at in(req()-1).
3118 // Unlike most memory operations, they are not linked in a chain,
3119 // but are displayed in parallel as users of the rawmem output of
3120 // the allocation.
3121 //
3122 // (See comments in InitializeNode::capture_store, which continue
3123 // the example given above.)
3124 //
3125 // When the associated Allocate is macro-expanded, the InitializeNode
3126 // may be rewritten to optimize collected stores.  A ClearArrayNode
3127 // may also be created at that point to represent any required zeroing.
3128 // The InitializeNode is then marked 'complete', prohibiting further
3129 // capturing of nearby memory operations.
3130 //
3131 // During macro-expansion, all captured initializations which store
3132 // constant values of 32 bits or smaller are coalesced (if advantageous)
3133 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3134 // initialized in fewer memory operations.  Memory words which are
3135 // covered by neither tiles nor non-constant stores are pre-zeroed
3136 // by explicit stores of zero.  (The code shape happens to do all
3137 // zeroing first, then all other stores, with both sequences occurring
3138 // in order of ascending offsets.)
3139 //
3140 // Alternatively, code may be inserted between an AllocateNode and its
3141 // InitializeNode, to perform arbitrary initialization of the new object.
3142 // E.g., the object copying intrinsics insert complex data transfers here.
3143 // The initialization must then be marked as 'complete' disable the
3144 // built-in zeroing semantics and the collection of initializing stores.
3145 //
3146 // While an InitializeNode is incomplete, reads from the memory state
3147 // produced by it are optimizable if they match the control edge and
3148 // new oop address associated with the allocation/initialization.
3149 // They return a stored value (if the offset matches) or else zero.
3150 // A write to the memory state, if it matches control and address,
3151 // and if it is to a constant offset, may be 'captured' by the
3152 // InitializeNode.  It is cloned as a raw memory operation and rewired
3153 // inside the initialization, to the raw oop produced by the allocation.
3154 // Operations on addresses which are provably distinct (e.g., to
3155 // other AllocateNodes) are allowed to bypass the initialization.
3156 //
3157 // The effect of all this is to consolidate object initialization
3158 // (both arrays and non-arrays, both piecewise and bulk) into a
3159 // single location, where it can be optimized as a unit.
3160 //
3161 // Only stores with an offset less than TrackedInitializationLimit words
3162 // will be considered for capture by an InitializeNode.  This puts a
3163 // reasonable limit on the complexity of optimized initializations.
3164 
3165 //---------------------------InitializeNode------------------------------------
3166 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3167   : _is_complete(Incomplete), _does_not_escape(false),
3168     MemBarNode(C, adr_type, rawoop)
3169 {
3170   init_class_id(Class_Initialize);
3171 
3172   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3173   assert(in(RawAddress) == rawoop, "proper init");
3174   // Note:  allocation() can be NULL, for secondary initialization barriers
3175 }
3176 
3177 // Since this node is not matched, it will be processed by the
3178 // register allocator.  Declare that there are no constraints
3179 // on the allocation of the RawAddress edge.
3180 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3181   // This edge should be set to top, by the set_complete.  But be conservative.
3182   if (idx == InitializeNode::RawAddress)
3183     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3184   return RegMask::Empty;
3185 }
3186 
3187 Node* InitializeNode::memory(uint alias_idx) {
3188   Node* mem = in(Memory);
3189   if (mem->is_MergeMem()) {
3190     return mem->as_MergeMem()->memory_at(alias_idx);
3191   } else {
3192     // incoming raw memory is not split
3193     return mem;
3194   }
3195 }
3196 
3197 bool InitializeNode::is_non_zero() {
3198   if (is_complete())  return false;
3199   remove_extra_zeroes();
3200   return (req() > RawStores);
3201 }
3202 
3203 void InitializeNode::set_complete(PhaseGVN* phase) {
3204   assert(!is_complete(), "caller responsibility");
3205   _is_complete = Complete;
3206 
3207   // After this node is complete, it contains a bunch of
3208   // raw-memory initializations.  There is no need for
3209   // it to have anything to do with non-raw memory effects.
3210   // Therefore, tell all non-raw users to re-optimize themselves,
3211   // after skipping the memory effects of this initialization.
3212   PhaseIterGVN* igvn = phase->is_IterGVN();
3213   if (igvn)  igvn->add_users_to_worklist(this);
3214 }
3215 
3216 // convenience function
3217 // return false if the init contains any stores already
3218 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3219   InitializeNode* init = initialization();
3220   if (init == NULL || init->is_complete())  return false;
3221   init->remove_extra_zeroes();
3222   // for now, if this allocation has already collected any inits, bail:
3223   if (init->is_non_zero())  return false;
3224   init->set_complete(phase);
3225   return true;
3226 }
3227 
3228 void InitializeNode::remove_extra_zeroes() {
3229   if (req() == RawStores)  return;
3230   Node* zmem = zero_memory();
3231   uint fill = RawStores;
3232   for (uint i = fill; i < req(); i++) {
3233     Node* n = in(i);
3234     if (n->is_top() || n == zmem)  continue;  // skip
3235     if (fill < i)  set_req(fill, n);          // compact
3236     ++fill;
3237   }
3238   // delete any empty spaces created:
3239   while (fill < req()) {
3240     del_req(fill);
3241   }
3242 }
3243 
3244 // Helper for remembering which stores go with which offsets.
3245 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3246   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3247   intptr_t offset = -1;
3248   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3249                                                phase, offset);
3250   if (base == NULL)     return -1;  // something is dead,
3251   if (offset < 0)       return -1;  //        dead, dead
3252   return offset;
3253 }
3254 
3255 // Helper for proving that an initialization expression is
3256 // "simple enough" to be folded into an object initialization.
3257 // Attempts to prove that a store's initial value 'n' can be captured
3258 // within the initialization without creating a vicious cycle, such as:
3259 //     { Foo p = new Foo(); p.next = p; }
3260 // True for constants and parameters and small combinations thereof.
3261 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3262   if (n == NULL)      return true;   // (can this really happen?)
3263   if (n->is_Proj())   n = n->in(0);
3264   if (n == this)      return false;  // found a cycle
3265   if (n->is_Con())    return true;
3266   if (n->is_Start())  return true;   // params, etc., are OK
3267   if (n->is_Root())   return true;   // even better
3268 
3269   Node* ctl = n->in(0);
3270   if (ctl != NULL && !ctl->is_top()) {
3271     if (ctl->is_Proj())  ctl = ctl->in(0);
3272     if (ctl == this)  return false;
3273 
3274     // If we already know that the enclosing memory op is pinned right after
3275     // the init, then any control flow that the store has picked up
3276     // must have preceded the init, or else be equal to the init.
3277     // Even after loop optimizations (which might change control edges)
3278     // a store is never pinned *before* the availability of its inputs.
3279     if (!MemNode::all_controls_dominate(n, this))
3280       return false;                  // failed to prove a good control
3281   }
3282 
3283   // Check data edges for possible dependencies on 'this'.
3284   if ((count += 1) > 20)  return false;  // complexity limit
3285   for (uint i = 1; i < n->req(); i++) {
3286     Node* m = n->in(i);
3287     if (m == NULL || m == n || m->is_top())  continue;
3288     uint first_i = n->find_edge(m);
3289     if (i != first_i)  continue;  // process duplicate edge just once
3290     if (!detect_init_independence(m, count)) {
3291       return false;
3292     }
3293   }
3294 
3295   return true;
3296 }
3297 
3298 // Here are all the checks a Store must pass before it can be moved into
3299 // an initialization.  Returns zero if a check fails.
3300 // On success, returns the (constant) offset to which the store applies,
3301 // within the initialized memory.
3302 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3303   const int FAIL = 0;
3304   if (st->req() != MemNode::ValueIn + 1)
3305     return FAIL;                // an inscrutable StoreNode (card mark?)
3306   Node* ctl = st->in(MemNode::Control);
3307   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3308     return FAIL;                // must be unconditional after the initialization
3309   Node* mem = st->in(MemNode::Memory);
3310   if (!(mem->is_Proj() && mem->in(0) == this))
3311     return FAIL;                // must not be preceded by other stores
3312   Node* adr = st->in(MemNode::Address);
3313   intptr_t offset;
3314   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3315   if (alloc == NULL)
3316     return FAIL;                // inscrutable address
3317   if (alloc != allocation())
3318     return FAIL;                // wrong allocation!  (store needs to float up)
3319   Node* val = st->in(MemNode::ValueIn);
3320   int complexity_count = 0;
3321   if (!detect_init_independence(val, complexity_count))
3322     return FAIL;                // stored value must be 'simple enough'
3323 
3324   // The Store can be captured only if nothing after the allocation
3325   // and before the Store is using the memory location that the store
3326   // overwrites.
3327   bool failed = false;
3328   // If is_complete_with_arraycopy() is true the shape of the graph is
3329   // well defined and is safe so no need for extra checks.
3330   if (!is_complete_with_arraycopy()) {
3331     // We are going to look at each use of the memory state following
3332     // the allocation to make sure nothing reads the memory that the
3333     // Store writes.
3334     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3335     int alias_idx = phase->C->get_alias_index(t_adr);
3336     ResourceMark rm;
3337     Unique_Node_List mems;
3338     mems.push(mem);
3339     Node* unique_merge = NULL;
3340     for (uint next = 0; next < mems.size(); ++next) {
3341       Node *m  = mems.at(next);
3342       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3343         Node *n = m->fast_out(j);
3344         if (n->outcnt() == 0) {
3345           continue;
3346         }
3347         if (n == st) {
3348           continue;
3349         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3350           // If the control of this use is different from the control
3351           // of the Store which is right after the InitializeNode then
3352           // this node cannot be between the InitializeNode and the
3353           // Store.
3354           continue;
3355         } else if (n->is_MergeMem()) {
3356           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3357             // We can hit a MergeMemNode (that will likely go away
3358             // later) that is a direct use of the memory state
3359             // following the InitializeNode on the same slice as the
3360             // store node that we'd like to capture. We need to check
3361             // the uses of the MergeMemNode.
3362             mems.push(n);
3363           }
3364         } else if (n->is_Mem()) {
3365           Node* other_adr = n->in(MemNode::Address);
3366           if (other_adr == adr) {
3367             failed = true;
3368             break;
3369           } else {
3370             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3371             if (other_t_adr != NULL) {
3372               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3373               if (other_alias_idx == alias_idx) {
3374                 // A load from the same memory slice as the store right
3375                 // after the InitializeNode. We check the control of the
3376                 // object/array that is loaded from. If it's the same as
3377                 // the store control then we cannot capture the store.
3378                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3379                 Node* base = other_adr;
3380                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3381                 base = base->in(AddPNode::Base);
3382                 if (base != NULL) {
3383                   base = base->uncast();
3384                   if (base->is_Proj() && base->in(0) == alloc) {
3385                     failed = true;
3386                     break;
3387                   }
3388                 }
3389               }
3390             }
3391           }
3392         } else {
3393           failed = true;
3394           break;
3395         }
3396       }
3397     }
3398   }
3399   if (failed) {
3400     if (!can_reshape) {
3401       // We decided we couldn't capture the store during parsing. We
3402       // should try again during the next IGVN once the graph is
3403       // cleaner.
3404       phase->C->record_for_igvn(st);
3405     }
3406     return FAIL;
3407   }
3408 
3409   return offset;                // success
3410 }
3411 
3412 // Find the captured store in(i) which corresponds to the range
3413 // [start..start+size) in the initialized object.
3414 // If there is one, return its index i.  If there isn't, return the
3415 // negative of the index where it should be inserted.
3416 // Return 0 if the queried range overlaps an initialization boundary
3417 // or if dead code is encountered.
3418 // If size_in_bytes is zero, do not bother with overlap checks.
3419 int InitializeNode::captured_store_insertion_point(intptr_t start,
3420                                                    int size_in_bytes,
3421                                                    PhaseTransform* phase) {
3422   const int FAIL = 0, MAX_STORE = BytesPerLong;
3423 
3424   if (is_complete())
3425     return FAIL;                // arraycopy got here first; punt
3426 
3427   assert(allocation() != NULL, "must be present");
3428 
3429   // no negatives, no header fields:
3430   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3431 
3432   // after a certain size, we bail out on tracking all the stores:
3433   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3434   if (start >= ti_limit)  return FAIL;
3435 
3436   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3437     if (i >= limit)  return -(int)i; // not found; here is where to put it
3438 
3439     Node*    st     = in(i);
3440     intptr_t st_off = get_store_offset(st, phase);
3441     if (st_off < 0) {
3442       if (st != zero_memory()) {
3443         return FAIL;            // bail out if there is dead garbage
3444       }
3445     } else if (st_off > start) {
3446       // ...we are done, since stores are ordered
3447       if (st_off < start + size_in_bytes) {
3448         return FAIL;            // the next store overlaps
3449       }
3450       return -(int)i;           // not found; here is where to put it
3451     } else if (st_off < start) {
3452       if (size_in_bytes != 0 &&
3453           start < st_off + MAX_STORE &&
3454           start < st_off + st->as_Store()->memory_size()) {
3455         return FAIL;            // the previous store overlaps
3456       }
3457     } else {
3458       if (size_in_bytes != 0 &&
3459           st->as_Store()->memory_size() != size_in_bytes) {
3460         return FAIL;            // mismatched store size
3461       }
3462       return i;
3463     }
3464 
3465     ++i;
3466   }
3467 }
3468 
3469 // Look for a captured store which initializes at the offset 'start'
3470 // with the given size.  If there is no such store, and no other
3471 // initialization interferes, then return zero_memory (the memory
3472 // projection of the AllocateNode).
3473 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3474                                           PhaseTransform* phase) {
3475   assert(stores_are_sane(phase), "");
3476   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3477   if (i == 0) {
3478     return NULL;                // something is dead
3479   } else if (i < 0) {
3480     return zero_memory();       // just primordial zero bits here
3481   } else {
3482     Node* st = in(i);           // here is the store at this position
3483     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3484     return st;
3485   }
3486 }
3487 
3488 // Create, as a raw pointer, an address within my new object at 'offset'.
3489 Node* InitializeNode::make_raw_address(intptr_t offset,
3490                                        PhaseTransform* phase) {
3491   Node* addr = in(RawAddress);
3492   if (offset != 0) {
3493     Compile* C = phase->C;
3494     addr = phase->transform( new (C) AddPNode(C->top(), addr,
3495                                                  phase->MakeConX(offset)) );
3496   }
3497   return addr;
3498 }
3499 
3500 // Clone the given store, converting it into a raw store
3501 // initializing a field or element of my new object.
3502 // Caller is responsible for retiring the original store,
3503 // with subsume_node or the like.
3504 //
3505 // From the example above InitializeNode::InitializeNode,
3506 // here are the old stores to be captured:
3507 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3508 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3509 //
3510 // Here is the changed code; note the extra edges on init:
3511 //   alloc = (Allocate ...)
3512 //   rawoop = alloc.RawAddress
3513 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3514 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3515 //   init = (Initialize alloc.Control alloc.Memory rawoop
3516 //                      rawstore1 rawstore2)
3517 //
3518 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3519                                     PhaseTransform* phase, bool can_reshape) {
3520   assert(stores_are_sane(phase), "");
3521 
3522   if (start < 0)  return NULL;
3523   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3524 
3525   Compile* C = phase->C;
3526   int size_in_bytes = st->memory_size();
3527   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3528   if (i == 0)  return NULL;     // bail out
3529   Node* prev_mem = NULL;        // raw memory for the captured store
3530   if (i > 0) {
3531     prev_mem = in(i);           // there is a pre-existing store under this one
3532     set_req(i, C->top());       // temporarily disconnect it
3533     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3534   } else {
3535     i = -i;                     // no pre-existing store
3536     prev_mem = zero_memory();   // a slice of the newly allocated object
3537     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3538       set_req(--i, C->top());   // reuse this edge; it has been folded away
3539     else
3540       ins_req(i, C->top());     // build a new edge
3541   }
3542   Node* new_st = st->clone();
3543   new_st->set_req(MemNode::Control, in(Control));
3544   new_st->set_req(MemNode::Memory,  prev_mem);
3545   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3546   new_st = phase->transform(new_st);
3547 
3548   // At this point, new_st might have swallowed a pre-existing store
3549   // at the same offset, or perhaps new_st might have disappeared,
3550   // if it redundantly stored the same value (or zero to fresh memory).
3551 
3552   // In any case, wire it in:
3553   set_req(i, new_st);
3554 
3555   // The caller may now kill the old guy.
3556   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3557   assert(check_st == new_st || check_st == NULL, "must be findable");
3558   assert(!is_complete(), "");
3559   return new_st;
3560 }
3561 
3562 static bool store_constant(jlong* tiles, int num_tiles,
3563                            intptr_t st_off, int st_size,
3564                            jlong con) {
3565   if ((st_off & (st_size-1)) != 0)
3566     return false;               // strange store offset (assume size==2**N)
3567   address addr = (address)tiles + st_off;
3568   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3569   switch (st_size) {
3570   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3571   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3572   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3573   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3574   default: return false;        // strange store size (detect size!=2**N here)
3575   }
3576   return true;                  // return success to caller
3577 }
3578 
3579 // Coalesce subword constants into int constants and possibly
3580 // into long constants.  The goal, if the CPU permits,
3581 // is to initialize the object with a small number of 64-bit tiles.
3582 // Also, convert floating-point constants to bit patterns.
3583 // Non-constants are not relevant to this pass.
3584 //
3585 // In terms of the running example on InitializeNode::InitializeNode
3586 // and InitializeNode::capture_store, here is the transformation
3587 // of rawstore1 and rawstore2 into rawstore12:
3588 //   alloc = (Allocate ...)
3589 //   rawoop = alloc.RawAddress
3590 //   tile12 = 0x00010002
3591 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3592 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3593 //
3594 void
3595 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3596                                         Node* size_in_bytes,
3597                                         PhaseGVN* phase) {
3598   Compile* C = phase->C;
3599 
3600   assert(stores_are_sane(phase), "");
3601   // Note:  After this pass, they are not completely sane,
3602   // since there may be some overlaps.
3603 
3604   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3605 
3606   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3607   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3608   size_limit = MIN2(size_limit, ti_limit);
3609   size_limit = align_size_up(size_limit, BytesPerLong);
3610   int num_tiles = size_limit / BytesPerLong;
3611 
3612   // allocate space for the tile map:
3613   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3614   jlong  tiles_buf[small_len];
3615   Node*  nodes_buf[small_len];
3616   jlong  inits_buf[small_len];
3617   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3618                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3619   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3620                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3621   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3622                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3623   // tiles: exact bitwise model of all primitive constants
3624   // nodes: last constant-storing node subsumed into the tiles model
3625   // inits: which bytes (in each tile) are touched by any initializations
3626 
3627   //// Pass A: Fill in the tile model with any relevant stores.
3628 
3629   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3630   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3631   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3632   Node* zmem = zero_memory(); // initially zero memory state
3633   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3634     Node* st = in(i);
3635     intptr_t st_off = get_store_offset(st, phase);
3636 
3637     // Figure out the store's offset and constant value:
3638     if (st_off < header_size)             continue; //skip (ignore header)
3639     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3640     int st_size = st->as_Store()->memory_size();
3641     if (st_off + st_size > size_limit)    break;
3642 
3643     // Record which bytes are touched, whether by constant or not.
3644     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3645       continue;                 // skip (strange store size)
3646 
3647     const Type* val = phase->type(st->in(MemNode::ValueIn));
3648     if (!val->singleton())                continue; //skip (non-con store)
3649     BasicType type = val->basic_type();
3650 
3651     jlong con = 0;
3652     switch (type) {
3653     case T_INT:    con = val->is_int()->get_con();  break;
3654     case T_LONG:   con = val->is_long()->get_con(); break;
3655     case T_FLOAT:  con = jint_cast(val->getf());    break;
3656     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3657     default:                              continue; //skip (odd store type)
3658     }
3659 
3660     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3661         st->Opcode() == Op_StoreL) {
3662       continue;                 // This StoreL is already optimal.
3663     }
3664 
3665     // Store down the constant.
3666     store_constant(tiles, num_tiles, st_off, st_size, con);
3667 
3668     intptr_t j = st_off >> LogBytesPerLong;
3669 
3670     if (type == T_INT && st_size == BytesPerInt
3671         && (st_off & BytesPerInt) == BytesPerInt) {
3672       jlong lcon = tiles[j];
3673       if (!Matcher::isSimpleConstant64(lcon) &&
3674           st->Opcode() == Op_StoreI) {
3675         // This StoreI is already optimal by itself.
3676         jint* intcon = (jint*) &tiles[j];
3677         intcon[1] = 0;  // undo the store_constant()
3678 
3679         // If the previous store is also optimal by itself, back up and
3680         // undo the action of the previous loop iteration... if we can.
3681         // But if we can't, just let the previous half take care of itself.
3682         st = nodes[j];
3683         st_off -= BytesPerInt;
3684         con = intcon[0];
3685         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3686           assert(st_off >= header_size, "still ignoring header");
3687           assert(get_store_offset(st, phase) == st_off, "must be");
3688           assert(in(i-1) == zmem, "must be");
3689           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3690           assert(con == tcon->is_int()->get_con(), "must be");
3691           // Undo the effects of the previous loop trip, which swallowed st:
3692           intcon[0] = 0;        // undo store_constant()
3693           set_req(i-1, st);     // undo set_req(i, zmem)
3694           nodes[j] = NULL;      // undo nodes[j] = st
3695           --old_subword;        // undo ++old_subword
3696         }
3697         continue;               // This StoreI is already optimal.
3698       }
3699     }
3700 
3701     // This store is not needed.
3702     set_req(i, zmem);
3703     nodes[j] = st;              // record for the moment
3704     if (st_size < BytesPerLong) // something has changed
3705           ++old_subword;        // includes int/float, but who's counting...
3706     else  ++old_long;
3707   }
3708 
3709   if ((old_subword + old_long) == 0)
3710     return;                     // nothing more to do
3711 
3712   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3713   // Be sure to insert them before overlapping non-constant stores.
3714   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3715   for (int j = 0; j < num_tiles; j++) {
3716     jlong con  = tiles[j];
3717     jlong init = inits[j];
3718     if (con == 0)  continue;
3719     jint con0,  con1;           // split the constant, address-wise
3720     jint init0, init1;          // split the init map, address-wise
3721     { union { jlong con; jint intcon[2]; } u;
3722       u.con = con;
3723       con0  = u.intcon[0];
3724       con1  = u.intcon[1];
3725       u.con = init;
3726       init0 = u.intcon[0];
3727       init1 = u.intcon[1];
3728     }
3729 
3730     Node* old = nodes[j];
3731     assert(old != NULL, "need the prior store");
3732     intptr_t offset = (j * BytesPerLong);
3733 
3734     bool split = !Matcher::isSimpleConstant64(con);
3735 
3736     if (offset < header_size) {
3737       assert(offset + BytesPerInt >= header_size, "second int counts");
3738       assert(*(jint*)&tiles[j] == 0, "junk in header");
3739       split = true;             // only the second word counts
3740       // Example:  int a[] = { 42 ... }
3741     } else if (con0 == 0 && init0 == -1) {
3742       split = true;             // first word is covered by full inits
3743       // Example:  int a[] = { ... foo(), 42 ... }
3744     } else if (con1 == 0 && init1 == -1) {
3745       split = true;             // second word is covered by full inits
3746       // Example:  int a[] = { ... 42, foo() ... }
3747     }
3748 
3749     // Here's a case where init0 is neither 0 nor -1:
3750     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3751     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3752     // In this case the tile is not split; it is (jlong)42.
3753     // The big tile is stored down, and then the foo() value is inserted.
3754     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3755 
3756     Node* ctl = old->in(MemNode::Control);
3757     Node* adr = make_raw_address(offset, phase);
3758     const TypePtr* atp = TypeRawPtr::BOTTOM;
3759 
3760     // One or two coalesced stores to plop down.
3761     Node*    st[2];
3762     intptr_t off[2];
3763     int  nst = 0;
3764     if (!split) {
3765       ++new_long;
3766       off[nst] = offset;
3767       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3768                                   phase->longcon(con), T_LONG);
3769     } else {
3770       // Omit either if it is a zero.
3771       if (con0 != 0) {
3772         ++new_int;
3773         off[nst]  = offset;
3774         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3775                                     phase->intcon(con0), T_INT);
3776       }
3777       if (con1 != 0) {
3778         ++new_int;
3779         offset += BytesPerInt;
3780         adr = make_raw_address(offset, phase);
3781         off[nst]  = offset;
3782         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3783                                     phase->intcon(con1), T_INT);
3784       }
3785     }
3786 
3787     // Insert second store first, then the first before the second.
3788     // Insert each one just before any overlapping non-constant stores.
3789     while (nst > 0) {
3790       Node* st1 = st[--nst];
3791       C->copy_node_notes_to(st1, old);
3792       st1 = phase->transform(st1);
3793       offset = off[nst];
3794       assert(offset >= header_size, "do not smash header");
3795       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3796       guarantee(ins_idx != 0, "must re-insert constant store");
3797       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3798       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3799         set_req(--ins_idx, st1);
3800       else
3801         ins_req(ins_idx, st1);
3802     }
3803   }
3804 
3805   if (PrintCompilation && WizardMode)
3806     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3807                   old_subword, old_long, new_int, new_long);
3808   if (C->log() != NULL)
3809     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3810                    old_subword, old_long, new_int, new_long);
3811 
3812   // Clean up any remaining occurrences of zmem:
3813   remove_extra_zeroes();
3814 }
3815 
3816 // Explore forward from in(start) to find the first fully initialized
3817 // word, and return its offset.  Skip groups of subword stores which
3818 // together initialize full words.  If in(start) is itself part of a
3819 // fully initialized word, return the offset of in(start).  If there
3820 // are no following full-word stores, or if something is fishy, return
3821 // a negative value.
3822 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3823   int       int_map = 0;
3824   intptr_t  int_map_off = 0;
3825   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3826 
3827   for (uint i = start, limit = req(); i < limit; i++) {
3828     Node* st = in(i);
3829 
3830     intptr_t st_off = get_store_offset(st, phase);
3831     if (st_off < 0)  break;  // return conservative answer
3832 
3833     int st_size = st->as_Store()->memory_size();
3834     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3835       return st_off;            // we found a complete word init
3836     }
3837 
3838     // update the map:
3839 
3840     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3841     if (this_int_off != int_map_off) {
3842       // reset the map:
3843       int_map = 0;
3844       int_map_off = this_int_off;
3845     }
3846 
3847     int subword_off = st_off - this_int_off;
3848     int_map |= right_n_bits(st_size) << subword_off;
3849     if ((int_map & FULL_MAP) == FULL_MAP) {
3850       return this_int_off;      // we found a complete word init
3851     }
3852 
3853     // Did this store hit or cross the word boundary?
3854     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3855     if (next_int_off == this_int_off + BytesPerInt) {
3856       // We passed the current int, without fully initializing it.
3857       int_map_off = next_int_off;
3858       int_map >>= BytesPerInt;
3859     } else if (next_int_off > this_int_off + BytesPerInt) {
3860       // We passed the current and next int.
3861       return this_int_off + BytesPerInt;
3862     }
3863   }
3864 
3865   return -1;
3866 }
3867 
3868 
3869 // Called when the associated AllocateNode is expanded into CFG.
3870 // At this point, we may perform additional optimizations.
3871 // Linearize the stores by ascending offset, to make memory
3872 // activity as coherent as possible.
3873 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3874                                       intptr_t header_size,
3875                                       Node* size_in_bytes,
3876                                       PhaseGVN* phase) {
3877   assert(!is_complete(), "not already complete");
3878   assert(stores_are_sane(phase), "");
3879   assert(allocation() != NULL, "must be present");
3880 
3881   remove_extra_zeroes();
3882 
3883   if (ReduceFieldZeroing || ReduceBulkZeroing)
3884     // reduce instruction count for common initialization patterns
3885     coalesce_subword_stores(header_size, size_in_bytes, phase);
3886 
3887   Node* zmem = zero_memory();   // initially zero memory state
3888   Node* inits = zmem;           // accumulating a linearized chain of inits
3889   #ifdef ASSERT
3890   intptr_t first_offset = allocation()->minimum_header_size();
3891   intptr_t last_init_off = first_offset;  // previous init offset
3892   intptr_t last_init_end = first_offset;  // previous init offset+size
3893   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3894   #endif
3895   intptr_t zeroes_done = header_size;
3896 
3897   bool do_zeroing = true;       // we might give up if inits are very sparse
3898   int  big_init_gaps = 0;       // how many large gaps have we seen?
3899 
3900   if (ZeroTLAB)  do_zeroing = false;
3901   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3902 
3903   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3904     Node* st = in(i);
3905     intptr_t st_off = get_store_offset(st, phase);
3906     if (st_off < 0)
3907       break;                    // unknown junk in the inits
3908     if (st->in(MemNode::Memory) != zmem)
3909       break;                    // complicated store chains somehow in list
3910 
3911     int st_size = st->as_Store()->memory_size();
3912     intptr_t next_init_off = st_off + st_size;
3913 
3914     if (do_zeroing && zeroes_done < next_init_off) {
3915       // See if this store needs a zero before it or under it.
3916       intptr_t zeroes_needed = st_off;
3917 
3918       if (st_size < BytesPerInt) {
3919         // Look for subword stores which only partially initialize words.
3920         // If we find some, we must lay down some word-level zeroes first,
3921         // underneath the subword stores.
3922         //
3923         // Examples:
3924         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3925         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3926         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3927         //
3928         // Note:  coalesce_subword_stores may have already done this,
3929         // if it was prompted by constant non-zero subword initializers.
3930         // But this case can still arise with non-constant stores.
3931 
3932         intptr_t next_full_store = find_next_fullword_store(i, phase);
3933 
3934         // In the examples above:
3935         //   in(i)          p   q   r   s     x   y     z
3936         //   st_off        12  13  14  15    12  13    14
3937         //   st_size        1   1   1   1     1   1     1
3938         //   next_full_s.  12  16  16  16    16  16    16
3939         //   z's_done      12  16  16  16    12  16    12
3940         //   z's_needed    12  16  16  16    16  16    16
3941         //   zsize          0   0   0   0     4   0     4
3942         if (next_full_store < 0) {
3943           // Conservative tack:  Zero to end of current word.
3944           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3945         } else {
3946           // Zero to beginning of next fully initialized word.
3947           // Or, don't zero at all, if we are already in that word.
3948           assert(next_full_store >= zeroes_needed, "must go forward");
3949           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3950           zeroes_needed = next_full_store;
3951         }
3952       }
3953 
3954       if (zeroes_needed > zeroes_done) {
3955         intptr_t zsize = zeroes_needed - zeroes_done;
3956         // Do some incremental zeroing on rawmem, in parallel with inits.
3957         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3958         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3959                                               zeroes_done, zeroes_needed,
3960                                               phase);
3961         zeroes_done = zeroes_needed;
3962         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3963           do_zeroing = false;   // leave the hole, next time
3964       }
3965     }
3966 
3967     // Collect the store and move on:
3968     st->set_req(MemNode::Memory, inits);
3969     inits = st;                 // put it on the linearized chain
3970     set_req(i, zmem);           // unhook from previous position
3971 
3972     if (zeroes_done == st_off)
3973       zeroes_done = next_init_off;
3974 
3975     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3976 
3977     #ifdef ASSERT
3978     // Various order invariants.  Weaker than stores_are_sane because
3979     // a large constant tile can be filled in by smaller non-constant stores.
3980     assert(st_off >= last_init_off, "inits do not reverse");
3981     last_init_off = st_off;
3982     const Type* val = NULL;
3983     if (st_size >= BytesPerInt &&
3984         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3985         (int)val->basic_type() < (int)T_OBJECT) {
3986       assert(st_off >= last_tile_end, "tiles do not overlap");
3987       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3988       last_tile_end = MAX2(last_tile_end, next_init_off);
3989     } else {
3990       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3991       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3992       assert(st_off      >= last_init_end, "inits do not overlap");
3993       last_init_end = next_init_off;  // it's a non-tile
3994     }
3995     #endif //ASSERT
3996   }
3997 
3998   remove_extra_zeroes();        // clear out all the zmems left over
3999   add_req(inits);
4000 
4001   if (!ZeroTLAB) {
4002     // If anything remains to be zeroed, zero it all now.
4003     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
4004     // if it is the last unused 4 bytes of an instance, forget about it
4005     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4006     if (zeroes_done + BytesPerLong >= size_limit) {
4007       assert(allocation() != NULL, "");
4008       if (allocation()->Opcode() == Op_Allocate) {
4009         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
4010         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4011         if (zeroes_done == k->layout_helper())
4012           zeroes_done = size_limit;
4013       }
4014     }
4015     if (zeroes_done < size_limit) {
4016       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4017                                             zeroes_done, size_in_bytes, phase);
4018     }
4019   }
4020 
4021   set_complete(phase);
4022   return rawmem;
4023 }
4024 
4025 
4026 #ifdef ASSERT
4027 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4028   if (is_complete())
4029     return true;                // stores could be anything at this point
4030   assert(allocation() != NULL, "must be present");
4031   intptr_t last_off = allocation()->minimum_header_size();
4032   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4033     Node* st = in(i);
4034     intptr_t st_off = get_store_offset(st, phase);
4035     if (st_off < 0)  continue;  // ignore dead garbage
4036     if (last_off > st_off) {
4037       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
4038       this->dump(2);
4039       assert(false, "ascending store offsets");
4040       return false;
4041     }
4042     last_off = st_off + st->as_Store()->memory_size();
4043   }
4044   return true;
4045 }
4046 #endif //ASSERT
4047 
4048 
4049 
4050 
4051 //============================MergeMemNode=====================================
4052 //
4053 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4054 // contributing store or call operations.  Each contributor provides the memory
4055 // state for a particular "alias type" (see Compile::alias_type).  For example,
4056 // if a MergeMem has an input X for alias category #6, then any memory reference
4057 // to alias category #6 may use X as its memory state input, as an exact equivalent
4058 // to using the MergeMem as a whole.
4059 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4060 //
4061 // (Here, the <N> notation gives the index of the relevant adr_type.)
4062 //
4063 // In one special case (and more cases in the future), alias categories overlap.
4064 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4065 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4066 // it is exactly equivalent to that state W:
4067 //   MergeMem(<Bot>: W) <==> W
4068 //
4069 // Usually, the merge has more than one input.  In that case, where inputs
4070 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4071 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4072 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4073 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4074 //
4075 // A merge can take a "wide" memory state as one of its narrow inputs.
4076 // This simply means that the merge observes out only the relevant parts of
4077 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4078 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4079 //
4080 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4081 // and that memory slices "leak through":
4082 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4083 //
4084 // But, in such a cascade, repeated memory slices can "block the leak":
4085 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4086 //
4087 // In the last example, Y is not part of the combined memory state of the
4088 // outermost MergeMem.  The system must, of course, prevent unschedulable
4089 // memory states from arising, so you can be sure that the state Y is somehow
4090 // a precursor to state Y'.
4091 //
4092 //
4093 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4094 // of each MergeMemNode array are exactly the numerical alias indexes, including
4095 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4096 // Compile::alias_type (and kin) produce and manage these indexes.
4097 //
4098 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4099 // (Note that this provides quick access to the top node inside MergeMem methods,
4100 // without the need to reach out via TLS to Compile::current.)
4101 //
4102 // As a consequence of what was just described, a MergeMem that represents a full
4103 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4104 // containing all alias categories.
4105 //
4106 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4107 //
4108 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4109 // a memory state for the alias type <N>, or else the top node, meaning that
4110 // there is no particular input for that alias type.  Note that the length of
4111 // a MergeMem is variable, and may be extended at any time to accommodate new
4112 // memory states at larger alias indexes.  When merges grow, they are of course
4113 // filled with "top" in the unused in() positions.
4114 //
4115 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4116 // (Top was chosen because it works smoothly with passes like GCM.)
4117 //
4118 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4119 // the type of random VM bits like TLS references.)  Since it is always the
4120 // first non-Bot memory slice, some low-level loops use it to initialize an
4121 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4122 //
4123 //
4124 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4125 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4126 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4127 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4128 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4129 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4130 //
4131 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4132 // really that different from the other memory inputs.  An abbreviation called
4133 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4134 //
4135 //
4136 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4137 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4138 // that "emerges though" the base memory will be marked as excluding the alias types
4139 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4140 //
4141 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4142 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4143 //
4144 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4145 // (It is currently unimplemented.)  As you can see, the resulting merge is
4146 // actually a disjoint union of memory states, rather than an overlay.
4147 //
4148 
4149 //------------------------------MergeMemNode-----------------------------------
4150 Node* MergeMemNode::make_empty_memory() {
4151   Node* empty_memory = (Node*) Compile::current()->top();
4152   assert(empty_memory->is_top(), "correct sentinel identity");
4153   return empty_memory;
4154 }
4155 
4156 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4157   init_class_id(Class_MergeMem);
4158   // all inputs are nullified in Node::Node(int)
4159   // set_input(0, NULL);  // no control input
4160 
4161   // Initialize the edges uniformly to top, for starters.
4162   Node* empty_mem = make_empty_memory();
4163   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4164     init_req(i,empty_mem);
4165   }
4166   assert(empty_memory() == empty_mem, "");
4167 
4168   if( new_base != NULL && new_base->is_MergeMem() ) {
4169     MergeMemNode* mdef = new_base->as_MergeMem();
4170     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4171     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4172       mms.set_memory(mms.memory2());
4173     }
4174     assert(base_memory() == mdef->base_memory(), "");
4175   } else {
4176     set_base_memory(new_base);
4177   }
4178 }
4179 
4180 // Make a new, untransformed MergeMem with the same base as 'mem'.
4181 // If mem is itself a MergeMem, populate the result with the same edges.
4182 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4183   return new(C) MergeMemNode(mem);
4184 }
4185 
4186 //------------------------------cmp--------------------------------------------
4187 uint MergeMemNode::hash() const { return NO_HASH; }
4188 uint MergeMemNode::cmp( const Node &n ) const {
4189   return (&n == this);          // Always fail except on self
4190 }
4191 
4192 //------------------------------Identity---------------------------------------
4193 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4194   // Identity if this merge point does not record any interesting memory
4195   // disambiguations.
4196   Node* base_mem = base_memory();
4197   Node* empty_mem = empty_memory();
4198   if (base_mem != empty_mem) {  // Memory path is not dead?
4199     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4200       Node* mem = in(i);
4201       if (mem != empty_mem && mem != base_mem) {
4202         return this;            // Many memory splits; no change
4203       }
4204     }
4205   }
4206   return base_mem;              // No memory splits; ID on the one true input
4207 }
4208 
4209 //------------------------------Ideal------------------------------------------
4210 // This method is invoked recursively on chains of MergeMem nodes
4211 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4212   // Remove chain'd MergeMems
4213   //
4214   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4215   // relative to the "in(Bot)".  Since we are patching both at the same time,
4216   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4217   // but rewrite each "in(i)" relative to the new "in(Bot)".
4218   Node *progress = NULL;
4219 
4220 
4221   Node* old_base = base_memory();
4222   Node* empty_mem = empty_memory();
4223   if (old_base == empty_mem)
4224     return NULL; // Dead memory path.
4225 
4226   MergeMemNode* old_mbase;
4227   if (old_base != NULL && old_base->is_MergeMem())
4228     old_mbase = old_base->as_MergeMem();
4229   else
4230     old_mbase = NULL;
4231   Node* new_base = old_base;
4232 
4233   // simplify stacked MergeMems in base memory
4234   if (old_mbase)  new_base = old_mbase->base_memory();
4235 
4236   // the base memory might contribute new slices beyond my req()
4237   if (old_mbase)  grow_to_match(old_mbase);
4238 
4239   // Look carefully at the base node if it is a phi.
4240   PhiNode* phi_base;
4241   if (new_base != NULL && new_base->is_Phi())
4242     phi_base = new_base->as_Phi();
4243   else
4244     phi_base = NULL;
4245 
4246   Node*    phi_reg = NULL;
4247   uint     phi_len = (uint)-1;
4248   if (phi_base != NULL && !phi_base->is_copy()) {
4249     // do not examine phi if degraded to a copy
4250     phi_reg = phi_base->region();
4251     phi_len = phi_base->req();
4252     // see if the phi is unfinished
4253     for (uint i = 1; i < phi_len; i++) {
4254       if (phi_base->in(i) == NULL) {
4255         // incomplete phi; do not look at it yet!
4256         phi_reg = NULL;
4257         phi_len = (uint)-1;
4258         break;
4259       }
4260     }
4261   }
4262 
4263   // Note:  We do not call verify_sparse on entry, because inputs
4264   // can normalize to the base_memory via subsume_node or similar
4265   // mechanisms.  This method repairs that damage.
4266 
4267   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4268 
4269   // Look at each slice.
4270   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4271     Node* old_in = in(i);
4272     // calculate the old memory value
4273     Node* old_mem = old_in;
4274     if (old_mem == empty_mem)  old_mem = old_base;
4275     assert(old_mem == memory_at(i), "");
4276 
4277     // maybe update (reslice) the old memory value
4278 
4279     // simplify stacked MergeMems
4280     Node* new_mem = old_mem;
4281     MergeMemNode* old_mmem;
4282     if (old_mem != NULL && old_mem->is_MergeMem())
4283       old_mmem = old_mem->as_MergeMem();
4284     else
4285       old_mmem = NULL;
4286     if (old_mmem == this) {
4287       // This can happen if loops break up and safepoints disappear.
4288       // A merge of BotPtr (default) with a RawPtr memory derived from a
4289       // safepoint can be rewritten to a merge of the same BotPtr with
4290       // the BotPtr phi coming into the loop.  If that phi disappears
4291       // also, we can end up with a self-loop of the mergemem.
4292       // In general, if loops degenerate and memory effects disappear,
4293       // a mergemem can be left looking at itself.  This simply means
4294       // that the mergemem's default should be used, since there is
4295       // no longer any apparent effect on this slice.
4296       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4297       //       from start.  Update the input to TOP.
4298       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4299     }
4300     else if (old_mmem != NULL) {
4301       new_mem = old_mmem->memory_at(i);
4302     }
4303     // else preceding memory was not a MergeMem
4304 
4305     // replace equivalent phis (unfortunately, they do not GVN together)
4306     if (new_mem != NULL && new_mem != new_base &&
4307         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4308       if (new_mem->is_Phi()) {
4309         PhiNode* phi_mem = new_mem->as_Phi();
4310         for (uint i = 1; i < phi_len; i++) {
4311           if (phi_base->in(i) != phi_mem->in(i)) {
4312             phi_mem = NULL;
4313             break;
4314           }
4315         }
4316         if (phi_mem != NULL) {
4317           // equivalent phi nodes; revert to the def
4318           new_mem = new_base;
4319         }
4320       }
4321     }
4322 
4323     // maybe store down a new value
4324     Node* new_in = new_mem;
4325     if (new_in == new_base)  new_in = empty_mem;
4326 
4327     if (new_in != old_in) {
4328       // Warning:  Do not combine this "if" with the previous "if"
4329       // A memory slice might have be be rewritten even if it is semantically
4330       // unchanged, if the base_memory value has changed.
4331       set_req(i, new_in);
4332       progress = this;          // Report progress
4333     }
4334   }
4335 
4336   if (new_base != old_base) {
4337     set_req(Compile::AliasIdxBot, new_base);
4338     // Don't use set_base_memory(new_base), because we need to update du.
4339     assert(base_memory() == new_base, "");
4340     progress = this;
4341   }
4342 
4343   if( base_memory() == this ) {
4344     // a self cycle indicates this memory path is dead
4345     set_req(Compile::AliasIdxBot, empty_mem);
4346   }
4347 
4348   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4349   // Recursion must occur after the self cycle check above
4350   if( base_memory()->is_MergeMem() ) {
4351     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4352     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4353     if( m != NULL && (m->is_top() ||
4354         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4355       // propagate rollup of dead cycle to self
4356       set_req(Compile::AliasIdxBot, empty_mem);
4357     }
4358   }
4359 
4360   if( base_memory() == empty_mem ) {
4361     progress = this;
4362     // Cut inputs during Parse phase only.
4363     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4364     if( !can_reshape ) {
4365       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4366         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4367       }
4368     }
4369   }
4370 
4371   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4372     // Check if PhiNode::Ideal's "Split phis through memory merges"
4373     // transform should be attempted. Look for this->phi->this cycle.
4374     uint merge_width = req();
4375     if (merge_width > Compile::AliasIdxRaw) {
4376       PhiNode* phi = base_memory()->as_Phi();
4377       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4378         if (phi->in(i) == this) {
4379           phase->is_IterGVN()->_worklist.push(phi);
4380           break;
4381         }
4382       }
4383     }
4384   }
4385 
4386   assert(progress || verify_sparse(), "please, no dups of base");
4387   return progress;
4388 }
4389 
4390 //-------------------------set_base_memory-------------------------------------
4391 void MergeMemNode::set_base_memory(Node *new_base) {
4392   Node* empty_mem = empty_memory();
4393   set_req(Compile::AliasIdxBot, new_base);
4394   assert(memory_at(req()) == new_base, "must set default memory");
4395   // Clear out other occurrences of new_base:
4396   if (new_base != empty_mem) {
4397     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4398       if (in(i) == new_base)  set_req(i, empty_mem);
4399     }
4400   }
4401 }
4402 
4403 //------------------------------out_RegMask------------------------------------
4404 const RegMask &MergeMemNode::out_RegMask() const {
4405   return RegMask::Empty;
4406 }
4407 
4408 //------------------------------dump_spec--------------------------------------
4409 #ifndef PRODUCT
4410 void MergeMemNode::dump_spec(outputStream *st) const {
4411   st->print(" {");
4412   Node* base_mem = base_memory();
4413   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4414     Node* mem = memory_at(i);
4415     if (mem == base_mem) { st->print(" -"); continue; }
4416     st->print( " N%d:", mem->_idx );
4417     Compile::current()->get_adr_type(i)->dump_on(st);
4418   }
4419   st->print(" }");
4420 }
4421 #endif // !PRODUCT
4422 
4423 
4424 #ifdef ASSERT
4425 static bool might_be_same(Node* a, Node* b) {
4426   if (a == b)  return true;
4427   if (!(a->is_Phi() || b->is_Phi()))  return false;
4428   // phis shift around during optimization
4429   return true;  // pretty stupid...
4430 }
4431 
4432 // verify a narrow slice (either incoming or outgoing)
4433 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4434   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4435   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4436   if (Node::in_dump())      return;  // muzzle asserts when printing
4437   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4438   assert(n != NULL, "");
4439   // Elide intervening MergeMem's
4440   while (n->is_MergeMem()) {
4441     n = n->as_MergeMem()->memory_at(alias_idx);
4442   }
4443   Compile* C = Compile::current();
4444   const TypePtr* n_adr_type = n->adr_type();
4445   if (n == m->empty_memory()) {
4446     // Implicit copy of base_memory()
4447   } else if (n_adr_type != TypePtr::BOTTOM) {
4448     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4449     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4450   } else {
4451     // A few places like make_runtime_call "know" that VM calls are narrow,
4452     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4453     bool expected_wide_mem = false;
4454     if (n == m->base_memory()) {
4455       expected_wide_mem = true;
4456     } else if (alias_idx == Compile::AliasIdxRaw ||
4457                n == m->memory_at(Compile::AliasIdxRaw)) {
4458       expected_wide_mem = true;
4459     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4460       // memory can "leak through" calls on channels that
4461       // are write-once.  Allow this also.
4462       expected_wide_mem = true;
4463     }
4464     assert(expected_wide_mem, "expected narrow slice replacement");
4465   }
4466 }
4467 #else // !ASSERT
4468 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4469 #endif
4470 
4471 
4472 //-----------------------------memory_at---------------------------------------
4473 Node* MergeMemNode::memory_at(uint alias_idx) const {
4474   assert(alias_idx >= Compile::AliasIdxRaw ||
4475          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4476          "must avoid base_memory and AliasIdxTop");
4477 
4478   // Otherwise, it is a narrow slice.
4479   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4480   Compile *C = Compile::current();
4481   if (is_empty_memory(n)) {
4482     // the array is sparse; empty slots are the "top" node
4483     n = base_memory();
4484     assert(Node::in_dump()
4485            || n == NULL || n->bottom_type() == Type::TOP
4486            || n->adr_type() == NULL // address is TOP
4487            || n->adr_type() == TypePtr::BOTTOM
4488            || n->adr_type() == TypeRawPtr::BOTTOM
4489            || Compile::current()->AliasLevel() == 0,
4490            "must be a wide memory");
4491     // AliasLevel == 0 if we are organizing the memory states manually.
4492     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4493   } else {
4494     // make sure the stored slice is sane
4495     #ifdef ASSERT
4496     if (is_error_reported() || Node::in_dump()) {
4497     } else if (might_be_same(n, base_memory())) {
4498       // Give it a pass:  It is a mostly harmless repetition of the base.
4499       // This can arise normally from node subsumption during optimization.
4500     } else {
4501       verify_memory_slice(this, alias_idx, n);
4502     }
4503     #endif
4504   }
4505   return n;
4506 }
4507 
4508 //---------------------------set_memory_at-------------------------------------
4509 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4510   verify_memory_slice(this, alias_idx, n);
4511   Node* empty_mem = empty_memory();
4512   if (n == base_memory())  n = empty_mem;  // collapse default
4513   uint need_req = alias_idx+1;
4514   if (req() < need_req) {
4515     if (n == empty_mem)  return;  // already the default, so do not grow me
4516     // grow the sparse array
4517     do {
4518       add_req(empty_mem);
4519     } while (req() < need_req);
4520   }
4521   set_req( alias_idx, n );
4522 }
4523 
4524 
4525 
4526 //--------------------------iteration_setup------------------------------------
4527 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4528   if (other != NULL) {
4529     grow_to_match(other);
4530     // invariant:  the finite support of mm2 is within mm->req()
4531     #ifdef ASSERT
4532     for (uint i = req(); i < other->req(); i++) {
4533       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4534     }
4535     #endif
4536   }
4537   // Replace spurious copies of base_memory by top.
4538   Node* base_mem = base_memory();
4539   if (base_mem != NULL && !base_mem->is_top()) {
4540     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4541       if (in(i) == base_mem)
4542         set_req(i, empty_memory());
4543     }
4544   }
4545 }
4546 
4547 //---------------------------grow_to_match-------------------------------------
4548 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4549   Node* empty_mem = empty_memory();
4550   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4551   // look for the finite support of the other memory
4552   for (uint i = other->req(); --i >= req(); ) {
4553     if (other->in(i) != empty_mem) {
4554       uint new_len = i+1;
4555       while (req() < new_len)  add_req(empty_mem);
4556       break;
4557     }
4558   }
4559 }
4560 
4561 //---------------------------verify_sparse-------------------------------------
4562 #ifndef PRODUCT
4563 bool MergeMemNode::verify_sparse() const {
4564   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4565   Node* base_mem = base_memory();
4566   // The following can happen in degenerate cases, since empty==top.
4567   if (is_empty_memory(base_mem))  return true;
4568   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4569     assert(in(i) != NULL, "sane slice");
4570     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4571   }
4572   return true;
4573 }
4574 
4575 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4576   Node* n;
4577   n = mm->in(idx);
4578   if (mem == n)  return true;  // might be empty_memory()
4579   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4580   if (mem == n)  return true;
4581   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4582     if (mem == n)  return true;
4583     if (n == NULL)  break;
4584   }
4585   return false;
4586 }
4587 #endif // !PRODUCT