1 /*
   2  * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "runtime/advancedThresholdPolicy.hpp"
  27 #include "runtime/simpleThresholdPolicy.inline.hpp"
  28 
  29 #ifdef TIERED
  30 // Print an event.
  31 void AdvancedThresholdPolicy::print_specific(EventType type, methodHandle mh, methodHandle imh,
  32                                              int bci, CompLevel level) {
  33   tty->print(" rate=");
  34   if (mh->prev_time() == 0) tty->print("n/a");
  35   else tty->print("%f", mh->rate());
  36 
  37   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
  38                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
  39 
  40 }
  41 
  42 void AdvancedThresholdPolicy::initialize() {
  43   // Turn on ergonomic compiler count selection
  44   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
  45     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
  46   }
  47   int count = CICompilerCount;
  48   if (CICompilerCountPerCPU) {
  49     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
  50     int log_cpu = log2_intptr(os::active_processor_count());
  51     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
  52     count = MAX2(log_cpu * loglog_cpu, 1) * 3 / 2;
  53   }
  54 
  55   set_c1_count(MAX2(count / 3, 1));
  56   set_c2_count(MAX2(count - c1_count(), 1));
  57   FLAG_SET_ERGO(intx, CICompilerCount, c1_count() + c2_count());
  58 
  59   // Some inlining tuning
  60 #ifdef X86
  61   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  62     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
  63   }
  64 #endif
  65 
  66 #ifdef SPARC
  67   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
  68     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
  69   }
  70 #endif
  71 
  72   set_increase_threshold_at_ratio();
  73   set_start_time(os::javaTimeMillis());
  74 }
  75 
  76 // update_rate() is called from select_task() while holding a compile queue lock.
  77 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
  78   JavaThread* THREAD = JavaThread::current();
  79   if (is_old(m)) {
  80     // We don't remove old methods from the queue,
  81     // so we can just zero the rate.
  82     m->set_rate(0, THREAD);
  83     return;
  84   }
  85 
  86   // We don't update the rate if we've just came out of a safepoint.
  87   // delta_s is the time since last safepoint in milliseconds.
  88   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
  89   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
  90   // How many events were there since the last time?
  91   int event_count = m->invocation_count() + m->backedge_count();
  92   int delta_e = event_count - m->prev_event_count();
  93 
  94   // We should be running for at least 1ms.
  95   if (delta_s >= TieredRateUpdateMinTime) {
  96     // And we must've taken the previous point at least 1ms before.
  97     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
  98       m->set_prev_time(t, THREAD);
  99       m->set_prev_event_count(event_count, THREAD);
 100       m->set_rate((float)delta_e / (float)delta_t, THREAD); // Rate is events per millisecond
 101     } else
 102       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 103         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 104         m->set_rate(0, THREAD);
 105       }
 106   }
 107 }
 108 
 109 // Check if this method has been stale from a given number of milliseconds.
 110 // See select_task().
 111 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 112   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
 113   jlong delta_t = t - m->prev_time();
 114   if (delta_t > timeout && delta_s > timeout) {
 115     int event_count = m->invocation_count() + m->backedge_count();
 116     int delta_e = event_count - m->prev_event_count();
 117     // Return true if there were no events.
 118     return delta_e == 0;
 119   }
 120   return false;
 121 }
 122 
 123 // We don't remove old methods from the compile queue even if they have
 124 // very low activity. See select_task().
 125 bool AdvancedThresholdPolicy::is_old(Method* method) {
 126   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 127 }
 128 
 129 double AdvancedThresholdPolicy::weight(Method* method) {
 130   return (method->rate() + 1) * ((method->invocation_count() + 1) *  (method->backedge_count() + 1));
 131 }
 132 
 133 // Apply heuristics and return true if x should be compiled before y
 134 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
 135   if (x->highest_comp_level() > y->highest_comp_level()) {
 136     // recompilation after deopt
 137     return true;
 138   } else
 139     if (x->highest_comp_level() == y->highest_comp_level()) {
 140       if (weight(x) > weight(y)) {
 141         return true;
 142       }
 143     }
 144   return false;
 145 }
 146 
 147 // Is method profiled enough?
 148 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
 149   MethodData* mdo = method->method_data();
 150   if (mdo != NULL) {
 151     int i = mdo->invocation_count_delta();
 152     int b = mdo->backedge_count_delta();
 153     return call_predicate_helper<CompLevel_full_profile>(i, b, 1);
 154   }
 155   return false;
 156 }
 157 
 158 // Called with the queue locked and with at least one element
 159 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
 160   CompileTask *max_task = NULL;
 161   Method* max_method = NULL;
 162   jlong t = os::javaTimeMillis();
 163   // Iterate through the queue and find a method with a maximum rate.
 164   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 165     CompileTask* next_task = task->next();
 166     Method* method = task->method();
 167     MethodData* mdo = method->method_data();
 168     update_rate(t, method);
 169     if (max_task == NULL) {
 170       max_task = task;
 171       max_method = method;
 172     } else {
 173       // If a method has been stale for some time, remove it from the queue.
 174       if (is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
 175         if (PrintTieredEvents) {
 176           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
 177         }
 178         CompileTaskWrapper ctw(task); // Frees the task
 179         compile_queue->remove(task);
 180         method->clear_queued_for_compilation();
 181         task = next_task;
 182         continue;
 183       }
 184 
 185       // Select a method with a higher rate
 186       if (compare_methods(method, max_method)) {
 187         max_task = task;
 188         max_method = method;
 189       }
 190     }
 191     task = next_task;
 192   }
 193 
 194   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
 195       && is_method_profiled(max_method)) {
 196     max_task->set_comp_level(CompLevel_limited_profile);
 197     if (PrintTieredEvents) {
 198       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 199     }
 200   }
 201 
 202   return max_task;
 203 }
 204 
 205 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 206   double queue_size = CompileBroker::queue_size(level);
 207   int comp_count = compiler_count(level);
 208   double k = queue_size / (feedback_k * comp_count) + 1;
 209 
 210   // Increase C1 compile threshold when the code cache is filled more
 211   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 212   // The main intention is to keep enough free space for C2 compiled code
 213   // to achieve peak performance if the code cache is under stress.
 214   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 215     double current_reverse_free_ratio = CodeCache::reverse_free_ratio();
 216     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 217       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 218     }
 219   }
 220   return k;
 221 }
 222 
 223 // Call and loop predicates determine whether a transition to a higher
 224 // compilation level should be performed (pointers to predicate functions
 225 // are passed to common()).
 226 // Tier?LoadFeedback is basically a coefficient that determines of
 227 // how many methods per compiler thread can be in the queue before
 228 // the threshold values double.
 229 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
 230   switch(cur_level) {
 231   case CompLevel_none:
 232   case CompLevel_limited_profile: {
 233     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 234     return loop_predicate_helper<CompLevel_none>(i, b, k);
 235   }
 236   case CompLevel_full_profile: {
 237     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 238     return loop_predicate_helper<CompLevel_full_profile>(i, b, k);
 239   }
 240   default:
 241     return true;
 242   }
 243 }
 244 
 245 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
 246   switch(cur_level) {
 247   case CompLevel_none:
 248   case CompLevel_limited_profile: {
 249     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 250     return call_predicate_helper<CompLevel_none>(i, b, k);
 251   }
 252   case CompLevel_full_profile: {
 253     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 254     return call_predicate_helper<CompLevel_full_profile>(i, b, k);
 255   }
 256   default:
 257     return true;
 258   }
 259 }
 260 
 261 // If a method is old enough and is still in the interpreter we would want to
 262 // start profiling without waiting for the compiled method to arrive.
 263 // We also take the load on compilers into the account.
 264 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 265   if (cur_level == CompLevel_none &&
 266       CompileBroker::queue_size(CompLevel_full_optimization) <=
 267       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 268     int i = method->invocation_count();
 269     int b = method->backedge_count();
 270     double k = Tier0ProfilingStartPercentage / 100.0;
 271     return call_predicate_helper<CompLevel_none>(i, b, k) || loop_predicate_helper<CompLevel_none>(i, b, k);
 272   }
 273   return false;
 274 }
 275 
 276 // Inlining control: if we're compiling a profiled method with C1 and the callee
 277 // is known to have OSRed in a C2 version, don't inline it.
 278 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 279   CompLevel comp_level = (CompLevel)env->comp_level();
 280   if (comp_level == CompLevel_full_profile ||
 281       comp_level == CompLevel_limited_profile) {
 282     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 283   }
 284   return false;
 285 }
 286 
 287 // Create MDO if necessary.
 288 void AdvancedThresholdPolicy::create_mdo(methodHandle mh, JavaThread* THREAD) {
 289   if (mh->is_native() || mh->is_abstract() || mh->is_accessor()) return;
 290   if (mh->method_data() == NULL) {
 291     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 292   }
 293 }
 294 
 295 
 296 /*
 297  * Method states:
 298  *   0 - interpreter (CompLevel_none)
 299  *   1 - pure C1 (CompLevel_simple)
 300  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 301  *   3 - C1 with full profiling (CompLevel_full_profile)
 302  *   4 - C2 (CompLevel_full_optimization)
 303  *
 304  * Common state transition patterns:
 305  * a. 0 -> 3 -> 4.
 306  *    The most common path. But note that even in this straightforward case
 307  *    profiling can start at level 0 and finish at level 3.
 308  *
 309  * b. 0 -> 2 -> 3 -> 4.
 310  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 311  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 312  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 313  *
 314  * c. 0 -> (3->2) -> 4.
 315  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 316  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 317  *    of the method to 2, because it'll allow it to run much faster without full profiling while c2
 318  *    is compiling.
 319  *
 320  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 321  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 322  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 323  *
 324  * e. 0 -> 4.
 325  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 326  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 327  *    the compiled version already exists).
 328  *
 329  * Note that since state 0 can be reached from any other state via deoptimization different loops
 330  * are possible.
 331  *
 332  */
 333 
 334 // Common transition function. Given a predicate determines if a method should transition to another level.
 335 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 336   CompLevel next_level = cur_level;
 337   int i = method->invocation_count();
 338   int b = method->backedge_count();
 339 
 340   if (is_trivial(method)) {
 341     next_level = CompLevel_simple;
 342   } else {
 343     switch(cur_level) {
 344     case CompLevel_none:
 345       // If we were at full profile level, would we switch to full opt?
 346       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 347         next_level = CompLevel_full_optimization;
 348       } else if ((this->*p)(i, b, cur_level)) {
 349         // C1-generated fully profiled code is about 30% slower than the limited profile
 350         // code that has only invocation and backedge counters. The observation is that
 351         // if C2 queue is large enough we can spend too much time in the fully profiled code
 352         // while waiting for C2 to pick the method from the queue. To alleviate this problem
 353         // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 354         // we choose to compile a limited profiled version and then recompile with full profiling
 355         // when the load on C2 goes down.
 356         if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 357                                  Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 358           next_level = CompLevel_limited_profile;
 359         } else {
 360           next_level = CompLevel_full_profile;
 361         }
 362       }
 363       break;
 364     case CompLevel_limited_profile:
 365       if (is_method_profiled(method)) {
 366         // Special case: we got here because this method was fully profiled in the interpreter.
 367         next_level = CompLevel_full_optimization;
 368       } else {
 369         MethodData* mdo = method->method_data();
 370         if (mdo != NULL) {
 371           if (mdo->would_profile()) {
 372             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 373                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 374                                      (this->*p)(i, b, cur_level))) {
 375               next_level = CompLevel_full_profile;
 376             }
 377           } else {
 378             next_level = CompLevel_full_optimization;
 379           }
 380         }
 381       }
 382       break;
 383     case CompLevel_full_profile:
 384       {
 385         MethodData* mdo = method->method_data();
 386         if (mdo != NULL) {
 387           if (mdo->would_profile()) {
 388             int mdo_i = mdo->invocation_count_delta();
 389             int mdo_b = mdo->backedge_count_delta();
 390             if ((this->*p)(mdo_i, mdo_b, cur_level)) {
 391               next_level = CompLevel_full_optimization;
 392             }
 393           } else {
 394             next_level = CompLevel_full_optimization;
 395           }
 396         }
 397       }
 398       break;
 399     }
 400   }
 401   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 402 }
 403 
 404 // Determine if a method should be compiled with a normal entry point at a different level.
 405 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level) {
 406   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 407                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
 408   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
 409 
 410   // If OSR method level is greater than the regular method level, the levels should be
 411   // equalized by raising the regular method level in order to avoid OSRs during each
 412   // invocation of the method.
 413   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 414     MethodData* mdo = method->method_data();
 415     guarantee(mdo != NULL, "MDO should not be NULL");
 416     if (mdo->invocation_count() >= 1) {
 417       next_level = CompLevel_full_optimization;
 418     }
 419   } else {
 420     next_level = MAX2(osr_level, next_level);
 421   }
 422   return next_level;
 423 }
 424 
 425 // Determine if we should do an OSR compilation of a given method.
 426 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level) {
 427   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
 428   if (cur_level == CompLevel_none) {
 429     // If there is a live OSR method that means that we deopted to the interpreter
 430     // for the transition.
 431     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 432     if (osr_level > CompLevel_none) {
 433       return osr_level;
 434     }
 435   }
 436   return next_level;
 437 }
 438 
 439 // Update the rate and submit compile
 440 void AdvancedThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, JavaThread* thread) {
 441   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 442   update_rate(os::javaTimeMillis(), mh());
 443   CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", thread);
 444 }
 445 
 446 // Handle the invocation event.
 447 void AdvancedThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
 448                                                       CompLevel level, nmethod* nm, JavaThread* thread) {
 449   if (should_create_mdo(mh(), level)) {
 450     create_mdo(mh, thread);
 451   }
 452   if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 453     CompLevel next_level = call_event(mh(), level);
 454     if (next_level != level) {
 455       compile(mh, InvocationEntryBci, next_level, thread);
 456     }
 457   }
 458 }
 459 
 460 // Handle the back branch event. Notice that we can compile the method
 461 // with a regular entry from here.
 462 void AdvancedThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
 463                                                        int bci, CompLevel level, nmethod* nm, JavaThread* thread) {
 464   if (should_create_mdo(mh(), level)) {
 465     create_mdo(mh, thread);
 466   }
 467   // Check if MDO should be created for the inlined method
 468   if (should_create_mdo(imh(), level)) {
 469     create_mdo(imh, thread);
 470   }
 471 
 472   if (is_compilation_enabled()) {
 473     CompLevel next_osr_level = loop_event(imh(), level);
 474     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 475     // At the very least compile the OSR version
 476     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 477       compile(imh, bci, next_osr_level, thread);
 478     }
 479 
 480     // Use loop event as an opportunity to also check if there's been
 481     // enough calls.
 482     CompLevel cur_level, next_level;
 483     if (mh() != imh()) { // If there is an enclosing method
 484       guarantee(nm != NULL, "Should have nmethod here");
 485       cur_level = comp_level(mh());
 486       next_level = call_event(mh(), cur_level);
 487 
 488       if (max_osr_level == CompLevel_full_optimization) {
 489         // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 490         bool make_not_entrant = false;
 491         if (nm->is_osr_method()) {
 492           // This is an osr method, just make it not entrant and recompile later if needed
 493           make_not_entrant = true;
 494         } else {
 495           if (next_level != CompLevel_full_optimization) {
 496             // next_level is not full opt, so we need to recompile the
 497             // enclosing method without the inlinee
 498             cur_level = CompLevel_none;
 499             make_not_entrant = true;
 500           }
 501         }
 502         if (make_not_entrant) {
 503           if (PrintTieredEvents) {
 504             int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 505             print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 506           }
 507           nm->make_not_entrant();
 508         }
 509       }
 510       if (!CompileBroker::compilation_is_in_queue(mh)) {
 511         // Fix up next_level if necessary to avoid deopts
 512         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 513           next_level = CompLevel_full_profile;
 514         }
 515         if (cur_level != next_level) {
 516           compile(mh, InvocationEntryBci, next_level, thread);
 517         }
 518       }
 519     } else {
 520       cur_level = comp_level(imh());
 521       next_level = call_event(imh(), cur_level);
 522       if (!CompileBroker::compilation_is_in_queue(imh) && (next_level != cur_level)) {
 523         compile(imh, InvocationEntryBci, next_level, thread);
 524       }
 525     }
 526   }
 527 }
 528 
 529 #endif // TIERED