1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/icBuffer.hpp"
  29 #include "code/vtableStubs.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "oops/compiledICHolder.hpp"
  32 #include "prims/jvmtiRedefineClassesTrace.hpp"
  33 #include "runtime/sharedRuntime.hpp"
  34 #include "runtime/vframeArray.hpp"
  35 #include "vmreg_sparc.inline.hpp"
  36 #ifdef COMPILER1
  37 #include "c1/c1_Runtime1.hpp"
  38 #endif
  39 #ifdef COMPILER2
  40 #include "opto/runtime.hpp"
  41 #endif
  42 #ifdef SHARK
  43 #include "compiler/compileBroker.hpp"
  44 #include "shark/sharkCompiler.hpp"
  45 #endif
  46 
  47 #define __ masm->
  48 
  49 
  50 class RegisterSaver {
  51 
  52   // Used for saving volatile registers. This is Gregs, Fregs, I/L/O.
  53   // The Oregs are problematic. In the 32bit build the compiler can
  54   // have O registers live with 64 bit quantities. A window save will
  55   // cut the heads off of the registers. We have to do a very extensive
  56   // stack dance to save and restore these properly.
  57 
  58   // Note that the Oregs problem only exists if we block at either a polling
  59   // page exception a compiled code safepoint that was not originally a call
  60   // or deoptimize following one of these kinds of safepoints.
  61 
  62   // Lots of registers to save.  For all builds, a window save will preserve
  63   // the %i and %l registers.  For the 32-bit longs-in-two entries and 64-bit
  64   // builds a window-save will preserve the %o registers.  In the LION build
  65   // we need to save the 64-bit %o registers which requires we save them
  66   // before the window-save (as then they become %i registers and get their
  67   // heads chopped off on interrupt).  We have to save some %g registers here
  68   // as well.
  69   enum {
  70     // This frame's save area.  Includes extra space for the native call:
  71     // vararg's layout space and the like.  Briefly holds the caller's
  72     // register save area.
  73     call_args_area = frame::register_save_words_sp_offset +
  74                      frame::memory_parameter_word_sp_offset*wordSize,
  75     // Make sure save locations are always 8 byte aligned.
  76     // can't use round_to because it doesn't produce compile time constant
  77     start_of_extra_save_area = ((call_args_area + 7) & ~7),
  78     g1_offset = start_of_extra_save_area, // g-regs needing saving
  79     g3_offset = g1_offset+8,
  80     g4_offset = g3_offset+8,
  81     g5_offset = g4_offset+8,
  82     o0_offset = g5_offset+8,
  83     o1_offset = o0_offset+8,
  84     o2_offset = o1_offset+8,
  85     o3_offset = o2_offset+8,
  86     o4_offset = o3_offset+8,
  87     o5_offset = o4_offset+8,
  88     start_of_flags_save_area = o5_offset+8,
  89     ccr_offset = start_of_flags_save_area,
  90     fsr_offset = ccr_offset + 8,
  91     d00_offset = fsr_offset+8,  // Start of float save area
  92     register_save_size = d00_offset+8*32
  93   };
  94 
  95 
  96   public:
  97 
  98   static int Oexception_offset() { return o0_offset; };
  99   static int G3_offset() { return g3_offset; };
 100   static int G5_offset() { return g5_offset; };
 101   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 102   static void restore_live_registers(MacroAssembler* masm);
 103 
 104   // During deoptimization only the result register need to be restored
 105   // all the other values have already been extracted.
 106 
 107   static void restore_result_registers(MacroAssembler* masm);
 108 };
 109 
 110 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 111   // Record volatile registers as callee-save values in an OopMap so their save locations will be
 112   // propagated to the caller frame's RegisterMap during StackFrameStream construction (needed for
 113   // deoptimization; see compiledVFrame::create_stack_value).  The caller's I, L and O registers
 114   // are saved in register windows - I's and L's in the caller's frame and O's in the stub frame
 115   // (as the stub's I's) when the runtime routine called by the stub creates its frame.
 116   int i;
 117   // Always make the frame size 16 byte aligned.
 118   int frame_size = round_to(additional_frame_words + register_save_size, 16);
 119   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words
 120   int frame_size_in_slots = frame_size / sizeof(jint);
 121   // CodeBlob frame size is in words.
 122   *total_frame_words = frame_size / wordSize;
 123   // OopMap* map = new OopMap(*total_frame_words, 0);
 124   OopMap* map = new OopMap(frame_size_in_slots, 0);
 125 
 126 #if !defined(_LP64)
 127 
 128   // Save 64-bit O registers; they will get their heads chopped off on a 'save'.
 129   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 130   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 131   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 132   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 133   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 134   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 135 #endif /* _LP64 */
 136 
 137   __ save(SP, -frame_size, SP);
 138 
 139 #ifndef _LP64
 140   // Reload the 64 bit Oregs. Although they are now Iregs we load them
 141   // to Oregs here to avoid interrupts cutting off their heads
 142 
 143   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 144   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 145   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 146   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 147   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 148   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 149 
 150   __ stx(O0, SP, o0_offset+STACK_BIAS);
 151   map->set_callee_saved(VMRegImpl::stack2reg((o0_offset + 4)>>2), O0->as_VMReg());
 152 
 153   __ stx(O1, SP, o1_offset+STACK_BIAS);
 154 
 155   map->set_callee_saved(VMRegImpl::stack2reg((o1_offset + 4)>>2), O1->as_VMReg());
 156 
 157   __ stx(O2, SP, o2_offset+STACK_BIAS);
 158   map->set_callee_saved(VMRegImpl::stack2reg((o2_offset + 4)>>2), O2->as_VMReg());
 159 
 160   __ stx(O3, SP, o3_offset+STACK_BIAS);
 161   map->set_callee_saved(VMRegImpl::stack2reg((o3_offset + 4)>>2), O3->as_VMReg());
 162 
 163   __ stx(O4, SP, o4_offset+STACK_BIAS);
 164   map->set_callee_saved(VMRegImpl::stack2reg((o4_offset + 4)>>2), O4->as_VMReg());
 165 
 166   __ stx(O5, SP, o5_offset+STACK_BIAS);
 167   map->set_callee_saved(VMRegImpl::stack2reg((o5_offset + 4)>>2), O5->as_VMReg());
 168 #endif /* _LP64 */
 169 
 170 
 171 #ifdef _LP64
 172   int debug_offset = 0;
 173 #else
 174   int debug_offset = 4;
 175 #endif
 176   // Save the G's
 177   __ stx(G1, SP, g1_offset+STACK_BIAS);
 178   map->set_callee_saved(VMRegImpl::stack2reg((g1_offset + debug_offset)>>2), G1->as_VMReg());
 179 
 180   __ stx(G3, SP, g3_offset+STACK_BIAS);
 181   map->set_callee_saved(VMRegImpl::stack2reg((g3_offset + debug_offset)>>2), G3->as_VMReg());
 182 
 183   __ stx(G4, SP, g4_offset+STACK_BIAS);
 184   map->set_callee_saved(VMRegImpl::stack2reg((g4_offset + debug_offset)>>2), G4->as_VMReg());
 185 
 186   __ stx(G5, SP, g5_offset+STACK_BIAS);
 187   map->set_callee_saved(VMRegImpl::stack2reg((g5_offset + debug_offset)>>2), G5->as_VMReg());
 188 
 189   // This is really a waste but we'll keep things as they were for now
 190   if (true) {
 191 #ifndef _LP64
 192     map->set_callee_saved(VMRegImpl::stack2reg((o0_offset)>>2), O0->as_VMReg()->next());
 193     map->set_callee_saved(VMRegImpl::stack2reg((o1_offset)>>2), O1->as_VMReg()->next());
 194     map->set_callee_saved(VMRegImpl::stack2reg((o2_offset)>>2), O2->as_VMReg()->next());
 195     map->set_callee_saved(VMRegImpl::stack2reg((o3_offset)>>2), O3->as_VMReg()->next());
 196     map->set_callee_saved(VMRegImpl::stack2reg((o4_offset)>>2), O4->as_VMReg()->next());
 197     map->set_callee_saved(VMRegImpl::stack2reg((o5_offset)>>2), O5->as_VMReg()->next());
 198     map->set_callee_saved(VMRegImpl::stack2reg((g1_offset)>>2), G1->as_VMReg()->next());
 199     map->set_callee_saved(VMRegImpl::stack2reg((g3_offset)>>2), G3->as_VMReg()->next());
 200     map->set_callee_saved(VMRegImpl::stack2reg((g4_offset)>>2), G4->as_VMReg()->next());
 201     map->set_callee_saved(VMRegImpl::stack2reg((g5_offset)>>2), G5->as_VMReg()->next());
 202 #endif /* _LP64 */
 203   }
 204 
 205 
 206   // Save the flags
 207   __ rdccr( G5 );
 208   __ stx(G5, SP, ccr_offset+STACK_BIAS);
 209   __ stxfsr(SP, fsr_offset+STACK_BIAS);
 210 
 211   // Save all the FP registers: 32 doubles (32 floats correspond to the 2 halves of the first 16 doubles)
 212   int offset = d00_offset;
 213   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 214     FloatRegister f = as_FloatRegister(i);
 215     __ stf(FloatRegisterImpl::D,  f, SP, offset+STACK_BIAS);
 216     // Record as callee saved both halves of double registers (2 float registers).
 217     map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), f->as_VMReg());
 218     map->set_callee_saved(VMRegImpl::stack2reg((offset + sizeof(float))>>2), f->as_VMReg()->next());
 219     offset += sizeof(double);
 220   }
 221 
 222   // And we're done.
 223 
 224   return map;
 225 }
 226 
 227 
 228 // Pop the current frame and restore all the registers that we
 229 // saved.
 230 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 231 
 232   // Restore all the FP registers
 233   for( int i=0; i<FloatRegisterImpl::number_of_registers; i+=2 ) {
 234     __ ldf(FloatRegisterImpl::D, SP, d00_offset+i*sizeof(float)+STACK_BIAS, as_FloatRegister(i));
 235   }
 236 
 237   __ ldx(SP, ccr_offset+STACK_BIAS, G1);
 238   __ wrccr (G1) ;
 239 
 240   // Restore the G's
 241   // Note that G2 (AKA GThread) must be saved and restored separately.
 242   // TODO-FIXME: save and restore some of the other ASRs, viz., %asi and %gsr.
 243 
 244   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 245   __ ldx(SP, g3_offset+STACK_BIAS, G3);
 246   __ ldx(SP, g4_offset+STACK_BIAS, G4);
 247   __ ldx(SP, g5_offset+STACK_BIAS, G5);
 248 
 249 
 250 #if !defined(_LP64)
 251   // Restore the 64-bit O's.
 252   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 253   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 254   __ ldx(SP, o2_offset+STACK_BIAS, O2);
 255   __ ldx(SP, o3_offset+STACK_BIAS, O3);
 256   __ ldx(SP, o4_offset+STACK_BIAS, O4);
 257   __ ldx(SP, o5_offset+STACK_BIAS, O5);
 258 
 259   // And temporarily place them in TLS
 260 
 261   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 262   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 263   __ stx(O2, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8);
 264   __ stx(O3, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8);
 265   __ stx(O4, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8);
 266   __ stx(O5, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8);
 267 #endif /* _LP64 */
 268 
 269   // Restore flags
 270 
 271   __ ldxfsr(SP, fsr_offset+STACK_BIAS);
 272 
 273   __ restore();
 274 
 275 #if !defined(_LP64)
 276   // Now reload the 64bit Oregs after we've restore the window.
 277   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 278   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 279   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+2*8, O2);
 280   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+3*8, O3);
 281   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+4*8, O4);
 282   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+5*8, O5);
 283 #endif /* _LP64 */
 284 
 285 }
 286 
 287 // Pop the current frame and restore the registers that might be holding
 288 // a result.
 289 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 290 
 291 #if !defined(_LP64)
 292   // 32bit build returns longs in G1
 293   __ ldx(SP, g1_offset+STACK_BIAS, G1);
 294 
 295   // Retrieve the 64-bit O's.
 296   __ ldx(SP, o0_offset+STACK_BIAS, O0);
 297   __ ldx(SP, o1_offset+STACK_BIAS, O1);
 298   // and save to TLS
 299   __ stx(O0, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8);
 300   __ stx(O1, G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8);
 301 #endif /* _LP64 */
 302 
 303   __ ldf(FloatRegisterImpl::D, SP, d00_offset+STACK_BIAS, as_FloatRegister(0));
 304 
 305   __ restore();
 306 
 307 #if !defined(_LP64)
 308   // Now reload the 64bit Oregs after we've restore the window.
 309   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+0*8, O0);
 310   __ ldx(G2_thread, JavaThread::o_reg_temps_offset_in_bytes()+1*8, O1);
 311 #endif /* _LP64 */
 312 
 313 }
 314 
 315 // Is vector's size (in bytes) bigger than a size saved by default?
 316 // 8 bytes FP registers are saved by default on SPARC.
 317 bool SharedRuntime::is_wide_vector(int size) {
 318   // Note, MaxVectorSize == 8 on SPARC.
 319   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
 320   return size > 8;
 321 }
 322 
 323 // The java_calling_convention describes stack locations as ideal slots on
 324 // a frame with no abi restrictions. Since we must observe abi restrictions
 325 // (like the placement of the register window) the slots must be biased by
 326 // the following value.
 327 static int reg2offset(VMReg r) {
 328   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 329 }
 330 
 331 static VMRegPair reg64_to_VMRegPair(Register r) {
 332   VMRegPair ret;
 333   if (wordSize == 8) {
 334     ret.set2(r->as_VMReg());
 335   } else {
 336     ret.set_pair(r->successor()->as_VMReg(), r->as_VMReg());
 337   }
 338   return ret;
 339 }
 340 
 341 // ---------------------------------------------------------------------------
 342 // Read the array of BasicTypes from a signature, and compute where the
 343 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte (VMRegImpl::stack_slot_size)
 344 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 345 // refer to 4-byte stack slots.  All stack slots are based off of the window
 346 // top.  VMRegImpl::stack0 refers to the first slot past the 16-word window,
 347 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 348 // values 0-63 (up to RegisterImpl::number_of_registers) are the 64-bit
 349 // integer registers.  Values 64-95 are the (32-bit only) float registers.
 350 // Each 32-bit quantity is given its own number, so the integer registers
 351 // (in either 32- or 64-bit builds) use 2 numbers.  For example, there is
 352 // an O0-low and an O0-high.  Essentially, all int register numbers are doubled.
 353 
 354 // Register results are passed in O0-O5, for outgoing call arguments.  To
 355 // convert to incoming arguments, convert all O's to I's.  The regs array
 356 // refer to the low and hi 32-bit words of 64-bit registers or stack slots.
 357 // If the regs[].second() field is set to VMRegImpl::Bad(), it means it's unused (a
 358 // 32-bit value was passed).  If both are VMRegImpl::Bad(), it means no value was
 359 // passed (used as a placeholder for the other half of longs and doubles in
 360 // the 64-bit build).  regs[].second() is either VMRegImpl::Bad() or regs[].second() is
 361 // regs[].first()+1 (regs[].first() may be misaligned in the C calling convention).
 362 // Sparc never passes a value in regs[].second() but not regs[].first() (regs[].first()
 363 // == VMRegImpl::Bad() && regs[].second() != VMRegImpl::Bad()) nor unrelated values in the
 364 // same VMRegPair.
 365 
 366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 367 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 368 // units regardless of build.
 369 
 370 
 371 // ---------------------------------------------------------------------------
 372 // The compiled Java calling convention.  The Java convention always passes
 373 // 64-bit values in adjacent aligned locations (either registers or stack),
 374 // floats in float registers and doubles in aligned float pairs.  There is
 375 // no backing varargs store for values in registers.
 376 // In the 32-bit build, longs are passed on the stack (cannot be
 377 // passed in I's, because longs in I's get their heads chopped off at
 378 // interrupt).
 379 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 380                                            VMRegPair *regs,
 381                                            int total_args_passed,
 382                                            int is_outgoing) {
 383   assert(F31->as_VMReg()->is_reg(), "overlapping stack/register numbers");
 384 
 385   const int int_reg_max = SPARC_ARGS_IN_REGS_NUM;
 386   const int flt_reg_max = 8;
 387 
 388   int int_reg = 0;
 389   int flt_reg = 0;
 390   int slot = 0;
 391 
 392   for (int i = 0; i < total_args_passed; i++) {
 393     switch (sig_bt[i]) {
 394     case T_INT:
 395     case T_SHORT:
 396     case T_CHAR:
 397     case T_BYTE:
 398     case T_BOOLEAN:
 399 #ifndef _LP64
 400     case T_OBJECT:
 401     case T_ARRAY:
 402     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 403 #endif // _LP64
 404       if (int_reg < int_reg_max) {
 405         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 406         regs[i].set1(r->as_VMReg());
 407       } else {
 408         regs[i].set1(VMRegImpl::stack2reg(slot++));
 409       }
 410       break;
 411 
 412 #ifdef _LP64
 413     case T_LONG:
 414       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 415       // fall-through
 416     case T_OBJECT:
 417     case T_ARRAY:
 418     case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
 419       if (int_reg < int_reg_max) {
 420         Register r = is_outgoing ? as_oRegister(int_reg++) : as_iRegister(int_reg++);
 421         regs[i].set2(r->as_VMReg());
 422       } else {
 423         slot = round_to(slot, 2);  // align
 424         regs[i].set2(VMRegImpl::stack2reg(slot));
 425         slot += 2;
 426       }
 427       break;
 428 #else
 429     case T_LONG:
 430       assert(sig_bt[i+1] == T_VOID, "expecting VOID in other half");
 431       // On 32-bit SPARC put longs always on the stack to keep the pressure off
 432       // integer argument registers.  They should be used for oops.
 433       slot = round_to(slot, 2);  // align
 434       regs[i].set2(VMRegImpl::stack2reg(slot));
 435       slot += 2;
 436 #endif
 437       break;
 438 
 439     case T_FLOAT:
 440       if (flt_reg < flt_reg_max) {
 441         FloatRegister r = as_FloatRegister(flt_reg++);
 442         regs[i].set1(r->as_VMReg());
 443       } else {
 444         regs[i].set1(VMRegImpl::stack2reg(slot++));
 445       }
 446       break;
 447 
 448     case T_DOUBLE:
 449       assert(sig_bt[i+1] == T_VOID, "expecting half");
 450       if (round_to(flt_reg, 2) + 1 < flt_reg_max) {
 451         flt_reg = round_to(flt_reg, 2);  // align
 452         FloatRegister r = as_FloatRegister(flt_reg);
 453         regs[i].set2(r->as_VMReg());
 454         flt_reg += 2;
 455       } else {
 456         slot = round_to(slot, 2);  // align
 457         regs[i].set2(VMRegImpl::stack2reg(slot));
 458         slot += 2;
 459       }
 460       break;
 461 
 462     case T_VOID:
 463       regs[i].set_bad();   // Halves of longs & doubles
 464       break;
 465 
 466     default:
 467       fatal(err_msg_res("unknown basic type %d", sig_bt[i]));
 468       break;
 469     }
 470   }
 471 
 472   // retun the amount of stack space these arguments will need.
 473   return slot;
 474 }
 475 
 476 // Helper class mostly to avoid passing masm everywhere, and handle
 477 // store displacement overflow logic.
 478 class AdapterGenerator {
 479   MacroAssembler *masm;
 480   Register Rdisp;
 481   void set_Rdisp(Register r)  { Rdisp = r; }
 482 
 483   void patch_callers_callsite();
 484 
 485   // base+st_off points to top of argument
 486   int arg_offset(const int st_off) { return st_off; }
 487   int next_arg_offset(const int st_off) {
 488     return st_off - Interpreter::stackElementSize;
 489   }
 490 
 491   // Argument slot values may be loaded first into a register because
 492   // they might not fit into displacement.
 493   RegisterOrConstant arg_slot(const int st_off);
 494   RegisterOrConstant next_arg_slot(const int st_off);
 495 
 496   // Stores long into offset pointed to by base
 497   void store_c2i_long(Register r, Register base,
 498                       const int st_off, bool is_stack);
 499   void store_c2i_object(Register r, Register base,
 500                         const int st_off);
 501   void store_c2i_int(Register r, Register base,
 502                      const int st_off);
 503   void store_c2i_double(VMReg r_2,
 504                         VMReg r_1, Register base, const int st_off);
 505   void store_c2i_float(FloatRegister f, Register base,
 506                        const int st_off);
 507 
 508  public:
 509   void gen_c2i_adapter(int total_args_passed,
 510                               // VMReg max_arg,
 511                               int comp_args_on_stack, // VMRegStackSlots
 512                               const BasicType *sig_bt,
 513                               const VMRegPair *regs,
 514                               Label& skip_fixup);
 515   void gen_i2c_adapter(int total_args_passed,
 516                               // VMReg max_arg,
 517                               int comp_args_on_stack, // VMRegStackSlots
 518                               const BasicType *sig_bt,
 519                               const VMRegPair *regs);
 520 
 521   AdapterGenerator(MacroAssembler *_masm) : masm(_masm) {}
 522 };
 523 
 524 
 525 // Patch the callers callsite with entry to compiled code if it exists.
 526 void AdapterGenerator::patch_callers_callsite() {
 527   Label L;
 528   __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
 529   __ br_null(G3_scratch, false, Assembler::pt, L);
 530   __ delayed()->nop();
 531   // Call into the VM to patch the caller, then jump to compiled callee
 532   __ save_frame(4);     // Args in compiled layout; do not blow them
 533 
 534   // Must save all the live Gregs the list is:
 535   // G1: 1st Long arg (32bit build)
 536   // G2: global allocated to TLS
 537   // G3: used in inline cache check (scratch)
 538   // G4: 2nd Long arg (32bit build);
 539   // G5: used in inline cache check (Method*)
 540 
 541   // The longs must go to the stack by hand since in the 32 bit build they can be trashed by window ops.
 542 
 543 #ifdef _LP64
 544   // mov(s,d)
 545   __ mov(G1, L1);
 546   __ mov(G4, L4);
 547   __ mov(G5_method, L5);
 548   __ mov(G5_method, O0);         // VM needs target method
 549   __ mov(I7, O1);                // VM needs caller's callsite
 550   // Must be a leaf call...
 551   // can be very far once the blob has been relocated
 552   AddressLiteral dest(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
 553   __ relocate(relocInfo::runtime_call_type);
 554   __ jumpl_to(dest, O7, O7);
 555   __ delayed()->mov(G2_thread, L7_thread_cache);
 556   __ mov(L7_thread_cache, G2_thread);
 557   __ mov(L1, G1);
 558   __ mov(L4, G4);
 559   __ mov(L5, G5_method);
 560 #else
 561   __ stx(G1, FP, -8 + STACK_BIAS);
 562   __ stx(G4, FP, -16 + STACK_BIAS);
 563   __ mov(G5_method, L5);
 564   __ mov(G5_method, O0);         // VM needs target method
 565   __ mov(I7, O1);                // VM needs caller's callsite
 566   // Must be a leaf call...
 567   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), relocInfo::runtime_call_type);
 568   __ delayed()->mov(G2_thread, L7_thread_cache);
 569   __ mov(L7_thread_cache, G2_thread);
 570   __ ldx(FP, -8 + STACK_BIAS, G1);
 571   __ ldx(FP, -16 + STACK_BIAS, G4);
 572   __ mov(L5, G5_method);
 573 #endif /* _LP64 */
 574 
 575   __ restore();      // Restore args
 576   __ bind(L);
 577 }
 578 
 579 
 580 RegisterOrConstant AdapterGenerator::arg_slot(const int st_off) {
 581   RegisterOrConstant roc(arg_offset(st_off));
 582   return __ ensure_simm13_or_reg(roc, Rdisp);
 583 }
 584 
 585 RegisterOrConstant AdapterGenerator::next_arg_slot(const int st_off) {
 586   RegisterOrConstant roc(next_arg_offset(st_off));
 587   return __ ensure_simm13_or_reg(roc, Rdisp);
 588 }
 589 
 590 
 591 // Stores long into offset pointed to by base
 592 void AdapterGenerator::store_c2i_long(Register r, Register base,
 593                                       const int st_off, bool is_stack) {
 594 #ifdef _LP64
 595   // In V9, longs are given 2 64-bit slots in the interpreter, but the
 596   // data is passed in only 1 slot.
 597   __ stx(r, base, next_arg_slot(st_off));
 598 #else
 599 #ifdef COMPILER2
 600   // Misaligned store of 64-bit data
 601   __ stw(r, base, arg_slot(st_off));    // lo bits
 602   __ srlx(r, 32, r);
 603   __ stw(r, base, next_arg_slot(st_off));  // hi bits
 604 #else
 605   if (is_stack) {
 606     // Misaligned store of 64-bit data
 607     __ stw(r, base, arg_slot(st_off));    // lo bits
 608     __ srlx(r, 32, r);
 609     __ stw(r, base, next_arg_slot(st_off));  // hi bits
 610   } else {
 611     __ stw(r->successor(), base, arg_slot(st_off)     ); // lo bits
 612     __ stw(r             , base, next_arg_slot(st_off)); // hi bits
 613   }
 614 #endif // COMPILER2
 615 #endif // _LP64
 616 }
 617 
 618 void AdapterGenerator::store_c2i_object(Register r, Register base,
 619                       const int st_off) {
 620   __ st_ptr (r, base, arg_slot(st_off));
 621 }
 622 
 623 void AdapterGenerator::store_c2i_int(Register r, Register base,
 624                    const int st_off) {
 625   __ st (r, base, arg_slot(st_off));
 626 }
 627 
 628 // Stores into offset pointed to by base
 629 void AdapterGenerator::store_c2i_double(VMReg r_2,
 630                       VMReg r_1, Register base, const int st_off) {
 631 #ifdef _LP64
 632   // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 633   // data is passed in only 1 slot.
 634   __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 635 #else
 636   // Need to marshal 64-bit value from misaligned Lesp loads
 637   __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), base, next_arg_slot(st_off));
 638   __ stf(FloatRegisterImpl::S, r_2->as_FloatRegister(), base, arg_slot(st_off) );
 639 #endif
 640 }
 641 
 642 void AdapterGenerator::store_c2i_float(FloatRegister f, Register base,
 643                                        const int st_off) {
 644   __ stf(FloatRegisterImpl::S, f, base, arg_slot(st_off));
 645 }
 646 
 647 void AdapterGenerator::gen_c2i_adapter(
 648                             int total_args_passed,
 649                             // VMReg max_arg,
 650                             int comp_args_on_stack, // VMRegStackSlots
 651                             const BasicType *sig_bt,
 652                             const VMRegPair *regs,
 653                             Label& L_skip_fixup) {
 654 
 655   // Before we get into the guts of the C2I adapter, see if we should be here
 656   // at all.  We've come from compiled code and are attempting to jump to the
 657   // interpreter, which means the caller made a static call to get here
 658   // (vcalls always get a compiled target if there is one).  Check for a
 659   // compiled target.  If there is one, we need to patch the caller's call.
 660   // However we will run interpreted if we come thru here. The next pass
 661   // thru the call site will run compiled. If we ran compiled here then
 662   // we can (theorectically) do endless i2c->c2i->i2c transitions during
 663   // deopt/uncommon trap cycles. If we always go interpreted here then
 664   // we can have at most one and don't need to play any tricks to keep
 665   // from endlessly growing the stack.
 666   //
 667   // Actually if we detected that we had an i2c->c2i transition here we
 668   // ought to be able to reset the world back to the state of the interpreted
 669   // call and not bother building another interpreter arg area. We don't
 670   // do that at this point.
 671 
 672   patch_callers_callsite();
 673 
 674   __ bind(L_skip_fixup);
 675 
 676   // Since all args are passed on the stack, total_args_passed*wordSize is the
 677   // space we need.  Add in varargs area needed by the interpreter. Round up
 678   // to stack alignment.
 679   const int arg_size = total_args_passed * Interpreter::stackElementSize;
 680   const int varargs_area =
 681                  (frame::varargs_offset - frame::register_save_words)*wordSize;
 682   const int extraspace = round_to(arg_size + varargs_area, 2*wordSize);
 683 
 684   const int bias = STACK_BIAS;
 685   const int interp_arg_offset = frame::varargs_offset*wordSize +
 686                         (total_args_passed-1)*Interpreter::stackElementSize;
 687 
 688   const Register base = SP;
 689 
 690   // Make some extra space on the stack.
 691   __ sub(SP, __ ensure_simm13_or_reg(extraspace, G3_scratch), SP);
 692   set_Rdisp(G3_scratch);
 693 
 694   // Write the args into the outgoing interpreter space.
 695   for (int i = 0; i < total_args_passed; i++) {
 696     const int st_off = interp_arg_offset - (i*Interpreter::stackElementSize) + bias;
 697     VMReg r_1 = regs[i].first();
 698     VMReg r_2 = regs[i].second();
 699     if (!r_1->is_valid()) {
 700       assert(!r_2->is_valid(), "");
 701       continue;
 702     }
 703     if (r_1->is_stack()) {        // Pretend stack targets are loaded into G1
 704       RegisterOrConstant ld_off = reg2offset(r_1) + extraspace + bias;
 705       ld_off = __ ensure_simm13_or_reg(ld_off, Rdisp);
 706       r_1 = G1_scratch->as_VMReg();// as part of the load/store shuffle
 707       if (!r_2->is_valid()) __ ld (base, ld_off, G1_scratch);
 708       else                  __ ldx(base, ld_off, G1_scratch);
 709     }
 710 
 711     if (r_1->is_Register()) {
 712       Register r = r_1->as_Register()->after_restore();
 713       if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) {
 714         store_c2i_object(r, base, st_off);
 715       } else if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 716         store_c2i_long(r, base, st_off, r_2->is_stack());
 717       } else {
 718         store_c2i_int(r, base, st_off);
 719       }
 720     } else {
 721       assert(r_1->is_FloatRegister(), "");
 722       if (sig_bt[i] == T_FLOAT) {
 723         store_c2i_float(r_1->as_FloatRegister(), base, st_off);
 724       } else {
 725         assert(sig_bt[i] == T_DOUBLE, "wrong type");
 726         store_c2i_double(r_2, r_1, base, st_off);
 727       }
 728     }
 729   }
 730 
 731   // Load the interpreter entry point.
 732   __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), G3_scratch);
 733 
 734   // Pass O5_savedSP as an argument to the interpreter.
 735   // The interpreter will restore SP to this value before returning.
 736   __ add(SP, __ ensure_simm13_or_reg(extraspace, G1), O5_savedSP);
 737 
 738   __ mov((frame::varargs_offset)*wordSize -
 739          1*Interpreter::stackElementSize+bias+BytesPerWord, G1);
 740   // Jump to the interpreter just as if interpreter was doing it.
 741   __ jmpl(G3_scratch, 0, G0);
 742   // Setup Lesp for the call.  Cannot actually set Lesp as the current Lesp
 743   // (really L0) is in use by the compiled frame as a generic temp.  However,
 744   // the interpreter does not know where its args are without some kind of
 745   // arg pointer being passed in.  Pass it in Gargs.
 746   __ delayed()->add(SP, G1, Gargs);
 747 }
 748 
 749 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
 750                         address code_start, address code_end,
 751                         Label& L_ok) {
 752   Label L_fail;
 753   __ set(ExternalAddress(code_start), temp_reg);
 754   __ set(pointer_delta(code_end, code_start, 1), temp2_reg);
 755   __ cmp(pc_reg, temp_reg);
 756   __ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
 757   __ delayed()->add(temp_reg, temp2_reg, temp_reg);
 758   __ cmp(pc_reg, temp_reg);
 759   __ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
 760   __ bind(L_fail);
 761 }
 762 
 763 void AdapterGenerator::gen_i2c_adapter(
 764                             int total_args_passed,
 765                             // VMReg max_arg,
 766                             int comp_args_on_stack, // VMRegStackSlots
 767                             const BasicType *sig_bt,
 768                             const VMRegPair *regs) {
 769 
 770   // Generate an I2C adapter: adjust the I-frame to make space for the C-frame
 771   // layout.  Lesp was saved by the calling I-frame and will be restored on
 772   // return.  Meanwhile, outgoing arg space is all owned by the callee
 773   // C-frame, so we can mangle it at will.  After adjusting the frame size,
 774   // hoist register arguments and repack other args according to the compiled
 775   // code convention.  Finally, end in a jump to the compiled code.  The entry
 776   // point address is the start of the buffer.
 777 
 778   // We will only enter here from an interpreted frame and never from after
 779   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 780   // race and use a c2i we will remain interpreted for the race loser(s).
 781   // This removes all sorts of headaches on the x86 side and also eliminates
 782   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 783 
 784   // More detail:
 785   // Adapters can be frameless because they do not require the caller
 786   // to perform additional cleanup work, such as correcting the stack pointer.
 787   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 788   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 789   // even if a callee has modified the stack pointer.
 790   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 791   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 792   // up via the senderSP register).
 793   // In other words, if *either* the caller or callee is interpreted, we can
 794   // get the stack pointer repaired after a call.
 795   // This is why c2i and i2c adapters cannot be indefinitely composed.
 796   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 797   // both caller and callee would be compiled methods, and neither would
 798   // clean up the stack pointer changes performed by the two adapters.
 799   // If this happens, control eventually transfers back to the compiled
 800   // caller, but with an uncorrected stack, causing delayed havoc.
 801 
 802   if (VerifyAdapterCalls &&
 803       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 804     // So, let's test for cascading c2i/i2c adapters right now.
 805     //  assert(Interpreter::contains($return_addr) ||
 806     //         StubRoutines::contains($return_addr),
 807     //         "i2c adapter must return to an interpreter frame");
 808     __ block_comment("verify_i2c { ");
 809     Label L_ok;
 810     if (Interpreter::code() != NULL)
 811       range_check(masm, O7, O0, O1,
 812                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 813                   L_ok);
 814     if (StubRoutines::code1() != NULL)
 815       range_check(masm, O7, O0, O1,
 816                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 817                   L_ok);
 818     if (StubRoutines::code2() != NULL)
 819       range_check(masm, O7, O0, O1,
 820                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 821                   L_ok);
 822     const char* msg = "i2c adapter must return to an interpreter frame";
 823     __ block_comment(msg);
 824     __ stop(msg);
 825     __ bind(L_ok);
 826     __ block_comment("} verify_i2ce ");
 827   }
 828 
 829   // As you can see from the list of inputs & outputs there are not a lot
 830   // of temp registers to work with: mostly G1, G3 & G4.
 831 
 832   // Inputs:
 833   // G2_thread      - TLS
 834   // G5_method      - Method oop
 835   // G4 (Gargs)     - Pointer to interpreter's args
 836   // O0..O4         - free for scratch
 837   // O5_savedSP     - Caller's saved SP, to be restored if needed
 838   // O6             - Current SP!
 839   // O7             - Valid return address
 840   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 841 
 842   // Outputs:
 843   // G2_thread      - TLS
 844   // O0-O5          - Outgoing args in compiled layout
 845   // O6             - Adjusted or restored SP
 846   // O7             - Valid return address
 847   // L0-L7, I0-I7   - Caller's temps (no frame pushed yet)
 848   // F0-F7          - more outgoing args
 849 
 850 
 851   // Gargs is the incoming argument base, and also an outgoing argument.
 852   __ sub(Gargs, BytesPerWord, Gargs);
 853 
 854   // ON ENTRY TO THE CODE WE ARE MAKING, WE HAVE AN INTERPRETED FRAME
 855   // WITH O7 HOLDING A VALID RETURN PC
 856   //
 857   // |              |
 858   // :  java stack  :
 859   // |              |
 860   // +--------------+ <--- start of outgoing args
 861   // |   receiver   |   |
 862   // : rest of args :   |---size is java-arg-words
 863   // |              |   |
 864   // +--------------+ <--- O4_args (misaligned) and Lesp if prior is not C2I
 865   // |              |   |
 866   // :    unused    :   |---Space for max Java stack, plus stack alignment
 867   // |              |   |
 868   // +--------------+ <--- SP + 16*wordsize
 869   // |              |
 870   // :    window    :
 871   // |              |
 872   // +--------------+ <--- SP
 873 
 874   // WE REPACK THE STACK.  We use the common calling convention layout as
 875   // discovered by calling SharedRuntime::calling_convention.  We assume it
 876   // causes an arbitrary shuffle of memory, which may require some register
 877   // temps to do the shuffle.  We hope for (and optimize for) the case where
 878   // temps are not needed.  We may have to resize the stack slightly, in case
 879   // we need alignment padding (32-bit interpreter can pass longs & doubles
 880   // misaligned, but the compilers expect them aligned).
 881   //
 882   // |              |
 883   // :  java stack  :
 884   // |              |
 885   // +--------------+ <--- start of outgoing args
 886   // |  pad, align  |   |
 887   // +--------------+   |
 888   // | ints, longs, |   |
 889   // |    floats,   |   |---Outgoing stack args.
 890   // :    doubles   :   |   First few args in registers.
 891   // |              |   |
 892   // +--------------+ <--- SP' + 16*wordsize
 893   // |              |
 894   // :    window    :
 895   // |              |
 896   // +--------------+ <--- SP'
 897 
 898   // ON EXIT FROM THE CODE WE ARE MAKING, WE STILL HAVE AN INTERPRETED FRAME
 899   // WITH O7 HOLDING A VALID RETURN PC - ITS JUST THAT THE ARGS ARE NOW SETUP
 900   // FOR COMPILED CODE AND THE FRAME SLIGHTLY GROWN.
 901 
 902   // Cut-out for having no stack args.  Since up to 6 args are passed
 903   // in registers, we will commonly have no stack args.
 904   if (comp_args_on_stack > 0) {
 905     // Convert VMReg stack slots to words.
 906     int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 907     // Round up to miminum stack alignment, in wordSize
 908     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 909     // Now compute the distance from Lesp to SP.  This calculation does not
 910     // include the space for total_args_passed because Lesp has not yet popped
 911     // the arguments.
 912     __ sub(SP, (comp_words_on_stack)*wordSize, SP);
 913   }
 914 
 915   // Now generate the shuffle code.  Pick up all register args and move the
 916   // rest through G1_scratch.
 917   for (int i = 0; i < total_args_passed; i++) {
 918     if (sig_bt[i] == T_VOID) {
 919       // Longs and doubles are passed in native word order, but misaligned
 920       // in the 32-bit build.
 921       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 922       continue;
 923     }
 924 
 925     // Pick up 0, 1 or 2 words from Lesp+offset.  Assume mis-aligned in the
 926     // 32-bit build and aligned in the 64-bit build.  Look for the obvious
 927     // ldx/lddf optimizations.
 928 
 929     // Load in argument order going down.
 930     const int ld_off = (total_args_passed-i)*Interpreter::stackElementSize;
 931     set_Rdisp(G1_scratch);
 932 
 933     VMReg r_1 = regs[i].first();
 934     VMReg r_2 = regs[i].second();
 935     if (!r_1->is_valid()) {
 936       assert(!r_2->is_valid(), "");
 937       continue;
 938     }
 939     if (r_1->is_stack()) {        // Pretend stack targets are loaded into F8/F9
 940       r_1 = F8->as_VMReg();        // as part of the load/store shuffle
 941       if (r_2->is_valid()) r_2 = r_1->next();
 942     }
 943     if (r_1->is_Register()) {  // Register argument
 944       Register r = r_1->as_Register()->after_restore();
 945       if (!r_2->is_valid()) {
 946         __ ld(Gargs, arg_slot(ld_off), r);
 947       } else {
 948 #ifdef _LP64
 949         // In V9, longs are given 2 64-bit slots in the interpreter, but the
 950         // data is passed in only 1 slot.
 951         RegisterOrConstant slot = (sig_bt[i] == T_LONG) ?
 952               next_arg_slot(ld_off) : arg_slot(ld_off);
 953         __ ldx(Gargs, slot, r);
 954 #else
 955         fatal("longs should be on stack");
 956 #endif
 957       }
 958     } else {
 959       assert(r_1->is_FloatRegister(), "");
 960       if (!r_2->is_valid()) {
 961         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_1->as_FloatRegister());
 962       } else {
 963 #ifdef _LP64
 964         // In V9, doubles are given 2 64-bit slots in the interpreter, but the
 965         // data is passed in only 1 slot.  This code also handles longs that
 966         // are passed on the stack, but need a stack-to-stack move through a
 967         // spare float register.
 968         RegisterOrConstant slot = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
 969               next_arg_slot(ld_off) : arg_slot(ld_off);
 970         __ ldf(FloatRegisterImpl::D, Gargs,                  slot, r_1->as_FloatRegister());
 971 #else
 972         // Need to marshal 64-bit value from misaligned Lesp loads
 973         __ ldf(FloatRegisterImpl::S, Gargs, next_arg_slot(ld_off), r_1->as_FloatRegister());
 974         __ ldf(FloatRegisterImpl::S, Gargs,      arg_slot(ld_off), r_2->as_FloatRegister());
 975 #endif
 976       }
 977     }
 978     // Was the argument really intended to be on the stack, but was loaded
 979     // into F8/F9?
 980     if (regs[i].first()->is_stack()) {
 981       assert(r_1->as_FloatRegister() == F8, "fix this code");
 982       // Convert stack slot to an SP offset
 983       int st_off = reg2offset(regs[i].first()) + STACK_BIAS;
 984       // Store down the shuffled stack word.  Target address _is_ aligned.
 985       RegisterOrConstant slot = __ ensure_simm13_or_reg(st_off, Rdisp);
 986       if (!r_2->is_valid()) __ stf(FloatRegisterImpl::S, r_1->as_FloatRegister(), SP, slot);
 987       else                  __ stf(FloatRegisterImpl::D, r_1->as_FloatRegister(), SP, slot);
 988     }
 989   }
 990 
 991   // Jump to the compiled code just as if compiled code was doing it.
 992   __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3);
 993 
 994   // 6243940 We might end up in handle_wrong_method if
 995   // the callee is deoptimized as we race thru here. If that
 996   // happens we don't want to take a safepoint because the
 997   // caller frame will look interpreted and arguments are now
 998   // "compiled" so it is much better to make this transition
 999   // invisible to the stack walking code. Unfortunately if
1000   // we try and find the callee by normal means a safepoint
1001   // is possible. So we stash the desired callee in the thread
1002   // and the vm will find there should this case occur.
1003   Address callee_target_addr(G2_thread, JavaThread::callee_target_offset());
1004   __ st_ptr(G5_method, callee_target_addr);
1005   __ jmpl(G3, 0, G0);
1006   __ delayed()->nop();
1007 }
1008 
1009 // ---------------------------------------------------------------
1010 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1011                                                             int total_args_passed,
1012                                                             // VMReg max_arg,
1013                                                             int comp_args_on_stack, // VMRegStackSlots
1014                                                             const BasicType *sig_bt,
1015                                                             const VMRegPair *regs,
1016                                                             AdapterFingerPrint* fingerprint) {
1017   address i2c_entry = __ pc();
1018 
1019   AdapterGenerator agen(masm);
1020 
1021   agen.gen_i2c_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs);
1022 
1023 
1024   // -------------------------------------------------------------------------
1025   // Generate a C2I adapter.  On entry we know G5 holds the Method*.  The
1026   // args start out packed in the compiled layout.  They need to be unpacked
1027   // into the interpreter layout.  This will almost always require some stack
1028   // space.  We grow the current (compiled) stack, then repack the args.  We
1029   // finally end in a jump to the generic interpreter entry point.  On exit
1030   // from the interpreter, the interpreter will restore our SP (lest the
1031   // compiled code, which relys solely on SP and not FP, get sick).
1032 
1033   address c2i_unverified_entry = __ pc();
1034   Label L_skip_fixup;
1035   {
1036     Register R_temp = G1;  // another scratch register
1037 
1038     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1039 
1040     __ verify_oop(O0);
1041     __ load_klass(O0, G3_scratch);
1042 
1043     __ ld_ptr(G5_method, CompiledICHolder::holder_klass_offset(), R_temp);
1044     __ cmp(G3_scratch, R_temp);
1045 
1046     Label ok, ok2;
1047     __ brx(Assembler::equal, false, Assembler::pt, ok);
1048     __ delayed()->ld_ptr(G5_method, CompiledICHolder::holder_method_offset(), G5_method);
1049     __ jump_to(ic_miss, G3_scratch);
1050     __ delayed()->nop();
1051 
1052     __ bind(ok);
1053     // Method might have been compiled since the call site was patched to
1054     // interpreted if that is the case treat it as a miss so we can get
1055     // the call site corrected.
1056     __ ld_ptr(G5_method, in_bytes(Method::code_offset()), G3_scratch);
1057     __ bind(ok2);
1058     __ br_null(G3_scratch, false, Assembler::pt, L_skip_fixup);
1059     __ delayed()->nop();
1060     __ jump_to(ic_miss, G3_scratch);
1061     __ delayed()->nop();
1062 
1063   }
1064 
1065   address c2i_entry = __ pc();
1066 
1067   agen.gen_c2i_adapter(total_args_passed, comp_args_on_stack, sig_bt, regs, L_skip_fixup);
1068 
1069   __ flush();
1070   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1071 
1072 }
1073 
1074 // Helper function for native calling conventions
1075 static VMReg int_stk_helper( int i ) {
1076   // Bias any stack based VMReg we get by ignoring the window area
1077   // but not the register parameter save area.
1078   //
1079   // This is strange for the following reasons. We'd normally expect
1080   // the calling convention to return an VMReg for a stack slot
1081   // completely ignoring any abi reserved area. C2 thinks of that
1082   // abi area as only out_preserve_stack_slots. This does not include
1083   // the area allocated by the C abi to store down integer arguments
1084   // because the java calling convention does not use it. So
1085   // since c2 assumes that there are only out_preserve_stack_slots
1086   // to bias the optoregs (which impacts VMRegs) when actually referencing any actual stack
1087   // location the c calling convention must add in this bias amount
1088   // to make up for the fact that the out_preserve_stack_slots is
1089   // insufficient for C calls. What a mess. I sure hope those 6
1090   // stack words were worth it on every java call!
1091 
1092   // Another way of cleaning this up would be for out_preserve_stack_slots
1093   // to take a parameter to say whether it was C or java calling conventions.
1094   // Then things might look a little better (but not much).
1095 
1096   int mem_parm_offset = i - SPARC_ARGS_IN_REGS_NUM;
1097   if( mem_parm_offset < 0 ) {
1098     return as_oRegister(i)->as_VMReg();
1099   } else {
1100     int actual_offset = (mem_parm_offset + frame::memory_parameter_word_sp_offset) * VMRegImpl::slots_per_word;
1101     // Now return a biased offset that will be correct when out_preserve_slots is added back in
1102     return VMRegImpl::stack2reg(actual_offset - SharedRuntime::out_preserve_stack_slots());
1103   }
1104 }
1105 
1106 
1107 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
1108                                          VMRegPair *regs,
1109                                          int total_args_passed) {
1110 
1111     // Return the number of VMReg stack_slots needed for the args.
1112     // This value does not include an abi space (like register window
1113     // save area).
1114 
1115     // The native convention is V8 if !LP64
1116     // The LP64 convention is the V9 convention which is slightly more sane.
1117 
1118     // We return the amount of VMReg stack slots we need to reserve for all
1119     // the arguments NOT counting out_preserve_stack_slots. Since we always
1120     // have space for storing at least 6 registers to memory we start with that.
1121     // See int_stk_helper for a further discussion.
1122     int max_stack_slots = (frame::varargs_offset * VMRegImpl::slots_per_word) - SharedRuntime::out_preserve_stack_slots();
1123 
1124 #ifdef _LP64
1125     // V9 convention: All things "as-if" on double-wide stack slots.
1126     // Hoist any int/ptr/long's in the first 6 to int regs.
1127     // Hoist any flt/dbl's in the first 16 dbl regs.
1128     int j = 0;                  // Count of actual args, not HALVES
1129     for( int i=0; i<total_args_passed; i++, j++ ) {
1130       switch( sig_bt[i] ) {
1131       case T_BOOLEAN:
1132       case T_BYTE:
1133       case T_CHAR:
1134       case T_INT:
1135       case T_SHORT:
1136         regs[i].set1( int_stk_helper( j ) ); break;
1137       case T_LONG:
1138         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1139       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1140       case T_ARRAY:
1141       case T_OBJECT:
1142       case T_METADATA:
1143         regs[i].set2( int_stk_helper( j ) );
1144         break;
1145       case T_FLOAT:
1146         if ( j < 16 ) {
1147           // V9ism: floats go in ODD registers
1148           regs[i].set1(as_FloatRegister(1 + (j<<1))->as_VMReg());
1149         } else {
1150           // V9ism: floats go in ODD stack slot
1151           regs[i].set1(VMRegImpl::stack2reg(1 + (j<<1)));
1152         }
1153         break;
1154       case T_DOUBLE:
1155         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1156         if ( j < 16 ) {
1157           // V9ism: doubles go in EVEN/ODD regs
1158           regs[i].set2(as_FloatRegister(j<<1)->as_VMReg());
1159         } else {
1160           // V9ism: doubles go in EVEN/ODD stack slots
1161           regs[i].set2(VMRegImpl::stack2reg(j<<1));
1162         }
1163         break;
1164       case T_VOID:  regs[i].set_bad(); j--; break; // Do not count HALVES
1165       default:
1166         ShouldNotReachHere();
1167       }
1168       if (regs[i].first()->is_stack()) {
1169         int off =  regs[i].first()->reg2stack();
1170         if (off > max_stack_slots) max_stack_slots = off;
1171       }
1172       if (regs[i].second()->is_stack()) {
1173         int off =  regs[i].second()->reg2stack();
1174         if (off > max_stack_slots) max_stack_slots = off;
1175       }
1176     }
1177 
1178 #else // _LP64
1179     // V8 convention: first 6 things in O-regs, rest on stack.
1180     // Alignment is willy-nilly.
1181     for( int i=0; i<total_args_passed; i++ ) {
1182       switch( sig_bt[i] ) {
1183       case T_ADDRESS: // raw pointers, like current thread, for VM calls
1184       case T_ARRAY:
1185       case T_BOOLEAN:
1186       case T_BYTE:
1187       case T_CHAR:
1188       case T_FLOAT:
1189       case T_INT:
1190       case T_OBJECT:
1191       case T_METADATA:
1192       case T_SHORT:
1193         regs[i].set1( int_stk_helper( i ) );
1194         break;
1195       case T_DOUBLE:
1196       case T_LONG:
1197         assert( sig_bt[i+1] == T_VOID, "expecting half" );
1198         regs[i].set_pair( int_stk_helper( i+1 ), int_stk_helper( i ) );
1199         break;
1200       case T_VOID: regs[i].set_bad(); break;
1201       default:
1202         ShouldNotReachHere();
1203       }
1204       if (regs[i].first()->is_stack()) {
1205         int off =  regs[i].first()->reg2stack();
1206         if (off > max_stack_slots) max_stack_slots = off;
1207       }
1208       if (regs[i].second()->is_stack()) {
1209         int off =  regs[i].second()->reg2stack();
1210         if (off > max_stack_slots) max_stack_slots = off;
1211       }
1212     }
1213 #endif // _LP64
1214 
1215   return round_to(max_stack_slots + 1, 2);
1216 
1217 }
1218 
1219 
1220 // ---------------------------------------------------------------------------
1221 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1222   switch (ret_type) {
1223   case T_FLOAT:
1224     __ stf(FloatRegisterImpl::S, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS);
1225     break;
1226   case T_DOUBLE:
1227     __ stf(FloatRegisterImpl::D, F0, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS);
1228     break;
1229   }
1230 }
1231 
1232 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1233   switch (ret_type) {
1234   case T_FLOAT:
1235     __ ldf(FloatRegisterImpl::S, SP, frame_slots*VMRegImpl::stack_slot_size - 4+STACK_BIAS, F0);
1236     break;
1237   case T_DOUBLE:
1238     __ ldf(FloatRegisterImpl::D, SP, frame_slots*VMRegImpl::stack_slot_size - 8+STACK_BIAS, F0);
1239     break;
1240   }
1241 }
1242 
1243 // Check and forward and pending exception.  Thread is stored in
1244 // L7_thread_cache and possibly NOT in G2_thread.  Since this is a native call, there
1245 // is no exception handler.  We merely pop this frame off and throw the
1246 // exception in the caller's frame.
1247 static void check_forward_pending_exception(MacroAssembler *masm, Register Rex_oop) {
1248   Label L;
1249   __ br_null(Rex_oop, false, Assembler::pt, L);
1250   __ delayed()->mov(L7_thread_cache, G2_thread); // restore in case we have exception
1251   // Since this is a native call, we *know* the proper exception handler
1252   // without calling into the VM: it's the empty function.  Just pop this
1253   // frame and then jump to forward_exception_entry; O7 will contain the
1254   // native caller's return PC.
1255  AddressLiteral exception_entry(StubRoutines::forward_exception_entry());
1256   __ jump_to(exception_entry, G3_scratch);
1257   __ delayed()->restore();      // Pop this frame off.
1258   __ bind(L);
1259 }
1260 
1261 // A simple move of integer like type
1262 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1263   if (src.first()->is_stack()) {
1264     if (dst.first()->is_stack()) {
1265       // stack to stack
1266       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1267       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1268     } else {
1269       // stack to reg
1270       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1271     }
1272   } else if (dst.first()->is_stack()) {
1273     // reg to stack
1274     __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1275   } else {
1276     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1277   }
1278 }
1279 
1280 // On 64 bit we will store integer like items to the stack as
1281 // 64 bits items (sparc abi) even though java would only store
1282 // 32bits for a parameter. On 32bit it will simply be 32 bits
1283 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1284 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1285   if (src.first()->is_stack()) {
1286     if (dst.first()->is_stack()) {
1287       // stack to stack
1288       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1289       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1290     } else {
1291       // stack to reg
1292       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1293     }
1294   } else if (dst.first()->is_stack()) {
1295     // reg to stack
1296     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1297   } else {
1298     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1299   }
1300 }
1301 
1302 
1303 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1304   if (src.first()->is_stack()) {
1305     if (dst.first()->is_stack()) {
1306       // stack to stack
1307       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1308       __ st_ptr(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1309     } else {
1310       // stack to reg
1311       __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1312     }
1313   } else if (dst.first()->is_stack()) {
1314     // reg to stack
1315     __ st_ptr(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1316   } else {
1317     __ mov(src.first()->as_Register(), dst.first()->as_Register());
1318   }
1319 }
1320 
1321 
1322 // An oop arg. Must pass a handle not the oop itself
1323 static void object_move(MacroAssembler* masm,
1324                         OopMap* map,
1325                         int oop_handle_offset,
1326                         int framesize_in_slots,
1327                         VMRegPair src,
1328                         VMRegPair dst,
1329                         bool is_receiver,
1330                         int* receiver_offset) {
1331 
1332   // must pass a handle. First figure out the location we use as a handle
1333 
1334   if (src.first()->is_stack()) {
1335     // Oop is already on the stack
1336     Register rHandle = dst.first()->is_stack() ? L5 : dst.first()->as_Register();
1337     __ add(FP, reg2offset(src.first()) + STACK_BIAS, rHandle);
1338     __ ld_ptr(rHandle, 0, L4);
1339 #ifdef _LP64
1340     __ movr( Assembler::rc_z, L4, G0, rHandle );
1341 #else
1342     __ tst( L4 );
1343     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1344 #endif
1345     if (dst.first()->is_stack()) {
1346       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1347     }
1348     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1349     if (is_receiver) {
1350       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1351     }
1352     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1353   } else {
1354     // Oop is in an input register pass we must flush it to the stack
1355     const Register rOop = src.first()->as_Register();
1356     const Register rHandle = L5;
1357     int oop_slot = rOop->input_number() * VMRegImpl::slots_per_word + oop_handle_offset;
1358     int offset = oop_slot*VMRegImpl::stack_slot_size;
1359     Label skip;
1360     __ st_ptr(rOop, SP, offset + STACK_BIAS);
1361     if (is_receiver) {
1362       *receiver_offset = oop_slot * VMRegImpl::stack_slot_size;
1363     }
1364     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1365     __ add(SP, offset + STACK_BIAS, rHandle);
1366 #ifdef _LP64
1367     __ movr( Assembler::rc_z, rOop, G0, rHandle );
1368 #else
1369     __ tst( rOop );
1370     __ movcc( Assembler::zero, false, Assembler::icc, G0, rHandle );
1371 #endif
1372 
1373     if (dst.first()->is_stack()) {
1374       __ st_ptr(rHandle, SP, reg2offset(dst.first()) + STACK_BIAS);
1375     } else {
1376       __ mov(rHandle, dst.first()->as_Register());
1377     }
1378   }
1379 }
1380 
1381 // A float arg may have to do float reg int reg conversion
1382 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1383   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1384 
1385   if (src.first()->is_stack()) {
1386     if (dst.first()->is_stack()) {
1387       // stack to stack the easiest of the bunch
1388       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1389       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1390     } else {
1391       // stack to reg
1392       if (dst.first()->is_Register()) {
1393         __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1394       } else {
1395         __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1396       }
1397     }
1398   } else if (dst.first()->is_stack()) {
1399     // reg to stack
1400     if (src.first()->is_Register()) {
1401       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1402     } else {
1403       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1404     }
1405   } else {
1406     // reg to reg
1407     if (src.first()->is_Register()) {
1408       if (dst.first()->is_Register()) {
1409         // gpr -> gpr
1410         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1411       } else {
1412         // gpr -> fpr
1413         __ st(src.first()->as_Register(), FP, -4 + STACK_BIAS);
1414         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.first()->as_FloatRegister());
1415       }
1416     } else if (dst.first()->is_Register()) {
1417       // fpr -> gpr
1418       __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), FP, -4 + STACK_BIAS);
1419       __ ld(FP, -4 + STACK_BIAS, dst.first()->as_Register());
1420     } else {
1421       // fpr -> fpr
1422       // In theory these overlap but the ordering is such that this is likely a nop
1423       if ( src.first() != dst.first()) {
1424         __ fmov(FloatRegisterImpl::S, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1425       }
1426     }
1427   }
1428 }
1429 
1430 static void split_long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1431   VMRegPair src_lo(src.first());
1432   VMRegPair src_hi(src.second());
1433   VMRegPair dst_lo(dst.first());
1434   VMRegPair dst_hi(dst.second());
1435   simple_move32(masm, src_lo, dst_lo);
1436   simple_move32(masm, src_hi, dst_hi);
1437 }
1438 
1439 // A long move
1440 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1441 
1442   // Do the simple ones here else do two int moves
1443   if (src.is_single_phys_reg() ) {
1444     if (dst.is_single_phys_reg()) {
1445       __ mov(src.first()->as_Register(), dst.first()->as_Register());
1446     } else {
1447       // split src into two separate registers
1448       // Remember hi means hi address or lsw on sparc
1449       // Move msw to lsw
1450       if (dst.second()->is_reg()) {
1451         // MSW -> MSW
1452         __ srax(src.first()->as_Register(), 32, dst.first()->as_Register());
1453         // Now LSW -> LSW
1454         // this will only move lo -> lo and ignore hi
1455         VMRegPair split(dst.second());
1456         simple_move32(masm, src, split);
1457       } else {
1458         VMRegPair split(src.first(), L4->as_VMReg());
1459         // MSW -> MSW (lo ie. first word)
1460         __ srax(src.first()->as_Register(), 32, L4);
1461         split_long_move(masm, split, dst);
1462       }
1463     }
1464   } else if (dst.is_single_phys_reg()) {
1465     if (src.is_adjacent_aligned_on_stack(2)) {
1466       __ ldx(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1467     } else {
1468       // dst is a single reg.
1469       // Remember lo is low address not msb for stack slots
1470       // and lo is the "real" register for registers
1471       // src is
1472 
1473       VMRegPair split;
1474 
1475       if (src.first()->is_reg()) {
1476         // src.lo (msw) is a reg, src.hi is stk/reg
1477         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> src.lo [the MSW is in the LSW of the reg]
1478         split.set_pair(dst.first(), src.first());
1479       } else {
1480         // msw is stack move to L5
1481         // lsw is stack move to dst.lo (real reg)
1482         // we will move: src.hi (LSW) -> dst.lo, src.lo (MSW) -> L5
1483         split.set_pair(dst.first(), L5->as_VMReg());
1484       }
1485 
1486       // src.lo -> src.lo/L5, src.hi -> dst.lo (the real reg)
1487       // msw   -> src.lo/L5,  lsw -> dst.lo
1488       split_long_move(masm, src, split);
1489 
1490       // So dst now has the low order correct position the
1491       // msw half
1492       __ sllx(split.first()->as_Register(), 32, L5);
1493 
1494       const Register d = dst.first()->as_Register();
1495       __ or3(L5, d, d);
1496     }
1497   } else {
1498     // For LP64 we can probably do better.
1499     split_long_move(masm, src, dst);
1500   }
1501 }
1502 
1503 // A double move
1504 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1505 
1506   // The painful thing here is that like long_move a VMRegPair might be
1507   // 1: a single physical register
1508   // 2: two physical registers (v8)
1509   // 3: a physical reg [lo] and a stack slot [hi] (v8)
1510   // 4: two stack slots
1511 
1512   // Since src is always a java calling convention we know that the src pair
1513   // is always either all registers or all stack (and aligned?)
1514 
1515   // in a register [lo] and a stack slot [hi]
1516   if (src.first()->is_stack()) {
1517     if (dst.first()->is_stack()) {
1518       // stack to stack the easiest of the bunch
1519       // ought to be a way to do this where if alignment is ok we use ldd/std when possible
1520       __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
1521       __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1522       __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
1523       __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1524     } else {
1525       // stack to reg
1526       if (dst.second()->is_stack()) {
1527         // stack -> reg, stack -> stack
1528         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1529         if (dst.first()->is_Register()) {
1530           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1531         } else {
1532           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1533         }
1534         // This was missing. (very rare case)
1535         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1536       } else {
1537         // stack -> reg
1538         // Eventually optimize for alignment QQQ
1539         if (dst.first()->is_Register()) {
1540           __ ld(FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_Register());
1541           __ ld(FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_Register());
1542         } else {
1543           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.first()) + STACK_BIAS, dst.first()->as_FloatRegister());
1544           __ ldf(FloatRegisterImpl::S, FP, reg2offset(src.second()) + STACK_BIAS, dst.second()->as_FloatRegister());
1545         }
1546       }
1547     }
1548   } else if (dst.first()->is_stack()) {
1549     // reg to stack
1550     if (src.first()->is_Register()) {
1551       // Eventually optimize for alignment QQQ
1552       __ st(src.first()->as_Register(), SP, reg2offset(dst.first()) + STACK_BIAS);
1553       if (src.second()->is_stack()) {
1554         __ ld(FP, reg2offset(src.second()) + STACK_BIAS, L4);
1555         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1556       } else {
1557         __ st(src.second()->as_Register(), SP, reg2offset(dst.second()) + STACK_BIAS);
1558       }
1559     } else {
1560       // fpr to stack
1561       if (src.second()->is_stack()) {
1562         ShouldNotReachHere();
1563       } else {
1564         // Is the stack aligned?
1565         if (reg2offset(dst.first()) & 0x7) {
1566           // No do as pairs
1567           __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1568           __ stf(FloatRegisterImpl::S, src.second()->as_FloatRegister(), SP, reg2offset(dst.second()) + STACK_BIAS);
1569         } else {
1570           __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), SP, reg2offset(dst.first()) + STACK_BIAS);
1571         }
1572       }
1573     }
1574   } else {
1575     // reg to reg
1576     if (src.first()->is_Register()) {
1577       if (dst.first()->is_Register()) {
1578         // gpr -> gpr
1579         __ mov(src.first()->as_Register(), dst.first()->as_Register());
1580         __ mov(src.second()->as_Register(), dst.second()->as_Register());
1581       } else {
1582         // gpr -> fpr
1583         // ought to be able to do a single store
1584         __ stx(src.first()->as_Register(), FP, -8 + STACK_BIAS);
1585         __ stx(src.second()->as_Register(), FP, -4 + STACK_BIAS);
1586         // ought to be able to do a single load
1587         __ ldf(FloatRegisterImpl::S, FP, -8 + STACK_BIAS, dst.first()->as_FloatRegister());
1588         __ ldf(FloatRegisterImpl::S, FP, -4 + STACK_BIAS, dst.second()->as_FloatRegister());
1589       }
1590     } else if (dst.first()->is_Register()) {
1591       // fpr -> gpr
1592       // ought to be able to do a single store
1593       __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(), FP, -8 + STACK_BIAS);
1594       // ought to be able to do a single load
1595       // REMEMBER first() is low address not LSB
1596       __ ld(FP, -8 + STACK_BIAS, dst.first()->as_Register());
1597       if (dst.second()->is_Register()) {
1598         __ ld(FP, -4 + STACK_BIAS, dst.second()->as_Register());
1599       } else {
1600         __ ld(FP, -4 + STACK_BIAS, L4);
1601         __ st(L4, SP, reg2offset(dst.second()) + STACK_BIAS);
1602       }
1603     } else {
1604       // fpr -> fpr
1605       // In theory these overlap but the ordering is such that this is likely a nop
1606       if ( src.first() != dst.first()) {
1607         __ fmov(FloatRegisterImpl::D, src.first()->as_FloatRegister(), dst.first()->as_FloatRegister());
1608       }
1609     }
1610   }
1611 }
1612 
1613 // Creates an inner frame if one hasn't already been created, and
1614 // saves a copy of the thread in L7_thread_cache
1615 static void create_inner_frame(MacroAssembler* masm, bool* already_created) {
1616   if (!*already_created) {
1617     __ save_frame(0);
1618     // Save thread in L7 (INNER FRAME); it crosses a bunch of VM calls below
1619     // Don't use save_thread because it smashes G2 and we merely want to save a
1620     // copy
1621     __ mov(G2_thread, L7_thread_cache);
1622     *already_created = true;
1623   }
1624 }
1625 
1626 
1627 static void save_or_restore_arguments(MacroAssembler* masm,
1628                                       const int stack_slots,
1629                                       const int total_in_args,
1630                                       const int arg_save_area,
1631                                       OopMap* map,
1632                                       VMRegPair* in_regs,
1633                                       BasicType* in_sig_bt) {
1634   // if map is non-NULL then the code should store the values,
1635   // otherwise it should load them.
1636   if (map != NULL) {
1637     // Fill in the map
1638     for (int i = 0; i < total_in_args; i++) {
1639       if (in_sig_bt[i] == T_ARRAY) {
1640         if (in_regs[i].first()->is_stack()) {
1641           int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1642           map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1643         } else if (in_regs[i].first()->is_Register()) {
1644           map->set_oop(in_regs[i].first());
1645         } else {
1646           ShouldNotReachHere();
1647         }
1648       }
1649     }
1650   }
1651 
1652   // Save or restore double word values
1653   int handle_index = 0;
1654   for (int i = 0; i < total_in_args; i++) {
1655     int slot = handle_index + arg_save_area;
1656     int offset = slot * VMRegImpl::stack_slot_size;
1657     if (in_sig_bt[i] == T_LONG && in_regs[i].first()->is_Register()) {
1658       const Register reg = in_regs[i].first()->as_Register();
1659       if (reg->is_global()) {
1660         handle_index += 2;
1661         assert(handle_index <= stack_slots, "overflow");
1662         if (map != NULL) {
1663           __ stx(reg, SP, offset + STACK_BIAS);
1664         } else {
1665           __ ldx(SP, offset + STACK_BIAS, reg);
1666         }
1667       }
1668     } else if (in_sig_bt[i] == T_DOUBLE && in_regs[i].first()->is_FloatRegister()) {
1669       handle_index += 2;
1670       assert(handle_index <= stack_slots, "overflow");
1671       if (map != NULL) {
1672         __ stf(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1673       } else {
1674         __ ldf(FloatRegisterImpl::D, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1675       }
1676     }
1677   }
1678   // Save floats
1679   for (int i = 0; i < total_in_args; i++) {
1680     int slot = handle_index + arg_save_area;
1681     int offset = slot * VMRegImpl::stack_slot_size;
1682     if (in_sig_bt[i] == T_FLOAT && in_regs[i].first()->is_FloatRegister()) {
1683       handle_index++;
1684       assert(handle_index <= stack_slots, "overflow");
1685       if (map != NULL) {
1686         __ stf(FloatRegisterImpl::S, in_regs[i].first()->as_FloatRegister(), SP, offset + STACK_BIAS);
1687       } else {
1688         __ ldf(FloatRegisterImpl::S, SP, offset + STACK_BIAS, in_regs[i].first()->as_FloatRegister());
1689       }
1690     }
1691   }
1692 
1693 }
1694 
1695 
1696 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1697 // keeps a new JNI critical region from starting until a GC has been
1698 // forced.  Save down any oops in registers and describe them in an
1699 // OopMap.
1700 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1701                                                const int stack_slots,
1702                                                const int total_in_args,
1703                                                const int arg_save_area,
1704                                                OopMapSet* oop_maps,
1705                                                VMRegPair* in_regs,
1706                                                BasicType* in_sig_bt) {
1707   __ block_comment("check GC_locker::needs_gc");
1708   Label cont;
1709   AddressLiteral sync_state(GC_locker::needs_gc_address());
1710   __ load_bool_contents(sync_state, G3_scratch);
1711   __ cmp_zero_and_br(Assembler::equal, G3_scratch, cont);
1712   __ delayed()->nop();
1713 
1714   // Save down any values that are live in registers and call into the
1715   // runtime to halt for a GC
1716   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1717   save_or_restore_arguments(masm, stack_slots, total_in_args,
1718                             arg_save_area, map, in_regs, in_sig_bt);
1719 
1720   __ mov(G2_thread, L7_thread_cache);
1721 
1722   __ set_last_Java_frame(SP, noreg);
1723 
1724   __ block_comment("block_for_jni_critical");
1725   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical), relocInfo::runtime_call_type);
1726   __ delayed()->mov(L7_thread_cache, O0);
1727   oop_maps->add_gc_map( __ offset(), map);
1728 
1729   __ restore_thread(L7_thread_cache); // restore G2_thread
1730   __ reset_last_Java_frame();
1731 
1732   // Reload all the register arguments
1733   save_or_restore_arguments(masm, stack_slots, total_in_args,
1734                             arg_save_area, NULL, in_regs, in_sig_bt);
1735 
1736   __ bind(cont);
1737 #ifdef ASSERT
1738   if (StressCriticalJNINatives) {
1739     // Stress register saving
1740     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1741     save_or_restore_arguments(masm, stack_slots, total_in_args,
1742                               arg_save_area, map, in_regs, in_sig_bt);
1743     // Destroy argument registers
1744     for (int i = 0; i < total_in_args; i++) {
1745       if (in_regs[i].first()->is_Register()) {
1746         const Register reg = in_regs[i].first()->as_Register();
1747         if (reg->is_global()) {
1748           __ mov(G0, reg);
1749         }
1750       } else if (in_regs[i].first()->is_FloatRegister()) {
1751         __ fneg(FloatRegisterImpl::D, in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
1752       }
1753     }
1754 
1755     save_or_restore_arguments(masm, stack_slots, total_in_args,
1756                               arg_save_area, NULL, in_regs, in_sig_bt);
1757   }
1758 #endif
1759 }
1760 
1761 // Unpack an array argument into a pointer to the body and the length
1762 // if the array is non-null, otherwise pass 0 for both.
1763 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1764   // Pass the length, ptr pair
1765   Label is_null, done;
1766   if (reg.first()->is_stack()) {
1767     VMRegPair tmp  = reg64_to_VMRegPair(L2);
1768     // Load the arg up from the stack
1769     move_ptr(masm, reg, tmp);
1770     reg = tmp;
1771   }
1772   __ cmp(reg.first()->as_Register(), G0);
1773   __ brx(Assembler::equal, false, Assembler::pt, is_null);
1774   __ delayed()->add(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type), L4);
1775   move_ptr(masm, reg64_to_VMRegPair(L4), body_arg);
1776   __ ld(reg.first()->as_Register(), arrayOopDesc::length_offset_in_bytes(), L4);
1777   move32_64(masm, reg64_to_VMRegPair(L4), length_arg);
1778   __ ba_short(done);
1779   __ bind(is_null);
1780   // Pass zeros
1781   move_ptr(masm, reg64_to_VMRegPair(G0), body_arg);
1782   move32_64(masm, reg64_to_VMRegPair(G0), length_arg);
1783   __ bind(done);
1784 }
1785 
1786 static void verify_oop_args(MacroAssembler* masm,
1787                             methodHandle method,
1788                             const BasicType* sig_bt,
1789                             const VMRegPair* regs) {
1790   Register temp_reg = G5_method;  // not part of any compiled calling seq
1791   if (VerifyOops) {
1792     for (int i = 0; i < method->size_of_parameters(); i++) {
1793       if (sig_bt[i] == T_OBJECT ||
1794           sig_bt[i] == T_ARRAY) {
1795         VMReg r = regs[i].first();
1796         assert(r->is_valid(), "bad oop arg");
1797         if (r->is_stack()) {
1798           RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1799           ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
1800           __ ld_ptr(SP, ld_off, temp_reg);
1801           __ verify_oop(temp_reg);
1802         } else {
1803           __ verify_oop(r->as_Register());
1804         }
1805       }
1806     }
1807   }
1808 }
1809 
1810 static void gen_special_dispatch(MacroAssembler* masm,
1811                                  methodHandle method,
1812                                  const BasicType* sig_bt,
1813                                  const VMRegPair* regs) {
1814   verify_oop_args(masm, method, sig_bt, regs);
1815   vmIntrinsics::ID iid = method->intrinsic_id();
1816 
1817   // Now write the args into the outgoing interpreter space
1818   bool     has_receiver   = false;
1819   Register receiver_reg   = noreg;
1820   int      member_arg_pos = -1;
1821   Register member_reg     = noreg;
1822   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1823   if (ref_kind != 0) {
1824     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1825     member_reg = G5_method;  // known to be free at this point
1826     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1827   } else if (iid == vmIntrinsics::_invokeBasic) {
1828     has_receiver = true;
1829   } else {
1830     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1831   }
1832 
1833   if (member_reg != noreg) {
1834     // Load the member_arg into register, if necessary.
1835     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1836     VMReg r = regs[member_arg_pos].first();
1837     if (r->is_stack()) {
1838       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1839       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1840       __ ld_ptr(SP, ld_off, member_reg);
1841     } else {
1842       // no data motion is needed
1843       member_reg = r->as_Register();
1844     }
1845   }
1846 
1847   if (has_receiver) {
1848     // Make sure the receiver is loaded into a register.
1849     assert(method->size_of_parameters() > 0, "oob");
1850     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1851     VMReg r = regs[0].first();
1852     assert(r->is_valid(), "bad receiver arg");
1853     if (r->is_stack()) {
1854       // Porting note:  This assumes that compiled calling conventions always
1855       // pass the receiver oop in a register.  If this is not true on some
1856       // platform, pick a temp and load the receiver from stack.
1857       fatal("receiver always in a register");
1858       receiver_reg = G3_scratch;  // known to be free at this point
1859       RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
1860       ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
1861       __ ld_ptr(SP, ld_off, receiver_reg);
1862     } else {
1863       // no data motion is needed
1864       receiver_reg = r->as_Register();
1865     }
1866   }
1867 
1868   // Figure out which address we are really jumping to:
1869   MethodHandles::generate_method_handle_dispatch(masm, iid,
1870                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1871 }
1872 
1873 // ---------------------------------------------------------------------------
1874 // Generate a native wrapper for a given method.  The method takes arguments
1875 // in the Java compiled code convention, marshals them to the native
1876 // convention (handlizes oops, etc), transitions to native, makes the call,
1877 // returns to java state (possibly blocking), unhandlizes any result and
1878 // returns.
1879 //
1880 // Critical native functions are a shorthand for the use of
1881 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1882 // functions.  The wrapper is expected to unpack the arguments before
1883 // passing them to the callee and perform checks before and after the
1884 // native call to ensure that they GC_locker
1885 // lock_critical/unlock_critical semantics are followed.  Some other
1886 // parts of JNI setup are skipped like the tear down of the JNI handle
1887 // block and the check for pending exceptions it's impossible for them
1888 // to be thrown.
1889 //
1890 // They are roughly structured like this:
1891 //    if (GC_locker::needs_gc())
1892 //      SharedRuntime::block_for_jni_critical();
1893 //    tranistion to thread_in_native
1894 //    unpack arrray arguments and call native entry point
1895 //    check for safepoint in progress
1896 //    check if any thread suspend flags are set
1897 //      call into JVM and possible unlock the JNI critical
1898 //      if a GC was suppressed while in the critical native.
1899 //    transition back to thread_in_Java
1900 //    return to caller
1901 //
1902 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1903                                                 methodHandle method,
1904                                                 int compile_id,
1905                                                 BasicType* in_sig_bt,
1906                                                 VMRegPair* in_regs,
1907                                                 BasicType ret_type) {
1908   if (method->is_method_handle_intrinsic()) {
1909     vmIntrinsics::ID iid = method->intrinsic_id();
1910     intptr_t start = (intptr_t)__ pc();
1911     int vep_offset = ((intptr_t)__ pc()) - start;
1912     gen_special_dispatch(masm,
1913                          method,
1914                          in_sig_bt,
1915                          in_regs);
1916     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1917     __ flush();
1918     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1919     return nmethod::new_native_nmethod(method,
1920                                        compile_id,
1921                                        masm->code(),
1922                                        vep_offset,
1923                                        frame_complete,
1924                                        stack_slots / VMRegImpl::slots_per_word,
1925                                        in_ByteSize(-1),
1926                                        in_ByteSize(-1),
1927                                        (OopMapSet*)NULL);
1928   }
1929   bool is_critical_native = true;
1930   address native_func = method->critical_native_function();
1931   if (native_func == NULL) {
1932     native_func = method->native_function();
1933     is_critical_native = false;
1934   }
1935   assert(native_func != NULL, "must have function");
1936 
1937   // Native nmethod wrappers never take possesion of the oop arguments.
1938   // So the caller will gc the arguments. The only thing we need an
1939   // oopMap for is if the call is static
1940   //
1941   // An OopMap for lock (and class if static), and one for the VM call itself
1942   OopMapSet *oop_maps = new OopMapSet();
1943   intptr_t start = (intptr_t)__ pc();
1944 
1945   // First thing make an ic check to see if we should even be here
1946   {
1947     Label L;
1948     const Register temp_reg = G3_scratch;
1949     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
1950     __ verify_oop(O0);
1951     __ load_klass(O0, temp_reg);
1952     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
1953 
1954     __ jump_to(ic_miss, temp_reg);
1955     __ delayed()->nop();
1956     __ align(CodeEntryAlignment);
1957     __ bind(L);
1958   }
1959 
1960   int vep_offset = ((intptr_t)__ pc()) - start;
1961 
1962 #ifdef COMPILER1
1963   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1964     // Object.hashCode can pull the hashCode from the header word
1965     // instead of doing a full VM transition once it's been computed.
1966     // Since hashCode is usually polymorphic at call sites we can't do
1967     // this optimization at the call site without a lot of work.
1968     Label slowCase;
1969     Register receiver             = O0;
1970     Register result               = O0;
1971     Register header               = G3_scratch;
1972     Register hash                 = G3_scratch; // overwrite header value with hash value
1973     Register mask                 = G1;         // to get hash field from header
1974 
1975     // Read the header and build a mask to get its hash field.  Give up if the object is not unlocked.
1976     // We depend on hash_mask being at most 32 bits and avoid the use of
1977     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
1978     // vm: see markOop.hpp.
1979     __ ld_ptr(receiver, oopDesc::mark_offset_in_bytes(), header);
1980     __ sethi(markOopDesc::hash_mask, mask);
1981     __ btst(markOopDesc::unlocked_value, header);
1982     __ br(Assembler::zero, false, Assembler::pn, slowCase);
1983     if (UseBiasedLocking) {
1984       // Check if biased and fall through to runtime if so
1985       __ delayed()->nop();
1986       __ btst(markOopDesc::biased_lock_bit_in_place, header);
1987       __ br(Assembler::notZero, false, Assembler::pn, slowCase);
1988     }
1989     __ delayed()->or3(mask, markOopDesc::hash_mask & 0x3ff, mask);
1990 
1991     // Check for a valid (non-zero) hash code and get its value.
1992 #ifdef _LP64
1993     __ srlx(header, markOopDesc::hash_shift, hash);
1994 #else
1995     __ srl(header, markOopDesc::hash_shift, hash);
1996 #endif
1997     __ andcc(hash, mask, hash);
1998     __ br(Assembler::equal, false, Assembler::pn, slowCase);
1999     __ delayed()->nop();
2000 
2001     // leaf return.
2002     __ retl();
2003     __ delayed()->mov(hash, result);
2004     __ bind(slowCase);
2005   }
2006 #endif // COMPILER1
2007 
2008 
2009   // We have received a description of where all the java arg are located
2010   // on entry to the wrapper. We need to convert these args to where
2011   // the jni function will expect them. To figure out where they go
2012   // we convert the java signature to a C signature by inserting
2013   // the hidden arguments as arg[0] and possibly arg[1] (static method)
2014 
2015   const int total_in_args = method->size_of_parameters();
2016   int total_c_args = total_in_args;
2017   int total_save_slots = 6 * VMRegImpl::slots_per_word;
2018   if (!is_critical_native) {
2019     total_c_args += 1;
2020     if (method->is_static()) {
2021       total_c_args++;
2022     }
2023   } else {
2024     for (int i = 0; i < total_in_args; i++) {
2025       if (in_sig_bt[i] == T_ARRAY) {
2026         // These have to be saved and restored across the safepoint
2027         total_c_args++;
2028       }
2029     }
2030   }
2031 
2032   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2033   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2034   BasicType* in_elem_bt = NULL;
2035 
2036   int argc = 0;
2037   if (!is_critical_native) {
2038     out_sig_bt[argc++] = T_ADDRESS;
2039     if (method->is_static()) {
2040       out_sig_bt[argc++] = T_OBJECT;
2041     }
2042 
2043     for (int i = 0; i < total_in_args ; i++ ) {
2044       out_sig_bt[argc++] = in_sig_bt[i];
2045     }
2046   } else {
2047     Thread* THREAD = Thread::current();
2048     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
2049     SignatureStream ss(method->signature());
2050     for (int i = 0; i < total_in_args ; i++ ) {
2051       if (in_sig_bt[i] == T_ARRAY) {
2052         // Arrays are passed as int, elem* pair
2053         out_sig_bt[argc++] = T_INT;
2054         out_sig_bt[argc++] = T_ADDRESS;
2055         Symbol* atype = ss.as_symbol(CHECK_NULL);
2056         const char* at = atype->as_C_string();
2057         if (strlen(at) == 2) {
2058           assert(at[0] == '[', "must be");
2059           switch (at[1]) {
2060             case 'B': in_elem_bt[i]  = T_BYTE; break;
2061             case 'C': in_elem_bt[i]  = T_CHAR; break;
2062             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
2063             case 'F': in_elem_bt[i]  = T_FLOAT; break;
2064             case 'I': in_elem_bt[i]  = T_INT; break;
2065             case 'J': in_elem_bt[i]  = T_LONG; break;
2066             case 'S': in_elem_bt[i]  = T_SHORT; break;
2067             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
2068             default: ShouldNotReachHere();
2069           }
2070         }
2071       } else {
2072         out_sig_bt[argc++] = in_sig_bt[i];
2073         in_elem_bt[i] = T_VOID;
2074       }
2075       if (in_sig_bt[i] != T_VOID) {
2076         assert(in_sig_bt[i] == ss.type(), "must match");
2077         ss.next();
2078       }
2079     }
2080   }
2081 
2082   // Now figure out where the args must be stored and how much stack space
2083   // they require (neglecting out_preserve_stack_slots but space for storing
2084   // the 1st six register arguments). It's weird see int_stk_helper.
2085   //
2086   int out_arg_slots;
2087   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2088 
2089   if (is_critical_native) {
2090     // Critical natives may have to call out so they need a save area
2091     // for register arguments.
2092     int double_slots = 0;
2093     int single_slots = 0;
2094     for ( int i = 0; i < total_in_args; i++) {
2095       if (in_regs[i].first()->is_Register()) {
2096         const Register reg = in_regs[i].first()->as_Register();
2097         switch (in_sig_bt[i]) {
2098           case T_ARRAY:
2099           case T_BOOLEAN:
2100           case T_BYTE:
2101           case T_SHORT:
2102           case T_CHAR:
2103           case T_INT:  assert(reg->is_in(), "don't need to save these"); break;
2104           case T_LONG: if (reg->is_global()) double_slots++; break;
2105           default:  ShouldNotReachHere();
2106         }
2107       } else if (in_regs[i].first()->is_FloatRegister()) {
2108         switch (in_sig_bt[i]) {
2109           case T_FLOAT:  single_slots++; break;
2110           case T_DOUBLE: double_slots++; break;
2111           default:  ShouldNotReachHere();
2112         }
2113       }
2114     }
2115     total_save_slots = double_slots * 2 + single_slots;
2116   }
2117 
2118   // Compute framesize for the wrapper.  We need to handlize all oops in
2119   // registers. We must create space for them here that is disjoint from
2120   // the windowed save area because we have no control over when we might
2121   // flush the window again and overwrite values that gc has since modified.
2122   // (The live window race)
2123   //
2124   // We always just allocate 6 word for storing down these object. This allow
2125   // us to simply record the base and use the Ireg number to decide which
2126   // slot to use. (Note that the reg number is the inbound number not the
2127   // outbound number).
2128   // We must shuffle args to match the native convention, and include var-args space.
2129 
2130   // Calculate the total number of stack slots we will need.
2131 
2132   // First count the abi requirement plus all of the outgoing args
2133   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2134 
2135   // Now the space for the inbound oop handle area
2136 
2137   int oop_handle_offset = round_to(stack_slots, 2);
2138   stack_slots += total_save_slots;
2139 
2140   // Now any space we need for handlizing a klass if static method
2141 
2142   int klass_slot_offset = 0;
2143   int klass_offset = -1;
2144   int lock_slot_offset = 0;
2145   bool is_static = false;
2146 
2147   if (method->is_static()) {
2148     klass_slot_offset = stack_slots;
2149     stack_slots += VMRegImpl::slots_per_word;
2150     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2151     is_static = true;
2152   }
2153 
2154   // Plus a lock if needed
2155 
2156   if (method->is_synchronized()) {
2157     lock_slot_offset = stack_slots;
2158     stack_slots += VMRegImpl::slots_per_word;
2159   }
2160 
2161   // Now a place to save return value or as a temporary for any gpr -> fpr moves
2162   stack_slots += 2;
2163 
2164   // Ok The space we have allocated will look like:
2165   //
2166   //
2167   // FP-> |                     |
2168   //      |---------------------|
2169   //      | 2 slots for moves   |
2170   //      |---------------------|
2171   //      | lock box (if sync)  |
2172   //      |---------------------| <- lock_slot_offset
2173   //      | klass (if static)   |
2174   //      |---------------------| <- klass_slot_offset
2175   //      | oopHandle area      |
2176   //      |---------------------| <- oop_handle_offset
2177   //      | outbound memory     |
2178   //      | based arguments     |
2179   //      |                     |
2180   //      |---------------------|
2181   //      | vararg area         |
2182   //      |---------------------|
2183   //      |                     |
2184   // SP-> | out_preserved_slots |
2185   //
2186   //
2187 
2188 
2189   // Now compute actual number of stack words we need rounding to make
2190   // stack properly aligned.
2191   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2192 
2193   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2194 
2195   // Generate stack overflow check before creating frame
2196   __ generate_stack_overflow_check(stack_size);
2197 
2198   // Generate a new frame for the wrapper.
2199   __ save(SP, -stack_size, SP);
2200 
2201   int frame_complete = ((intptr_t)__ pc()) - start;
2202 
2203   __ verify_thread();
2204 
2205   if (is_critical_native) {
2206     check_needs_gc_for_critical_native(masm, stack_slots,  total_in_args,
2207                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2208   }
2209 
2210   //
2211   // We immediately shuffle the arguments so that any vm call we have to
2212   // make from here on out (sync slow path, jvmti, etc.) we will have
2213   // captured the oops from our caller and have a valid oopMap for
2214   // them.
2215 
2216   // -----------------
2217   // The Grand Shuffle
2218   //
2219   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2220   // (derived from JavaThread* which is in L7_thread_cache) and, if static,
2221   // the class mirror instead of a receiver.  This pretty much guarantees that
2222   // register layout will not match.  We ignore these extra arguments during
2223   // the shuffle. The shuffle is described by the two calling convention
2224   // vectors we have in our possession. We simply walk the java vector to
2225   // get the source locations and the c vector to get the destinations.
2226   // Because we have a new window and the argument registers are completely
2227   // disjoint ( I0 -> O1, I1 -> O2, ...) we have nothing to worry about
2228   // here.
2229 
2230   // This is a trick. We double the stack slots so we can claim
2231   // the oops in the caller's frame. Since we are sure to have
2232   // more args than the caller doubling is enough to make
2233   // sure we can capture all the incoming oop args from the
2234   // caller.
2235   //
2236   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2237   // Record sp-based slot for receiver on stack for non-static methods
2238   int receiver_offset = -1;
2239 
2240   // We move the arguments backward because the floating point registers
2241   // destination will always be to a register with a greater or equal register
2242   // number or the stack.
2243 
2244 #ifdef ASSERT
2245   bool reg_destroyed[RegisterImpl::number_of_registers];
2246   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2247   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2248     reg_destroyed[r] = false;
2249   }
2250   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2251     freg_destroyed[f] = false;
2252   }
2253 
2254 #endif /* ASSERT */
2255 
2256   for ( int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0 ; i--, c_arg-- ) {
2257 
2258 #ifdef ASSERT
2259     if (in_regs[i].first()->is_Register()) {
2260       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "ack!");
2261     } else if (in_regs[i].first()->is_FloatRegister()) {
2262       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)], "ack!");
2263     }
2264     if (out_regs[c_arg].first()->is_Register()) {
2265       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2266     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
2267       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding(FloatRegisterImpl::S)] = true;
2268     }
2269 #endif /* ASSERT */
2270 
2271     switch (in_sig_bt[i]) {
2272       case T_ARRAY:
2273         if (is_critical_native) {
2274           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg], out_regs[c_arg - 1]);
2275           c_arg--;
2276           break;
2277         }
2278       case T_OBJECT:
2279         assert(!is_critical_native, "no oop arguments");
2280         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2281                     ((i == 0) && (!is_static)),
2282                     &receiver_offset);
2283         break;
2284       case T_VOID:
2285         break;
2286 
2287       case T_FLOAT:
2288         float_move(masm, in_regs[i], out_regs[c_arg]);
2289         break;
2290 
2291       case T_DOUBLE:
2292         assert( i + 1 < total_in_args &&
2293                 in_sig_bt[i + 1] == T_VOID &&
2294                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2295         double_move(masm, in_regs[i], out_regs[c_arg]);
2296         break;
2297 
2298       case T_LONG :
2299         long_move(masm, in_regs[i], out_regs[c_arg]);
2300         break;
2301 
2302       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2303 
2304       default:
2305         move32_64(masm, in_regs[i], out_regs[c_arg]);
2306     }
2307   }
2308 
2309   // Pre-load a static method's oop into O1.  Used both by locking code and
2310   // the normal JNI call code.
2311   if (method->is_static() && !is_critical_native) {
2312     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), O1);
2313 
2314     // Now handlize the static class mirror in O1.  It's known not-null.
2315     __ st_ptr(O1, SP, klass_offset + STACK_BIAS);
2316     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2317     __ add(SP, klass_offset + STACK_BIAS, O1);
2318   }
2319 
2320 
2321   const Register L6_handle = L6;
2322 
2323   if (method->is_synchronized()) {
2324     assert(!is_critical_native, "unhandled");
2325     __ mov(O1, L6_handle);
2326   }
2327 
2328   // We have all of the arguments setup at this point. We MUST NOT touch any Oregs
2329   // except O6/O7. So if we must call out we must push a new frame. We immediately
2330   // push a new frame and flush the windows.
2331 #ifdef _LP64
2332   intptr_t thepc = (intptr_t) __ pc();
2333   {
2334     address here = __ pc();
2335     // Call the next instruction
2336     __ call(here + 8, relocInfo::none);
2337     __ delayed()->nop();
2338   }
2339 #else
2340   intptr_t thepc = __ load_pc_address(O7, 0);
2341 #endif /* _LP64 */
2342 
2343   // We use the same pc/oopMap repeatedly when we call out
2344   oop_maps->add_gc_map(thepc - start, map);
2345 
2346   // O7 now has the pc loaded that we will use when we finally call to native.
2347 
2348   // Save thread in L7; it crosses a bunch of VM calls below
2349   // Don't use save_thread because it smashes G2 and we merely
2350   // want to save a copy
2351   __ mov(G2_thread, L7_thread_cache);
2352 
2353 
2354   // If we create an inner frame once is plenty
2355   // when we create it we must also save G2_thread
2356   bool inner_frame_created = false;
2357 
2358   // dtrace method entry support
2359   {
2360     SkipIfEqual skip_if(
2361       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2362     // create inner frame
2363     __ save_frame(0);
2364     __ mov(G2_thread, L7_thread_cache);
2365     __ set_metadata_constant(method(), O1);
2366     __ call_VM_leaf(L7_thread_cache,
2367          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2368          G2_thread, O1);
2369     __ restore();
2370   }
2371 
2372   // RedefineClasses() tracing support for obsolete method entry
2373   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2374     // create inner frame
2375     __ save_frame(0);
2376     __ mov(G2_thread, L7_thread_cache);
2377     __ set_metadata_constant(method(), O1);
2378     __ call_VM_leaf(L7_thread_cache,
2379          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2380          G2_thread, O1);
2381     __ restore();
2382   }
2383 
2384   // We are in the jni frame unless saved_frame is true in which case
2385   // we are in one frame deeper (the "inner" frame). If we are in the
2386   // "inner" frames the args are in the Iregs and if the jni frame then
2387   // they are in the Oregs.
2388   // If we ever need to go to the VM (for locking, jvmti) then
2389   // we will always be in the "inner" frame.
2390 
2391   // Lock a synchronized method
2392   int lock_offset = -1;         // Set if locked
2393   if (method->is_synchronized()) {
2394     Register Roop = O1;
2395     const Register L3_box = L3;
2396 
2397     create_inner_frame(masm, &inner_frame_created);
2398 
2399     __ ld_ptr(I1, 0, O1);
2400     Label done;
2401 
2402     lock_offset = (lock_slot_offset * VMRegImpl::stack_slot_size);
2403     __ add(FP, lock_offset+STACK_BIAS, L3_box);
2404 #ifdef ASSERT
2405     if (UseBiasedLocking) {
2406       // making the box point to itself will make it clear it went unused
2407       // but also be obviously invalid
2408       __ st_ptr(L3_box, L3_box, 0);
2409     }
2410 #endif // ASSERT
2411     //
2412     // Compiler_lock_object (Roop, Rmark, Rbox, Rscratch) -- kills Rmark, Rbox, Rscratch
2413     //
2414     __ compiler_lock_object(Roop, L1,    L3_box, L2);
2415     __ br(Assembler::equal, false, Assembler::pt, done);
2416     __ delayed() -> add(FP, lock_offset+STACK_BIAS, L3_box);
2417 
2418 
2419     // None of the above fast optimizations worked so we have to get into the
2420     // slow case of monitor enter.  Inline a special case of call_VM that
2421     // disallows any pending_exception.
2422     __ mov(Roop, O0);            // Need oop in O0
2423     __ mov(L3_box, O1);
2424 
2425     // Record last_Java_sp, in case the VM code releases the JVM lock.
2426 
2427     __ set_last_Java_frame(FP, I7);
2428 
2429     // do the call
2430     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), relocInfo::runtime_call_type);
2431     __ delayed()->mov(L7_thread_cache, O2);
2432 
2433     __ restore_thread(L7_thread_cache); // restore G2_thread
2434     __ reset_last_Java_frame();
2435 
2436 #ifdef ASSERT
2437     { Label L;
2438     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2439     __ br_null_short(O0, Assembler::pt, L);
2440     __ stop("no pending exception allowed on exit from IR::monitorenter");
2441     __ bind(L);
2442     }
2443 #endif
2444     __ bind(done);
2445   }
2446 
2447 
2448   // Finally just about ready to make the JNI call
2449 
2450   __ flushw();
2451   if (inner_frame_created) {
2452     __ restore();
2453   } else {
2454     // Store only what we need from this frame
2455     // QQQ I think that non-v9 (like we care) we don't need these saves
2456     // either as the flush traps and the current window goes too.
2457     __ st_ptr(FP, SP, FP->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2458     __ st_ptr(I7, SP, I7->sp_offset_in_saved_window()*wordSize + STACK_BIAS);
2459   }
2460 
2461   // get JNIEnv* which is first argument to native
2462   if (!is_critical_native) {
2463     __ add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
2464   }
2465 
2466   // Use that pc we placed in O7 a while back as the current frame anchor
2467   __ set_last_Java_frame(SP, O7);
2468 
2469   // We flushed the windows ages ago now mark them as flushed before transitioning.
2470   __ set(JavaFrameAnchor::flushed, G3_scratch);
2471   __ st(G3_scratch, G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
2472 
2473   // Transition from _thread_in_Java to _thread_in_native.
2474   __ set(_thread_in_native, G3_scratch);
2475 
2476 #ifdef _LP64
2477   AddressLiteral dest(native_func);
2478   __ relocate(relocInfo::runtime_call_type);
2479   __ jumpl_to(dest, O7, O7);
2480 #else
2481   __ call(native_func, relocInfo::runtime_call_type);
2482 #endif
2483   __ delayed()->st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2484 
2485   __ restore_thread(L7_thread_cache); // restore G2_thread
2486 
2487   // Unpack native results.  For int-types, we do any needed sign-extension
2488   // and move things into I0.  The return value there will survive any VM
2489   // calls for blocking or unlocking.  An FP or OOP result (handle) is done
2490   // specially in the slow-path code.
2491   switch (ret_type) {
2492   case T_VOID:    break;        // Nothing to do!
2493   case T_FLOAT:   break;        // Got it where we want it (unless slow-path)
2494   case T_DOUBLE:  break;        // Got it where we want it (unless slow-path)
2495   // In 64 bits build result is in O0, in O0, O1 in 32bit build
2496   case T_LONG:
2497 #ifndef _LP64
2498                   __ mov(O1, I1);
2499 #endif
2500                   // Fall thru
2501   case T_OBJECT:                // Really a handle
2502   case T_ARRAY:
2503   case T_INT:
2504                   __ mov(O0, I0);
2505                   break;
2506   case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, I0); break; // !0 => true; 0 => false
2507   case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, I0);   break;
2508   case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, I0);   break; // cannot use and3, 0xFFFF too big as immediate value!
2509   case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, I0);   break;
2510     break;                      // Cannot de-handlize until after reclaiming jvm_lock
2511   default:
2512     ShouldNotReachHere();
2513   }
2514 
2515   Label after_transition;
2516   // must we block?
2517 
2518   // Block, if necessary, before resuming in _thread_in_Java state.
2519   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2520   { Label no_block;
2521     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
2522 
2523     // Switch thread to "native transition" state before reading the synchronization state.
2524     // This additional state is necessary because reading and testing the synchronization
2525     // state is not atomic w.r.t. GC, as this scenario demonstrates:
2526     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2527     //     VM thread changes sync state to synchronizing and suspends threads for GC.
2528     //     Thread A is resumed to finish this native method, but doesn't block here since it
2529     //     didn't see any synchronization is progress, and escapes.
2530     __ set(_thread_in_native_trans, G3_scratch);
2531     __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2532     if(os::is_MP()) {
2533       if (UseMembar) {
2534         // Force this write out before the read below
2535         __ membar(Assembler::StoreLoad);
2536       } else {
2537         // Write serialization page so VM thread can do a pseudo remote membar.
2538         // We use the current thread pointer to calculate a thread specific
2539         // offset to write to within the page. This minimizes bus traffic
2540         // due to cache line collision.
2541         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
2542       }
2543     }
2544     __ load_contents(sync_state, G3_scratch);
2545     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
2546 
2547     Label L;
2548     Address suspend_state(G2_thread, JavaThread::suspend_flags_offset());
2549     __ br(Assembler::notEqual, false, Assembler::pn, L);
2550     __ delayed()->ld(suspend_state, G3_scratch);
2551     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
2552     __ bind(L);
2553 
2554     // Block.  Save any potential method result value before the operation and
2555     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2556     // lets us share the oopMap we used when we went native rather the create
2557     // a distinct one for this pc
2558     //
2559     save_native_result(masm, ret_type, stack_slots);
2560     if (!is_critical_native) {
2561       __ call_VM_leaf(L7_thread_cache,
2562                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
2563                       G2_thread);
2564     } else {
2565       __ call_VM_leaf(L7_thread_cache,
2566                       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition),
2567                       G2_thread);
2568     }
2569 
2570     // Restore any method result value
2571     restore_native_result(masm, ret_type, stack_slots);
2572 
2573     if (is_critical_native) {
2574       // The call above performed the transition to thread_in_Java so
2575       // skip the transition logic below.
2576       __ ba(after_transition);
2577       __ delayed()->nop();
2578     }
2579 
2580     __ bind(no_block);
2581   }
2582 
2583   // thread state is thread_in_native_trans. Any safepoint blocking has already
2584   // happened so we can now change state to _thread_in_Java.
2585   __ set(_thread_in_Java, G3_scratch);
2586   __ st(G3_scratch, G2_thread, JavaThread::thread_state_offset());
2587   __ bind(after_transition);
2588 
2589   Label no_reguard;
2590   __ ld(G2_thread, JavaThread::stack_guard_state_offset(), G3_scratch);
2591   __ cmp_and_br_short(G3_scratch, JavaThread::stack_guard_yellow_disabled, Assembler::notEqual, Assembler::pt, no_reguard);
2592 
2593     save_native_result(masm, ret_type, stack_slots);
2594   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2595   __ delayed()->nop();
2596 
2597   __ restore_thread(L7_thread_cache); // restore G2_thread
2598     restore_native_result(masm, ret_type, stack_slots);
2599 
2600   __ bind(no_reguard);
2601 
2602   // Handle possible exception (will unlock if necessary)
2603 
2604   // native result if any is live in freg or I0 (and I1 if long and 32bit vm)
2605 
2606   // Unlock
2607   if (method->is_synchronized()) {
2608     Label done;
2609     Register I2_ex_oop = I2;
2610     const Register L3_box = L3;
2611     // Get locked oop from the handle we passed to jni
2612     __ ld_ptr(L6_handle, 0, L4);
2613     __ add(SP, lock_offset+STACK_BIAS, L3_box);
2614     // Must save pending exception around the slow-path VM call.  Since it's a
2615     // leaf call, the pending exception (if any) can be kept in a register.
2616     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), I2_ex_oop);
2617     // Now unlock
2618     //                       (Roop, Rmark, Rbox,   Rscratch)
2619     __ compiler_unlock_object(L4,   L1,    L3_box, L2);
2620     __ br(Assembler::equal, false, Assembler::pt, done);
2621     __ delayed()-> add(SP, lock_offset+STACK_BIAS, L3_box);
2622 
2623     // save and restore any potential method result value around the unlocking
2624     // operation.  Will save in I0 (or stack for FP returns).
2625     save_native_result(masm, ret_type, stack_slots);
2626 
2627     // Must clear pending-exception before re-entering the VM.  Since this is
2628     // a leaf call, pending-exception-oop can be safely kept in a register.
2629     __ st_ptr(G0, G2_thread, in_bytes(Thread::pending_exception_offset()));
2630 
2631     // slow case of monitor enter.  Inline a special case of call_VM that
2632     // disallows any pending_exception.
2633     __ mov(L3_box, O1);
2634 
2635     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), relocInfo::runtime_call_type);
2636     __ delayed()->mov(L4, O0);              // Need oop in O0
2637 
2638     __ restore_thread(L7_thread_cache); // restore G2_thread
2639 
2640 #ifdef ASSERT
2641     { Label L;
2642     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O0);
2643     __ br_null_short(O0, Assembler::pt, L);
2644     __ stop("no pending exception allowed on exit from IR::monitorexit");
2645     __ bind(L);
2646     }
2647 #endif
2648     restore_native_result(masm, ret_type, stack_slots);
2649     // check_forward_pending_exception jump to forward_exception if any pending
2650     // exception is set.  The forward_exception routine expects to see the
2651     // exception in pending_exception and not in a register.  Kind of clumsy,
2652     // since all folks who branch to forward_exception must have tested
2653     // pending_exception first and hence have it in a register already.
2654     __ st_ptr(I2_ex_oop, G2_thread, in_bytes(Thread::pending_exception_offset()));
2655     __ bind(done);
2656   }
2657 
2658   // Tell dtrace about this method exit
2659   {
2660     SkipIfEqual skip_if(
2661       masm, G3_scratch, &DTraceMethodProbes, Assembler::zero);
2662     save_native_result(masm, ret_type, stack_slots);
2663     __ set_metadata_constant(method(), O1);
2664     __ call_VM_leaf(L7_thread_cache,
2665        CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2666        G2_thread, O1);
2667     restore_native_result(masm, ret_type, stack_slots);
2668   }
2669 
2670   // Clear "last Java frame" SP and PC.
2671   __ verify_thread(); // G2_thread must be correct
2672   __ reset_last_Java_frame();
2673 
2674   // Unpack oop result
2675   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2676       Label L;
2677       __ addcc(G0, I0, G0);
2678       __ brx(Assembler::notZero, true, Assembler::pt, L);
2679       __ delayed()->ld_ptr(I0, 0, I0);
2680       __ mov(G0, I0);
2681       __ bind(L);
2682       __ verify_oop(I0);
2683   }
2684 
2685   if (!is_critical_native) {
2686     // reset handle block
2687     __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), L5);
2688     __ st_ptr(G0, L5, JNIHandleBlock::top_offset_in_bytes());
2689 
2690     __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), G3_scratch);
2691     check_forward_pending_exception(masm, G3_scratch);
2692   }
2693 
2694 
2695   // Return
2696 
2697 #ifndef _LP64
2698   if (ret_type == T_LONG) {
2699 
2700     // Must leave proper result in O0,O1 and G1 (c2/tiered only)
2701     __ sllx(I0, 32, G1);          // Shift bits into high G1
2702     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
2703     __ or3 (I1, G1, G1);          // OR 64 bits into G1
2704   }
2705 #endif
2706 
2707   __ ret();
2708   __ delayed()->restore();
2709 
2710   __ flush();
2711 
2712   nmethod *nm = nmethod::new_native_nmethod(method,
2713                                             compile_id,
2714                                             masm->code(),
2715                                             vep_offset,
2716                                             frame_complete,
2717                                             stack_slots / VMRegImpl::slots_per_word,
2718                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2719                                             in_ByteSize(lock_offset),
2720                                             oop_maps);
2721 
2722   if (is_critical_native) {
2723     nm->set_lazy_critical_native(true);
2724   }
2725   return nm;
2726 
2727 }
2728 
2729 #ifdef HAVE_DTRACE_H
2730 // ---------------------------------------------------------------------------
2731 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2732 // in the Java compiled code convention, marshals them to the native
2733 // abi and then leaves nops at the position you would expect to call a native
2734 // function. When the probe is enabled the nops are replaced with a trap
2735 // instruction that dtrace inserts and the trace will cause a notification
2736 // to dtrace.
2737 //
2738 // The probes are only able to take primitive types and java/lang/String as
2739 // arguments.  No other java types are allowed. Strings are converted to utf8
2740 // strings so that from dtrace point of view java strings are converted to C
2741 // strings. There is an arbitrary fixed limit on the total space that a method
2742 // can use for converting the strings. (256 chars per string in the signature).
2743 // So any java string larger then this is truncated.
2744 
2745 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2746 static bool offsets_initialized = false;
2747 
2748 nmethod *SharedRuntime::generate_dtrace_nmethod(
2749     MacroAssembler *masm, methodHandle method) {
2750 
2751 
2752   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2753   // be single threaded in this method.
2754   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2755 
2756   // Fill in the signature array, for the calling-convention call.
2757   int total_args_passed = method->size_of_parameters();
2758 
2759   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2760   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2761 
2762   // The signature we are going to use for the trap that dtrace will see
2763   // java/lang/String is converted. We drop "this" and any other object
2764   // is converted to NULL.  (A one-slot java/lang/Long object reference
2765   // is converted to a two-slot long, which is why we double the allocation).
2766   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2767   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2768 
2769   int i=0;
2770   int total_strings = 0;
2771   int first_arg_to_pass = 0;
2772   int total_c_args = 0;
2773 
2774   // Skip the receiver as dtrace doesn't want to see it
2775   if( !method->is_static() ) {
2776     in_sig_bt[i++] = T_OBJECT;
2777     first_arg_to_pass = 1;
2778   }
2779 
2780   SignatureStream ss(method->signature());
2781   for ( ; !ss.at_return_type(); ss.next()) {
2782     BasicType bt = ss.type();
2783     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2784     out_sig_bt[total_c_args++] = bt;
2785     if( bt == T_OBJECT) {
2786       Symbol* s = ss.as_symbol_or_null();
2787       if (s == vmSymbols::java_lang_String()) {
2788         total_strings++;
2789         out_sig_bt[total_c_args-1] = T_ADDRESS;
2790       } else if (s == vmSymbols::java_lang_Boolean() ||
2791                  s == vmSymbols::java_lang_Byte()) {
2792         out_sig_bt[total_c_args-1] = T_BYTE;
2793       } else if (s == vmSymbols::java_lang_Character() ||
2794                  s == vmSymbols::java_lang_Short()) {
2795         out_sig_bt[total_c_args-1] = T_SHORT;
2796       } else if (s == vmSymbols::java_lang_Integer() ||
2797                  s == vmSymbols::java_lang_Float()) {
2798         out_sig_bt[total_c_args-1] = T_INT;
2799       } else if (s == vmSymbols::java_lang_Long() ||
2800                  s == vmSymbols::java_lang_Double()) {
2801         out_sig_bt[total_c_args-1] = T_LONG;
2802         out_sig_bt[total_c_args++] = T_VOID;
2803       }
2804     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2805       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2806       // We convert double to long
2807       out_sig_bt[total_c_args-1] = T_LONG;
2808       out_sig_bt[total_c_args++] = T_VOID;
2809     } else if ( bt == T_FLOAT) {
2810       // We convert float to int
2811       out_sig_bt[total_c_args-1] = T_INT;
2812     }
2813   }
2814 
2815   assert(i==total_args_passed, "validly parsed signature");
2816 
2817   // Now get the compiled-Java layout as input arguments
2818   int comp_args_on_stack;
2819   comp_args_on_stack = SharedRuntime::java_calling_convention(
2820       in_sig_bt, in_regs, total_args_passed, false);
2821 
2822   // We have received a description of where all the java arg are located
2823   // on entry to the wrapper. We need to convert these args to where
2824   // the a  native (non-jni) function would expect them. To figure out
2825   // where they go we convert the java signature to a C signature and remove
2826   // T_VOID for any long/double we might have received.
2827 
2828 
2829   // Now figure out where the args must be stored and how much stack space
2830   // they require (neglecting out_preserve_stack_slots but space for storing
2831   // the 1st six register arguments). It's weird see int_stk_helper.
2832   //
2833   int out_arg_slots;
2834   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
2835 
2836   // Calculate the total number of stack slots we will need.
2837 
2838   // First count the abi requirement plus all of the outgoing args
2839   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2840 
2841   // Plus a temp for possible converion of float/double/long register args
2842 
2843   int conversion_temp = stack_slots;
2844   stack_slots += 2;
2845 
2846 
2847   // Now space for the string(s) we must convert
2848 
2849   int string_locs = stack_slots;
2850   stack_slots += total_strings *
2851                    (max_dtrace_string_size / VMRegImpl::stack_slot_size);
2852 
2853   // Ok The space we have allocated will look like:
2854   //
2855   //
2856   // FP-> |                     |
2857   //      |---------------------|
2858   //      | string[n]           |
2859   //      |---------------------| <- string_locs[n]
2860   //      | string[n-1]         |
2861   //      |---------------------| <- string_locs[n-1]
2862   //      | ...                 |
2863   //      | ...                 |
2864   //      |---------------------| <- string_locs[1]
2865   //      | string[0]           |
2866   //      |---------------------| <- string_locs[0]
2867   //      | temp                |
2868   //      |---------------------| <- conversion_temp
2869   //      | outbound memory     |
2870   //      | based arguments     |
2871   //      |                     |
2872   //      |---------------------|
2873   //      |                     |
2874   // SP-> | out_preserved_slots |
2875   //
2876   //
2877 
2878   // Now compute actual number of stack words we need rounding to make
2879   // stack properly aligned.
2880   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2881 
2882   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2883 
2884   intptr_t start = (intptr_t)__ pc();
2885 
2886   // First thing make an ic check to see if we should even be here
2887 
2888   {
2889     Label L;
2890     const Register temp_reg = G3_scratch;
2891     AddressLiteral ic_miss(SharedRuntime::get_ic_miss_stub());
2892     __ verify_oop(O0);
2893     __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), temp_reg);
2894     __ cmp_and_brx_short(temp_reg, G5_inline_cache_reg, Assembler::equal, Assembler::pt, L);
2895 
2896     __ jump_to(ic_miss, temp_reg);
2897     __ delayed()->nop();
2898     __ align(CodeEntryAlignment);
2899     __ bind(L);
2900   }
2901 
2902   int vep_offset = ((intptr_t)__ pc()) - start;
2903 
2904 
2905   // The instruction at the verified entry point must be 5 bytes or longer
2906   // because it can be patched on the fly by make_non_entrant. The stack bang
2907   // instruction fits that requirement.
2908 
2909   // Generate stack overflow check before creating frame
2910   __ generate_stack_overflow_check(stack_size);
2911 
2912   assert(((intptr_t)__ pc() - start - vep_offset) >= 5,
2913          "valid size for make_non_entrant");
2914 
2915   // Generate a new frame for the wrapper.
2916   __ save(SP, -stack_size, SP);
2917 
2918   // Frame is now completed as far a size and linkage.
2919 
2920   int frame_complete = ((intptr_t)__ pc()) - start;
2921 
2922 #ifdef ASSERT
2923   bool reg_destroyed[RegisterImpl::number_of_registers];
2924   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2925   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2926     reg_destroyed[r] = false;
2927   }
2928   for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
2929     freg_destroyed[f] = false;
2930   }
2931 
2932 #endif /* ASSERT */
2933 
2934   VMRegPair zero;
2935   const Register g0 = G0; // without this we get a compiler warning (why??)
2936   zero.set2(g0->as_VMReg());
2937 
2938   int c_arg, j_arg;
2939 
2940   Register conversion_off = noreg;
2941 
2942   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2943        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2944 
2945     VMRegPair src = in_regs[j_arg];
2946     VMRegPair dst = out_regs[c_arg];
2947 
2948 #ifdef ASSERT
2949     if (src.first()->is_Register()) {
2950       assert(!reg_destroyed[src.first()->as_Register()->encoding()], "ack!");
2951     } else if (src.first()->is_FloatRegister()) {
2952       assert(!freg_destroyed[src.first()->as_FloatRegister()->encoding(
2953                                                FloatRegisterImpl::S)], "ack!");
2954     }
2955     if (dst.first()->is_Register()) {
2956       reg_destroyed[dst.first()->as_Register()->encoding()] = true;
2957     } else if (dst.first()->is_FloatRegister()) {
2958       freg_destroyed[dst.first()->as_FloatRegister()->encoding(
2959                                                  FloatRegisterImpl::S)] = true;
2960     }
2961 #endif /* ASSERT */
2962 
2963     switch (in_sig_bt[j_arg]) {
2964       case T_ARRAY:
2965       case T_OBJECT:
2966         {
2967           if (out_sig_bt[c_arg] == T_BYTE  || out_sig_bt[c_arg] == T_SHORT ||
2968               out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2969             // need to unbox a one-slot value
2970             Register in_reg = L0;
2971             Register tmp = L2;
2972             if ( src.first()->is_reg() ) {
2973               in_reg = src.first()->as_Register();
2974             } else {
2975               assert(Assembler::is_simm13(reg2offset(src.first()) + STACK_BIAS),
2976                      "must be");
2977               __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, in_reg);
2978             }
2979             // If the final destination is an acceptable register
2980             if ( dst.first()->is_reg() ) {
2981               if ( dst.is_single_phys_reg() || out_sig_bt[c_arg] != T_LONG ) {
2982                 tmp = dst.first()->as_Register();
2983               }
2984             }
2985 
2986             Label skipUnbox;
2987             if ( wordSize == 4 && out_sig_bt[c_arg] == T_LONG ) {
2988               __ mov(G0, tmp->successor());
2989             }
2990             __ br_null(in_reg, true, Assembler::pn, skipUnbox);
2991             __ delayed()->mov(G0, tmp);
2992 
2993             BasicType bt = out_sig_bt[c_arg];
2994             int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2995             switch (bt) {
2996                 case T_BYTE:
2997                   __ ldub(in_reg, box_offset, tmp); break;
2998                 case T_SHORT:
2999                   __ lduh(in_reg, box_offset, tmp); break;
3000                 case T_INT:
3001                   __ ld(in_reg, box_offset, tmp); break;
3002                 case T_LONG:
3003                   __ ld_long(in_reg, box_offset, tmp); break;
3004                 default: ShouldNotReachHere();
3005             }
3006 
3007             __ bind(skipUnbox);
3008             // If tmp wasn't final destination copy to final destination
3009             if (tmp == L2) {
3010               VMRegPair tmp_as_VM = reg64_to_VMRegPair(L2);
3011               if (out_sig_bt[c_arg] == T_LONG) {
3012                 long_move(masm, tmp_as_VM, dst);
3013               } else {
3014                 move32_64(masm, tmp_as_VM, out_regs[c_arg]);
3015               }
3016             }
3017             if (out_sig_bt[c_arg] == T_LONG) {
3018               assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3019               ++c_arg; // move over the T_VOID to keep the loop indices in sync
3020             }
3021           } else if (out_sig_bt[c_arg] == T_ADDRESS) {
3022             Register s =
3023                 src.first()->is_reg() ? src.first()->as_Register() : L2;
3024             Register d =
3025                 dst.first()->is_reg() ? dst.first()->as_Register() : L2;
3026 
3027             // We store the oop now so that the conversion pass can reach
3028             // while in the inner frame. This will be the only store if
3029             // the oop is NULL.
3030             if (s != L2) {
3031               // src is register
3032               if (d != L2) {
3033                 // dst is register
3034                 __ mov(s, d);
3035               } else {
3036                 assert(Assembler::is_simm13(reg2offset(dst.first()) +
3037                           STACK_BIAS), "must be");
3038                 __ st_ptr(s, SP, reg2offset(dst.first()) + STACK_BIAS);
3039               }
3040             } else {
3041                 // src not a register
3042                 assert(Assembler::is_simm13(reg2offset(src.first()) +
3043                            STACK_BIAS), "must be");
3044                 __ ld_ptr(FP, reg2offset(src.first()) + STACK_BIAS, d);
3045                 if (d == L2) {
3046                   assert(Assembler::is_simm13(reg2offset(dst.first()) +
3047                              STACK_BIAS), "must be");
3048                   __ st_ptr(d, SP, reg2offset(dst.first()) + STACK_BIAS);
3049                 }
3050             }
3051           } else if (out_sig_bt[c_arg] != T_VOID) {
3052             // Convert the arg to NULL
3053             if (dst.first()->is_reg()) {
3054               __ mov(G0, dst.first()->as_Register());
3055             } else {
3056               assert(Assembler::is_simm13(reg2offset(dst.first()) +
3057                          STACK_BIAS), "must be");
3058               __ st_ptr(G0, SP, reg2offset(dst.first()) + STACK_BIAS);
3059             }
3060           }
3061         }
3062         break;
3063       case T_VOID:
3064         break;
3065 
3066       case T_FLOAT:
3067         if (src.first()->is_stack()) {
3068           // Stack to stack/reg is simple
3069           move32_64(masm, src, dst);
3070         } else {
3071           if (dst.first()->is_reg()) {
3072             // freg -> reg
3073             int off =
3074               STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3075             Register d = dst.first()->as_Register();
3076             if (Assembler::is_simm13(off)) {
3077               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3078                      SP, off);
3079               __ ld(SP, off, d);
3080             } else {
3081               if (conversion_off == noreg) {
3082                 __ set(off, L6);
3083                 conversion_off = L6;
3084               }
3085               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3086                      SP, conversion_off);
3087               __ ld(SP, conversion_off , d);
3088             }
3089           } else {
3090             // freg -> mem
3091             int off = STACK_BIAS + reg2offset(dst.first());
3092             if (Assembler::is_simm13(off)) {
3093               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3094                      SP, off);
3095             } else {
3096               if (conversion_off == noreg) {
3097                 __ set(off, L6);
3098                 conversion_off = L6;
3099               }
3100               __ stf(FloatRegisterImpl::S, src.first()->as_FloatRegister(),
3101                      SP, conversion_off);
3102             }
3103           }
3104         }
3105         break;
3106 
3107       case T_DOUBLE:
3108         assert( j_arg + 1 < total_args_passed &&
3109                 in_sig_bt[j_arg + 1] == T_VOID &&
3110                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
3111         if (src.first()->is_stack()) {
3112           // Stack to stack/reg is simple
3113           long_move(masm, src, dst);
3114         } else {
3115           Register d = dst.first()->is_reg() ? dst.first()->as_Register() : L2;
3116 
3117           // Destination could be an odd reg on 32bit in which case
3118           // we can't load direct to the destination.
3119 
3120           if (!d->is_even() && wordSize == 4) {
3121             d = L2;
3122           }
3123           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3124           if (Assembler::is_simm13(off)) {
3125             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
3126                    SP, off);
3127             __ ld_long(SP, off, d);
3128           } else {
3129             if (conversion_off == noreg) {
3130               __ set(off, L6);
3131               conversion_off = L6;
3132             }
3133             __ stf(FloatRegisterImpl::D, src.first()->as_FloatRegister(),
3134                    SP, conversion_off);
3135             __ ld_long(SP, conversion_off, d);
3136           }
3137           if (d == L2) {
3138             long_move(masm, reg64_to_VMRegPair(L2), dst);
3139           }
3140         }
3141         break;
3142 
3143       case T_LONG :
3144         // 32bit can't do a split move of something like g1 -> O0, O1
3145         // so use a memory temp
3146         if (src.is_single_phys_reg() && wordSize == 4) {
3147           Register tmp = L2;
3148           if (dst.first()->is_reg() &&
3149               (wordSize == 8 || dst.first()->as_Register()->is_even())) {
3150             tmp = dst.first()->as_Register();
3151           }
3152 
3153           int off = STACK_BIAS + conversion_temp * VMRegImpl::stack_slot_size;
3154           if (Assembler::is_simm13(off)) {
3155             __ stx(src.first()->as_Register(), SP, off);
3156             __ ld_long(SP, off, tmp);
3157           } else {
3158             if (conversion_off == noreg) {
3159               __ set(off, L6);
3160               conversion_off = L6;
3161             }
3162             __ stx(src.first()->as_Register(), SP, conversion_off);
3163             __ ld_long(SP, conversion_off, tmp);
3164           }
3165 
3166           if (tmp == L2) {
3167             long_move(masm, reg64_to_VMRegPair(L2), dst);
3168           }
3169         } else {
3170           long_move(masm, src, dst);
3171         }
3172         break;
3173 
3174       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
3175 
3176       default:
3177         move32_64(masm, src, dst);
3178     }
3179   }
3180 
3181 
3182   // If we have any strings we must store any register based arg to the stack
3183   // This includes any still live xmm registers too.
3184 
3185   if (total_strings > 0 ) {
3186 
3187     // protect all the arg registers
3188     __ save_frame(0);
3189     __ mov(G2_thread, L7_thread_cache);
3190     const Register L2_string_off = L2;
3191 
3192     // Get first string offset
3193     __ set(string_locs * VMRegImpl::stack_slot_size, L2_string_off);
3194 
3195     for (c_arg = 0 ; c_arg < total_c_args ; c_arg++ ) {
3196       if (out_sig_bt[c_arg] == T_ADDRESS) {
3197 
3198         VMRegPair dst = out_regs[c_arg];
3199         const Register d = dst.first()->is_reg() ?
3200             dst.first()->as_Register()->after_save() : noreg;
3201 
3202         // It's a string the oop and it was already copied to the out arg
3203         // position
3204         if (d != noreg) {
3205           __ mov(d, O0);
3206         } else {
3207           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3208                  "must be");
3209           __ ld_ptr(FP,  reg2offset(dst.first()) + STACK_BIAS, O0);
3210         }
3211         Label skip;
3212 
3213         __ br_null(O0, false, Assembler::pn, skip);
3214         __ delayed()->add(FP, L2_string_off, O1);
3215 
3216         if (d != noreg) {
3217           __ mov(O1, d);
3218         } else {
3219           assert(Assembler::is_simm13(reg2offset(dst.first()) + STACK_BIAS),
3220                  "must be");
3221           __ st_ptr(O1, FP,  reg2offset(dst.first()) + STACK_BIAS);
3222         }
3223 
3224         __ call(CAST_FROM_FN_PTR(address, SharedRuntime::get_utf),
3225                 relocInfo::runtime_call_type);
3226         __ delayed()->add(L2_string_off, max_dtrace_string_size, L2_string_off);
3227 
3228         __ bind(skip);
3229 
3230       }
3231 
3232     }
3233     __ mov(L7_thread_cache, G2_thread);
3234     __ restore();
3235 
3236   }
3237 
3238 
3239   // Ok now we are done. Need to place the nop that dtrace wants in order to
3240   // patch in the trap
3241 
3242   int patch_offset = ((intptr_t)__ pc()) - start;
3243 
3244   __ nop();
3245 
3246 
3247   // Return
3248 
3249   __ ret();
3250   __ delayed()->restore();
3251 
3252   __ flush();
3253 
3254   nmethod *nm = nmethod::new_dtrace_nmethod(
3255       method, masm->code(), vep_offset, patch_offset, frame_complete,
3256       stack_slots / VMRegImpl::slots_per_word);
3257   return nm;
3258 
3259 }
3260 
3261 #endif // HAVE_DTRACE_H
3262 
3263 // this function returns the adjust size (in number of words) to a c2i adapter
3264 // activation for use during deoptimization
3265 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
3266   assert(callee_locals >= callee_parameters,
3267           "test and remove; got more parms than locals");
3268   if (callee_locals < callee_parameters)
3269     return 0;                   // No adjustment for negative locals
3270   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3271   return round_to(diff, WordsPerLong);
3272 }
3273 
3274 // "Top of Stack" slots that may be unused by the calling convention but must
3275 // otherwise be preserved.
3276 // On Intel these are not necessary and the value can be zero.
3277 // On Sparc this describes the words reserved for storing a register window
3278 // when an interrupt occurs.
3279 uint SharedRuntime::out_preserve_stack_slots() {
3280   return frame::register_save_words * VMRegImpl::slots_per_word;
3281 }
3282 
3283 static void gen_new_frame(MacroAssembler* masm, bool deopt) {
3284 //
3285 // Common out the new frame generation for deopt and uncommon trap
3286 //
3287   Register        G3pcs              = G3_scratch; // Array of new pcs (input)
3288   Register        Oreturn0           = O0;
3289   Register        Oreturn1           = O1;
3290   Register        O2UnrollBlock      = O2;
3291   Register        O3array            = O3;         // Array of frame sizes (input)
3292   Register        O4array_size       = O4;         // number of frames (input)
3293   Register        O7frame_size       = O7;         // number of frames (input)
3294 
3295   __ ld_ptr(O3array, 0, O7frame_size);
3296   __ sub(G0, O7frame_size, O7frame_size);
3297   __ save(SP, O7frame_size, SP);
3298   __ ld_ptr(G3pcs, 0, I7);                      // load frame's new pc
3299 
3300   #ifdef ASSERT
3301   // make sure that the frames are aligned properly
3302 #ifndef _LP64
3303   __ btst(wordSize*2-1, SP);
3304   __ breakpoint_trap(Assembler::notZero, Assembler::ptr_cc);
3305 #endif
3306   #endif
3307 
3308   // Deopt needs to pass some extra live values from frame to frame
3309 
3310   if (deopt) {
3311     __ mov(Oreturn0->after_save(), Oreturn0);
3312     __ mov(Oreturn1->after_save(), Oreturn1);
3313   }
3314 
3315   __ mov(O4array_size->after_save(), O4array_size);
3316   __ sub(O4array_size, 1, O4array_size);
3317   __ mov(O3array->after_save(), O3array);
3318   __ mov(O2UnrollBlock->after_save(), O2UnrollBlock);
3319   __ add(G3pcs, wordSize, G3pcs);               // point to next pc value
3320 
3321   #ifdef ASSERT
3322   // trash registers to show a clear pattern in backtraces
3323   __ set(0xDEAD0000, I0);
3324   __ add(I0,  2, I1);
3325   __ add(I0,  4, I2);
3326   __ add(I0,  6, I3);
3327   __ add(I0,  8, I4);
3328   // Don't touch I5 could have valuable savedSP
3329   __ set(0xDEADBEEF, L0);
3330   __ mov(L0, L1);
3331   __ mov(L0, L2);
3332   __ mov(L0, L3);
3333   __ mov(L0, L4);
3334   __ mov(L0, L5);
3335 
3336   // trash the return value as there is nothing to return yet
3337   __ set(0xDEAD0001, O7);
3338   #endif
3339 
3340   __ mov(SP, O5_savedSP);
3341 }
3342 
3343 
3344 static void make_new_frames(MacroAssembler* masm, bool deopt) {
3345   //
3346   // loop through the UnrollBlock info and create new frames
3347   //
3348   Register        G3pcs              = G3_scratch;
3349   Register        Oreturn0           = O0;
3350   Register        Oreturn1           = O1;
3351   Register        O2UnrollBlock      = O2;
3352   Register        O3array            = O3;
3353   Register        O4array_size       = O4;
3354   Label           loop;
3355 
3356   // Before we make new frames, check to see if stack is available.
3357   // Do this after the caller's return address is on top of stack
3358   if (UseStackBanging) {
3359     // Get total frame size for interpreted frames
3360     __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes(), O4);
3361     __ bang_stack_size(O4, O3, G3_scratch);
3362   }
3363 
3364   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(), O4array_size);
3365   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(), G3pcs);
3366   __ ld_ptr(O2UnrollBlock, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(), O3array);
3367 
3368   // Adjust old interpreter frame to make space for new frame's extra java locals
3369   //
3370   // We capture the original sp for the transition frame only because it is needed in
3371   // order to properly calculate interpreter_sp_adjustment. Even though in real life
3372   // every interpreter frame captures a savedSP it is only needed at the transition
3373   // (fortunately). If we had to have it correct everywhere then we would need to
3374   // be told the sp_adjustment for each frame we create. If the frame size array
3375   // were to have twice the frame count entries then we could have pairs [sp_adjustment, frame_size]
3376   // for each frame we create and keep up the illusion every where.
3377   //
3378 
3379   __ ld(O2UnrollBlock, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(), O7);
3380   __ mov(SP, O5_savedSP);       // remember initial sender's original sp before adjustment
3381   __ sub(SP, O7, SP);
3382 
3383 #ifdef ASSERT
3384   // make sure that there is at least one entry in the array
3385   __ tst(O4array_size);
3386   __ breakpoint_trap(Assembler::zero, Assembler::icc);
3387 #endif
3388 
3389   // Now push the new interpreter frames
3390   __ bind(loop);
3391 
3392   // allocate a new frame, filling the registers
3393 
3394   gen_new_frame(masm, deopt);        // allocate an interpreter frame
3395 
3396   __ cmp_zero_and_br(Assembler::notZero, O4array_size, loop);
3397   __ delayed()->add(O3array, wordSize, O3array);
3398   __ ld_ptr(G3pcs, 0, O7);                      // load final frame new pc
3399 
3400 }
3401 
3402 //------------------------------generate_deopt_blob----------------------------
3403 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3404 // instead.
3405 void SharedRuntime::generate_deopt_blob() {
3406   // allocate space for the code
3407   ResourceMark rm;
3408   // setup code generation tools
3409   int pad = VerifyThread ? 512 : 0;// Extra slop space for more verify code
3410   if (UseStackBanging) {
3411     pad += StackShadowPages*16 + 32;
3412   }
3413 #ifdef _LP64
3414   CodeBuffer buffer("deopt_blob", 2100+pad, 512);
3415 #else
3416   // Measured 8/7/03 at 1212 in 32bit debug build (no VerifyThread)
3417   // Measured 8/7/03 at 1396 in 32bit debug build (VerifyThread)
3418   CodeBuffer buffer("deopt_blob", 1600+pad, 512);
3419 #endif /* _LP64 */
3420   MacroAssembler* masm               = new MacroAssembler(&buffer);
3421   FloatRegister   Freturn0           = F0;
3422   Register        Greturn1           = G1;
3423   Register        Oreturn0           = O0;
3424   Register        Oreturn1           = O1;
3425   Register        O2UnrollBlock      = O2;
3426   Register        L0deopt_mode       = L0;
3427   Register        G4deopt_mode       = G4_scratch;
3428   int             frame_size_words;
3429   Address         saved_Freturn0_addr(FP, -sizeof(double) + STACK_BIAS);
3430 #if !defined(_LP64) && defined(COMPILER2)
3431   Address         saved_Greturn1_addr(FP, -sizeof(double) -sizeof(jlong) + STACK_BIAS);
3432 #endif
3433   Label           cont;
3434 
3435   OopMapSet *oop_maps = new OopMapSet();
3436 
3437   //
3438   // This is the entry point for code which is returning to a de-optimized
3439   // frame.
3440   // The steps taken by this frame are as follows:
3441   //   - push a dummy "register_save" and save the return values (O0, O1, F0/F1, G1)
3442   //     and all potentially live registers (at a pollpoint many registers can be live).
3443   //
3444   //   - call the C routine: Deoptimization::fetch_unroll_info (this function
3445   //     returns information about the number and size of interpreter frames
3446   //     which are equivalent to the frame which is being deoptimized)
3447   //   - deallocate the unpack frame, restoring only results values. Other
3448   //     volatile registers will now be captured in the vframeArray as needed.
3449   //   - deallocate the deoptimization frame
3450   //   - in a loop using the information returned in the previous step
3451   //     push new interpreter frames (take care to propagate the return
3452   //     values through each new frame pushed)
3453   //   - create a dummy "unpack_frame" and save the return values (O0, O1, F0)
3454   //   - call the C routine: Deoptimization::unpack_frames (this function
3455   //     lays out values on the interpreter frame which was just created)
3456   //   - deallocate the dummy unpack_frame
3457   //   - ensure that all the return values are correctly set and then do
3458   //     a return to the interpreter entry point
3459   //
3460   // Refer to the following methods for more information:
3461   //   - Deoptimization::fetch_unroll_info
3462   //   - Deoptimization::unpack_frames
3463 
3464   OopMap* map = NULL;
3465 
3466   int start = __ offset();
3467 
3468   // restore G2, the trampoline destroyed it
3469   __ get_thread();
3470 
3471   // On entry we have been called by the deoptimized nmethod with a call that
3472   // replaced the original call (or safepoint polling location) so the deoptimizing
3473   // pc is now in O7. Return values are still in the expected places
3474 
3475   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3476   __ ba(cont);
3477   __ delayed()->mov(Deoptimization::Unpack_deopt, L0deopt_mode);
3478 
3479   int exception_offset = __ offset() - start;
3480 
3481   // restore G2, the trampoline destroyed it
3482   __ get_thread();
3483 
3484   // On entry we have been jumped to by the exception handler (or exception_blob
3485   // for server).  O0 contains the exception oop and O7 contains the original
3486   // exception pc.  So if we push a frame here it will look to the
3487   // stack walking code (fetch_unroll_info) just like a normal call so
3488   // state will be extracted normally.
3489 
3490   // save exception oop in JavaThread and fall through into the
3491   // exception_in_tls case since they are handled in same way except
3492   // for where the pending exception is kept.
3493   __ st_ptr(Oexception, G2_thread, JavaThread::exception_oop_offset());
3494 
3495   //
3496   // Vanilla deoptimization with an exception pending in exception_oop
3497   //
3498   int exception_in_tls_offset = __ offset() - start;
3499 
3500   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3501   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3502 
3503   // Restore G2_thread
3504   __ get_thread();
3505 
3506 #ifdef ASSERT
3507   {
3508     // verify that there is really an exception oop in exception_oop
3509     Label has_exception;
3510     __ ld_ptr(G2_thread, JavaThread::exception_oop_offset(), Oexception);
3511     __ br_notnull_short(Oexception, Assembler::pt, has_exception);
3512     __ stop("no exception in thread");
3513     __ bind(has_exception);
3514 
3515     // verify that there is no pending exception
3516     Label no_pending_exception;
3517     Address exception_addr(G2_thread, Thread::pending_exception_offset());
3518     __ ld_ptr(exception_addr, Oexception);
3519     __ br_null_short(Oexception, Assembler::pt, no_pending_exception);
3520     __ stop("must not have pending exception here");
3521     __ bind(no_pending_exception);
3522   }
3523 #endif
3524 
3525   __ ba(cont);
3526   __ delayed()->mov(Deoptimization::Unpack_exception, L0deopt_mode);;
3527 
3528   //
3529   // Reexecute entry, similar to c2 uncommon trap
3530   //
3531   int reexecute_offset = __ offset() - start;
3532 
3533   // No need to update oop_map  as each call to save_live_registers will produce identical oopmap
3534   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3535 
3536   __ mov(Deoptimization::Unpack_reexecute, L0deopt_mode);
3537 
3538   __ bind(cont);
3539 
3540   __ set_last_Java_frame(SP, noreg);
3541 
3542   // do the call by hand so we can get the oopmap
3543 
3544   __ mov(G2_thread, L7_thread_cache);
3545   __ call(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), relocInfo::runtime_call_type);
3546   __ delayed()->mov(G2_thread, O0);
3547 
3548   // Set an oopmap for the call site this describes all our saved volatile registers
3549 
3550   oop_maps->add_gc_map( __ offset()-start, map);
3551 
3552   __ mov(L7_thread_cache, G2_thread);
3553 
3554   __ reset_last_Java_frame();
3555 
3556   // NOTE: we know that only O0/O1 will be reloaded by restore_result_registers
3557   // so this move will survive
3558 
3559   __ mov(L0deopt_mode, G4deopt_mode);
3560 
3561   __ mov(O0, O2UnrollBlock->after_save());
3562 
3563   RegisterSaver::restore_result_registers(masm);
3564 
3565   Label noException;
3566   __ cmp_and_br_short(G4deopt_mode, Deoptimization::Unpack_exception, Assembler::notEqual, Assembler::pt, noException);
3567 
3568   // Move the pending exception from exception_oop to Oexception so
3569   // the pending exception will be picked up the interpreter.
3570   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), Oexception);
3571   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
3572   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
3573   __ bind(noException);
3574 
3575   // deallocate the deoptimization frame taking care to preserve the return values
3576   __ mov(Oreturn0,     Oreturn0->after_save());
3577   __ mov(Oreturn1,     Oreturn1->after_save());
3578   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3579   __ restore();
3580 
3581   // Allocate new interpreter frame(s) and possible c2i adapter frame
3582 
3583   make_new_frames(masm, true);
3584 
3585   // push a dummy "unpack_frame" taking care of float return values and
3586   // call Deoptimization::unpack_frames to have the unpacker layout
3587   // information in the interpreter frames just created and then return
3588   // to the interpreter entry point
3589   __ save(SP, -frame_size_words*wordSize, SP);
3590   __ stf(FloatRegisterImpl::D, Freturn0, saved_Freturn0_addr);
3591 #if !defined(_LP64)
3592 #if defined(COMPILER2)
3593   // 32-bit 1-register longs return longs in G1
3594   __ stx(Greturn1, saved_Greturn1_addr);
3595 #endif
3596   __ set_last_Java_frame(SP, noreg);
3597   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, G4deopt_mode);
3598 #else
3599   // LP64 uses g4 in set_last_Java_frame
3600   __ mov(G4deopt_mode, O1);
3601   __ set_last_Java_frame(SP, G0);
3602   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O1);
3603 #endif
3604   __ reset_last_Java_frame();
3605   __ ldf(FloatRegisterImpl::D, saved_Freturn0_addr, Freturn0);
3606 
3607 #if !defined(_LP64) && defined(COMPILER2)
3608   // In 32 bit, C2 returns longs in G1 so restore the saved G1 into
3609   // I0/I1 if the return value is long.
3610   Label not_long;
3611   __ cmp_and_br_short(O0,T_LONG, Assembler::notEqual, Assembler::pt, not_long);
3612   __ ldd(saved_Greturn1_addr,I0);
3613   __ bind(not_long);
3614 #endif
3615   __ ret();
3616   __ delayed()->restore();
3617 
3618   masm->flush();
3619   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_words);
3620   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3621 }
3622 
3623 #ifdef COMPILER2
3624 
3625 //------------------------------generate_uncommon_trap_blob--------------------
3626 // Ought to generate an ideal graph & compile, but here's some SPARC ASM
3627 // instead.
3628 void SharedRuntime::generate_uncommon_trap_blob() {
3629   // allocate space for the code
3630   ResourceMark rm;
3631   // setup code generation tools
3632   int pad = VerifyThread ? 512 : 0;
3633   if (UseStackBanging) {
3634     pad += StackShadowPages*16 + 32;
3635   }
3636 #ifdef _LP64
3637   CodeBuffer buffer("uncommon_trap_blob", 2700+pad, 512);
3638 #else
3639   // Measured 8/7/03 at 660 in 32bit debug build (no VerifyThread)
3640   // Measured 8/7/03 at 1028 in 32bit debug build (VerifyThread)
3641   CodeBuffer buffer("uncommon_trap_blob", 2000+pad, 512);
3642 #endif
3643   MacroAssembler* masm               = new MacroAssembler(&buffer);
3644   Register        O2UnrollBlock      = O2;
3645   Register        O2klass_index      = O2;
3646 
3647   //
3648   // This is the entry point for all traps the compiler takes when it thinks
3649   // it cannot handle further execution of compilation code. The frame is
3650   // deoptimized in these cases and converted into interpreter frames for
3651   // execution
3652   // The steps taken by this frame are as follows:
3653   //   - push a fake "unpack_frame"
3654   //   - call the C routine Deoptimization::uncommon_trap (this function
3655   //     packs the current compiled frame into vframe arrays and returns
3656   //     information about the number and size of interpreter frames which
3657   //     are equivalent to the frame which is being deoptimized)
3658   //   - deallocate the "unpack_frame"
3659   //   - deallocate the deoptimization frame
3660   //   - in a loop using the information returned in the previous step
3661   //     push interpreter frames;
3662   //   - create a dummy "unpack_frame"
3663   //   - call the C routine: Deoptimization::unpack_frames (this function
3664   //     lays out values on the interpreter frame which was just created)
3665   //   - deallocate the dummy unpack_frame
3666   //   - return to the interpreter entry point
3667   //
3668   //  Refer to the following methods for more information:
3669   //   - Deoptimization::uncommon_trap
3670   //   - Deoptimization::unpack_frame
3671 
3672   // the unloaded class index is in O0 (first parameter to this blob)
3673 
3674   // push a dummy "unpack_frame"
3675   // and call Deoptimization::uncommon_trap to pack the compiled frame into
3676   // vframe array and return the UnrollBlock information
3677   __ save_frame(0);
3678   __ set_last_Java_frame(SP, noreg);
3679   __ mov(I0, O2klass_index);
3680   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), G2_thread, O2klass_index);
3681   __ reset_last_Java_frame();
3682   __ mov(O0, O2UnrollBlock->after_save());
3683   __ restore();
3684 
3685   // deallocate the deoptimized frame taking care to preserve the return values
3686   __ mov(O2UnrollBlock, O2UnrollBlock->after_save());
3687   __ restore();
3688 
3689   // Allocate new interpreter frame(s) and possible c2i adapter frame
3690 
3691   make_new_frames(masm, false);
3692 
3693   // push a dummy "unpack_frame" taking care of float return values and
3694   // call Deoptimization::unpack_frames to have the unpacker layout
3695   // information in the interpreter frames just created and then return
3696   // to the interpreter entry point
3697   __ save_frame(0);
3698   __ set_last_Java_frame(SP, noreg);
3699   __ mov(Deoptimization::Unpack_uncommon_trap, O3); // indicate it is the uncommon trap case
3700   __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), G2_thread, O3);
3701   __ reset_last_Java_frame();
3702   __ ret();
3703   __ delayed()->restore();
3704 
3705   masm->flush();
3706   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, NULL, __ total_frame_size_in_bytes(0)/wordSize);
3707 }
3708 
3709 #endif // COMPILER2
3710 
3711 //------------------------------generate_handler_blob-------------------
3712 //
3713 // Generate a special Compile2Runtime blob that saves all registers, and sets
3714 // up an OopMap.
3715 //
3716 // This blob is jumped to (via a breakpoint and the signal handler) from a
3717 // safepoint in compiled code.  On entry to this blob, O7 contains the
3718 // address in the original nmethod at which we should resume normal execution.
3719 // Thus, this blob looks like a subroutine which must preserve lots of
3720 // registers and return normally.  Note that O7 is never register-allocated,
3721 // so it is guaranteed to be free here.
3722 //
3723 
3724 // The hardest part of what this blob must do is to save the 64-bit %o
3725 // registers in the 32-bit build.  A simple 'save' turn the %o's to %i's and
3726 // an interrupt will chop off their heads.  Making space in the caller's frame
3727 // first will let us save the 64-bit %o's before save'ing, but we cannot hand
3728 // the adjusted FP off to the GC stack-crawler: this will modify the caller's
3729 // SP and mess up HIS OopMaps.  So we first adjust the caller's SP, then save
3730 // the 64-bit %o's, then do a save, then fixup the caller's SP (our FP).
3731 // Tricky, tricky, tricky...
3732 
3733 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3734   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3735 
3736   // allocate space for the code
3737   ResourceMark rm;
3738   // setup code generation tools
3739   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3740   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3741   // even larger with TraceJumps
3742   int pad = TraceJumps ? 512 : 0;
3743   CodeBuffer buffer("handler_blob", 1600 + pad, 512);
3744   MacroAssembler* masm                = new MacroAssembler(&buffer);
3745   int             frame_size_words;
3746   OopMapSet *oop_maps = new OopMapSet();
3747   OopMap* map = NULL;
3748 
3749   int start = __ offset();
3750 
3751   bool cause_return = (poll_type == POLL_AT_RETURN);
3752   // If this causes a return before the processing, then do a "restore"
3753   if (cause_return) {
3754     __ restore();
3755   } else {
3756     // Make it look like we were called via the poll
3757     // so that frame constructor always sees a valid return address
3758     __ ld_ptr(G2_thread, in_bytes(JavaThread::saved_exception_pc_offset()), O7);
3759     __ sub(O7, frame::pc_return_offset, O7);
3760   }
3761 
3762   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3763 
3764   // setup last_Java_sp (blows G4)
3765   __ set_last_Java_frame(SP, noreg);
3766 
3767   // call into the runtime to handle illegal instructions exception
3768   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3769   __ mov(G2_thread, O0);
3770   __ save_thread(L7_thread_cache);
3771   __ call(call_ptr);
3772   __ delayed()->nop();
3773 
3774   // Set an oopmap for the call site.
3775   // We need this not only for callee-saved registers, but also for volatile
3776   // registers that the compiler might be keeping live across a safepoint.
3777 
3778   oop_maps->add_gc_map( __ offset() - start, map);
3779 
3780   __ restore_thread(L7_thread_cache);
3781   // clear last_Java_sp
3782   __ reset_last_Java_frame();
3783 
3784   // Check for exceptions
3785   Label pending;
3786 
3787   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3788   __ br_notnull_short(O1, Assembler::pn, pending);
3789 
3790   RegisterSaver::restore_live_registers(masm);
3791 
3792   // We are back the the original state on entry and ready to go.
3793 
3794   __ retl();
3795   __ delayed()->nop();
3796 
3797   // Pending exception after the safepoint
3798 
3799   __ bind(pending);
3800 
3801   RegisterSaver::restore_live_registers(masm);
3802 
3803   // We are back the the original state on entry.
3804 
3805   // Tail-call forward_exception_entry, with the issuing PC in O7,
3806   // so it looks like the original nmethod called forward_exception_entry.
3807   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3808   __ JMP(O0, 0);
3809   __ delayed()->nop();
3810 
3811   // -------------
3812   // make sure all code is generated
3813   masm->flush();
3814 
3815   // return exception blob
3816   return SafepointBlob::create(&buffer, oop_maps, frame_size_words);
3817 }
3818 
3819 //
3820 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3821 //
3822 // Generate a stub that calls into vm to find out the proper destination
3823 // of a java call. All the argument registers are live at this point
3824 // but since this is generic code we don't know what they are and the caller
3825 // must do any gc of the args.
3826 //
3827 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3828   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3829 
3830   // allocate space for the code
3831   ResourceMark rm;
3832   // setup code generation tools
3833   // Measured 8/7/03 at 896 in 32bit debug build (no VerifyThread)
3834   // Measured 8/7/03 at 1080 in 32bit debug build (VerifyThread)
3835   // even larger with TraceJumps
3836   int pad = TraceJumps ? 512 : 0;
3837   CodeBuffer buffer(name, 1600 + pad, 512);
3838   MacroAssembler* masm                = new MacroAssembler(&buffer);
3839   int             frame_size_words;
3840   OopMapSet *oop_maps = new OopMapSet();
3841   OopMap* map = NULL;
3842 
3843   int start = __ offset();
3844 
3845   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_words);
3846 
3847   int frame_complete = __ offset();
3848 
3849   // setup last_Java_sp (blows G4)
3850   __ set_last_Java_frame(SP, noreg);
3851 
3852   // call into the runtime to handle illegal instructions exception
3853   // Do not use call_VM_leaf, because we need to make a GC map at this call site.
3854   __ mov(G2_thread, O0);
3855   __ save_thread(L7_thread_cache);
3856   __ call(destination, relocInfo::runtime_call_type);
3857   __ delayed()->nop();
3858 
3859   // O0 contains the address we are going to jump to assuming no exception got installed
3860 
3861   // Set an oopmap for the call site.
3862   // We need this not only for callee-saved registers, but also for volatile
3863   // registers that the compiler might be keeping live across a safepoint.
3864 
3865   oop_maps->add_gc_map( __ offset() - start, map);
3866 
3867   __ restore_thread(L7_thread_cache);
3868   // clear last_Java_sp
3869   __ reset_last_Java_frame();
3870 
3871   // Check for exceptions
3872   Label pending;
3873 
3874   __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), O1);
3875   __ br_notnull_short(O1, Assembler::pn, pending);
3876 
3877   // get the returned Method*
3878 
3879   __ get_vm_result_2(G5_method);
3880   __ stx(G5_method, SP, RegisterSaver::G5_offset()+STACK_BIAS);
3881 
3882   // O0 is where we want to jump, overwrite G3 which is saved and scratch
3883 
3884   __ stx(O0, SP, RegisterSaver::G3_offset()+STACK_BIAS);
3885 
3886   RegisterSaver::restore_live_registers(masm);
3887 
3888   // We are back the the original state on entry and ready to go.
3889 
3890   __ JMP(G3, 0);
3891   __ delayed()->nop();
3892 
3893   // Pending exception after the safepoint
3894 
3895   __ bind(pending);
3896 
3897   RegisterSaver::restore_live_registers(masm);
3898 
3899   // We are back the the original state on entry.
3900 
3901   // Tail-call forward_exception_entry, with the issuing PC in O7,
3902   // so it looks like the original nmethod called forward_exception_entry.
3903   __ set((intptr_t)StubRoutines::forward_exception_entry(), O0);
3904   __ JMP(O0, 0);
3905   __ delayed()->nop();
3906 
3907   // -------------
3908   // make sure all code is generated
3909   masm->flush();
3910 
3911   // return the  blob
3912   // frame_size_words or bytes??
3913   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3914 }