1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "trace/traceMacros.hpp"
  42 
  43 class LibraryIntrinsic : public InlineCallGenerator {
  44   // Extend the set of intrinsics known to the runtime:
  45  public:
  46  private:
  47   bool             _is_virtual;
  48   bool             _is_predicted;
  49   vmIntrinsics::ID _intrinsic_id;
  50 
  51  public:
  52   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  53     : InlineCallGenerator(m),
  54       _is_virtual(is_virtual),
  55       _is_predicted(is_predicted),
  56       _intrinsic_id(id)
  57   {
  58   }
  59   virtual bool is_intrinsic() const { return true; }
  60   virtual bool is_virtual()   const { return _is_virtual; }
  61   virtual bool is_predicted()   const { return _is_predicted; }
  62   virtual JVMState* generate(JVMState* jvms);
  63   virtual Node* generate_predicate(JVMState* jvms);
  64   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  65 };
  66 
  67 
  68 // Local helper class for LibraryIntrinsic:
  69 class LibraryCallKit : public GraphKit {
  70  private:
  71   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  72   Node*             _result;        // the result node, if any
  73   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  74 
  75   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  76 
  77  public:
  78   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  79     : GraphKit(jvms),
  80       _intrinsic(intrinsic),
  81       _result(NULL)
  82   {
  83     // Check if this is a root compile.  In that case we don't have a caller.
  84     if (!jvms->has_method()) {
  85       _reexecute_sp = sp();
  86     } else {
  87       // Find out how many arguments the interpreter needs when deoptimizing
  88       // and save the stack pointer value so it can used by uncommon_trap.
  89       // We find the argument count by looking at the declared signature.
  90       bool ignored_will_link;
  91       ciSignature* declared_signature = NULL;
  92       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  93       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  94       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  95     }
  96   }
  97 
  98   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  99 
 100   ciMethod*         caller()    const    { return jvms()->method(); }
 101   int               bci()       const    { return jvms()->bci(); }
 102   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 103   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 104   ciMethod*         callee()    const    { return _intrinsic->method(); }
 105 
 106   bool try_to_inline();
 107   Node* try_to_predicate();
 108 
 109   void push_result() {
 110     // Push the result onto the stack.
 111     if (!stopped() && result() != NULL) {
 112       BasicType bt = result()->bottom_type()->basic_type();
 113       push_node(bt, result());
 114     }
 115   }
 116 
 117  private:
 118   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 119     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 120   }
 121 
 122   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 123   void  set_result(RegionNode* region, PhiNode* value);
 124   Node*     result() { return _result; }
 125 
 126   virtual int reexecute_sp() { return _reexecute_sp; }
 127 
 128   // Helper functions to inline natives
 129   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 130   Node* generate_slow_guard(Node* test, RegionNode* region);
 131   Node* generate_fair_guard(Node* test, RegionNode* region);
 132   Node* generate_negative_guard(Node* index, RegionNode* region,
 133                                 // resulting CastII of index:
 134                                 Node* *pos_index = NULL);
 135   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 136                                    // resulting CastII of index:
 137                                    Node* *pos_index = NULL);
 138   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 139                              Node* array_length,
 140                              RegionNode* region);
 141   Node* generate_current_thread(Node* &tls_output);
 142   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 143                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 144   Node* load_mirror_from_klass(Node* klass);
 145   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 146                                       RegionNode* region, int null_path,
 147                                       int offset);
 148   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 149                                RegionNode* region, int null_path) {
 150     int offset = java_lang_Class::klass_offset_in_bytes();
 151     return load_klass_from_mirror_common(mirror, never_see_null,
 152                                          region, null_path,
 153                                          offset);
 154   }
 155   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 156                                      RegionNode* region, int null_path) {
 157     int offset = java_lang_Class::array_klass_offset_in_bytes();
 158     return load_klass_from_mirror_common(mirror, never_see_null,
 159                                          region, null_path,
 160                                          offset);
 161   }
 162   Node* generate_access_flags_guard(Node* kls,
 163                                     int modifier_mask, int modifier_bits,
 164                                     RegionNode* region);
 165   Node* generate_interface_guard(Node* kls, RegionNode* region);
 166   Node* generate_array_guard(Node* kls, RegionNode* region) {
 167     return generate_array_guard_common(kls, region, false, false);
 168   }
 169   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 170     return generate_array_guard_common(kls, region, false, true);
 171   }
 172   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 173     return generate_array_guard_common(kls, region, true, false);
 174   }
 175   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, true, true);
 177   }
 178   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 179                                     bool obj_array, bool not_array);
 180   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 181   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 182                                      bool is_virtual = false, bool is_static = false);
 183   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 184     return generate_method_call(method_id, false, true);
 185   }
 186   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 187     return generate_method_call(method_id, true, false);
 188   }
 189   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 190 
 191   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 192   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 193   bool inline_string_compareTo();
 194   bool inline_string_indexOf();
 195   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 196   bool inline_string_equals();
 197   Node* round_double_node(Node* n);
 198   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 199   bool inline_math_native(vmIntrinsics::ID id);
 200   bool inline_trig(vmIntrinsics::ID id);
 201   bool inline_math(vmIntrinsics::ID id);
 202   bool inline_exp();
 203   bool inline_pow();
 204   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 205   bool inline_min_max(vmIntrinsics::ID id);
 206   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 207   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 208   int classify_unsafe_addr(Node* &base, Node* &offset);
 209   Node* make_unsafe_address(Node* base, Node* offset);
 210   // Helper for inline_unsafe_access.
 211   // Generates the guards that check whether the result of
 212   // Unsafe.getObject should be recorded in an SATB log buffer.
 213   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 214   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 215   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 216   bool inline_unsafe_allocate();
 217   bool inline_unsafe_copyMemory();
 218   bool inline_native_currentThread();
 219 #ifdef TRACE_HAVE_INTRINSICS
 220   bool inline_native_classID();
 221   bool inline_native_threadID();
 222 #endif
 223   bool inline_native_time_funcs(address method, const char* funcName);
 224   bool inline_native_isInterrupted();
 225   bool inline_native_Class_query(vmIntrinsics::ID id);
 226   bool inline_native_subtype_check();
 227 
 228   bool inline_native_newArray();
 229   bool inline_native_getLength();
 230   bool inline_array_copyOf(bool is_copyOfRange);
 231   bool inline_array_equals();
 232   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 233   bool inline_native_clone(bool is_virtual);
 234   bool inline_native_Reflection_getCallerClass();
 235   // Helper function for inlining native object hash method
 236   bool inline_native_hashcode(bool is_virtual, bool is_static);
 237   bool inline_native_getClass();
 238 
 239   // Helper functions for inlining arraycopy
 240   bool inline_arraycopy();
 241   void generate_arraycopy(const TypePtr* adr_type,
 242                           BasicType basic_elem_type,
 243                           Node* src,  Node* src_offset,
 244                           Node* dest, Node* dest_offset,
 245                           Node* copy_length,
 246                           bool disjoint_bases = false,
 247                           bool length_never_negative = false,
 248                           RegionNode* slow_region = NULL);
 249   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 250                                                 RegionNode* slow_region);
 251   void generate_clear_array(const TypePtr* adr_type,
 252                             Node* dest,
 253                             BasicType basic_elem_type,
 254                             Node* slice_off,
 255                             Node* slice_len,
 256                             Node* slice_end);
 257   bool generate_block_arraycopy(const TypePtr* adr_type,
 258                                 BasicType basic_elem_type,
 259                                 AllocateNode* alloc,
 260                                 Node* src,  Node* src_offset,
 261                                 Node* dest, Node* dest_offset,
 262                                 Node* dest_size, bool dest_uninitialized);
 263   void generate_slow_arraycopy(const TypePtr* adr_type,
 264                                Node* src,  Node* src_offset,
 265                                Node* dest, Node* dest_offset,
 266                                Node* copy_length, bool dest_uninitialized);
 267   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 268                                      Node* dest_elem_klass,
 269                                      Node* src,  Node* src_offset,
 270                                      Node* dest, Node* dest_offset,
 271                                      Node* copy_length, bool dest_uninitialized);
 272   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 273                                    Node* src,  Node* src_offset,
 274                                    Node* dest, Node* dest_offset,
 275                                    Node* copy_length, bool dest_uninitialized);
 276   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 277                                     BasicType basic_elem_type,
 278                                     bool disjoint_bases,
 279                                     Node* src,  Node* src_offset,
 280                                     Node* dest, Node* dest_offset,
 281                                     Node* copy_length, bool dest_uninitialized);
 282   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 283   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 284   bool inline_unsafe_ordered_store(BasicType type);
 285   bool inline_unsafe_fence(vmIntrinsics::ID id);
 286   bool inline_fp_conversions(vmIntrinsics::ID id);
 287   bool inline_number_methods(vmIntrinsics::ID id);
 288   bool inline_reference_get();
 289   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 290   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 292   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 293   bool inline_encodeISOArray();
 294   bool inline_updateCRC32();
 295   bool inline_updateBytesCRC32();
 296   bool inline_updateByteBufferCRC32();
 297 };
 298 
 299 
 300 //---------------------------make_vm_intrinsic----------------------------
 301 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 302   vmIntrinsics::ID id = m->intrinsic_id();
 303   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 304 
 305   if (DisableIntrinsic[0] != '\0'
 306       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 307     // disabled by a user request on the command line:
 308     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 309     return NULL;
 310   }
 311 
 312   if (!m->is_loaded()) {
 313     // do not attempt to inline unloaded methods
 314     return NULL;
 315   }
 316 
 317   // Only a few intrinsics implement a virtual dispatch.
 318   // They are expensive calls which are also frequently overridden.
 319   if (is_virtual) {
 320     switch (id) {
 321     case vmIntrinsics::_hashCode:
 322     case vmIntrinsics::_clone:
 323       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 324       break;
 325     default:
 326       return NULL;
 327     }
 328   }
 329 
 330   // -XX:-InlineNatives disables nearly all intrinsics:
 331   if (!InlineNatives) {
 332     switch (id) {
 333     case vmIntrinsics::_indexOf:
 334     case vmIntrinsics::_compareTo:
 335     case vmIntrinsics::_equals:
 336     case vmIntrinsics::_equalsC:
 337     case vmIntrinsics::_getAndAddInt:
 338     case vmIntrinsics::_getAndAddLong:
 339     case vmIntrinsics::_getAndSetInt:
 340     case vmIntrinsics::_getAndSetLong:
 341     case vmIntrinsics::_getAndSetObject:
 342     case vmIntrinsics::_loadFence:
 343     case vmIntrinsics::_storeFence:
 344     case vmIntrinsics::_fullFence:
 345       break;  // InlineNatives does not control String.compareTo
 346     case vmIntrinsics::_Reference_get:
 347       break;  // InlineNatives does not control Reference.get
 348     default:
 349       return NULL;
 350     }
 351   }
 352 
 353   bool is_predicted = false;
 354 
 355   switch (id) {
 356   case vmIntrinsics::_compareTo:
 357     if (!SpecialStringCompareTo)  return NULL;
 358     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 359     break;
 360   case vmIntrinsics::_indexOf:
 361     if (!SpecialStringIndexOf)  return NULL;
 362     break;
 363   case vmIntrinsics::_equals:
 364     if (!SpecialStringEquals)  return NULL;
 365     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 366     break;
 367   case vmIntrinsics::_equalsC:
 368     if (!SpecialArraysEquals)  return NULL;
 369     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 370     break;
 371   case vmIntrinsics::_arraycopy:
 372     if (!InlineArrayCopy)  return NULL;
 373     break;
 374   case vmIntrinsics::_copyMemory:
 375     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 376     if (!InlineArrayCopy)  return NULL;
 377     break;
 378   case vmIntrinsics::_hashCode:
 379     if (!InlineObjectHash)  return NULL;
 380     break;
 381   case vmIntrinsics::_clone:
 382   case vmIntrinsics::_copyOf:
 383   case vmIntrinsics::_copyOfRange:
 384     if (!InlineObjectCopy)  return NULL;
 385     // These also use the arraycopy intrinsic mechanism:
 386     if (!InlineArrayCopy)  return NULL;
 387     break;
 388   case vmIntrinsics::_encodeISOArray:
 389     if (!SpecialEncodeISOArray)  return NULL;
 390     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 391     break;
 392   case vmIntrinsics::_checkIndex:
 393     // We do not intrinsify this.  The optimizer does fine with it.
 394     return NULL;
 395 
 396   case vmIntrinsics::_getCallerClass:
 397     if (!UseNewReflection)  return NULL;
 398     if (!InlineReflectionGetCallerClass)  return NULL;
 399     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 400     break;
 401 
 402   case vmIntrinsics::_bitCount_i:
 403     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 404     break;
 405 
 406   case vmIntrinsics::_bitCount_l:
 407     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 408     break;
 409 
 410   case vmIntrinsics::_numberOfLeadingZeros_i:
 411     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 412     break;
 413 
 414   case vmIntrinsics::_numberOfLeadingZeros_l:
 415     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 416     break;
 417 
 418   case vmIntrinsics::_numberOfTrailingZeros_i:
 419     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 420     break;
 421 
 422   case vmIntrinsics::_numberOfTrailingZeros_l:
 423     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 424     break;
 425 
 426   case vmIntrinsics::_reverseBytes_c:
 427     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 428     break;
 429   case vmIntrinsics::_reverseBytes_s:
 430     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 431     break;
 432   case vmIntrinsics::_reverseBytes_i:
 433     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 434     break;
 435   case vmIntrinsics::_reverseBytes_l:
 436     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 437     break;
 438 
 439   case vmIntrinsics::_Reference_get:
 440     // Use the intrinsic version of Reference.get() so that the value in
 441     // the referent field can be registered by the G1 pre-barrier code.
 442     // Also add memory barrier to prevent commoning reads from this field
 443     // across safepoint since GC can change it value.
 444     break;
 445 
 446   case vmIntrinsics::_compareAndSwapObject:
 447 #ifdef _LP64
 448     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 449 #endif
 450     break;
 451 
 452   case vmIntrinsics::_compareAndSwapLong:
 453     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 454     break;
 455 
 456   case vmIntrinsics::_getAndAddInt:
 457     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 458     break;
 459 
 460   case vmIntrinsics::_getAndAddLong:
 461     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 462     break;
 463 
 464   case vmIntrinsics::_getAndSetInt:
 465     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 466     break;
 467 
 468   case vmIntrinsics::_getAndSetLong:
 469     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 470     break;
 471 
 472   case vmIntrinsics::_getAndSetObject:
 473 #ifdef _LP64
 474     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 475     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 476     break;
 477 #else
 478     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 479     break;
 480 #endif
 481 
 482   case vmIntrinsics::_aescrypt_encryptBlock:
 483   case vmIntrinsics::_aescrypt_decryptBlock:
 484     if (!UseAESIntrinsics) return NULL;
 485     break;
 486 
 487   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 488   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 489     if (!UseAESIntrinsics) return NULL;
 490     // these two require the predicated logic
 491     is_predicted = true;
 492     break;
 493 
 494   case vmIntrinsics::_updateCRC32:
 495   case vmIntrinsics::_updateBytesCRC32:
 496   case vmIntrinsics::_updateByteBufferCRC32:
 497     if (!UseCRC32Intrinsics) return NULL;
 498     break;
 499 
 500  default:
 501     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 502     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 503     break;
 504   }
 505 
 506   // -XX:-InlineClassNatives disables natives from the Class class.
 507   // The flag applies to all reflective calls, notably Array.newArray
 508   // (visible to Java programmers as Array.newInstance).
 509   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 510       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 511     if (!InlineClassNatives)  return NULL;
 512   }
 513 
 514   // -XX:-InlineThreadNatives disables natives from the Thread class.
 515   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 516     if (!InlineThreadNatives)  return NULL;
 517   }
 518 
 519   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 520   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 521       m->holder()->name() == ciSymbol::java_lang_Float() ||
 522       m->holder()->name() == ciSymbol::java_lang_Double()) {
 523     if (!InlineMathNatives)  return NULL;
 524   }
 525 
 526   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 527   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 528     if (!InlineUnsafeOps)  return NULL;
 529   }
 530 
 531   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 532 }
 533 
 534 //----------------------register_library_intrinsics-----------------------
 535 // Initialize this file's data structures, for each Compile instance.
 536 void Compile::register_library_intrinsics() {
 537   // Nothing to do here.
 538 }
 539 
 540 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 541   LibraryCallKit kit(jvms, this);
 542   Compile* C = kit.C;
 543   int nodes = C->unique();
 544 #ifndef PRODUCT
 545   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 546     char buf[1000];
 547     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 548     tty->print_cr("Intrinsic %s", str);
 549   }
 550 #endif
 551   ciMethod* callee = kit.callee();
 552   const int bci    = kit.bci();
 553 
 554   // Try to inline the intrinsic.
 555   if (kit.try_to_inline()) {
 556     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 557       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 558     }
 559     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 560     if (C->log()) {
 561       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 562                      vmIntrinsics::name_at(intrinsic_id()),
 563                      (is_virtual() ? " virtual='1'" : ""),
 564                      C->unique() - nodes);
 565     }
 566     // Push the result from the inlined method onto the stack.
 567     kit.push_result();
 568     return kit.transfer_exceptions_into_jvms();
 569   }
 570 
 571   // The intrinsic bailed out
 572   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 573     if (jvms->has_method()) {
 574       // Not a root compile.
 575       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 576       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 577     } else {
 578       // Root compile
 579       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 580                vmIntrinsics::name_at(intrinsic_id()),
 581                (is_virtual() ? " (virtual)" : ""), bci);
 582     }
 583   }
 584   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 585   return NULL;
 586 }
 587 
 588 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 589   LibraryCallKit kit(jvms, this);
 590   Compile* C = kit.C;
 591   int nodes = C->unique();
 592 #ifndef PRODUCT
 593   assert(is_predicted(), "sanity");
 594   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 595     char buf[1000];
 596     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 597     tty->print_cr("Predicate for intrinsic %s", str);
 598   }
 599 #endif
 600   ciMethod* callee = kit.callee();
 601   const int bci    = kit.bci();
 602 
 603   Node* slow_ctl = kit.try_to_predicate();
 604   if (!kit.failing()) {
 605     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 606       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 607     }
 608     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 609     if (C->log()) {
 610       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 611                      vmIntrinsics::name_at(intrinsic_id()),
 612                      (is_virtual() ? " virtual='1'" : ""),
 613                      C->unique() - nodes);
 614     }
 615     return slow_ctl; // Could be NULL if the check folds.
 616   }
 617 
 618   // The intrinsic bailed out
 619   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 620     if (jvms->has_method()) {
 621       // Not a root compile.
 622       const char* msg = "failed to generate predicate for intrinsic";
 623       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 624     } else {
 625       // Root compile
 626       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 627                                         vmIntrinsics::name_at(intrinsic_id()),
 628                                         (is_virtual() ? " (virtual)" : ""), bci);
 629     }
 630   }
 631   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 632   return NULL;
 633 }
 634 
 635 bool LibraryCallKit::try_to_inline() {
 636   // Handle symbolic names for otherwise undistinguished boolean switches:
 637   const bool is_store       = true;
 638   const bool is_native_ptr  = true;
 639   const bool is_static      = true;
 640   const bool is_volatile    = true;
 641 
 642   if (!jvms()->has_method()) {
 643     // Root JVMState has a null method.
 644     assert(map()->memory()->Opcode() == Op_Parm, "");
 645     // Insert the memory aliasing node
 646     set_all_memory(reset_memory());
 647   }
 648   assert(merged_memory(), "");
 649 
 650 
 651   switch (intrinsic_id()) {
 652   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 653   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 654   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 655 
 656   case vmIntrinsics::_dsin:
 657   case vmIntrinsics::_dcos:
 658   case vmIntrinsics::_dtan:
 659   case vmIntrinsics::_dabs:
 660   case vmIntrinsics::_datan2:
 661   case vmIntrinsics::_dsqrt:
 662   case vmIntrinsics::_dexp:
 663   case vmIntrinsics::_dlog:
 664   case vmIntrinsics::_dlog10:
 665   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 666 
 667   case vmIntrinsics::_min:
 668   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 669 
 670   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 671 
 672   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 673   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 674   case vmIntrinsics::_equals:                   return inline_string_equals();
 675 
 676   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 677   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 678   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 679   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 680   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 681   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 682   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 683   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 684   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 685 
 686   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 687   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 688   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 689   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 690   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 691   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 692   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 693   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 694   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 695 
 696   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 697   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 698   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 699   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 700   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 701   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 702   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 703   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 704 
 705   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 706   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 707   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 708   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 709   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 710   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 711   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 712   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 713 
 714   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 715   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 716   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 717   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 718   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 719   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 720   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 721   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 722   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 723 
 724   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 725   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 726   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 727   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 728   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 729   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 730   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 731   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 732   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 733 
 734   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 735   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 736   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 737   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 738 
 739   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 740   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 741   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 742 
 743   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 744   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 745   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 746 
 747   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 748   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 749   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 750   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 751   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 752 
 753   case vmIntrinsics::_loadFence:
 754   case vmIntrinsics::_storeFence:
 755   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 756 
 757   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 758   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 759 
 760 #ifdef TRACE_HAVE_INTRINSICS
 761   case vmIntrinsics::_classID:                  return inline_native_classID();
 762   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 763   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 764 #endif
 765   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 766   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 767   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 768   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 769   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 770   case vmIntrinsics::_getLength:                return inline_native_getLength();
 771   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 772   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 773   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 774   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 775 
 776   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 777 
 778   case vmIntrinsics::_isInstance:
 779   case vmIntrinsics::_getModifiers:
 780   case vmIntrinsics::_isInterface:
 781   case vmIntrinsics::_isArray:
 782   case vmIntrinsics::_isPrimitive:
 783   case vmIntrinsics::_getSuperclass:
 784   case vmIntrinsics::_getComponentType:
 785   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 786 
 787   case vmIntrinsics::_floatToRawIntBits:
 788   case vmIntrinsics::_floatToIntBits:
 789   case vmIntrinsics::_intBitsToFloat:
 790   case vmIntrinsics::_doubleToRawLongBits:
 791   case vmIntrinsics::_doubleToLongBits:
 792   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 793 
 794   case vmIntrinsics::_numberOfLeadingZeros_i:
 795   case vmIntrinsics::_numberOfLeadingZeros_l:
 796   case vmIntrinsics::_numberOfTrailingZeros_i:
 797   case vmIntrinsics::_numberOfTrailingZeros_l:
 798   case vmIntrinsics::_bitCount_i:
 799   case vmIntrinsics::_bitCount_l:
 800   case vmIntrinsics::_reverseBytes_i:
 801   case vmIntrinsics::_reverseBytes_l:
 802   case vmIntrinsics::_reverseBytes_s:
 803   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 804 
 805   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 806 
 807   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 808 
 809   case vmIntrinsics::_aescrypt_encryptBlock:
 810   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 811 
 812   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 813   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 814     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 815 
 816   case vmIntrinsics::_encodeISOArray:
 817     return inline_encodeISOArray();
 818 
 819   case vmIntrinsics::_updateCRC32:
 820     return inline_updateCRC32();
 821   case vmIntrinsics::_updateBytesCRC32:
 822     return inline_updateBytesCRC32();
 823   case vmIntrinsics::_updateByteBufferCRC32:
 824     return inline_updateByteBufferCRC32();
 825 
 826   default:
 827     // If you get here, it may be that someone has added a new intrinsic
 828     // to the list in vmSymbols.hpp without implementing it here.
 829 #ifndef PRODUCT
 830     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 831       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 832                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 833     }
 834 #endif
 835     return false;
 836   }
 837 }
 838 
 839 Node* LibraryCallKit::try_to_predicate() {
 840   if (!jvms()->has_method()) {
 841     // Root JVMState has a null method.
 842     assert(map()->memory()->Opcode() == Op_Parm, "");
 843     // Insert the memory aliasing node
 844     set_all_memory(reset_memory());
 845   }
 846   assert(merged_memory(), "");
 847 
 848   switch (intrinsic_id()) {
 849   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 850     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 851   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 852     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 853 
 854   default:
 855     // If you get here, it may be that someone has added a new intrinsic
 856     // to the list in vmSymbols.hpp without implementing it here.
 857 #ifndef PRODUCT
 858     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 859       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 860                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 861     }
 862 #endif
 863     Node* slow_ctl = control();
 864     set_control(top()); // No fast path instrinsic
 865     return slow_ctl;
 866   }
 867 }
 868 
 869 //------------------------------set_result-------------------------------
 870 // Helper function for finishing intrinsics.
 871 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 872   record_for_igvn(region);
 873   set_control(_gvn.transform(region));
 874   set_result( _gvn.transform(value));
 875   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 876 }
 877 
 878 //------------------------------generate_guard---------------------------
 879 // Helper function for generating guarded fast-slow graph structures.
 880 // The given 'test', if true, guards a slow path.  If the test fails
 881 // then a fast path can be taken.  (We generally hope it fails.)
 882 // In all cases, GraphKit::control() is updated to the fast path.
 883 // The returned value represents the control for the slow path.
 884 // The return value is never 'top'; it is either a valid control
 885 // or NULL if it is obvious that the slow path can never be taken.
 886 // Also, if region and the slow control are not NULL, the slow edge
 887 // is appended to the region.
 888 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 889   if (stopped()) {
 890     // Already short circuited.
 891     return NULL;
 892   }
 893 
 894   // Build an if node and its projections.
 895   // If test is true we take the slow path, which we assume is uncommon.
 896   if (_gvn.type(test) == TypeInt::ZERO) {
 897     // The slow branch is never taken.  No need to build this guard.
 898     return NULL;
 899   }
 900 
 901   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 902 
 903   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 904   if (if_slow == top()) {
 905     // The slow branch is never taken.  No need to build this guard.
 906     return NULL;
 907   }
 908 
 909   if (region != NULL)
 910     region->add_req(if_slow);
 911 
 912   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 913   set_control(if_fast);
 914 
 915   return if_slow;
 916 }
 917 
 918 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 919   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 920 }
 921 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 922   return generate_guard(test, region, PROB_FAIR);
 923 }
 924 
 925 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 926                                                      Node* *pos_index) {
 927   if (stopped())
 928     return NULL;                // already stopped
 929   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 930     return NULL;                // index is already adequately typed
 931   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 932   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 933   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 934   if (is_neg != NULL && pos_index != NULL) {
 935     // Emulate effect of Parse::adjust_map_after_if.
 936     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 937     ccast->set_req(0, control());
 938     (*pos_index) = _gvn.transform(ccast);
 939   }
 940   return is_neg;
 941 }
 942 
 943 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 944                                                         Node* *pos_index) {
 945   if (stopped())
 946     return NULL;                // already stopped
 947   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 948     return NULL;                // index is already adequately typed
 949   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 950   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 951   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
 952   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 953   if (is_notp != NULL && pos_index != NULL) {
 954     // Emulate effect of Parse::adjust_map_after_if.
 955     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 956     ccast->set_req(0, control());
 957     (*pos_index) = _gvn.transform(ccast);
 958   }
 959   return is_notp;
 960 }
 961 
 962 // Make sure that 'position' is a valid limit index, in [0..length].
 963 // There are two equivalent plans for checking this:
 964 //   A. (offset + copyLength)  unsigned<=  arrayLength
 965 //   B. offset  <=  (arrayLength - copyLength)
 966 // We require that all of the values above, except for the sum and
 967 // difference, are already known to be non-negative.
 968 // Plan A is robust in the face of overflow, if offset and copyLength
 969 // are both hugely positive.
 970 //
 971 // Plan B is less direct and intuitive, but it does not overflow at
 972 // all, since the difference of two non-negatives is always
 973 // representable.  Whenever Java methods must perform the equivalent
 974 // check they generally use Plan B instead of Plan A.
 975 // For the moment we use Plan A.
 976 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 977                                                   Node* subseq_length,
 978                                                   Node* array_length,
 979                                                   RegionNode* region) {
 980   if (stopped())
 981     return NULL;                // already stopped
 982   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 983   if (zero_offset && subseq_length->eqv_uncast(array_length))
 984     return NULL;                // common case of whole-array copy
 985   Node* last = subseq_length;
 986   if (!zero_offset)             // last += offset
 987     last = _gvn.transform(new (C) AddINode(last, offset));
 988   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
 989   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 990   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 991   return is_over;
 992 }
 993 
 994 
 995 //--------------------------generate_current_thread--------------------
 996 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 997   ciKlass*    thread_klass = env()->Thread_klass();
 998   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 999   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1000   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1001   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
1002   tls_output = thread;
1003   return threadObj;
1004 }
1005 
1006 
1007 //------------------------------make_string_method_node------------------------
1008 // Helper method for String intrinsic functions. This version is called
1009 // with str1 and str2 pointing to String object nodes.
1010 //
1011 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1012   Node* no_ctrl = NULL;
1013 
1014   // Get start addr of string
1015   Node* str1_value   = load_String_value(no_ctrl, str1);
1016   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1017   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1018 
1019   // Get length of string 1
1020   Node* str1_len  = load_String_length(no_ctrl, str1);
1021 
1022   Node* str2_value   = load_String_value(no_ctrl, str2);
1023   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1024   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1025 
1026   Node* str2_len = NULL;
1027   Node* result = NULL;
1028 
1029   switch (opcode) {
1030   case Op_StrIndexOf:
1031     // Get length of string 2
1032     str2_len = load_String_length(no_ctrl, str2);
1033 
1034     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1035                                  str1_start, str1_len, str2_start, str2_len);
1036     break;
1037   case Op_StrComp:
1038     // Get length of string 2
1039     str2_len = load_String_length(no_ctrl, str2);
1040 
1041     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1042                                  str1_start, str1_len, str2_start, str2_len);
1043     break;
1044   case Op_StrEquals:
1045     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1046                                str1_start, str2_start, str1_len);
1047     break;
1048   default:
1049     ShouldNotReachHere();
1050     return NULL;
1051   }
1052 
1053   // All these intrinsics have checks.
1054   C->set_has_split_ifs(true); // Has chance for split-if optimization
1055 
1056   return _gvn.transform(result);
1057 }
1058 
1059 // Helper method for String intrinsic functions. This version is called
1060 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1061 // to Int nodes containing the lenghts of str1 and str2.
1062 //
1063 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1064   Node* result = NULL;
1065   switch (opcode) {
1066   case Op_StrIndexOf:
1067     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1068                                  str1_start, cnt1, str2_start, cnt2);
1069     break;
1070   case Op_StrComp:
1071     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1072                                  str1_start, cnt1, str2_start, cnt2);
1073     break;
1074   case Op_StrEquals:
1075     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1076                                  str1_start, str2_start, cnt1);
1077     break;
1078   default:
1079     ShouldNotReachHere();
1080     return NULL;
1081   }
1082 
1083   // All these intrinsics have checks.
1084   C->set_has_split_ifs(true); // Has chance for split-if optimization
1085 
1086   return _gvn.transform(result);
1087 }
1088 
1089 //------------------------------inline_string_compareTo------------------------
1090 // public int java.lang.String.compareTo(String anotherString);
1091 bool LibraryCallKit::inline_string_compareTo() {
1092   Node* receiver = null_check(argument(0));
1093   Node* arg      = null_check(argument(1));
1094   if (stopped()) {
1095     return true;
1096   }
1097   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1098   return true;
1099 }
1100 
1101 //------------------------------inline_string_equals------------------------
1102 bool LibraryCallKit::inline_string_equals() {
1103   Node* receiver = null_check_receiver();
1104   // NOTE: Do not null check argument for String.equals() because spec
1105   // allows to specify NULL as argument.
1106   Node* argument = this->argument(1);
1107   if (stopped()) {
1108     return true;
1109   }
1110 
1111   // paths (plus control) merge
1112   RegionNode* region = new (C) RegionNode(5);
1113   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1114 
1115   // does source == target string?
1116   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1117   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1118 
1119   Node* if_eq = generate_slow_guard(bol, NULL);
1120   if (if_eq != NULL) {
1121     // receiver == argument
1122     phi->init_req(2, intcon(1));
1123     region->init_req(2, if_eq);
1124   }
1125 
1126   // get String klass for instanceOf
1127   ciInstanceKlass* klass = env()->String_klass();
1128 
1129   if (!stopped()) {
1130     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1131     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1132     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1133 
1134     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1135     //instanceOf == true, fallthrough
1136 
1137     if (inst_false != NULL) {
1138       phi->init_req(3, intcon(0));
1139       region->init_req(3, inst_false);
1140     }
1141   }
1142 
1143   if (!stopped()) {
1144     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1145 
1146     // Properly cast the argument to String
1147     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1148     // This path is taken only when argument's type is String:NotNull.
1149     argument = cast_not_null(argument, false);
1150 
1151     Node* no_ctrl = NULL;
1152 
1153     // Get start addr of receiver
1154     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1155     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1156     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1157 
1158     // Get length of receiver
1159     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1160 
1161     // Get start addr of argument
1162     Node* argument_val    = load_String_value(no_ctrl, argument);
1163     Node* argument_offset = load_String_offset(no_ctrl, argument);
1164     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1165 
1166     // Get length of argument
1167     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1168 
1169     // Check for receiver count != argument count
1170     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1171     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1172     Node* if_ne = generate_slow_guard(bol, NULL);
1173     if (if_ne != NULL) {
1174       phi->init_req(4, intcon(0));
1175       region->init_req(4, if_ne);
1176     }
1177 
1178     // Check for count == 0 is done by assembler code for StrEquals.
1179 
1180     if (!stopped()) {
1181       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1182       phi->init_req(1, equals);
1183       region->init_req(1, control());
1184     }
1185   }
1186 
1187   // post merge
1188   set_control(_gvn.transform(region));
1189   record_for_igvn(region);
1190 
1191   set_result(_gvn.transform(phi));
1192   return true;
1193 }
1194 
1195 //------------------------------inline_array_equals----------------------------
1196 bool LibraryCallKit::inline_array_equals() {
1197   Node* arg1 = argument(0);
1198   Node* arg2 = argument(1);
1199   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1200   return true;
1201 }
1202 
1203 // Java version of String.indexOf(constant string)
1204 // class StringDecl {
1205 //   StringDecl(char[] ca) {
1206 //     offset = 0;
1207 //     count = ca.length;
1208 //     value = ca;
1209 //   }
1210 //   int offset;
1211 //   int count;
1212 //   char[] value;
1213 // }
1214 //
1215 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1216 //                             int targetOffset, int cache_i, int md2) {
1217 //   int cache = cache_i;
1218 //   int sourceOffset = string_object.offset;
1219 //   int sourceCount = string_object.count;
1220 //   int targetCount = target_object.length;
1221 //
1222 //   int targetCountLess1 = targetCount - 1;
1223 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1224 //
1225 //   char[] source = string_object.value;
1226 //   char[] target = target_object;
1227 //   int lastChar = target[targetCountLess1];
1228 //
1229 //  outer_loop:
1230 //   for (int i = sourceOffset; i < sourceEnd; ) {
1231 //     int src = source[i + targetCountLess1];
1232 //     if (src == lastChar) {
1233 //       // With random strings and a 4-character alphabet,
1234 //       // reverse matching at this point sets up 0.8% fewer
1235 //       // frames, but (paradoxically) makes 0.3% more probes.
1236 //       // Since those probes are nearer the lastChar probe,
1237 //       // there is may be a net D$ win with reverse matching.
1238 //       // But, reversing loop inhibits unroll of inner loop
1239 //       // for unknown reason.  So, does running outer loop from
1240 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1241 //       for (int j = 0; j < targetCountLess1; j++) {
1242 //         if (target[targetOffset + j] != source[i+j]) {
1243 //           if ((cache & (1 << source[i+j])) == 0) {
1244 //             if (md2 < j+1) {
1245 //               i += j+1;
1246 //               continue outer_loop;
1247 //             }
1248 //           }
1249 //           i += md2;
1250 //           continue outer_loop;
1251 //         }
1252 //       }
1253 //       return i - sourceOffset;
1254 //     }
1255 //     if ((cache & (1 << src)) == 0) {
1256 //       i += targetCountLess1;
1257 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1258 //     i++;
1259 //   }
1260 //   return -1;
1261 // }
1262 
1263 //------------------------------string_indexOf------------------------
1264 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1265                                      jint cache_i, jint md2_i) {
1266 
1267   Node* no_ctrl  = NULL;
1268   float likely   = PROB_LIKELY(0.9);
1269   float unlikely = PROB_UNLIKELY(0.9);
1270 
1271   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1272 
1273   Node* source        = load_String_value(no_ctrl, string_object);
1274   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1275   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1276 
1277   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1278   jint target_length = target_array->length();
1279   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1280   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1281 
1282   if (UseImplicitStableValues) {
1283     // String.value field is known to be @Stable.
1284     // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
1285     // assumption of CCP analysis.
1286     target = _gvn.transform(new(C) CastPPNode(target, target_type->cast_to_stable(true)));
1287   }
1288 
1289   IdealKit kit(this, false, true);
1290 #define __ kit.
1291   Node* zero             = __ ConI(0);
1292   Node* one              = __ ConI(1);
1293   Node* cache            = __ ConI(cache_i);
1294   Node* md2              = __ ConI(md2_i);
1295   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1296   Node* targetCount      = __ ConI(target_length);
1297   Node* targetCountLess1 = __ ConI(target_length - 1);
1298   Node* targetOffset     = __ ConI(targetOffset_i);
1299   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1300 
1301   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1302   Node* outer_loop = __ make_label(2 /* goto */);
1303   Node* return_    = __ make_label(1);
1304 
1305   __ set(rtn,__ ConI(-1));
1306   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1307        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1308        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1309        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1310        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1311          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1312               Node* tpj = __ AddI(targetOffset, __ value(j));
1313               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1314               Node* ipj  = __ AddI(__ value(i), __ value(j));
1315               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1316               __ if_then(targ, BoolTest::ne, src2); {
1317                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1318                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1319                     __ increment(i, __ AddI(__ value(j), one));
1320                     __ goto_(outer_loop);
1321                   } __ end_if(); __ dead(j);
1322                 }__ end_if(); __ dead(j);
1323                 __ increment(i, md2);
1324                 __ goto_(outer_loop);
1325               }__ end_if();
1326               __ increment(j, one);
1327          }__ end_loop(); __ dead(j);
1328          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1329          __ goto_(return_);
1330        }__ end_if();
1331        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1332          __ increment(i, targetCountLess1);
1333        }__ end_if();
1334        __ increment(i, one);
1335        __ bind(outer_loop);
1336   }__ end_loop(); __ dead(i);
1337   __ bind(return_);
1338 
1339   // Final sync IdealKit and GraphKit.
1340   final_sync(kit);
1341   Node* result = __ value(rtn);
1342 #undef __
1343   C->set_has_loops(true);
1344   return result;
1345 }
1346 
1347 //------------------------------inline_string_indexOf------------------------
1348 bool LibraryCallKit::inline_string_indexOf() {
1349   Node* receiver = argument(0);
1350   Node* arg      = argument(1);
1351 
1352   Node* result;
1353   // Disable the use of pcmpestri until it can be guaranteed that
1354   // the load doesn't cross into the uncommited space.
1355   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1356       UseSSE42Intrinsics) {
1357     // Generate SSE4.2 version of indexOf
1358     // We currently only have match rules that use SSE4.2
1359 
1360     receiver = null_check(receiver);
1361     arg      = null_check(arg);
1362     if (stopped()) {
1363       return true;
1364     }
1365 
1366     ciInstanceKlass* str_klass = env()->String_klass();
1367     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1368 
1369     // Make the merge point
1370     RegionNode* result_rgn = new (C) RegionNode(4);
1371     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1372     Node* no_ctrl  = NULL;
1373 
1374     // Get start addr of source string
1375     Node* source = load_String_value(no_ctrl, receiver);
1376     Node* source_offset = load_String_offset(no_ctrl, receiver);
1377     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1378 
1379     // Get length of source string
1380     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1381 
1382     // Get start addr of substring
1383     Node* substr = load_String_value(no_ctrl, arg);
1384     Node* substr_offset = load_String_offset(no_ctrl, arg);
1385     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1386 
1387     // Get length of source string
1388     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1389 
1390     // Check for substr count > string count
1391     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1392     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1393     Node* if_gt = generate_slow_guard(bol, NULL);
1394     if (if_gt != NULL) {
1395       result_phi->init_req(2, intcon(-1));
1396       result_rgn->init_req(2, if_gt);
1397     }
1398 
1399     if (!stopped()) {
1400       // Check for substr count == 0
1401       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1402       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1403       Node* if_zero = generate_slow_guard(bol, NULL);
1404       if (if_zero != NULL) {
1405         result_phi->init_req(3, intcon(0));
1406         result_rgn->init_req(3, if_zero);
1407       }
1408     }
1409 
1410     if (!stopped()) {
1411       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1412       result_phi->init_req(1, result);
1413       result_rgn->init_req(1, control());
1414     }
1415     set_control(_gvn.transform(result_rgn));
1416     record_for_igvn(result_rgn);
1417     result = _gvn.transform(result_phi);
1418 
1419   } else { // Use LibraryCallKit::string_indexOf
1420     // don't intrinsify if argument isn't a constant string.
1421     if (!arg->is_Con()) {
1422      return false;
1423     }
1424     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1425     if (str_type == NULL) {
1426       return false;
1427     }
1428     ciInstanceKlass* klass = env()->String_klass();
1429     ciObject* str_const = str_type->const_oop();
1430     if (str_const == NULL || str_const->klass() != klass) {
1431       return false;
1432     }
1433     ciInstance* str = str_const->as_instance();
1434     assert(str != NULL, "must be instance");
1435 
1436     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1437     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1438 
1439     int o;
1440     int c;
1441     if (java_lang_String::has_offset_field()) {
1442       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1443       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1444     } else {
1445       o = 0;
1446       c = pat->length();
1447     }
1448 
1449     // constant strings have no offset and count == length which
1450     // simplifies the resulting code somewhat so lets optimize for that.
1451     if (o != 0 || c != pat->length()) {
1452      return false;
1453     }
1454 
1455     receiver = null_check(receiver, T_OBJECT);
1456     // NOTE: No null check on the argument is needed since it's a constant String oop.
1457     if (stopped()) {
1458       return true;
1459     }
1460 
1461     // The null string as a pattern always returns 0 (match at beginning of string)
1462     if (c == 0) {
1463       set_result(intcon(0));
1464       return true;
1465     }
1466 
1467     // Generate default indexOf
1468     jchar lastChar = pat->char_at(o + (c - 1));
1469     int cache = 0;
1470     int i;
1471     for (i = 0; i < c - 1; i++) {
1472       assert(i < pat->length(), "out of range");
1473       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1474     }
1475 
1476     int md2 = c;
1477     for (i = 0; i < c - 1; i++) {
1478       assert(i < pat->length(), "out of range");
1479       if (pat->char_at(o + i) == lastChar) {
1480         md2 = (c - 1) - i;
1481       }
1482     }
1483 
1484     result = string_indexOf(receiver, pat, o, cache, md2);
1485   }
1486   set_result(result);
1487   return true;
1488 }
1489 
1490 //--------------------------round_double_node--------------------------------
1491 // Round a double node if necessary.
1492 Node* LibraryCallKit::round_double_node(Node* n) {
1493   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1494     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1495   return n;
1496 }
1497 
1498 //------------------------------inline_math-----------------------------------
1499 // public static double Math.abs(double)
1500 // public static double Math.sqrt(double)
1501 // public static double Math.log(double)
1502 // public static double Math.log10(double)
1503 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1504   Node* arg = round_double_node(argument(0));
1505   Node* n;
1506   switch (id) {
1507   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1508   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1509   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1510   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1511   default:  fatal_unexpected_iid(id);  break;
1512   }
1513   set_result(_gvn.transform(n));
1514   return true;
1515 }
1516 
1517 //------------------------------inline_trig----------------------------------
1518 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1519 // argument reduction which will turn into a fast/slow diamond.
1520 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1521   Node* arg = round_double_node(argument(0));
1522   Node* n = NULL;
1523 
1524   switch (id) {
1525   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1526   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1527   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1528   default:  fatal_unexpected_iid(id);  break;
1529   }
1530   n = _gvn.transform(n);
1531 
1532   // Rounding required?  Check for argument reduction!
1533   if (Matcher::strict_fp_requires_explicit_rounding) {
1534     static const double     pi_4 =  0.7853981633974483;
1535     static const double neg_pi_4 = -0.7853981633974483;
1536     // pi/2 in 80-bit extended precision
1537     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1538     // -pi/2 in 80-bit extended precision
1539     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1540     // Cutoff value for using this argument reduction technique
1541     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1542     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1543 
1544     // Pseudocode for sin:
1545     // if (x <= Math.PI / 4.0) {
1546     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1547     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1548     // } else {
1549     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1550     // }
1551     // return StrictMath.sin(x);
1552 
1553     // Pseudocode for cos:
1554     // if (x <= Math.PI / 4.0) {
1555     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1556     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1557     // } else {
1558     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1559     // }
1560     // return StrictMath.cos(x);
1561 
1562     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1563     // requires a special machine instruction to load it.  Instead we'll try
1564     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1565     // probably do the math inside the SIN encoding.
1566 
1567     // Make the merge point
1568     RegionNode* r = new (C) RegionNode(3);
1569     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1570 
1571     // Flatten arg so we need only 1 test
1572     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1573     // Node for PI/4 constant
1574     Node *pi4 = makecon(TypeD::make(pi_4));
1575     // Check PI/4 : abs(arg)
1576     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1577     // Check: If PI/4 < abs(arg) then go slow
1578     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1579     // Branch either way
1580     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1581     set_control(opt_iff(r,iff));
1582 
1583     // Set fast path result
1584     phi->init_req(2, n);
1585 
1586     // Slow path - non-blocking leaf call
1587     Node* call = NULL;
1588     switch (id) {
1589     case vmIntrinsics::_dsin:
1590       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1591                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1592                                "Sin", NULL, arg, top());
1593       break;
1594     case vmIntrinsics::_dcos:
1595       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1596                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1597                                "Cos", NULL, arg, top());
1598       break;
1599     case vmIntrinsics::_dtan:
1600       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1601                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1602                                "Tan", NULL, arg, top());
1603       break;
1604     }
1605     assert(control()->in(0) == call, "");
1606     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1607     r->init_req(1, control());
1608     phi->init_req(1, slow_result);
1609 
1610     // Post-merge
1611     set_control(_gvn.transform(r));
1612     record_for_igvn(r);
1613     n = _gvn.transform(phi);
1614 
1615     C->set_has_split_ifs(true); // Has chance for split-if optimization
1616   }
1617   set_result(n);
1618   return true;
1619 }
1620 
1621 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1622   //-------------------
1623   //result=(result.isNaN())? funcAddr():result;
1624   // Check: If isNaN() by checking result!=result? then either trap
1625   // or go to runtime
1626   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1627   // Build the boolean node
1628   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1629 
1630   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1631     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1632       // The pow or exp intrinsic returned a NaN, which requires a call
1633       // to the runtime.  Recompile with the runtime call.
1634       uncommon_trap(Deoptimization::Reason_intrinsic,
1635                     Deoptimization::Action_make_not_entrant);
1636     }
1637     set_result(result);
1638   } else {
1639     // If this inlining ever returned NaN in the past, we compile a call
1640     // to the runtime to properly handle corner cases
1641 
1642     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1643     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1644     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1645 
1646     if (!if_slow->is_top()) {
1647       RegionNode* result_region = new (C) RegionNode(3);
1648       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1649 
1650       result_region->init_req(1, if_fast);
1651       result_val->init_req(1, result);
1652 
1653       set_control(if_slow);
1654 
1655       const TypePtr* no_memory_effects = NULL;
1656       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1657                                    no_memory_effects,
1658                                    x, top(), y, y ? top() : NULL);
1659       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1660 #ifdef ASSERT
1661       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1662       assert(value_top == top(), "second value must be top");
1663 #endif
1664 
1665       result_region->init_req(2, control());
1666       result_val->init_req(2, value);
1667       set_result(result_region, result_val);
1668     } else {
1669       set_result(result);
1670     }
1671   }
1672 }
1673 
1674 //------------------------------inline_exp-------------------------------------
1675 // Inline exp instructions, if possible.  The Intel hardware only misses
1676 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1677 bool LibraryCallKit::inline_exp() {
1678   Node* arg = round_double_node(argument(0));
1679   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1680 
1681   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1682 
1683   C->set_has_split_ifs(true); // Has chance for split-if optimization
1684   return true;
1685 }
1686 
1687 //------------------------------inline_pow-------------------------------------
1688 // Inline power instructions, if possible.
1689 bool LibraryCallKit::inline_pow() {
1690   // Pseudocode for pow
1691   // if (x <= 0.0) {
1692   //   long longy = (long)y;
1693   //   if ((double)longy == y) { // if y is long
1694   //     if (y + 1 == y) longy = 0; // huge number: even
1695   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1696   //   } else {
1697   //     result = NaN;
1698   //   }
1699   // } else {
1700   //   result = DPow(x,y);
1701   // }
1702   // if (result != result)?  {
1703   //   result = uncommon_trap() or runtime_call();
1704   // }
1705   // return result;
1706 
1707   Node* x = round_double_node(argument(0));
1708   Node* y = round_double_node(argument(2));
1709 
1710   Node* result = NULL;
1711 
1712   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1713     // Short form: skip the fancy tests and just check for NaN result.
1714     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1715   } else {
1716     // If this inlining ever returned NaN in the past, include all
1717     // checks + call to the runtime.
1718 
1719     // Set the merge point for If node with condition of (x <= 0.0)
1720     // There are four possible paths to region node and phi node
1721     RegionNode *r = new (C) RegionNode(4);
1722     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1723 
1724     // Build the first if node: if (x <= 0.0)
1725     // Node for 0 constant
1726     Node *zeronode = makecon(TypeD::ZERO);
1727     // Check x:0
1728     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1729     // Check: If (x<=0) then go complex path
1730     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1731     // Branch either way
1732     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1733     // Fast path taken; set region slot 3
1734     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1735     r->init_req(3,fast_taken); // Capture fast-control
1736 
1737     // Fast path not-taken, i.e. slow path
1738     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1739 
1740     // Set fast path result
1741     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1742     phi->init_req(3, fast_result);
1743 
1744     // Complex path
1745     // Build the second if node (if y is long)
1746     // Node for (long)y
1747     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1748     // Node for (double)((long) y)
1749     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1750     // Check (double)((long) y) : y
1751     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1752     // Check if (y isn't long) then go to slow path
1753 
1754     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1755     // Branch either way
1756     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1757     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1758 
1759     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1760 
1761     // Calculate DPow(abs(x), y)*(1 & (long)y)
1762     // Node for constant 1
1763     Node *conone = longcon(1);
1764     // 1& (long)y
1765     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1766 
1767     // A huge number is always even. Detect a huge number by checking
1768     // if y + 1 == y and set integer to be tested for parity to 0.
1769     // Required for corner case:
1770     // (long)9.223372036854776E18 = max_jlong
1771     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1772     // max_jlong is odd but 9.223372036854776E18 is even
1773     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1774     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1775     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1776     Node* correctedsign = NULL;
1777     if (ConditionalMoveLimit != 0) {
1778       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1779     } else {
1780       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1781       RegionNode *r = new (C) RegionNode(3);
1782       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1783       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1784       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1785       phi->init_req(1, signnode);
1786       phi->init_req(2, longcon(0));
1787       correctedsign = _gvn.transform(phi);
1788       ylong_path = _gvn.transform(r);
1789       record_for_igvn(r);
1790     }
1791 
1792     // zero node
1793     Node *conzero = longcon(0);
1794     // Check (1&(long)y)==0?
1795     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1796     // Check if (1&(long)y)!=0?, if so the result is negative
1797     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1798     // abs(x)
1799     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1800     // abs(x)^y
1801     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1802     // -abs(x)^y
1803     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1804     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1805     Node *signresult = NULL;
1806     if (ConditionalMoveLimit != 0) {
1807       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1808     } else {
1809       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1810       RegionNode *r = new (C) RegionNode(3);
1811       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1812       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1813       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1814       phi->init_req(1, absxpowy);
1815       phi->init_req(2, negabsxpowy);
1816       signresult = _gvn.transform(phi);
1817       ylong_path = _gvn.transform(r);
1818       record_for_igvn(r);
1819     }
1820     // Set complex path fast result
1821     r->init_req(2, ylong_path);
1822     phi->init_req(2, signresult);
1823 
1824     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1825     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1826     r->init_req(1,slow_path);
1827     phi->init_req(1,slow_result);
1828 
1829     // Post merge
1830     set_control(_gvn.transform(r));
1831     record_for_igvn(r);
1832     result = _gvn.transform(phi);
1833   }
1834 
1835   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1836 
1837   C->set_has_split_ifs(true); // Has chance for split-if optimization
1838   return true;
1839 }
1840 
1841 //------------------------------runtime_math-----------------------------
1842 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1843   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1844          "must be (DD)D or (D)D type");
1845 
1846   // Inputs
1847   Node* a = round_double_node(argument(0));
1848   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1849 
1850   const TypePtr* no_memory_effects = NULL;
1851   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1852                                  no_memory_effects,
1853                                  a, top(), b, b ? top() : NULL);
1854   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1855 #ifdef ASSERT
1856   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1857   assert(value_top == top(), "second value must be top");
1858 #endif
1859 
1860   set_result(value);
1861   return true;
1862 }
1863 
1864 //------------------------------inline_math_native-----------------------------
1865 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1866 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1867   switch (id) {
1868     // These intrinsics are not properly supported on all hardware
1869   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1870     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1871   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1872     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1873   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1874     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1875 
1876   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1877     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1878   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1879     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1880 
1881     // These intrinsics are supported on all hardware
1882   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1883   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1884 
1885   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1886     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1887   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1888     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1889 #undef FN_PTR
1890 
1891    // These intrinsics are not yet correctly implemented
1892   case vmIntrinsics::_datan2:
1893     return false;
1894 
1895   default:
1896     fatal_unexpected_iid(id);
1897     return false;
1898   }
1899 }
1900 
1901 static bool is_simple_name(Node* n) {
1902   return (n->req() == 1         // constant
1903           || (n->is_Type() && n->as_Type()->type()->singleton())
1904           || n->is_Proj()       // parameter or return value
1905           || n->is_Phi()        // local of some sort
1906           );
1907 }
1908 
1909 //----------------------------inline_min_max-----------------------------------
1910 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1911   set_result(generate_min_max(id, argument(0), argument(1)));
1912   return true;
1913 }
1914 
1915 Node*
1916 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1917   // These are the candidate return value:
1918   Node* xvalue = x0;
1919   Node* yvalue = y0;
1920 
1921   if (xvalue == yvalue) {
1922     return xvalue;
1923   }
1924 
1925   bool want_max = (id == vmIntrinsics::_max);
1926 
1927   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1928   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1929   if (txvalue == NULL || tyvalue == NULL)  return top();
1930   // This is not really necessary, but it is consistent with a
1931   // hypothetical MaxINode::Value method:
1932   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1933 
1934   // %%% This folding logic should (ideally) be in a different place.
1935   // Some should be inside IfNode, and there to be a more reliable
1936   // transformation of ?: style patterns into cmoves.  We also want
1937   // more powerful optimizations around cmove and min/max.
1938 
1939   // Try to find a dominating comparison of these guys.
1940   // It can simplify the index computation for Arrays.copyOf
1941   // and similar uses of System.arraycopy.
1942   // First, compute the normalized version of CmpI(x, y).
1943   int   cmp_op = Op_CmpI;
1944   Node* xkey = xvalue;
1945   Node* ykey = yvalue;
1946   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
1947   if (ideal_cmpxy->is_Cmp()) {
1948     // E.g., if we have CmpI(length - offset, count),
1949     // it might idealize to CmpI(length, count + offset)
1950     cmp_op = ideal_cmpxy->Opcode();
1951     xkey = ideal_cmpxy->in(1);
1952     ykey = ideal_cmpxy->in(2);
1953   }
1954 
1955   // Start by locating any relevant comparisons.
1956   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1957   Node* cmpxy = NULL;
1958   Node* cmpyx = NULL;
1959   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1960     Node* cmp = start_from->fast_out(k);
1961     if (cmp->outcnt() > 0 &&            // must have prior uses
1962         cmp->in(0) == NULL &&           // must be context-independent
1963         cmp->Opcode() == cmp_op) {      // right kind of compare
1964       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1965       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1966     }
1967   }
1968 
1969   const int NCMPS = 2;
1970   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1971   int cmpn;
1972   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1973     if (cmps[cmpn] != NULL)  break;     // find a result
1974   }
1975   if (cmpn < NCMPS) {
1976     // Look for a dominating test that tells us the min and max.
1977     int depth = 0;                // Limit search depth for speed
1978     Node* dom = control();
1979     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1980       if (++depth >= 100)  break;
1981       Node* ifproj = dom;
1982       if (!ifproj->is_Proj())  continue;
1983       Node* iff = ifproj->in(0);
1984       if (!iff->is_If())  continue;
1985       Node* bol = iff->in(1);
1986       if (!bol->is_Bool())  continue;
1987       Node* cmp = bol->in(1);
1988       if (cmp == NULL)  continue;
1989       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1990         if (cmps[cmpn] == cmp)  break;
1991       if (cmpn == NCMPS)  continue;
1992       BoolTest::mask btest = bol->as_Bool()->_test._test;
1993       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1994       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1995       // At this point, we know that 'x btest y' is true.
1996       switch (btest) {
1997       case BoolTest::eq:
1998         // They are proven equal, so we can collapse the min/max.
1999         // Either value is the answer.  Choose the simpler.
2000         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2001           return yvalue;
2002         return xvalue;
2003       case BoolTest::lt:          // x < y
2004       case BoolTest::le:          // x <= y
2005         return (want_max ? yvalue : xvalue);
2006       case BoolTest::gt:          // x > y
2007       case BoolTest::ge:          // x >= y
2008         return (want_max ? xvalue : yvalue);
2009       }
2010     }
2011   }
2012 
2013   // We failed to find a dominating test.
2014   // Let's pick a test that might GVN with prior tests.
2015   Node*          best_bol   = NULL;
2016   BoolTest::mask best_btest = BoolTest::illegal;
2017   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2018     Node* cmp = cmps[cmpn];
2019     if (cmp == NULL)  continue;
2020     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2021       Node* bol = cmp->fast_out(j);
2022       if (!bol->is_Bool())  continue;
2023       BoolTest::mask btest = bol->as_Bool()->_test._test;
2024       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2025       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2026       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2027         best_bol   = bol->as_Bool();
2028         best_btest = btest;
2029       }
2030     }
2031   }
2032 
2033   Node* answer_if_true  = NULL;
2034   Node* answer_if_false = NULL;
2035   switch (best_btest) {
2036   default:
2037     if (cmpxy == NULL)
2038       cmpxy = ideal_cmpxy;
2039     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2040     // and fall through:
2041   case BoolTest::lt:          // x < y
2042   case BoolTest::le:          // x <= y
2043     answer_if_true  = (want_max ? yvalue : xvalue);
2044     answer_if_false = (want_max ? xvalue : yvalue);
2045     break;
2046   case BoolTest::gt:          // x > y
2047   case BoolTest::ge:          // x >= y
2048     answer_if_true  = (want_max ? xvalue : yvalue);
2049     answer_if_false = (want_max ? yvalue : xvalue);
2050     break;
2051   }
2052 
2053   jint hi, lo;
2054   if (want_max) {
2055     // We can sharpen the minimum.
2056     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2057     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2058   } else {
2059     // We can sharpen the maximum.
2060     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2061     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2062   }
2063 
2064   // Use a flow-free graph structure, to avoid creating excess control edges
2065   // which could hinder other optimizations.
2066   // Since Math.min/max is often used with arraycopy, we want
2067   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2068   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2069                                answer_if_false, answer_if_true,
2070                                TypeInt::make(lo, hi, widen));
2071 
2072   return _gvn.transform(cmov);
2073 
2074   /*
2075   // This is not as desirable as it may seem, since Min and Max
2076   // nodes do not have a full set of optimizations.
2077   // And they would interfere, anyway, with 'if' optimizations
2078   // and with CMoveI canonical forms.
2079   switch (id) {
2080   case vmIntrinsics::_min:
2081     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2082   case vmIntrinsics::_max:
2083     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2084   default:
2085     ShouldNotReachHere();
2086   }
2087   */
2088 }
2089 
2090 inline int
2091 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2092   const TypePtr* base_type = TypePtr::NULL_PTR;
2093   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2094   if (base_type == NULL) {
2095     // Unknown type.
2096     return Type::AnyPtr;
2097   } else if (base_type == TypePtr::NULL_PTR) {
2098     // Since this is a NULL+long form, we have to switch to a rawptr.
2099     base   = _gvn.transform(new (C) CastX2PNode(offset));
2100     offset = MakeConX(0);
2101     return Type::RawPtr;
2102   } else if (base_type->base() == Type::RawPtr) {
2103     return Type::RawPtr;
2104   } else if (base_type->isa_oopptr()) {
2105     // Base is never null => always a heap address.
2106     if (base_type->ptr() == TypePtr::NotNull) {
2107       return Type::OopPtr;
2108     }
2109     // Offset is small => always a heap address.
2110     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2111     if (offset_type != NULL &&
2112         base_type->offset() == 0 &&     // (should always be?)
2113         offset_type->_lo >= 0 &&
2114         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2115       return Type::OopPtr;
2116     }
2117     // Otherwise, it might either be oop+off or NULL+addr.
2118     return Type::AnyPtr;
2119   } else {
2120     // No information:
2121     return Type::AnyPtr;
2122   }
2123 }
2124 
2125 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2126   int kind = classify_unsafe_addr(base, offset);
2127   if (kind == Type::RawPtr) {
2128     return basic_plus_adr(top(), base, offset);
2129   } else {
2130     return basic_plus_adr(base, offset);
2131   }
2132 }
2133 
2134 //--------------------------inline_number_methods-----------------------------
2135 // inline int     Integer.numberOfLeadingZeros(int)
2136 // inline int        Long.numberOfLeadingZeros(long)
2137 //
2138 // inline int     Integer.numberOfTrailingZeros(int)
2139 // inline int        Long.numberOfTrailingZeros(long)
2140 //
2141 // inline int     Integer.bitCount(int)
2142 // inline int        Long.bitCount(long)
2143 //
2144 // inline char  Character.reverseBytes(char)
2145 // inline short     Short.reverseBytes(short)
2146 // inline int     Integer.reverseBytes(int)
2147 // inline long       Long.reverseBytes(long)
2148 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2149   Node* arg = argument(0);
2150   Node* n;
2151   switch (id) {
2152   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2153   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2154   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2155   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2156   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2157   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2158   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2159   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2160   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2161   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2162   default:  fatal_unexpected_iid(id);  break;
2163   }
2164   set_result(_gvn.transform(n));
2165   return true;
2166 }
2167 
2168 //----------------------------inline_unsafe_access----------------------------
2169 
2170 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2171 
2172 // Helper that guards and inserts a pre-barrier.
2173 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2174                                         Node* pre_val, bool need_mem_bar) {
2175   // We could be accessing the referent field of a reference object. If so, when G1
2176   // is enabled, we need to log the value in the referent field in an SATB buffer.
2177   // This routine performs some compile time filters and generates suitable
2178   // runtime filters that guard the pre-barrier code.
2179   // Also add memory barrier for non volatile load from the referent field
2180   // to prevent commoning of loads across safepoint.
2181   if (!UseG1GC && !need_mem_bar)
2182     return;
2183 
2184   // Some compile time checks.
2185 
2186   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2187   const TypeX* otype = offset->find_intptr_t_type();
2188   if (otype != NULL && otype->is_con() &&
2189       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2190     // Constant offset but not the reference_offset so just return
2191     return;
2192   }
2193 
2194   // We only need to generate the runtime guards for instances.
2195   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2196   if (btype != NULL) {
2197     if (btype->isa_aryptr()) {
2198       // Array type so nothing to do
2199       return;
2200     }
2201 
2202     const TypeInstPtr* itype = btype->isa_instptr();
2203     if (itype != NULL) {
2204       // Can the klass of base_oop be statically determined to be
2205       // _not_ a sub-class of Reference and _not_ Object?
2206       ciKlass* klass = itype->klass();
2207       if ( klass->is_loaded() &&
2208           !klass->is_subtype_of(env()->Reference_klass()) &&
2209           !env()->Object_klass()->is_subtype_of(klass)) {
2210         return;
2211       }
2212     }
2213   }
2214 
2215   // The compile time filters did not reject base_oop/offset so
2216   // we need to generate the following runtime filters
2217   //
2218   // if (offset == java_lang_ref_Reference::_reference_offset) {
2219   //   if (instance_of(base, java.lang.ref.Reference)) {
2220   //     pre_barrier(_, pre_val, ...);
2221   //   }
2222   // }
2223 
2224   float likely   = PROB_LIKELY(  0.999);
2225   float unlikely = PROB_UNLIKELY(0.999);
2226 
2227   IdealKit ideal(this);
2228 #define __ ideal.
2229 
2230   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2231 
2232   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2233       // Update graphKit memory and control from IdealKit.
2234       sync_kit(ideal);
2235 
2236       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2237       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2238 
2239       // Update IdealKit memory and control from graphKit.
2240       __ sync_kit(this);
2241 
2242       Node* one = __ ConI(1);
2243       // is_instof == 0 if base_oop == NULL
2244       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2245 
2246         // Update graphKit from IdeakKit.
2247         sync_kit(ideal);
2248 
2249         // Use the pre-barrier to record the value in the referent field
2250         pre_barrier(false /* do_load */,
2251                     __ ctrl(),
2252                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2253                     pre_val /* pre_val */,
2254                     T_OBJECT);
2255         if (need_mem_bar) {
2256           // Add memory barrier to prevent commoning reads from this field
2257           // across safepoint since GC can change its value.
2258           insert_mem_bar(Op_MemBarCPUOrder);
2259         }
2260         // Update IdealKit from graphKit.
2261         __ sync_kit(this);
2262 
2263       } __ end_if(); // _ref_type != ref_none
2264   } __ end_if(); // offset == referent_offset
2265 
2266   // Final sync IdealKit and GraphKit.
2267   final_sync(ideal);
2268 #undef __
2269 }
2270 
2271 
2272 // Interpret Unsafe.fieldOffset cookies correctly:
2273 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2274 
2275 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2276   // Attempt to infer a sharper value type from the offset and base type.
2277   ciKlass* sharpened_klass = NULL;
2278 
2279   // See if it is an instance field, with an object type.
2280   if (alias_type->field() != NULL) {
2281     assert(!is_native_ptr, "native pointer op cannot use a java address");
2282     if (alias_type->field()->type()->is_klass()) {
2283       sharpened_klass = alias_type->field()->type()->as_klass();
2284     }
2285   }
2286 
2287   // See if it is a narrow oop array.
2288   if (adr_type->isa_aryptr()) {
2289     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2290       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2291       if (elem_type != NULL) {
2292         sharpened_klass = elem_type->klass();
2293       }
2294     }
2295   }
2296 
2297   // The sharpened class might be unloaded if there is no class loader
2298   // contraint in place.
2299   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2300     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2301 
2302 #ifndef PRODUCT
2303     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2304       tty->print("  from base type: ");  adr_type->dump();
2305       tty->print("  sharpened value: ");  tjp->dump();
2306     }
2307 #endif
2308     // Sharpen the value type.
2309     return tjp;
2310   }
2311   return NULL;
2312 }
2313 
2314 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2315   if (callee()->is_static())  return false;  // caller must have the capability!
2316 
2317 #ifndef PRODUCT
2318   {
2319     ResourceMark rm;
2320     // Check the signatures.
2321     ciSignature* sig = callee()->signature();
2322 #ifdef ASSERT
2323     if (!is_store) {
2324       // Object getObject(Object base, int/long offset), etc.
2325       BasicType rtype = sig->return_type()->basic_type();
2326       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2327           rtype = T_ADDRESS;  // it is really a C void*
2328       assert(rtype == type, "getter must return the expected value");
2329       if (!is_native_ptr) {
2330         assert(sig->count() == 2, "oop getter has 2 arguments");
2331         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2332         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2333       } else {
2334         assert(sig->count() == 1, "native getter has 1 argument");
2335         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2336       }
2337     } else {
2338       // void putObject(Object base, int/long offset, Object x), etc.
2339       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2340       if (!is_native_ptr) {
2341         assert(sig->count() == 3, "oop putter has 3 arguments");
2342         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2343         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2344       } else {
2345         assert(sig->count() == 2, "native putter has 2 arguments");
2346         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2347       }
2348       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2349       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2350         vtype = T_ADDRESS;  // it is really a C void*
2351       assert(vtype == type, "putter must accept the expected value");
2352     }
2353 #endif // ASSERT
2354  }
2355 #endif //PRODUCT
2356 
2357   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2358 
2359   Node* receiver = argument(0);  // type: oop
2360 
2361   // Build address expression.  See the code in inline_unsafe_prefetch.
2362   Node* adr;
2363   Node* heap_base_oop = top();
2364   Node* offset = top();
2365   Node* val;
2366 
2367   if (!is_native_ptr) {
2368     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2369     Node* base = argument(1);  // type: oop
2370     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2371     offset = argument(2);  // type: long
2372     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2373     // to be plain byte offsets, which are also the same as those accepted
2374     // by oopDesc::field_base.
2375     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2376            "fieldOffset must be byte-scaled");
2377     // 32-bit machines ignore the high half!
2378     offset = ConvL2X(offset);
2379     adr = make_unsafe_address(base, offset);
2380     heap_base_oop = base;
2381     val = is_store ? argument(4) : NULL;
2382   } else {
2383     Node* ptr = argument(1);  // type: long
2384     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2385     adr = make_unsafe_address(NULL, ptr);
2386     val = is_store ? argument(3) : NULL;
2387   }
2388 
2389   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2390 
2391   // First guess at the value type.
2392   const Type *value_type = Type::get_const_basic_type(type);
2393 
2394   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2395   // there was not enough information to nail it down.
2396   Compile::AliasType* alias_type = C->alias_type(adr_type);
2397   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2398 
2399   // We will need memory barriers unless we can determine a unique
2400   // alias category for this reference.  (Note:  If for some reason
2401   // the barriers get omitted and the unsafe reference begins to "pollute"
2402   // the alias analysis of the rest of the graph, either Compile::can_alias
2403   // or Compile::must_alias will throw a diagnostic assert.)
2404   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2405 
2406   // If we are reading the value of the referent field of a Reference
2407   // object (either by using Unsafe directly or through reflection)
2408   // then, if G1 is enabled, we need to record the referent in an
2409   // SATB log buffer using the pre-barrier mechanism.
2410   // Also we need to add memory barrier to prevent commoning reads
2411   // from this field across safepoint since GC can change its value.
2412   bool need_read_barrier = !is_native_ptr && !is_store &&
2413                            offset != top() && heap_base_oop != top();
2414 
2415   if (!is_store && type == T_OBJECT) {
2416     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2417     if (tjp != NULL) {
2418       value_type = tjp;
2419     }
2420   }
2421 
2422   receiver = null_check(receiver);
2423   if (stopped()) {
2424     return true;
2425   }
2426   // Heap pointers get a null-check from the interpreter,
2427   // as a courtesy.  However, this is not guaranteed by Unsafe,
2428   // and it is not possible to fully distinguish unintended nulls
2429   // from intended ones in this API.
2430 
2431   if (is_volatile) {
2432     // We need to emit leading and trailing CPU membars (see below) in
2433     // addition to memory membars when is_volatile. This is a little
2434     // too strong, but avoids the need to insert per-alias-type
2435     // volatile membars (for stores; compare Parse::do_put_xxx), which
2436     // we cannot do effectively here because we probably only have a
2437     // rough approximation of type.
2438     need_mem_bar = true;
2439     // For Stores, place a memory ordering barrier now.
2440     if (is_store)
2441       insert_mem_bar(Op_MemBarRelease);
2442   }
2443 
2444   // Memory barrier to prevent normal and 'unsafe' accesses from
2445   // bypassing each other.  Happens after null checks, so the
2446   // exception paths do not take memory state from the memory barrier,
2447   // so there's no problems making a strong assert about mixing users
2448   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2449   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2450   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2451 
2452   if (!is_store) {
2453     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2454     // load value
2455     switch (type) {
2456     case T_BOOLEAN:
2457     case T_CHAR:
2458     case T_BYTE:
2459     case T_SHORT:
2460     case T_INT:
2461     case T_LONG:
2462     case T_FLOAT:
2463     case T_DOUBLE:
2464       break;
2465     case T_OBJECT:
2466       if (need_read_barrier) {
2467         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2468       }
2469       break;
2470     case T_ADDRESS:
2471       // Cast to an int type.
2472       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2473       p = ConvX2L(p);
2474       break;
2475     default:
2476       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2477       break;
2478     }
2479     // The load node has the control of the preceding MemBarCPUOrder.  All
2480     // following nodes will have the control of the MemBarCPUOrder inserted at
2481     // the end of this method.  So, pushing the load onto the stack at a later
2482     // point is fine.
2483     set_result(p);
2484   } else {
2485     // place effect of store into memory
2486     switch (type) {
2487     case T_DOUBLE:
2488       val = dstore_rounding(val);
2489       break;
2490     case T_ADDRESS:
2491       // Repackage the long as a pointer.
2492       val = ConvL2X(val);
2493       val = _gvn.transform(new (C) CastX2PNode(val));
2494       break;
2495     }
2496 
2497     if (type != T_OBJECT ) {
2498       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2499     } else {
2500       // Possibly an oop being stored to Java heap or native memory
2501       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2502         // oop to Java heap.
2503         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2504       } else {
2505         // We can't tell at compile time if we are storing in the Java heap or outside
2506         // of it. So we need to emit code to conditionally do the proper type of
2507         // store.
2508 
2509         IdealKit ideal(this);
2510 #define __ ideal.
2511         // QQQ who knows what probability is here??
2512         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2513           // Sync IdealKit and graphKit.
2514           sync_kit(ideal);
2515           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2516           // Update IdealKit memory.
2517           __ sync_kit(this);
2518         } __ else_(); {
2519           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2520         } __ end_if();
2521         // Final sync IdealKit and GraphKit.
2522         final_sync(ideal);
2523 #undef __
2524       }
2525     }
2526   }
2527 
2528   if (is_volatile) {
2529     if (!is_store)
2530       insert_mem_bar(Op_MemBarAcquire);
2531     else
2532       insert_mem_bar(Op_MemBarVolatile);
2533   }
2534 
2535   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2536 
2537   return true;
2538 }
2539 
2540 //----------------------------inline_unsafe_prefetch----------------------------
2541 
2542 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2543 #ifndef PRODUCT
2544   {
2545     ResourceMark rm;
2546     // Check the signatures.
2547     ciSignature* sig = callee()->signature();
2548 #ifdef ASSERT
2549     // Object getObject(Object base, int/long offset), etc.
2550     BasicType rtype = sig->return_type()->basic_type();
2551     if (!is_native_ptr) {
2552       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2553       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2554       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2555     } else {
2556       assert(sig->count() == 1, "native prefetch has 1 argument");
2557       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2558     }
2559 #endif // ASSERT
2560   }
2561 #endif // !PRODUCT
2562 
2563   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2564 
2565   const int idx = is_static ? 0 : 1;
2566   if (!is_static) {
2567     null_check_receiver();
2568     if (stopped()) {
2569       return true;
2570     }
2571   }
2572 
2573   // Build address expression.  See the code in inline_unsafe_access.
2574   Node *adr;
2575   if (!is_native_ptr) {
2576     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2577     Node* base   = argument(idx + 0);  // type: oop
2578     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2579     Node* offset = argument(idx + 1);  // type: long
2580     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2581     // to be plain byte offsets, which are also the same as those accepted
2582     // by oopDesc::field_base.
2583     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2584            "fieldOffset must be byte-scaled");
2585     // 32-bit machines ignore the high half!
2586     offset = ConvL2X(offset);
2587     adr = make_unsafe_address(base, offset);
2588   } else {
2589     Node* ptr = argument(idx + 0);  // type: long
2590     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2591     adr = make_unsafe_address(NULL, ptr);
2592   }
2593 
2594   // Generate the read or write prefetch
2595   Node *prefetch;
2596   if (is_store) {
2597     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2598   } else {
2599     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2600   }
2601   prefetch->init_req(0, control());
2602   set_i_o(_gvn.transform(prefetch));
2603 
2604   return true;
2605 }
2606 
2607 //----------------------------inline_unsafe_load_store----------------------------
2608 // This method serves a couple of different customers (depending on LoadStoreKind):
2609 //
2610 // LS_cmpxchg:
2611 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2612 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2613 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2614 //
2615 // LS_xadd:
2616 //   public int  getAndAddInt( Object o, long offset, int  delta)
2617 //   public long getAndAddLong(Object o, long offset, long delta)
2618 //
2619 // LS_xchg:
2620 //   int    getAndSet(Object o, long offset, int    newValue)
2621 //   long   getAndSet(Object o, long offset, long   newValue)
2622 //   Object getAndSet(Object o, long offset, Object newValue)
2623 //
2624 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2625   // This basic scheme here is the same as inline_unsafe_access, but
2626   // differs in enough details that combining them would make the code
2627   // overly confusing.  (This is a true fact! I originally combined
2628   // them, but even I was confused by it!) As much code/comments as
2629   // possible are retained from inline_unsafe_access though to make
2630   // the correspondences clearer. - dl
2631 
2632   if (callee()->is_static())  return false;  // caller must have the capability!
2633 
2634 #ifndef PRODUCT
2635   BasicType rtype;
2636   {
2637     ResourceMark rm;
2638     // Check the signatures.
2639     ciSignature* sig = callee()->signature();
2640     rtype = sig->return_type()->basic_type();
2641     if (kind == LS_xadd || kind == LS_xchg) {
2642       // Check the signatures.
2643 #ifdef ASSERT
2644       assert(rtype == type, "get and set must return the expected type");
2645       assert(sig->count() == 3, "get and set has 3 arguments");
2646       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2647       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2648       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2649 #endif // ASSERT
2650     } else if (kind == LS_cmpxchg) {
2651       // Check the signatures.
2652 #ifdef ASSERT
2653       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2654       assert(sig->count() == 4, "CAS has 4 arguments");
2655       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2656       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2657 #endif // ASSERT
2658     } else {
2659       ShouldNotReachHere();
2660     }
2661   }
2662 #endif //PRODUCT
2663 
2664   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2665 
2666   // Get arguments:
2667   Node* receiver = NULL;
2668   Node* base     = NULL;
2669   Node* offset   = NULL;
2670   Node* oldval   = NULL;
2671   Node* newval   = NULL;
2672   if (kind == LS_cmpxchg) {
2673     const bool two_slot_type = type2size[type] == 2;
2674     receiver = argument(0);  // type: oop
2675     base     = argument(1);  // type: oop
2676     offset   = argument(2);  // type: long
2677     oldval   = argument(4);  // type: oop, int, or long
2678     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2679   } else if (kind == LS_xadd || kind == LS_xchg){
2680     receiver = argument(0);  // type: oop
2681     base     = argument(1);  // type: oop
2682     offset   = argument(2);  // type: long
2683     oldval   = NULL;
2684     newval   = argument(4);  // type: oop, int, or long
2685   }
2686 
2687   // Null check receiver.
2688   receiver = null_check(receiver);
2689   if (stopped()) {
2690     return true;
2691   }
2692 
2693   // Build field offset expression.
2694   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2695   // to be plain byte offsets, which are also the same as those accepted
2696   // by oopDesc::field_base.
2697   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2698   // 32-bit machines ignore the high half of long offsets
2699   offset = ConvL2X(offset);
2700   Node* adr = make_unsafe_address(base, offset);
2701   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2702 
2703   // For CAS, unlike inline_unsafe_access, there seems no point in
2704   // trying to refine types. Just use the coarse types here.
2705   const Type *value_type = Type::get_const_basic_type(type);
2706   Compile::AliasType* alias_type = C->alias_type(adr_type);
2707   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2708 
2709   if (kind == LS_xchg && type == T_OBJECT) {
2710     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2711     if (tjp != NULL) {
2712       value_type = tjp;
2713     }
2714   }
2715 
2716   int alias_idx = C->get_alias_index(adr_type);
2717 
2718   // Memory-model-wise, a LoadStore acts like a little synchronized
2719   // block, so needs barriers on each side.  These don't translate
2720   // into actual barriers on most machines, but we still need rest of
2721   // compiler to respect ordering.
2722 
2723   insert_mem_bar(Op_MemBarRelease);
2724   insert_mem_bar(Op_MemBarCPUOrder);
2725 
2726   // 4984716: MemBars must be inserted before this
2727   //          memory node in order to avoid a false
2728   //          dependency which will confuse the scheduler.
2729   Node *mem = memory(alias_idx);
2730 
2731   // For now, we handle only those cases that actually exist: ints,
2732   // longs, and Object. Adding others should be straightforward.
2733   Node* load_store;
2734   switch(type) {
2735   case T_INT:
2736     if (kind == LS_xadd) {
2737       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2738     } else if (kind == LS_xchg) {
2739       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2740     } else if (kind == LS_cmpxchg) {
2741       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2742     } else {
2743       ShouldNotReachHere();
2744     }
2745     break;
2746   case T_LONG:
2747     if (kind == LS_xadd) {
2748       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2749     } else if (kind == LS_xchg) {
2750       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2751     } else if (kind == LS_cmpxchg) {
2752       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2753     } else {
2754       ShouldNotReachHere();
2755     }
2756     break;
2757   case T_OBJECT:
2758     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2759     // could be delayed during Parse (for example, in adjust_map_after_if()).
2760     // Execute transformation here to avoid barrier generation in such case.
2761     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2762       newval = _gvn.makecon(TypePtr::NULL_PTR);
2763 
2764     // Reference stores need a store barrier.
2765     pre_barrier(true /* do_load*/,
2766                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2767                 NULL /* pre_val*/,
2768                 T_OBJECT);
2769 #ifdef _LP64
2770     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2771       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2772       if (kind == LS_xchg) {
2773         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2774                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2775       } else {
2776         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2777         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2778         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2779                                                                    newval_enc, oldval_enc));
2780       }
2781     } else
2782 #endif
2783     {
2784       if (kind == LS_xchg) {
2785         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2786       } else {
2787         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2788         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2789       }
2790     }
2791     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2792     break;
2793   default:
2794     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2795     break;
2796   }
2797 
2798   // SCMemProjNodes represent the memory state of a LoadStore. Their
2799   // main role is to prevent LoadStore nodes from being optimized away
2800   // when their results aren't used.
2801   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2802   set_memory(proj, alias_idx);
2803 
2804   // Add the trailing membar surrounding the access
2805   insert_mem_bar(Op_MemBarCPUOrder);
2806   insert_mem_bar(Op_MemBarAcquire);
2807 
2808 #ifdef _LP64
2809   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2810     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2811   }
2812 #endif
2813 
2814   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2815   set_result(load_store);
2816   return true;
2817 }
2818 
2819 //----------------------------inline_unsafe_ordered_store----------------------
2820 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2821 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2822 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2823 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2824   // This is another variant of inline_unsafe_access, differing in
2825   // that it always issues store-store ("release") barrier and ensures
2826   // store-atomicity (which only matters for "long").
2827 
2828   if (callee()->is_static())  return false;  // caller must have the capability!
2829 
2830 #ifndef PRODUCT
2831   {
2832     ResourceMark rm;
2833     // Check the signatures.
2834     ciSignature* sig = callee()->signature();
2835 #ifdef ASSERT
2836     BasicType rtype = sig->return_type()->basic_type();
2837     assert(rtype == T_VOID, "must return void");
2838     assert(sig->count() == 3, "has 3 arguments");
2839     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2840     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2841 #endif // ASSERT
2842   }
2843 #endif //PRODUCT
2844 
2845   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2846 
2847   // Get arguments:
2848   Node* receiver = argument(0);  // type: oop
2849   Node* base     = argument(1);  // type: oop
2850   Node* offset   = argument(2);  // type: long
2851   Node* val      = argument(4);  // type: oop, int, or long
2852 
2853   // Null check receiver.
2854   receiver = null_check(receiver);
2855   if (stopped()) {
2856     return true;
2857   }
2858 
2859   // Build field offset expression.
2860   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2861   // 32-bit machines ignore the high half of long offsets
2862   offset = ConvL2X(offset);
2863   Node* adr = make_unsafe_address(base, offset);
2864   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2865   const Type *value_type = Type::get_const_basic_type(type);
2866   Compile::AliasType* alias_type = C->alias_type(adr_type);
2867 
2868   insert_mem_bar(Op_MemBarRelease);
2869   insert_mem_bar(Op_MemBarCPUOrder);
2870   // Ensure that the store is atomic for longs:
2871   const bool require_atomic_access = true;
2872   Node* store;
2873   if (type == T_OBJECT) // reference stores need a store barrier.
2874     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2875   else {
2876     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2877   }
2878   insert_mem_bar(Op_MemBarCPUOrder);
2879   return true;
2880 }
2881 
2882 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2883   // Regardless of form, don't allow previous ld/st to move down,
2884   // then issue acquire, release, or volatile mem_bar.
2885   insert_mem_bar(Op_MemBarCPUOrder);
2886   switch(id) {
2887     case vmIntrinsics::_loadFence:
2888       insert_mem_bar(Op_MemBarAcquire);
2889       return true;
2890     case vmIntrinsics::_storeFence:
2891       insert_mem_bar(Op_MemBarRelease);
2892       return true;
2893     case vmIntrinsics::_fullFence:
2894       insert_mem_bar(Op_MemBarVolatile);
2895       return true;
2896     default:
2897       fatal_unexpected_iid(id);
2898       return false;
2899   }
2900 }
2901 
2902 //----------------------------inline_unsafe_allocate---------------------------
2903 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
2904 bool LibraryCallKit::inline_unsafe_allocate() {
2905   if (callee()->is_static())  return false;  // caller must have the capability!
2906 
2907   null_check_receiver();  // null-check, then ignore
2908   Node* cls = null_check(argument(1));
2909   if (stopped())  return true;
2910 
2911   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2912   kls = null_check(kls);
2913   if (stopped())  return true;  // argument was like int.class
2914 
2915   // Note:  The argument might still be an illegal value like
2916   // Serializable.class or Object[].class.   The runtime will handle it.
2917   // But we must make an explicit check for initialization.
2918   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2919   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2920   // can generate code to load it as unsigned byte.
2921   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2922   Node* bits = intcon(InstanceKlass::fully_initialized);
2923   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
2924   // The 'test' is non-zero if we need to take a slow path.
2925 
2926   Node* obj = new_instance(kls, test);
2927   set_result(obj);
2928   return true;
2929 }
2930 
2931 #ifdef TRACE_HAVE_INTRINSICS
2932 /*
2933  * oop -> myklass
2934  * myklass->trace_id |= USED
2935  * return myklass->trace_id & ~0x3
2936  */
2937 bool LibraryCallKit::inline_native_classID() {
2938   null_check_receiver();  // null-check, then ignore
2939   Node* cls = null_check(argument(1), T_OBJECT);
2940   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2941   kls = null_check(kls, T_OBJECT);
2942   ByteSize offset = TRACE_ID_OFFSET;
2943   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2944   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2945   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2946   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2947   Node* clsused = longcon(0x01l); // set the class bit
2948   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2949 
2950   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2951   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2952   set_result(andl);
2953   return true;
2954 }
2955 
2956 bool LibraryCallKit::inline_native_threadID() {
2957   Node* tls_ptr = NULL;
2958   Node* cur_thr = generate_current_thread(tls_ptr);
2959   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2960   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2961   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2962 
2963   Node* threadid = NULL;
2964   size_t thread_id_size = OSThread::thread_id_size();
2965   if (thread_id_size == (size_t) BytesPerLong) {
2966     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
2967   } else if (thread_id_size == (size_t) BytesPerInt) {
2968     threadid = make_load(control(), p, TypeInt::INT, T_INT);
2969   } else {
2970     ShouldNotReachHere();
2971   }
2972   set_result(threadid);
2973   return true;
2974 }
2975 #endif
2976 
2977 //------------------------inline_native_time_funcs--------------
2978 // inline code for System.currentTimeMillis() and System.nanoTime()
2979 // these have the same type and signature
2980 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2981   const TypeFunc* tf = OptoRuntime::void_long_Type();
2982   const TypePtr* no_memory_effects = NULL;
2983   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2984   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
2985 #ifdef ASSERT
2986   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
2987   assert(value_top == top(), "second value must be top");
2988 #endif
2989   set_result(value);
2990   return true;
2991 }
2992 
2993 //------------------------inline_native_currentThread------------------
2994 bool LibraryCallKit::inline_native_currentThread() {
2995   Node* junk = NULL;
2996   set_result(generate_current_thread(junk));
2997   return true;
2998 }
2999 
3000 //------------------------inline_native_isInterrupted------------------
3001 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3002 bool LibraryCallKit::inline_native_isInterrupted() {
3003   // Add a fast path to t.isInterrupted(clear_int):
3004   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3005   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3006   // So, in the common case that the interrupt bit is false,
3007   // we avoid making a call into the VM.  Even if the interrupt bit
3008   // is true, if the clear_int argument is false, we avoid the VM call.
3009   // However, if the receiver is not currentThread, we must call the VM,
3010   // because there must be some locking done around the operation.
3011 
3012   // We only go to the fast case code if we pass two guards.
3013   // Paths which do not pass are accumulated in the slow_region.
3014 
3015   enum {
3016     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3017     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3018     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3019     PATH_LIMIT
3020   };
3021 
3022   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3023   // out of the function.
3024   insert_mem_bar(Op_MemBarCPUOrder);
3025 
3026   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3027   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3028 
3029   RegionNode* slow_region = new (C) RegionNode(1);
3030   record_for_igvn(slow_region);
3031 
3032   // (a) Receiving thread must be the current thread.
3033   Node* rec_thr = argument(0);
3034   Node* tls_ptr = NULL;
3035   Node* cur_thr = generate_current_thread(tls_ptr);
3036   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3037   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3038 
3039   generate_slow_guard(bol_thr, slow_region);
3040 
3041   // (b) Interrupt bit on TLS must be false.
3042   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3043   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3044   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3045 
3046   // Set the control input on the field _interrupted read to prevent it floating up.
3047   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3048   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3049   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3050 
3051   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3052 
3053   // First fast path:  if (!TLS._interrupted) return false;
3054   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3055   result_rgn->init_req(no_int_result_path, false_bit);
3056   result_val->init_req(no_int_result_path, intcon(0));
3057 
3058   // drop through to next case
3059   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3060 
3061   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3062   Node* clr_arg = argument(1);
3063   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3064   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3065   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3066 
3067   // Second fast path:  ... else if (!clear_int) return true;
3068   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3069   result_rgn->init_req(no_clear_result_path, false_arg);
3070   result_val->init_req(no_clear_result_path, intcon(1));
3071 
3072   // drop through to next case
3073   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3074 
3075   // (d) Otherwise, go to the slow path.
3076   slow_region->add_req(control());
3077   set_control( _gvn.transform(slow_region));
3078 
3079   if (stopped()) {
3080     // There is no slow path.
3081     result_rgn->init_req(slow_result_path, top());
3082     result_val->init_req(slow_result_path, top());
3083   } else {
3084     // non-virtual because it is a private non-static
3085     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3086 
3087     Node* slow_val = set_results_for_java_call(slow_call);
3088     // this->control() comes from set_results_for_java_call
3089 
3090     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3091     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3092 
3093     // These two phis are pre-filled with copies of of the fast IO and Memory
3094     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3095     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3096 
3097     result_rgn->init_req(slow_result_path, control());
3098     result_io ->init_req(slow_result_path, i_o());
3099     result_mem->init_req(slow_result_path, reset_memory());
3100     result_val->init_req(slow_result_path, slow_val);
3101 
3102     set_all_memory(_gvn.transform(result_mem));
3103     set_i_o(       _gvn.transform(result_io));
3104   }
3105 
3106   C->set_has_split_ifs(true); // Has chance for split-if optimization
3107   set_result(result_rgn, result_val);
3108   return true;
3109 }
3110 
3111 //---------------------------load_mirror_from_klass----------------------------
3112 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3113 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3114   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3115   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3116 }
3117 
3118 //-----------------------load_klass_from_mirror_common-------------------------
3119 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3120 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3121 // and branch to the given path on the region.
3122 // If never_see_null, take an uncommon trap on null, so we can optimistically
3123 // compile for the non-null case.
3124 // If the region is NULL, force never_see_null = true.
3125 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3126                                                     bool never_see_null,
3127                                                     RegionNode* region,
3128                                                     int null_path,
3129                                                     int offset) {
3130   if (region == NULL)  never_see_null = true;
3131   Node* p = basic_plus_adr(mirror, offset);
3132   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3133   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3134   Node* null_ctl = top();
3135   kls = null_check_oop(kls, &null_ctl, never_see_null);
3136   if (region != NULL) {
3137     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3138     region->init_req(null_path, null_ctl);
3139   } else {
3140     assert(null_ctl == top(), "no loose ends");
3141   }
3142   return kls;
3143 }
3144 
3145 //--------------------(inline_native_Class_query helpers)---------------------
3146 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3147 // Fall through if (mods & mask) == bits, take the guard otherwise.
3148 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3149   // Branch around if the given klass has the given modifier bit set.
3150   // Like generate_guard, adds a new path onto the region.
3151   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3152   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3153   Node* mask = intcon(modifier_mask);
3154   Node* bits = intcon(modifier_bits);
3155   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3156   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3157   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3158   return generate_fair_guard(bol, region);
3159 }
3160 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3161   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3162 }
3163 
3164 //-------------------------inline_native_Class_query-------------------
3165 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3166   const Type* return_type = TypeInt::BOOL;
3167   Node* prim_return_value = top();  // what happens if it's a primitive class?
3168   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3169   bool expect_prim = false;     // most of these guys expect to work on refs
3170 
3171   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3172 
3173   Node* mirror = argument(0);
3174   Node* obj    = top();
3175 
3176   switch (id) {
3177   case vmIntrinsics::_isInstance:
3178     // nothing is an instance of a primitive type
3179     prim_return_value = intcon(0);
3180     obj = argument(1);
3181     break;
3182   case vmIntrinsics::_getModifiers:
3183     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3184     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3185     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3186     break;
3187   case vmIntrinsics::_isInterface:
3188     prim_return_value = intcon(0);
3189     break;
3190   case vmIntrinsics::_isArray:
3191     prim_return_value = intcon(0);
3192     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3193     break;
3194   case vmIntrinsics::_isPrimitive:
3195     prim_return_value = intcon(1);
3196     expect_prim = true;  // obviously
3197     break;
3198   case vmIntrinsics::_getSuperclass:
3199     prim_return_value = null();
3200     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3201     break;
3202   case vmIntrinsics::_getComponentType:
3203     prim_return_value = null();
3204     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3205     break;
3206   case vmIntrinsics::_getClassAccessFlags:
3207     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3208     return_type = TypeInt::INT;  // not bool!  6297094
3209     break;
3210   default:
3211     fatal_unexpected_iid(id);
3212     break;
3213   }
3214 
3215   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3216   if (mirror_con == NULL)  return false;  // cannot happen?
3217 
3218 #ifndef PRODUCT
3219   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3220     ciType* k = mirror_con->java_mirror_type();
3221     if (k) {
3222       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3223       k->print_name();
3224       tty->cr();
3225     }
3226   }
3227 #endif
3228 
3229   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3230   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3231   record_for_igvn(region);
3232   PhiNode* phi = new (C) PhiNode(region, return_type);
3233 
3234   // The mirror will never be null of Reflection.getClassAccessFlags, however
3235   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3236   // if it is. See bug 4774291.
3237 
3238   // For Reflection.getClassAccessFlags(), the null check occurs in
3239   // the wrong place; see inline_unsafe_access(), above, for a similar
3240   // situation.
3241   mirror = null_check(mirror);
3242   // If mirror or obj is dead, only null-path is taken.
3243   if (stopped())  return true;
3244 
3245   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3246 
3247   // Now load the mirror's klass metaobject, and null-check it.
3248   // Side-effects region with the control path if the klass is null.
3249   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3250   // If kls is null, we have a primitive mirror.
3251   phi->init_req(_prim_path, prim_return_value);
3252   if (stopped()) { set_result(region, phi); return true; }
3253 
3254   Node* p;  // handy temp
3255   Node* null_ctl;
3256 
3257   // Now that we have the non-null klass, we can perform the real query.
3258   // For constant classes, the query will constant-fold in LoadNode::Value.
3259   Node* query_value = top();
3260   switch (id) {
3261   case vmIntrinsics::_isInstance:
3262     // nothing is an instance of a primitive type
3263     query_value = gen_instanceof(obj, kls);
3264     break;
3265 
3266   case vmIntrinsics::_getModifiers:
3267     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3268     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3269     break;
3270 
3271   case vmIntrinsics::_isInterface:
3272     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3273     if (generate_interface_guard(kls, region) != NULL)
3274       // A guard was added.  If the guard is taken, it was an interface.
3275       phi->add_req(intcon(1));
3276     // If we fall through, it's a plain class.
3277     query_value = intcon(0);
3278     break;
3279 
3280   case vmIntrinsics::_isArray:
3281     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3282     if (generate_array_guard(kls, region) != NULL)
3283       // A guard was added.  If the guard is taken, it was an array.
3284       phi->add_req(intcon(1));
3285     // If we fall through, it's a plain class.
3286     query_value = intcon(0);
3287     break;
3288 
3289   case vmIntrinsics::_isPrimitive:
3290     query_value = intcon(0); // "normal" path produces false
3291     break;
3292 
3293   case vmIntrinsics::_getSuperclass:
3294     // The rules here are somewhat unfortunate, but we can still do better
3295     // with random logic than with a JNI call.
3296     // Interfaces store null or Object as _super, but must report null.
3297     // Arrays store an intermediate super as _super, but must report Object.
3298     // Other types can report the actual _super.
3299     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3300     if (generate_interface_guard(kls, region) != NULL)
3301       // A guard was added.  If the guard is taken, it was an interface.
3302       phi->add_req(null());
3303     if (generate_array_guard(kls, region) != NULL)
3304       // A guard was added.  If the guard is taken, it was an array.
3305       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3306     // If we fall through, it's a plain class.  Get its _super.
3307     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3308     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3309     null_ctl = top();
3310     kls = null_check_oop(kls, &null_ctl);
3311     if (null_ctl != top()) {
3312       // If the guard is taken, Object.superClass is null (both klass and mirror).
3313       region->add_req(null_ctl);
3314       phi   ->add_req(null());
3315     }
3316     if (!stopped()) {
3317       query_value = load_mirror_from_klass(kls);
3318     }
3319     break;
3320 
3321   case vmIntrinsics::_getComponentType:
3322     if (generate_array_guard(kls, region) != NULL) {
3323       // Be sure to pin the oop load to the guard edge just created:
3324       Node* is_array_ctrl = region->in(region->req()-1);
3325       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3326       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3327       phi->add_req(cmo);
3328     }
3329     query_value = null();  // non-array case is null
3330     break;
3331 
3332   case vmIntrinsics::_getClassAccessFlags:
3333     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3334     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3335     break;
3336 
3337   default:
3338     fatal_unexpected_iid(id);
3339     break;
3340   }
3341 
3342   // Fall-through is the normal case of a query to a real class.
3343   phi->init_req(1, query_value);
3344   region->init_req(1, control());
3345 
3346   C->set_has_split_ifs(true); // Has chance for split-if optimization
3347   set_result(region, phi);
3348   return true;
3349 }
3350 
3351 //--------------------------inline_native_subtype_check------------------------
3352 // This intrinsic takes the JNI calls out of the heart of
3353 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3354 bool LibraryCallKit::inline_native_subtype_check() {
3355   // Pull both arguments off the stack.
3356   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3357   args[0] = argument(0);
3358   args[1] = argument(1);
3359   Node* klasses[2];             // corresponding Klasses: superk, subk
3360   klasses[0] = klasses[1] = top();
3361 
3362   enum {
3363     // A full decision tree on {superc is prim, subc is prim}:
3364     _prim_0_path = 1,           // {P,N} => false
3365                                 // {P,P} & superc!=subc => false
3366     _prim_same_path,            // {P,P} & superc==subc => true
3367     _prim_1_path,               // {N,P} => false
3368     _ref_subtype_path,          // {N,N} & subtype check wins => true
3369     _both_ref_path,             // {N,N} & subtype check loses => false
3370     PATH_LIMIT
3371   };
3372 
3373   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3374   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3375   record_for_igvn(region);
3376 
3377   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3378   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3379   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3380 
3381   // First null-check both mirrors and load each mirror's klass metaobject.
3382   int which_arg;
3383   for (which_arg = 0; which_arg <= 1; which_arg++) {
3384     Node* arg = args[which_arg];
3385     arg = null_check(arg);
3386     if (stopped())  break;
3387     args[which_arg] = arg;
3388 
3389     Node* p = basic_plus_adr(arg, class_klass_offset);
3390     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3391     klasses[which_arg] = _gvn.transform(kls);
3392   }
3393 
3394   // Having loaded both klasses, test each for null.
3395   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3396   for (which_arg = 0; which_arg <= 1; which_arg++) {
3397     Node* kls = klasses[which_arg];
3398     Node* null_ctl = top();
3399     kls = null_check_oop(kls, &null_ctl, never_see_null);
3400     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3401     region->init_req(prim_path, null_ctl);
3402     if (stopped())  break;
3403     klasses[which_arg] = kls;
3404   }
3405 
3406   if (!stopped()) {
3407     // now we have two reference types, in klasses[0..1]
3408     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3409     Node* superk = klasses[0];  // the receiver
3410     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3411     // now we have a successful reference subtype check
3412     region->set_req(_ref_subtype_path, control());
3413   }
3414 
3415   // If both operands are primitive (both klasses null), then
3416   // we must return true when they are identical primitives.
3417   // It is convenient to test this after the first null klass check.
3418   set_control(region->in(_prim_0_path)); // go back to first null check
3419   if (!stopped()) {
3420     // Since superc is primitive, make a guard for the superc==subc case.
3421     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3422     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3423     generate_guard(bol_eq, region, PROB_FAIR);
3424     if (region->req() == PATH_LIMIT+1) {
3425       // A guard was added.  If the added guard is taken, superc==subc.
3426       region->swap_edges(PATH_LIMIT, _prim_same_path);
3427       region->del_req(PATH_LIMIT);
3428     }
3429     region->set_req(_prim_0_path, control()); // Not equal after all.
3430   }
3431 
3432   // these are the only paths that produce 'true':
3433   phi->set_req(_prim_same_path,   intcon(1));
3434   phi->set_req(_ref_subtype_path, intcon(1));
3435 
3436   // pull together the cases:
3437   assert(region->req() == PATH_LIMIT, "sane region");
3438   for (uint i = 1; i < region->req(); i++) {
3439     Node* ctl = region->in(i);
3440     if (ctl == NULL || ctl == top()) {
3441       region->set_req(i, top());
3442       phi   ->set_req(i, top());
3443     } else if (phi->in(i) == NULL) {
3444       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3445     }
3446   }
3447 
3448   set_control(_gvn.transform(region));
3449   set_result(_gvn.transform(phi));
3450   return true;
3451 }
3452 
3453 //---------------------generate_array_guard_common------------------------
3454 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3455                                                   bool obj_array, bool not_array) {
3456   // If obj_array/non_array==false/false:
3457   // Branch around if the given klass is in fact an array (either obj or prim).
3458   // If obj_array/non_array==false/true:
3459   // Branch around if the given klass is not an array klass of any kind.
3460   // If obj_array/non_array==true/true:
3461   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3462   // If obj_array/non_array==true/false:
3463   // Branch around if the kls is an oop array (Object[] or subtype)
3464   //
3465   // Like generate_guard, adds a new path onto the region.
3466   jint  layout_con = 0;
3467   Node* layout_val = get_layout_helper(kls, layout_con);
3468   if (layout_val == NULL) {
3469     bool query = (obj_array
3470                   ? Klass::layout_helper_is_objArray(layout_con)
3471                   : Klass::layout_helper_is_array(layout_con));
3472     if (query == not_array) {
3473       return NULL;                       // never a branch
3474     } else {                             // always a branch
3475       Node* always_branch = control();
3476       if (region != NULL)
3477         region->add_req(always_branch);
3478       set_control(top());
3479       return always_branch;
3480     }
3481   }
3482   // Now test the correct condition.
3483   jint  nval = (obj_array
3484                 ? ((jint)Klass::_lh_array_tag_type_value
3485                    <<    Klass::_lh_array_tag_shift)
3486                 : Klass::_lh_neutral_value);
3487   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3488   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3489   // invert the test if we are looking for a non-array
3490   if (not_array)  btest = BoolTest(btest).negate();
3491   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3492   return generate_fair_guard(bol, region);
3493 }
3494 
3495 
3496 //-----------------------inline_native_newArray--------------------------
3497 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3498 bool LibraryCallKit::inline_native_newArray() {
3499   Node* mirror    = argument(0);
3500   Node* count_val = argument(1);
3501 
3502   mirror = null_check(mirror);
3503   // If mirror or obj is dead, only null-path is taken.
3504   if (stopped())  return true;
3505 
3506   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3507   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3508   PhiNode*    result_val = new(C) PhiNode(result_reg,
3509                                           TypeInstPtr::NOTNULL);
3510   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3511   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3512                                           TypePtr::BOTTOM);
3513 
3514   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3515   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3516                                                   result_reg, _slow_path);
3517   Node* normal_ctl   = control();
3518   Node* no_array_ctl = result_reg->in(_slow_path);
3519 
3520   // Generate code for the slow case.  We make a call to newArray().
3521   set_control(no_array_ctl);
3522   if (!stopped()) {
3523     // Either the input type is void.class, or else the
3524     // array klass has not yet been cached.  Either the
3525     // ensuing call will throw an exception, or else it
3526     // will cache the array klass for next time.
3527     PreserveJVMState pjvms(this);
3528     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3529     Node* slow_result = set_results_for_java_call(slow_call);
3530     // this->control() comes from set_results_for_java_call
3531     result_reg->set_req(_slow_path, control());
3532     result_val->set_req(_slow_path, slow_result);
3533     result_io ->set_req(_slow_path, i_o());
3534     result_mem->set_req(_slow_path, reset_memory());
3535   }
3536 
3537   set_control(normal_ctl);
3538   if (!stopped()) {
3539     // Normal case:  The array type has been cached in the java.lang.Class.
3540     // The following call works fine even if the array type is polymorphic.
3541     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3542     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3543     result_reg->init_req(_normal_path, control());
3544     result_val->init_req(_normal_path, obj);
3545     result_io ->init_req(_normal_path, i_o());
3546     result_mem->init_req(_normal_path, reset_memory());
3547   }
3548 
3549   // Return the combined state.
3550   set_i_o(        _gvn.transform(result_io)  );
3551   set_all_memory( _gvn.transform(result_mem));
3552 
3553   C->set_has_split_ifs(true); // Has chance for split-if optimization
3554   set_result(result_reg, result_val);
3555   return true;
3556 }
3557 
3558 //----------------------inline_native_getLength--------------------------
3559 // public static native int java.lang.reflect.Array.getLength(Object array);
3560 bool LibraryCallKit::inline_native_getLength() {
3561   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3562 
3563   Node* array = null_check(argument(0));
3564   // If array is dead, only null-path is taken.
3565   if (stopped())  return true;
3566 
3567   // Deoptimize if it is a non-array.
3568   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3569 
3570   if (non_array != NULL) {
3571     PreserveJVMState pjvms(this);
3572     set_control(non_array);
3573     uncommon_trap(Deoptimization::Reason_intrinsic,
3574                   Deoptimization::Action_maybe_recompile);
3575   }
3576 
3577   // If control is dead, only non-array-path is taken.
3578   if (stopped())  return true;
3579 
3580   // The works fine even if the array type is polymorphic.
3581   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3582   Node* result = load_array_length(array);
3583 
3584   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3585   set_result(result);
3586   return true;
3587 }
3588 
3589 //------------------------inline_array_copyOf----------------------------
3590 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3591 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3592 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3593   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3594 
3595   // Get the arguments.
3596   Node* original          = argument(0);
3597   Node* start             = is_copyOfRange? argument(1): intcon(0);
3598   Node* end               = is_copyOfRange? argument(2): argument(1);
3599   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3600 
3601   Node* newcopy;
3602 
3603   // Set the original stack and the reexecute bit for the interpreter to reexecute
3604   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3605   { PreserveReexecuteState preexecs(this);
3606     jvms()->set_should_reexecute(true);
3607 
3608     array_type_mirror = null_check(array_type_mirror);
3609     original          = null_check(original);
3610 
3611     // Check if a null path was taken unconditionally.
3612     if (stopped())  return true;
3613 
3614     Node* orig_length = load_array_length(original);
3615 
3616     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3617     klass_node = null_check(klass_node);
3618 
3619     RegionNode* bailout = new (C) RegionNode(1);
3620     record_for_igvn(bailout);
3621 
3622     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3623     // Bail out if that is so.
3624     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3625     if (not_objArray != NULL) {
3626       // Improve the klass node's type from the new optimistic assumption:
3627       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3628       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3629       Node* cast = new (C) CastPPNode(klass_node, akls);
3630       cast->init_req(0, control());
3631       klass_node = _gvn.transform(cast);
3632     }
3633 
3634     // Bail out if either start or end is negative.
3635     generate_negative_guard(start, bailout, &start);
3636     generate_negative_guard(end,   bailout, &end);
3637 
3638     Node* length = end;
3639     if (_gvn.type(start) != TypeInt::ZERO) {
3640       length = _gvn.transform(new (C) SubINode(end, start));
3641     }
3642 
3643     // Bail out if length is negative.
3644     // Without this the new_array would throw
3645     // NegativeArraySizeException but IllegalArgumentException is what
3646     // should be thrown
3647     generate_negative_guard(length, bailout, &length);
3648 
3649     if (bailout->req() > 1) {
3650       PreserveJVMState pjvms(this);
3651       set_control(_gvn.transform(bailout));
3652       uncommon_trap(Deoptimization::Reason_intrinsic,
3653                     Deoptimization::Action_maybe_recompile);
3654     }
3655 
3656     if (!stopped()) {
3657       // How many elements will we copy from the original?
3658       // The answer is MinI(orig_length - start, length).
3659       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3660       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3661 
3662       newcopy = new_array(klass_node, length, 0);  // no argments to push
3663 
3664       // Generate a direct call to the right arraycopy function(s).
3665       // We know the copy is disjoint but we might not know if the
3666       // oop stores need checking.
3667       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3668       // This will fail a store-check if x contains any non-nulls.
3669       bool disjoint_bases = true;
3670       // if start > orig_length then the length of the copy may be
3671       // negative.
3672       bool length_never_negative = !is_copyOfRange;
3673       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3674                          original, start, newcopy, intcon(0), moved,
3675                          disjoint_bases, length_never_negative);
3676     }
3677   } // original reexecute is set back here
3678 
3679   C->set_has_split_ifs(true); // Has chance for split-if optimization
3680   if (!stopped()) {
3681     set_result(newcopy);
3682   }
3683   return true;
3684 }
3685 
3686 
3687 //----------------------generate_virtual_guard---------------------------
3688 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3689 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3690                                              RegionNode* slow_region) {
3691   ciMethod* method = callee();
3692   int vtable_index = method->vtable_index();
3693   // Get the Method* out of the appropriate vtable entry.
3694   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3695                      vtable_index*vtableEntry::size()) * wordSize +
3696                      vtableEntry::method_offset_in_bytes();
3697   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3698   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3699 
3700   // Compare the target method with the expected method (e.g., Object.hashCode).
3701   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3702 
3703   Node* native_call = makecon(native_call_addr);
3704   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3705   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3706 
3707   return generate_slow_guard(test_native, slow_region);
3708 }
3709 
3710 //-----------------------generate_method_call----------------------------
3711 // Use generate_method_call to make a slow-call to the real
3712 // method if the fast path fails.  An alternative would be to
3713 // use a stub like OptoRuntime::slow_arraycopy_Java.
3714 // This only works for expanding the current library call,
3715 // not another intrinsic.  (E.g., don't use this for making an
3716 // arraycopy call inside of the copyOf intrinsic.)
3717 CallJavaNode*
3718 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3719   // When compiling the intrinsic method itself, do not use this technique.
3720   guarantee(callee() != C->method(), "cannot make slow-call to self");
3721 
3722   ciMethod* method = callee();
3723   // ensure the JVMS we have will be correct for this call
3724   guarantee(method_id == method->intrinsic_id(), "must match");
3725 
3726   const TypeFunc* tf = TypeFunc::make(method);
3727   CallJavaNode* slow_call;
3728   if (is_static) {
3729     assert(!is_virtual, "");
3730     slow_call = new(C) CallStaticJavaNode(C, tf,
3731                            SharedRuntime::get_resolve_static_call_stub(),
3732                            method, bci());
3733   } else if (is_virtual) {
3734     null_check_receiver();
3735     int vtable_index = Method::invalid_vtable_index;
3736     if (UseInlineCaches) {
3737       // Suppress the vtable call
3738     } else {
3739       // hashCode and clone are not a miranda methods,
3740       // so the vtable index is fixed.
3741       // No need to use the linkResolver to get it.
3742        vtable_index = method->vtable_index();
3743     }
3744     slow_call = new(C) CallDynamicJavaNode(tf,
3745                           SharedRuntime::get_resolve_virtual_call_stub(),
3746                           method, vtable_index, bci());
3747   } else {  // neither virtual nor static:  opt_virtual
3748     null_check_receiver();
3749     slow_call = new(C) CallStaticJavaNode(C, tf,
3750                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3751                                 method, bci());
3752     slow_call->set_optimized_virtual(true);
3753   }
3754   set_arguments_for_java_call(slow_call);
3755   set_edges_for_java_call(slow_call);
3756   return slow_call;
3757 }
3758 
3759 
3760 //------------------------------inline_native_hashcode--------------------
3761 // Build special case code for calls to hashCode on an object.
3762 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3763   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3764   assert(!(is_virtual && is_static), "either virtual, special, or static");
3765 
3766   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3767 
3768   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3769   PhiNode*    result_val = new(C) PhiNode(result_reg,
3770                                           TypeInt::INT);
3771   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3772   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3773                                           TypePtr::BOTTOM);
3774   Node* obj = NULL;
3775   if (!is_static) {
3776     // Check for hashing null object
3777     obj = null_check_receiver();
3778     if (stopped())  return true;        // unconditionally null
3779     result_reg->init_req(_null_path, top());
3780     result_val->init_req(_null_path, top());
3781   } else {
3782     // Do a null check, and return zero if null.
3783     // System.identityHashCode(null) == 0
3784     obj = argument(0);
3785     Node* null_ctl = top();
3786     obj = null_check_oop(obj, &null_ctl);
3787     result_reg->init_req(_null_path, null_ctl);
3788     result_val->init_req(_null_path, _gvn.intcon(0));
3789   }
3790 
3791   // Unconditionally null?  Then return right away.
3792   if (stopped()) {
3793     set_control( result_reg->in(_null_path));
3794     if (!stopped())
3795       set_result(result_val->in(_null_path));
3796     return true;
3797   }
3798 
3799   // After null check, get the object's klass.
3800   Node* obj_klass = load_object_klass(obj);
3801 
3802   // This call may be virtual (invokevirtual) or bound (invokespecial).
3803   // For each case we generate slightly different code.
3804 
3805   // We only go to the fast case code if we pass a number of guards.  The
3806   // paths which do not pass are accumulated in the slow_region.
3807   RegionNode* slow_region = new (C) RegionNode(1);
3808   record_for_igvn(slow_region);
3809 
3810   // If this is a virtual call, we generate a funny guard.  We pull out
3811   // the vtable entry corresponding to hashCode() from the target object.
3812   // If the target method which we are calling happens to be the native
3813   // Object hashCode() method, we pass the guard.  We do not need this
3814   // guard for non-virtual calls -- the caller is known to be the native
3815   // Object hashCode().
3816   if (is_virtual) {
3817     generate_virtual_guard(obj_klass, slow_region);
3818   }
3819 
3820   // Get the header out of the object, use LoadMarkNode when available
3821   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3822   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3823 
3824   // Test the header to see if it is unlocked.
3825   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3826   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
3827   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3828   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
3829   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
3830 
3831   generate_slow_guard(test_unlocked, slow_region);
3832 
3833   // Get the hash value and check to see that it has been properly assigned.
3834   // We depend on hash_mask being at most 32 bits and avoid the use of
3835   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3836   // vm: see markOop.hpp.
3837   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3838   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3839   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
3840   // This hack lets the hash bits live anywhere in the mark object now, as long
3841   // as the shift drops the relevant bits into the low 32 bits.  Note that
3842   // Java spec says that HashCode is an int so there's no point in capturing
3843   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3844   hshifted_header      = ConvX2I(hshifted_header);
3845   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
3846 
3847   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3848   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
3849   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
3850 
3851   generate_slow_guard(test_assigned, slow_region);
3852 
3853   Node* init_mem = reset_memory();
3854   // fill in the rest of the null path:
3855   result_io ->init_req(_null_path, i_o());
3856   result_mem->init_req(_null_path, init_mem);
3857 
3858   result_val->init_req(_fast_path, hash_val);
3859   result_reg->init_req(_fast_path, control());
3860   result_io ->init_req(_fast_path, i_o());
3861   result_mem->init_req(_fast_path, init_mem);
3862 
3863   // Generate code for the slow case.  We make a call to hashCode().
3864   set_control(_gvn.transform(slow_region));
3865   if (!stopped()) {
3866     // No need for PreserveJVMState, because we're using up the present state.
3867     set_all_memory(init_mem);
3868     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3869     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3870     Node* slow_result = set_results_for_java_call(slow_call);
3871     // this->control() comes from set_results_for_java_call
3872     result_reg->init_req(_slow_path, control());
3873     result_val->init_req(_slow_path, slow_result);
3874     result_io  ->set_req(_slow_path, i_o());
3875     result_mem ->set_req(_slow_path, reset_memory());
3876   }
3877 
3878   // Return the combined state.
3879   set_i_o(        _gvn.transform(result_io)  );
3880   set_all_memory( _gvn.transform(result_mem));
3881 
3882   set_result(result_reg, result_val);
3883   return true;
3884 }
3885 
3886 //---------------------------inline_native_getClass----------------------------
3887 // public final native Class<?> java.lang.Object.getClass();
3888 //
3889 // Build special case code for calls to getClass on an object.
3890 bool LibraryCallKit::inline_native_getClass() {
3891   Node* obj = null_check_receiver();
3892   if (stopped())  return true;
3893   set_result(load_mirror_from_klass(load_object_klass(obj)));
3894   return true;
3895 }
3896 
3897 //-----------------inline_native_Reflection_getCallerClass---------------------
3898 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3899 //
3900 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3901 //
3902 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3903 // in that it must skip particular security frames and checks for
3904 // caller sensitive methods.
3905 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3906 #ifndef PRODUCT
3907   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3908     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3909   }
3910 #endif
3911 
3912   if (!jvms()->has_method()) {
3913 #ifndef PRODUCT
3914     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3915       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3916     }
3917 #endif
3918     return false;
3919   }
3920 
3921   // Walk back up the JVM state to find the caller at the required
3922   // depth.
3923   JVMState* caller_jvms = jvms();
3924 
3925   // Cf. JVM_GetCallerClass
3926   // NOTE: Start the loop at depth 1 because the current JVM state does
3927   // not include the Reflection.getCallerClass() frame.
3928   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
3929     ciMethod* m = caller_jvms->method();
3930     switch (n) {
3931     case 0:
3932       fatal("current JVM state does not include the Reflection.getCallerClass frame");
3933       break;
3934     case 1:
3935       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
3936       if (!m->caller_sensitive()) {
3937 #ifndef PRODUCT
3938         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3939           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
3940         }
3941 #endif
3942         return false;  // bail-out; let JVM_GetCallerClass do the work
3943       }
3944       break;
3945     default:
3946       if (!m->is_ignored_by_security_stack_walk()) {
3947         // We have reached the desired frame; return the holder class.
3948         // Acquire method holder as java.lang.Class and push as constant.
3949         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
3950         ciInstance* caller_mirror = caller_klass->java_mirror();
3951         set_result(makecon(TypeInstPtr::make(caller_mirror)));
3952 
3953 #ifndef PRODUCT
3954         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3955           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
3956           tty->print_cr("  JVM state at this point:");
3957           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3958             ciMethod* m = jvms()->of_depth(i)->method();
3959             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3960           }
3961         }
3962 #endif
3963         return true;
3964       }
3965       break;
3966     }
3967   }
3968 
3969 #ifndef PRODUCT
3970   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3971     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
3972     tty->print_cr("  JVM state at this point:");
3973     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3974       ciMethod* m = jvms()->of_depth(i)->method();
3975       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3976     }
3977   }
3978 #endif
3979 
3980   return false;  // bail-out; let JVM_GetCallerClass do the work
3981 }
3982 
3983 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3984   Node* arg = argument(0);
3985   Node* result;
3986 
3987   switch (id) {
3988   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
3989   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
3990   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
3991   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
3992 
3993   case vmIntrinsics::_doubleToLongBits: {
3994     // two paths (plus control) merge in a wood
3995     RegionNode *r = new (C) RegionNode(3);
3996     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
3997 
3998     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
3999     // Build the boolean node
4000     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4001 
4002     // Branch either way.
4003     // NaN case is less traveled, which makes all the difference.
4004     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4005     Node *opt_isnan = _gvn.transform(ifisnan);
4006     assert( opt_isnan->is_If(), "Expect an IfNode");
4007     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4008     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4009 
4010     set_control(iftrue);
4011 
4012     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4013     Node *slow_result = longcon(nan_bits); // return NaN
4014     phi->init_req(1, _gvn.transform( slow_result ));
4015     r->init_req(1, iftrue);
4016 
4017     // Else fall through
4018     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4019     set_control(iffalse);
4020 
4021     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4022     r->init_req(2, iffalse);
4023 
4024     // Post merge
4025     set_control(_gvn.transform(r));
4026     record_for_igvn(r);
4027 
4028     C->set_has_split_ifs(true); // Has chance for split-if optimization
4029     result = phi;
4030     assert(result->bottom_type()->isa_long(), "must be");
4031     break;
4032   }
4033 
4034   case vmIntrinsics::_floatToIntBits: {
4035     // two paths (plus control) merge in a wood
4036     RegionNode *r = new (C) RegionNode(3);
4037     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4038 
4039     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4040     // Build the boolean node
4041     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4042 
4043     // Branch either way.
4044     // NaN case is less traveled, which makes all the difference.
4045     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4046     Node *opt_isnan = _gvn.transform(ifisnan);
4047     assert( opt_isnan->is_If(), "Expect an IfNode");
4048     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4049     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4050 
4051     set_control(iftrue);
4052 
4053     static const jint nan_bits = 0x7fc00000;
4054     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4055     phi->init_req(1, _gvn.transform( slow_result ));
4056     r->init_req(1, iftrue);
4057 
4058     // Else fall through
4059     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4060     set_control(iffalse);
4061 
4062     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4063     r->init_req(2, iffalse);
4064 
4065     // Post merge
4066     set_control(_gvn.transform(r));
4067     record_for_igvn(r);
4068 
4069     C->set_has_split_ifs(true); // Has chance for split-if optimization
4070     result = phi;
4071     assert(result->bottom_type()->isa_int(), "must be");
4072     break;
4073   }
4074 
4075   default:
4076     fatal_unexpected_iid(id);
4077     break;
4078   }
4079   set_result(_gvn.transform(result));
4080   return true;
4081 }
4082 
4083 #ifdef _LP64
4084 #define XTOP ,top() /*additional argument*/
4085 #else  //_LP64
4086 #define XTOP        /*no additional argument*/
4087 #endif //_LP64
4088 
4089 //----------------------inline_unsafe_copyMemory-------------------------
4090 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4091 bool LibraryCallKit::inline_unsafe_copyMemory() {
4092   if (callee()->is_static())  return false;  // caller must have the capability!
4093   null_check_receiver();  // null-check receiver
4094   if (stopped())  return true;
4095 
4096   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4097 
4098   Node* src_ptr =         argument(1);   // type: oop
4099   Node* src_off = ConvL2X(argument(2));  // type: long
4100   Node* dst_ptr =         argument(4);   // type: oop
4101   Node* dst_off = ConvL2X(argument(5));  // type: long
4102   Node* size    = ConvL2X(argument(7));  // type: long
4103 
4104   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4105          "fieldOffset must be byte-scaled");
4106 
4107   Node* src = make_unsafe_address(src_ptr, src_off);
4108   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4109 
4110   // Conservatively insert a memory barrier on all memory slices.
4111   // Do not let writes of the copy source or destination float below the copy.
4112   insert_mem_bar(Op_MemBarCPUOrder);
4113 
4114   // Call it.  Note that the length argument is not scaled.
4115   make_runtime_call(RC_LEAF|RC_NO_FP,
4116                     OptoRuntime::fast_arraycopy_Type(),
4117                     StubRoutines::unsafe_arraycopy(),
4118                     "unsafe_arraycopy",
4119                     TypeRawPtr::BOTTOM,
4120                     src, dst, size XTOP);
4121 
4122   // Do not let reads of the copy destination float above the copy.
4123   insert_mem_bar(Op_MemBarCPUOrder);
4124 
4125   return true;
4126 }
4127 
4128 //------------------------clone_coping-----------------------------------
4129 // Helper function for inline_native_clone.
4130 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4131   assert(obj_size != NULL, "");
4132   Node* raw_obj = alloc_obj->in(1);
4133   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4134 
4135   AllocateNode* alloc = NULL;
4136   if (ReduceBulkZeroing) {
4137     // We will be completely responsible for initializing this object -
4138     // mark Initialize node as complete.
4139     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4140     // The object was just allocated - there should be no any stores!
4141     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4142     // Mark as complete_with_arraycopy so that on AllocateNode
4143     // expansion, we know this AllocateNode is initialized by an array
4144     // copy and a StoreStore barrier exists after the array copy.
4145     alloc->initialization()->set_complete_with_arraycopy();
4146   }
4147 
4148   // Copy the fastest available way.
4149   // TODO: generate fields copies for small objects instead.
4150   Node* src  = obj;
4151   Node* dest = alloc_obj;
4152   Node* size = _gvn.transform(obj_size);
4153 
4154   // Exclude the header but include array length to copy by 8 bytes words.
4155   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4156   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4157                             instanceOopDesc::base_offset_in_bytes();
4158   // base_off:
4159   // 8  - 32-bit VM
4160   // 12 - 64-bit VM, compressed klass
4161   // 16 - 64-bit VM, normal klass
4162   if (base_off % BytesPerLong != 0) {
4163     assert(UseCompressedKlassPointers, "");
4164     if (is_array) {
4165       // Exclude length to copy by 8 bytes words.
4166       base_off += sizeof(int);
4167     } else {
4168       // Include klass to copy by 8 bytes words.
4169       base_off = instanceOopDesc::klass_offset_in_bytes();
4170     }
4171     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4172   }
4173   src  = basic_plus_adr(src,  base_off);
4174   dest = basic_plus_adr(dest, base_off);
4175 
4176   // Compute the length also, if needed:
4177   Node* countx = size;
4178   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4179   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4180 
4181   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4182   bool disjoint_bases = true;
4183   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4184                                src, NULL, dest, NULL, countx,
4185                                /*dest_uninitialized*/true);
4186 
4187   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4188   if (card_mark) {
4189     assert(!is_array, "");
4190     // Put in store barrier for any and all oops we are sticking
4191     // into this object.  (We could avoid this if we could prove
4192     // that the object type contains no oop fields at all.)
4193     Node* no_particular_value = NULL;
4194     Node* no_particular_field = NULL;
4195     int raw_adr_idx = Compile::AliasIdxRaw;
4196     post_barrier(control(),
4197                  memory(raw_adr_type),
4198                  alloc_obj,
4199                  no_particular_field,
4200                  raw_adr_idx,
4201                  no_particular_value,
4202                  T_OBJECT,
4203                  false);
4204   }
4205 
4206   // Do not let reads from the cloned object float above the arraycopy.
4207   if (alloc != NULL) {
4208     // Do not let stores that initialize this object be reordered with
4209     // a subsequent store that would make this object accessible by
4210     // other threads.
4211     // Record what AllocateNode this StoreStore protects so that
4212     // escape analysis can go from the MemBarStoreStoreNode to the
4213     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4214     // based on the escape status of the AllocateNode.
4215     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4216   } else {
4217     insert_mem_bar(Op_MemBarCPUOrder);
4218   }
4219 }
4220 
4221 //------------------------inline_native_clone----------------------------
4222 // protected native Object java.lang.Object.clone();
4223 //
4224 // Here are the simple edge cases:
4225 //  null receiver => normal trap
4226 //  virtual and clone was overridden => slow path to out-of-line clone
4227 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4228 //
4229 // The general case has two steps, allocation and copying.
4230 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4231 //
4232 // Copying also has two cases, oop arrays and everything else.
4233 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4234 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4235 //
4236 // These steps fold up nicely if and when the cloned object's klass
4237 // can be sharply typed as an object array, a type array, or an instance.
4238 //
4239 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4240   PhiNode* result_val;
4241 
4242   // Set the reexecute bit for the interpreter to reexecute
4243   // the bytecode that invokes Object.clone if deoptimization happens.
4244   { PreserveReexecuteState preexecs(this);
4245     jvms()->set_should_reexecute(true);
4246 
4247     Node* obj = null_check_receiver();
4248     if (stopped())  return true;
4249 
4250     Node* obj_klass = load_object_klass(obj);
4251     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4252     const TypeOopPtr*   toop   = ((tklass != NULL)
4253                                 ? tklass->as_instance_type()
4254                                 : TypeInstPtr::NOTNULL);
4255 
4256     // Conservatively insert a memory barrier on all memory slices.
4257     // Do not let writes into the original float below the clone.
4258     insert_mem_bar(Op_MemBarCPUOrder);
4259 
4260     // paths into result_reg:
4261     enum {
4262       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4263       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4264       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4265       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4266       PATH_LIMIT
4267     };
4268     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4269     result_val             = new(C) PhiNode(result_reg,
4270                                             TypeInstPtr::NOTNULL);
4271     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4272     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4273                                             TypePtr::BOTTOM);
4274     record_for_igvn(result_reg);
4275 
4276     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4277     int raw_adr_idx = Compile::AliasIdxRaw;
4278 
4279     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4280     if (array_ctl != NULL) {
4281       // It's an array.
4282       PreserveJVMState pjvms(this);
4283       set_control(array_ctl);
4284       Node* obj_length = load_array_length(obj);
4285       Node* obj_size  = NULL;
4286       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4287 
4288       if (!use_ReduceInitialCardMarks()) {
4289         // If it is an oop array, it requires very special treatment,
4290         // because card marking is required on each card of the array.
4291         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4292         if (is_obja != NULL) {
4293           PreserveJVMState pjvms2(this);
4294           set_control(is_obja);
4295           // Generate a direct call to the right arraycopy function(s).
4296           bool disjoint_bases = true;
4297           bool length_never_negative = true;
4298           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4299                              obj, intcon(0), alloc_obj, intcon(0),
4300                              obj_length,
4301                              disjoint_bases, length_never_negative);
4302           result_reg->init_req(_objArray_path, control());
4303           result_val->init_req(_objArray_path, alloc_obj);
4304           result_i_o ->set_req(_objArray_path, i_o());
4305           result_mem ->set_req(_objArray_path, reset_memory());
4306         }
4307       }
4308       // Otherwise, there are no card marks to worry about.
4309       // (We can dispense with card marks if we know the allocation
4310       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4311       //  causes the non-eden paths to take compensating steps to
4312       //  simulate a fresh allocation, so that no further
4313       //  card marks are required in compiled code to initialize
4314       //  the object.)
4315 
4316       if (!stopped()) {
4317         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4318 
4319         // Present the results of the copy.
4320         result_reg->init_req(_array_path, control());
4321         result_val->init_req(_array_path, alloc_obj);
4322         result_i_o ->set_req(_array_path, i_o());
4323         result_mem ->set_req(_array_path, reset_memory());
4324       }
4325     }
4326 
4327     // We only go to the instance fast case code if we pass a number of guards.
4328     // The paths which do not pass are accumulated in the slow_region.
4329     RegionNode* slow_region = new (C) RegionNode(1);
4330     record_for_igvn(slow_region);
4331     if (!stopped()) {
4332       // It's an instance (we did array above).  Make the slow-path tests.
4333       // If this is a virtual call, we generate a funny guard.  We grab
4334       // the vtable entry corresponding to clone() from the target object.
4335       // If the target method which we are calling happens to be the
4336       // Object clone() method, we pass the guard.  We do not need this
4337       // guard for non-virtual calls; the caller is known to be the native
4338       // Object clone().
4339       if (is_virtual) {
4340         generate_virtual_guard(obj_klass, slow_region);
4341       }
4342 
4343       // The object must be cloneable and must not have a finalizer.
4344       // Both of these conditions may be checked in a single test.
4345       // We could optimize the cloneable test further, but we don't care.
4346       generate_access_flags_guard(obj_klass,
4347                                   // Test both conditions:
4348                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4349                                   // Must be cloneable but not finalizer:
4350                                   JVM_ACC_IS_CLONEABLE,
4351                                   slow_region);
4352     }
4353 
4354     if (!stopped()) {
4355       // It's an instance, and it passed the slow-path tests.
4356       PreserveJVMState pjvms(this);
4357       Node* obj_size  = NULL;
4358       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4359 
4360       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4361 
4362       // Present the results of the slow call.
4363       result_reg->init_req(_instance_path, control());
4364       result_val->init_req(_instance_path, alloc_obj);
4365       result_i_o ->set_req(_instance_path, i_o());
4366       result_mem ->set_req(_instance_path, reset_memory());
4367     }
4368 
4369     // Generate code for the slow case.  We make a call to clone().
4370     set_control(_gvn.transform(slow_region));
4371     if (!stopped()) {
4372       PreserveJVMState pjvms(this);
4373       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4374       Node* slow_result = set_results_for_java_call(slow_call);
4375       // this->control() comes from set_results_for_java_call
4376       result_reg->init_req(_slow_path, control());
4377       result_val->init_req(_slow_path, slow_result);
4378       result_i_o ->set_req(_slow_path, i_o());
4379       result_mem ->set_req(_slow_path, reset_memory());
4380     }
4381 
4382     // Return the combined state.
4383     set_control(    _gvn.transform(result_reg));
4384     set_i_o(        _gvn.transform(result_i_o));
4385     set_all_memory( _gvn.transform(result_mem));
4386   } // original reexecute is set back here
4387 
4388   set_result(_gvn.transform(result_val));
4389   return true;
4390 }
4391 
4392 //------------------------------basictype2arraycopy----------------------------
4393 address LibraryCallKit::basictype2arraycopy(BasicType t,
4394                                             Node* src_offset,
4395                                             Node* dest_offset,
4396                                             bool disjoint_bases,
4397                                             const char* &name,
4398                                             bool dest_uninitialized) {
4399   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4400   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4401 
4402   bool aligned = false;
4403   bool disjoint = disjoint_bases;
4404 
4405   // if the offsets are the same, we can treat the memory regions as
4406   // disjoint, because either the memory regions are in different arrays,
4407   // or they are identical (which we can treat as disjoint.)  We can also
4408   // treat a copy with a destination index  less that the source index
4409   // as disjoint since a low->high copy will work correctly in this case.
4410   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4411       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4412     // both indices are constants
4413     int s_offs = src_offset_inttype->get_con();
4414     int d_offs = dest_offset_inttype->get_con();
4415     int element_size = type2aelembytes(t);
4416     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4417               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4418     if (s_offs >= d_offs)  disjoint = true;
4419   } else if (src_offset == dest_offset && src_offset != NULL) {
4420     // This can occur if the offsets are identical non-constants.
4421     disjoint = true;
4422   }
4423 
4424   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4425 }
4426 
4427 
4428 //------------------------------inline_arraycopy-----------------------
4429 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4430 //                                                      Object dest, int destPos,
4431 //                                                      int length);
4432 bool LibraryCallKit::inline_arraycopy() {
4433   // Get the arguments.
4434   Node* src         = argument(0);  // type: oop
4435   Node* src_offset  = argument(1);  // type: int
4436   Node* dest        = argument(2);  // type: oop
4437   Node* dest_offset = argument(3);  // type: int
4438   Node* length      = argument(4);  // type: int
4439 
4440   // Compile time checks.  If any of these checks cannot be verified at compile time,
4441   // we do not make a fast path for this call.  Instead, we let the call remain as it
4442   // is.  The checks we choose to mandate at compile time are:
4443   //
4444   // (1) src and dest are arrays.
4445   const Type* src_type  = src->Value(&_gvn);
4446   const Type* dest_type = dest->Value(&_gvn);
4447   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4448   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4449   if (top_src  == NULL || top_src->klass()  == NULL ||
4450       top_dest == NULL || top_dest->klass() == NULL) {
4451     // Conservatively insert a memory barrier on all memory slices.
4452     // Do not let writes into the source float below the arraycopy.
4453     insert_mem_bar(Op_MemBarCPUOrder);
4454 
4455     // Call StubRoutines::generic_arraycopy stub.
4456     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4457                        src, src_offset, dest, dest_offset, length);
4458 
4459     // Do not let reads from the destination float above the arraycopy.
4460     // Since we cannot type the arrays, we don't know which slices
4461     // might be affected.  We could restrict this barrier only to those
4462     // memory slices which pertain to array elements--but don't bother.
4463     if (!InsertMemBarAfterArraycopy)
4464       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4465       insert_mem_bar(Op_MemBarCPUOrder);
4466     return true;
4467   }
4468 
4469   // (2) src and dest arrays must have elements of the same BasicType
4470   // Figure out the size and type of the elements we will be copying.
4471   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4472   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4473   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4474   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4475 
4476   if (src_elem != dest_elem || dest_elem == T_VOID) {
4477     // The component types are not the same or are not recognized.  Punt.
4478     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4479     generate_slow_arraycopy(TypePtr::BOTTOM,
4480                             src, src_offset, dest, dest_offset, length,
4481                             /*dest_uninitialized*/false);
4482     return true;
4483   }
4484 
4485   //---------------------------------------------------------------------------
4486   // We will make a fast path for this call to arraycopy.
4487 
4488   // We have the following tests left to perform:
4489   //
4490   // (3) src and dest must not be null.
4491   // (4) src_offset must not be negative.
4492   // (5) dest_offset must not be negative.
4493   // (6) length must not be negative.
4494   // (7) src_offset + length must not exceed length of src.
4495   // (8) dest_offset + length must not exceed length of dest.
4496   // (9) each element of an oop array must be assignable
4497 
4498   RegionNode* slow_region = new (C) RegionNode(1);
4499   record_for_igvn(slow_region);
4500 
4501   // (3) operands must not be null
4502   // We currently perform our null checks with the null_check routine.
4503   // This means that the null exceptions will be reported in the caller
4504   // rather than (correctly) reported inside of the native arraycopy call.
4505   // This should be corrected, given time.  We do our null check with the
4506   // stack pointer restored.
4507   src  = null_check(src,  T_ARRAY);
4508   dest = null_check(dest, T_ARRAY);
4509 
4510   // (4) src_offset must not be negative.
4511   generate_negative_guard(src_offset, slow_region);
4512 
4513   // (5) dest_offset must not be negative.
4514   generate_negative_guard(dest_offset, slow_region);
4515 
4516   // (6) length must not be negative (moved to generate_arraycopy()).
4517   // generate_negative_guard(length, slow_region);
4518 
4519   // (7) src_offset + length must not exceed length of src.
4520   generate_limit_guard(src_offset, length,
4521                        load_array_length(src),
4522                        slow_region);
4523 
4524   // (8) dest_offset + length must not exceed length of dest.
4525   generate_limit_guard(dest_offset, length,
4526                        load_array_length(dest),
4527                        slow_region);
4528 
4529   // (9) each element of an oop array must be assignable
4530   // The generate_arraycopy subroutine checks this.
4531 
4532   // This is where the memory effects are placed:
4533   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4534   generate_arraycopy(adr_type, dest_elem,
4535                      src, src_offset, dest, dest_offset, length,
4536                      false, false, slow_region);
4537 
4538   return true;
4539 }
4540 
4541 //-----------------------------generate_arraycopy----------------------
4542 // Generate an optimized call to arraycopy.
4543 // Caller must guard against non-arrays.
4544 // Caller must determine a common array basic-type for both arrays.
4545 // Caller must validate offsets against array bounds.
4546 // The slow_region has already collected guard failure paths
4547 // (such as out of bounds length or non-conformable array types).
4548 // The generated code has this shape, in general:
4549 //
4550 //     if (length == 0)  return   // via zero_path
4551 //     slowval = -1
4552 //     if (types unknown) {
4553 //       slowval = call generic copy loop
4554 //       if (slowval == 0)  return  // via checked_path
4555 //     } else if (indexes in bounds) {
4556 //       if ((is object array) && !(array type check)) {
4557 //         slowval = call checked copy loop
4558 //         if (slowval == 0)  return  // via checked_path
4559 //       } else {
4560 //         call bulk copy loop
4561 //         return  // via fast_path
4562 //       }
4563 //     }
4564 //     // adjust params for remaining work:
4565 //     if (slowval != -1) {
4566 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4567 //     }
4568 //   slow_region:
4569 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4570 //     return  // via slow_call_path
4571 //
4572 // This routine is used from several intrinsics:  System.arraycopy,
4573 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4574 //
4575 void
4576 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4577                                    BasicType basic_elem_type,
4578                                    Node* src,  Node* src_offset,
4579                                    Node* dest, Node* dest_offset,
4580                                    Node* copy_length,
4581                                    bool disjoint_bases,
4582                                    bool length_never_negative,
4583                                    RegionNode* slow_region) {
4584 
4585   if (slow_region == NULL) {
4586     slow_region = new(C) RegionNode(1);
4587     record_for_igvn(slow_region);
4588   }
4589 
4590   Node* original_dest      = dest;
4591   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4592   bool  dest_uninitialized = false;
4593 
4594   // See if this is the initialization of a newly-allocated array.
4595   // If so, we will take responsibility here for initializing it to zero.
4596   // (Note:  Because tightly_coupled_allocation performs checks on the
4597   // out-edges of the dest, we need to avoid making derived pointers
4598   // from it until we have checked its uses.)
4599   if (ReduceBulkZeroing
4600       && !ZeroTLAB              // pointless if already zeroed
4601       && basic_elem_type != T_CONFLICT // avoid corner case
4602       && !src->eqv_uncast(dest)
4603       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4604           != NULL)
4605       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4606       && alloc->maybe_set_complete(&_gvn)) {
4607     // "You break it, you buy it."
4608     InitializeNode* init = alloc->initialization();
4609     assert(init->is_complete(), "we just did this");
4610     init->set_complete_with_arraycopy();
4611     assert(dest->is_CheckCastPP(), "sanity");
4612     assert(dest->in(0)->in(0) == init, "dest pinned");
4613     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4614     // From this point on, every exit path is responsible for
4615     // initializing any non-copied parts of the object to zero.
4616     // Also, if this flag is set we make sure that arraycopy interacts properly
4617     // with G1, eliding pre-barriers. See CR 6627983.
4618     dest_uninitialized = true;
4619   } else {
4620     // No zeroing elimination here.
4621     alloc             = NULL;
4622     //original_dest   = dest;
4623     //dest_uninitialized = false;
4624   }
4625 
4626   // Results are placed here:
4627   enum { fast_path        = 1,  // normal void-returning assembly stub
4628          checked_path     = 2,  // special assembly stub with cleanup
4629          slow_call_path   = 3,  // something went wrong; call the VM
4630          zero_path        = 4,  // bypass when length of copy is zero
4631          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4632          PATH_LIMIT       = 6
4633   };
4634   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4635   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4636   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4637   record_for_igvn(result_region);
4638   _gvn.set_type_bottom(result_i_o);
4639   _gvn.set_type_bottom(result_memory);
4640   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4641 
4642   // The slow_control path:
4643   Node* slow_control;
4644   Node* slow_i_o = i_o();
4645   Node* slow_mem = memory(adr_type);
4646   debug_only(slow_control = (Node*) badAddress);
4647 
4648   // Checked control path:
4649   Node* checked_control = top();
4650   Node* checked_mem     = NULL;
4651   Node* checked_i_o     = NULL;
4652   Node* checked_value   = NULL;
4653 
4654   if (basic_elem_type == T_CONFLICT) {
4655     assert(!dest_uninitialized, "");
4656     Node* cv = generate_generic_arraycopy(adr_type,
4657                                           src, src_offset, dest, dest_offset,
4658                                           copy_length, dest_uninitialized);
4659     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4660     checked_control = control();
4661     checked_i_o     = i_o();
4662     checked_mem     = memory(adr_type);
4663     checked_value   = cv;
4664     set_control(top());         // no fast path
4665   }
4666 
4667   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4668   if (not_pos != NULL) {
4669     PreserveJVMState pjvms(this);
4670     set_control(not_pos);
4671 
4672     // (6) length must not be negative.
4673     if (!length_never_negative) {
4674       generate_negative_guard(copy_length, slow_region);
4675     }
4676 
4677     // copy_length is 0.
4678     if (!stopped() && dest_uninitialized) {
4679       Node* dest_length = alloc->in(AllocateNode::ALength);
4680       if (copy_length->eqv_uncast(dest_length)
4681           || _gvn.find_int_con(dest_length, 1) <= 0) {
4682         // There is no zeroing to do. No need for a secondary raw memory barrier.
4683       } else {
4684         // Clear the whole thing since there are no source elements to copy.
4685         generate_clear_array(adr_type, dest, basic_elem_type,
4686                              intcon(0), NULL,
4687                              alloc->in(AllocateNode::AllocSize));
4688         // Use a secondary InitializeNode as raw memory barrier.
4689         // Currently it is needed only on this path since other
4690         // paths have stub or runtime calls as raw memory barriers.
4691         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4692                                                        Compile::AliasIdxRaw,
4693                                                        top())->as_Initialize();
4694         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4695       }
4696     }
4697 
4698     // Present the results of the fast call.
4699     result_region->init_req(zero_path, control());
4700     result_i_o   ->init_req(zero_path, i_o());
4701     result_memory->init_req(zero_path, memory(adr_type));
4702   }
4703 
4704   if (!stopped() && dest_uninitialized) {
4705     // We have to initialize the *uncopied* part of the array to zero.
4706     // The copy destination is the slice dest[off..off+len].  The other slices
4707     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4708     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4709     Node* dest_length = alloc->in(AllocateNode::ALength);
4710     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4711                                                           copy_length));
4712 
4713     // If there is a head section that needs zeroing, do it now.
4714     if (find_int_con(dest_offset, -1) != 0) {
4715       generate_clear_array(adr_type, dest, basic_elem_type,
4716                            intcon(0), dest_offset,
4717                            NULL);
4718     }
4719 
4720     // Next, perform a dynamic check on the tail length.
4721     // It is often zero, and we can win big if we prove this.
4722     // There are two wins:  Avoid generating the ClearArray
4723     // with its attendant messy index arithmetic, and upgrade
4724     // the copy to a more hardware-friendly word size of 64 bits.
4725     Node* tail_ctl = NULL;
4726     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4727       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
4728       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
4729       tail_ctl = generate_slow_guard(bol_lt, NULL);
4730       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4731     }
4732 
4733     // At this point, let's assume there is no tail.
4734     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4735       // There is no tail.  Try an upgrade to a 64-bit copy.
4736       bool didit = false;
4737       { PreserveJVMState pjvms(this);
4738         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4739                                          src, src_offset, dest, dest_offset,
4740                                          dest_size, dest_uninitialized);
4741         if (didit) {
4742           // Present the results of the block-copying fast call.
4743           result_region->init_req(bcopy_path, control());
4744           result_i_o   ->init_req(bcopy_path, i_o());
4745           result_memory->init_req(bcopy_path, memory(adr_type));
4746         }
4747       }
4748       if (didit)
4749         set_control(top());     // no regular fast path
4750     }
4751 
4752     // Clear the tail, if any.
4753     if (tail_ctl != NULL) {
4754       Node* notail_ctl = stopped() ? NULL : control();
4755       set_control(tail_ctl);
4756       if (notail_ctl == NULL) {
4757         generate_clear_array(adr_type, dest, basic_elem_type,
4758                              dest_tail, NULL,
4759                              dest_size);
4760       } else {
4761         // Make a local merge.
4762         Node* done_ctl = new(C) RegionNode(3);
4763         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4764         done_ctl->init_req(1, notail_ctl);
4765         done_mem->init_req(1, memory(adr_type));
4766         generate_clear_array(adr_type, dest, basic_elem_type,
4767                              dest_tail, NULL,
4768                              dest_size);
4769         done_ctl->init_req(2, control());
4770         done_mem->init_req(2, memory(adr_type));
4771         set_control( _gvn.transform(done_ctl));
4772         set_memory(  _gvn.transform(done_mem), adr_type );
4773       }
4774     }
4775   }
4776 
4777   BasicType copy_type = basic_elem_type;
4778   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4779   if (!stopped() && copy_type == T_OBJECT) {
4780     // If src and dest have compatible element types, we can copy bits.
4781     // Types S[] and D[] are compatible if D is a supertype of S.
4782     //
4783     // If they are not, we will use checked_oop_disjoint_arraycopy,
4784     // which performs a fast optimistic per-oop check, and backs off
4785     // further to JVM_ArrayCopy on the first per-oop check that fails.
4786     // (Actually, we don't move raw bits only; the GC requires card marks.)
4787 
4788     // Get the Klass* for both src and dest
4789     Node* src_klass  = load_object_klass(src);
4790     Node* dest_klass = load_object_klass(dest);
4791 
4792     // Generate the subtype check.
4793     // This might fold up statically, or then again it might not.
4794     //
4795     // Non-static example:  Copying List<String>.elements to a new String[].
4796     // The backing store for a List<String> is always an Object[],
4797     // but its elements are always type String, if the generic types
4798     // are correct at the source level.
4799     //
4800     // Test S[] against D[], not S against D, because (probably)
4801     // the secondary supertype cache is less busy for S[] than S.
4802     // This usually only matters when D is an interface.
4803     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4804     // Plug failing path into checked_oop_disjoint_arraycopy
4805     if (not_subtype_ctrl != top()) {
4806       PreserveJVMState pjvms(this);
4807       set_control(not_subtype_ctrl);
4808       // (At this point we can assume disjoint_bases, since types differ.)
4809       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
4810       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4811       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4812       Node* dest_elem_klass = _gvn.transform(n1);
4813       Node* cv = generate_checkcast_arraycopy(adr_type,
4814                                               dest_elem_klass,
4815                                               src, src_offset, dest, dest_offset,
4816                                               ConvI2X(copy_length), dest_uninitialized);
4817       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4818       checked_control = control();
4819       checked_i_o     = i_o();
4820       checked_mem     = memory(adr_type);
4821       checked_value   = cv;
4822     }
4823     // At this point we know we do not need type checks on oop stores.
4824 
4825     // Let's see if we need card marks:
4826     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4827       // If we do not need card marks, copy using the jint or jlong stub.
4828       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4829       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4830              "sizes agree");
4831     }
4832   }
4833 
4834   if (!stopped()) {
4835     // Generate the fast path, if possible.
4836     PreserveJVMState pjvms(this);
4837     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4838                                  src, src_offset, dest, dest_offset,
4839                                  ConvI2X(copy_length), dest_uninitialized);
4840 
4841     // Present the results of the fast call.
4842     result_region->init_req(fast_path, control());
4843     result_i_o   ->init_req(fast_path, i_o());
4844     result_memory->init_req(fast_path, memory(adr_type));
4845   }
4846 
4847   // Here are all the slow paths up to this point, in one bundle:
4848   slow_control = top();
4849   if (slow_region != NULL)
4850     slow_control = _gvn.transform(slow_region);
4851   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4852 
4853   set_control(checked_control);
4854   if (!stopped()) {
4855     // Clean up after the checked call.
4856     // The returned value is either 0 or -1^K,
4857     // where K = number of partially transferred array elements.
4858     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
4859     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
4860     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4861 
4862     // If it is 0, we are done, so transfer to the end.
4863     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
4864     result_region->init_req(checked_path, checks_done);
4865     result_i_o   ->init_req(checked_path, checked_i_o);
4866     result_memory->init_req(checked_path, checked_mem);
4867 
4868     // If it is not zero, merge into the slow call.
4869     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
4870     RegionNode* slow_reg2 = new(C) RegionNode(3);
4871     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4872     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4873     record_for_igvn(slow_reg2);
4874     slow_reg2  ->init_req(1, slow_control);
4875     slow_i_o2  ->init_req(1, slow_i_o);
4876     slow_mem2  ->init_req(1, slow_mem);
4877     slow_reg2  ->init_req(2, control());
4878     slow_i_o2  ->init_req(2, checked_i_o);
4879     slow_mem2  ->init_req(2, checked_mem);
4880 
4881     slow_control = _gvn.transform(slow_reg2);
4882     slow_i_o     = _gvn.transform(slow_i_o2);
4883     slow_mem     = _gvn.transform(slow_mem2);
4884 
4885     if (alloc != NULL) {
4886       // We'll restart from the very beginning, after zeroing the whole thing.
4887       // This can cause double writes, but that's OK since dest is brand new.
4888       // So we ignore the low 31 bits of the value returned from the stub.
4889     } else {
4890       // We must continue the copy exactly where it failed, or else
4891       // another thread might see the wrong number of writes to dest.
4892       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
4893       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4894       slow_offset->init_req(1, intcon(0));
4895       slow_offset->init_req(2, checked_offset);
4896       slow_offset  = _gvn.transform(slow_offset);
4897 
4898       // Adjust the arguments by the conditionally incoming offset.
4899       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
4900       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
4901       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
4902 
4903       // Tweak the node variables to adjust the code produced below:
4904       src_offset  = src_off_plus;
4905       dest_offset = dest_off_plus;
4906       copy_length = length_minus;
4907     }
4908   }
4909 
4910   set_control(slow_control);
4911   if (!stopped()) {
4912     // Generate the slow path, if needed.
4913     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4914 
4915     set_memory(slow_mem, adr_type);
4916     set_i_o(slow_i_o);
4917 
4918     if (dest_uninitialized) {
4919       generate_clear_array(adr_type, dest, basic_elem_type,
4920                            intcon(0), NULL,
4921                            alloc->in(AllocateNode::AllocSize));
4922     }
4923 
4924     generate_slow_arraycopy(adr_type,
4925                             src, src_offset, dest, dest_offset,
4926                             copy_length, /*dest_uninitialized*/false);
4927 
4928     result_region->init_req(slow_call_path, control());
4929     result_i_o   ->init_req(slow_call_path, i_o());
4930     result_memory->init_req(slow_call_path, memory(adr_type));
4931   }
4932 
4933   // Remove unused edges.
4934   for (uint i = 1; i < result_region->req(); i++) {
4935     if (result_region->in(i) == NULL)
4936       result_region->init_req(i, top());
4937   }
4938 
4939   // Finished; return the combined state.
4940   set_control( _gvn.transform(result_region));
4941   set_i_o(     _gvn.transform(result_i_o)    );
4942   set_memory(  _gvn.transform(result_memory), adr_type );
4943 
4944   // The memory edges above are precise in order to model effects around
4945   // array copies accurately to allow value numbering of field loads around
4946   // arraycopy.  Such field loads, both before and after, are common in Java
4947   // collections and similar classes involving header/array data structures.
4948   //
4949   // But with low number of register or when some registers are used or killed
4950   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4951   // The next memory barrier is added to avoid it. If the arraycopy can be
4952   // optimized away (which it can, sometimes) then we can manually remove
4953   // the membar also.
4954   //
4955   // Do not let reads from the cloned object float above the arraycopy.
4956   if (alloc != NULL) {
4957     // Do not let stores that initialize this object be reordered with
4958     // a subsequent store that would make this object accessible by
4959     // other threads.
4960     // Record what AllocateNode this StoreStore protects so that
4961     // escape analysis can go from the MemBarStoreStoreNode to the
4962     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4963     // based on the escape status of the AllocateNode.
4964     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4965   } else if (InsertMemBarAfterArraycopy)
4966     insert_mem_bar(Op_MemBarCPUOrder);
4967 }
4968 
4969 
4970 // Helper function which determines if an arraycopy immediately follows
4971 // an allocation, with no intervening tests or other escapes for the object.
4972 AllocateArrayNode*
4973 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4974                                            RegionNode* slow_region) {
4975   if (stopped())             return NULL;  // no fast path
4976   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4977 
4978   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4979   if (alloc == NULL)  return NULL;
4980 
4981   Node* rawmem = memory(Compile::AliasIdxRaw);
4982   // Is the allocation's memory state untouched?
4983   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4984     // Bail out if there have been raw-memory effects since the allocation.
4985     // (Example:  There might have been a call or safepoint.)
4986     return NULL;
4987   }
4988   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4989   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4990     return NULL;
4991   }
4992 
4993   // There must be no unexpected observers of this allocation.
4994   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4995     Node* obs = ptr->fast_out(i);
4996     if (obs != this->map()) {
4997       return NULL;
4998     }
4999   }
5000 
5001   // This arraycopy must unconditionally follow the allocation of the ptr.
5002   Node* alloc_ctl = ptr->in(0);
5003   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5004 
5005   Node* ctl = control();
5006   while (ctl != alloc_ctl) {
5007     // There may be guards which feed into the slow_region.
5008     // Any other control flow means that we might not get a chance
5009     // to finish initializing the allocated object.
5010     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5011       IfNode* iff = ctl->in(0)->as_If();
5012       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5013       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5014       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5015         ctl = iff->in(0);       // This test feeds the known slow_region.
5016         continue;
5017       }
5018       // One more try:  Various low-level checks bottom out in
5019       // uncommon traps.  If the debug-info of the trap omits
5020       // any reference to the allocation, as we've already
5021       // observed, then there can be no objection to the trap.
5022       bool found_trap = false;
5023       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5024         Node* obs = not_ctl->fast_out(j);
5025         if (obs->in(0) == not_ctl && obs->is_Call() &&
5026             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5027           found_trap = true; break;
5028         }
5029       }
5030       if (found_trap) {
5031         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5032         continue;
5033       }
5034     }
5035     return NULL;
5036   }
5037 
5038   // If we get this far, we have an allocation which immediately
5039   // precedes the arraycopy, and we can take over zeroing the new object.
5040   // The arraycopy will finish the initialization, and provide
5041   // a new control state to which we will anchor the destination pointer.
5042 
5043   return alloc;
5044 }
5045 
5046 // Helper for initialization of arrays, creating a ClearArray.
5047 // It writes zero bits in [start..end), within the body of an array object.
5048 // The memory effects are all chained onto the 'adr_type' alias category.
5049 //
5050 // Since the object is otherwise uninitialized, we are free
5051 // to put a little "slop" around the edges of the cleared area,
5052 // as long as it does not go back into the array's header,
5053 // or beyond the array end within the heap.
5054 //
5055 // The lower edge can be rounded down to the nearest jint and the
5056 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5057 //
5058 // Arguments:
5059 //   adr_type           memory slice where writes are generated
5060 //   dest               oop of the destination array
5061 //   basic_elem_type    element type of the destination
5062 //   slice_idx          array index of first element to store
5063 //   slice_len          number of elements to store (or NULL)
5064 //   dest_size          total size in bytes of the array object
5065 //
5066 // Exactly one of slice_len or dest_size must be non-NULL.
5067 // If dest_size is non-NULL, zeroing extends to the end of the object.
5068 // If slice_len is non-NULL, the slice_idx value must be a constant.
5069 void
5070 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5071                                      Node* dest,
5072                                      BasicType basic_elem_type,
5073                                      Node* slice_idx,
5074                                      Node* slice_len,
5075                                      Node* dest_size) {
5076   // one or the other but not both of slice_len and dest_size:
5077   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5078   if (slice_len == NULL)  slice_len = top();
5079   if (dest_size == NULL)  dest_size = top();
5080 
5081   // operate on this memory slice:
5082   Node* mem = memory(adr_type); // memory slice to operate on
5083 
5084   // scaling and rounding of indexes:
5085   int scale = exact_log2(type2aelembytes(basic_elem_type));
5086   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5087   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5088   int bump_bit  = (-1 << scale) & BytesPerInt;
5089 
5090   // determine constant starts and ends
5091   const intptr_t BIG_NEG = -128;
5092   assert(BIG_NEG + 2*abase < 0, "neg enough");
5093   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5094   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5095   if (slice_len_con == 0) {
5096     return;                     // nothing to do here
5097   }
5098   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5099   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5100   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5101     assert(end_con < 0, "not two cons");
5102     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5103                        BytesPerLong);
5104   }
5105 
5106   if (start_con >= 0 && end_con >= 0) {
5107     // Constant start and end.  Simple.
5108     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5109                                        start_con, end_con, &_gvn);
5110   } else if (start_con >= 0 && dest_size != top()) {
5111     // Constant start, pre-rounded end after the tail of the array.
5112     Node* end = dest_size;
5113     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5114                                        start_con, end, &_gvn);
5115   } else if (start_con >= 0 && slice_len != top()) {
5116     // Constant start, non-constant end.  End needs rounding up.
5117     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5118     intptr_t end_base  = abase + (slice_idx_con << scale);
5119     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5120     Node*    end       = ConvI2X(slice_len);
5121     if (scale != 0)
5122       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5123     end_base += end_round;
5124     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5125     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5126     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5127                                        start_con, end, &_gvn);
5128   } else if (start_con < 0 && dest_size != top()) {
5129     // Non-constant start, pre-rounded end after the tail of the array.
5130     // This is almost certainly a "round-to-end" operation.
5131     Node* start = slice_idx;
5132     start = ConvI2X(start);
5133     if (scale != 0)
5134       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5135     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5136     if ((bump_bit | clear_low) != 0) {
5137       int to_clear = (bump_bit | clear_low);
5138       // Align up mod 8, then store a jint zero unconditionally
5139       // just before the mod-8 boundary.
5140       if (((abase + bump_bit) & ~to_clear) - bump_bit
5141           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5142         bump_bit = 0;
5143         assert((abase & to_clear) == 0, "array base must be long-aligned");
5144       } else {
5145         // Bump 'start' up to (or past) the next jint boundary:
5146         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5147         assert((abase & clear_low) == 0, "array base must be int-aligned");
5148       }
5149       // Round bumped 'start' down to jlong boundary in body of array.
5150       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5151       if (bump_bit != 0) {
5152         // Store a zero to the immediately preceding jint:
5153         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5154         Node* p1 = basic_plus_adr(dest, x1);
5155         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5156         mem = _gvn.transform(mem);
5157       }
5158     }
5159     Node* end = dest_size; // pre-rounded
5160     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5161                                        start, end, &_gvn);
5162   } else {
5163     // Non-constant start, unrounded non-constant end.
5164     // (Nobody zeroes a random midsection of an array using this routine.)
5165     ShouldNotReachHere();       // fix caller
5166   }
5167 
5168   // Done.
5169   set_memory(mem, adr_type);
5170 }
5171 
5172 
5173 bool
5174 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5175                                          BasicType basic_elem_type,
5176                                          AllocateNode* alloc,
5177                                          Node* src,  Node* src_offset,
5178                                          Node* dest, Node* dest_offset,
5179                                          Node* dest_size, bool dest_uninitialized) {
5180   // See if there is an advantage from block transfer.
5181   int scale = exact_log2(type2aelembytes(basic_elem_type));
5182   if (scale >= LogBytesPerLong)
5183     return false;               // it is already a block transfer
5184 
5185   // Look at the alignment of the starting offsets.
5186   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5187 
5188   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5189   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5190   if (src_off_con < 0 || dest_off_con < 0)
5191     // At present, we can only understand constants.
5192     return false;
5193 
5194   intptr_t src_off  = abase + (src_off_con  << scale);
5195   intptr_t dest_off = abase + (dest_off_con << scale);
5196 
5197   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5198     // Non-aligned; too bad.
5199     // One more chance:  Pick off an initial 32-bit word.
5200     // This is a common case, since abase can be odd mod 8.
5201     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5202         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5203       Node* sptr = basic_plus_adr(src,  src_off);
5204       Node* dptr = basic_plus_adr(dest, dest_off);
5205       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5206       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5207       src_off += BytesPerInt;
5208       dest_off += BytesPerInt;
5209     } else {
5210       return false;
5211     }
5212   }
5213   assert(src_off % BytesPerLong == 0, "");
5214   assert(dest_off % BytesPerLong == 0, "");
5215 
5216   // Do this copy by giant steps.
5217   Node* sptr  = basic_plus_adr(src,  src_off);
5218   Node* dptr  = basic_plus_adr(dest, dest_off);
5219   Node* countx = dest_size;
5220   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5221   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5222 
5223   bool disjoint_bases = true;   // since alloc != NULL
5224   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5225                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5226 
5227   return true;
5228 }
5229 
5230 
5231 // Helper function; generates code for the slow case.
5232 // We make a call to a runtime method which emulates the native method,
5233 // but without the native wrapper overhead.
5234 void
5235 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5236                                         Node* src,  Node* src_offset,
5237                                         Node* dest, Node* dest_offset,
5238                                         Node* copy_length, bool dest_uninitialized) {
5239   assert(!dest_uninitialized, "Invariant");
5240   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5241                                  OptoRuntime::slow_arraycopy_Type(),
5242                                  OptoRuntime::slow_arraycopy_Java(),
5243                                  "slow_arraycopy", adr_type,
5244                                  src, src_offset, dest, dest_offset,
5245                                  copy_length);
5246 
5247   // Handle exceptions thrown by this fellow:
5248   make_slow_call_ex(call, env()->Throwable_klass(), false);
5249 }
5250 
5251 // Helper function; generates code for cases requiring runtime checks.
5252 Node*
5253 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5254                                              Node* dest_elem_klass,
5255                                              Node* src,  Node* src_offset,
5256                                              Node* dest, Node* dest_offset,
5257                                              Node* copy_length, bool dest_uninitialized) {
5258   if (stopped())  return NULL;
5259 
5260   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5261   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5262     return NULL;
5263   }
5264 
5265   // Pick out the parameters required to perform a store-check
5266   // for the target array.  This is an optimistic check.  It will
5267   // look in each non-null element's class, at the desired klass's
5268   // super_check_offset, for the desired klass.
5269   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5270   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5271   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5272   Node* check_offset = ConvI2X(_gvn.transform(n3));
5273   Node* check_value  = dest_elem_klass;
5274 
5275   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5276   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5277 
5278   // (We know the arrays are never conjoint, because their types differ.)
5279   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5280                                  OptoRuntime::checkcast_arraycopy_Type(),
5281                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5282                                  // five arguments, of which two are
5283                                  // intptr_t (jlong in LP64)
5284                                  src_start, dest_start,
5285                                  copy_length XTOP,
5286                                  check_offset XTOP,
5287                                  check_value);
5288 
5289   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5290 }
5291 
5292 
5293 // Helper function; generates code for cases requiring runtime checks.
5294 Node*
5295 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5296                                            Node* src,  Node* src_offset,
5297                                            Node* dest, Node* dest_offset,
5298                                            Node* copy_length, bool dest_uninitialized) {
5299   assert(!dest_uninitialized, "Invariant");
5300   if (stopped())  return NULL;
5301   address copyfunc_addr = StubRoutines::generic_arraycopy();
5302   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5303     return NULL;
5304   }
5305 
5306   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5307                     OptoRuntime::generic_arraycopy_Type(),
5308                     copyfunc_addr, "generic_arraycopy", adr_type,
5309                     src, src_offset, dest, dest_offset, copy_length);
5310 
5311   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5312 }
5313 
5314 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5315 void
5316 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5317                                              BasicType basic_elem_type,
5318                                              bool disjoint_bases,
5319                                              Node* src,  Node* src_offset,
5320                                              Node* dest, Node* dest_offset,
5321                                              Node* copy_length, bool dest_uninitialized) {
5322   if (stopped())  return;               // nothing to do
5323 
5324   Node* src_start  = src;
5325   Node* dest_start = dest;
5326   if (src_offset != NULL || dest_offset != NULL) {
5327     assert(src_offset != NULL && dest_offset != NULL, "");
5328     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5329     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5330   }
5331 
5332   // Figure out which arraycopy runtime method to call.
5333   const char* copyfunc_name = "arraycopy";
5334   address     copyfunc_addr =
5335       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5336                           disjoint_bases, copyfunc_name, dest_uninitialized);
5337 
5338   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5339   make_runtime_call(RC_LEAF|RC_NO_FP,
5340                     OptoRuntime::fast_arraycopy_Type(),
5341                     copyfunc_addr, copyfunc_name, adr_type,
5342                     src_start, dest_start, copy_length XTOP);
5343 }
5344 
5345 //-------------inline_encodeISOArray-----------------------------------
5346 // encode char[] to byte[] in ISO_8859_1
5347 bool LibraryCallKit::inline_encodeISOArray() {
5348   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5349   // no receiver since it is static method
5350   Node *src         = argument(0);
5351   Node *src_offset  = argument(1);
5352   Node *dst         = argument(2);
5353   Node *dst_offset  = argument(3);
5354   Node *length      = argument(4);
5355 
5356   const Type* src_type = src->Value(&_gvn);
5357   const Type* dst_type = dst->Value(&_gvn);
5358   const TypeAryPtr* top_src = src_type->isa_aryptr();
5359   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5360   if (top_src  == NULL || top_src->klass()  == NULL ||
5361       top_dest == NULL || top_dest->klass() == NULL) {
5362     // failed array check
5363     return false;
5364   }
5365 
5366   // Figure out the size and type of the elements we will be copying.
5367   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5368   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5369   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5370     return false;
5371   }
5372   Node* src_start = array_element_address(src, src_offset, src_elem);
5373   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5374   // 'src_start' points to src array + scaled offset
5375   // 'dst_start' points to dst array + scaled offset
5376 
5377   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5378   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5379   enc = _gvn.transform(enc);
5380   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5381   set_memory(res_mem, mtype);
5382   set_result(enc);
5383   return true;
5384 }
5385 
5386 /**
5387  * Calculate CRC32 for byte.
5388  * int java.util.zip.CRC32.update(int crc, int b)
5389  */
5390 bool LibraryCallKit::inline_updateCRC32() {
5391   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5392   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5393   // no receiver since it is static method
5394   Node* crc  = argument(0); // type: int
5395   Node* b    = argument(1); // type: int
5396 
5397   /*
5398    *    int c = ~ crc;
5399    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5400    *    b = b ^ (c >>> 8);
5401    *    crc = ~b;
5402    */
5403 
5404   Node* M1 = intcon(-1);
5405   crc = _gvn.transform(new (C) XorINode(crc, M1));
5406   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5407   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5408 
5409   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5410   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5411   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5412   result = make_load(control(), adr, TypeInt::INT, T_INT);
5413 
5414   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5415   result = _gvn.transform(new (C) XorINode(crc, result));
5416   result = _gvn.transform(new (C) XorINode(result, M1));
5417   set_result(result);
5418   return true;
5419 }
5420 
5421 /**
5422  * Calculate CRC32 for byte[] array.
5423  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5424  */
5425 bool LibraryCallKit::inline_updateBytesCRC32() {
5426   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5427   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5428   // no receiver since it is static method
5429   Node* crc     = argument(0); // type: int
5430   Node* src     = argument(1); // type: oop
5431   Node* offset  = argument(2); // type: int
5432   Node* length  = argument(3); // type: int
5433 
5434   const Type* src_type = src->Value(&_gvn);
5435   const TypeAryPtr* top_src = src_type->isa_aryptr();
5436   if (top_src  == NULL || top_src->klass()  == NULL) {
5437     // failed array check
5438     return false;
5439   }
5440 
5441   // Figure out the size and type of the elements we will be copying.
5442   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5443   if (src_elem != T_BYTE) {
5444     return false;
5445   }
5446 
5447   // 'src_start' points to src array + scaled offset
5448   Node* src_start = array_element_address(src, offset, src_elem);
5449 
5450   // We assume that range check is done by caller.
5451   // TODO: generate range check (offset+length < src.length) in debug VM.
5452 
5453   // Call the stub.
5454   address stubAddr = StubRoutines::updateBytesCRC32();
5455   const char *stubName = "updateBytesCRC32";
5456 
5457   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5458                                  stubAddr, stubName, TypePtr::BOTTOM,
5459                                  crc, src_start, length);
5460   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5461   set_result(result);
5462   return true;
5463 }
5464 
5465 /**
5466  * Calculate CRC32 for ByteBuffer.
5467  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5468  */
5469 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5470   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5471   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5472   // no receiver since it is static method
5473   Node* crc     = argument(0); // type: int
5474   Node* src     = argument(1); // type: long
5475   Node* offset  = argument(3); // type: int
5476   Node* length  = argument(4); // type: int
5477 
5478   src = ConvL2X(src);  // adjust Java long to machine word
5479   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5480   offset = ConvI2X(offset);
5481 
5482   // 'src_start' points to src array + scaled offset
5483   Node* src_start = basic_plus_adr(top(), base, offset);
5484 
5485   // Call the stub.
5486   address stubAddr = StubRoutines::updateBytesCRC32();
5487   const char *stubName = "updateBytesCRC32";
5488 
5489   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5490                                  stubAddr, stubName, TypePtr::BOTTOM,
5491                                  crc, src_start, length);
5492   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5493   set_result(result);
5494   return true;
5495 }
5496 
5497 //----------------------------inline_reference_get----------------------------
5498 // public T java.lang.ref.Reference.get();
5499 bool LibraryCallKit::inline_reference_get() {
5500   const int referent_offset = java_lang_ref_Reference::referent_offset;
5501   guarantee(referent_offset > 0, "should have already been set");
5502 
5503   // Get the argument:
5504   Node* reference_obj = null_check_receiver();
5505   if (stopped()) return true;
5506 
5507   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5508 
5509   ciInstanceKlass* klass = env()->Object_klass();
5510   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5511 
5512   Node* no_ctrl = NULL;
5513   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5514 
5515   // Use the pre-barrier to record the value in the referent field
5516   pre_barrier(false /* do_load */,
5517               control(),
5518               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5519               result /* pre_val */,
5520               T_OBJECT);
5521 
5522   // Add memory barrier to prevent commoning reads from this field
5523   // across safepoint since GC can change its value.
5524   insert_mem_bar(Op_MemBarCPUOrder);
5525 
5526   set_result(result);
5527   return true;
5528 }
5529 
5530 
5531 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5532                                               bool is_exact=true, bool is_static=false) {
5533 
5534   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5535   assert(tinst != NULL, "obj is null");
5536   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5537   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5538 
5539   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5540                                                                           ciSymbol::make(fieldTypeString),
5541                                                                           is_static);
5542   if (field == NULL) return (Node *) NULL;
5543   assert (field != NULL, "undefined field");
5544 
5545   // Next code  copied from Parse::do_get_xxx():
5546 
5547   // Compute address and memory type.
5548   int offset  = field->offset_in_bytes();
5549   bool is_vol = field->is_volatile();
5550   ciType* field_klass = field->type();
5551   assert(field_klass->is_loaded(), "should be loaded");
5552   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5553   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5554   BasicType bt = field->layout_type();
5555 
5556   // Build the resultant type of the load
5557   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5558 
5559   // Build the load.
5560   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5561   return loadedField;
5562 }
5563 
5564 
5565 //------------------------------inline_aescrypt_Block-----------------------
5566 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5567   address stubAddr;
5568   const char *stubName;
5569   assert(UseAES, "need AES instruction support");
5570 
5571   switch(id) {
5572   case vmIntrinsics::_aescrypt_encryptBlock:
5573     stubAddr = StubRoutines::aescrypt_encryptBlock();
5574     stubName = "aescrypt_encryptBlock";
5575     break;
5576   case vmIntrinsics::_aescrypt_decryptBlock:
5577     stubAddr = StubRoutines::aescrypt_decryptBlock();
5578     stubName = "aescrypt_decryptBlock";
5579     break;
5580   }
5581   if (stubAddr == NULL) return false;
5582 
5583   Node* aescrypt_object = argument(0);
5584   Node* src             = argument(1);
5585   Node* src_offset      = argument(2);
5586   Node* dest            = argument(3);
5587   Node* dest_offset     = argument(4);
5588 
5589   // (1) src and dest are arrays.
5590   const Type* src_type = src->Value(&_gvn);
5591   const Type* dest_type = dest->Value(&_gvn);
5592   const TypeAryPtr* top_src = src_type->isa_aryptr();
5593   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5594   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5595 
5596   // for the quick and dirty code we will skip all the checks.
5597   // we are just trying to get the call to be generated.
5598   Node* src_start  = src;
5599   Node* dest_start = dest;
5600   if (src_offset != NULL || dest_offset != NULL) {
5601     assert(src_offset != NULL && dest_offset != NULL, "");
5602     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5603     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5604   }
5605 
5606   // now need to get the start of its expanded key array
5607   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5608   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5609   if (k_start == NULL) return false;
5610 
5611   // Call the stub.
5612   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5613                     stubAddr, stubName, TypePtr::BOTTOM,
5614                     src_start, dest_start, k_start);
5615 
5616   return true;
5617 }
5618 
5619 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5620 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5621   address stubAddr;
5622   const char *stubName;
5623 
5624   assert(UseAES, "need AES instruction support");
5625 
5626   switch(id) {
5627   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5628     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5629     stubName = "cipherBlockChaining_encryptAESCrypt";
5630     break;
5631   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5632     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5633     stubName = "cipherBlockChaining_decryptAESCrypt";
5634     break;
5635   }
5636   if (stubAddr == NULL) return false;
5637 
5638   Node* cipherBlockChaining_object = argument(0);
5639   Node* src                        = argument(1);
5640   Node* src_offset                 = argument(2);
5641   Node* len                        = argument(3);
5642   Node* dest                       = argument(4);
5643   Node* dest_offset                = argument(5);
5644 
5645   // (1) src and dest are arrays.
5646   const Type* src_type = src->Value(&_gvn);
5647   const Type* dest_type = dest->Value(&_gvn);
5648   const TypeAryPtr* top_src = src_type->isa_aryptr();
5649   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5650   assert (top_src  != NULL && top_src->klass()  != NULL
5651           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5652 
5653   // checks are the responsibility of the caller
5654   Node* src_start  = src;
5655   Node* dest_start = dest;
5656   if (src_offset != NULL || dest_offset != NULL) {
5657     assert(src_offset != NULL && dest_offset != NULL, "");
5658     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5659     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5660   }
5661 
5662   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5663   // (because of the predicated logic executed earlier).
5664   // so we cast it here safely.
5665   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5666 
5667   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5668   if (embeddedCipherObj == NULL) return false;
5669 
5670   // cast it to what we know it will be at runtime
5671   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5672   assert(tinst != NULL, "CBC obj is null");
5673   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5674   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5675   if (!klass_AESCrypt->is_loaded()) return false;
5676 
5677   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5678   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5679   const TypeOopPtr* xtype = aklass->as_instance_type();
5680   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5681   aescrypt_object = _gvn.transform(aescrypt_object);
5682 
5683   // we need to get the start of the aescrypt_object's expanded key array
5684   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5685   if (k_start == NULL) return false;
5686 
5687   // similarly, get the start address of the r vector
5688   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5689   if (objRvec == NULL) return false;
5690   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5691 
5692   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5693   make_runtime_call(RC_LEAF|RC_NO_FP,
5694                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5695                     stubAddr, stubName, TypePtr::BOTTOM,
5696                     src_start, dest_start, k_start, r_start, len);
5697 
5698   // return is void so no result needs to be pushed
5699 
5700   return true;
5701 }
5702 
5703 //------------------------------get_key_start_from_aescrypt_object-----------------------
5704 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5705   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5706   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5707   if (objAESCryptKey == NULL) return (Node *) NULL;
5708 
5709   // now have the array, need to get the start address of the K array
5710   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5711   return k_start;
5712 }
5713 
5714 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5715 // Return node representing slow path of predicate check.
5716 // the pseudo code we want to emulate with this predicate is:
5717 // for encryption:
5718 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5719 // for decryption:
5720 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5721 //    note cipher==plain is more conservative than the original java code but that's OK
5722 //
5723 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5724   // First, check receiver for NULL since it is virtual method.
5725   Node* objCBC = argument(0);
5726   objCBC = null_check(objCBC);
5727 
5728   if (stopped()) return NULL; // Always NULL
5729 
5730   // Load embeddedCipher field of CipherBlockChaining object.
5731   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5732 
5733   // get AESCrypt klass for instanceOf check
5734   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5735   // will have same classloader as CipherBlockChaining object
5736   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5737   assert(tinst != NULL, "CBCobj is null");
5738   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5739 
5740   // we want to do an instanceof comparison against the AESCrypt class
5741   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5742   if (!klass_AESCrypt->is_loaded()) {
5743     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5744     Node* ctrl = control();
5745     set_control(top()); // no regular fast path
5746     return ctrl;
5747   }
5748   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5749 
5750   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5751   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5752   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5753 
5754   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5755 
5756   // for encryption, we are done
5757   if (!decrypting)
5758     return instof_false;  // even if it is NULL
5759 
5760   // for decryption, we need to add a further check to avoid
5761   // taking the intrinsic path when cipher and plain are the same
5762   // see the original java code for why.
5763   RegionNode* region = new(C) RegionNode(3);
5764   region->init_req(1, instof_false);
5765   Node* src = argument(1);
5766   Node* dest = argument(4);
5767   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5768   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5769   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5770   region->init_req(2, src_dest_conjoint);
5771 
5772   record_for_igvn(region);
5773   return _gvn.transform(region);
5774 }