1 /*
   2  * Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.annotation.*;
  29 import java.lang.reflect.Method;
  30 import java.util.Map;
  31 import java.util.List;
  32 import java.util.Arrays;
  33 import java.util.ArrayList;
  34 import java.util.HashMap;
  35 import java.util.concurrent.ConcurrentHashMap;
  36 import sun.invoke.util.Wrapper;
  37 import sun.invoke.Stable;
  38 import static java.lang.invoke.MethodHandleStatics.*;
  39 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  40 import java.lang.reflect.Field;
  41 import java.util.Objects;
  42 
  43 /**
  44  * The symbolic, non-executable form of a method handle's invocation semantics.
  45  * It consists of a series of names.
  46  * The first N (N=arity) names are parameters,
  47  * while any remaining names are temporary values.
  48  * Each temporary specifies the application of a function to some arguments.
  49  * The functions are method handles, while the arguments are mixes of
  50  * constant values and local names.
  51  * The result of the lambda is defined as one of the names, often the last one.
  52  * <p>
  53  * Here is an approximate grammar:
  54  * <pre>
  55  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  56  * ArgName = "a" N ":" T
  57  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  58  * Function = ConstantValue
  59  * Argument = NameRef | ConstantValue
  60  * Result = NameRef | "void"
  61  * NameRef = "a" N | "t" N
  62  * N = (any whole number)
  63  * T = "L" | "I" | "J" | "F" | "D" | "V"
  64  * </pre>
  65  * Names are numbered consecutively from left to right starting at zero.
  66  * (The letters are merely a taste of syntax sugar.)
  67  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  68  * Every occurrence of a name reference in an argument list must refer to
  69  * a name previously defined within the same lambda.
  70  * A lambda has a void result if and only if its result index is -1.
  71  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  72  * even though possesses a number.
  73  * Note that all reference types are erased to "L", which stands for {@code Object).
  74  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  75  * The other types stand for the usual primitive types.
  76  * <p>
  77  * Function invocation closely follows the static rules of the Java verifier.
  78  * Arguments and return values must exactly match when their "Name" types are
  79  * considered.
  80  * Conversions are allowed only if they do not change the erased type.
  81  * <ul>
  82  * <li>L = Object: casts are used freely to convert into and out of reference types
  83  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  84  * <li>J = long: no implicit conversions
  85  * <li>F = float: no implicit conversions
  86  * <li>D = double: no implicit conversions
  87  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  88  * </ul>
  89  * Although implicit conversions are not allowed, explicit ones can easily be
  90  * encoded by using temporary expressions which call type-transformed identity functions.
  91  * <p>
  92  * Examples:
  93  * <pre>
  94  * (a0:J)=>{ a0 }
  95  *     == identity(long)
  96  * (a0:I)=>{ t1:V = System.out#println(a0); void }
  97  *     == System.out#println(int)
  98  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
  99  *     == identity, with printing side-effect
 100  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 101  *                 t3:L = BoundMethodHandle#target(a0);
 102  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 103  *     == general invoker for unary insertArgument combination
 104  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 105  *                 t3:L = MethodHandle#invoke(t2, a1);
 106  *                 t4:L = FilterMethodHandle#target(a0);
 107  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 108  *     == general invoker for unary filterArgument combination
 109  * (a0:L, a1:L)=>{ ...(same as previous example)...
 110  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 111  *     == general invoker for unary/unary foldArgument combination
 112  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 113  *     == invoker for identity method handle which performs i2l
 114  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 115  *                 t3:L = Class#cast(t2,a1); t3 }
 116  *     == invoker for identity method handle which performs cast
 117  * </pre>
 118  * <p>
 119  * @author John Rose, JSR 292 EG
 120  */
 121 class LambdaForm {
 122     final int arity;
 123     final int result;
 124     @Stable final Name[] names;
 125     final String debugName;
 126     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 127     private boolean isCompiled;
 128 
 129     // Caches for common structural transforms:
 130     LambdaForm[] bindCache;
 131 
 132     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 133 
 134     LambdaForm(String debugName,
 135                int arity, Name[] names, int result) {
 136         assert(namesOK(arity, names));
 137         this.arity = arity;
 138         this.result = fixResult(result, names);
 139         this.names = names.clone();
 140         this.debugName = debugName;
 141         normalize();
 142     }
 143 
 144     LambdaForm(String debugName,
 145                int arity, Name[] names) {
 146         this(debugName,
 147              arity, names, LAST_RESULT);
 148     }
 149 
 150     LambdaForm(String debugName,
 151                Name[] formals, Name[] temps, Name result) {
 152         this(debugName,
 153              formals.length, buildNames(formals, temps, result), LAST_RESULT);
 154     }
 155 
 156     private static Name[] buildNames(Name[] formals, Name[] temps, Name result) {
 157         int arity = formals.length;
 158         int length = arity + temps.length + (result == null ? 0 : 1);
 159         Name[] names = Arrays.copyOf(formals, length);
 160         System.arraycopy(temps, 0, names, arity, temps.length);
 161         if (result != null)
 162             names[length - 1] = result;
 163         return names;
 164     }
 165 
 166     private LambdaForm(String sig) {
 167         // Make a blank lambda form, which returns a constant zero or null.
 168         // It is used as a template for managing the invocation of similar forms that are non-empty.
 169         // Called only from getPreparedForm.
 170         assert(isValidSignature(sig));
 171         this.arity = signatureArity(sig);
 172         this.result = (signatureReturn(sig) == 'V' ? -1 : arity);
 173         this.names = buildEmptyNames(arity, sig);
 174         this.debugName = "LF.zero";
 175         assert(nameRefsAreLegal());
 176         assert(isEmpty());
 177         assert(sig.equals(basicTypeSignature()));
 178     }
 179 
 180     private static Name[] buildEmptyNames(int arity, String basicTypeSignature) {
 181         assert(isValidSignature(basicTypeSignature));
 182         int resultPos = arity + 1;  // skip '_'
 183         if (arity < 0 || basicTypeSignature.length() != resultPos+1)
 184             throw new IllegalArgumentException("bad arity for "+basicTypeSignature);
 185         int numRes = (basicTypeSignature.charAt(resultPos) == 'V' ? 0 : 1);
 186         Name[] names = arguments(numRes, basicTypeSignature.substring(0, arity));
 187         for (int i = 0; i < numRes; i++) {
 188             names[arity + i] = constantZero(arity + i, basicTypeSignature.charAt(resultPos + i));
 189         }
 190         return names;
 191     }
 192 
 193     private static int fixResult(int result, Name[] names) {
 194         if (result >= 0) {
 195             if (names[result].type == 'V')
 196                 return -1;
 197         } else if (result == LAST_RESULT) {
 198             return names.length - 1;
 199         }
 200         return result;
 201     }
 202 
 203     private static boolean namesOK(int arity, Name[] names) {
 204         for (int i = 0; i < names.length; i++) {
 205             Name n = names[i];
 206             assert(n != null) : "n is null";
 207             if (i < arity)
 208                 assert( n.isParam()) : n + " is not param at " + i;
 209             else
 210                 assert(!n.isParam()) : n + " is param at " + i;
 211         }
 212         return true;
 213     }
 214 
 215     /** Renumber and/or replace params so that they are interned and canonically numbered. */
 216     private void normalize() {
 217         Name[] oldNames = null;
 218         int changesStart = 0;
 219         for (int i = 0; i < names.length; i++) {
 220             Name n = names[i];
 221             if (!n.initIndex(i)) {
 222                 if (oldNames == null) {
 223                     oldNames = names.clone();
 224                     changesStart = i;
 225                 }
 226                 names[i] = n.cloneWithIndex(i);
 227             }
 228         }
 229         if (oldNames != null) {
 230             int startFixing = arity;
 231             if (startFixing <= changesStart)
 232                 startFixing = changesStart+1;
 233             for (int i = startFixing; i < names.length; i++) {
 234                 Name fixed = names[i].replaceNames(oldNames, names, changesStart, i);
 235                 names[i] = fixed.newIndex(i);
 236             }
 237         }
 238         assert(nameRefsAreLegal());
 239         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 240         boolean needIntern = false;
 241         for (int i = 0; i < maxInterned; i++) {
 242             Name n = names[i], n2 = internArgument(n);
 243             if (n != n2) {
 244                 names[i] = n2;
 245                 needIntern = true;
 246             }
 247         }
 248         if (needIntern) {
 249             for (int i = arity; i < names.length; i++) {
 250                 names[i].internArguments();
 251             }
 252             assert(nameRefsAreLegal());
 253         }
 254     }
 255 
 256     /**
 257      * Check that all embedded Name references are localizable to this lambda,
 258      * and are properly ordered after their corresponding definitions.
 259      * <p>
 260      * Note that a Name can be local to multiple lambdas, as long as
 261      * it possesses the same index in each use site.
 262      * This allows Name references to be freely reused to construct
 263      * fresh lambdas, without confusion.
 264      */
 265     private boolean nameRefsAreLegal() {
 266         assert(arity >= 0 && arity <= names.length);
 267         assert(result >= -1 && result < names.length);
 268         // Do all names possess an index consistent with their local definition order?
 269         for (int i = 0; i < arity; i++) {
 270             Name n = names[i];
 271             assert(n.index() == i) : Arrays.asList(n.index(), i);
 272             assert(n.isParam());
 273         }
 274         // Also, do all local name references
 275         for (int i = arity; i < names.length; i++) {
 276             Name n = names[i];
 277             assert(n.index() == i);
 278             for (Object arg : n.arguments) {
 279                 if (arg instanceof Name) {
 280                     Name n2 = (Name) arg;
 281                     int i2 = n2.index;
 282                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 283                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 284                     assert(i2 < i);  // ref must come after def!
 285                 }
 286             }
 287         }
 288         return true;
 289     }
 290 
 291     /** Invoke this form on the given arguments. */
 292     // final Object invoke(Object... args) throws Throwable {
 293     //     // NYI: fit this into the fast path?
 294     //     return interpretWithArguments(args);
 295     // }
 296 
 297     /** Report the return type. */
 298     char returnType() {
 299         if (result < 0)  return 'V';
 300         Name n = names[result];
 301         return n.type;
 302     }
 303 
 304     /** Report the N-th argument type. */
 305     char parameterType(int n) {
 306         assert(n < arity);
 307         return names[n].type;
 308     }
 309 
 310     /** Report the arity. */
 311     int arity() {
 312         return arity;
 313     }
 314 
 315     /** Return the method type corresponding to my basic type signature. */
 316     MethodType methodType() {
 317         return signatureType(basicTypeSignature());
 318     }
 319     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 320     final String basicTypeSignature() {
 321         StringBuilder buf = new StringBuilder(arity() + 3);
 322         for (int i = 0, a = arity(); i < a; i++)
 323             buf.append(parameterType(i));
 324         return buf.append('_').append(returnType()).toString();
 325     }
 326     static int signatureArity(String sig) {
 327         assert(isValidSignature(sig));
 328         return sig.indexOf('_');
 329     }
 330     static char signatureReturn(String sig) {
 331         return sig.charAt(signatureArity(sig)+1);
 332     }
 333     static boolean isValidSignature(String sig) {
 334         int arity = sig.indexOf('_');
 335         if (arity < 0)  return false;  // must be of the form *_*
 336         int siglen = sig.length();
 337         if (siglen != arity + 2)  return false;  // *_X
 338         for (int i = 0; i < siglen; i++) {
 339             if (i == arity)  continue;  // skip '_'
 340             char c = sig.charAt(i);
 341             if (c == 'V')
 342                 return (i == siglen - 1 && arity == siglen - 2);
 343             if (ALL_TYPES.indexOf(c) < 0)  return false; // must be [LIJFD]
 344         }
 345         return true;  // [LIJFD]*_[LIJFDV]
 346     }
 347     static Class<?> typeClass(char t) {
 348         switch (t) {
 349         case 'I': return int.class;
 350         case 'J': return long.class;
 351         case 'F': return float.class;
 352         case 'D': return double.class;
 353         case 'L': return Object.class;
 354         case 'V': return void.class;
 355         default: assert false;
 356         }
 357         return null;
 358     }
 359     static MethodType signatureType(String sig) {
 360         Class<?>[] ptypes = new Class<?>[signatureArity(sig)];
 361         for (int i = 0; i < ptypes.length; i++)
 362             ptypes[i] = typeClass(sig.charAt(i));
 363         Class<?> rtype = typeClass(signatureReturn(sig));
 364         return MethodType.methodType(rtype, ptypes);
 365     }
 366 
 367     /*
 368      * Code generation issues:
 369      *
 370      * Compiled LFs should be reusable in general.
 371      * The biggest issue is how to decide when to pull a name into
 372      * the bytecode, versus loading a reified form from the MH data.
 373      *
 374      * For example, an asType wrapper may require execution of a cast
 375      * after a call to a MH.  The target type of the cast can be placed
 376      * as a constant in the LF itself.  This will force the cast type
 377      * to be compiled into the bytecodes and native code for the MH.
 378      * Or, the target type of the cast can be erased in the LF, and
 379      * loaded from the MH data.  (Later on, if the MH as a whole is
 380      * inlined, the data will flow into the inlined instance of the LF,
 381      * as a constant, and the end result will be an optimal cast.)
 382      *
 383      * This erasure of cast types can be done with any use of
 384      * reference types.  It can also be done with whole method
 385      * handles.  Erasing a method handle might leave behind
 386      * LF code that executes correctly for any MH of a given
 387      * type, and load the required MH from the enclosing MH's data.
 388      * Or, the erasure might even erase the expected MT.
 389      *
 390      * Also, for direct MHs, the MemberName of the target
 391      * could be erased, and loaded from the containing direct MH.
 392      * As a simple case, a LF for all int-valued non-static
 393      * field getters would perform a cast on its input argument
 394      * (to non-constant base type derived from the MemberName)
 395      * and load an integer value from the input object
 396      * (at a non-constant offset also derived from the MemberName).
 397      * Such MN-erased LFs would be inlinable back to optimized
 398      * code, whenever a constant enclosing DMH is available
 399      * to supply a constant MN from its data.
 400      *
 401      * The main problem here is to keep LFs reasonably generic,
 402      * while ensuring that hot spots will inline good instances.
 403      * "Reasonably generic" means that we don't end up with
 404      * repeated versions of bytecode or machine code that do
 405      * not differ in their optimized form.  Repeated versions
 406      * of machine would have the undesirable overheads of
 407      * (a) redundant compilation work and (b) extra I$ pressure.
 408      * To control repeated versions, we need to be ready to
 409      * erase details from LFs and move them into MH data,
 410      * whevener those details are not relevant to significant
 411      * optimization.  "Significant" means optimization of
 412      * code that is actually hot.
 413      *
 414      * Achieving this may require dynamic splitting of MHs, by replacing
 415      * a generic LF with a more specialized one, on the same MH,
 416      * if (a) the MH is frequently executed and (b) the MH cannot
 417      * be inlined into a containing caller, such as an invokedynamic.
 418      *
 419      * Compiled LFs that are no longer used should be GC-able.
 420      * If they contain non-BCP references, they should be properly
 421      * interlinked with the class loader(s) that their embedded types
 422      * depend on.  This probably means that reusable compiled LFs
 423      * will be tabulated (indexed) on relevant class loaders,
 424      * or else that the tables that cache them will have weak links.
 425      */
 426 
 427     /**
 428      * Make this LF directly executable, as part of a MethodHandle.
 429      * Invariant:  Every MH which is invoked must prepare its LF
 430      * before invocation.
 431      * (In principle, the JVM could do this very lazily,
 432      * as a sort of pre-invocation linkage step.)
 433      */
 434     public void prepare() {
 435         if (COMPILE_THRESHOLD == 0) {
 436             compileToBytecode();
 437         }
 438         if (this.vmentry != null) {
 439             // already prepared (e.g., a primitive DMH invoker form)
 440             return;
 441         }
 442         LambdaForm prep = getPreparedForm(basicTypeSignature());
 443         this.vmentry = prep.vmentry;
 444         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 445     }
 446 
 447     /** Generate optimizable bytecode for this form. */
 448     MemberName compileToBytecode() {
 449         MethodType invokerType = methodType();
 450         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 451         if (vmentry != null && isCompiled) {
 452             return vmentry;  // already compiled somehow
 453         }
 454         try {
 455             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 456             if (TRACE_INTERPRETER)
 457                 traceInterpreter("compileToBytecode", this);
 458             isCompiled = true;
 459             return vmentry;
 460         } catch (Error | Exception ex) {
 461             throw newInternalError(this.toString(), ex);
 462         }
 463     }
 464 
 465     private static final ConcurrentHashMap<String,LambdaForm> PREPARED_FORMS;
 466     static {
 467         int   capacity   = 512;    // expect many distinct signatures over time
 468         float loadFactor = 0.75f;  // normal default
 469         int   writers    = 1;
 470         PREPARED_FORMS = new ConcurrentHashMap<>(capacity, loadFactor, writers);
 471     }
 472 
 473     private static Map<String,LambdaForm> computeInitialPreparedForms() {
 474         // Find all predefined invokers and associate them with canonical empty lambda forms.
 475         HashMap<String,LambdaForm> forms = new HashMap<>();
 476         for (MemberName m : MemberName.getFactory().getMethods(LambdaForm.class, false, null, null, null)) {
 477             if (!m.isStatic() || !m.isPackage())  continue;
 478             MethodType mt = m.getMethodType();
 479             if (mt.parameterCount() > 0 &&
 480                 mt.parameterType(0) == MethodHandle.class &&
 481                 m.getName().startsWith("interpret_")) {
 482                 String sig = basicTypeSignature(mt);
 483                 assert(m.getName().equals("interpret" + sig.substring(sig.indexOf('_'))));
 484                 LambdaForm form = new LambdaForm(sig);
 485                 form.vmentry = m;
 486                 mt.form().setCachedLambdaForm(MethodTypeForm.LF_COUNTER, form);
 487                 // FIXME: get rid of PREPARED_FORMS; use MethodTypeForm cache only
 488                 forms.put(sig, form);
 489             }
 490         }
 491         //System.out.println("computeInitialPreparedForms => "+forms);
 492         return forms;
 493     }
 494 
 495     // Set this false to disable use of the interpret_L methods defined in this file.
 496     private static final boolean USE_PREDEFINED_INTERPRET_METHODS = true;
 497 
 498     // The following are predefined exact invokers.  The system must build
 499     // a separate invoker for each distinct signature.
 500     static Object interpret_L(MethodHandle mh) throws Throwable {
 501         Object[] av = {mh};
 502         String sig = null;
 503         assert(argumentTypesMatch(sig = "L_L", av));
 504         Object res = mh.form.interpretWithArguments(av);
 505         assert(returnTypesMatch(sig, av, res));
 506         return res;
 507     }
 508     static Object interpret_L(MethodHandle mh, Object x1) throws Throwable {
 509         Object[] av = {mh, x1};
 510         String sig = null;
 511         assert(argumentTypesMatch(sig = "LL_L", av));
 512         Object res = mh.form.interpretWithArguments(av);
 513         assert(returnTypesMatch(sig, av, res));
 514         return res;
 515     }
 516     static Object interpret_L(MethodHandle mh, Object x1, Object x2) throws Throwable {
 517         Object[] av = {mh, x1, x2};
 518         String sig = null;
 519         assert(argumentTypesMatch(sig = "LLL_L", av));
 520         Object res = mh.form.interpretWithArguments(av);
 521         assert(returnTypesMatch(sig, av, res));
 522         return res;
 523     }
 524     private static LambdaForm getPreparedForm(String sig) {
 525         MethodType mtype = signatureType(sig);
 526         //LambdaForm prep = PREPARED_FORMS.get(sig);
 527         LambdaForm prep =  mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 528         if (prep != null)  return prep;
 529         assert(isValidSignature(sig));
 530         prep = new LambdaForm(sig);
 531         prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(sig);
 532         //LambdaForm prep2 = PREPARED_FORMS.putIfAbsent(sig.intern(), prep);
 533         return mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 534     }
 535 
 536     // The next few routines are called only from assert expressions
 537     // They verify that the built-in invokers process the correct raw data types.
 538     private static boolean argumentTypesMatch(String sig, Object[] av) {
 539         int arity = signatureArity(sig);
 540         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 541         assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0];
 542         MethodHandle mh = (MethodHandle) av[0];
 543         MethodType mt = mh.type();
 544         assert(mt.parameterCount() == arity-1);
 545         for (int i = 0; i < av.length; i++) {
 546             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 547             assert(valueMatches(sig.charAt(i), pt, av[i]));
 548         }
 549         return true;
 550     }
 551     private static boolean valueMatches(char tc, Class<?> type, Object x) {
 552         // The following line is needed because (...)void method handles can use non-void invokers
 553         if (type == void.class)  tc = 'V';   // can drop any kind of value
 554         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 555         switch (tc) {
 556         case 'I': assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 557         case 'J': assert x instanceof Long   : "instanceof Long: " + x;             break;
 558         case 'F': assert x instanceof Float  : "instanceof Float: " + x;            break;
 559         case 'D': assert x instanceof Double : "instanceof Double: " + x;           break;
 560         case 'L': assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 561         case 'V': break;  // allow anything here; will be dropped
 562         default:  assert(false);
 563         }
 564         return true;
 565     }
 566     private static boolean returnTypesMatch(String sig, Object[] av, Object res) {
 567         MethodHandle mh = (MethodHandle) av[0];
 568         return valueMatches(signatureReturn(sig), mh.type().returnType(), res);
 569     }
 570     private static boolean checkInt(Class<?> type, Object x) {
 571         assert(x instanceof Integer);
 572         if (type == int.class)  return true;
 573         Wrapper w = Wrapper.forBasicType(type);
 574         assert(w.isSubwordOrInt());
 575         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 576         return x.equals(x1);
 577     }
 578     private static boolean checkRef(Class<?> type, Object x) {
 579         assert(!type.isPrimitive());
 580         if (x == null)  return true;
 581         if (type.isInterface())  return true;
 582         return type.isInstance(x);
 583     }
 584 
 585     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 586     private static final int COMPILE_THRESHOLD;
 587     static {
 588         if (MethodHandleStatics.COMPILE_THRESHOLD != null)
 589             COMPILE_THRESHOLD = MethodHandleStatics.COMPILE_THRESHOLD;
 590         else
 591             COMPILE_THRESHOLD = 30;  // default value
 592     }
 593     private int invocationCounter = 0;
 594 
 595     @Hidden
 596     @DontInline
 597     /** Interpretively invoke this form on the given arguments. */
 598     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 599         if (TRACE_INTERPRETER)
 600             return interpretWithArgumentsTracing(argumentValues);
 601         checkInvocationCounter();
 602         assert(arityCheck(argumentValues));
 603         Object[] values = Arrays.copyOf(argumentValues, names.length);
 604         for (int i = argumentValues.length; i < values.length; i++) {
 605             values[i] = interpretName(names[i], values);
 606         }
 607         return (result < 0) ? null : values[result];
 608     }
 609 
 610     @Hidden
 611     @DontInline
 612     /** Evaluate a single Name within this form, applying its function to its arguments. */
 613     Object interpretName(Name name, Object[] values) throws Throwable {
 614         if (TRACE_INTERPRETER)
 615             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 616         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 617         for (int i = 0; i < arguments.length; i++) {
 618             Object a = arguments[i];
 619             if (a instanceof Name) {
 620                 int i2 = ((Name)a).index();
 621                 assert(names[i2] == a);
 622                 a = values[i2];
 623                 arguments[i] = a;
 624             }
 625         }
 626         return name.function.invokeWithArguments(arguments);
 627     }
 628 
 629     private void checkInvocationCounter() {
 630         if (COMPILE_THRESHOLD != 0 &&
 631             invocationCounter < COMPILE_THRESHOLD) {
 632             invocationCounter++;  // benign race
 633             if (invocationCounter >= COMPILE_THRESHOLD) {
 634                 // Replace vmentry with a bytecode version of this LF.
 635                 compileToBytecode();
 636             }
 637         }
 638     }
 639     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 640         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 641         if (invocationCounter < COMPILE_THRESHOLD) {
 642             int ctr = invocationCounter++;  // benign race
 643             traceInterpreter("| invocationCounter", ctr);
 644             if (invocationCounter >= COMPILE_THRESHOLD) {
 645                 compileToBytecode();
 646             }
 647         }
 648         Object rval;
 649         try {
 650             assert(arityCheck(argumentValues));
 651             Object[] values = Arrays.copyOf(argumentValues, names.length);
 652             for (int i = argumentValues.length; i < values.length; i++) {
 653                 values[i] = interpretName(names[i], values);
 654             }
 655             rval = (result < 0) ? null : values[result];
 656         } catch (Throwable ex) {
 657             traceInterpreter("] throw =>", ex);
 658             throw ex;
 659         }
 660         traceInterpreter("] return =>", rval);
 661         return rval;
 662     }
 663 
 664     //** This transform is applied (statically) to every name.function. */
 665     /*
 666     private static MethodHandle eraseSubwordTypes(MethodHandle mh) {
 667         MethodType mt = mh.type();
 668         if (mt.hasPrimitives()) {
 669             mt = mt.changeReturnType(eraseSubwordType(mt.returnType()));
 670             for (int i = 0; i < mt.parameterCount(); i++) {
 671                 mt = mt.changeParameterType(i, eraseSubwordType(mt.parameterType(i)));
 672             }
 673             mh = MethodHandles.explicitCastArguments(mh, mt);
 674         }
 675         return mh;
 676     }
 677     private static Class<?> eraseSubwordType(Class<?> type) {
 678         if (!type.isPrimitive())  return type;
 679         if (type == int.class)  return type;
 680         Wrapper w = Wrapper.forPrimitiveType(type);
 681         if (w.isSubwordOrInt())  return int.class;
 682         return type;
 683     }
 684     */
 685 
 686     static void traceInterpreter(String event, Object obj, Object... args) {
 687         if (!TRACE_INTERPRETER)  return;
 688         System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
 689     }
 690     static void traceInterpreter(String event, Object obj) {
 691         traceInterpreter(event, obj, (Object[])null);
 692     }
 693     private boolean arityCheck(Object[] argumentValues) {
 694         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
 695         // also check that the leading (receiver) argument is somehow bound to this LF:
 696         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
 697         assert(((MethodHandle)argumentValues[0]).internalForm() == this);
 698         // note:  argument #0 could also be an interface wrapper, in the future
 699         return true;
 700     }
 701 
 702     private boolean isEmpty() {
 703         if (result < 0)
 704             return (names.length == arity);
 705         else if (result == arity && names.length == arity + 1)
 706             return names[arity].isConstantZero();
 707         else
 708             return false;
 709     }
 710 
 711     public String toString() {
 712         StringBuilder buf = new StringBuilder(debugName+"=Lambda(");
 713         for (int i = 0; i < names.length; i++) {
 714             if (i == arity)  buf.append(")=>{");
 715             Name n = names[i];
 716             if (i >= arity)  buf.append("\n    ");
 717             buf.append(n);
 718             if (i < arity) {
 719                 if (i+1 < arity)  buf.append(",");
 720                 continue;
 721             }
 722             buf.append("=").append(n.exprString());
 723             buf.append(";");
 724         }
 725         buf.append(result < 0 ? "void" : names[result]).append("}");
 726         if (TRACE_INTERPRETER) {
 727             // Extra verbosity:
 728             buf.append(":").append(basicTypeSignature());
 729             buf.append("/").append(vmentry);
 730         }
 731         return buf.toString();
 732     }
 733 
 734     /**
 735      * Apply immediate binding for a Name in this form indicated by its position relative to the form.
 736      * The first parameter to a LambdaForm, a0:L, always represents the form's method handle, so 0 is not
 737      * accepted as valid.
 738      */
 739     LambdaForm bindImmediate(int pos, char basicType, Object value) {
 740         // must be an argument, and the types must match
 741         assert pos > 0 && pos < arity && names[pos].type == basicType && Name.typesMatch(basicType, value);
 742 
 743         int arity2 = arity - 1;
 744         Name[] names2 = new Name[names.length - 1];
 745         for (int r = 0, w = 0; r < names.length; ++r, ++w) { // (r)ead from names, (w)rite to names2
 746             Name n = names[r];
 747             if (n.isParam()) {
 748                 if (n.index == pos) {
 749                     // do not copy over the argument that is to be replaced with a literal,
 750                     // but adjust the write index
 751                     --w;
 752                 } else {
 753                     names2[w] = new Name(w, n.type);
 754                 }
 755             } else {
 756                 Object[] arguments2 = new Object[n.arguments.length];
 757                 for (int i = 0; i < n.arguments.length; ++i) {
 758                     Object arg = n.arguments[i];
 759                     if (arg instanceof Name) {
 760                         int ni = ((Name) arg).index;
 761                         if (ni == pos) {
 762                             arguments2[i] = value;
 763                         } else if (ni < pos) {
 764                             // replacement position not yet passed
 765                             arguments2[i] = names2[ni];
 766                         } else {
 767                             // replacement position passed
 768                             arguments2[i] = names2[ni - 1];
 769                         }
 770                     } else {
 771                         arguments2[i] = arg;
 772                     }
 773                 }
 774                 names2[w] = new Name(n.function, arguments2);
 775                 names2[w].initIndex(w);
 776             }
 777         }
 778 
 779         int result2 = result == -1 ? -1 : result - 1;
 780         return new LambdaForm(debugName, arity2, names2, result2);
 781     }
 782 
 783     LambdaForm bind(int namePos, BoundMethodHandle.SpeciesData oldData) {
 784         Name name = names[namePos];
 785         BoundMethodHandle.SpeciesData newData = oldData.extendWithType(name.type);
 786         return bind(name, newData.getterName(names[0], oldData.fieldCount()), oldData, newData);
 787     }
 788     LambdaForm bind(Name name, Name binding,
 789                     BoundMethodHandle.SpeciesData oldData,
 790                     BoundMethodHandle.SpeciesData newData) {
 791         int pos = name.index;
 792         assert(name.isParam());
 793         assert(!binding.isParam());
 794         assert(name.type == binding.type);
 795         assert(0 <= pos && pos < arity && names[pos] == name);
 796         assert(binding.function.memberDeclaringClassOrNull() == newData.clazz);
 797         assert(oldData.getters.length == newData.getters.length-1);
 798         if (bindCache != null) {
 799             LambdaForm form = bindCache[pos];
 800             if (form != null) {
 801                 assert(form.contains(binding)) : "form << " + form + " >> does not contain binding << " + binding + " >>";
 802                 return form;
 803             }
 804         } else {
 805             bindCache = new LambdaForm[arity];
 806         }
 807         assert(nameRefsAreLegal());
 808         int arity2 = arity-1;
 809         Name[] names2 = names.clone();
 810         names2[pos] = binding;  // we might move this in a moment
 811 
 812         // The newly created LF will run with a different BMH.
 813         // Switch over any pre-existing BMH field references to the new BMH class.
 814         int firstOldRef = -1;
 815         for (int i = 0; i < names2.length; i++) {
 816             Name n = names[i];
 817             if (n.function != null &&
 818                 n.function.memberDeclaringClassOrNull() == oldData.clazz) {
 819                 MethodHandle oldGetter = n.function.resolvedHandle;
 820                 MethodHandle newGetter = null;
 821                 for (int j = 0; j < oldData.getters.length; j++) {
 822                     if (oldGetter == oldData.getters[j])
 823                         newGetter =  newData.getters[j];
 824                 }
 825                 if (newGetter != null) {
 826                     if (firstOldRef < 0)  firstOldRef = i;
 827                     Name n2 = new Name(newGetter, n.arguments);
 828                     names2[i] = n2;
 829                 }
 830             }
 831         }
 832 
 833         // Walk over the new list of names once, in forward order.
 834         // Replace references to 'name' with 'binding'.
 835         // Replace data structure references to the old BMH species with the new.
 836         // This might cause a ripple effect, but it will settle in one pass.
 837         assert(firstOldRef < 0 || firstOldRef > pos);
 838         for (int i = pos+1; i < names2.length; i++) {
 839             if (i <= arity2)  continue;
 840             names2[i] = names2[i].replaceNames(names, names2, pos, i);
 841         }
 842 
 843         //  (a0, a1, name=a2, a3, a4)  =>  (a0, a1, a3, a4, binding)
 844         int insPos = pos;
 845         for (; insPos+1 < names2.length; insPos++) {
 846             Name n = names2[insPos+1];
 847             if (n.isSiblingBindingBefore(binding)) {
 848                 names2[insPos] = n;
 849             } else {
 850                 break;
 851             }
 852         }
 853         names2[insPos] = binding;
 854 
 855         // Since we moved some stuff, maybe update the result reference:
 856         int result2 = result;
 857         if (result2 == pos)
 858             result2 = insPos;
 859         else if (result2 > pos && result2 <= insPos)
 860             result2 -= 1;
 861 
 862         return bindCache[pos] = new LambdaForm(debugName, arity2, names2, result2);
 863     }
 864 
 865     boolean contains(Name name) {
 866         int pos = name.index();
 867         if (pos >= 0) {
 868             return pos < names.length && name.equals(names[pos]);
 869         }
 870         for (int i = arity; i < names.length; i++) {
 871             if (name.equals(names[i]))
 872                 return true;
 873         }
 874         return false;
 875     }
 876 
 877     LambdaForm addArguments(int pos, char... types) {
 878         assert(pos <= arity);
 879         int length = names.length;
 880         int inTypes = types.length;
 881         Name[] names2 = Arrays.copyOf(names, length + inTypes);
 882         int arity2 = arity + inTypes;
 883         int result2 = result;
 884         if (result2 >= arity)
 885             result2 += inTypes;
 886         // names array has MH in slot 0; skip it.
 887         int argpos = pos + 1;
 888         // Note:  The LF constructor will rename names2[argpos...].
 889         // Make space for new arguments (shift temporaries).
 890         System.arraycopy(names, argpos, names2, argpos + inTypes, length - argpos);
 891         for (int i = 0; i < inTypes; i++) {
 892             names2[argpos + i] = new Name(types[i]);
 893         }
 894         return new LambdaForm(debugName, arity2, names2, result2);
 895     }
 896 
 897     LambdaForm addArguments(int pos, List<Class<?>> types) {
 898         char[] basicTypes = new char[types.size()];
 899         for (int i = 0; i < basicTypes.length; i++)
 900             basicTypes[i] = basicType(types.get(i));
 901         return addArguments(pos, basicTypes);
 902     }
 903 
 904     LambdaForm permuteArguments(int skip, int[] reorder, char[] types) {
 905         // Note:  When inArg = reorder[outArg], outArg is fed by a copy of inArg.
 906         // The types are the types of the new (incoming) arguments.
 907         int length = names.length;
 908         int inTypes = types.length;
 909         int outArgs = reorder.length;
 910         assert(skip+outArgs == arity);
 911         assert(permutedTypesMatch(reorder, types, names, skip));
 912         int pos = 0;
 913         // skip trivial first part of reordering:
 914         while (pos < outArgs && reorder[pos] == pos)  pos += 1;
 915         Name[] names2 = new Name[length - outArgs + inTypes];
 916         System.arraycopy(names, 0, names2, 0, skip+pos);
 917         // copy the body:
 918         int bodyLength = length - arity;
 919         System.arraycopy(names, skip+outArgs, names2, skip+inTypes, bodyLength);
 920         int arity2 = names2.length - bodyLength;
 921         int result2 = result;
 922         if (result2 >= 0) {
 923             if (result2 < skip+outArgs) {
 924                 // return the corresponding inArg
 925                 result2 = reorder[result2-skip];
 926             } else {
 927                 result2 = result2 - outArgs + inTypes;
 928             }
 929         }
 930         // rework names in the body:
 931         for (int j = pos; j < outArgs; j++) {
 932             Name n = names[skip+j];
 933             int i = reorder[j];
 934             // replace names[skip+j] by names2[skip+i]
 935             Name n2 = names2[skip+i];
 936             if (n2 == null)
 937                 names2[skip+i] = n2 = new Name(types[i]);
 938             else
 939                 assert(n2.type == types[i]);
 940             for (int k = arity2; k < names2.length; k++) {
 941                 names2[k] = names2[k].replaceName(n, n2);
 942             }
 943         }
 944         // some names are unused, but must be filled in
 945         for (int i = skip+pos; i < arity2; i++) {
 946             if (names2[i] == null)
 947                 names2[i] = argument(i, types[i - skip]);
 948         }
 949         for (int j = arity; j < names.length; j++) {
 950             int i = j - arity + arity2;
 951             // replace names2[i] by names[j]
 952             Name n = names[j];
 953             Name n2 = names2[i];
 954             if (n != n2) {
 955                 for (int k = i+1; k < names2.length; k++) {
 956                     names2[k] = names2[k].replaceName(n, n2);
 957                 }
 958             }
 959         }
 960         return new LambdaForm(debugName, arity2, names2, result2);
 961     }
 962 
 963     static boolean permutedTypesMatch(int[] reorder, char[] types, Name[] names, int skip) {
 964         int inTypes = types.length;
 965         int outArgs = reorder.length;
 966         for (int i = 0; i < outArgs; i++) {
 967             assert(names[skip+i].isParam());
 968             assert(names[skip+i].type == types[reorder[i]]);
 969         }
 970         return true;
 971     }
 972 
 973     static class NamedFunction {
 974         final MemberName member;
 975         @Stable MethodHandle resolvedHandle;
 976         @Stable MethodHandle invoker;
 977 
 978         NamedFunction(MethodHandle resolvedHandle) {
 979             this(resolvedHandle.internalMemberName(), resolvedHandle);
 980         }
 981         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
 982             this.member = member;
 983             //resolvedHandle = eraseSubwordTypes(resolvedHandle);
 984             this.resolvedHandle = resolvedHandle;
 985         }
 986 
 987         // The next 3 constructors are used to break circular dependencies on MH.invokeStatic, etc.
 988         // Any LambdaForm containing such a member is not interpretable.
 989         // This is OK, since all such LFs are prepared with special primitive vmentry points.
 990         // And even without the resolvedHandle, the name can still be compiled and optimized.
 991         NamedFunction(Method method) {
 992             this(new MemberName(method));
 993         }
 994         NamedFunction(Field field) {
 995             this(new MemberName(field));
 996         }
 997         NamedFunction(MemberName member) {
 998             this.member = member;
 999             this.resolvedHandle = null;
1000         }
1001 
1002         MethodHandle resolvedHandle() {
1003             if (resolvedHandle == null)  resolve();
1004             return resolvedHandle;
1005         }
1006 
1007         void resolve() {
1008             resolvedHandle = DirectMethodHandle.make(member);
1009         }
1010 
1011         @Override
1012         public boolean equals(Object other) {
1013             if (this == other) return true;
1014             if (other == null) return false;
1015             if (!(other instanceof NamedFunction)) return false;
1016             NamedFunction that = (NamedFunction) other;
1017             return this.member != null && this.member.equals(that.member);
1018         }
1019 
1020         @Override
1021         public int hashCode() {
1022             if (member != null)
1023                 return member.hashCode();
1024             return super.hashCode();
1025         }
1026 
1027         // Put the predefined NamedFunction invokers into the table.
1028         static void initializeInvokers() {
1029             for (MemberName m : MemberName.getFactory().getMethods(NamedFunction.class, false, null, null, null)) {
1030                 if (!m.isStatic() || !m.isPackage())  continue;
1031                 MethodType type = m.getMethodType();
1032                 if (type.equals(INVOKER_METHOD_TYPE) &&
1033                     m.getName().startsWith("invoke_")) {
1034                     String sig = m.getName().substring("invoke_".length());
1035                     int arity = LambdaForm.signatureArity(sig);
1036                     MethodType srcType = MethodType.genericMethodType(arity);
1037                     if (LambdaForm.signatureReturn(sig) == 'V')
1038                         srcType = srcType.changeReturnType(void.class);
1039                     MethodTypeForm typeForm = srcType.form();
1040                     typeForm.namedFunctionInvoker = DirectMethodHandle.make(m);
1041                 }
1042             }
1043         }
1044 
1045         // The following are predefined NamedFunction invokers.  The system must build
1046         // a separate invoker for each distinct signature.
1047         /** void return type invokers. */
1048         @Hidden
1049         static Object invoke__V(MethodHandle mh, Object[] a) throws Throwable {
1050             assert(a.length == 0);
1051             mh.invokeBasic();
1052             return null;
1053         }
1054         @Hidden
1055         static Object invoke_L_V(MethodHandle mh, Object[] a) throws Throwable {
1056             assert(a.length == 1);
1057             mh.invokeBasic(a[0]);
1058             return null;
1059         }
1060         @Hidden
1061         static Object invoke_LL_V(MethodHandle mh, Object[] a) throws Throwable {
1062             assert(a.length == 2);
1063             mh.invokeBasic(a[0], a[1]);
1064             return null;
1065         }
1066         @Hidden
1067         static Object invoke_LLL_V(MethodHandle mh, Object[] a) throws Throwable {
1068             assert(a.length == 3);
1069             mh.invokeBasic(a[0], a[1], a[2]);
1070             return null;
1071         }
1072         @Hidden
1073         static Object invoke_LLLL_V(MethodHandle mh, Object[] a) throws Throwable {
1074             assert(a.length == 4);
1075             mh.invokeBasic(a[0], a[1], a[2], a[3]);
1076             return null;
1077         }
1078         @Hidden
1079         static Object invoke_LLLLL_V(MethodHandle mh, Object[] a) throws Throwable {
1080             assert(a.length == 5);
1081             mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
1082             return null;
1083         }
1084         /** Object return type invokers. */
1085         @Hidden
1086         static Object invoke__L(MethodHandle mh, Object[] a) throws Throwable {
1087             assert(a.length == 0);
1088             return mh.invokeBasic();
1089         }
1090         @Hidden
1091         static Object invoke_L_L(MethodHandle mh, Object[] a) throws Throwable {
1092             assert(a.length == 1);
1093             return mh.invokeBasic(a[0]);
1094         }
1095         @Hidden
1096         static Object invoke_LL_L(MethodHandle mh, Object[] a) throws Throwable {
1097             assert(a.length == 2);
1098             return mh.invokeBasic(a[0], a[1]);
1099         }
1100         @Hidden
1101         static Object invoke_LLL_L(MethodHandle mh, Object[] a) throws Throwable {
1102             assert(a.length == 3);
1103             return mh.invokeBasic(a[0], a[1], a[2]);
1104         }
1105         @Hidden
1106         static Object invoke_LLLL_L(MethodHandle mh, Object[] a) throws Throwable {
1107             assert(a.length == 4);
1108             return mh.invokeBasic(a[0], a[1], a[2], a[3]);
1109         }
1110         @Hidden
1111         static Object invoke_LLLLL_L(MethodHandle mh, Object[] a) throws Throwable {
1112             assert(a.length == 5);
1113             return mh.invokeBasic(a[0], a[1], a[2], a[3], a[4]);
1114         }
1115 
1116         static final MethodType INVOKER_METHOD_TYPE =
1117             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1118 
1119         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1120             MethodHandle mh = typeForm.namedFunctionInvoker;
1121             if (mh != null)  return mh;
1122             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1123             mh = DirectMethodHandle.make(invoker);
1124             MethodHandle mh2 = typeForm.namedFunctionInvoker;
1125             if (mh2 != null)  return mh2;  // benign race
1126             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1127                 throw new InternalError(mh.debugString());
1128             return typeForm.namedFunctionInvoker = mh;
1129         }
1130 
1131         @Hidden
1132         Object invokeWithArguments(Object... arguments) throws Throwable {
1133             // If we have a cached invoker, call it right away.
1134             // NOTE: The invoker always returns a reference value.
1135             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1136             assert(checkArgumentTypes(arguments, methodType()));
1137             return invoker().invokeBasic(resolvedHandle(), arguments);
1138         }
1139 
1140         @Hidden
1141         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1142             Object rval;
1143             try {
1144                 traceInterpreter("[ call", this, arguments);
1145                 if (invoker == null) {
1146                     traceInterpreter("| getInvoker", this);
1147                     invoker();
1148                 }
1149                 if (resolvedHandle == null) {
1150                     traceInterpreter("| resolve", this);
1151                     resolvedHandle();
1152                 }
1153                 assert(checkArgumentTypes(arguments, methodType()));
1154                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1155             } catch (Throwable ex) {
1156                 traceInterpreter("] throw =>", ex);
1157                 throw ex;
1158             }
1159             traceInterpreter("] return =>", rval);
1160             return rval;
1161         }
1162 
1163         private MethodHandle invoker() {
1164             if (invoker != null)  return invoker;
1165             // Get an invoker and cache it.
1166             return invoker = computeInvoker(methodType().form());
1167         }
1168 
1169         private static boolean checkArgumentTypes(Object[] arguments, MethodType methodType) {
1170             if (true)  return true;  // FIXME
1171             MethodType dstType = methodType.form().erasedType();
1172             MethodType srcType = dstType.basicType().wrap();
1173             Class<?>[] ptypes = new Class<?>[arguments.length];
1174             for (int i = 0; i < arguments.length; i++) {
1175                 Object arg = arguments[i];
1176                 Class<?> ptype = arg == null ? Object.class : arg.getClass();
1177                 // If the dest. type is a primitive we keep the
1178                 // argument type.
1179                 ptypes[i] = dstType.parameterType(i).isPrimitive() ? ptype : Object.class;
1180             }
1181             MethodType argType = MethodType.methodType(srcType.returnType(), ptypes).wrap();
1182             assert(argType.isConvertibleTo(srcType)) : "wrong argument types: cannot convert " + argType + " to " + srcType;
1183             return true;
1184         }
1185 
1186         String basicTypeSignature() {
1187             //return LambdaForm.basicTypeSignature(resolvedHandle.type());
1188             return LambdaForm.basicTypeSignature(methodType());
1189         }
1190 
1191         MethodType methodType() {
1192             if (resolvedHandle != null)
1193                 return resolvedHandle.type();
1194             else
1195                 // only for certain internal LFs during bootstrapping
1196                 return member.getInvocationType();
1197         }
1198 
1199         MemberName member() {
1200             assert(assertMemberIsConsistent());
1201             return member;
1202         }
1203 
1204         // Called only from assert.
1205         private boolean assertMemberIsConsistent() {
1206             if (resolvedHandle instanceof DirectMethodHandle) {
1207                 MemberName m = resolvedHandle.internalMemberName();
1208                 assert(m.equals(member));
1209             }
1210             return true;
1211         }
1212 
1213         Class<?> memberDeclaringClassOrNull() {
1214             return (member == null) ? null : member.getDeclaringClass();
1215         }
1216 
1217         char returnType() {
1218             return basicType(methodType().returnType());
1219         }
1220 
1221         char parameterType(int n) {
1222             return basicType(methodType().parameterType(n));
1223         }
1224 
1225         int arity() {
1226             //int siglen = member.getMethodType().parameterCount();
1227             //if (!member.isStatic())  siglen += 1;
1228             //return siglen;
1229             return methodType().parameterCount();
1230         }
1231 
1232         public String toString() {
1233             if (member == null)  return resolvedHandle.toString();
1234             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1235         }
1236     }
1237 
1238     void resolve() {
1239         for (Name n : names) n.resolve();
1240     }
1241 
1242     public static char basicType(Class<?> type) {
1243         char c = Wrapper.basicTypeChar(type);
1244         if ("ZBSC".indexOf(c) >= 0)  c = 'I';
1245         assert("LIJFDV".indexOf(c) >= 0);
1246         return c;
1247     }
1248     public static char[] basicTypes(List<Class<?>> types) {
1249         char[] btypes = new char[types.size()];
1250         for (int i = 0; i < btypes.length; i++) {
1251             btypes[i] = basicType(types.get(i));
1252         }
1253         return btypes;
1254     }
1255     public static String basicTypeSignature(MethodType type) {
1256         char[] sig = new char[type.parameterCount() + 2];
1257         int sigp = 0;
1258         for (Class<?> pt : type.parameterList()) {
1259             sig[sigp++] = basicType(pt);
1260         }
1261         sig[sigp++] = '_';
1262         sig[sigp++] = basicType(type.returnType());
1263         assert(sigp == sig.length);
1264         return String.valueOf(sig);
1265     }
1266 
1267     static final class Name {
1268         final char type;
1269         private short index;
1270         final NamedFunction function;
1271         @Stable final Object[] arguments;
1272 
1273         private Name(int index, char type, NamedFunction function, Object[] arguments) {
1274             this.index = (short)index;
1275             this.type = type;
1276             this.function = function;
1277             this.arguments = arguments;
1278             assert(this.index == index);
1279         }
1280         Name(MethodHandle function, Object... arguments) {
1281             this(new NamedFunction(function), arguments);
1282         }
1283         Name(MemberName function, Object... arguments) {
1284             this(new NamedFunction(function), arguments);
1285         }
1286         Name(NamedFunction function, Object... arguments) {
1287             this(-1, function.returnType(), function, arguments = arguments.clone());
1288             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1289             for (int i = 0; i < arguments.length; i++)
1290                 assert(typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1291         }
1292         Name(int index, char type) {
1293             this(index, type, null, null);
1294         }
1295         Name(char type) {
1296             this(-1, type);
1297         }
1298 
1299         char type() { return type; }
1300         int index() { return index; }
1301         boolean initIndex(int i) {
1302             if (index != i) {
1303                 if (index != -1)  return false;
1304                 index = (short)i;
1305             }
1306             return true;
1307         }
1308 
1309 
1310         void resolve() {
1311             if (function != null)
1312                 function.resolve();
1313         }
1314 
1315         Name newIndex(int i) {
1316             if (initIndex(i))  return this;
1317             return cloneWithIndex(i);
1318         }
1319         Name cloneWithIndex(int i) {
1320             Object[] newArguments = (arguments == null) ? null : arguments.clone();
1321             return new Name(i, type, function, newArguments);
1322         }
1323         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1324             if (oldName == newName)  return this;
1325             @SuppressWarnings("LocalVariableHidesMemberVariable")
1326             Object[] arguments = this.arguments;
1327             if (arguments == null)  return this;
1328             boolean replaced = false;
1329             for (int j = 0; j < arguments.length; j++) {
1330                 if (arguments[j] == oldName) {
1331                     if (!replaced) {
1332                         replaced = true;
1333                         arguments = arguments.clone();
1334                     }
1335                     arguments[j] = newName;
1336                 }
1337             }
1338             if (!replaced)  return this;
1339             return new Name(function, arguments);
1340         }
1341         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1342             @SuppressWarnings("LocalVariableHidesMemberVariable")
1343             Object[] arguments = this.arguments;
1344             boolean replaced = false;
1345         eachArg:
1346             for (int j = 0; j < arguments.length; j++) {
1347                 if (arguments[j] instanceof Name) {
1348                     Name n = (Name) arguments[j];
1349                     int check = n.index;
1350                     // harmless check to see if the thing is already in newNames:
1351                     if (check >= 0 && check < newNames.length && n == newNames[check])
1352                         continue eachArg;
1353                     // n might not have the correct index: n != oldNames[n.index].
1354                     for (int i = start; i < end; i++) {
1355                         if (n == oldNames[i]) {
1356                             if (n == newNames[i])
1357                                 continue eachArg;
1358                             if (!replaced) {
1359                                 replaced = true;
1360                                 arguments = arguments.clone();
1361                             }
1362                             arguments[j] = newNames[i];
1363                             continue eachArg;
1364                         }
1365                     }
1366                 }
1367             }
1368             if (!replaced)  return this;
1369             return new Name(function, arguments);
1370         }
1371         void internArguments() {
1372             @SuppressWarnings("LocalVariableHidesMemberVariable")
1373             Object[] arguments = this.arguments;
1374             for (int j = 0; j < arguments.length; j++) {
1375                 if (arguments[j] instanceof Name) {
1376                     Name n = (Name) arguments[j];
1377                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1378                         arguments[j] = internArgument(n);
1379                 }
1380             }
1381         }
1382         boolean isParam() {
1383             return function == null;
1384         }
1385         boolean isConstantZero() {
1386             return !isParam() && arguments.length == 0 && function.equals(constantZero(0, type).function);
1387         }
1388 
1389         public String toString() {
1390             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+type;
1391         }
1392         public String debugString() {
1393             String s = toString();
1394             return (function == null) ? s : s + "=" + exprString();
1395         }
1396         public String exprString() {
1397             if (function == null)  return "null";
1398             StringBuilder buf = new StringBuilder(function.toString());
1399             buf.append("(");
1400             String cma = "";
1401             for (Object a : arguments) {
1402                 buf.append(cma); cma = ",";
1403                 if (a instanceof Name || a instanceof Integer)
1404                     buf.append(a);
1405                 else
1406                     buf.append("(").append(a).append(")");
1407             }
1408             buf.append(")");
1409             return buf.toString();
1410         }
1411 
1412         private static boolean typesMatch(char parameterType, Object object) {
1413             if (object instanceof Name) {
1414                 return ((Name)object).type == parameterType;
1415             }
1416             switch (parameterType) {
1417                 case 'I':  return object instanceof Integer;
1418                 case 'J':  return object instanceof Long;
1419                 case 'F':  return object instanceof Float;
1420                 case 'D':  return object instanceof Double;
1421             }
1422             assert(parameterType == 'L');
1423             return true;
1424         }
1425 
1426         /**
1427          * Does this Name precede the given binding node in some canonical order?
1428          * This predicate is used to order data bindings (via insertion sort)
1429          * with some stability.
1430          * @param binding
1431          * @return
1432          */
1433         boolean isSiblingBindingBefore(Name binding) {
1434             assert(!binding.isParam());
1435             if (isParam())  return true;
1436             if (function.equals(binding.function) &&
1437                 arguments.length == binding.arguments.length) {
1438                 boolean sawInt = false;
1439                 for (int i = 0; i < arguments.length; i++) {
1440                     Object a1 = arguments[i];
1441                     Object a2 = binding.arguments[i];
1442                     if (!a1.equals(a2)) {
1443                         if (a1 instanceof Integer && a2 instanceof Integer) {
1444                             if (sawInt)  continue;
1445                             sawInt = true;
1446                             if ((int)a1 < (int)a2)  continue;  // still might be true
1447                         }
1448                         return false;
1449                     }
1450                 }
1451                 return sawInt;
1452             }
1453             return false;
1454         }
1455 
1456         public boolean equals(Name that) {
1457             if (this == that)  return true;
1458             if (isParam())
1459                 // each parameter is a unique atom
1460                 return false;  // this != that
1461             return
1462                 //this.index == that.index &&
1463                 this.type == that.type &&
1464                 this.function.equals(that.function) &&
1465                 Arrays.equals(this.arguments, that.arguments);
1466         }
1467         @Override
1468         public boolean equals(Object x) {
1469             return x instanceof Name && equals((Name)x);
1470         }
1471         @Override
1472         public int hashCode() {
1473             if (isParam())
1474                 return index | (type << 8);
1475             return function.hashCode() ^ Arrays.hashCode(arguments);
1476         }
1477     }
1478 
1479     static Name argument(int which, char type) {
1480         int tn = ALL_TYPES.indexOf(type);
1481         if (tn < 0 || which >= INTERNED_ARGUMENT_LIMIT)
1482             return new Name(which, type);
1483         return INTERNED_ARGUMENTS[tn][which];
1484     }
1485     static Name internArgument(Name n) {
1486         assert(n.isParam()) : "not param: " + n;
1487         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1488         return argument(n.index, n.type);
1489     }
1490     static Name[] arguments(int extra, String types) {
1491         int length = types.length();
1492         Name[] names = new Name[length + extra];
1493         for (int i = 0; i < length; i++)
1494             names[i] = argument(i, types.charAt(i));
1495         return names;
1496     }
1497     static Name[] arguments(int extra, char... types) {
1498         int length = types.length;
1499         Name[] names = new Name[length + extra];
1500         for (int i = 0; i < length; i++)
1501             names[i] = argument(i, types[i]);
1502         return names;
1503     }
1504     static Name[] arguments(int extra, List<Class<?>> types) {
1505         int length = types.size();
1506         Name[] names = new Name[length + extra];
1507         for (int i = 0; i < length; i++)
1508             names[i] = argument(i, basicType(types.get(i)));
1509         return names;
1510     }
1511     static Name[] arguments(int extra, Class<?>... types) {
1512         int length = types.length;
1513         Name[] names = new Name[length + extra];
1514         for (int i = 0; i < length; i++)
1515             names[i] = argument(i, basicType(types[i]));
1516         return names;
1517     }
1518     static Name[] arguments(int extra, MethodType types) {
1519         int length = types.parameterCount();
1520         Name[] names = new Name[length + extra];
1521         for (int i = 0; i < length; i++)
1522             names[i] = argument(i, basicType(types.parameterType(i)));
1523         return names;
1524     }
1525     static final String ALL_TYPES = "LIJFD";  // omit V, not an argument type
1526     static final int INTERNED_ARGUMENT_LIMIT = 10;
1527     private static final Name[][] INTERNED_ARGUMENTS
1528             = new Name[ALL_TYPES.length()][INTERNED_ARGUMENT_LIMIT];
1529     static {
1530         for (int tn = 0; tn < ALL_TYPES.length(); tn++) {
1531             for (int i = 0; i < INTERNED_ARGUMENTS[tn].length; i++) {
1532                 char type = ALL_TYPES.charAt(tn);
1533                 INTERNED_ARGUMENTS[tn][i] = new Name(i, type);
1534             }
1535         }
1536     }
1537 
1538     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1539 
1540     static Name constantZero(int which, char type) {
1541         return CONSTANT_ZERO[ALL_TYPES.indexOf(type)].newIndex(which);
1542     }
1543     private static final Name[] CONSTANT_ZERO
1544             = new Name[ALL_TYPES.length()];
1545     static {
1546         for (int tn = 0; tn < ALL_TYPES.length(); tn++) {
1547             char bt = ALL_TYPES.charAt(tn);
1548             Wrapper wrap = Wrapper.forBasicType(bt);
1549             MemberName zmem = new MemberName(LambdaForm.class, "zero"+bt, MethodType.methodType(wrap.primitiveType()), REF_invokeStatic);
1550             try {
1551                 zmem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zmem, null, NoSuchMethodException.class);
1552             } catch (IllegalAccessException|NoSuchMethodException ex) {
1553                 throw newInternalError(ex);
1554             }
1555             NamedFunction zcon = new NamedFunction(zmem);
1556             Name n = new Name(zcon).newIndex(0);
1557             assert(n.type == ALL_TYPES.charAt(tn));
1558             CONSTANT_ZERO[tn] = n;
1559             assert(n.isConstantZero());
1560         }
1561     }
1562 
1563     // Avoid appealing to ValueConversions at bootstrap time:
1564     private static int zeroI() { return 0; }
1565     private static long zeroJ() { return 0; }
1566     private static float zeroF() { return 0; }
1567     private static double zeroD() { return 0; }
1568     private static Object zeroL() { return null; }
1569 
1570     // Put this last, so that previous static inits can run before.
1571     static {
1572         if (USE_PREDEFINED_INTERPRET_METHODS)
1573             PREPARED_FORMS.putAll(computeInitialPreparedForms());
1574     }
1575 
1576     /**
1577      * Internal marker for byte-compiled LambdaForms.
1578      */
1579     /*non-public*/
1580     @Target(ElementType.METHOD)
1581     @Retention(RetentionPolicy.RUNTIME)
1582     @interface Compiled {
1583     }
1584 
1585     /**
1586      * Internal marker for LambdaForm interpreter frames.
1587      */
1588     /*non-public*/
1589     @Target(ElementType.METHOD)
1590     @Retention(RetentionPolicy.RUNTIME)
1591     @interface Hidden {
1592     }
1593 
1594 
1595 /*
1596     // Smoke-test for the invokers used in this file.
1597     static void testMethodHandleLinkers() throws Throwable {
1598         MemberName.Factory lookup = MemberName.getFactory();
1599         MemberName asList_MN = new MemberName(Arrays.class, "asList",
1600                                               MethodType.methodType(List.class, Object[].class),
1601                                               REF_invokeStatic);
1602         //MethodHandleNatives.resolve(asList_MN, null);
1603         asList_MN = lookup.resolveOrFail(asList_MN, REF_invokeStatic, null, NoSuchMethodException.class);
1604         System.out.println("about to call "+asList_MN);
1605         Object[] abc = { "a", "bc" };
1606         List<?> lst = (List<?>) MethodHandle.linkToStatic(abc, asList_MN);
1607         System.out.println("lst="+lst);
1608         MemberName toString_MN = new MemberName(Object.class.getMethod("toString"));
1609         String s1 = (String) MethodHandle.linkToVirtual(lst, toString_MN);
1610         toString_MN = new MemberName(Object.class.getMethod("toString"), true);
1611         String s2 = (String) MethodHandle.linkToSpecial(lst, toString_MN);
1612         System.out.println("[s1,s2,lst]="+Arrays.asList(s1, s2, lst.toString()));
1613         MemberName toArray_MN = new MemberName(List.class.getMethod("toArray"));
1614         Object[] arr = (Object[]) MethodHandle.linkToInterface(lst, toArray_MN);
1615         System.out.println("toArray="+Arrays.toString(arr));
1616     }
1617     static { try { testMethodHandleLinkers(); } catch (Throwable ex) { throw new RuntimeException(ex); } }
1618     // Requires these definitions in MethodHandle:
1619     static final native Object linkToStatic(Object x1, MemberName mn) throws Throwable;
1620     static final native Object linkToVirtual(Object x1, MemberName mn) throws Throwable;
1621     static final native Object linkToSpecial(Object x1, MemberName mn) throws Throwable;
1622     static final native Object linkToInterface(Object x1, MemberName mn) throws Throwable;
1623  */
1624 
1625     static { NamedFunction.initializeInvokers(); }
1626 }