1 /*
   2  * Copyright (c) 2008, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import sun.invoke.util.Wrapper;
  29 import static java.lang.invoke.MethodHandleStatics.*;
  30 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  31 import sun.invoke.Stable;
  32 
  33 /**
  34  * Shared information for a group of method types, which differ
  35  * only by reference types, and therefore share a common erasure
  36  * and wrapping.
  37  * <p>
  38  * For an empirical discussion of the structure of method types,
  39  * see <a href="http://groups.google.com/group/jvm-languages/browse_thread/thread/ac9308ae74da9b7e/">
  40  * the thread "Avoiding Boxing" on jvm-languages</a>.
  41  * There are approximately 2000 distinct erased method types in the JDK.
  42  * There are a little over 10 times that number of unerased types.
  43  * No more than half of these are likely to be loaded at once.
  44  * @author John Rose
  45  */
  46 final class MethodTypeForm {
  47     final int[] argToSlotTable, slotToArgTable;
  48     final long argCounts;               // packed slot & value counts
  49     final long primCounts;              // packed prim & double counts
  50     final int vmslots;                  // total number of parameter slots
  51     final MethodType erasedType;        // the canonical erasure
  52     final MethodType basicType;         // the canonical erasure, with primitives simplified
  53 
  54     // Cached adapter information:
  55     @Stable String typeString;           // argument type signature characters
  56     @Stable MethodHandle genericInvoker; // JVM hook for inexact invoke
  57     @Stable MethodHandle basicInvoker;   // cached instance of MH.invokeBasic
  58     @Stable MethodHandle namedFunctionInvoker; // cached helper for LF.NamedFunction
  59 
  60     // Cached lambda form information, for basic types only:
  61     final @Stable LambdaForm[] lambdaForms;
  62     // Indexes into lambdaForms:
  63     static final int
  64             LF_INVVIRTUAL     =  0,  // DMH invokeVirtual
  65             LF_INVSTATIC      =  1,
  66             LF_INVSPECIAL     =  2,
  67             LF_NEWINVSPECIAL  =  3,
  68             LF_INVINTERFACE   =  4,
  69             LF_INVSTATIC_INIT =  5,  // DMH invokeStatic with <clinit> barrier
  70             LF_INTERPRET      =  6,  // LF interpreter
  71             LF_COUNTER        =  7,  // CMH wrapper
  72             LF_REINVOKE       =  8,  // other wrapper
  73             LF_EX_LINKER      =  9,  // invokeExact_MT
  74             LF_EX_INVOKER     = 10,  // invokeExact MH
  75             LF_GEN_LINKER     = 11,
  76             LF_GEN_INVOKER    = 12,
  77             LF_CS_LINKER      = 13,  // linkToCallSite_CS
  78             LF_LIMIT          = 14;
  79 
  80     public MethodType erasedType() {
  81         return erasedType;
  82     }
  83 
  84     public MethodType basicType() {
  85         return basicType;
  86     }
  87 
  88     public LambdaForm cachedLambdaForm(int which) {
  89         return lambdaForms[which];
  90     }
  91 
  92     public LambdaForm setCachedLambdaForm(int which, LambdaForm form) {
  93         // Should we perform some sort of CAS, to avoid racy duplication?
  94         return lambdaForms[which] = form;
  95     }
  96 
  97     public MethodHandle basicInvoker() {
  98         assert(erasedType == basicType) : "erasedType: " + erasedType + " != basicType: " + basicType;  // primitives must be flattened also
  99         MethodHandle invoker = basicInvoker;
 100         if (invoker != null)  return invoker;
 101         invoker = basicType.invokers().makeBasicInvoker();
 102         basicInvoker = invoker;
 103         return invoker;
 104     }
 105 
 106     /**
 107      * Build an MTF for a given type, which must have all references erased to Object.
 108      * This MTF will stand for that type and all un-erased variations.
 109      * Eagerly compute some basic properties of the type, common to all variations.
 110      */
 111     protected MethodTypeForm(MethodType erasedType) {
 112         this.erasedType = erasedType;
 113 
 114         Class<?>[] ptypes = erasedType.ptypes();
 115         int ptypeCount = ptypes.length;
 116         int pslotCount = ptypeCount;            // temp. estimate
 117         int rtypeCount = 1;                     // temp. estimate
 118         int rslotCount = 1;                     // temp. estimate
 119 
 120         int[] argToSlotTab = null, slotToArgTab = null;
 121 
 122         // Walk the argument types, looking for primitives.
 123         int pac = 0, lac = 0, prc = 0, lrc = 0;
 124         Class<?>[] epts = ptypes;
 125         Class<?>[] bpts = epts;
 126         for (int i = 0; i < epts.length; i++) {
 127             Class<?> pt = epts[i];
 128             if (pt != Object.class) {
 129                 ++pac;
 130                 Wrapper w = Wrapper.forPrimitiveType(pt);
 131                 if (w.isDoubleWord())  ++lac;
 132                 if (w.isSubwordOrInt() && pt != int.class) {
 133                     if (bpts == epts)
 134                         bpts = bpts.clone();
 135                     bpts[i] = int.class;
 136                 }
 137             }
 138         }
 139         pslotCount += lac;                  // #slots = #args + #longs
 140         Class<?> rt = erasedType.returnType();
 141         Class<?> bt = rt;
 142         if (rt != Object.class) {
 143             ++prc;          // even void.class counts as a prim here
 144             Wrapper w = Wrapper.forPrimitiveType(rt);
 145             if (w.isDoubleWord())  ++lrc;
 146             if (w.isSubwordOrInt() && rt != int.class)
 147                 bt = int.class;
 148             // adjust #slots, #args
 149             if (rt == void.class)
 150                 rtypeCount = rslotCount = 0;
 151             else
 152                 rslotCount += lrc;
 153         }
 154         if (epts == bpts && bt == rt) {
 155             this.basicType = erasedType;
 156         } else {
 157             this.basicType = MethodType.makeImpl(bt, bpts, true);
 158         }
 159         if (lac != 0) {
 160             int slot = ptypeCount + lac;
 161             slotToArgTab = new int[slot+1];
 162             argToSlotTab = new int[1+ptypeCount];
 163             argToSlotTab[0] = slot;  // argument "-1" is past end of slots
 164             for (int i = 0; i < epts.length; i++) {
 165                 Class<?> pt = epts[i];
 166                 Wrapper w = Wrapper.forBasicType(pt);
 167                 if (w.isDoubleWord())  --slot;
 168                 --slot;
 169                 slotToArgTab[slot] = i+1; // "+1" see argSlotToParameter note
 170                 argToSlotTab[1+i]  = slot;
 171             }
 172             assert(slot == 0);  // filled the table
 173         }
 174         this.primCounts = pack(lrc, prc, lac, pac);
 175         this.argCounts = pack(rslotCount, rtypeCount, pslotCount, ptypeCount);
 176         if (slotToArgTab == null) {
 177             int slot = ptypeCount; // first arg is deepest in stack
 178             slotToArgTab = new int[slot+1];
 179             argToSlotTab = new int[1+ptypeCount];
 180             argToSlotTab[0] = slot;  // argument "-1" is past end of slots
 181             for (int i = 0; i < ptypeCount; i++) {
 182                 --slot;
 183                 slotToArgTab[slot] = i+1; // "+1" see argSlotToParameter note
 184                 argToSlotTab[1+i]  = slot;
 185             }
 186         }
 187         this.argToSlotTable = argToSlotTab;
 188         this.slotToArgTable = slotToArgTab;
 189 
 190         if (pslotCount >= 256)  throw newIllegalArgumentException("too many arguments");
 191 
 192         // send a few bits down to the JVM:
 193         this.vmslots = parameterSlotCount();
 194 
 195         if (basicType == erasedType) {
 196             lambdaForms = new LambdaForm[LF_LIMIT];
 197         } else {
 198             lambdaForms = null;  // could be basicType.form().lambdaForms;
 199         }
 200     }
 201 
 202     private static long pack(int a, int b, int c, int d) {
 203         assert(((a|b|c|d) & ~0xFFFF) == 0);
 204         long hw = ((a << 16) | b), lw = ((c << 16) | d);
 205         return (hw << 32) | lw;
 206     }
 207     private static char unpack(long packed, int word) { // word==0 => return a, ==3 => return d
 208         assert(word <= 3);
 209         return (char)(packed >> ((3-word) * 16));
 210     }
 211 
 212     public int parameterCount() {                      // # outgoing values
 213         return unpack(argCounts, 3);
 214     }
 215     public int parameterSlotCount() {                  // # outgoing interpreter slots
 216         return unpack(argCounts, 2);
 217     }
 218     public int returnCount() {                         // = 0 (V), or 1
 219         return unpack(argCounts, 1);
 220     }
 221     public int returnSlotCount() {                     // = 0 (V), 2 (J/D), or 1
 222         return unpack(argCounts, 0);
 223     }
 224     public int primitiveParameterCount() {
 225         return unpack(primCounts, 3);
 226     }
 227     public int longPrimitiveParameterCount() {
 228         return unpack(primCounts, 2);
 229     }
 230     public int primitiveReturnCount() {                // = 0 (obj), or 1
 231         return unpack(primCounts, 1);
 232     }
 233     public int longPrimitiveReturnCount() {            // = 1 (J/D), or 0
 234         return unpack(primCounts, 0);
 235     }
 236     public boolean hasPrimitives() {
 237         return primCounts != 0;
 238     }
 239     public boolean hasNonVoidPrimitives() {
 240         if (primCounts == 0)  return false;
 241         if (primitiveParameterCount() != 0)  return true;
 242         return (primitiveReturnCount() != 0 && returnCount() != 0);
 243     }
 244     public boolean hasLongPrimitives() {
 245         return (longPrimitiveParameterCount() | longPrimitiveReturnCount()) != 0;
 246     }
 247     public int parameterToArgSlot(int i) {
 248         return argToSlotTable[1+i];
 249     }
 250     public int argSlotToParameter(int argSlot) {
 251         // Note:  Empty slots are represented by zero in this table.
 252         // Valid arguments slots contain incremented entries, so as to be non-zero.
 253         // We return -1 the caller to mean an empty slot.
 254         return slotToArgTable[argSlot] - 1;
 255     }
 256 
 257     static MethodTypeForm findForm(MethodType mt) {
 258         MethodType erased = canonicalize(mt, ERASE, ERASE);
 259         if (erased == null) {
 260             // It is already erased.  Make a new MethodTypeForm.
 261             return new MethodTypeForm(mt);
 262         } else {
 263             // Share the MethodTypeForm with the erased version.
 264             return erased.form();
 265         }
 266     }
 267 
 268     /** Codes for {@link #canonicalize(java.lang.Class, int)}.
 269      * ERASE means change every reference to {@code Object}.
 270      * WRAP means convert primitives (including {@code void} to their
 271      * corresponding wrapper types.  UNWRAP means the reverse of WRAP.
 272      * INTS means convert all non-void primitive types to int or long,
 273      * according to size.  LONGS means convert all non-void primitives
 274      * to long, regardless of size.  RAW_RETURN means convert a type
 275      * (assumed to be a return type) to int if it is smaller than an int,
 276      * or if it is void.
 277      */
 278     public static final int NO_CHANGE = 0, ERASE = 1, WRAP = 2, UNWRAP = 3, INTS = 4, LONGS = 5, RAW_RETURN = 6;
 279 
 280     /** Canonicalize the types in the given method type.
 281      * If any types change, intern the new type, and return it.
 282      * Otherwise return null.
 283      */
 284     public static MethodType canonicalize(MethodType mt, int howRet, int howArgs) {
 285         Class<?>[] ptypes = mt.ptypes();
 286         Class<?>[] ptc = MethodTypeForm.canonicalizes(ptypes, howArgs);
 287         Class<?> rtype = mt.returnType();
 288         Class<?> rtc = MethodTypeForm.canonicalize(rtype, howRet);
 289         if (ptc == null && rtc == null) {
 290             // It is already canonical.
 291             return null;
 292         }
 293         // Find the erased version of the method type:
 294         if (rtc == null)  rtc = rtype;
 295         if (ptc == null)  ptc = ptypes;
 296         return MethodType.makeImpl(rtc, ptc, true);
 297     }
 298 
 299     /** Canonicalize the given return or param type.
 300      *  Return null if the type is already canonicalized.
 301      */
 302     static Class<?> canonicalize(Class<?> t, int how) {
 303         Class<?> ct;
 304         if (t == Object.class) {
 305             // no change, ever
 306         } else if (!t.isPrimitive()) {
 307             switch (how) {
 308                 case UNWRAP:
 309                     ct = Wrapper.asPrimitiveType(t);
 310                     if (ct != t)  return ct;
 311                     break;
 312                 case RAW_RETURN:
 313                 case ERASE:
 314                     return Object.class;
 315             }
 316         } else if (t == void.class) {
 317             // no change, usually
 318             switch (how) {
 319                 case RAW_RETURN:
 320                     return int.class;
 321                 case WRAP:
 322                     return Void.class;
 323             }
 324         } else {
 325             // non-void primitive
 326             switch (how) {
 327                 case WRAP:
 328                     return Wrapper.asWrapperType(t);
 329                 case INTS:
 330                     if (t == int.class || t == long.class)
 331                         return null;  // no change
 332                     if (t == double.class)
 333                         return long.class;
 334                     return int.class;
 335                 case LONGS:
 336                     if (t == long.class)
 337                         return null;  // no change
 338                     return long.class;
 339                 case RAW_RETURN:
 340                     if (t == int.class || t == long.class ||
 341                         t == float.class || t == double.class)
 342                         return null;  // no change
 343                     // everything else returns as an int
 344                     return int.class;
 345             }
 346         }
 347         // no change; return null to signify
 348         return null;
 349     }
 350 
 351     /** Canonicalize each param type in the given array.
 352      *  Return null if all types are already canonicalized.
 353      */
 354     static Class<?>[] canonicalizes(Class<?>[] ts, int how) {
 355         Class<?>[] cs = null;
 356         for (int imax = ts.length, i = 0; i < imax; i++) {
 357             Class<?> c = canonicalize(ts[i], how);
 358             if (c == void.class)
 359                 c = null;  // a Void parameter was unwrapped to void; ignore
 360             if (c != null) {
 361                 if (cs == null)
 362                     cs = ts.clone();
 363                 cs[i] = c;
 364             }
 365         }
 366         return cs;
 367     }
 368 
 369     @Override
 370     public String toString() {
 371         return "Form"+erasedType;
 372     }
 373 
 374 }