1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/universe.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/memnode.hpp"
  32 #include "opto/parse.hpp"
  33 #include "opto/rootnode.hpp"
  34 #include "opto/runtime.hpp"
  35 #include "opto/subnode.hpp"
  36 #include "runtime/deoptimization.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 
  39 //=============================================================================
  40 // Helper methods for _get* and _put* bytecodes
  41 //=============================================================================
  42 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
  43   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
  44   // Better to check now than to Deoptimize as soon as we execute
  45   assert( field->is_static(), "Only check if field is static");
  46   // is_being_initialized() is too generous.  It allows access to statics
  47   // by threads that are not running the <clinit> before the <clinit> finishes.
  48   // return field->holder()->is_being_initialized();
  49 
  50   // The following restriction is correct but conservative.
  51   // It is also desirable to allow compilation of methods called from <clinit>
  52   // but this generated code will need to be made safe for execution by
  53   // other threads, or the transition from interpreted to compiled code would
  54   // need to be guarded.
  55   ciInstanceKlass *field_holder = field->holder();
  56 
  57   bool access_OK = false;
  58   if (method->holder()->is_subclass_of(field_holder)) {
  59     if (method->is_static()) {
  60       if (method->name() == ciSymbol::class_initializer_name()) {
  61         // OK to access static fields inside initializer
  62         access_OK = true;
  63       }
  64     } else {
  65       if (method->name() == ciSymbol::object_initializer_name()) {
  66         // It's also OK to access static fields inside a constructor,
  67         // because any thread calling the constructor must first have
  68         // synchronized on the class by executing a '_new' bytecode.
  69         access_OK = true;
  70       }
  71     }
  72   }
  73 
  74   return access_OK;
  75 
  76 }
  77 
  78 
  79 void Parse::do_field_access(bool is_get, bool is_field) {
  80   bool will_link;
  81   ciField* field = iter().get_field(will_link);
  82   assert(will_link, "getfield: typeflow responsibility");
  83 
  84   ciInstanceKlass* field_holder = field->holder();
  85 
  86   if (is_field == field->is_static()) {
  87     // Interpreter will throw java_lang_IncompatibleClassChangeError
  88     // Check this before allowing <clinit> methods to access static fields
  89     uncommon_trap(Deoptimization::Reason_unhandled,
  90                   Deoptimization::Action_none);
  91     return;
  92   }
  93 
  94   if (!is_field && !field_holder->is_initialized()) {
  95     if (!static_field_ok_in_clinit(field, method())) {
  96       uncommon_trap(Deoptimization::Reason_uninitialized,
  97                     Deoptimization::Action_reinterpret,
  98                     NULL, "!static_field_ok_in_clinit");
  99       return;
 100     }
 101   }
 102 
 103   // Deoptimize on putfield writes to call site target field.
 104   if (!is_get && field->is_call_site_target()) {
 105     uncommon_trap(Deoptimization::Reason_unhandled,
 106                   Deoptimization::Action_reinterpret,
 107                   NULL, "put to call site target field");
 108     return;
 109   }
 110 
 111   assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
 112 
 113   // Note:  We do not check for an unloaded field type here any more.
 114 
 115   // Generate code for the object pointer.
 116   Node* obj;
 117   if (is_field) {
 118     int obj_depth = is_get ? 0 : field->type()->size();
 119     obj = null_check(peek(obj_depth));
 120     // Compile-time detect of null-exception?
 121     if (stopped())  return;
 122 
 123 #ifdef ASSERT
 124     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 125     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 126 #endif
 127 
 128     if (is_get) {
 129       (void) pop();  // pop receiver before getting
 130       do_get_xxx(obj, field, is_field);
 131     } else {
 132       do_put_xxx(obj, field, is_field);
 133       (void) pop();  // pop receiver after putting
 134     }
 135   } else {
 136     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
 137     obj = _gvn.makecon(tip);
 138     if (is_get) {
 139       do_get_xxx(obj, field, is_field);
 140     } else {
 141       do_put_xxx(obj, field, is_field);
 142     }
 143   }
 144 }
 145 
 146 
 147 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
 148   // Does this field have a constant value?  If so, just push the value.
 149   if (field->is_constant()) {
 150     // final or stable field
 151     const Type* stable_type = NULL;
 152     if (FoldStableValues && field->is_stable()) {
 153       stable_type = Type::get_const_type(field->type());
 154       if (field->type()->is_array_klass()) {
 155         int stable_dimension = field->type()->as_array_klass()->dimension();
 156         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 157       }
 158     }
 159     if (field->is_static()) {
 160       // final static field
 161       if (C->eliminate_boxing()) {
 162         // The pointers in the autobox arrays are always non-null.
 163         ciSymbol* klass_name = field->holder()->name();
 164         if (field->name() == ciSymbol::cache_field_name() &&
 165             field->holder()->uses_default_loader() &&
 166             (klass_name == ciSymbol::java_lang_Character_CharacterCache() ||
 167              klass_name == ciSymbol::java_lang_Byte_ByteCache() ||
 168              klass_name == ciSymbol::java_lang_Short_ShortCache() ||
 169              klass_name == ciSymbol::java_lang_Integer_IntegerCache() ||
 170              klass_name == ciSymbol::java_lang_Long_LongCache())) {
 171           bool require_const = true;
 172           bool autobox_cache = true;
 173           if (push_constant(field->constant_value(), require_const, autobox_cache)) {
 174             return;
 175           }
 176         }
 177       }
 178       if (push_constant(field->constant_value(), false, false, stable_type))
 179         return;
 180     } else {
 181       // final or stable non-static field
 182       // Treat final non-static fields of trusted classes (classes in
 183       // java.lang.invoke and sun.invoke packages and subpackages) as
 184       // compile time constants.
 185       if (obj->is_Con()) {
 186         const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 187         ciObject* constant_oop = oop_ptr->const_oop();
 188         ciConstant constant = field->constant_value_of(constant_oop);
 189         if (FoldStableValues && field->is_stable() && constant.is_null_or_zero()) {
 190           // fall through to field load; the field is not yet initialized
 191         } else {
 192           if (push_constant(constant, true, false, stable_type))
 193             return;
 194         }
 195       }
 196     }
 197   }
 198 
 199   ciType* field_klass = field->type();
 200   bool is_vol = field->is_volatile();
 201 
 202   // Compute address and memory type.
 203   int offset = field->offset_in_bytes();
 204   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 205   Node *adr = basic_plus_adr(obj, obj, offset);
 206   BasicType bt = field->layout_type();
 207 
 208   // Build the resultant type of the load
 209   const Type *type;
 210 
 211   bool must_assert_null = false;
 212 
 213   if( bt == T_OBJECT ) {
 214     if (!field->type()->is_loaded()) {
 215       type = TypeInstPtr::BOTTOM;
 216       must_assert_null = true;
 217     } else if (field->is_constant() && field->is_static()) {
 218       // This can happen if the constant oop is non-perm.
 219       ciObject* con = field->constant_value().as_object();
 220       // Do not "join" in the previous type; it doesn't add value,
 221       // and may yield a vacuous result if the field is of interface type.
 222       type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 223       assert(type != NULL, "field singleton type must be consistent");
 224     } else {
 225       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
 226     }
 227   } else {
 228     type = Type::get_const_basic_type(bt);
 229   }
 230   // Build the load.
 231   Node* ld = make_load(NULL, adr, type, bt, adr_type, is_vol);
 232 
 233   // Adjust Java stack
 234   if (type2size[bt] == 1)
 235     push(ld);
 236   else
 237     push_pair(ld);
 238 
 239   if (must_assert_null) {
 240     // Do not take a trap here.  It's possible that the program
 241     // will never load the field's class, and will happily see
 242     // null values in this field forever.  Don't stumble into a
 243     // trap for such a program, or we might get a long series
 244     // of useless recompilations.  (Or, we might load a class
 245     // which should not be loaded.)  If we ever see a non-null
 246     // value, we will then trap and recompile.  (The trap will
 247     // not need to mention the class index, since the class will
 248     // already have been loaded if we ever see a non-null value.)
 249     // uncommon_trap(iter().get_field_signature_index());
 250 #ifndef PRODUCT
 251     if (PrintOpto && (Verbose || WizardMode)) {
 252       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
 253     }
 254 #endif
 255     if (C->log() != NULL) {
 256       C->log()->elem("assert_null reason='field' klass='%d'",
 257                      C->log()->identify(field->type()));
 258     }
 259     // If there is going to be a trap, put it at the next bytecode:
 260     set_bci(iter().next_bci());
 261     null_assert(peek());
 262     set_bci(iter().cur_bci()); // put it back
 263   }
 264 
 265   // If reference is volatile, prevent following memory ops from
 266   // floating up past the volatile read.  Also prevents commoning
 267   // another volatile read.
 268   if (field->is_volatile()) {
 269     // Memory barrier includes bogus read of value to force load BEFORE membar
 270     insert_mem_bar(Op_MemBarAcquire, ld);
 271   }
 272 }
 273 
 274 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
 275   bool is_vol = field->is_volatile();
 276   // If reference is volatile, prevent following memory ops from
 277   // floating down past the volatile write.  Also prevents commoning
 278   // another volatile read.
 279   if (is_vol)  insert_mem_bar(Op_MemBarRelease);
 280 
 281   // Compute address and memory type.
 282   int offset = field->offset_in_bytes();
 283   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 284   Node* adr = basic_plus_adr(obj, obj, offset);
 285   BasicType bt = field->layout_type();
 286   // Value to be stored
 287   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
 288   // Round doubles before storing
 289   if (bt == T_DOUBLE)  val = dstore_rounding(val);
 290 
 291   // Store the value.
 292   Node* store;
 293   if (bt == T_OBJECT) {
 294     const TypeOopPtr* field_type;
 295     if (!field->type()->is_loaded()) {
 296       field_type = TypeInstPtr::BOTTOM;
 297     } else {
 298       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
 299     }
 300     store = store_oop_to_object( control(), obj, adr, adr_type, val, field_type, bt);
 301   } else {
 302     store = store_to_memory( control(), adr, val, bt, adr_type, is_vol );
 303   }
 304 
 305   // If reference is volatile, prevent following volatiles ops from
 306   // floating up before the volatile write.
 307   if (is_vol) {
 308     insert_mem_bar(Op_MemBarVolatile); // Use fat membar
 309   }
 310 
 311   // If the field is final, the rules of Java say we are in <init> or <clinit>.
 312   // Note the presence of writes to final non-static fields, so that we
 313   // can insert a memory barrier later on to keep the writes from floating
 314   // out of the constructor.
 315   // Any method can write a @Stable field; insert memory barriers after those also.
 316   if (is_field && (field->is_final() || field->is_stable())) {
 317     set_wrote_final(true);
 318     // Preserve allocation ptr to create precedent edge to it in membar
 319     // generated on exit from constructor.
 320     if (C->eliminate_boxing() &&
 321         adr_type->isa_oopptr() && adr_type->is_oopptr()->is_ptr_to_boxed_value() &&
 322         AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
 323       set_alloc_with_final(obj);
 324     }
 325   }
 326 }
 327 
 328 
 329 
 330 bool Parse::push_constant(ciConstant constant, bool require_constant, bool is_autobox_cache, const Type* stable_type) {
 331   const Type* con_type = Type::make_from_constant(constant, require_constant, is_autobox_cache);
 332   switch (constant.basic_type()) {
 333   case T_ARRAY:
 334   case T_OBJECT:
 335     // cases:
 336     //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 337     //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 338     // An oop is not scavengable if it is in the perm gen.
 339     if (stable_type != NULL && con_type != NULL && con_type->isa_oopptr())
 340       con_type = con_type->join(stable_type);
 341     break;
 342 
 343   case T_ILLEGAL:
 344     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 345     assert(C->env()->failing(), "otherwise should not see this");
 346     // These always occur because of object types; we are going to
 347     // bail out anyway, so make the stack depths match up
 348     push( zerocon(T_OBJECT) );
 349     return false;
 350   }
 351 
 352   if (con_type == NULL)
 353     // we cannot inline the oop, but we can use it later to narrow a type
 354     return false;
 355 
 356   push_node(constant.basic_type(), makecon(con_type));
 357   return true;
 358 }
 359 
 360 
 361 //=============================================================================
 362 void Parse::do_anewarray() {
 363   bool will_link;
 364   ciKlass* klass = iter().get_klass(will_link);
 365 
 366   // Uncommon Trap when class that array contains is not loaded
 367   // we need the loaded class for the rest of graph; do not
 368   // initialize the container class (see Java spec)!!!
 369   assert(will_link, "anewarray: typeflow responsibility");
 370 
 371   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
 372   // Check that array_klass object is loaded
 373   if (!array_klass->is_loaded()) {
 374     // Generate uncommon_trap for unloaded array_class
 375     uncommon_trap(Deoptimization::Reason_unloaded,
 376                   Deoptimization::Action_reinterpret,
 377                   array_klass);
 378     return;
 379   }
 380 
 381   kill_dead_locals();
 382 
 383   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
 384   Node* count_val = pop();
 385   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
 386   push(obj);
 387 }
 388 
 389 
 390 void Parse::do_newarray(BasicType elem_type) {
 391   kill_dead_locals();
 392 
 393   Node*   count_val = pop();
 394   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
 395   Node*   obj = new_array(makecon(array_klass), count_val, 1);
 396   // Push resultant oop onto stack
 397   push(obj);
 398 }
 399 
 400 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
 401 // Also handle the degenerate 1-dimensional case of anewarray.
 402 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
 403   Node* length = lengths[0];
 404   assert(length != NULL, "");
 405   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
 406   if (ndimensions > 1) {
 407     jint length_con = find_int_con(length, -1);
 408     guarantee(length_con >= 0, "non-constant multianewarray");
 409     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
 410     const TypePtr* adr_type = TypeAryPtr::OOPS;
 411     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 412     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 413     for (jint i = 0; i < length_con; i++) {
 414       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
 415       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
 416       Node*    eaddr  = basic_plus_adr(array, offset);
 417       store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT);
 418     }
 419   }
 420   return array;
 421 }
 422 
 423 void Parse::do_multianewarray() {
 424   int ndimensions = iter().get_dimensions();
 425 
 426   // the m-dimensional array
 427   bool will_link;
 428   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
 429   assert(will_link, "multianewarray: typeflow responsibility");
 430 
 431   // Note:  Array classes are always initialized; no is_initialized check.
 432 
 433   kill_dead_locals();
 434 
 435   // get the lengths from the stack (first dimension is on top)
 436   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
 437   length[ndimensions] = NULL;  // terminating null for make_runtime_call
 438   int j;
 439   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
 440 
 441   // The original expression was of this form: new T[length0][length1]...
 442   // It is often the case that the lengths are small (except the last).
 443   // If that happens, use the fast 1-d creator a constant number of times.
 444   const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
 445   jint expand_count = 1;        // count of allocations in the expansion
 446   jint expand_fanout = 1;       // running total fanout
 447   for (j = 0; j < ndimensions-1; j++) {
 448     jint dim_con = find_int_con(length[j], -1);
 449     expand_fanout *= dim_con;
 450     expand_count  += expand_fanout; // count the level-J sub-arrays
 451     if (dim_con <= 0
 452         || dim_con > expand_limit
 453         || expand_count > expand_limit) {
 454       expand_count = 0;
 455       break;
 456     }
 457   }
 458 
 459   // Can use multianewarray instead of [a]newarray if only one dimension,
 460   // or if all non-final dimensions are small constants.
 461   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
 462     Node* obj = NULL;
 463     // Set the original stack and the reexecute bit for the interpreter
 464     // to reexecute the multianewarray bytecode if deoptimization happens.
 465     // Do it unconditionally even for one dimension multianewarray.
 466     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
 467     // when AllocateArray node for newarray is created.
 468     { PreserveReexecuteState preexecs(this);
 469       inc_sp(ndimensions);
 470       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
 471       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
 472     } //original reexecute and sp are set back here
 473     push(obj);
 474     return;
 475   }
 476 
 477   address fun = NULL;
 478   switch (ndimensions) {
 479   case 1: ShouldNotReachHere(); break;
 480   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
 481   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
 482   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
 483   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
 484   };
 485   Node* c = NULL;
 486 
 487   if (fun != NULL) {
 488     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 489                           OptoRuntime::multianewarray_Type(ndimensions),
 490                           fun, NULL, TypeRawPtr::BOTTOM,
 491                           makecon(TypeKlassPtr::make(array_klass)),
 492                           length[0], length[1], length[2],
 493                           (ndimensions > 2) ? length[3] : NULL,
 494                           (ndimensions > 3) ? length[4] : NULL);
 495   } else {
 496     // Create a java array for dimension sizes
 497     Node* dims = NULL;
 498     { PreserveReexecuteState preexecs(this);
 499       inc_sp(ndimensions);
 500       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
 501       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
 502 
 503       // Fill-in it with values
 504       for (j = 0; j < ndimensions; j++) {
 505         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
 506         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS);
 507       }
 508     }
 509 
 510     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 511                           OptoRuntime::multianewarrayN_Type(),
 512                           OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
 513                           makecon(TypeKlassPtr::make(array_klass)),
 514                           dims);
 515   }
 516   make_slow_call_ex(c, env()->Throwable_klass(), false);
 517 
 518   Node* res = _gvn.transform(new (C) ProjNode(c, TypeFunc::Parms));
 519 
 520   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
 521 
 522   // Improve the type:  We know it's not null, exact, and of a given length.
 523   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
 524   type = type->is_aryptr()->cast_to_exactness(true);
 525 
 526   const TypeInt* ltype = _gvn.find_int_type(length[0]);
 527   if (ltype != NULL)
 528     type = type->is_aryptr()->cast_to_size(ltype);
 529 
 530     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
 531 
 532   Node* cast = _gvn.transform( new (C) CheckCastPPNode(control(), res, type) );
 533   push(cast);
 534 
 535   // Possible improvements:
 536   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
 537   // - Issue CastII against length[*] values, to TypeInt::POS.
 538 }