1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 
  42 class LibraryIntrinsic : public InlineCallGenerator {
  43   // Extend the set of intrinsics known to the runtime:
  44  public:
  45  private:
  46   bool             _is_virtual;
  47   bool             _is_predicted;
  48   vmIntrinsics::ID _intrinsic_id;
  49 
  50  public:
  51   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  52     : InlineCallGenerator(m),
  53       _is_virtual(is_virtual),
  54       _is_predicted(is_predicted),
  55       _intrinsic_id(id)
  56   {
  57   }
  58   virtual bool is_intrinsic() const { return true; }
  59   virtual bool is_virtual()   const { return _is_virtual; }
  60   virtual bool is_predicted()   const { return _is_predicted; }
  61   virtual JVMState* generate(JVMState* jvms);
  62   virtual Node* generate_predicate(JVMState* jvms);
  63   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  64 };
  65 
  66 
  67 // Local helper class for LibraryIntrinsic:
  68 class LibraryCallKit : public GraphKit {
  69  private:
  70   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  71   Node*             _result;        // the result node, if any
  72   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  73 
  74   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  75 
  76  public:
  77   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  78     : GraphKit(jvms),
  79       _intrinsic(intrinsic),
  80       _result(NULL)
  81   {
  82     // Check if this is a root compile.  In that case we don't have a caller.
  83     if (!jvms->has_method()) {
  84       _reexecute_sp = sp();
  85     } else {
  86       // Find out how many arguments the interpreter needs when deoptimizing
  87       // and save the stack pointer value so it can used by uncommon_trap.
  88       // We find the argument count by looking at the declared signature.
  89       bool ignored_will_link;
  90       ciSignature* declared_signature = NULL;
  91       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  92       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  93       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  94     }
  95   }
  96 
  97   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  98 
  99   ciMethod*         caller()    const    { return jvms()->method(); }
 100   int               bci()       const    { return jvms()->bci(); }
 101   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 102   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 103   ciMethod*         callee()    const    { return _intrinsic->method(); }
 104 
 105   bool try_to_inline();
 106   Node* try_to_predicate();
 107 
 108   void push_result() {
 109     // Push the result onto the stack.
 110     if (!stopped() && result() != NULL) {
 111       BasicType bt = result()->bottom_type()->basic_type();
 112       push_node(bt, result());
 113     }
 114   }
 115 
 116  private:
 117   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 118     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 119   }
 120 
 121   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 122   void  set_result(RegionNode* region, PhiNode* value);
 123   Node*     result() { return _result; }
 124 
 125   virtual int reexecute_sp() { return _reexecute_sp; }
 126 
 127   // Helper functions to inline natives
 128   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 129   Node* generate_slow_guard(Node* test, RegionNode* region);
 130   Node* generate_fair_guard(Node* test, RegionNode* region);
 131   Node* generate_negative_guard(Node* index, RegionNode* region,
 132                                 // resulting CastII of index:
 133                                 Node* *pos_index = NULL);
 134   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 135                                    // resulting CastII of index:
 136                                    Node* *pos_index = NULL);
 137   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 138                              Node* array_length,
 139                              RegionNode* region);
 140   Node* generate_current_thread(Node* &tls_output);
 141   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 142                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 143   Node* load_mirror_from_klass(Node* klass);
 144   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 145                                       RegionNode* region, int null_path,
 146                                       int offset);
 147   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 148                                RegionNode* region, int null_path) {
 149     int offset = java_lang_Class::klass_offset_in_bytes();
 150     return load_klass_from_mirror_common(mirror, never_see_null,
 151                                          region, null_path,
 152                                          offset);
 153   }
 154   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 155                                      RegionNode* region, int null_path) {
 156     int offset = java_lang_Class::array_klass_offset_in_bytes();
 157     return load_klass_from_mirror_common(mirror, never_see_null,
 158                                          region, null_path,
 159                                          offset);
 160   }
 161   Node* generate_access_flags_guard(Node* kls,
 162                                     int modifier_mask, int modifier_bits,
 163                                     RegionNode* region);
 164   Node* generate_interface_guard(Node* kls, RegionNode* region);
 165   Node* generate_array_guard(Node* kls, RegionNode* region) {
 166     return generate_array_guard_common(kls, region, false, false);
 167   }
 168   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 169     return generate_array_guard_common(kls, region, false, true);
 170   }
 171   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 172     return generate_array_guard_common(kls, region, true, false);
 173   }
 174   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 175     return generate_array_guard_common(kls, region, true, true);
 176   }
 177   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 178                                     bool obj_array, bool not_array);
 179   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 180   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 181                                      bool is_virtual = false, bool is_static = false);
 182   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 183     return generate_method_call(method_id, false, true);
 184   }
 185   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 186     return generate_method_call(method_id, true, false);
 187   }
 188   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 189 
 190   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 191   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 192   bool inline_string_compareTo();
 193   bool inline_string_indexOf();
 194   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 195   bool inline_string_equals();
 196   Node* round_double_node(Node* n);
 197   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 198   bool inline_math_native(vmIntrinsics::ID id);
 199   bool inline_trig(vmIntrinsics::ID id);
 200   bool inline_math(vmIntrinsics::ID id);
 201   bool inline_exp();
 202   bool inline_pow();
 203   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 204   bool inline_min_max(vmIntrinsics::ID id);
 205   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 206   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 207   int classify_unsafe_addr(Node* &base, Node* &offset);
 208   Node* make_unsafe_address(Node* base, Node* offset);
 209   // Helper for inline_unsafe_access.
 210   // Generates the guards that check whether the result of
 211   // Unsafe.getObject should be recorded in an SATB log buffer.
 212   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 213   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 214   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 215   bool inline_unsafe_allocate();
 216   bool inline_unsafe_copyMemory();
 217   bool inline_native_currentThread();
 218 #ifdef TRACE_HAVE_INTRINSICS
 219   bool inline_native_classID();
 220   bool inline_native_threadID();
 221 #endif
 222   bool inline_native_time_funcs(address method, const char* funcName);
 223   bool inline_native_isInterrupted();
 224   bool inline_native_Class_query(vmIntrinsics::ID id);
 225   bool inline_native_subtype_check();
 226 
 227   bool inline_native_newArray();
 228   bool inline_native_getLength();
 229   bool inline_array_copyOf(bool is_copyOfRange);
 230   bool inline_array_equals();
 231   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 232   bool inline_native_clone(bool is_virtual);
 233   bool inline_native_Reflection_getCallerClass();
 234   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 235   // Helper function for inlining native object hash method
 236   bool inline_native_hashcode(bool is_virtual, bool is_static);
 237   bool inline_native_getClass();
 238 
 239   // Helper functions for inlining arraycopy
 240   bool inline_arraycopy();
 241   void generate_arraycopy(const TypePtr* adr_type,
 242                           BasicType basic_elem_type,
 243                           Node* src,  Node* src_offset,
 244                           Node* dest, Node* dest_offset,
 245                           Node* copy_length,
 246                           bool disjoint_bases = false,
 247                           bool length_never_negative = false,
 248                           RegionNode* slow_region = NULL);
 249   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 250                                                 RegionNode* slow_region);
 251   void generate_clear_array(const TypePtr* adr_type,
 252                             Node* dest,
 253                             BasicType basic_elem_type,
 254                             Node* slice_off,
 255                             Node* slice_len,
 256                             Node* slice_end);
 257   bool generate_block_arraycopy(const TypePtr* adr_type,
 258                                 BasicType basic_elem_type,
 259                                 AllocateNode* alloc,
 260                                 Node* src,  Node* src_offset,
 261                                 Node* dest, Node* dest_offset,
 262                                 Node* dest_size, bool dest_uninitialized);
 263   void generate_slow_arraycopy(const TypePtr* adr_type,
 264                                Node* src,  Node* src_offset,
 265                                Node* dest, Node* dest_offset,
 266                                Node* copy_length, bool dest_uninitialized);
 267   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 268                                      Node* dest_elem_klass,
 269                                      Node* src,  Node* src_offset,
 270                                      Node* dest, Node* dest_offset,
 271                                      Node* copy_length, bool dest_uninitialized);
 272   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 273                                    Node* src,  Node* src_offset,
 274                                    Node* dest, Node* dest_offset,
 275                                    Node* copy_length, bool dest_uninitialized);
 276   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 277                                     BasicType basic_elem_type,
 278                                     bool disjoint_bases,
 279                                     Node* src,  Node* src_offset,
 280                                     Node* dest, Node* dest_offset,
 281                                     Node* copy_length, bool dest_uninitialized);
 282   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 283   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 284   bool inline_unsafe_ordered_store(BasicType type);
 285   bool inline_fp_conversions(vmIntrinsics::ID id);
 286   bool inline_number_methods(vmIntrinsics::ID id);
 287   bool inline_reference_get();
 288   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 289   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 290   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 291   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 292 };
 293 
 294 
 295 //---------------------------make_vm_intrinsic----------------------------
 296 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 297   vmIntrinsics::ID id = m->intrinsic_id();
 298   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 299 
 300   if (DisableIntrinsic[0] != '\0'
 301       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 302     // disabled by a user request on the command line:
 303     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 304     return NULL;
 305   }
 306 
 307   if (!m->is_loaded()) {
 308     // do not attempt to inline unloaded methods
 309     return NULL;
 310   }
 311 
 312   // Only a few intrinsics implement a virtual dispatch.
 313   // They are expensive calls which are also frequently overridden.
 314   if (is_virtual) {
 315     switch (id) {
 316     case vmIntrinsics::_hashCode:
 317     case vmIntrinsics::_clone:
 318       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 319       break;
 320     default:
 321       return NULL;
 322     }
 323   }
 324 
 325   // -XX:-InlineNatives disables nearly all intrinsics:
 326   if (!InlineNatives) {
 327     switch (id) {
 328     case vmIntrinsics::_indexOf:
 329     case vmIntrinsics::_compareTo:
 330     case vmIntrinsics::_equals:
 331     case vmIntrinsics::_equalsC:
 332     case vmIntrinsics::_getAndAddInt:
 333     case vmIntrinsics::_getAndAddLong:
 334     case vmIntrinsics::_getAndSetInt:
 335     case vmIntrinsics::_getAndSetLong:
 336     case vmIntrinsics::_getAndSetObject:
 337       break;  // InlineNatives does not control String.compareTo
 338     case vmIntrinsics::_Reference_get:
 339       break;  // InlineNatives does not control Reference.get
 340     default:
 341       return NULL;
 342     }
 343   }
 344 
 345   bool is_predicted = false;
 346 
 347   switch (id) {
 348   case vmIntrinsics::_compareTo:
 349     if (!SpecialStringCompareTo)  return NULL;
 350     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 351     break;
 352   case vmIntrinsics::_indexOf:
 353     if (!SpecialStringIndexOf)  return NULL;
 354     break;
 355   case vmIntrinsics::_equals:
 356     if (!SpecialStringEquals)  return NULL;
 357     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 358     break;
 359   case vmIntrinsics::_equalsC:
 360     if (!SpecialArraysEquals)  return NULL;
 361     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 362     break;
 363   case vmIntrinsics::_arraycopy:
 364     if (!InlineArrayCopy)  return NULL;
 365     break;
 366   case vmIntrinsics::_copyMemory:
 367     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 368     if (!InlineArrayCopy)  return NULL;
 369     break;
 370   case vmIntrinsics::_hashCode:
 371     if (!InlineObjectHash)  return NULL;
 372     break;
 373   case vmIntrinsics::_clone:
 374   case vmIntrinsics::_copyOf:
 375   case vmIntrinsics::_copyOfRange:
 376     if (!InlineObjectCopy)  return NULL;
 377     // These also use the arraycopy intrinsic mechanism:
 378     if (!InlineArrayCopy)  return NULL;
 379     break;
 380   case vmIntrinsics::_checkIndex:
 381     // We do not intrinsify this.  The optimizer does fine with it.
 382     return NULL;
 383 
 384   case vmIntrinsics::_getCallerClass:
 385     if (!UseNewReflection)  return NULL;
 386     if (!InlineReflectionGetCallerClass)  return NULL;
 387     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 388     break;
 389 
 390   case vmIntrinsics::_bitCount_i:
 391     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 392     break;
 393 
 394   case vmIntrinsics::_bitCount_l:
 395     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 396     break;
 397 
 398   case vmIntrinsics::_numberOfLeadingZeros_i:
 399     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 400     break;
 401 
 402   case vmIntrinsics::_numberOfLeadingZeros_l:
 403     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 404     break;
 405 
 406   case vmIntrinsics::_numberOfTrailingZeros_i:
 407     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 408     break;
 409 
 410   case vmIntrinsics::_numberOfTrailingZeros_l:
 411     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 412     break;
 413 
 414   case vmIntrinsics::_reverseBytes_c:
 415     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return false;
 416     break;
 417   case vmIntrinsics::_reverseBytes_s:
 418     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return false;
 419     break;
 420   case vmIntrinsics::_reverseBytes_i:
 421     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return false;
 422     break;
 423   case vmIntrinsics::_reverseBytes_l:
 424     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return false;
 425     break;
 426 
 427   case vmIntrinsics::_Reference_get:
 428     // Use the intrinsic version of Reference.get() so that the value in
 429     // the referent field can be registered by the G1 pre-barrier code.
 430     // Also add memory barrier to prevent commoning reads from this field
 431     // across safepoint since GC can change it value.
 432     break;
 433 
 434   case vmIntrinsics::_compareAndSwapObject:
 435 #ifdef _LP64
 436     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 437 #endif
 438     break;
 439 
 440   case vmIntrinsics::_compareAndSwapLong:
 441     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 442     break;
 443 
 444   case vmIntrinsics::_getAndAddInt:
 445     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 446     break;
 447 
 448   case vmIntrinsics::_getAndAddLong:
 449     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 450     break;
 451 
 452   case vmIntrinsics::_getAndSetInt:
 453     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 454     break;
 455 
 456   case vmIntrinsics::_getAndSetLong:
 457     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 458     break;
 459 
 460   case vmIntrinsics::_getAndSetObject:
 461 #ifdef _LP64
 462     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 463     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 464     break;
 465 #else
 466     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 467     break;
 468 #endif
 469 
 470   case vmIntrinsics::_aescrypt_encryptBlock:
 471   case vmIntrinsics::_aescrypt_decryptBlock:
 472     if (!UseAESIntrinsics) return NULL;
 473     break;
 474 
 475   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 476   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 477     if (!UseAESIntrinsics) return NULL;
 478     // these two require the predicated logic
 479     is_predicted = true;
 480     break;
 481 
 482  default:
 483     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 484     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 485     break;
 486   }
 487 
 488   // -XX:-InlineClassNatives disables natives from the Class class.
 489   // The flag applies to all reflective calls, notably Array.newArray
 490   // (visible to Java programmers as Array.newInstance).
 491   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 492       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 493     if (!InlineClassNatives)  return NULL;
 494   }
 495 
 496   // -XX:-InlineThreadNatives disables natives from the Thread class.
 497   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 498     if (!InlineThreadNatives)  return NULL;
 499   }
 500 
 501   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 502   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 503       m->holder()->name() == ciSymbol::java_lang_Float() ||
 504       m->holder()->name() == ciSymbol::java_lang_Double()) {
 505     if (!InlineMathNatives)  return NULL;
 506   }
 507 
 508   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 509   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 510     if (!InlineUnsafeOps)  return NULL;
 511   }
 512 
 513   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 514 }
 515 
 516 //----------------------register_library_intrinsics-----------------------
 517 // Initialize this file's data structures, for each Compile instance.
 518 void Compile::register_library_intrinsics() {
 519   // Nothing to do here.
 520 }
 521 
 522 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 523   LibraryCallKit kit(jvms, this);
 524   Compile* C = kit.C;
 525   int nodes = C->unique();
 526 #ifndef PRODUCT
 527   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 528     char buf[1000];
 529     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 530     tty->print_cr("Intrinsic %s", str);
 531   }
 532 #endif
 533   ciMethod* callee = kit.callee();
 534   const int bci    = kit.bci();
 535 
 536   // Try to inline the intrinsic.
 537   if (kit.try_to_inline()) {
 538     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 539       CompileTask::print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 540     }
 541     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 542     if (C->log()) {
 543       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 544                      vmIntrinsics::name_at(intrinsic_id()),
 545                      (is_virtual() ? " virtual='1'" : ""),
 546                      C->unique() - nodes);
 547     }
 548     // Push the result from the inlined method onto the stack.
 549     kit.push_result();
 550     return kit.transfer_exceptions_into_jvms();
 551   }
 552 
 553   // The intrinsic bailed out
 554   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 555     if (jvms->has_method()) {
 556       // Not a root compile.
 557       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 558       CompileTask::print_inlining(callee, jvms->depth() - 1, bci, msg);
 559     } else {
 560       // Root compile
 561       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 562                vmIntrinsics::name_at(intrinsic_id()),
 563                (is_virtual() ? " (virtual)" : ""), bci);
 564     }
 565   }
 566   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 567   return NULL;
 568 }
 569 
 570 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 571   LibraryCallKit kit(jvms, this);
 572   Compile* C = kit.C;
 573   int nodes = C->unique();
 574 #ifndef PRODUCT
 575   assert(is_predicted(), "sanity");
 576   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 577     char buf[1000];
 578     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 579     tty->print_cr("Predicate for intrinsic %s", str);
 580   }
 581 #endif
 582   ciMethod* callee = kit.callee();
 583   const int bci    = kit.bci();
 584 
 585   Node* slow_ctl = kit.try_to_predicate();
 586   if (!kit.failing()) {
 587     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 588       CompileTask::print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 589     }
 590     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 591     if (C->log()) {
 592       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 593                      vmIntrinsics::name_at(intrinsic_id()),
 594                      (is_virtual() ? " virtual='1'" : ""),
 595                      C->unique() - nodes);
 596     }
 597     return slow_ctl; // Could be NULL if the check folds.
 598   }
 599 
 600   // The intrinsic bailed out
 601   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 602     if (jvms->has_method()) {
 603       // Not a root compile.
 604       const char* msg = "failed to generate predicate for intrinsic";
 605       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 606     } else {
 607       // Root compile
 608       tty->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 609                vmIntrinsics::name_at(intrinsic_id()),
 610                (is_virtual() ? " (virtual)" : ""), bci);
 611     }
 612   }
 613   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 614   return NULL;
 615 }
 616 
 617 bool LibraryCallKit::try_to_inline() {
 618   // Handle symbolic names for otherwise undistinguished boolean switches:
 619   const bool is_store       = true;
 620   const bool is_native_ptr  = true;
 621   const bool is_static      = true;
 622   const bool is_volatile    = true;
 623 
 624   if (!jvms()->has_method()) {
 625     // Root JVMState has a null method.
 626     assert(map()->memory()->Opcode() == Op_Parm, "");
 627     // Insert the memory aliasing node
 628     set_all_memory(reset_memory());
 629   }
 630   assert(merged_memory(), "");
 631 
 632 
 633   switch (intrinsic_id()) {
 634   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 635   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 636   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 637 
 638   case vmIntrinsics::_dsin:
 639   case vmIntrinsics::_dcos:
 640   case vmIntrinsics::_dtan:
 641   case vmIntrinsics::_dabs:
 642   case vmIntrinsics::_datan2:
 643   case vmIntrinsics::_dsqrt:
 644   case vmIntrinsics::_dexp:
 645   case vmIntrinsics::_dlog:
 646   case vmIntrinsics::_dlog10:
 647   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 648 
 649   case vmIntrinsics::_min:
 650   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 651 
 652   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 653 
 654   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 655   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 656   case vmIntrinsics::_equals:                   return inline_string_equals();
 657 
 658   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 659   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 660   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 661   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 662   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 663   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 664   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 665   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 666   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 667 
 668   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 669   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 670   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 671   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 672   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 673   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 674   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 675   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 676   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 677 
 678   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 679   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 680   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 681   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 682   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 683   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 684   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 685   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 686 
 687   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 688   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 689   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 690   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 691   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 692   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 693   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 694   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 695 
 696   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 697   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 698   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 699   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 700   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 701   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 702   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 703   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 704   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 705 
 706   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 707   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 708   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 709   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 710   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 711   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 712   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 713   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 714   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 715 
 716   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 717   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 718   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 719   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 720 
 721   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 722   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 723   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 724 
 725   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 726   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 727   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 728 
 729   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 730   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 731   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 732   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 733   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 734 
 735   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 736   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 737 
 738 #ifdef TRACE_HAVE_INTRINSICS
 739   case vmIntrinsics::_classID:                  return inline_native_classID();
 740   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 741   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 742 #endif
 743   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 744   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 745   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 746   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 747   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 748   case vmIntrinsics::_getLength:                return inline_native_getLength();
 749   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 750   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 751   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 752   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 753 
 754   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 755 
 756   case vmIntrinsics::_isInstance:
 757   case vmIntrinsics::_getModifiers:
 758   case vmIntrinsics::_isInterface:
 759   case vmIntrinsics::_isArray:
 760   case vmIntrinsics::_isPrimitive:
 761   case vmIntrinsics::_getSuperclass:
 762   case vmIntrinsics::_getComponentType:
 763   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 764 
 765   case vmIntrinsics::_floatToRawIntBits:
 766   case vmIntrinsics::_floatToIntBits:
 767   case vmIntrinsics::_intBitsToFloat:
 768   case vmIntrinsics::_doubleToRawLongBits:
 769   case vmIntrinsics::_doubleToLongBits:
 770   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 771 
 772   case vmIntrinsics::_numberOfLeadingZeros_i:
 773   case vmIntrinsics::_numberOfLeadingZeros_l:
 774   case vmIntrinsics::_numberOfTrailingZeros_i:
 775   case vmIntrinsics::_numberOfTrailingZeros_l:
 776   case vmIntrinsics::_bitCount_i:
 777   case vmIntrinsics::_bitCount_l:
 778   case vmIntrinsics::_reverseBytes_i:
 779   case vmIntrinsics::_reverseBytes_l:
 780   case vmIntrinsics::_reverseBytes_s:
 781   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 782 
 783   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 784 
 785   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 786 
 787   case vmIntrinsics::_aescrypt_encryptBlock:
 788   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 789 
 790   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 791   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 792     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 793 
 794   default:
 795     // If you get here, it may be that someone has added a new intrinsic
 796     // to the list in vmSymbols.hpp without implementing it here.
 797 #ifndef PRODUCT
 798     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 799       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 800                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 801     }
 802 #endif
 803     return false;
 804   }
 805 }
 806 
 807 Node* LibraryCallKit::try_to_predicate() {
 808   if (!jvms()->has_method()) {
 809     // Root JVMState has a null method.
 810     assert(map()->memory()->Opcode() == Op_Parm, "");
 811     // Insert the memory aliasing node
 812     set_all_memory(reset_memory());
 813   }
 814   assert(merged_memory(), "");
 815 
 816   switch (intrinsic_id()) {
 817   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 818     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 819   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 820     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 821 
 822   default:
 823     // If you get here, it may be that someone has added a new intrinsic
 824     // to the list in vmSymbols.hpp without implementing it here.
 825 #ifndef PRODUCT
 826     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 827       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 828                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 829     }
 830 #endif
 831     Node* slow_ctl = control();
 832     set_control(top()); // No fast path instrinsic
 833     return slow_ctl;
 834   }
 835 }
 836 
 837 //------------------------------set_result-------------------------------
 838 // Helper function for finishing intrinsics.
 839 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 840   record_for_igvn(region);
 841   set_control(_gvn.transform(region));
 842   set_result( _gvn.transform(value));
 843   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 844 }
 845 
 846 //------------------------------generate_guard---------------------------
 847 // Helper function for generating guarded fast-slow graph structures.
 848 // The given 'test', if true, guards a slow path.  If the test fails
 849 // then a fast path can be taken.  (We generally hope it fails.)
 850 // In all cases, GraphKit::control() is updated to the fast path.
 851 // The returned value represents the control for the slow path.
 852 // The return value is never 'top'; it is either a valid control
 853 // or NULL if it is obvious that the slow path can never be taken.
 854 // Also, if region and the slow control are not NULL, the slow edge
 855 // is appended to the region.
 856 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 857   if (stopped()) {
 858     // Already short circuited.
 859     return NULL;
 860   }
 861 
 862   // Build an if node and its projections.
 863   // If test is true we take the slow path, which we assume is uncommon.
 864   if (_gvn.type(test) == TypeInt::ZERO) {
 865     // The slow branch is never taken.  No need to build this guard.
 866     return NULL;
 867   }
 868 
 869   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 870 
 871   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
 872   if (if_slow == top()) {
 873     // The slow branch is never taken.  No need to build this guard.
 874     return NULL;
 875   }
 876 
 877   if (region != NULL)
 878     region->add_req(if_slow);
 879 
 880   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
 881   set_control(if_fast);
 882 
 883   return if_slow;
 884 }
 885 
 886 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 887   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 888 }
 889 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 890   return generate_guard(test, region, PROB_FAIR);
 891 }
 892 
 893 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 894                                                      Node* *pos_index) {
 895   if (stopped())
 896     return NULL;                // already stopped
 897   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 898     return NULL;                // index is already adequately typed
 899   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 900   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 901   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 902   if (is_neg != NULL && pos_index != NULL) {
 903     // Emulate effect of Parse::adjust_map_after_if.
 904     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 905     ccast->set_req(0, control());
 906     (*pos_index) = _gvn.transform(ccast);
 907   }
 908   return is_neg;
 909 }
 910 
 911 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 912                                                         Node* *pos_index) {
 913   if (stopped())
 914     return NULL;                // already stopped
 915   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 916     return NULL;                // index is already adequately typed
 917   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 918   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 919   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
 920   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 921   if (is_notp != NULL && pos_index != NULL) {
 922     // Emulate effect of Parse::adjust_map_after_if.
 923     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 924     ccast->set_req(0, control());
 925     (*pos_index) = _gvn.transform(ccast);
 926   }
 927   return is_notp;
 928 }
 929 
 930 // Make sure that 'position' is a valid limit index, in [0..length].
 931 // There are two equivalent plans for checking this:
 932 //   A. (offset + copyLength)  unsigned<=  arrayLength
 933 //   B. offset  <=  (arrayLength - copyLength)
 934 // We require that all of the values above, except for the sum and
 935 // difference, are already known to be non-negative.
 936 // Plan A is robust in the face of overflow, if offset and copyLength
 937 // are both hugely positive.
 938 //
 939 // Plan B is less direct and intuitive, but it does not overflow at
 940 // all, since the difference of two non-negatives is always
 941 // representable.  Whenever Java methods must perform the equivalent
 942 // check they generally use Plan B instead of Plan A.
 943 // For the moment we use Plan A.
 944 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 945                                                   Node* subseq_length,
 946                                                   Node* array_length,
 947                                                   RegionNode* region) {
 948   if (stopped())
 949     return NULL;                // already stopped
 950   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 951   if (zero_offset && subseq_length->eqv_uncast(array_length))
 952     return NULL;                // common case of whole-array copy
 953   Node* last = subseq_length;
 954   if (!zero_offset)             // last += offset
 955     last = _gvn.transform( new (C) AddINode(last, offset));
 956   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
 957   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 958   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 959   return is_over;
 960 }
 961 
 962 
 963 //--------------------------generate_current_thread--------------------
 964 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 965   ciKlass*    thread_klass = env()->Thread_klass();
 966   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 967   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
 968   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 969   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 970   tls_output = thread;
 971   return threadObj;
 972 }
 973 
 974 
 975 //------------------------------make_string_method_node------------------------
 976 // Helper method for String intrinsic functions. This version is called
 977 // with str1 and str2 pointing to String object nodes.
 978 //
 979 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
 980   Node* no_ctrl = NULL;
 981 
 982   // Get start addr of string
 983   Node* str1_value   = load_String_value(no_ctrl, str1);
 984   Node* str1_offset  = load_String_offset(no_ctrl, str1);
 985   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 986 
 987   // Get length of string 1
 988   Node* str1_len  = load_String_length(no_ctrl, str1);
 989 
 990   Node* str2_value   = load_String_value(no_ctrl, str2);
 991   Node* str2_offset  = load_String_offset(no_ctrl, str2);
 992   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 993 
 994   Node* str2_len = NULL;
 995   Node* result = NULL;
 996 
 997   switch (opcode) {
 998   case Op_StrIndexOf:
 999     // Get length of string 2
1000     str2_len = load_String_length(no_ctrl, str2);
1001 
1002     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1003                                  str1_start, str1_len, str2_start, str2_len);
1004     break;
1005   case Op_StrComp:
1006     // Get length of string 2
1007     str2_len = load_String_length(no_ctrl, str2);
1008 
1009     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1010                                  str1_start, str1_len, str2_start, str2_len);
1011     break;
1012   case Op_StrEquals:
1013     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1014                                str1_start, str2_start, str1_len);
1015     break;
1016   default:
1017     ShouldNotReachHere();
1018     return NULL;
1019   }
1020 
1021   // All these intrinsics have checks.
1022   C->set_has_split_ifs(true); // Has chance for split-if optimization
1023 
1024   return _gvn.transform(result);
1025 }
1026 
1027 // Helper method for String intrinsic functions. This version is called
1028 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1029 // to Int nodes containing the lenghts of str1 and str2.
1030 //
1031 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1032   Node* result = NULL;
1033   switch (opcode) {
1034   case Op_StrIndexOf:
1035     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1036                                  str1_start, cnt1, str2_start, cnt2);
1037     break;
1038   case Op_StrComp:
1039     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1040                                  str1_start, cnt1, str2_start, cnt2);
1041     break;
1042   case Op_StrEquals:
1043     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1044                                  str1_start, str2_start, cnt1);
1045     break;
1046   default:
1047     ShouldNotReachHere();
1048     return NULL;
1049   }
1050 
1051   // All these intrinsics have checks.
1052   C->set_has_split_ifs(true); // Has chance for split-if optimization
1053 
1054   return _gvn.transform(result);
1055 }
1056 
1057 //------------------------------inline_string_compareTo------------------------
1058 // public int java.lang.String.compareTo(String anotherString);
1059 bool LibraryCallKit::inline_string_compareTo() {
1060   Node* receiver = null_check(argument(0));
1061   Node* arg      = null_check(argument(1));
1062   if (stopped()) {
1063     return true;
1064   }
1065   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1066   return true;
1067 }
1068 
1069 //------------------------------inline_string_equals------------------------
1070 bool LibraryCallKit::inline_string_equals() {
1071   Node* receiver = null_check_receiver();
1072   // NOTE: Do not null check argument for String.equals() because spec
1073   // allows to specify NULL as argument.
1074   Node* argument = this->argument(1);
1075   if (stopped()) {
1076     return true;
1077   }
1078 
1079   // paths (plus control) merge
1080   RegionNode* region = new (C) RegionNode(5);
1081   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1082 
1083   // does source == target string?
1084   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1085   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1086 
1087   Node* if_eq = generate_slow_guard(bol, NULL);
1088   if (if_eq != NULL) {
1089     // receiver == argument
1090     phi->init_req(2, intcon(1));
1091     region->init_req(2, if_eq);
1092   }
1093 
1094   // get String klass for instanceOf
1095   ciInstanceKlass* klass = env()->String_klass();
1096 
1097   if (!stopped()) {
1098     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1099     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1100     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1101 
1102     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1103     //instanceOf == true, fallthrough
1104 
1105     if (inst_false != NULL) {
1106       phi->init_req(3, intcon(0));
1107       region->init_req(3, inst_false);
1108     }
1109   }
1110 
1111   if (!stopped()) {
1112     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1113 
1114     // Properly cast the argument to String
1115     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1116     // This path is taken only when argument's type is String:NotNull.
1117     argument = cast_not_null(argument, false);
1118 
1119     Node* no_ctrl = NULL;
1120 
1121     // Get start addr of receiver
1122     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1123     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1124     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1125 
1126     // Get length of receiver
1127     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1128 
1129     // Get start addr of argument
1130     Node* argument_val    = load_String_value(no_ctrl, argument);
1131     Node* argument_offset = load_String_offset(no_ctrl, argument);
1132     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1133 
1134     // Get length of argument
1135     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1136 
1137     // Check for receiver count != argument count
1138     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
1139     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
1140     Node* if_ne = generate_slow_guard(bol, NULL);
1141     if (if_ne != NULL) {
1142       phi->init_req(4, intcon(0));
1143       region->init_req(4, if_ne);
1144     }
1145 
1146     // Check for count == 0 is done by assembler code for StrEquals.
1147 
1148     if (!stopped()) {
1149       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1150       phi->init_req(1, equals);
1151       region->init_req(1, control());
1152     }
1153   }
1154 
1155   // post merge
1156   set_control(_gvn.transform(region));
1157   record_for_igvn(region);
1158 
1159   set_result(_gvn.transform(phi));
1160   return true;
1161 }
1162 
1163 //------------------------------inline_array_equals----------------------------
1164 bool LibraryCallKit::inline_array_equals() {
1165   Node* arg1 = argument(0);
1166   Node* arg2 = argument(1);
1167   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1168   return true;
1169 }
1170 
1171 // Java version of String.indexOf(constant string)
1172 // class StringDecl {
1173 //   StringDecl(char[] ca) {
1174 //     offset = 0;
1175 //     count = ca.length;
1176 //     value = ca;
1177 //   }
1178 //   int offset;
1179 //   int count;
1180 //   char[] value;
1181 // }
1182 //
1183 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1184 //                             int targetOffset, int cache_i, int md2) {
1185 //   int cache = cache_i;
1186 //   int sourceOffset = string_object.offset;
1187 //   int sourceCount = string_object.count;
1188 //   int targetCount = target_object.length;
1189 //
1190 //   int targetCountLess1 = targetCount - 1;
1191 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1192 //
1193 //   char[] source = string_object.value;
1194 //   char[] target = target_object;
1195 //   int lastChar = target[targetCountLess1];
1196 //
1197 //  outer_loop:
1198 //   for (int i = sourceOffset; i < sourceEnd; ) {
1199 //     int src = source[i + targetCountLess1];
1200 //     if (src == lastChar) {
1201 //       // With random strings and a 4-character alphabet,
1202 //       // reverse matching at this point sets up 0.8% fewer
1203 //       // frames, but (paradoxically) makes 0.3% more probes.
1204 //       // Since those probes are nearer the lastChar probe,
1205 //       // there is may be a net D$ win with reverse matching.
1206 //       // But, reversing loop inhibits unroll of inner loop
1207 //       // for unknown reason.  So, does running outer loop from
1208 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1209 //       for (int j = 0; j < targetCountLess1; j++) {
1210 //         if (target[targetOffset + j] != source[i+j]) {
1211 //           if ((cache & (1 << source[i+j])) == 0) {
1212 //             if (md2 < j+1) {
1213 //               i += j+1;
1214 //               continue outer_loop;
1215 //             }
1216 //           }
1217 //           i += md2;
1218 //           continue outer_loop;
1219 //         }
1220 //       }
1221 //       return i - sourceOffset;
1222 //     }
1223 //     if ((cache & (1 << src)) == 0) {
1224 //       i += targetCountLess1;
1225 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1226 //     i++;
1227 //   }
1228 //   return -1;
1229 // }
1230 
1231 //------------------------------string_indexOf------------------------
1232 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1233                                      jint cache_i, jint md2_i) {
1234 
1235   Node* no_ctrl  = NULL;
1236   float likely   = PROB_LIKELY(0.9);
1237   float unlikely = PROB_UNLIKELY(0.9);
1238 
1239   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1240 
1241   Node* source        = load_String_value(no_ctrl, string_object);
1242   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1243   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1244 
1245   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1246   jint target_length = target_array->length();
1247   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1248   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1249 
1250   IdealKit kit(this, false, true);
1251 #define __ kit.
1252   Node* zero             = __ ConI(0);
1253   Node* one              = __ ConI(1);
1254   Node* cache            = __ ConI(cache_i);
1255   Node* md2              = __ ConI(md2_i);
1256   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1257   Node* targetCount      = __ ConI(target_length);
1258   Node* targetCountLess1 = __ ConI(target_length - 1);
1259   Node* targetOffset     = __ ConI(targetOffset_i);
1260   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1261 
1262   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1263   Node* outer_loop = __ make_label(2 /* goto */);
1264   Node* return_    = __ make_label(1);
1265 
1266   __ set(rtn,__ ConI(-1));
1267   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1268        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1269        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1270        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1271        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1272          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1273               Node* tpj = __ AddI(targetOffset, __ value(j));
1274               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1275               Node* ipj  = __ AddI(__ value(i), __ value(j));
1276               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1277               __ if_then(targ, BoolTest::ne, src2); {
1278                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1279                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1280                     __ increment(i, __ AddI(__ value(j), one));
1281                     __ goto_(outer_loop);
1282                   } __ end_if(); __ dead(j);
1283                 }__ end_if(); __ dead(j);
1284                 __ increment(i, md2);
1285                 __ goto_(outer_loop);
1286               }__ end_if();
1287               __ increment(j, one);
1288          }__ end_loop(); __ dead(j);
1289          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1290          __ goto_(return_);
1291        }__ end_if();
1292        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1293          __ increment(i, targetCountLess1);
1294        }__ end_if();
1295        __ increment(i, one);
1296        __ bind(outer_loop);
1297   }__ end_loop(); __ dead(i);
1298   __ bind(return_);
1299 
1300   // Final sync IdealKit and GraphKit.
1301   final_sync(kit);
1302   Node* result = __ value(rtn);
1303 #undef __
1304   C->set_has_loops(true);
1305   return result;
1306 }
1307 
1308 //------------------------------inline_string_indexOf------------------------
1309 bool LibraryCallKit::inline_string_indexOf() {
1310   Node* receiver = argument(0);
1311   Node* arg      = argument(1);
1312 
1313   Node* result;
1314   // Disable the use of pcmpestri until it can be guaranteed that
1315   // the load doesn't cross into the uncommited space.
1316   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1317       UseSSE42Intrinsics) {
1318     // Generate SSE4.2 version of indexOf
1319     // We currently only have match rules that use SSE4.2
1320 
1321     receiver = null_check(receiver);
1322     arg      = null_check(arg);
1323     if (stopped()) {
1324       return true;
1325     }
1326 
1327     ciInstanceKlass* str_klass = env()->String_klass();
1328     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1329 
1330     // Make the merge point
1331     RegionNode* result_rgn = new (C) RegionNode(4);
1332     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1333     Node* no_ctrl  = NULL;
1334 
1335     // Get start addr of source string
1336     Node* source = load_String_value(no_ctrl, receiver);
1337     Node* source_offset = load_String_offset(no_ctrl, receiver);
1338     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1339 
1340     // Get length of source string
1341     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1342 
1343     // Get start addr of substring
1344     Node* substr = load_String_value(no_ctrl, arg);
1345     Node* substr_offset = load_String_offset(no_ctrl, arg);
1346     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1347 
1348     // Get length of source string
1349     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1350 
1351     // Check for substr count > string count
1352     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
1353     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
1354     Node* if_gt = generate_slow_guard(bol, NULL);
1355     if (if_gt != NULL) {
1356       result_phi->init_req(2, intcon(-1));
1357       result_rgn->init_req(2, if_gt);
1358     }
1359 
1360     if (!stopped()) {
1361       // Check for substr count == 0
1362       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
1363       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
1364       Node* if_zero = generate_slow_guard(bol, NULL);
1365       if (if_zero != NULL) {
1366         result_phi->init_req(3, intcon(0));
1367         result_rgn->init_req(3, if_zero);
1368       }
1369     }
1370 
1371     if (!stopped()) {
1372       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1373       result_phi->init_req(1, result);
1374       result_rgn->init_req(1, control());
1375     }
1376     set_control(_gvn.transform(result_rgn));
1377     record_for_igvn(result_rgn);
1378     result = _gvn.transform(result_phi);
1379 
1380   } else { // Use LibraryCallKit::string_indexOf
1381     // don't intrinsify if argument isn't a constant string.
1382     if (!arg->is_Con()) {
1383      return false;
1384     }
1385     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1386     if (str_type == NULL) {
1387       return false;
1388     }
1389     ciInstanceKlass* klass = env()->String_klass();
1390     ciObject* str_const = str_type->const_oop();
1391     if (str_const == NULL || str_const->klass() != klass) {
1392       return false;
1393     }
1394     ciInstance* str = str_const->as_instance();
1395     assert(str != NULL, "must be instance");
1396 
1397     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1398     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1399 
1400     int o;
1401     int c;
1402     if (java_lang_String::has_offset_field()) {
1403       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1404       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1405     } else {
1406       o = 0;
1407       c = pat->length();
1408     }
1409 
1410     // constant strings have no offset and count == length which
1411     // simplifies the resulting code somewhat so lets optimize for that.
1412     if (o != 0 || c != pat->length()) {
1413      return false;
1414     }
1415 
1416     receiver = null_check(receiver, T_OBJECT);
1417     // NOTE: No null check on the argument is needed since it's a constant String oop.
1418     if (stopped()) {
1419       return true;
1420     }
1421 
1422     // The null string as a pattern always returns 0 (match at beginning of string)
1423     if (c == 0) {
1424       set_result(intcon(0));
1425       return true;
1426     }
1427 
1428     // Generate default indexOf
1429     jchar lastChar = pat->char_at(o + (c - 1));
1430     int cache = 0;
1431     int i;
1432     for (i = 0; i < c - 1; i++) {
1433       assert(i < pat->length(), "out of range");
1434       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1435     }
1436 
1437     int md2 = c;
1438     for (i = 0; i < c - 1; i++) {
1439       assert(i < pat->length(), "out of range");
1440       if (pat->char_at(o + i) == lastChar) {
1441         md2 = (c - 1) - i;
1442       }
1443     }
1444 
1445     result = string_indexOf(receiver, pat, o, cache, md2);
1446   }
1447   set_result(result);
1448   return true;
1449 }
1450 
1451 //--------------------------round_double_node--------------------------------
1452 // Round a double node if necessary.
1453 Node* LibraryCallKit::round_double_node(Node* n) {
1454   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1455     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1456   return n;
1457 }
1458 
1459 //------------------------------inline_math-----------------------------------
1460 // public static double Math.abs(double)
1461 // public static double Math.sqrt(double)
1462 // public static double Math.log(double)
1463 // public static double Math.log10(double)
1464 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1465   Node* arg = round_double_node(argument(0));
1466   Node* n;
1467   switch (id) {
1468   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(    arg);  break;
1469   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(0, arg);  break;
1470   case vmIntrinsics::_dlog:   n = new (C) LogDNode(    arg);  break;
1471   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(  arg);  break;
1472   default:  fatal_unexpected_iid(id);  break;
1473   }
1474   set_result(_gvn.transform(n));
1475   return true;
1476 }
1477 
1478 //------------------------------inline_trig----------------------------------
1479 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1480 // argument reduction which will turn into a fast/slow diamond.
1481 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1482   Node* arg = round_double_node(argument(0));
1483   Node* n = NULL;
1484 
1485   switch (id) {
1486   case vmIntrinsics::_dsin:  n = new (C) SinDNode(arg);  break;
1487   case vmIntrinsics::_dcos:  n = new (C) CosDNode(arg);  break;
1488   case vmIntrinsics::_dtan:  n = new (C) TanDNode(arg);  break;
1489   default:  fatal_unexpected_iid(id);  break;
1490   }
1491   n = _gvn.transform(n);
1492 
1493   // Rounding required?  Check for argument reduction!
1494   if (Matcher::strict_fp_requires_explicit_rounding) {
1495     static const double     pi_4 =  0.7853981633974483;
1496     static const double neg_pi_4 = -0.7853981633974483;
1497     // pi/2 in 80-bit extended precision
1498     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1499     // -pi/2 in 80-bit extended precision
1500     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1501     // Cutoff value for using this argument reduction technique
1502     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1503     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1504 
1505     // Pseudocode for sin:
1506     // if (x <= Math.PI / 4.0) {
1507     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1508     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1509     // } else {
1510     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1511     // }
1512     // return StrictMath.sin(x);
1513 
1514     // Pseudocode for cos:
1515     // if (x <= Math.PI / 4.0) {
1516     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1517     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1518     // } else {
1519     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1520     // }
1521     // return StrictMath.cos(x);
1522 
1523     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1524     // requires a special machine instruction to load it.  Instead we'll try
1525     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1526     // probably do the math inside the SIN encoding.
1527 
1528     // Make the merge point
1529     RegionNode* r = new (C) RegionNode(3);
1530     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1531 
1532     // Flatten arg so we need only 1 test
1533     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1534     // Node for PI/4 constant
1535     Node *pi4 = makecon(TypeD::make(pi_4));
1536     // Check PI/4 : abs(arg)
1537     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1538     // Check: If PI/4 < abs(arg) then go slow
1539     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
1540     // Branch either way
1541     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1542     set_control(opt_iff(r,iff));
1543 
1544     // Set fast path result
1545     phi->init_req(2, n);
1546 
1547     // Slow path - non-blocking leaf call
1548     Node* call = NULL;
1549     switch (id) {
1550     case vmIntrinsics::_dsin:
1551       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1552                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1553                                "Sin", NULL, arg, top());
1554       break;
1555     case vmIntrinsics::_dcos:
1556       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1557                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1558                                "Cos", NULL, arg, top());
1559       break;
1560     case vmIntrinsics::_dtan:
1561       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1562                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1563                                "Tan", NULL, arg, top());
1564       break;
1565     }
1566     assert(control()->in(0) == call, "");
1567     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1568     r->init_req(1, control());
1569     phi->init_req(1, slow_result);
1570 
1571     // Post-merge
1572     set_control(_gvn.transform(r));
1573     record_for_igvn(r);
1574     n = _gvn.transform(phi);
1575 
1576     C->set_has_split_ifs(true); // Has chance for split-if optimization
1577   }
1578   set_result(n);
1579   return true;
1580 }
1581 
1582 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1583   //-------------------
1584   //result=(result.isNaN())? funcAddr():result;
1585   // Check: If isNaN() by checking result!=result? then either trap
1586   // or go to runtime
1587   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1588   // Build the boolean node
1589   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1590 
1591   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1592     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1593       // The pow or exp intrinsic returned a NaN, which requires a call
1594       // to the runtime.  Recompile with the runtime call.
1595       uncommon_trap(Deoptimization::Reason_intrinsic,
1596                     Deoptimization::Action_make_not_entrant);
1597     }
1598     set_result(result);
1599   } else {
1600     // If this inlining ever returned NaN in the past, we compile a call
1601     // to the runtime to properly handle corner cases
1602 
1603     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1604     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
1605     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
1606 
1607     if (!if_slow->is_top()) {
1608       RegionNode* result_region = new (C) RegionNode(3);
1609       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1610 
1611       result_region->init_req(1, if_fast);
1612       result_val->init_req(1, result);
1613 
1614       set_control(if_slow);
1615 
1616       const TypePtr* no_memory_effects = NULL;
1617       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1618                                    no_memory_effects,
1619                                    x, top(), y, y ? top() : NULL);
1620       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1621 #ifdef ASSERT
1622       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1623       assert(value_top == top(), "second value must be top");
1624 #endif
1625 
1626       result_region->init_req(2, control());
1627       result_val->init_req(2, value);
1628       set_result(result_region, result_val);
1629     } else {
1630       set_result(result);
1631     }
1632   }
1633 }
1634 
1635 //------------------------------inline_exp-------------------------------------
1636 // Inline exp instructions, if possible.  The Intel hardware only misses
1637 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1638 bool LibraryCallKit::inline_exp() {
1639   Node* arg = round_double_node(argument(0));
1640   Node* n   = _gvn.transform(new (C) ExpDNode(0, arg));
1641 
1642   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1643 
1644   C->set_has_split_ifs(true); // Has chance for split-if optimization
1645   return true;
1646 }
1647 
1648 //------------------------------inline_pow-------------------------------------
1649 // Inline power instructions, if possible.
1650 bool LibraryCallKit::inline_pow() {
1651   // Pseudocode for pow
1652   // if (x <= 0.0) {
1653   //   long longy = (long)y;
1654   //   if ((double)longy == y) { // if y is long
1655   //     if (y + 1 == y) longy = 0; // huge number: even
1656   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1657   //   } else {
1658   //     result = NaN;
1659   //   }
1660   // } else {
1661   //   result = DPow(x,y);
1662   // }
1663   // if (result != result)?  {
1664   //   result = uncommon_trap() or runtime_call();
1665   // }
1666   // return result;
1667 
1668   Node* x = round_double_node(argument(0));
1669   Node* y = round_double_node(argument(2));
1670 
1671   Node* result = NULL;
1672 
1673   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1674     // Short form: skip the fancy tests and just check for NaN result.
1675     result = _gvn.transform(new (C) PowDNode(0, x, y));
1676   } else {
1677     // If this inlining ever returned NaN in the past, include all
1678     // checks + call to the runtime.
1679 
1680     // Set the merge point for If node with condition of (x <= 0.0)
1681     // There are four possible paths to region node and phi node
1682     RegionNode *r = new (C) RegionNode(4);
1683     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1684 
1685     // Build the first if node: if (x <= 0.0)
1686     // Node for 0 constant
1687     Node *zeronode = makecon(TypeD::ZERO);
1688     // Check x:0
1689     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1690     // Check: If (x<=0) then go complex path
1691     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
1692     // Branch either way
1693     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1694     // Fast path taken; set region slot 3
1695     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
1696     r->init_req(3,fast_taken); // Capture fast-control
1697 
1698     // Fast path not-taken, i.e. slow path
1699     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
1700 
1701     // Set fast path result
1702     Node *fast_result = _gvn.transform( new (C) PowDNode(0, x, y) );
1703     phi->init_req(3, fast_result);
1704 
1705     // Complex path
1706     // Build the second if node (if y is long)
1707     // Node for (long)y
1708     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
1709     // Node for (double)((long) y)
1710     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
1711     // Check (double)((long) y) : y
1712     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1713     // Check if (y isn't long) then go to slow path
1714 
1715     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
1716     // Branch either way
1717     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1718     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
1719 
1720     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
1721 
1722     // Calculate DPow(abs(x), y)*(1 & (long)y)
1723     // Node for constant 1
1724     Node *conone = longcon(1);
1725     // 1& (long)y
1726     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
1727 
1728     // A huge number is always even. Detect a huge number by checking
1729     // if y + 1 == y and set integer to be tested for parity to 0.
1730     // Required for corner case:
1731     // (long)9.223372036854776E18 = max_jlong
1732     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1733     // max_jlong is odd but 9.223372036854776E18 is even
1734     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
1735     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1736     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
1737     Node* correctedsign = NULL;
1738     if (ConditionalMoveLimit != 0) {
1739       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1740     } else {
1741       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1742       RegionNode *r = new (C) RegionNode(3);
1743       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1744       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
1745       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
1746       phi->init_req(1, signnode);
1747       phi->init_req(2, longcon(0));
1748       correctedsign = _gvn.transform(phi);
1749       ylong_path = _gvn.transform(r);
1750       record_for_igvn(r);
1751     }
1752 
1753     // zero node
1754     Node *conzero = longcon(0);
1755     // Check (1&(long)y)==0?
1756     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1757     // Check if (1&(long)y)!=0?, if so the result is negative
1758     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
1759     // abs(x)
1760     Node *absx=_gvn.transform( new (C) AbsDNode(x));
1761     // abs(x)^y
1762     Node *absxpowy = _gvn.transform( new (C) PowDNode(0, absx, y) );
1763     // -abs(x)^y
1764     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1765     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1766     Node *signresult = NULL;
1767     if (ConditionalMoveLimit != 0) {
1768       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1769     } else {
1770       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1771       RegionNode *r = new (C) RegionNode(3);
1772       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1773       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
1774       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
1775       phi->init_req(1, absxpowy);
1776       phi->init_req(2, negabsxpowy);
1777       signresult = _gvn.transform(phi);
1778       ylong_path = _gvn.transform(r);
1779       record_for_igvn(r);
1780     }
1781     // Set complex path fast result
1782     r->init_req(2, ylong_path);
1783     phi->init_req(2, signresult);
1784 
1785     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1786     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1787     r->init_req(1,slow_path);
1788     phi->init_req(1,slow_result);
1789 
1790     // Post merge
1791     set_control(_gvn.transform(r));
1792     record_for_igvn(r);
1793     result = _gvn.transform(phi);
1794   }
1795 
1796   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1797 
1798   C->set_has_split_ifs(true); // Has chance for split-if optimization
1799   return true;
1800 }
1801 
1802 //------------------------------runtime_math-----------------------------
1803 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1804   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1805          "must be (DD)D or (D)D type");
1806 
1807   // Inputs
1808   Node* a = round_double_node(argument(0));
1809   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1810 
1811   const TypePtr* no_memory_effects = NULL;
1812   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1813                                  no_memory_effects,
1814                                  a, top(), b, b ? top() : NULL);
1815   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1816 #ifdef ASSERT
1817   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1818   assert(value_top == top(), "second value must be top");
1819 #endif
1820 
1821   set_result(value);
1822   return true;
1823 }
1824 
1825 //------------------------------inline_math_native-----------------------------
1826 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1827 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1828   switch (id) {
1829     // These intrinsics are not properly supported on all hardware
1830   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1831     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1832   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1833     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1834   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1835     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1836 
1837   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1838     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1839   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1840     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1841 
1842     // These intrinsics are supported on all hardware
1843   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1844   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1845 
1846   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1847     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1848   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1849     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1850 #undef FN_PTR
1851 
1852    // These intrinsics are not yet correctly implemented
1853   case vmIntrinsics::_datan2:
1854     return false;
1855 
1856   default:
1857     fatal_unexpected_iid(id);
1858     return false;
1859   }
1860 }
1861 
1862 static bool is_simple_name(Node* n) {
1863   return (n->req() == 1         // constant
1864           || (n->is_Type() && n->as_Type()->type()->singleton())
1865           || n->is_Proj()       // parameter or return value
1866           || n->is_Phi()        // local of some sort
1867           );
1868 }
1869 
1870 //----------------------------inline_min_max-----------------------------------
1871 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1872   set_result(generate_min_max(id, argument(0), argument(1)));
1873   return true;
1874 }
1875 
1876 Node*
1877 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1878   // These are the candidate return value:
1879   Node* xvalue = x0;
1880   Node* yvalue = y0;
1881 
1882   if (xvalue == yvalue) {
1883     return xvalue;
1884   }
1885 
1886   bool want_max = (id == vmIntrinsics::_max);
1887 
1888   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1889   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1890   if (txvalue == NULL || tyvalue == NULL)  return top();
1891   // This is not really necessary, but it is consistent with a
1892   // hypothetical MaxINode::Value method:
1893   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1894 
1895   // %%% This folding logic should (ideally) be in a different place.
1896   // Some should be inside IfNode, and there to be a more reliable
1897   // transformation of ?: style patterns into cmoves.  We also want
1898   // more powerful optimizations around cmove and min/max.
1899 
1900   // Try to find a dominating comparison of these guys.
1901   // It can simplify the index computation for Arrays.copyOf
1902   // and similar uses of System.arraycopy.
1903   // First, compute the normalized version of CmpI(x, y).
1904   int   cmp_op = Op_CmpI;
1905   Node* xkey = xvalue;
1906   Node* ykey = yvalue;
1907   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
1908   if (ideal_cmpxy->is_Cmp()) {
1909     // E.g., if we have CmpI(length - offset, count),
1910     // it might idealize to CmpI(length, count + offset)
1911     cmp_op = ideal_cmpxy->Opcode();
1912     xkey = ideal_cmpxy->in(1);
1913     ykey = ideal_cmpxy->in(2);
1914   }
1915 
1916   // Start by locating any relevant comparisons.
1917   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1918   Node* cmpxy = NULL;
1919   Node* cmpyx = NULL;
1920   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1921     Node* cmp = start_from->fast_out(k);
1922     if (cmp->outcnt() > 0 &&            // must have prior uses
1923         cmp->in(0) == NULL &&           // must be context-independent
1924         cmp->Opcode() == cmp_op) {      // right kind of compare
1925       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1926       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1927     }
1928   }
1929 
1930   const int NCMPS = 2;
1931   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1932   int cmpn;
1933   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1934     if (cmps[cmpn] != NULL)  break;     // find a result
1935   }
1936   if (cmpn < NCMPS) {
1937     // Look for a dominating test that tells us the min and max.
1938     int depth = 0;                // Limit search depth for speed
1939     Node* dom = control();
1940     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1941       if (++depth >= 100)  break;
1942       Node* ifproj = dom;
1943       if (!ifproj->is_Proj())  continue;
1944       Node* iff = ifproj->in(0);
1945       if (!iff->is_If())  continue;
1946       Node* bol = iff->in(1);
1947       if (!bol->is_Bool())  continue;
1948       Node* cmp = bol->in(1);
1949       if (cmp == NULL)  continue;
1950       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1951         if (cmps[cmpn] == cmp)  break;
1952       if (cmpn == NCMPS)  continue;
1953       BoolTest::mask btest = bol->as_Bool()->_test._test;
1954       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1955       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1956       // At this point, we know that 'x btest y' is true.
1957       switch (btest) {
1958       case BoolTest::eq:
1959         // They are proven equal, so we can collapse the min/max.
1960         // Either value is the answer.  Choose the simpler.
1961         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1962           return yvalue;
1963         return xvalue;
1964       case BoolTest::lt:          // x < y
1965       case BoolTest::le:          // x <= y
1966         return (want_max ? yvalue : xvalue);
1967       case BoolTest::gt:          // x > y
1968       case BoolTest::ge:          // x >= y
1969         return (want_max ? xvalue : yvalue);
1970       }
1971     }
1972   }
1973 
1974   // We failed to find a dominating test.
1975   // Let's pick a test that might GVN with prior tests.
1976   Node*          best_bol   = NULL;
1977   BoolTest::mask best_btest = BoolTest::illegal;
1978   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1979     Node* cmp = cmps[cmpn];
1980     if (cmp == NULL)  continue;
1981     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1982       Node* bol = cmp->fast_out(j);
1983       if (!bol->is_Bool())  continue;
1984       BoolTest::mask btest = bol->as_Bool()->_test._test;
1985       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1986       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1987       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1988         best_bol   = bol->as_Bool();
1989         best_btest = btest;
1990       }
1991     }
1992   }
1993 
1994   Node* answer_if_true  = NULL;
1995   Node* answer_if_false = NULL;
1996   switch (best_btest) {
1997   default:
1998     if (cmpxy == NULL)
1999       cmpxy = ideal_cmpxy;
2000     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
2001     // and fall through:
2002   case BoolTest::lt:          // x < y
2003   case BoolTest::le:          // x <= y
2004     answer_if_true  = (want_max ? yvalue : xvalue);
2005     answer_if_false = (want_max ? xvalue : yvalue);
2006     break;
2007   case BoolTest::gt:          // x > y
2008   case BoolTest::ge:          // x >= y
2009     answer_if_true  = (want_max ? xvalue : yvalue);
2010     answer_if_false = (want_max ? yvalue : xvalue);
2011     break;
2012   }
2013 
2014   jint hi, lo;
2015   if (want_max) {
2016     // We can sharpen the minimum.
2017     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2018     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2019   } else {
2020     // We can sharpen the maximum.
2021     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2022     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2023   }
2024 
2025   // Use a flow-free graph structure, to avoid creating excess control edges
2026   // which could hinder other optimizations.
2027   // Since Math.min/max is often used with arraycopy, we want
2028   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2029   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2030                                answer_if_false, answer_if_true,
2031                                TypeInt::make(lo, hi, widen));
2032 
2033   return _gvn.transform(cmov);
2034 
2035   /*
2036   // This is not as desirable as it may seem, since Min and Max
2037   // nodes do not have a full set of optimizations.
2038   // And they would interfere, anyway, with 'if' optimizations
2039   // and with CMoveI canonical forms.
2040   switch (id) {
2041   case vmIntrinsics::_min:
2042     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2043   case vmIntrinsics::_max:
2044     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2045   default:
2046     ShouldNotReachHere();
2047   }
2048   */
2049 }
2050 
2051 inline int
2052 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2053   const TypePtr* base_type = TypePtr::NULL_PTR;
2054   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2055   if (base_type == NULL) {
2056     // Unknown type.
2057     return Type::AnyPtr;
2058   } else if (base_type == TypePtr::NULL_PTR) {
2059     // Since this is a NULL+long form, we have to switch to a rawptr.
2060     base   = _gvn.transform( new (C) CastX2PNode(offset) );
2061     offset = MakeConX(0);
2062     return Type::RawPtr;
2063   } else if (base_type->base() == Type::RawPtr) {
2064     return Type::RawPtr;
2065   } else if (base_type->isa_oopptr()) {
2066     // Base is never null => always a heap address.
2067     if (base_type->ptr() == TypePtr::NotNull) {
2068       return Type::OopPtr;
2069     }
2070     // Offset is small => always a heap address.
2071     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2072     if (offset_type != NULL &&
2073         base_type->offset() == 0 &&     // (should always be?)
2074         offset_type->_lo >= 0 &&
2075         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2076       return Type::OopPtr;
2077     }
2078     // Otherwise, it might either be oop+off or NULL+addr.
2079     return Type::AnyPtr;
2080   } else {
2081     // No information:
2082     return Type::AnyPtr;
2083   }
2084 }
2085 
2086 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2087   int kind = classify_unsafe_addr(base, offset);
2088   if (kind == Type::RawPtr) {
2089     return basic_plus_adr(top(), base, offset);
2090   } else {
2091     return basic_plus_adr(base, offset);
2092   }
2093 }
2094 
2095 //--------------------------inline_number_methods-----------------------------
2096 // inline int     Integer.numberOfLeadingZeros(int)
2097 // inline int        Long.numberOfLeadingZeros(long)
2098 //
2099 // inline int     Integer.numberOfTrailingZeros(int)
2100 // inline int        Long.numberOfTrailingZeros(long)
2101 //
2102 // inline int     Integer.bitCount(int)
2103 // inline int        Long.bitCount(long)
2104 //
2105 // inline char  Character.reverseBytes(char)
2106 // inline short     Short.reverseBytes(short)
2107 // inline int     Integer.reverseBytes(int)
2108 // inline long       Long.reverseBytes(long)
2109 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2110   Node* arg = argument(0);
2111   Node* n;
2112   switch (id) {
2113   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2114   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2115   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2116   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2117   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2118   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2119   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2120   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2121   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2122   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2123   default:  fatal_unexpected_iid(id);  break;
2124   }
2125   set_result(_gvn.transform(n));
2126   return true;
2127 }
2128 
2129 //----------------------------inline_unsafe_access----------------------------
2130 
2131 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2132 
2133 // Helper that guards and inserts a pre-barrier.
2134 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2135                                         Node* pre_val, bool need_mem_bar) {
2136   // We could be accessing the referent field of a reference object. If so, when G1
2137   // is enabled, we need to log the value in the referent field in an SATB buffer.
2138   // This routine performs some compile time filters and generates suitable
2139   // runtime filters that guard the pre-barrier code.
2140   // Also add memory barrier for non volatile load from the referent field
2141   // to prevent commoning of loads across safepoint.
2142   if (!UseG1GC && !need_mem_bar)
2143     return;
2144 
2145   // Some compile time checks.
2146 
2147   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2148   const TypeX* otype = offset->find_intptr_t_type();
2149   if (otype != NULL && otype->is_con() &&
2150       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2151     // Constant offset but not the reference_offset so just return
2152     return;
2153   }
2154 
2155   // We only need to generate the runtime guards for instances.
2156   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2157   if (btype != NULL) {
2158     if (btype->isa_aryptr()) {
2159       // Array type so nothing to do
2160       return;
2161     }
2162 
2163     const TypeInstPtr* itype = btype->isa_instptr();
2164     if (itype != NULL) {
2165       // Can the klass of base_oop be statically determined to be
2166       // _not_ a sub-class of Reference and _not_ Object?
2167       ciKlass* klass = itype->klass();
2168       if ( klass->is_loaded() &&
2169           !klass->is_subtype_of(env()->Reference_klass()) &&
2170           !env()->Object_klass()->is_subtype_of(klass)) {
2171         return;
2172       }
2173     }
2174   }
2175 
2176   // The compile time filters did not reject base_oop/offset so
2177   // we need to generate the following runtime filters
2178   //
2179   // if (offset == java_lang_ref_Reference::_reference_offset) {
2180   //   if (instance_of(base, java.lang.ref.Reference)) {
2181   //     pre_barrier(_, pre_val, ...);
2182   //   }
2183   // }
2184 
2185   float likely   = PROB_LIKELY(  0.999);
2186   float unlikely = PROB_UNLIKELY(0.999);
2187 
2188   IdealKit ideal(this);
2189 #define __ ideal.
2190 
2191   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2192 
2193   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2194       // Update graphKit memory and control from IdealKit.
2195       sync_kit(ideal);
2196 
2197       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2198       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2199 
2200       // Update IdealKit memory and control from graphKit.
2201       __ sync_kit(this);
2202 
2203       Node* one = __ ConI(1);
2204       // is_instof == 0 if base_oop == NULL
2205       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2206 
2207         // Update graphKit from IdeakKit.
2208         sync_kit(ideal);
2209 
2210         // Use the pre-barrier to record the value in the referent field
2211         pre_barrier(false /* do_load */,
2212                     __ ctrl(),
2213                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2214                     pre_val /* pre_val */,
2215                     T_OBJECT);
2216         if (need_mem_bar) {
2217           // Add memory barrier to prevent commoning reads from this field
2218           // across safepoint since GC can change its value.
2219           insert_mem_bar(Op_MemBarCPUOrder);
2220         }
2221         // Update IdealKit from graphKit.
2222         __ sync_kit(this);
2223 
2224       } __ end_if(); // _ref_type != ref_none
2225   } __ end_if(); // offset == referent_offset
2226 
2227   // Final sync IdealKit and GraphKit.
2228   final_sync(ideal);
2229 #undef __
2230 }
2231 
2232 
2233 // Interpret Unsafe.fieldOffset cookies correctly:
2234 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2235 
2236 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2237   // Attempt to infer a sharper value type from the offset and base type.
2238   ciKlass* sharpened_klass = NULL;
2239 
2240   // See if it is an instance field, with an object type.
2241   if (alias_type->field() != NULL) {
2242     assert(!is_native_ptr, "native pointer op cannot use a java address");
2243     if (alias_type->field()->type()->is_klass()) {
2244       sharpened_klass = alias_type->field()->type()->as_klass();
2245     }
2246   }
2247 
2248   // See if it is a narrow oop array.
2249   if (adr_type->isa_aryptr()) {
2250     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2251       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2252       if (elem_type != NULL) {
2253         sharpened_klass = elem_type->klass();
2254       }
2255     }
2256   }
2257 
2258   // The sharpened class might be unloaded if there is no class loader
2259   // contraint in place.
2260   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2261     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2262 
2263 #ifndef PRODUCT
2264     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2265       tty->print("  from base type: ");  adr_type->dump();
2266       tty->print("  sharpened value: ");  tjp->dump();
2267     }
2268 #endif
2269     // Sharpen the value type.
2270     return tjp;
2271   }
2272   return NULL;
2273 }
2274 
2275 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2276   if (callee()->is_static())  return false;  // caller must have the capability!
2277 
2278 #ifndef PRODUCT
2279   {
2280     ResourceMark rm;
2281     // Check the signatures.
2282     ciSignature* sig = callee()->signature();
2283 #ifdef ASSERT
2284     if (!is_store) {
2285       // Object getObject(Object base, int/long offset), etc.
2286       BasicType rtype = sig->return_type()->basic_type();
2287       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2288           rtype = T_ADDRESS;  // it is really a C void*
2289       assert(rtype == type, "getter must return the expected value");
2290       if (!is_native_ptr) {
2291         assert(sig->count() == 2, "oop getter has 2 arguments");
2292         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2293         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2294       } else {
2295         assert(sig->count() == 1, "native getter has 1 argument");
2296         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2297       }
2298     } else {
2299       // void putObject(Object base, int/long offset, Object x), etc.
2300       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2301       if (!is_native_ptr) {
2302         assert(sig->count() == 3, "oop putter has 3 arguments");
2303         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2304         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2305       } else {
2306         assert(sig->count() == 2, "native putter has 2 arguments");
2307         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2308       }
2309       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2310       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2311         vtype = T_ADDRESS;  // it is really a C void*
2312       assert(vtype == type, "putter must accept the expected value");
2313     }
2314 #endif // ASSERT
2315  }
2316 #endif //PRODUCT
2317 
2318   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2319 
2320   Node* receiver = argument(0);  // type: oop
2321 
2322   // Build address expression.  See the code in inline_unsafe_prefetch.
2323   Node* adr;
2324   Node* heap_base_oop = top();
2325   Node* offset = top();
2326   Node* val;
2327 
2328   if (!is_native_ptr) {
2329     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2330     Node* base = argument(1);  // type: oop
2331     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2332     offset = argument(2);  // type: long
2333     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2334     // to be plain byte offsets, which are also the same as those accepted
2335     // by oopDesc::field_base.
2336     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2337            "fieldOffset must be byte-scaled");
2338     // 32-bit machines ignore the high half!
2339     offset = ConvL2X(offset);
2340     adr = make_unsafe_address(base, offset);
2341     heap_base_oop = base;
2342     val = is_store ? argument(4) : NULL;
2343   } else {
2344     Node* ptr = argument(1);  // type: long
2345     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2346     adr = make_unsafe_address(NULL, ptr);
2347     val = is_store ? argument(3) : NULL;
2348   }
2349 
2350   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2351 
2352   // First guess at the value type.
2353   const Type *value_type = Type::get_const_basic_type(type);
2354 
2355   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2356   // there was not enough information to nail it down.
2357   Compile::AliasType* alias_type = C->alias_type(adr_type);
2358   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2359 
2360   // We will need memory barriers unless we can determine a unique
2361   // alias category for this reference.  (Note:  If for some reason
2362   // the barriers get omitted and the unsafe reference begins to "pollute"
2363   // the alias analysis of the rest of the graph, either Compile::can_alias
2364   // or Compile::must_alias will throw a diagnostic assert.)
2365   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2366 
2367   // If we are reading the value of the referent field of a Reference
2368   // object (either by using Unsafe directly or through reflection)
2369   // then, if G1 is enabled, we need to record the referent in an
2370   // SATB log buffer using the pre-barrier mechanism.
2371   // Also we need to add memory barrier to prevent commoning reads
2372   // from this field across safepoint since GC can change its value.
2373   bool need_read_barrier = !is_native_ptr && !is_store &&
2374                            offset != top() && heap_base_oop != top();
2375 
2376   if (!is_store && type == T_OBJECT) {
2377     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2378     if (tjp != NULL) {
2379       value_type = tjp;
2380     }
2381   }
2382 
2383   receiver = null_check(receiver);
2384   if (stopped()) {
2385     return true;
2386   }
2387   // Heap pointers get a null-check from the interpreter,
2388   // as a courtesy.  However, this is not guaranteed by Unsafe,
2389   // and it is not possible to fully distinguish unintended nulls
2390   // from intended ones in this API.
2391 
2392   if (is_volatile) {
2393     // We need to emit leading and trailing CPU membars (see below) in
2394     // addition to memory membars when is_volatile. This is a little
2395     // too strong, but avoids the need to insert per-alias-type
2396     // volatile membars (for stores; compare Parse::do_put_xxx), which
2397     // we cannot do effectively here because we probably only have a
2398     // rough approximation of type.
2399     need_mem_bar = true;
2400     // For Stores, place a memory ordering barrier now.
2401     if (is_store)
2402       insert_mem_bar(Op_MemBarRelease);
2403   }
2404 
2405   // Memory barrier to prevent normal and 'unsafe' accesses from
2406   // bypassing each other.  Happens after null checks, so the
2407   // exception paths do not take memory state from the memory barrier,
2408   // so there's no problems making a strong assert about mixing users
2409   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2410   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2411   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2412 
2413   if (!is_store) {
2414     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2415     // load value
2416     switch (type) {
2417     case T_BOOLEAN:
2418     case T_CHAR:
2419     case T_BYTE:
2420     case T_SHORT:
2421     case T_INT:
2422     case T_LONG:
2423     case T_FLOAT:
2424     case T_DOUBLE:
2425       break;
2426     case T_OBJECT:
2427       if (need_read_barrier) {
2428         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2429       }
2430       break;
2431     case T_ADDRESS:
2432       // Cast to an int type.
2433       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2434       p = ConvX2L(p);
2435       break;
2436     default:
2437       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2438       break;
2439     }
2440     // The load node has the control of the preceding MemBarCPUOrder.  All
2441     // following nodes will have the control of the MemBarCPUOrder inserted at
2442     // the end of this method.  So, pushing the load onto the stack at a later
2443     // point is fine.
2444     set_result(p);
2445   } else {
2446     // place effect of store into memory
2447     switch (type) {
2448     case T_DOUBLE:
2449       val = dstore_rounding(val);
2450       break;
2451     case T_ADDRESS:
2452       // Repackage the long as a pointer.
2453       val = ConvL2X(val);
2454       val = _gvn.transform( new (C) CastX2PNode(val) );
2455       break;
2456     }
2457 
2458     if (type != T_OBJECT ) {
2459       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2460     } else {
2461       // Possibly an oop being stored to Java heap or native memory
2462       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2463         // oop to Java heap.
2464         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2465       } else {
2466         // We can't tell at compile time if we are storing in the Java heap or outside
2467         // of it. So we need to emit code to conditionally do the proper type of
2468         // store.
2469 
2470         IdealKit ideal(this);
2471 #define __ ideal.
2472         // QQQ who knows what probability is here??
2473         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2474           // Sync IdealKit and graphKit.
2475           sync_kit(ideal);
2476           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2477           // Update IdealKit memory.
2478           __ sync_kit(this);
2479         } __ else_(); {
2480           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2481         } __ end_if();
2482         // Final sync IdealKit and GraphKit.
2483         final_sync(ideal);
2484 #undef __
2485       }
2486     }
2487   }
2488 
2489   if (is_volatile) {
2490     if (!is_store)
2491       insert_mem_bar(Op_MemBarAcquire);
2492     else
2493       insert_mem_bar(Op_MemBarVolatile);
2494   }
2495 
2496   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2497 
2498   return true;
2499 }
2500 
2501 //----------------------------inline_unsafe_prefetch----------------------------
2502 
2503 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2504 #ifndef PRODUCT
2505   {
2506     ResourceMark rm;
2507     // Check the signatures.
2508     ciSignature* sig = callee()->signature();
2509 #ifdef ASSERT
2510     // Object getObject(Object base, int/long offset), etc.
2511     BasicType rtype = sig->return_type()->basic_type();
2512     if (!is_native_ptr) {
2513       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2514       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2515       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2516     } else {
2517       assert(sig->count() == 1, "native prefetch has 1 argument");
2518       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2519     }
2520 #endif // ASSERT
2521   }
2522 #endif // !PRODUCT
2523 
2524   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2525 
2526   const int idx = is_static ? 0 : 1;
2527   if (!is_static) {
2528     null_check_receiver();
2529     if (stopped()) {
2530       return true;
2531     }
2532   }
2533 
2534   // Build address expression.  See the code in inline_unsafe_access.
2535   Node *adr;
2536   if (!is_native_ptr) {
2537     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2538     Node* base   = argument(idx + 0);  // type: oop
2539     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2540     Node* offset = argument(idx + 1);  // type: long
2541     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2542     // to be plain byte offsets, which are also the same as those accepted
2543     // by oopDesc::field_base.
2544     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2545            "fieldOffset must be byte-scaled");
2546     // 32-bit machines ignore the high half!
2547     offset = ConvL2X(offset);
2548     adr = make_unsafe_address(base, offset);
2549   } else {
2550     Node* ptr = argument(idx + 0);  // type: long
2551     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2552     adr = make_unsafe_address(NULL, ptr);
2553   }
2554 
2555   // Generate the read or write prefetch
2556   Node *prefetch;
2557   if (is_store) {
2558     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2559   } else {
2560     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2561   }
2562   prefetch->init_req(0, control());
2563   set_i_o(_gvn.transform(prefetch));
2564 
2565   return true;
2566 }
2567 
2568 //----------------------------inline_unsafe_load_store----------------------------
2569 // This method serves a couple of different customers (depending on LoadStoreKind):
2570 //
2571 // LS_cmpxchg:
2572 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2573 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2574 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2575 //
2576 // LS_xadd:
2577 //   public int  getAndAddInt( Object o, long offset, int  delta)
2578 //   public long getAndAddLong(Object o, long offset, long delta)
2579 //
2580 // LS_xchg:
2581 //   int    getAndSet(Object o, long offset, int    newValue)
2582 //   long   getAndSet(Object o, long offset, long   newValue)
2583 //   Object getAndSet(Object o, long offset, Object newValue)
2584 //
2585 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2586   // This basic scheme here is the same as inline_unsafe_access, but
2587   // differs in enough details that combining them would make the code
2588   // overly confusing.  (This is a true fact! I originally combined
2589   // them, but even I was confused by it!) As much code/comments as
2590   // possible are retained from inline_unsafe_access though to make
2591   // the correspondences clearer. - dl
2592 
2593   if (callee()->is_static())  return false;  // caller must have the capability!
2594 
2595 #ifndef PRODUCT
2596   BasicType rtype;
2597   {
2598     ResourceMark rm;
2599     // Check the signatures.
2600     ciSignature* sig = callee()->signature();
2601     rtype = sig->return_type()->basic_type();
2602     if (kind == LS_xadd || kind == LS_xchg) {
2603       // Check the signatures.
2604 #ifdef ASSERT
2605       assert(rtype == type, "get and set must return the expected type");
2606       assert(sig->count() == 3, "get and set has 3 arguments");
2607       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2608       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2609       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2610 #endif // ASSERT
2611     } else if (kind == LS_cmpxchg) {
2612       // Check the signatures.
2613 #ifdef ASSERT
2614       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2615       assert(sig->count() == 4, "CAS has 4 arguments");
2616       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2617       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2618 #endif // ASSERT
2619     } else {
2620       ShouldNotReachHere();
2621     }
2622   }
2623 #endif //PRODUCT
2624 
2625   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2626 
2627   // Get arguments:
2628   Node* receiver = NULL;
2629   Node* base     = NULL;
2630   Node* offset   = NULL;
2631   Node* oldval   = NULL;
2632   Node* newval   = NULL;
2633   if (kind == LS_cmpxchg) {
2634     const bool two_slot_type = type2size[type] == 2;
2635     receiver = argument(0);  // type: oop
2636     base     = argument(1);  // type: oop
2637     offset   = argument(2);  // type: long
2638     oldval   = argument(4);  // type: oop, int, or long
2639     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2640   } else if (kind == LS_xadd || kind == LS_xchg){
2641     receiver = argument(0);  // type: oop
2642     base     = argument(1);  // type: oop
2643     offset   = argument(2);  // type: long
2644     oldval   = NULL;
2645     newval   = argument(4);  // type: oop, int, or long
2646   }
2647 
2648   // Null check receiver.
2649   receiver = null_check(receiver);
2650   if (stopped()) {
2651     return true;
2652   }
2653 
2654   // Build field offset expression.
2655   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2656   // to be plain byte offsets, which are also the same as those accepted
2657   // by oopDesc::field_base.
2658   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2659   // 32-bit machines ignore the high half of long offsets
2660   offset = ConvL2X(offset);
2661   Node* adr = make_unsafe_address(base, offset);
2662   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2663 
2664   // For CAS, unlike inline_unsafe_access, there seems no point in
2665   // trying to refine types. Just use the coarse types here.
2666   const Type *value_type = Type::get_const_basic_type(type);
2667   Compile::AliasType* alias_type = C->alias_type(adr_type);
2668   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2669 
2670   if (kind == LS_xchg && type == T_OBJECT) {
2671     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2672     if (tjp != NULL) {
2673       value_type = tjp;
2674     }
2675   }
2676 
2677   int alias_idx = C->get_alias_index(adr_type);
2678 
2679   // Memory-model-wise, a LoadStore acts like a little synchronized
2680   // block, so needs barriers on each side.  These don't translate
2681   // into actual barriers on most machines, but we still need rest of
2682   // compiler to respect ordering.
2683 
2684   insert_mem_bar(Op_MemBarRelease);
2685   insert_mem_bar(Op_MemBarCPUOrder);
2686 
2687   // 4984716: MemBars must be inserted before this
2688   //          memory node in order to avoid a false
2689   //          dependency which will confuse the scheduler.
2690   Node *mem = memory(alias_idx);
2691 
2692   // For now, we handle only those cases that actually exist: ints,
2693   // longs, and Object. Adding others should be straightforward.
2694   Node* load_store;
2695   switch(type) {
2696   case T_INT:
2697     if (kind == LS_xadd) {
2698       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2699     } else if (kind == LS_xchg) {
2700       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2701     } else if (kind == LS_cmpxchg) {
2702       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2703     } else {
2704       ShouldNotReachHere();
2705     }
2706     break;
2707   case T_LONG:
2708     if (kind == LS_xadd) {
2709       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2710     } else if (kind == LS_xchg) {
2711       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2712     } else if (kind == LS_cmpxchg) {
2713       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2714     } else {
2715       ShouldNotReachHere();
2716     }
2717     break;
2718   case T_OBJECT:
2719     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2720     // could be delayed during Parse (for example, in adjust_map_after_if()).
2721     // Execute transformation here to avoid barrier generation in such case.
2722     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2723       newval = _gvn.makecon(TypePtr::NULL_PTR);
2724 
2725     // Reference stores need a store barrier.
2726     pre_barrier(true /* do_load*/,
2727                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2728                 NULL /* pre_val*/,
2729                 T_OBJECT);
2730 #ifdef _LP64
2731     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2732       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2733       if (kind == LS_xchg) {
2734         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2735                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2736       } else {
2737         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2738         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2739         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2740                                                                    newval_enc, oldval_enc));
2741       }
2742     } else
2743 #endif
2744     {
2745       if (kind == LS_xchg) {
2746         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2747       } else {
2748         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2749         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2750       }
2751     }
2752     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2753     break;
2754   default:
2755     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2756     break;
2757   }
2758 
2759   // SCMemProjNodes represent the memory state of a LoadStore. Their
2760   // main role is to prevent LoadStore nodes from being optimized away
2761   // when their results aren't used.
2762   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
2763   set_memory(proj, alias_idx);
2764 
2765   // Add the trailing membar surrounding the access
2766   insert_mem_bar(Op_MemBarCPUOrder);
2767   insert_mem_bar(Op_MemBarAcquire);
2768 
2769 #ifdef _LP64
2770   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2771     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
2772   }
2773 #endif
2774 
2775   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2776   set_result(load_store);
2777   return true;
2778 }
2779 
2780 //----------------------------inline_unsafe_ordered_store----------------------
2781 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2782 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2783 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2784 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2785   // This is another variant of inline_unsafe_access, differing in
2786   // that it always issues store-store ("release") barrier and ensures
2787   // store-atomicity (which only matters for "long").
2788 
2789   if (callee()->is_static())  return false;  // caller must have the capability!
2790 
2791 #ifndef PRODUCT
2792   {
2793     ResourceMark rm;
2794     // Check the signatures.
2795     ciSignature* sig = callee()->signature();
2796 #ifdef ASSERT
2797     BasicType rtype = sig->return_type()->basic_type();
2798     assert(rtype == T_VOID, "must return void");
2799     assert(sig->count() == 3, "has 3 arguments");
2800     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2801     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2802 #endif // ASSERT
2803   }
2804 #endif //PRODUCT
2805 
2806   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2807 
2808   // Get arguments:
2809   Node* receiver = argument(0);  // type: oop
2810   Node* base     = argument(1);  // type: oop
2811   Node* offset   = argument(2);  // type: long
2812   Node* val      = argument(4);  // type: oop, int, or long
2813 
2814   // Null check receiver.
2815   receiver = null_check(receiver);
2816   if (stopped()) {
2817     return true;
2818   }
2819 
2820   // Build field offset expression.
2821   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2822   // 32-bit machines ignore the high half of long offsets
2823   offset = ConvL2X(offset);
2824   Node* adr = make_unsafe_address(base, offset);
2825   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2826   const Type *value_type = Type::get_const_basic_type(type);
2827   Compile::AliasType* alias_type = C->alias_type(adr_type);
2828 
2829   insert_mem_bar(Op_MemBarRelease);
2830   insert_mem_bar(Op_MemBarCPUOrder);
2831   // Ensure that the store is atomic for longs:
2832   const bool require_atomic_access = true;
2833   Node* store;
2834   if (type == T_OBJECT) // reference stores need a store barrier.
2835     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2836   else {
2837     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2838   }
2839   insert_mem_bar(Op_MemBarCPUOrder);
2840   return true;
2841 }
2842 
2843 //----------------------------inline_unsafe_allocate---------------------------
2844 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
2845 bool LibraryCallKit::inline_unsafe_allocate() {
2846   if (callee()->is_static())  return false;  // caller must have the capability!
2847 
2848   null_check_receiver();  // null-check, then ignore
2849   Node* cls = null_check(argument(1));
2850   if (stopped())  return true;
2851 
2852   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2853   kls = null_check(kls);
2854   if (stopped())  return true;  // argument was like int.class
2855 
2856   // Note:  The argument might still be an illegal value like
2857   // Serializable.class or Object[].class.   The runtime will handle it.
2858   // But we must make an explicit check for initialization.
2859   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2860   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2861   // can generate code to load it as unsigned byte.
2862   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2863   Node* bits = intcon(InstanceKlass::fully_initialized);
2864   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
2865   // The 'test' is non-zero if we need to take a slow path.
2866 
2867   Node* obj = new_instance(kls, test);
2868   set_result(obj);
2869   return true;
2870 }
2871 
2872 #ifdef TRACE_HAVE_INTRINSICS
2873 /*
2874  * oop -> myklass
2875  * myklass->trace_id |= USED
2876  * return myklass->trace_id & ~0x3
2877  */
2878 bool LibraryCallKit::inline_native_classID() {
2879   null_check_receiver();  // null-check, then ignore
2880   Node* cls = null_check(argument(1), T_OBJECT);
2881   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2882   kls = null_check(kls, T_OBJECT);
2883   ByteSize offset = TRACE_ID_OFFSET;
2884   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2885   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2886   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2887   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2888   Node* clsused = longcon(0x01l); // set the class bit
2889   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2890 
2891   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2892   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2893   set_result(andl);
2894   return true;
2895 }
2896 
2897 bool LibraryCallKit::inline_native_threadID() {
2898   Node* tls_ptr = NULL;
2899   Node* cur_thr = generate_current_thread(tls_ptr);
2900   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2901   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2902   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2903 
2904   Node* threadid = NULL;
2905   size_t thread_id_size = OSThread::thread_id_size();
2906   if (thread_id_size == (size_t) BytesPerLong) {
2907     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
2908   } else if (thread_id_size == (size_t) BytesPerInt) {
2909     threadid = make_load(control(), p, TypeInt::INT, T_INT);
2910   } else {
2911     ShouldNotReachHere();
2912   }
2913   set_result(threadid);
2914   return true;
2915 }
2916 #endif
2917 
2918 //------------------------inline_native_time_funcs--------------
2919 // inline code for System.currentTimeMillis() and System.nanoTime()
2920 // these have the same type and signature
2921 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2922   const TypeFunc* tf = OptoRuntime::void_long_Type();
2923   const TypePtr* no_memory_effects = NULL;
2924   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2925   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
2926 #ifdef ASSERT
2927   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
2928   assert(value_top == top(), "second value must be top");
2929 #endif
2930   set_result(value);
2931   return true;
2932 }
2933 
2934 //------------------------inline_native_currentThread------------------
2935 bool LibraryCallKit::inline_native_currentThread() {
2936   Node* junk = NULL;
2937   set_result(generate_current_thread(junk));
2938   return true;
2939 }
2940 
2941 //------------------------inline_native_isInterrupted------------------
2942 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
2943 bool LibraryCallKit::inline_native_isInterrupted() {
2944   // Add a fast path to t.isInterrupted(clear_int):
2945   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2946   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2947   // So, in the common case that the interrupt bit is false,
2948   // we avoid making a call into the VM.  Even if the interrupt bit
2949   // is true, if the clear_int argument is false, we avoid the VM call.
2950   // However, if the receiver is not currentThread, we must call the VM,
2951   // because there must be some locking done around the operation.
2952 
2953   // We only go to the fast case code if we pass two guards.
2954   // Paths which do not pass are accumulated in the slow_region.
2955 
2956   enum {
2957     no_int_result_path   = 1, // t == Thread.current() && TLS._osthread._interrupted
2958     no_clear_result_path = 2, // t == Thread.current() && !TLS._osthread._interrupted && !clear_int
2959     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
2960     PATH_LIMIT
2961   };
2962 
2963   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
2964   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
2965 
2966   RegionNode* slow_region = new (C) RegionNode(1);
2967   record_for_igvn(slow_region);
2968 
2969   // (a) Receiving thread must be the current thread.
2970   Node* rec_thr = argument(0);
2971   Node* tls_ptr = NULL;
2972   Node* cur_thr = generate_current_thread(tls_ptr);
2973   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
2974   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
2975 
2976   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2977 
2978   generate_slow_guard(bol_thr, slow_region);
2979 
2980   // (b) Interrupt bit on TLS must be false.
2981   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2982   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2983   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2984 
2985   Node* init_mem = map()->memory();
2986 
2987   insert_mem_bar(Op_MemBarCPUOrder);
2988 
2989   Node* fast_mem = map()->memory();
2990 
2991   // Set the control input on the field _interrupted read to prevent it floating up.
2992   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2993   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
2994   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
2995 
2996   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2997 
2998   // First fast path:  if (!TLS._interrupted) return false;
2999   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
3000   result_rgn->init_req(no_int_result_path, false_bit);
3001   result_val->init_req(no_int_result_path, intcon(0));
3002 
3003   // drop through to next case
3004   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
3005 
3006   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3007   Node* clr_arg = argument(1);
3008   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
3009   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
3010   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3011 
3012   // Second fast path:  ... else if (!clear_int) return true;
3013   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
3014   result_rgn->init_req(no_clear_result_path, false_arg);
3015   result_val->init_req(no_clear_result_path, intcon(1));
3016 
3017   // drop through to next case
3018   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
3019 
3020   // (d) Otherwise, go to the slow path.
3021   slow_region->add_req(control());
3022   set_control( _gvn.transform(slow_region) );
3023 
3024   if (stopped()) {
3025     // There is no slow path.
3026     result_rgn->init_req(slow_result_path, top());
3027     result_val->init_req(slow_result_path, top());
3028   } else {
3029     set_all_memory(init_mem);
3030 
3031     // non-virtual because it is a private non-static
3032     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3033 
3034     Node* slow_val = set_results_for_java_call(slow_call);
3035     // this->control() comes from set_results_for_java_call
3036 
3037     // If we know that the result of the slow call will be true, tell the optimizer!
3038     if (known_current_thread)
3039       slow_val = intcon(1);
3040 
3041     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3042 
3043     // These two phis are pre-filled with copies of of the fast IO and Memory
3044     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3045     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3046 
3047     result_rgn->init_req(slow_result_path, control());
3048     result_io ->init_req(slow_result_path, i_o());
3049     result_mem->init_req(slow_result_path, reset_memory());
3050     result_val->init_req(slow_result_path, slow_val);
3051 
3052     set_all_memory(_gvn.transform(result_mem));
3053     set_i_o(       _gvn.transform(result_io));
3054   }
3055 
3056   C->set_has_split_ifs(true); // Has chance for split-if optimization
3057   set_result(result_rgn, result_val);
3058   return true;
3059 }
3060 
3061 //---------------------------load_mirror_from_klass----------------------------
3062 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3063 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3064   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3065   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3066 }
3067 
3068 //-----------------------load_klass_from_mirror_common-------------------------
3069 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3070 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3071 // and branch to the given path on the region.
3072 // If never_see_null, take an uncommon trap on null, so we can optimistically
3073 // compile for the non-null case.
3074 // If the region is NULL, force never_see_null = true.
3075 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3076                                                     bool never_see_null,
3077                                                     RegionNode* region,
3078                                                     int null_path,
3079                                                     int offset) {
3080   if (region == NULL)  never_see_null = true;
3081   Node* p = basic_plus_adr(mirror, offset);
3082   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3083   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
3084   Node* null_ctl = top();
3085   kls = null_check_oop(kls, &null_ctl, never_see_null);
3086   if (region != NULL) {
3087     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3088     region->init_req(null_path, null_ctl);
3089   } else {
3090     assert(null_ctl == top(), "no loose ends");
3091   }
3092   return kls;
3093 }
3094 
3095 //--------------------(inline_native_Class_query helpers)---------------------
3096 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3097 // Fall through if (mods & mask) == bits, take the guard otherwise.
3098 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3099   // Branch around if the given klass has the given modifier bit set.
3100   // Like generate_guard, adds a new path onto the region.
3101   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3102   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3103   Node* mask = intcon(modifier_mask);
3104   Node* bits = intcon(modifier_bits);
3105   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
3106   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
3107   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
3108   return generate_fair_guard(bol, region);
3109 }
3110 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3111   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3112 }
3113 
3114 //-------------------------inline_native_Class_query-------------------
3115 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3116   const Type* return_type = TypeInt::BOOL;
3117   Node* prim_return_value = top();  // what happens if it's a primitive class?
3118   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3119   bool expect_prim = false;     // most of these guys expect to work on refs
3120 
3121   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3122 
3123   Node* mirror = argument(0);
3124   Node* obj    = top();
3125 
3126   switch (id) {
3127   case vmIntrinsics::_isInstance:
3128     // nothing is an instance of a primitive type
3129     prim_return_value = intcon(0);
3130     obj = argument(1);
3131     break;
3132   case vmIntrinsics::_getModifiers:
3133     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3134     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3135     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3136     break;
3137   case vmIntrinsics::_isInterface:
3138     prim_return_value = intcon(0);
3139     break;
3140   case vmIntrinsics::_isArray:
3141     prim_return_value = intcon(0);
3142     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3143     break;
3144   case vmIntrinsics::_isPrimitive:
3145     prim_return_value = intcon(1);
3146     expect_prim = true;  // obviously
3147     break;
3148   case vmIntrinsics::_getSuperclass:
3149     prim_return_value = null();
3150     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3151     break;
3152   case vmIntrinsics::_getComponentType:
3153     prim_return_value = null();
3154     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3155     break;
3156   case vmIntrinsics::_getClassAccessFlags:
3157     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3158     return_type = TypeInt::INT;  // not bool!  6297094
3159     break;
3160   default:
3161     fatal_unexpected_iid(id);
3162     break;
3163   }
3164 
3165   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3166   if (mirror_con == NULL)  return false;  // cannot happen?
3167 
3168 #ifndef PRODUCT
3169   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3170     ciType* k = mirror_con->java_mirror_type();
3171     if (k) {
3172       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3173       k->print_name();
3174       tty->cr();
3175     }
3176   }
3177 #endif
3178 
3179   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3180   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3181   record_for_igvn(region);
3182   PhiNode* phi = new (C) PhiNode(region, return_type);
3183 
3184   // The mirror will never be null of Reflection.getClassAccessFlags, however
3185   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3186   // if it is. See bug 4774291.
3187 
3188   // For Reflection.getClassAccessFlags(), the null check occurs in
3189   // the wrong place; see inline_unsafe_access(), above, for a similar
3190   // situation.
3191   mirror = null_check(mirror);
3192   // If mirror or obj is dead, only null-path is taken.
3193   if (stopped())  return true;
3194 
3195   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3196 
3197   // Now load the mirror's klass metaobject, and null-check it.
3198   // Side-effects region with the control path if the klass is null.
3199   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3200   // If kls is null, we have a primitive mirror.
3201   phi->init_req(_prim_path, prim_return_value);
3202   if (stopped()) { set_result(region, phi); return true; }
3203 
3204   Node* p;  // handy temp
3205   Node* null_ctl;
3206 
3207   // Now that we have the non-null klass, we can perform the real query.
3208   // For constant classes, the query will constant-fold in LoadNode::Value.
3209   Node* query_value = top();
3210   switch (id) {
3211   case vmIntrinsics::_isInstance:
3212     // nothing is an instance of a primitive type
3213     query_value = gen_instanceof(obj, kls);
3214     break;
3215 
3216   case vmIntrinsics::_getModifiers:
3217     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3218     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3219     break;
3220 
3221   case vmIntrinsics::_isInterface:
3222     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3223     if (generate_interface_guard(kls, region) != NULL)
3224       // A guard was added.  If the guard is taken, it was an interface.
3225       phi->add_req(intcon(1));
3226     // If we fall through, it's a plain class.
3227     query_value = intcon(0);
3228     break;
3229 
3230   case vmIntrinsics::_isArray:
3231     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3232     if (generate_array_guard(kls, region) != NULL)
3233       // A guard was added.  If the guard is taken, it was an array.
3234       phi->add_req(intcon(1));
3235     // If we fall through, it's a plain class.
3236     query_value = intcon(0);
3237     break;
3238 
3239   case vmIntrinsics::_isPrimitive:
3240     query_value = intcon(0); // "normal" path produces false
3241     break;
3242 
3243   case vmIntrinsics::_getSuperclass:
3244     // The rules here are somewhat unfortunate, but we can still do better
3245     // with random logic than with a JNI call.
3246     // Interfaces store null or Object as _super, but must report null.
3247     // Arrays store an intermediate super as _super, but must report Object.
3248     // Other types can report the actual _super.
3249     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3250     if (generate_interface_guard(kls, region) != NULL)
3251       // A guard was added.  If the guard is taken, it was an interface.
3252       phi->add_req(null());
3253     if (generate_array_guard(kls, region) != NULL)
3254       // A guard was added.  If the guard is taken, it was an array.
3255       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3256     // If we fall through, it's a plain class.  Get its _super.
3257     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3258     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3259     null_ctl = top();
3260     kls = null_check_oop(kls, &null_ctl);
3261     if (null_ctl != top()) {
3262       // If the guard is taken, Object.superClass is null (both klass and mirror).
3263       region->add_req(null_ctl);
3264       phi   ->add_req(null());
3265     }
3266     if (!stopped()) {
3267       query_value = load_mirror_from_klass(kls);
3268     }
3269     break;
3270 
3271   case vmIntrinsics::_getComponentType:
3272     if (generate_array_guard(kls, region) != NULL) {
3273       // Be sure to pin the oop load to the guard edge just created:
3274       Node* is_array_ctrl = region->in(region->req()-1);
3275       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3276       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3277       phi->add_req(cmo);
3278     }
3279     query_value = null();  // non-array case is null
3280     break;
3281 
3282   case vmIntrinsics::_getClassAccessFlags:
3283     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3284     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3285     break;
3286 
3287   default:
3288     fatal_unexpected_iid(id);
3289     break;
3290   }
3291 
3292   // Fall-through is the normal case of a query to a real class.
3293   phi->init_req(1, query_value);
3294   region->init_req(1, control());
3295 
3296   C->set_has_split_ifs(true); // Has chance for split-if optimization
3297   set_result(region, phi);
3298   return true;
3299 }
3300 
3301 //--------------------------inline_native_subtype_check------------------------
3302 // This intrinsic takes the JNI calls out of the heart of
3303 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3304 bool LibraryCallKit::inline_native_subtype_check() {
3305   // Pull both arguments off the stack.
3306   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3307   args[0] = argument(0);
3308   args[1] = argument(1);
3309   Node* klasses[2];             // corresponding Klasses: superk, subk
3310   klasses[0] = klasses[1] = top();
3311 
3312   enum {
3313     // A full decision tree on {superc is prim, subc is prim}:
3314     _prim_0_path = 1,           // {P,N} => false
3315                                 // {P,P} & superc!=subc => false
3316     _prim_same_path,            // {P,P} & superc==subc => true
3317     _prim_1_path,               // {N,P} => false
3318     _ref_subtype_path,          // {N,N} & subtype check wins => true
3319     _both_ref_path,             // {N,N} & subtype check loses => false
3320     PATH_LIMIT
3321   };
3322 
3323   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3324   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3325   record_for_igvn(region);
3326 
3327   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3328   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3329   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3330 
3331   // First null-check both mirrors and load each mirror's klass metaobject.
3332   int which_arg;
3333   for (which_arg = 0; which_arg <= 1; which_arg++) {
3334     Node* arg = args[which_arg];
3335     arg = null_check(arg);
3336     if (stopped())  break;
3337     args[which_arg] = _gvn.transform(arg);
3338 
3339     Node* p = basic_plus_adr(arg, class_klass_offset);
3340     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3341     klasses[which_arg] = _gvn.transform(kls);
3342   }
3343 
3344   // Having loaded both klasses, test each for null.
3345   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3346   for (which_arg = 0; which_arg <= 1; which_arg++) {
3347     Node* kls = klasses[which_arg];
3348     Node* null_ctl = top();
3349     kls = null_check_oop(kls, &null_ctl, never_see_null);
3350     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3351     region->init_req(prim_path, null_ctl);
3352     if (stopped())  break;
3353     klasses[which_arg] = kls;
3354   }
3355 
3356   if (!stopped()) {
3357     // now we have two reference types, in klasses[0..1]
3358     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3359     Node* superk = klasses[0];  // the receiver
3360     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3361     // now we have a successful reference subtype check
3362     region->set_req(_ref_subtype_path, control());
3363   }
3364 
3365   // If both operands are primitive (both klasses null), then
3366   // we must return true when they are identical primitives.
3367   // It is convenient to test this after the first null klass check.
3368   set_control(region->in(_prim_0_path)); // go back to first null check
3369   if (!stopped()) {
3370     // Since superc is primitive, make a guard for the superc==subc case.
3371     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
3372     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
3373     generate_guard(bol_eq, region, PROB_FAIR);
3374     if (region->req() == PATH_LIMIT+1) {
3375       // A guard was added.  If the added guard is taken, superc==subc.
3376       region->swap_edges(PATH_LIMIT, _prim_same_path);
3377       region->del_req(PATH_LIMIT);
3378     }
3379     region->set_req(_prim_0_path, control()); // Not equal after all.
3380   }
3381 
3382   // these are the only paths that produce 'true':
3383   phi->set_req(_prim_same_path,   intcon(1));
3384   phi->set_req(_ref_subtype_path, intcon(1));
3385 
3386   // pull together the cases:
3387   assert(region->req() == PATH_LIMIT, "sane region");
3388   for (uint i = 1; i < region->req(); i++) {
3389     Node* ctl = region->in(i);
3390     if (ctl == NULL || ctl == top()) {
3391       region->set_req(i, top());
3392       phi   ->set_req(i, top());
3393     } else if (phi->in(i) == NULL) {
3394       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3395     }
3396   }
3397 
3398   set_control(_gvn.transform(region));
3399   set_result(_gvn.transform(phi));
3400   return true;
3401 }
3402 
3403 //---------------------generate_array_guard_common------------------------
3404 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3405                                                   bool obj_array, bool not_array) {
3406   // If obj_array/non_array==false/false:
3407   // Branch around if the given klass is in fact an array (either obj or prim).
3408   // If obj_array/non_array==false/true:
3409   // Branch around if the given klass is not an array klass of any kind.
3410   // If obj_array/non_array==true/true:
3411   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3412   // If obj_array/non_array==true/false:
3413   // Branch around if the kls is an oop array (Object[] or subtype)
3414   //
3415   // Like generate_guard, adds a new path onto the region.
3416   jint  layout_con = 0;
3417   Node* layout_val = get_layout_helper(kls, layout_con);
3418   if (layout_val == NULL) {
3419     bool query = (obj_array
3420                   ? Klass::layout_helper_is_objArray(layout_con)
3421                   : Klass::layout_helper_is_array(layout_con));
3422     if (query == not_array) {
3423       return NULL;                       // never a branch
3424     } else {                             // always a branch
3425       Node* always_branch = control();
3426       if (region != NULL)
3427         region->add_req(always_branch);
3428       set_control(top());
3429       return always_branch;
3430     }
3431   }
3432   // Now test the correct condition.
3433   jint  nval = (obj_array
3434                 ? ((jint)Klass::_lh_array_tag_type_value
3435                    <<    Klass::_lh_array_tag_shift)
3436                 : Klass::_lh_neutral_value);
3437   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
3438   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3439   // invert the test if we are looking for a non-array
3440   if (not_array)  btest = BoolTest(btest).negate();
3441   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
3442   return generate_fair_guard(bol, region);
3443 }
3444 
3445 
3446 //-----------------------inline_native_newArray--------------------------
3447 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3448 bool LibraryCallKit::inline_native_newArray() {
3449   Node* mirror    = argument(0);
3450   Node* count_val = argument(1);
3451 
3452   mirror = null_check(mirror);
3453   // If mirror or obj is dead, only null-path is taken.
3454   if (stopped())  return true;
3455 
3456   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3457   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3458   PhiNode*    result_val = new(C) PhiNode(result_reg,
3459                                           TypeInstPtr::NOTNULL);
3460   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3461   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3462                                           TypePtr::BOTTOM);
3463 
3464   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3465   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3466                                                   result_reg, _slow_path);
3467   Node* normal_ctl   = control();
3468   Node* no_array_ctl = result_reg->in(_slow_path);
3469 
3470   // Generate code for the slow case.  We make a call to newArray().
3471   set_control(no_array_ctl);
3472   if (!stopped()) {
3473     // Either the input type is void.class, or else the
3474     // array klass has not yet been cached.  Either the
3475     // ensuing call will throw an exception, or else it
3476     // will cache the array klass for next time.
3477     PreserveJVMState pjvms(this);
3478     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3479     Node* slow_result = set_results_for_java_call(slow_call);
3480     // this->control() comes from set_results_for_java_call
3481     result_reg->set_req(_slow_path, control());
3482     result_val->set_req(_slow_path, slow_result);
3483     result_io ->set_req(_slow_path, i_o());
3484     result_mem->set_req(_slow_path, reset_memory());
3485   }
3486 
3487   set_control(normal_ctl);
3488   if (!stopped()) {
3489     // Normal case:  The array type has been cached in the java.lang.Class.
3490     // The following call works fine even if the array type is polymorphic.
3491     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3492     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3493     result_reg->init_req(_normal_path, control());
3494     result_val->init_req(_normal_path, obj);
3495     result_io ->init_req(_normal_path, i_o());
3496     result_mem->init_req(_normal_path, reset_memory());
3497   }
3498 
3499   // Return the combined state.
3500   set_i_o(        _gvn.transform(result_io)  );
3501   set_all_memory( _gvn.transform(result_mem) );
3502 
3503   C->set_has_split_ifs(true); // Has chance for split-if optimization
3504   set_result(result_reg, result_val);
3505   return true;
3506 }
3507 
3508 //----------------------inline_native_getLength--------------------------
3509 // public static native int java.lang.reflect.Array.getLength(Object array);
3510 bool LibraryCallKit::inline_native_getLength() {
3511   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3512 
3513   Node* array = null_check(argument(0));
3514   // If array is dead, only null-path is taken.
3515   if (stopped())  return true;
3516 
3517   // Deoptimize if it is a non-array.
3518   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3519 
3520   if (non_array != NULL) {
3521     PreserveJVMState pjvms(this);
3522     set_control(non_array);
3523     uncommon_trap(Deoptimization::Reason_intrinsic,
3524                   Deoptimization::Action_maybe_recompile);
3525   }
3526 
3527   // If control is dead, only non-array-path is taken.
3528   if (stopped())  return true;
3529 
3530   // The works fine even if the array type is polymorphic.
3531   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3532   Node* result = load_array_length(array);
3533 
3534   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3535   set_result(result);
3536   return true;
3537 }
3538 
3539 //------------------------inline_array_copyOf----------------------------
3540 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3541 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3542 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3543   return false;
3544   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3545 
3546   // Get the arguments.
3547   Node* original          = argument(0);
3548   Node* start             = is_copyOfRange? argument(1): intcon(0);
3549   Node* end               = is_copyOfRange? argument(2): argument(1);
3550   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3551 
3552   Node* newcopy;
3553 
3554   // Set the original stack and the reexecute bit for the interpreter to reexecute
3555   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3556   { PreserveReexecuteState preexecs(this);
3557     jvms()->set_should_reexecute(true);
3558 
3559     array_type_mirror = null_check(array_type_mirror);
3560     original          = null_check(original);
3561 
3562     // Check if a null path was taken unconditionally.
3563     if (stopped())  return true;
3564 
3565     Node* orig_length = load_array_length(original);
3566 
3567     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3568     klass_node = null_check(klass_node);
3569 
3570     RegionNode* bailout = new (C) RegionNode(1);
3571     record_for_igvn(bailout);
3572 
3573     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3574     // Bail out if that is so.
3575     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3576     if (not_objArray != NULL) {
3577       // Improve the klass node's type from the new optimistic assumption:
3578       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3579       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3580       Node* cast = new (C) CastPPNode(klass_node, akls);
3581       cast->init_req(0, control());
3582       klass_node = _gvn.transform(cast);
3583     }
3584 
3585     // Bail out if either start or end is negative.
3586     generate_negative_guard(start, bailout, &start);
3587     generate_negative_guard(end,   bailout, &end);
3588 
3589     Node* length = end;
3590     if (_gvn.type(start) != TypeInt::ZERO) {
3591       length = _gvn.transform(new (C) SubINode(end, start));
3592     }
3593 
3594     // Bail out if length is negative.
3595     // Without this the new_array would throw
3596     // NegativeArraySizeException but IllegalArgumentException is what
3597     // should be thrown
3598     generate_negative_guard(length, bailout, &length);
3599 
3600     if (bailout->req() > 1) {
3601       PreserveJVMState pjvms(this);
3602       set_control(_gvn.transform(bailout));
3603       uncommon_trap(Deoptimization::Reason_intrinsic,
3604                     Deoptimization::Action_maybe_recompile);
3605     }
3606 
3607     if (!stopped()) {
3608       // How many elements will we copy from the original?
3609       // The answer is MinI(orig_length - start, length).
3610       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3611       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3612 
3613       newcopy = new_array(klass_node, length, 0);  // no argments to push
3614 
3615       // Generate a direct call to the right arraycopy function(s).
3616       // We know the copy is disjoint but we might not know if the
3617       // oop stores need checking.
3618       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3619       // This will fail a store-check if x contains any non-nulls.
3620       bool disjoint_bases = true;
3621       // if start > orig_length then the length of the copy may be
3622       // negative.
3623       bool length_never_negative = !is_copyOfRange;
3624       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3625                          original, start, newcopy, intcon(0), moved,
3626                          disjoint_bases, length_never_negative);
3627     }
3628   } // original reexecute is set back here
3629 
3630   C->set_has_split_ifs(true); // Has chance for split-if optimization
3631   if (!stopped()) {
3632     set_result(newcopy);
3633   }
3634   return true;
3635 }
3636 
3637 
3638 //----------------------generate_virtual_guard---------------------------
3639 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3640 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3641                                              RegionNode* slow_region) {
3642   ciMethod* method = callee();
3643   int vtable_index = method->vtable_index();
3644   // Get the Method* out of the appropriate vtable entry.
3645   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3646                      vtable_index*vtableEntry::size()) * wordSize +
3647                      vtableEntry::method_offset_in_bytes();
3648   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3649   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3650 
3651   // Compare the target method with the expected method (e.g., Object.hashCode).
3652   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3653 
3654   Node* native_call = makecon(native_call_addr);
3655   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
3656   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
3657 
3658   return generate_slow_guard(test_native, slow_region);
3659 }
3660 
3661 //-----------------------generate_method_call----------------------------
3662 // Use generate_method_call to make a slow-call to the real
3663 // method if the fast path fails.  An alternative would be to
3664 // use a stub like OptoRuntime::slow_arraycopy_Java.
3665 // This only works for expanding the current library call,
3666 // not another intrinsic.  (E.g., don't use this for making an
3667 // arraycopy call inside of the copyOf intrinsic.)
3668 CallJavaNode*
3669 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3670   // When compiling the intrinsic method itself, do not use this technique.
3671   guarantee(callee() != C->method(), "cannot make slow-call to self");
3672 
3673   ciMethod* method = callee();
3674   // ensure the JVMS we have will be correct for this call
3675   guarantee(method_id == method->intrinsic_id(), "must match");
3676 
3677   const TypeFunc* tf = TypeFunc::make(method);
3678   CallJavaNode* slow_call;
3679   if (is_static) {
3680     assert(!is_virtual, "");
3681     slow_call = new(C) CallStaticJavaNode(tf,
3682                            SharedRuntime::get_resolve_static_call_stub(),
3683                            method, bci());
3684   } else if (is_virtual) {
3685     null_check_receiver();
3686     int vtable_index = Method::invalid_vtable_index;
3687     if (UseInlineCaches) {
3688       // Suppress the vtable call
3689     } else {
3690       // hashCode and clone are not a miranda methods,
3691       // so the vtable index is fixed.
3692       // No need to use the linkResolver to get it.
3693        vtable_index = method->vtable_index();
3694     }
3695     slow_call = new(C) CallDynamicJavaNode(tf,
3696                           SharedRuntime::get_resolve_virtual_call_stub(),
3697                           method, vtable_index, bci());
3698   } else {  // neither virtual nor static:  opt_virtual
3699     null_check_receiver();
3700     slow_call = new(C) CallStaticJavaNode(tf,
3701                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3702                                 method, bci());
3703     slow_call->set_optimized_virtual(true);
3704   }
3705   set_arguments_for_java_call(slow_call);
3706   set_edges_for_java_call(slow_call);
3707   return slow_call;
3708 }
3709 
3710 
3711 //------------------------------inline_native_hashcode--------------------
3712 // Build special case code for calls to hashCode on an object.
3713 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3714   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3715   assert(!(is_virtual && is_static), "either virtual, special, or static");
3716 
3717   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3718 
3719   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3720   PhiNode*    result_val = new(C) PhiNode(result_reg,
3721                                           TypeInt::INT);
3722   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3723   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3724                                           TypePtr::BOTTOM);
3725   Node* obj = NULL;
3726   if (!is_static) {
3727     // Check for hashing null object
3728     obj = null_check_receiver();
3729     if (stopped())  return true;        // unconditionally null
3730     result_reg->init_req(_null_path, top());
3731     result_val->init_req(_null_path, top());
3732   } else {
3733     // Do a null check, and return zero if null.
3734     // System.identityHashCode(null) == 0
3735     obj = argument(0);
3736     Node* null_ctl = top();
3737     obj = null_check_oop(obj, &null_ctl);
3738     result_reg->init_req(_null_path, null_ctl);
3739     result_val->init_req(_null_path, _gvn.intcon(0));
3740   }
3741 
3742   // Unconditionally null?  Then return right away.
3743   if (stopped()) {
3744     set_control( result_reg->in(_null_path));
3745     if (!stopped())
3746       set_result(result_val->in(_null_path));
3747     return true;
3748   }
3749 
3750   // After null check, get the object's klass.
3751   Node* obj_klass = load_object_klass(obj);
3752 
3753   // This call may be virtual (invokevirtual) or bound (invokespecial).
3754   // For each case we generate slightly different code.
3755 
3756   // We only go to the fast case code if we pass a number of guards.  The
3757   // paths which do not pass are accumulated in the slow_region.
3758   RegionNode* slow_region = new (C) RegionNode(1);
3759   record_for_igvn(slow_region);
3760 
3761   // If this is a virtual call, we generate a funny guard.  We pull out
3762   // the vtable entry corresponding to hashCode() from the target object.
3763   // If the target method which we are calling happens to be the native
3764   // Object hashCode() method, we pass the guard.  We do not need this
3765   // guard for non-virtual calls -- the caller is known to be the native
3766   // Object hashCode().
3767   if (is_virtual) {
3768     generate_virtual_guard(obj_klass, slow_region);
3769   }
3770 
3771   // Get the header out of the object, use LoadMarkNode when available
3772   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3773   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3774 
3775   // Test the header to see if it is unlocked.
3776   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3777   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
3778   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3779   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
3780   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
3781 
3782   generate_slow_guard(test_unlocked, slow_region);
3783 
3784   // Get the hash value and check to see that it has been properly assigned.
3785   // We depend on hash_mask being at most 32 bits and avoid the use of
3786   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3787   // vm: see markOop.hpp.
3788   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3789   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3790   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
3791   // This hack lets the hash bits live anywhere in the mark object now, as long
3792   // as the shift drops the relevant bits into the low 32 bits.  Note that
3793   // Java spec says that HashCode is an int so there's no point in capturing
3794   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3795   hshifted_header      = ConvX2I(hshifted_header);
3796   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
3797 
3798   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3799   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
3800   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
3801 
3802   generate_slow_guard(test_assigned, slow_region);
3803 
3804   Node* init_mem = reset_memory();
3805   // fill in the rest of the null path:
3806   result_io ->init_req(_null_path, i_o());
3807   result_mem->init_req(_null_path, init_mem);
3808 
3809   result_val->init_req(_fast_path, hash_val);
3810   result_reg->init_req(_fast_path, control());
3811   result_io ->init_req(_fast_path, i_o());
3812   result_mem->init_req(_fast_path, init_mem);
3813 
3814   // Generate code for the slow case.  We make a call to hashCode().
3815   set_control(_gvn.transform(slow_region));
3816   if (!stopped()) {
3817     // No need for PreserveJVMState, because we're using up the present state.
3818     set_all_memory(init_mem);
3819     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3820     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3821     Node* slow_result = set_results_for_java_call(slow_call);
3822     // this->control() comes from set_results_for_java_call
3823     result_reg->init_req(_slow_path, control());
3824     result_val->init_req(_slow_path, slow_result);
3825     result_io  ->set_req(_slow_path, i_o());
3826     result_mem ->set_req(_slow_path, reset_memory());
3827   }
3828 
3829   // Return the combined state.
3830   set_i_o(        _gvn.transform(result_io)  );
3831   set_all_memory( _gvn.transform(result_mem) );
3832 
3833   set_result(result_reg, result_val);
3834   return true;
3835 }
3836 
3837 //---------------------------inline_native_getClass----------------------------
3838 // public final native Class<?> java.lang.Object.getClass();
3839 //
3840 // Build special case code for calls to getClass on an object.
3841 bool LibraryCallKit::inline_native_getClass() {
3842   Node* obj = null_check_receiver();
3843   if (stopped())  return true;
3844   set_result(load_mirror_from_klass(load_object_klass(obj)));
3845   return true;
3846 }
3847 
3848 //-----------------inline_native_Reflection_getCallerClass---------------------
3849 // public static native Class<?> sun.reflect.Reflection.getCallerClass(int realFramesToSkip);
3850 //
3851 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3852 //
3853 // NOTE that this code must perform the same logic as
3854 // vframeStream::security_get_caller_frame in that it must skip
3855 // Method.invoke() and auxiliary frames.
3856 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3857 #ifndef PRODUCT
3858   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3859     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3860   }
3861 #endif
3862 
3863   Node* caller_depth_node = argument(0);
3864 
3865   // The depth value must be a constant in order for the runtime call
3866   // to be eliminated.
3867   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3868   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3869 #ifndef PRODUCT
3870     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3871       tty->print_cr("  Bailing out because caller depth was not a constant");
3872     }
3873 #endif
3874     return false;
3875   }
3876   // Note that the JVM state at this point does not include the
3877   // getCallerClass() frame which we are trying to inline. The
3878   // semantics of getCallerClass(), however, are that the "first"
3879   // frame is the getCallerClass() frame, so we subtract one from the
3880   // requested depth before continuing. We don't inline requests of
3881   // getCallerClass(0).
3882   int caller_depth = caller_depth_type->get_con() - 1;
3883   if (caller_depth < 0) {
3884 #ifndef PRODUCT
3885     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3886       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3887     }
3888 #endif
3889     return false;
3890   }
3891 
3892   if (!jvms()->has_method()) {
3893 #ifndef PRODUCT
3894     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3895       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3896     }
3897 #endif
3898     return false;
3899   }
3900   int _depth = jvms()->depth();  // cache call chain depth
3901 
3902   // Walk back up the JVM state to find the caller at the required
3903   // depth. NOTE that this code must perform the same logic as
3904   // vframeStream::security_get_caller_frame in that it must skip
3905   // Method.invoke() and auxiliary frames. Note also that depth is
3906   // 1-based (1 is the bottom of the inlining).
3907   int inlining_depth = _depth;
3908   JVMState* caller_jvms = NULL;
3909 
3910   if (inlining_depth > 0) {
3911     caller_jvms = jvms();
3912     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3913     do {
3914       // The following if-tests should be performed in this order
3915       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3916         // Skip a Method.invoke() or auxiliary frame
3917       } else if (caller_depth > 0) {
3918         // Skip real frame
3919         --caller_depth;
3920       } else {
3921         // We're done: reached desired caller after skipping.
3922         break;
3923       }
3924       caller_jvms = caller_jvms->caller();
3925       --inlining_depth;
3926     } while (inlining_depth > 0);
3927   }
3928 
3929   if (inlining_depth == 0) {
3930 #ifndef PRODUCT
3931     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3932       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3933       tty->print_cr("  JVM state at this point:");
3934       for (int i = _depth; i >= 1; i--) {
3935         ciMethod* m = jvms()->of_depth(i)->method();
3936         tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3937       }
3938     }
3939 #endif
3940     return false; // Reached end of inlining
3941   }
3942 
3943   // Acquire method holder as java.lang.Class
3944   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3945   ciInstance*      caller_mirror = caller_klass->java_mirror();
3946 
3947   // Push this as a constant
3948   set_result(makecon(TypeInstPtr::make(caller_mirror)));
3949 
3950 #ifndef PRODUCT
3951   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3952     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3953     tty->print_cr("  JVM state at this point:");
3954     for (int i = _depth; i >= 1; i--) {
3955       ciMethod* m = jvms()->of_depth(i)->method();
3956       tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3957     }
3958   }
3959 #endif
3960   return true;
3961 }
3962 
3963 // Helper routine for above
3964 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3965   ciMethod* method = jvms->method();
3966 
3967   // Is this the Method.invoke method itself?
3968   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3969     return true;
3970 
3971   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3972   ciKlass* k = method->holder();
3973   if (k->is_instance_klass()) {
3974     ciInstanceKlass* ik = k->as_instance_klass();
3975     for (; ik != NULL; ik = ik->super()) {
3976       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3977           ik == env()->find_system_klass(ik->name())) {
3978         return true;
3979       }
3980     }
3981   }
3982   else if (method->is_method_handle_intrinsic() ||
3983            method->is_compiled_lambda_form()) {
3984     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3985     return true;
3986   }
3987 
3988   return false;
3989 }
3990 
3991 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3992   Node* arg = argument(0);
3993   Node* result;
3994 
3995   switch (id) {
3996   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
3997   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
3998   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
3999   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4000 
4001   case vmIntrinsics::_doubleToLongBits: {
4002     // two paths (plus control) merge in a wood
4003     RegionNode *r = new (C) RegionNode(3);
4004     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4005 
4006     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4007     // Build the boolean node
4008     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4009 
4010     // Branch either way.
4011     // NaN case is less traveled, which makes all the difference.
4012     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4013     Node *opt_isnan = _gvn.transform(ifisnan);
4014     assert( opt_isnan->is_If(), "Expect an IfNode");
4015     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4016     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4017 
4018     set_control(iftrue);
4019 
4020     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4021     Node *slow_result = longcon(nan_bits); // return NaN
4022     phi->init_req(1, _gvn.transform( slow_result ));
4023     r->init_req(1, iftrue);
4024 
4025     // Else fall through
4026     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4027     set_control(iffalse);
4028 
4029     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4030     r->init_req(2, iffalse);
4031 
4032     // Post merge
4033     set_control(_gvn.transform(r));
4034     record_for_igvn(r);
4035 
4036     C->set_has_split_ifs(true); // Has chance for split-if optimization
4037     result = phi;
4038     assert(result->bottom_type()->isa_long(), "must be");
4039     break;
4040   }
4041 
4042   case vmIntrinsics::_floatToIntBits: {
4043     // two paths (plus control) merge in a wood
4044     RegionNode *r = new (C) RegionNode(3);
4045     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4046 
4047     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4048     // Build the boolean node
4049     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4050 
4051     // Branch either way.
4052     // NaN case is less traveled, which makes all the difference.
4053     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4054     Node *opt_isnan = _gvn.transform(ifisnan);
4055     assert( opt_isnan->is_If(), "Expect an IfNode");
4056     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4057     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4058 
4059     set_control(iftrue);
4060 
4061     static const jint nan_bits = 0x7fc00000;
4062     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4063     phi->init_req(1, _gvn.transform( slow_result ));
4064     r->init_req(1, iftrue);
4065 
4066     // Else fall through
4067     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4068     set_control(iffalse);
4069 
4070     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4071     r->init_req(2, iffalse);
4072 
4073     // Post merge
4074     set_control(_gvn.transform(r));
4075     record_for_igvn(r);
4076 
4077     C->set_has_split_ifs(true); // Has chance for split-if optimization
4078     result = phi;
4079     assert(result->bottom_type()->isa_int(), "must be");
4080     break;
4081   }
4082 
4083   default:
4084     fatal_unexpected_iid(id);
4085     break;
4086   }
4087   set_result(_gvn.transform(result));
4088   return true;
4089 }
4090 
4091 #ifdef _LP64
4092 #define XTOP ,top() /*additional argument*/
4093 #else  //_LP64
4094 #define XTOP        /*no additional argument*/
4095 #endif //_LP64
4096 
4097 //----------------------inline_unsafe_copyMemory-------------------------
4098 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4099 bool LibraryCallKit::inline_unsafe_copyMemory() {
4100   if (callee()->is_static())  return false;  // caller must have the capability!
4101   null_check_receiver();  // null-check receiver
4102   if (stopped())  return true;
4103 
4104   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4105 
4106   Node* src_ptr =         argument(1);   // type: oop
4107   Node* src_off = ConvL2X(argument(2));  // type: long
4108   Node* dst_ptr =         argument(4);   // type: oop
4109   Node* dst_off = ConvL2X(argument(5));  // type: long
4110   Node* size    = ConvL2X(argument(7));  // type: long
4111 
4112   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4113          "fieldOffset must be byte-scaled");
4114 
4115   Node* src = make_unsafe_address(src_ptr, src_off);
4116   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4117 
4118   // Conservatively insert a memory barrier on all memory slices.
4119   // Do not let writes of the copy source or destination float below the copy.
4120   insert_mem_bar(Op_MemBarCPUOrder);
4121 
4122   // Call it.  Note that the length argument is not scaled.
4123   make_runtime_call(RC_LEAF|RC_NO_FP,
4124                     OptoRuntime::fast_arraycopy_Type(),
4125                     StubRoutines::unsafe_arraycopy(),
4126                     "unsafe_arraycopy",
4127                     TypeRawPtr::BOTTOM,
4128                     src, dst, size XTOP);
4129 
4130   // Do not let reads of the copy destination float above the copy.
4131   insert_mem_bar(Op_MemBarCPUOrder);
4132 
4133   return true;
4134 }
4135 
4136 //------------------------clone_coping-----------------------------------
4137 // Helper function for inline_native_clone.
4138 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4139   assert(obj_size != NULL, "");
4140   Node* raw_obj = alloc_obj->in(1);
4141   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4142 
4143   AllocateNode* alloc = NULL;
4144   if (ReduceBulkZeroing) {
4145     // We will be completely responsible for initializing this object -
4146     // mark Initialize node as complete.
4147     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4148     // The object was just allocated - there should be no any stores!
4149     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4150     // Mark as complete_with_arraycopy so that on AllocateNode
4151     // expansion, we know this AllocateNode is initialized by an array
4152     // copy and a StoreStore barrier exists after the array copy.
4153     alloc->initialization()->set_complete_with_arraycopy();
4154   }
4155 
4156   // Copy the fastest available way.
4157   // TODO: generate fields copies for small objects instead.
4158   Node* src  = obj;
4159   Node* dest = alloc_obj;
4160   Node* size = _gvn.transform(obj_size);
4161 
4162   // Exclude the header but include array length to copy by 8 bytes words.
4163   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4164   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4165                             instanceOopDesc::base_offset_in_bytes();
4166   // base_off:
4167   // 8  - 32-bit VM
4168   // 12 - 64-bit VM, compressed klass
4169   // 16 - 64-bit VM, normal klass
4170   if (base_off % BytesPerLong != 0) {
4171     assert(UseCompressedKlassPointers, "");
4172     if (is_array) {
4173       // Exclude length to copy by 8 bytes words.
4174       base_off += sizeof(int);
4175     } else {
4176       // Include klass to copy by 8 bytes words.
4177       base_off = instanceOopDesc::klass_offset_in_bytes();
4178     }
4179     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4180   }
4181   src  = basic_plus_adr(src,  base_off);
4182   dest = basic_plus_adr(dest, base_off);
4183 
4184   // Compute the length also, if needed:
4185   Node* countx = size;
4186   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
4187   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4188 
4189   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4190   bool disjoint_bases = true;
4191   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4192                                src, NULL, dest, NULL, countx,
4193                                /*dest_uninitialized*/true);
4194 
4195   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4196   if (card_mark) {
4197     assert(!is_array, "");
4198     // Put in store barrier for any and all oops we are sticking
4199     // into this object.  (We could avoid this if we could prove
4200     // that the object type contains no oop fields at all.)
4201     Node* no_particular_value = NULL;
4202     Node* no_particular_field = NULL;
4203     int raw_adr_idx = Compile::AliasIdxRaw;
4204     post_barrier(control(),
4205                  memory(raw_adr_type),
4206                  alloc_obj,
4207                  no_particular_field,
4208                  raw_adr_idx,
4209                  no_particular_value,
4210                  T_OBJECT,
4211                  false);
4212   }
4213 
4214   // Do not let reads from the cloned object float above the arraycopy.
4215   if (alloc != NULL) {
4216     // Do not let stores that initialize this object be reordered with
4217     // a subsequent store that would make this object accessible by
4218     // other threads.
4219     // Record what AllocateNode this StoreStore protects so that
4220     // escape analysis can go from the MemBarStoreStoreNode to the
4221     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4222     // based on the escape status of the AllocateNode.
4223     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4224   } else {
4225     insert_mem_bar(Op_MemBarCPUOrder);
4226   }
4227 }
4228 
4229 //------------------------inline_native_clone----------------------------
4230 // protected native Object java.lang.Object.clone();
4231 //
4232 // Here are the simple edge cases:
4233 //  null receiver => normal trap
4234 //  virtual and clone was overridden => slow path to out-of-line clone
4235 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4236 //
4237 // The general case has two steps, allocation and copying.
4238 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4239 //
4240 // Copying also has two cases, oop arrays and everything else.
4241 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4242 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4243 //
4244 // These steps fold up nicely if and when the cloned object's klass
4245 // can be sharply typed as an object array, a type array, or an instance.
4246 //
4247 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4248   PhiNode* result_val;
4249 
4250   // Set the reexecute bit for the interpreter to reexecute
4251   // the bytecode that invokes Object.clone if deoptimization happens.
4252   { PreserveReexecuteState preexecs(this);
4253     jvms()->set_should_reexecute(true);
4254 
4255     Node* obj = null_check_receiver();
4256     if (stopped())  return true;
4257 
4258     Node* obj_klass = load_object_klass(obj);
4259     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4260     const TypeOopPtr*   toop   = ((tklass != NULL)
4261                                 ? tklass->as_instance_type()
4262                                 : TypeInstPtr::NOTNULL);
4263 
4264     // Conservatively insert a memory barrier on all memory slices.
4265     // Do not let writes into the original float below the clone.
4266     insert_mem_bar(Op_MemBarCPUOrder);
4267 
4268     // paths into result_reg:
4269     enum {
4270       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4271       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4272       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4273       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4274       PATH_LIMIT
4275     };
4276     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4277     result_val             = new(C) PhiNode(result_reg,
4278                                             TypeInstPtr::NOTNULL);
4279     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4280     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4281                                             TypePtr::BOTTOM);
4282     record_for_igvn(result_reg);
4283 
4284     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4285     int raw_adr_idx = Compile::AliasIdxRaw;
4286 
4287     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4288     if (array_ctl != NULL) {
4289       // It's an array.
4290       PreserveJVMState pjvms(this);
4291       set_control(array_ctl);
4292       Node* obj_length = load_array_length(obj);
4293       Node* obj_size  = NULL;
4294       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4295 
4296       if (!use_ReduceInitialCardMarks()) {
4297         // If it is an oop array, it requires very special treatment,
4298         // because card marking is required on each card of the array.
4299         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4300         if (is_obja != NULL) {
4301           PreserveJVMState pjvms2(this);
4302           set_control(is_obja);
4303           // Generate a direct call to the right arraycopy function(s).
4304           bool disjoint_bases = true;
4305           bool length_never_negative = true;
4306           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4307                              obj, intcon(0), alloc_obj, intcon(0),
4308                              obj_length,
4309                              disjoint_bases, length_never_negative);
4310           result_reg->init_req(_objArray_path, control());
4311           result_val->init_req(_objArray_path, alloc_obj);
4312           result_i_o ->set_req(_objArray_path, i_o());
4313           result_mem ->set_req(_objArray_path, reset_memory());
4314         }
4315       }
4316       // Otherwise, there are no card marks to worry about.
4317       // (We can dispense with card marks if we know the allocation
4318       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4319       //  causes the non-eden paths to take compensating steps to
4320       //  simulate a fresh allocation, so that no further
4321       //  card marks are required in compiled code to initialize
4322       //  the object.)
4323 
4324       if (!stopped()) {
4325         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4326 
4327         // Present the results of the copy.
4328         result_reg->init_req(_array_path, control());
4329         result_val->init_req(_array_path, alloc_obj);
4330         result_i_o ->set_req(_array_path, i_o());
4331         result_mem ->set_req(_array_path, reset_memory());
4332       }
4333     }
4334 
4335     // We only go to the instance fast case code if we pass a number of guards.
4336     // The paths which do not pass are accumulated in the slow_region.
4337     RegionNode* slow_region = new (C) RegionNode(1);
4338     record_for_igvn(slow_region);
4339     if (!stopped()) {
4340       // It's an instance (we did array above).  Make the slow-path tests.
4341       // If this is a virtual call, we generate a funny guard.  We grab
4342       // the vtable entry corresponding to clone() from the target object.
4343       // If the target method which we are calling happens to be the
4344       // Object clone() method, we pass the guard.  We do not need this
4345       // guard for non-virtual calls; the caller is known to be the native
4346       // Object clone().
4347       if (is_virtual) {
4348         generate_virtual_guard(obj_klass, slow_region);
4349       }
4350 
4351       // The object must be cloneable and must not have a finalizer.
4352       // Both of these conditions may be checked in a single test.
4353       // We could optimize the cloneable test further, but we don't care.
4354       generate_access_flags_guard(obj_klass,
4355                                   // Test both conditions:
4356                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4357                                   // Must be cloneable but not finalizer:
4358                                   JVM_ACC_IS_CLONEABLE,
4359                                   slow_region);
4360     }
4361 
4362     if (!stopped()) {
4363       // It's an instance, and it passed the slow-path tests.
4364       PreserveJVMState pjvms(this);
4365       Node* obj_size  = NULL;
4366       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4367 
4368       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4369 
4370       // Present the results of the slow call.
4371       result_reg->init_req(_instance_path, control());
4372       result_val->init_req(_instance_path, alloc_obj);
4373       result_i_o ->set_req(_instance_path, i_o());
4374       result_mem ->set_req(_instance_path, reset_memory());
4375     }
4376 
4377     // Generate code for the slow case.  We make a call to clone().
4378     set_control(_gvn.transform(slow_region));
4379     if (!stopped()) {
4380       PreserveJVMState pjvms(this);
4381       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4382       Node* slow_result = set_results_for_java_call(slow_call);
4383       // this->control() comes from set_results_for_java_call
4384       result_reg->init_req(_slow_path, control());
4385       result_val->init_req(_slow_path, slow_result);
4386       result_i_o ->set_req(_slow_path, i_o());
4387       result_mem ->set_req(_slow_path, reset_memory());
4388     }
4389 
4390     // Return the combined state.
4391     set_control(    _gvn.transform(result_reg) );
4392     set_i_o(        _gvn.transform(result_i_o) );
4393     set_all_memory( _gvn.transform(result_mem) );
4394   } // original reexecute is set back here
4395 
4396   set_result(_gvn.transform(result_val));
4397   return true;
4398 }
4399 
4400 //------------------------------basictype2arraycopy----------------------------
4401 address LibraryCallKit::basictype2arraycopy(BasicType t,
4402                                             Node* src_offset,
4403                                             Node* dest_offset,
4404                                             bool disjoint_bases,
4405                                             const char* &name,
4406                                             bool dest_uninitialized) {
4407   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4408   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4409 
4410   bool aligned = false;
4411   bool disjoint = disjoint_bases;
4412 
4413   // if the offsets are the same, we can treat the memory regions as
4414   // disjoint, because either the memory regions are in different arrays,
4415   // or they are identical (which we can treat as disjoint.)  We can also
4416   // treat a copy with a destination index  less that the source index
4417   // as disjoint since a low->high copy will work correctly in this case.
4418   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4419       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4420     // both indices are constants
4421     int s_offs = src_offset_inttype->get_con();
4422     int d_offs = dest_offset_inttype->get_con();
4423     int element_size = type2aelembytes(t);
4424     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4425               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4426     if (s_offs >= d_offs)  disjoint = true;
4427   } else if (src_offset == dest_offset && src_offset != NULL) {
4428     // This can occur if the offsets are identical non-constants.
4429     disjoint = true;
4430   }
4431 
4432   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4433 }
4434 
4435 
4436 //------------------------------inline_arraycopy-----------------------
4437 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4438 //                                                      Object dest, int destPos,
4439 //                                                      int length);
4440 bool LibraryCallKit::inline_arraycopy() {
4441   // Get the arguments.
4442   Node* src         = argument(0);  // type: oop
4443   Node* src_offset  = argument(1);  // type: int
4444   Node* dest        = argument(2);  // type: oop
4445   Node* dest_offset = argument(3);  // type: int
4446   Node* length      = argument(4);  // type: int
4447 
4448   // Compile time checks.  If any of these checks cannot be verified at compile time,
4449   // we do not make a fast path for this call.  Instead, we let the call remain as it
4450   // is.  The checks we choose to mandate at compile time are:
4451   //
4452   // (1) src and dest are arrays.
4453   const Type* src_type  = src->Value(&_gvn);
4454   const Type* dest_type = dest->Value(&_gvn);
4455   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4456   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4457   if (top_src  == NULL || top_src->klass()  == NULL ||
4458       top_dest == NULL || top_dest->klass() == NULL) {
4459     // Conservatively insert a memory barrier on all memory slices.
4460     // Do not let writes into the source float below the arraycopy.
4461     insert_mem_bar(Op_MemBarCPUOrder);
4462 
4463     // Call StubRoutines::generic_arraycopy stub.
4464     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4465                        src, src_offset, dest, dest_offset, length);
4466 
4467     // Do not let reads from the destination float above the arraycopy.
4468     // Since we cannot type the arrays, we don't know which slices
4469     // might be affected.  We could restrict this barrier only to those
4470     // memory slices which pertain to array elements--but don't bother.
4471     if (!InsertMemBarAfterArraycopy)
4472       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4473       insert_mem_bar(Op_MemBarCPUOrder);
4474     return true;
4475   }
4476 
4477   // (2) src and dest arrays must have elements of the same BasicType
4478   // Figure out the size and type of the elements we will be copying.
4479   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4480   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4481   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4482   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4483 
4484   if (src_elem != dest_elem || dest_elem == T_VOID) {
4485     // The component types are not the same or are not recognized.  Punt.
4486     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4487     generate_slow_arraycopy(TypePtr::BOTTOM,
4488                             src, src_offset, dest, dest_offset, length,
4489                             /*dest_uninitialized*/false);
4490     return true;
4491   }
4492 
4493   //---------------------------------------------------------------------------
4494   // We will make a fast path for this call to arraycopy.
4495 
4496   // We have the following tests left to perform:
4497   //
4498   // (3) src and dest must not be null.
4499   // (4) src_offset must not be negative.
4500   // (5) dest_offset must not be negative.
4501   // (6) length must not be negative.
4502   // (7) src_offset + length must not exceed length of src.
4503   // (8) dest_offset + length must not exceed length of dest.
4504   // (9) each element of an oop array must be assignable
4505 
4506   RegionNode* slow_region = new (C) RegionNode(1);
4507   record_for_igvn(slow_region);
4508 
4509   // (3) operands must not be null
4510   // We currently perform our null checks with the null_check routine.
4511   // This means that the null exceptions will be reported in the caller
4512   // rather than (correctly) reported inside of the native arraycopy call.
4513   // This should be corrected, given time.  We do our null check with the
4514   // stack pointer restored.
4515   src  = null_check(src,  T_ARRAY);
4516   dest = null_check(dest, T_ARRAY);
4517 
4518   // (4) src_offset must not be negative.
4519   generate_negative_guard(src_offset, slow_region);
4520 
4521   // (5) dest_offset must not be negative.
4522   generate_negative_guard(dest_offset, slow_region);
4523 
4524   // (6) length must not be negative (moved to generate_arraycopy()).
4525   // generate_negative_guard(length, slow_region);
4526 
4527   // (7) src_offset + length must not exceed length of src.
4528   generate_limit_guard(src_offset, length,
4529                        load_array_length(src),
4530                        slow_region);
4531 
4532   // (8) dest_offset + length must not exceed length of dest.
4533   generate_limit_guard(dest_offset, length,
4534                        load_array_length(dest),
4535                        slow_region);
4536 
4537   // (9) each element of an oop array must be assignable
4538   // The generate_arraycopy subroutine checks this.
4539 
4540   // This is where the memory effects are placed:
4541   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4542   generate_arraycopy(adr_type, dest_elem,
4543                      src, src_offset, dest, dest_offset, length,
4544                      false, false, slow_region);
4545 
4546   return true;
4547 }
4548 
4549 //-----------------------------generate_arraycopy----------------------
4550 // Generate an optimized call to arraycopy.
4551 // Caller must guard against non-arrays.
4552 // Caller must determine a common array basic-type for both arrays.
4553 // Caller must validate offsets against array bounds.
4554 // The slow_region has already collected guard failure paths
4555 // (such as out of bounds length or non-conformable array types).
4556 // The generated code has this shape, in general:
4557 //
4558 //     if (length == 0)  return   // via zero_path
4559 //     slowval = -1
4560 //     if (types unknown) {
4561 //       slowval = call generic copy loop
4562 //       if (slowval == 0)  return  // via checked_path
4563 //     } else if (indexes in bounds) {
4564 //       if ((is object array) && !(array type check)) {
4565 //         slowval = call checked copy loop
4566 //         if (slowval == 0)  return  // via checked_path
4567 //       } else {
4568 //         call bulk copy loop
4569 //         return  // via fast_path
4570 //       }
4571 //     }
4572 //     // adjust params for remaining work:
4573 //     if (slowval != -1) {
4574 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4575 //     }
4576 //   slow_region:
4577 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4578 //     return  // via slow_call_path
4579 //
4580 // This routine is used from several intrinsics:  System.arraycopy,
4581 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4582 //
4583 void
4584 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4585                                    BasicType basic_elem_type,
4586                                    Node* src,  Node* src_offset,
4587                                    Node* dest, Node* dest_offset,
4588                                    Node* copy_length,
4589                                    bool disjoint_bases,
4590                                    bool length_never_negative,
4591                                    RegionNode* slow_region) {
4592 
4593   if (slow_region == NULL) {
4594     slow_region = new(C) RegionNode(1);
4595     record_for_igvn(slow_region);
4596   }
4597 
4598   Node* original_dest      = dest;
4599   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4600   bool  dest_uninitialized = false;
4601 
4602   // See if this is the initialization of a newly-allocated array.
4603   // If so, we will take responsibility here for initializing it to zero.
4604   // (Note:  Because tightly_coupled_allocation performs checks on the
4605   // out-edges of the dest, we need to avoid making derived pointers
4606   // from it until we have checked its uses.)
4607   if (ReduceBulkZeroing
4608       && !ZeroTLAB              // pointless if already zeroed
4609       && basic_elem_type != T_CONFLICT // avoid corner case
4610       && !src->eqv_uncast(dest)
4611       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4612           != NULL)
4613       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4614       && alloc->maybe_set_complete(&_gvn)) {
4615     // "You break it, you buy it."
4616     InitializeNode* init = alloc->initialization();
4617     assert(init->is_complete(), "we just did this");
4618     init->set_complete_with_arraycopy();
4619     assert(dest->is_CheckCastPP(), "sanity");
4620     assert(dest->in(0)->in(0) == init, "dest pinned");
4621     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4622     // From this point on, every exit path is responsible for
4623     // initializing any non-copied parts of the object to zero.
4624     // Also, if this flag is set we make sure that arraycopy interacts properly
4625     // with G1, eliding pre-barriers. See CR 6627983.
4626     dest_uninitialized = true;
4627   } else {
4628     // No zeroing elimination here.
4629     alloc             = NULL;
4630     //original_dest   = dest;
4631     //dest_uninitialized = false;
4632   }
4633 
4634   // Results are placed here:
4635   enum { fast_path        = 1,  // normal void-returning assembly stub
4636          checked_path     = 2,  // special assembly stub with cleanup
4637          slow_call_path   = 3,  // something went wrong; call the VM
4638          zero_path        = 4,  // bypass when length of copy is zero
4639          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4640          PATH_LIMIT       = 6
4641   };
4642   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4643   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4644   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4645   record_for_igvn(result_region);
4646   _gvn.set_type_bottom(result_i_o);
4647   _gvn.set_type_bottom(result_memory);
4648   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4649 
4650   // The slow_control path:
4651   Node* slow_control;
4652   Node* slow_i_o = i_o();
4653   Node* slow_mem = memory(adr_type);
4654   debug_only(slow_control = (Node*) badAddress);
4655 
4656   // Checked control path:
4657   Node* checked_control = top();
4658   Node* checked_mem     = NULL;
4659   Node* checked_i_o     = NULL;
4660   Node* checked_value   = NULL;
4661 
4662   if (basic_elem_type == T_CONFLICT) {
4663     assert(!dest_uninitialized, "");
4664     Node* cv = generate_generic_arraycopy(adr_type,
4665                                           src, src_offset, dest, dest_offset,
4666                                           copy_length, dest_uninitialized);
4667     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4668     checked_control = control();
4669     checked_i_o     = i_o();
4670     checked_mem     = memory(adr_type);
4671     checked_value   = cv;
4672     set_control(top());         // no fast path
4673   }
4674 
4675   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4676   if (not_pos != NULL) {
4677     PreserveJVMState pjvms(this);
4678     set_control(not_pos);
4679 
4680     // (6) length must not be negative.
4681     if (!length_never_negative) {
4682       generate_negative_guard(copy_length, slow_region);
4683     }
4684 
4685     // copy_length is 0.
4686     if (!stopped() && dest_uninitialized) {
4687       Node* dest_length = alloc->in(AllocateNode::ALength);
4688       if (copy_length->eqv_uncast(dest_length)
4689           || _gvn.find_int_con(dest_length, 1) <= 0) {
4690         // There is no zeroing to do. No need for a secondary raw memory barrier.
4691       } else {
4692         // Clear the whole thing since there are no source elements to copy.
4693         generate_clear_array(adr_type, dest, basic_elem_type,
4694                              intcon(0), NULL,
4695                              alloc->in(AllocateNode::AllocSize));
4696         // Use a secondary InitializeNode as raw memory barrier.
4697         // Currently it is needed only on this path since other
4698         // paths have stub or runtime calls as raw memory barriers.
4699         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4700                                                        Compile::AliasIdxRaw,
4701                                                        top())->as_Initialize();
4702         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4703       }
4704     }
4705 
4706     // Present the results of the fast call.
4707     result_region->init_req(zero_path, control());
4708     result_i_o   ->init_req(zero_path, i_o());
4709     result_memory->init_req(zero_path, memory(adr_type));
4710   }
4711 
4712   if (!stopped() && dest_uninitialized) {
4713     // We have to initialize the *uncopied* part of the array to zero.
4714     // The copy destination is the slice dest[off..off+len].  The other slices
4715     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4716     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4717     Node* dest_length = alloc->in(AllocateNode::ALength);
4718     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
4719                                                           copy_length) );
4720 
4721     // If there is a head section that needs zeroing, do it now.
4722     if (find_int_con(dest_offset, -1) != 0) {
4723       generate_clear_array(adr_type, dest, basic_elem_type,
4724                            intcon(0), dest_offset,
4725                            NULL);
4726     }
4727 
4728     // Next, perform a dynamic check on the tail length.
4729     // It is often zero, and we can win big if we prove this.
4730     // There are two wins:  Avoid generating the ClearArray
4731     // with its attendant messy index arithmetic, and upgrade
4732     // the copy to a more hardware-friendly word size of 64 bits.
4733     Node* tail_ctl = NULL;
4734     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4735       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
4736       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
4737       tail_ctl = generate_slow_guard(bol_lt, NULL);
4738       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4739     }
4740 
4741     // At this point, let's assume there is no tail.
4742     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4743       // There is no tail.  Try an upgrade to a 64-bit copy.
4744       bool didit = false;
4745       { PreserveJVMState pjvms(this);
4746         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4747                                          src, src_offset, dest, dest_offset,
4748                                          dest_size, dest_uninitialized);
4749         if (didit) {
4750           // Present the results of the block-copying fast call.
4751           result_region->init_req(bcopy_path, control());
4752           result_i_o   ->init_req(bcopy_path, i_o());
4753           result_memory->init_req(bcopy_path, memory(adr_type));
4754         }
4755       }
4756       if (didit)
4757         set_control(top());     // no regular fast path
4758     }
4759 
4760     // Clear the tail, if any.
4761     if (tail_ctl != NULL) {
4762       Node* notail_ctl = stopped() ? NULL : control();
4763       set_control(tail_ctl);
4764       if (notail_ctl == NULL) {
4765         generate_clear_array(adr_type, dest, basic_elem_type,
4766                              dest_tail, NULL,
4767                              dest_size);
4768       } else {
4769         // Make a local merge.
4770         Node* done_ctl = new(C) RegionNode(3);
4771         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4772         done_ctl->init_req(1, notail_ctl);
4773         done_mem->init_req(1, memory(adr_type));
4774         generate_clear_array(adr_type, dest, basic_elem_type,
4775                              dest_tail, NULL,
4776                              dest_size);
4777         done_ctl->init_req(2, control());
4778         done_mem->init_req(2, memory(adr_type));
4779         set_control( _gvn.transform(done_ctl) );
4780         set_memory(  _gvn.transform(done_mem), adr_type );
4781       }
4782     }
4783   }
4784 
4785   BasicType copy_type = basic_elem_type;
4786   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4787   if (!stopped() && copy_type == T_OBJECT) {
4788     // If src and dest have compatible element types, we can copy bits.
4789     // Types S[] and D[] are compatible if D is a supertype of S.
4790     //
4791     // If they are not, we will use checked_oop_disjoint_arraycopy,
4792     // which performs a fast optimistic per-oop check, and backs off
4793     // further to JVM_ArrayCopy on the first per-oop check that fails.
4794     // (Actually, we don't move raw bits only; the GC requires card marks.)
4795 
4796     // Get the Klass* for both src and dest
4797     Node* src_klass  = load_object_klass(src);
4798     Node* dest_klass = load_object_klass(dest);
4799 
4800     // Generate the subtype check.
4801     // This might fold up statically, or then again it might not.
4802     //
4803     // Non-static example:  Copying List<String>.elements to a new String[].
4804     // The backing store for a List<String> is always an Object[],
4805     // but its elements are always type String, if the generic types
4806     // are correct at the source level.
4807     //
4808     // Test S[] against D[], not S against D, because (probably)
4809     // the secondary supertype cache is less busy for S[] than S.
4810     // This usually only matters when D is an interface.
4811     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4812     // Plug failing path into checked_oop_disjoint_arraycopy
4813     if (not_subtype_ctrl != top()) {
4814       PreserveJVMState pjvms(this);
4815       set_control(not_subtype_ctrl);
4816       // (At this point we can assume disjoint_bases, since types differ.)
4817       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
4818       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4819       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4820       Node* dest_elem_klass = _gvn.transform(n1);
4821       Node* cv = generate_checkcast_arraycopy(adr_type,
4822                                               dest_elem_klass,
4823                                               src, src_offset, dest, dest_offset,
4824                                               ConvI2X(copy_length), dest_uninitialized);
4825       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4826       checked_control = control();
4827       checked_i_o     = i_o();
4828       checked_mem     = memory(adr_type);
4829       checked_value   = cv;
4830     }
4831     // At this point we know we do not need type checks on oop stores.
4832 
4833     // Let's see if we need card marks:
4834     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4835       // If we do not need card marks, copy using the jint or jlong stub.
4836       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4837       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4838              "sizes agree");
4839     }
4840   }
4841 
4842   if (!stopped()) {
4843     // Generate the fast path, if possible.
4844     PreserveJVMState pjvms(this);
4845     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4846                                  src, src_offset, dest, dest_offset,
4847                                  ConvI2X(copy_length), dest_uninitialized);
4848 
4849     // Present the results of the fast call.
4850     result_region->init_req(fast_path, control());
4851     result_i_o   ->init_req(fast_path, i_o());
4852     result_memory->init_req(fast_path, memory(adr_type));
4853   }
4854 
4855   // Here are all the slow paths up to this point, in one bundle:
4856   slow_control = top();
4857   if (slow_region != NULL)
4858     slow_control = _gvn.transform(slow_region);
4859   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4860 
4861   set_control(checked_control);
4862   if (!stopped()) {
4863     // Clean up after the checked call.
4864     // The returned value is either 0 or -1^K,
4865     // where K = number of partially transferred array elements.
4866     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
4867     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
4868     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4869 
4870     // If it is 0, we are done, so transfer to the end.
4871     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
4872     result_region->init_req(checked_path, checks_done);
4873     result_i_o   ->init_req(checked_path, checked_i_o);
4874     result_memory->init_req(checked_path, checked_mem);
4875 
4876     // If it is not zero, merge into the slow call.
4877     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
4878     RegionNode* slow_reg2 = new(C) RegionNode(3);
4879     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4880     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4881     record_for_igvn(slow_reg2);
4882     slow_reg2  ->init_req(1, slow_control);
4883     slow_i_o2  ->init_req(1, slow_i_o);
4884     slow_mem2  ->init_req(1, slow_mem);
4885     slow_reg2  ->init_req(2, control());
4886     slow_i_o2  ->init_req(2, checked_i_o);
4887     slow_mem2  ->init_req(2, checked_mem);
4888 
4889     slow_control = _gvn.transform(slow_reg2);
4890     slow_i_o     = _gvn.transform(slow_i_o2);
4891     slow_mem     = _gvn.transform(slow_mem2);
4892 
4893     if (alloc != NULL) {
4894       // We'll restart from the very beginning, after zeroing the whole thing.
4895       // This can cause double writes, but that's OK since dest is brand new.
4896       // So we ignore the low 31 bits of the value returned from the stub.
4897     } else {
4898       // We must continue the copy exactly where it failed, or else
4899       // another thread might see the wrong number of writes to dest.
4900       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
4901       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4902       slow_offset->init_req(1, intcon(0));
4903       slow_offset->init_req(2, checked_offset);
4904       slow_offset  = _gvn.transform(slow_offset);
4905 
4906       // Adjust the arguments by the conditionally incoming offset.
4907       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
4908       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
4909       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
4910 
4911       // Tweak the node variables to adjust the code produced below:
4912       src_offset  = src_off_plus;
4913       dest_offset = dest_off_plus;
4914       copy_length = length_minus;
4915     }
4916   }
4917 
4918   set_control(slow_control);
4919   if (!stopped()) {
4920     // Generate the slow path, if needed.
4921     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4922 
4923     set_memory(slow_mem, adr_type);
4924     set_i_o(slow_i_o);
4925 
4926     if (dest_uninitialized) {
4927       generate_clear_array(adr_type, dest, basic_elem_type,
4928                            intcon(0), NULL,
4929                            alloc->in(AllocateNode::AllocSize));
4930     }
4931 
4932     generate_slow_arraycopy(adr_type,
4933                             src, src_offset, dest, dest_offset,
4934                             copy_length, /*dest_uninitialized*/false);
4935 
4936     result_region->init_req(slow_call_path, control());
4937     result_i_o   ->init_req(slow_call_path, i_o());
4938     result_memory->init_req(slow_call_path, memory(adr_type));
4939   }
4940 
4941   // Remove unused edges.
4942   for (uint i = 1; i < result_region->req(); i++) {
4943     if (result_region->in(i) == NULL)
4944       result_region->init_req(i, top());
4945   }
4946 
4947   // Finished; return the combined state.
4948   set_control( _gvn.transform(result_region) );
4949   set_i_o(     _gvn.transform(result_i_o)    );
4950   set_memory(  _gvn.transform(result_memory), adr_type );
4951 
4952   // The memory edges above are precise in order to model effects around
4953   // array copies accurately to allow value numbering of field loads around
4954   // arraycopy.  Such field loads, both before and after, are common in Java
4955   // collections and similar classes involving header/array data structures.
4956   //
4957   // But with low number of register or when some registers are used or killed
4958   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4959   // The next memory barrier is added to avoid it. If the arraycopy can be
4960   // optimized away (which it can, sometimes) then we can manually remove
4961   // the membar also.
4962   //
4963   // Do not let reads from the cloned object float above the arraycopy.
4964   if (alloc != NULL) {
4965     // Do not let stores that initialize this object be reordered with
4966     // a subsequent store that would make this object accessible by
4967     // other threads.
4968     // Record what AllocateNode this StoreStore protects so that
4969     // escape analysis can go from the MemBarStoreStoreNode to the
4970     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4971     // based on the escape status of the AllocateNode.
4972     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4973   } else if (InsertMemBarAfterArraycopy)
4974     insert_mem_bar(Op_MemBarCPUOrder);
4975 }
4976 
4977 
4978 // Helper function which determines if an arraycopy immediately follows
4979 // an allocation, with no intervening tests or other escapes for the object.
4980 AllocateArrayNode*
4981 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4982                                            RegionNode* slow_region) {
4983   if (stopped())             return NULL;  // no fast path
4984   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4985 
4986   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4987   if (alloc == NULL)  return NULL;
4988 
4989   Node* rawmem = memory(Compile::AliasIdxRaw);
4990   // Is the allocation's memory state untouched?
4991   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4992     // Bail out if there have been raw-memory effects since the allocation.
4993     // (Example:  There might have been a call or safepoint.)
4994     return NULL;
4995   }
4996   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4997   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4998     return NULL;
4999   }
5000 
5001   // There must be no unexpected observers of this allocation.
5002   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5003     Node* obs = ptr->fast_out(i);
5004     if (obs != this->map()) {
5005       return NULL;
5006     }
5007   }
5008 
5009   // This arraycopy must unconditionally follow the allocation of the ptr.
5010   Node* alloc_ctl = ptr->in(0);
5011   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5012 
5013   Node* ctl = control();
5014   while (ctl != alloc_ctl) {
5015     // There may be guards which feed into the slow_region.
5016     // Any other control flow means that we might not get a chance
5017     // to finish initializing the allocated object.
5018     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5019       IfNode* iff = ctl->in(0)->as_If();
5020       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5021       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5022       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5023         ctl = iff->in(0);       // This test feeds the known slow_region.
5024         continue;
5025       }
5026       // One more try:  Various low-level checks bottom out in
5027       // uncommon traps.  If the debug-info of the trap omits
5028       // any reference to the allocation, as we've already
5029       // observed, then there can be no objection to the trap.
5030       bool found_trap = false;
5031       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5032         Node* obs = not_ctl->fast_out(j);
5033         if (obs->in(0) == not_ctl && obs->is_Call() &&
5034             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5035           found_trap = true; break;
5036         }
5037       }
5038       if (found_trap) {
5039         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5040         continue;
5041       }
5042     }
5043     return NULL;
5044   }
5045 
5046   // If we get this far, we have an allocation which immediately
5047   // precedes the arraycopy, and we can take over zeroing the new object.
5048   // The arraycopy will finish the initialization, and provide
5049   // a new control state to which we will anchor the destination pointer.
5050 
5051   return alloc;
5052 }
5053 
5054 // Helper for initialization of arrays, creating a ClearArray.
5055 // It writes zero bits in [start..end), within the body of an array object.
5056 // The memory effects are all chained onto the 'adr_type' alias category.
5057 //
5058 // Since the object is otherwise uninitialized, we are free
5059 // to put a little "slop" around the edges of the cleared area,
5060 // as long as it does not go back into the array's header,
5061 // or beyond the array end within the heap.
5062 //
5063 // The lower edge can be rounded down to the nearest jint and the
5064 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5065 //
5066 // Arguments:
5067 //   adr_type           memory slice where writes are generated
5068 //   dest               oop of the destination array
5069 //   basic_elem_type    element type of the destination
5070 //   slice_idx          array index of first element to store
5071 //   slice_len          number of elements to store (or NULL)
5072 //   dest_size          total size in bytes of the array object
5073 //
5074 // Exactly one of slice_len or dest_size must be non-NULL.
5075 // If dest_size is non-NULL, zeroing extends to the end of the object.
5076 // If slice_len is non-NULL, the slice_idx value must be a constant.
5077 void
5078 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5079                                      Node* dest,
5080                                      BasicType basic_elem_type,
5081                                      Node* slice_idx,
5082                                      Node* slice_len,
5083                                      Node* dest_size) {
5084   // one or the other but not both of slice_len and dest_size:
5085   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5086   if (slice_len == NULL)  slice_len = top();
5087   if (dest_size == NULL)  dest_size = top();
5088 
5089   // operate on this memory slice:
5090   Node* mem = memory(adr_type); // memory slice to operate on
5091 
5092   // scaling and rounding of indexes:
5093   int scale = exact_log2(type2aelembytes(basic_elem_type));
5094   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5095   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5096   int bump_bit  = (-1 << scale) & BytesPerInt;
5097 
5098   // determine constant starts and ends
5099   const intptr_t BIG_NEG = -128;
5100   assert(BIG_NEG + 2*abase < 0, "neg enough");
5101   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5102   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5103   if (slice_len_con == 0) {
5104     return;                     // nothing to do here
5105   }
5106   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5107   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5108   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5109     assert(end_con < 0, "not two cons");
5110     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5111                        BytesPerLong);
5112   }
5113 
5114   if (start_con >= 0 && end_con >= 0) {
5115     // Constant start and end.  Simple.
5116     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5117                                        start_con, end_con, &_gvn);
5118   } else if (start_con >= 0 && dest_size != top()) {
5119     // Constant start, pre-rounded end after the tail of the array.
5120     Node* end = dest_size;
5121     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5122                                        start_con, end, &_gvn);
5123   } else if (start_con >= 0 && slice_len != top()) {
5124     // Constant start, non-constant end.  End needs rounding up.
5125     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5126     intptr_t end_base  = abase + (slice_idx_con << scale);
5127     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5128     Node*    end       = ConvI2X(slice_len);
5129     if (scale != 0)
5130       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
5131     end_base += end_round;
5132     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
5133     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
5134     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5135                                        start_con, end, &_gvn);
5136   } else if (start_con < 0 && dest_size != top()) {
5137     // Non-constant start, pre-rounded end after the tail of the array.
5138     // This is almost certainly a "round-to-end" operation.
5139     Node* start = slice_idx;
5140     start = ConvI2X(start);
5141     if (scale != 0)
5142       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
5143     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
5144     if ((bump_bit | clear_low) != 0) {
5145       int to_clear = (bump_bit | clear_low);
5146       // Align up mod 8, then store a jint zero unconditionally
5147       // just before the mod-8 boundary.
5148       if (((abase + bump_bit) & ~to_clear) - bump_bit
5149           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5150         bump_bit = 0;
5151         assert((abase & to_clear) == 0, "array base must be long-aligned");
5152       } else {
5153         // Bump 'start' up to (or past) the next jint boundary:
5154         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
5155         assert((abase & clear_low) == 0, "array base must be int-aligned");
5156       }
5157       // Round bumped 'start' down to jlong boundary in body of array.
5158       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
5159       if (bump_bit != 0) {
5160         // Store a zero to the immediately preceding jint:
5161         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
5162         Node* p1 = basic_plus_adr(dest, x1);
5163         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5164         mem = _gvn.transform(mem);
5165       }
5166     }
5167     Node* end = dest_size; // pre-rounded
5168     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5169                                        start, end, &_gvn);
5170   } else {
5171     // Non-constant start, unrounded non-constant end.
5172     // (Nobody zeroes a random midsection of an array using this routine.)
5173     ShouldNotReachHere();       // fix caller
5174   }
5175 
5176   // Done.
5177   set_memory(mem, adr_type);
5178 }
5179 
5180 
5181 bool
5182 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5183                                          BasicType basic_elem_type,
5184                                          AllocateNode* alloc,
5185                                          Node* src,  Node* src_offset,
5186                                          Node* dest, Node* dest_offset,
5187                                          Node* dest_size, bool dest_uninitialized) {
5188   // See if there is an advantage from block transfer.
5189   int scale = exact_log2(type2aelembytes(basic_elem_type));
5190   if (scale >= LogBytesPerLong)
5191     return false;               // it is already a block transfer
5192 
5193   // Look at the alignment of the starting offsets.
5194   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5195 
5196   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5197   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5198   if (src_off_con < 0 || dest_off_con < 0)
5199     // At present, we can only understand constants.
5200     return false;
5201 
5202   intptr_t src_off  = abase + (src_off_con  << scale);
5203   intptr_t dest_off = abase + (dest_off_con << scale);
5204 
5205   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5206     // Non-aligned; too bad.
5207     // One more chance:  Pick off an initial 32-bit word.
5208     // This is a common case, since abase can be odd mod 8.
5209     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5210         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5211       Node* sptr = basic_plus_adr(src,  src_off);
5212       Node* dptr = basic_plus_adr(dest, dest_off);
5213       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5214       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5215       src_off += BytesPerInt;
5216       dest_off += BytesPerInt;
5217     } else {
5218       return false;
5219     }
5220   }
5221   assert(src_off % BytesPerLong == 0, "");
5222   assert(dest_off % BytesPerLong == 0, "");
5223 
5224   // Do this copy by giant steps.
5225   Node* sptr  = basic_plus_adr(src,  src_off);
5226   Node* dptr  = basic_plus_adr(dest, dest_off);
5227   Node* countx = dest_size;
5228   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
5229   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5230 
5231   bool disjoint_bases = true;   // since alloc != NULL
5232   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5233                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5234 
5235   return true;
5236 }
5237 
5238 
5239 // Helper function; generates code for the slow case.
5240 // We make a call to a runtime method which emulates the native method,
5241 // but without the native wrapper overhead.
5242 void
5243 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5244                                         Node* src,  Node* src_offset,
5245                                         Node* dest, Node* dest_offset,
5246                                         Node* copy_length, bool dest_uninitialized) {
5247   assert(!dest_uninitialized, "Invariant");
5248   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5249                                  OptoRuntime::slow_arraycopy_Type(),
5250                                  OptoRuntime::slow_arraycopy_Java(),
5251                                  "slow_arraycopy", adr_type,
5252                                  src, src_offset, dest, dest_offset,
5253                                  copy_length);
5254 
5255   // Handle exceptions thrown by this fellow:
5256   make_slow_call_ex(call, env()->Throwable_klass(), false);
5257 }
5258 
5259 // Helper function; generates code for cases requiring runtime checks.
5260 Node*
5261 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5262                                              Node* dest_elem_klass,
5263                                              Node* src,  Node* src_offset,
5264                                              Node* dest, Node* dest_offset,
5265                                              Node* copy_length, bool dest_uninitialized) {
5266   if (stopped())  return NULL;
5267 
5268   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5269   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5270     return NULL;
5271   }
5272 
5273   // Pick out the parameters required to perform a store-check
5274   // for the target array.  This is an optimistic check.  It will
5275   // look in each non-null element's class, at the desired klass's
5276   // super_check_offset, for the desired klass.
5277   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5278   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5279   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5280   Node* check_offset = ConvI2X(_gvn.transform(n3));
5281   Node* check_value  = dest_elem_klass;
5282 
5283   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5284   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5285 
5286   // (We know the arrays are never conjoint, because their types differ.)
5287   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5288                                  OptoRuntime::checkcast_arraycopy_Type(),
5289                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5290                                  // five arguments, of which two are
5291                                  // intptr_t (jlong in LP64)
5292                                  src_start, dest_start,
5293                                  copy_length XTOP,
5294                                  check_offset XTOP,
5295                                  check_value);
5296 
5297   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5298 }
5299 
5300 
5301 // Helper function; generates code for cases requiring runtime checks.
5302 Node*
5303 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5304                                            Node* src,  Node* src_offset,
5305                                            Node* dest, Node* dest_offset,
5306                                            Node* copy_length, bool dest_uninitialized) {
5307   assert(!dest_uninitialized, "Invariant");
5308   if (stopped())  return NULL;
5309   address copyfunc_addr = StubRoutines::generic_arraycopy();
5310   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5311     return NULL;
5312   }
5313 
5314   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5315                     OptoRuntime::generic_arraycopy_Type(),
5316                     copyfunc_addr, "generic_arraycopy", adr_type,
5317                     src, src_offset, dest, dest_offset, copy_length);
5318 
5319   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5320 }
5321 
5322 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5323 void
5324 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5325                                              BasicType basic_elem_type,
5326                                              bool disjoint_bases,
5327                                              Node* src,  Node* src_offset,
5328                                              Node* dest, Node* dest_offset,
5329                                              Node* copy_length, bool dest_uninitialized) {
5330   if (stopped())  return;               // nothing to do
5331 
5332   Node* src_start  = src;
5333   Node* dest_start = dest;
5334   if (src_offset != NULL || dest_offset != NULL) {
5335     assert(src_offset != NULL && dest_offset != NULL, "");
5336     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5337     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5338   }
5339 
5340   // Figure out which arraycopy runtime method to call.
5341   const char* copyfunc_name = "arraycopy";
5342   address     copyfunc_addr =
5343       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5344                           disjoint_bases, copyfunc_name, dest_uninitialized);
5345 
5346   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5347   make_runtime_call(RC_LEAF|RC_NO_FP,
5348                     OptoRuntime::fast_arraycopy_Type(),
5349                     copyfunc_addr, copyfunc_name, adr_type,
5350                     src_start, dest_start, copy_length XTOP);
5351 }
5352 
5353 //----------------------------inline_reference_get----------------------------
5354 // public T java.lang.ref.Reference.get();
5355 bool LibraryCallKit::inline_reference_get() {
5356   const int referent_offset = java_lang_ref_Reference::referent_offset;
5357   guarantee(referent_offset > 0, "should have already been set");
5358 
5359   // Get the argument:
5360   Node* reference_obj = null_check_receiver();
5361   if (stopped()) return true;
5362 
5363   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5364 
5365   ciInstanceKlass* klass = env()->Object_klass();
5366   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5367 
5368   Node* no_ctrl = NULL;
5369   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5370 
5371   // Use the pre-barrier to record the value in the referent field
5372   pre_barrier(false /* do_load */,
5373               control(),
5374               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5375               result /* pre_val */,
5376               T_OBJECT);
5377 
5378   // Add memory barrier to prevent commoning reads from this field
5379   // across safepoint since GC can change its value.
5380   insert_mem_bar(Op_MemBarCPUOrder);
5381 
5382   set_result(result);
5383   return true;
5384 }
5385 
5386 
5387 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5388                                               bool is_exact=true, bool is_static=false) {
5389 
5390   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5391   assert(tinst != NULL, "obj is null");
5392   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5393   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5394 
5395   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5396                                                                           ciSymbol::make(fieldTypeString),
5397                                                                           is_static);
5398   if (field == NULL) return (Node *) NULL;
5399   assert (field != NULL, "undefined field");
5400 
5401   // Next code  copied from Parse::do_get_xxx():
5402 
5403   // Compute address and memory type.
5404   int offset  = field->offset_in_bytes();
5405   bool is_vol = field->is_volatile();
5406   ciType* field_klass = field->type();
5407   assert(field_klass->is_loaded(), "should be loaded");
5408   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5409   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5410   BasicType bt = field->layout_type();
5411 
5412   // Build the resultant type of the load
5413   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5414 
5415   // Build the load.
5416   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5417   return loadedField;
5418 }
5419 
5420 
5421 //------------------------------inline_aescrypt_Block-----------------------
5422 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5423   address stubAddr;
5424   const char *stubName;
5425   assert(UseAES, "need AES instruction support");
5426 
5427   switch(id) {
5428   case vmIntrinsics::_aescrypt_encryptBlock:
5429     stubAddr = StubRoutines::aescrypt_encryptBlock();
5430     stubName = "aescrypt_encryptBlock";
5431     break;
5432   case vmIntrinsics::_aescrypt_decryptBlock:
5433     stubAddr = StubRoutines::aescrypt_decryptBlock();
5434     stubName = "aescrypt_decryptBlock";
5435     break;
5436   }
5437   if (stubAddr == NULL) return false;
5438 
5439   Node* aescrypt_object = argument(0);
5440   Node* src             = argument(1);
5441   Node* src_offset      = argument(2);
5442   Node* dest            = argument(3);
5443   Node* dest_offset     = argument(4);
5444 
5445   // (1) src and dest are arrays.
5446   const Type* src_type = src->Value(&_gvn);
5447   const Type* dest_type = dest->Value(&_gvn);
5448   const TypeAryPtr* top_src = src_type->isa_aryptr();
5449   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5450   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5451 
5452   // for the quick and dirty code we will skip all the checks.
5453   // we are just trying to get the call to be generated.
5454   Node* src_start  = src;
5455   Node* dest_start = dest;
5456   if (src_offset != NULL || dest_offset != NULL) {
5457     assert(src_offset != NULL && dest_offset != NULL, "");
5458     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5459     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5460   }
5461 
5462   // now need to get the start of its expanded key array
5463   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5464   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5465   if (k_start == NULL) return false;
5466 
5467   // Call the stub.
5468   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5469                     stubAddr, stubName, TypePtr::BOTTOM,
5470                     src_start, dest_start, k_start);
5471 
5472   return true;
5473 }
5474 
5475 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5476 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5477   address stubAddr;
5478   const char *stubName;
5479 
5480   assert(UseAES, "need AES instruction support");
5481 
5482   switch(id) {
5483   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5484     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5485     stubName = "cipherBlockChaining_encryptAESCrypt";
5486     break;
5487   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5488     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5489     stubName = "cipherBlockChaining_decryptAESCrypt";
5490     break;
5491   }
5492   if (stubAddr == NULL) return false;
5493 
5494   Node* cipherBlockChaining_object = argument(0);
5495   Node* src                        = argument(1);
5496   Node* src_offset                 = argument(2);
5497   Node* len                        = argument(3);
5498   Node* dest                       = argument(4);
5499   Node* dest_offset                = argument(5);
5500 
5501   // (1) src and dest are arrays.
5502   const Type* src_type = src->Value(&_gvn);
5503   const Type* dest_type = dest->Value(&_gvn);
5504   const TypeAryPtr* top_src = src_type->isa_aryptr();
5505   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5506   assert (top_src  != NULL && top_src->klass()  != NULL
5507           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5508 
5509   // checks are the responsibility of the caller
5510   Node* src_start  = src;
5511   Node* dest_start = dest;
5512   if (src_offset != NULL || dest_offset != NULL) {
5513     assert(src_offset != NULL && dest_offset != NULL, "");
5514     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5515     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5516   }
5517 
5518   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5519   // (because of the predicated logic executed earlier).
5520   // so we cast it here safely.
5521   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5522 
5523   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5524   if (embeddedCipherObj == NULL) return false;
5525 
5526   // cast it to what we know it will be at runtime
5527   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5528   assert(tinst != NULL, "CBC obj is null");
5529   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5530   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5531   if (!klass_AESCrypt->is_loaded()) return false;
5532 
5533   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5534   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5535   const TypeOopPtr* xtype = aklass->as_instance_type();
5536   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5537   aescrypt_object = _gvn.transform(aescrypt_object);
5538 
5539   // we need to get the start of the aescrypt_object's expanded key array
5540   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5541   if (k_start == NULL) return false;
5542 
5543   // similarly, get the start address of the r vector
5544   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5545   if (objRvec == NULL) return false;
5546   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5547 
5548   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5549   make_runtime_call(RC_LEAF|RC_NO_FP,
5550                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5551                     stubAddr, stubName, TypePtr::BOTTOM,
5552                     src_start, dest_start, k_start, r_start, len);
5553 
5554   // return is void so no result needs to be pushed
5555 
5556   return true;
5557 }
5558 
5559 //------------------------------get_key_start_from_aescrypt_object-----------------------
5560 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5561   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5562   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5563   if (objAESCryptKey == NULL) return (Node *) NULL;
5564 
5565   // now have the array, need to get the start address of the K array
5566   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5567   return k_start;
5568 }
5569 
5570 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5571 // Return node representing slow path of predicate check.
5572 // the pseudo code we want to emulate with this predicate is:
5573 // for encryption:
5574 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5575 // for decryption:
5576 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5577 //    note cipher==plain is more conservative than the original java code but that's OK
5578 //
5579 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5580   // First, check receiver for NULL since it is virtual method.
5581   Node* objCBC = argument(0);
5582   objCBC = null_check(objCBC);
5583 
5584   if (stopped()) return NULL; // Always NULL
5585 
5586   // Load embeddedCipher field of CipherBlockChaining object.
5587   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5588 
5589   // get AESCrypt klass for instanceOf check
5590   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5591   // will have same classloader as CipherBlockChaining object
5592   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5593   assert(tinst != NULL, "CBCobj is null");
5594   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5595 
5596   // we want to do an instanceof comparison against the AESCrypt class
5597   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5598   if (!klass_AESCrypt->is_loaded()) {
5599     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5600     Node* ctrl = control();
5601     set_control(top()); // no regular fast path
5602     return ctrl;
5603   }
5604   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5605 
5606   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5607   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5608   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5609 
5610   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5611 
5612   // for encryption, we are done
5613   if (!decrypting)
5614     return instof_false;  // even if it is NULL
5615 
5616   // for decryption, we need to add a further check to avoid
5617   // taking the intrinsic path when cipher and plain are the same
5618   // see the original java code for why.
5619   RegionNode* region = new(C) RegionNode(3);
5620   region->init_req(1, instof_false);
5621   Node* src = argument(1);
5622   Node* dest = argument(4);
5623   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5624   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5625   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5626   region->init_req(2, src_dest_conjoint);
5627 
5628   record_for_igvn(region);
5629   return _gvn.transform(region);
5630 }