1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/osThread.hpp"
  62 #include "runtime/safepoint.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/statSampler.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/task.hpp"
  67 #include "runtime/thread.inline.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/threadLocalStorage.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "runtime/vm_operations.hpp"
  75 #include "services/attachListener.hpp"
  76 #include "services/management.hpp"
  77 #include "services/memTracker.hpp"
  78 #include "services/threadService.hpp"
  79 #include "trace/tracing.hpp"
  80 #include "trace/traceMacros.hpp"
  81 #include "utilities/defaultStream.hpp"
  82 #include "utilities/dtrace.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/preserveException.hpp"
  85 #include "utilities/macros.hpp"
  86 #ifdef TARGET_OS_FAMILY_linux
  87 # include "os_linux.inline.hpp"
  88 #endif
  89 #ifdef TARGET_OS_FAMILY_solaris
  90 # include "os_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 #endif
  95 #ifdef TARGET_OS_FAMILY_bsd
  96 # include "os_bsd.inline.hpp"
  97 #endif
  98 #if INCLUDE_ALL_GCS
  99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 
 111 #ifdef DTRACE_ENABLED
 112 
 113 // Only bother with this argument setup if dtrace is available
 114 
 115 #ifndef USDT2
 116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 119   intptr_t, intptr_t, bool);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 
 123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 124   {                                                                        \
 125     ResourceMark rm(this);                                                 \
 126     int len = 0;                                                           \
 127     const char* name = (javathread)->get_thread_name();                    \
 128     len = strlen(name);                                                    \
 129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 130       name, len,                                                           \
 131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 132       (javathread)->osthread()->thread_id(),                               \
 133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 134   }
 135 
 136 #else /* USDT2 */
 137 
 138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 140 
 141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 142   {                                                                        \
 143     ResourceMark rm(this);                                                 \
 144     int len = 0;                                                           \
 145     const char* name = (javathread)->get_thread_name();                    \
 146     len = strlen(name);                                                    \
 147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 148       (char *) name, len,                                                           \
 149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 152   }
 153 
 154 #endif /* USDT2 */
 155 
 156 #else //  ndef DTRACE_ENABLED
 157 
 158 #define DTRACE_THREAD_PROBE(probe, javathread)
 159 
 160 #endif // ndef DTRACE_ENABLED
 161 
 162 
 163 // Class hierarchy
 164 // - Thread
 165 //   - VMThread
 166 //   - WatcherThread
 167 //   - ConcurrentMarkSweepThread
 168 //   - JavaThread
 169 //     - CompilerThread
 170 
 171 // ======= Thread ========
 172 // Support for forcing alignment of thread objects for biased locking
 173 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 174   if (UseBiasedLocking) {
 175     const int alignment = markOopDesc::biased_lock_alignment;
 176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 177     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 178                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 179                                               AllocFailStrategy::RETURN_NULL);
 180     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 181     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 182            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 183            "JavaThread alignment code overflowed allocated storage");
 184     if (TraceBiasedLocking) {
 185       if (aligned_addr != real_malloc_addr)
 186         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                       real_malloc_addr, aligned_addr);
 188     }
 189     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 190     return aligned_addr;
 191   } else {
 192     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 193                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 194   }
 195 }
 196 
 197 void Thread::operator delete(void* p) {
 198   if (UseBiasedLocking) {
 199     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 200     FreeHeap(real_malloc_addr, mtThread);
 201   } else {
 202     FreeHeap(p, mtThread);
 203   }
 204 }
 205 
 206 
 207 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 208 // JavaThread
 209 
 210 
 211 Thread::Thread() {
 212   // stack and get_thread
 213   set_stack_base(NULL);
 214   set_stack_size(0);
 215   set_self_raw_id(0);
 216   set_lgrp_id(-1);
 217 
 218   // allocated data structures
 219   set_osthread(NULL);
 220   set_resource_area(new (mtThread)ResourceArea());
 221   DEBUG_ONLY(_current_resource_mark = NULL;)
 222   set_handle_area(new (mtThread) HandleArea(NULL));
 223   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 224   set_active_handles(NULL);
 225   set_free_handle_block(NULL);
 226   set_last_handle_mark(NULL);
 227 
 228   // This initial value ==> never claimed.
 229   _oops_do_parity = 0;
 230 
 231   // the handle mark links itself to last_handle_mark
 232   new HandleMark(this);
 233 
 234   // plain initialization
 235   debug_only(_owned_locks = NULL;)
 236   debug_only(_allow_allocation_count = 0;)
 237   NOT_PRODUCT(_allow_safepoint_count = 0;)
 238   NOT_PRODUCT(_skip_gcalot = false;)
 239   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 240   _jvmti_env_iteration_count = 0;
 241   set_allocated_bytes(0);
 242   _vm_operation_started_count = 0;
 243   _vm_operation_completed_count = 0;
 244   _current_pending_monitor = NULL;
 245   _current_pending_monitor_is_from_java = true;
 246   _current_waiting_monitor = NULL;
 247   _num_nested_signal = 0;
 248   omFreeList = NULL ;
 249   omFreeCount = 0 ;
 250   omFreeProvision = 32 ;
 251   omInUseList = NULL ;
 252   omInUseCount = 0 ;
 253 
 254 #ifdef ASSERT
 255   _visited_for_critical_count = false;
 256 #endif
 257 
 258   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 259   _suspend_flags = 0;
 260 
 261   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 262   _hashStateX = os::random() ;
 263   _hashStateY = 842502087 ;
 264   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 265   _hashStateW = 273326509 ;
 266 
 267   _OnTrap   = 0 ;
 268   _schedctl = NULL ;
 269   _Stalled  = 0 ;
 270   _TypeTag  = 0x2BAD ;
 271 
 272   // Many of the following fields are effectively final - immutable
 273   // Note that nascent threads can't use the Native Monitor-Mutex
 274   // construct until the _MutexEvent is initialized ...
 275   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 276   // we might instead use a stack of ParkEvents that we could provision on-demand.
 277   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 278   // and ::Release()
 279   _ParkEvent   = ParkEvent::Allocate (this) ;
 280   _SleepEvent  = ParkEvent::Allocate (this) ;
 281   _MutexEvent  = ParkEvent::Allocate (this) ;
 282   _MuxEvent    = ParkEvent::Allocate (this) ;
 283 
 284 #ifdef CHECK_UNHANDLED_OOPS
 285   if (CheckUnhandledOops) {
 286     _unhandled_oops = new UnhandledOops(this);
 287   }
 288 #endif // CHECK_UNHANDLED_OOPS
 289 #ifdef ASSERT
 290   if (UseBiasedLocking) {
 291     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 292     assert(this == _real_malloc_address ||
 293            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 294            "bug in forced alignment of thread objects");
 295   }
 296 #endif /* ASSERT */
 297 }
 298 
 299 void Thread::initialize_thread_local_storage() {
 300   // Note: Make sure this method only calls
 301   // non-blocking operations. Otherwise, it might not work
 302   // with the thread-startup/safepoint interaction.
 303 
 304   // During Java thread startup, safepoint code should allow this
 305   // method to complete because it may need to allocate memory to
 306   // store information for the new thread.
 307 
 308   // initialize structure dependent on thread local storage
 309   ThreadLocalStorage::set_thread(this);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323 #if INCLUDE_NMT
 324   // record thread's native stack, stack grows downward
 325   address stack_low_addr = stack_base() - stack_size();
 326   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 327       CURRENT_PC);
 328 #endif // INCLUDE_NMT
 329 }
 330 
 331 
 332 Thread::~Thread() {
 333   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 334   ObjectSynchronizer::omFlush (this) ;
 335 
 336   EVENT_THREAD_DESTRUCT(this);
 337 
 338   // stack_base can be NULL if the thread is never started or exited before
 339   // record_stack_base_and_size called. Although, we would like to ensure
 340   // that all started threads do call record_stack_base_and_size(), there is
 341   // not proper way to enforce that.
 342 #if INCLUDE_NMT
 343   if (_stack_base != NULL) {
 344     address low_stack_addr = stack_base() - stack_size();
 345     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 346 #ifdef ASSERT
 347     set_stack_base(NULL);
 348 #endif
 349   }
 350 #endif // INCLUDE_NMT
 351 
 352   // deallocate data structures
 353   delete resource_area();
 354   // since the handle marks are using the handle area, we have to deallocated the root
 355   // handle mark before deallocating the thread's handle area,
 356   assert(last_handle_mark() != NULL, "check we have an element");
 357   delete last_handle_mark();
 358   assert(last_handle_mark() == NULL, "check we have reached the end");
 359 
 360   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 361   // We NULL out the fields for good hygiene.
 362   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 363   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 364   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 365   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 366 
 367   delete handle_area();
 368   delete metadata_handles();
 369 
 370   // osthread() can be NULL, if creation of thread failed.
 371   if (osthread() != NULL) os::free_thread(osthread());
 372 
 373   delete _SR_lock;
 374 
 375   // clear thread local storage if the Thread is deleting itself
 376   if (this == Thread::current()) {
 377     ThreadLocalStorage::set_thread(NULL);
 378   } else {
 379     // In the case where we're not the current thread, invalidate all the
 380     // caches in case some code tries to get the current thread or the
 381     // thread that was destroyed, and gets stale information.
 382     ThreadLocalStorage::invalidate_all();
 383   }
 384   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 385 }
 386 
 387 // NOTE: dummy function for assertion purpose.
 388 void Thread::run() {
 389   ShouldNotReachHere();
 390 }
 391 
 392 #ifdef ASSERT
 393 // Private method to check for dangling thread pointer
 394 void check_for_dangling_thread_pointer(Thread *thread) {
 395  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 396          "possibility of dangling Thread pointer");
 397 }
 398 #endif
 399 
 400 
 401 #ifndef PRODUCT
 402 // Tracing method for basic thread operations
 403 void Thread::trace(const char* msg, const Thread* const thread) {
 404   if (!TraceThreadEvents) return;
 405   ResourceMark rm;
 406   ThreadCritical tc;
 407   const char *name = "non-Java thread";
 408   int prio = -1;
 409   if (thread->is_Java_thread()
 410       && !thread->is_Compiler_thread()) {
 411     // The Threads_lock must be held to get information about
 412     // this thread but may not be in some situations when
 413     // tracing  thread events.
 414     bool release_Threads_lock = false;
 415     if (!Threads_lock->owned_by_self()) {
 416       Threads_lock->lock();
 417       release_Threads_lock = true;
 418     }
 419     JavaThread* jt = (JavaThread *)thread;
 420     name = (char *)jt->get_thread_name();
 421     oop thread_oop = jt->threadObj();
 422     if (thread_oop != NULL) {
 423       prio = java_lang_Thread::priority(thread_oop);
 424     }
 425     if (release_Threads_lock) {
 426       Threads_lock->unlock();
 427     }
 428   }
 429   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 430 }
 431 #endif
 432 
 433 
 434 ThreadPriority Thread::get_priority(const Thread* const thread) {
 435   trace("get priority", thread);
 436   ThreadPriority priority;
 437   // Can return an error!
 438   (void)os::get_priority(thread, priority);
 439   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 440   return priority;
 441 }
 442 
 443 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 444   trace("set priority", thread);
 445   debug_only(check_for_dangling_thread_pointer(thread);)
 446   // Can return an error!
 447   (void)os::set_priority(thread, priority);
 448 }
 449 
 450 
 451 void Thread::start(Thread* thread) {
 452   trace("start", thread);
 453   // Start is different from resume in that its safety is guaranteed by context or
 454   // being called from a Java method synchronized on the Thread object.
 455   if (!DisableStartThread) {
 456     if (thread->is_Java_thread()) {
 457       // Initialize the thread state to RUNNABLE before starting this thread.
 458       // Can not set it after the thread started because we do not know the
 459       // exact thread state at that time. It could be in MONITOR_WAIT or
 460       // in SLEEPING or some other state.
 461       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 462                                           java_lang_Thread::RUNNABLE);
 463     }
 464     os::start_thread(thread);
 465   }
 466 }
 467 
 468 // Enqueue a VM_Operation to do the job for us - sometime later
 469 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 470   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 471   VMThread::execute(vm_stop);
 472 }
 473 
 474 
 475 //
 476 // Check if an external suspend request has completed (or has been
 477 // cancelled). Returns true if the thread is externally suspended and
 478 // false otherwise.
 479 //
 480 // The bits parameter returns information about the code path through
 481 // the routine. Useful for debugging:
 482 //
 483 // set in is_ext_suspend_completed():
 484 // 0x00000001 - routine was entered
 485 // 0x00000010 - routine return false at end
 486 // 0x00000100 - thread exited (return false)
 487 // 0x00000200 - suspend request cancelled (return false)
 488 // 0x00000400 - thread suspended (return true)
 489 // 0x00001000 - thread is in a suspend equivalent state (return true)
 490 // 0x00002000 - thread is native and walkable (return true)
 491 // 0x00004000 - thread is native_trans and walkable (needed retry)
 492 //
 493 // set in wait_for_ext_suspend_completion():
 494 // 0x00010000 - routine was entered
 495 // 0x00020000 - suspend request cancelled before loop (return false)
 496 // 0x00040000 - thread suspended before loop (return true)
 497 // 0x00080000 - suspend request cancelled in loop (return false)
 498 // 0x00100000 - thread suspended in loop (return true)
 499 // 0x00200000 - suspend not completed during retry loop (return false)
 500 //
 501 
 502 // Helper class for tracing suspend wait debug bits.
 503 //
 504 // 0x00000100 indicates that the target thread exited before it could
 505 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 506 // 0x00080000 each indicate a cancelled suspend request so they don't
 507 // count as wait failures either.
 508 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 509 
 510 class TraceSuspendDebugBits : public StackObj {
 511  private:
 512   JavaThread * jt;
 513   bool         is_wait;
 514   bool         called_by_wait;  // meaningful when !is_wait
 515   uint32_t *   bits;
 516 
 517  public:
 518   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 519                         uint32_t *_bits) {
 520     jt             = _jt;
 521     is_wait        = _is_wait;
 522     called_by_wait = _called_by_wait;
 523     bits           = _bits;
 524   }
 525 
 526   ~TraceSuspendDebugBits() {
 527     if (!is_wait) {
 528 #if 1
 529       // By default, don't trace bits for is_ext_suspend_completed() calls.
 530       // That trace is very chatty.
 531       return;
 532 #else
 533       if (!called_by_wait) {
 534         // If tracing for is_ext_suspend_completed() is enabled, then only
 535         // trace calls to it from wait_for_ext_suspend_completion()
 536         return;
 537       }
 538 #endif
 539     }
 540 
 541     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 542       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 543         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 544         ResourceMark rm;
 545 
 546         tty->print_cr(
 547             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 548             jt->get_thread_name(), *bits);
 549 
 550         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 551       }
 552     }
 553   }
 554 };
 555 #undef DEBUG_FALSE_BITS
 556 
 557 
 558 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 559   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 560 
 561   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 562   bool do_trans_retry;           // flag to force the retry
 563 
 564   *bits |= 0x00000001;
 565 
 566   do {
 567     do_trans_retry = false;
 568 
 569     if (is_exiting()) {
 570       // Thread is in the process of exiting. This is always checked
 571       // first to reduce the risk of dereferencing a freed JavaThread.
 572       *bits |= 0x00000100;
 573       return false;
 574     }
 575 
 576     if (!is_external_suspend()) {
 577       // Suspend request is cancelled. This is always checked before
 578       // is_ext_suspended() to reduce the risk of a rogue resume
 579       // confusing the thread that made the suspend request.
 580       *bits |= 0x00000200;
 581       return false;
 582     }
 583 
 584     if (is_ext_suspended()) {
 585       // thread is suspended
 586       *bits |= 0x00000400;
 587       return true;
 588     }
 589 
 590     // Now that we no longer do hard suspends of threads running
 591     // native code, the target thread can be changing thread state
 592     // while we are in this routine:
 593     //
 594     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 595     //
 596     // We save a copy of the thread state as observed at this moment
 597     // and make our decision about suspend completeness based on the
 598     // copy. This closes the race where the thread state is seen as
 599     // _thread_in_native_trans in the if-thread_blocked check, but is
 600     // seen as _thread_blocked in if-thread_in_native_trans check.
 601     JavaThreadState save_state = thread_state();
 602 
 603     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 604       // If the thread's state is _thread_blocked and this blocking
 605       // condition is known to be equivalent to a suspend, then we can
 606       // consider the thread to be externally suspended. This means that
 607       // the code that sets _thread_blocked has been modified to do
 608       // self-suspension if the blocking condition releases. We also
 609       // used to check for CONDVAR_WAIT here, but that is now covered by
 610       // the _thread_blocked with self-suspension check.
 611       //
 612       // Return true since we wouldn't be here unless there was still an
 613       // external suspend request.
 614       *bits |= 0x00001000;
 615       return true;
 616     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 617       // Threads running native code will self-suspend on native==>VM/Java
 618       // transitions. If its stack is walkable (should always be the case
 619       // unless this function is called before the actual java_suspend()
 620       // call), then the wait is done.
 621       *bits |= 0x00002000;
 622       return true;
 623     } else if (!called_by_wait && !did_trans_retry &&
 624                save_state == _thread_in_native_trans &&
 625                frame_anchor()->walkable()) {
 626       // The thread is transitioning from thread_in_native to another
 627       // thread state. check_safepoint_and_suspend_for_native_trans()
 628       // will force the thread to self-suspend. If it hasn't gotten
 629       // there yet we may have caught the thread in-between the native
 630       // code check above and the self-suspend. Lucky us. If we were
 631       // called by wait_for_ext_suspend_completion(), then it
 632       // will be doing the retries so we don't have to.
 633       //
 634       // Since we use the saved thread state in the if-statement above,
 635       // there is a chance that the thread has already transitioned to
 636       // _thread_blocked by the time we get here. In that case, we will
 637       // make a single unnecessary pass through the logic below. This
 638       // doesn't hurt anything since we still do the trans retry.
 639 
 640       *bits |= 0x00004000;
 641 
 642       // Once the thread leaves thread_in_native_trans for another
 643       // thread state, we break out of this retry loop. We shouldn't
 644       // need this flag to prevent us from getting back here, but
 645       // sometimes paranoia is good.
 646       did_trans_retry = true;
 647 
 648       // We wait for the thread to transition to a more usable state.
 649       for (int i = 1; i <= SuspendRetryCount; i++) {
 650         // We used to do an "os::yield_all(i)" call here with the intention
 651         // that yielding would increase on each retry. However, the parameter
 652         // is ignored on Linux which means the yield didn't scale up. Waiting
 653         // on the SR_lock below provides a much more predictable scale up for
 654         // the delay. It also provides a simple/direct point to check for any
 655         // safepoint requests from the VMThread
 656 
 657         // temporarily drops SR_lock while doing wait with safepoint check
 658         // (if we're a JavaThread - the WatcherThread can also call this)
 659         // and increase delay with each retry
 660         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 661 
 662         // check the actual thread state instead of what we saved above
 663         if (thread_state() != _thread_in_native_trans) {
 664           // the thread has transitioned to another thread state so
 665           // try all the checks (except this one) one more time.
 666           do_trans_retry = true;
 667           break;
 668         }
 669       } // end retry loop
 670 
 671 
 672     }
 673   } while (do_trans_retry);
 674 
 675   *bits |= 0x00000010;
 676   return false;
 677 }
 678 
 679 //
 680 // Wait for an external suspend request to complete (or be cancelled).
 681 // Returns true if the thread is externally suspended and false otherwise.
 682 //
 683 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 684        uint32_t *bits) {
 685   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 686                              false /* !called_by_wait */, bits);
 687 
 688   // local flag copies to minimize SR_lock hold time
 689   bool is_suspended;
 690   bool pending;
 691   uint32_t reset_bits;
 692 
 693   // set a marker so is_ext_suspend_completed() knows we are the caller
 694   *bits |= 0x00010000;
 695 
 696   // We use reset_bits to reinitialize the bits value at the top of
 697   // each retry loop. This allows the caller to make use of any
 698   // unused bits for their own marking purposes.
 699   reset_bits = *bits;
 700 
 701   {
 702     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 703     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 704                                             delay, bits);
 705     pending = is_external_suspend();
 706   }
 707   // must release SR_lock to allow suspension to complete
 708 
 709   if (!pending) {
 710     // A cancelled suspend request is the only false return from
 711     // is_ext_suspend_completed() that keeps us from entering the
 712     // retry loop.
 713     *bits |= 0x00020000;
 714     return false;
 715   }
 716 
 717   if (is_suspended) {
 718     *bits |= 0x00040000;
 719     return true;
 720   }
 721 
 722   for (int i = 1; i <= retries; i++) {
 723     *bits = reset_bits;  // reinit to only track last retry
 724 
 725     // We used to do an "os::yield_all(i)" call here with the intention
 726     // that yielding would increase on each retry. However, the parameter
 727     // is ignored on Linux which means the yield didn't scale up. Waiting
 728     // on the SR_lock below provides a much more predictable scale up for
 729     // the delay. It also provides a simple/direct point to check for any
 730     // safepoint requests from the VMThread
 731 
 732     {
 733       MutexLocker ml(SR_lock());
 734       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 735       // can also call this)  and increase delay with each retry
 736       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 737 
 738       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 739                                               delay, bits);
 740 
 741       // It is possible for the external suspend request to be cancelled
 742       // (by a resume) before the actual suspend operation is completed.
 743       // Refresh our local copy to see if we still need to wait.
 744       pending = is_external_suspend();
 745     }
 746 
 747     if (!pending) {
 748       // A cancelled suspend request is the only false return from
 749       // is_ext_suspend_completed() that keeps us from staying in the
 750       // retry loop.
 751       *bits |= 0x00080000;
 752       return false;
 753     }
 754 
 755     if (is_suspended) {
 756       *bits |= 0x00100000;
 757       return true;
 758     }
 759   } // end retry loop
 760 
 761   // thread did not suspend after all our retries
 762   *bits |= 0x00200000;
 763   return false;
 764 }
 765 
 766 #ifndef PRODUCT
 767 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 768 
 769   // This should not need to be atomic as the only way for simultaneous
 770   // updates is via interrupts. Even then this should be rare or non-existant
 771   // and we don't care that much anyway.
 772 
 773   int index = _jmp_ring_index;
 774   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 775   _jmp_ring[index]._target = (intptr_t) target;
 776   _jmp_ring[index]._instruction = (intptr_t) instr;
 777   _jmp_ring[index]._file = file;
 778   _jmp_ring[index]._line = line;
 779 }
 780 #endif /* PRODUCT */
 781 
 782 // Called by flat profiler
 783 // Callers have already called wait_for_ext_suspend_completion
 784 // The assertion for that is currently too complex to put here:
 785 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 786   bool gotframe = false;
 787   // self suspension saves needed state.
 788   if (has_last_Java_frame() && _anchor.walkable()) {
 789      *_fr = pd_last_frame();
 790      gotframe = true;
 791   }
 792   return gotframe;
 793 }
 794 
 795 void Thread::interrupt(Thread* thread) {
 796   trace("interrupt", thread);
 797   debug_only(check_for_dangling_thread_pointer(thread);)
 798   os::interrupt(thread);
 799 }
 800 
 801 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 802   trace("is_interrupted", thread);
 803   debug_only(check_for_dangling_thread_pointer(thread);)
 804   // Note:  If clear_interrupted==false, this simply fetches and
 805   // returns the value of the field osthread()->interrupted().
 806   return os::is_interrupted(thread, clear_interrupted);
 807 }
 808 
 809 
 810 // GC Support
 811 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 812   jint thread_parity = _oops_do_parity;
 813   if (thread_parity != strong_roots_parity) {
 814     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 815     if (res == thread_parity) {
 816       return true;
 817     } else {
 818       guarantee(res == strong_roots_parity, "Or else what?");
 819       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 820          "Should only fail when parallel.");
 821       return false;
 822     }
 823   }
 824   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 825          "Should only fail when parallel.");
 826   return false;
 827 }
 828 
 829 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
 830   active_handles()->oops_do(f);
 831   // Do oop for ThreadShadow
 832   f->do_oop((oop*)&_pending_exception);
 833   handle_area()->oops_do(f);
 834 }
 835 
 836 void Thread::nmethods_do(CodeBlobClosure* cf) {
 837   // no nmethods in a generic thread...
 838 }
 839 
 840 void Thread::metadata_do(void f(Metadata*)) {
 841   if (metadata_handles() != NULL) {
 842     for (int i = 0; i< metadata_handles()->length(); i++) {
 843       f(metadata_handles()->at(i));
 844     }
 845   }
 846 }
 847 
 848 void Thread::print_on(outputStream* st) const {
 849   // get_priority assumes osthread initialized
 850   if (osthread() != NULL) {
 851     int os_prio;
 852     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 853       st->print("os_prio=%d ", os_prio);
 854     }
 855     st->print("tid=" INTPTR_FORMAT " ", this);
 856     osthread()->print_on(st);
 857   }
 858   debug_only(if (WizardMode) print_owned_locks_on(st);)
 859 }
 860 
 861 // Thread::print_on_error() is called by fatal error handler. Don't use
 862 // any lock or allocate memory.
 863 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 864   if      (is_VM_thread())                  st->print("VMThread");
 865   else if (is_Compiler_thread())            st->print("CompilerThread");
 866   else if (is_Java_thread())                st->print("JavaThread");
 867   else if (is_GC_task_thread())             st->print("GCTaskThread");
 868   else if (is_Watcher_thread())             st->print("WatcherThread");
 869   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 870   else st->print("Thread");
 871 
 872   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 873             _stack_base - _stack_size, _stack_base);
 874 
 875   if (osthread()) {
 876     st->print(" [id=%d]", osthread()->thread_id());
 877   }
 878 }
 879 
 880 #ifdef ASSERT
 881 void Thread::print_owned_locks_on(outputStream* st) const {
 882   Monitor *cur = _owned_locks;
 883   if (cur == NULL) {
 884     st->print(" (no locks) ");
 885   } else {
 886     st->print_cr(" Locks owned:");
 887     while(cur) {
 888       cur->print_on(st);
 889       cur = cur->next();
 890     }
 891   }
 892 }
 893 
 894 static int ref_use_count  = 0;
 895 
 896 bool Thread::owns_locks_but_compiled_lock() const {
 897   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 898     if (cur != Compile_lock) return true;
 899   }
 900   return false;
 901 }
 902 
 903 
 904 #endif
 905 
 906 #ifndef PRODUCT
 907 
 908 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 909 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 910 // no threads which allow_vm_block's are held
 911 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 912     // Check if current thread is allowed to block at a safepoint
 913     if (!(_allow_safepoint_count == 0))
 914       fatal("Possible safepoint reached by thread that does not allow it");
 915     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 916       fatal("LEAF method calling lock?");
 917     }
 918 
 919 #ifdef ASSERT
 920     if (potential_vm_operation && is_Java_thread()
 921         && !Universe::is_bootstrapping()) {
 922       // Make sure we do not hold any locks that the VM thread also uses.
 923       // This could potentially lead to deadlocks
 924       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 925         // Threads_lock is special, since the safepoint synchronization will not start before this is
 926         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 927         // since it is used to transfer control between JavaThreads and the VMThread
 928         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 929         if ( (cur->allow_vm_block() &&
 930               cur != Threads_lock &&
 931               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 932               cur != VMOperationRequest_lock &&
 933               cur != VMOperationQueue_lock) ||
 934               cur->rank() == Mutex::special) {
 935           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 936         }
 937       }
 938     }
 939 
 940     if (GCALotAtAllSafepoints) {
 941       // We could enter a safepoint here and thus have a gc
 942       InterfaceSupport::check_gc_alot();
 943     }
 944 #endif
 945 }
 946 #endif
 947 
 948 bool Thread::is_in_stack(address adr) const {
 949   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 950   address end = os::current_stack_pointer();
 951   // Allow non Java threads to call this without stack_base
 952   if (_stack_base == NULL) return true;
 953   if (stack_base() >= adr && adr >= end) return true;
 954 
 955   return false;
 956 }
 957 
 958 
 959 bool Thread::is_in_usable_stack(address adr) const {
 960   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 961   size_t usable_stack_size = _stack_size - stack_guard_size;
 962 
 963   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 964 }
 965 
 966 
 967 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 968 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 969 // used for compilation in the future. If that change is made, the need for these methods
 970 // should be revisited, and they should be removed if possible.
 971 
 972 bool Thread::is_lock_owned(address adr) const {
 973   return on_local_stack(adr);
 974 }
 975 
 976 bool Thread::set_as_starting_thread() {
 977  // NOTE: this must be called inside the main thread.
 978   return os::create_main_thread((JavaThread*)this);
 979 }
 980 
 981 static void initialize_class(Symbol* class_name, TRAPS) {
 982   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 983   InstanceKlass::cast(klass)->initialize(CHECK);
 984 }
 985 
 986 
 987 // Creates the initial ThreadGroup
 988 static Handle create_initial_thread_group(TRAPS) {
 989   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 990   instanceKlassHandle klass (THREAD, k);
 991 
 992   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 993   {
 994     JavaValue result(T_VOID);
 995     JavaCalls::call_special(&result,
 996                             system_instance,
 997                             klass,
 998                             vmSymbols::object_initializer_name(),
 999                             vmSymbols::void_method_signature(),
1000                             CHECK_NH);
1001   }
1002   Universe::set_system_thread_group(system_instance());
1003 
1004   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1005   {
1006     JavaValue result(T_VOID);
1007     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1008     JavaCalls::call_special(&result,
1009                             main_instance,
1010                             klass,
1011                             vmSymbols::object_initializer_name(),
1012                             vmSymbols::threadgroup_string_void_signature(),
1013                             system_instance,
1014                             string,
1015                             CHECK_NH);
1016   }
1017   return main_instance;
1018 }
1019 
1020 // Creates the initial Thread
1021 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1022   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1023   instanceKlassHandle klass (THREAD, k);
1024   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1025 
1026   java_lang_Thread::set_thread(thread_oop(), thread);
1027   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1028   thread->set_threadObj(thread_oop());
1029 
1030   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1031 
1032   JavaValue result(T_VOID);
1033   JavaCalls::call_special(&result, thread_oop,
1034                                    klass,
1035                                    vmSymbols::object_initializer_name(),
1036                                    vmSymbols::threadgroup_string_void_signature(),
1037                                    thread_group,
1038                                    string,
1039                                    CHECK_NULL);
1040   return thread_oop();
1041 }
1042 
1043 static void call_initializeSystemClass(TRAPS) {
1044   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1045   instanceKlassHandle klass (THREAD, k);
1046 
1047   JavaValue result(T_VOID);
1048   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1049                                          vmSymbols::void_method_signature(), CHECK);
1050 }
1051 
1052 char java_runtime_name[128] = "";
1053 char java_runtime_version[128] = "";
1054 
1055 // extract the JRE name from sun.misc.Version.java_runtime_name
1056 static const char* get_java_runtime_name(TRAPS) {
1057   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1058                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1059   fieldDescriptor fd;
1060   bool found = k != NULL &&
1061                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1062                                                         vmSymbols::string_signature(), &fd);
1063   if (found) {
1064     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1065     if (name_oop == NULL)
1066       return NULL;
1067     const char* name = java_lang_String::as_utf8_string(name_oop,
1068                                                         java_runtime_name,
1069                                                         sizeof(java_runtime_name));
1070     return name;
1071   } else {
1072     return NULL;
1073   }
1074 }
1075 
1076 // extract the JRE version from sun.misc.Version.java_runtime_version
1077 static const char* get_java_runtime_version(TRAPS) {
1078   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1079                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1080   fieldDescriptor fd;
1081   bool found = k != NULL &&
1082                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1083                                                         vmSymbols::string_signature(), &fd);
1084   if (found) {
1085     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1086     if (name_oop == NULL)
1087       return NULL;
1088     const char* name = java_lang_String::as_utf8_string(name_oop,
1089                                                         java_runtime_version,
1090                                                         sizeof(java_runtime_version));
1091     return name;
1092   } else {
1093     return NULL;
1094   }
1095 }
1096 
1097 // General purpose hook into Java code, run once when the VM is initialized.
1098 // The Java library method itself may be changed independently from the VM.
1099 static void call_postVMInitHook(TRAPS) {
1100   Klass* k = SystemDictionary::PostVMInitHook_klass();
1101   instanceKlassHandle klass (THREAD, k);
1102   if (klass.not_null()) {
1103     JavaValue result(T_VOID);
1104     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1105                                            vmSymbols::void_method_signature(),
1106                                            CHECK);
1107   }
1108 }
1109 
1110 static void reset_vm_info_property(TRAPS) {
1111   // the vm info string
1112   ResourceMark rm(THREAD);
1113   const char *vm_info = VM_Version::vm_info_string();
1114 
1115   // java.lang.System class
1116   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1117   instanceKlassHandle klass (THREAD, k);
1118 
1119   // setProperty arguments
1120   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1121   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1122 
1123   // return value
1124   JavaValue r(T_OBJECT);
1125 
1126   // public static String setProperty(String key, String value);
1127   JavaCalls::call_static(&r,
1128                          klass,
1129                          vmSymbols::setProperty_name(),
1130                          vmSymbols::string_string_string_signature(),
1131                          key_str,
1132                          value_str,
1133                          CHECK);
1134 }
1135 
1136 
1137 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1138   assert(thread_group.not_null(), "thread group should be specified");
1139   assert(threadObj() == NULL, "should only create Java thread object once");
1140 
1141   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1142   instanceKlassHandle klass (THREAD, k);
1143   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1144 
1145   java_lang_Thread::set_thread(thread_oop(), this);
1146   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1147   set_threadObj(thread_oop());
1148 
1149   JavaValue result(T_VOID);
1150   if (thread_name != NULL) {
1151     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1152     // Thread gets assigned specified name and null target
1153     JavaCalls::call_special(&result,
1154                             thread_oop,
1155                             klass,
1156                             vmSymbols::object_initializer_name(),
1157                             vmSymbols::threadgroup_string_void_signature(),
1158                             thread_group, // Argument 1
1159                             name,         // Argument 2
1160                             THREAD);
1161   } else {
1162     // Thread gets assigned name "Thread-nnn" and null target
1163     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1164     JavaCalls::call_special(&result,
1165                             thread_oop,
1166                             klass,
1167                             vmSymbols::object_initializer_name(),
1168                             vmSymbols::threadgroup_runnable_void_signature(),
1169                             thread_group, // Argument 1
1170                             Handle(),     // Argument 2
1171                             THREAD);
1172   }
1173 
1174 
1175   if (daemon) {
1176       java_lang_Thread::set_daemon(thread_oop());
1177   }
1178 
1179   if (HAS_PENDING_EXCEPTION) {
1180     return;
1181   }
1182 
1183   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1184   Handle threadObj(this, this->threadObj());
1185 
1186   JavaCalls::call_special(&result,
1187                          thread_group,
1188                          group,
1189                          vmSymbols::add_method_name(),
1190                          vmSymbols::thread_void_signature(),
1191                          threadObj,          // Arg 1
1192                          THREAD);
1193 
1194 
1195 }
1196 
1197 // NamedThread --  non-JavaThread subclasses with multiple
1198 // uniquely named instances should derive from this.
1199 NamedThread::NamedThread() : Thread() {
1200   _name = NULL;
1201   _processed_thread = NULL;
1202 }
1203 
1204 NamedThread::~NamedThread() {
1205   if (_name != NULL) {
1206     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1207     _name = NULL;
1208   }
1209 }
1210 
1211 void NamedThread::set_name(const char* format, ...) {
1212   guarantee(_name == NULL, "Only get to set name once.");
1213   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1214   guarantee(_name != NULL, "alloc failure");
1215   va_list ap;
1216   va_start(ap, format);
1217   jio_vsnprintf(_name, max_name_len, format, ap);
1218   va_end(ap);
1219 }
1220 
1221 // ======= WatcherThread ========
1222 
1223 // The watcher thread exists to simulate timer interrupts.  It should
1224 // be replaced by an abstraction over whatever native support for
1225 // timer interrupts exists on the platform.
1226 
1227 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1228 bool WatcherThread::_startable = false;
1229 volatile bool  WatcherThread::_should_terminate = false;
1230 
1231 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1232   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1233   if (os::create_thread(this, os::watcher_thread)) {
1234     _watcher_thread = this;
1235 
1236     // Set the watcher thread to the highest OS priority which should not be
1237     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1238     // is created. The only normal thread using this priority is the reference
1239     // handler thread, which runs for very short intervals only.
1240     // If the VMThread's priority is not lower than the WatcherThread profiling
1241     // will be inaccurate.
1242     os::set_priority(this, MaxPriority);
1243     if (!DisableStartThread) {
1244       os::start_thread(this);
1245     }
1246   }
1247 }
1248 
1249 int WatcherThread::sleep() const {
1250   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1251 
1252   // remaining will be zero if there are no tasks,
1253   // causing the WatcherThread to sleep until a task is
1254   // enrolled
1255   int remaining = PeriodicTask::time_to_wait();
1256   int time_slept = 0;
1257 
1258   // we expect this to timeout - we only ever get unparked when
1259   // we should terminate or when a new task has been enrolled
1260   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1261 
1262   jlong time_before_loop = os::javaTimeNanos();
1263 
1264   for (;;) {
1265     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1266     jlong now = os::javaTimeNanos();
1267 
1268     if (remaining == 0) {
1269         // if we didn't have any tasks we could have waited for a long time
1270         // consider the time_slept zero and reset time_before_loop
1271         time_slept = 0;
1272         time_before_loop = now;
1273     } else {
1274         // need to recalulate since we might have new tasks in _tasks
1275         time_slept = (int) ((now - time_before_loop) / 1000000);
1276     }
1277 
1278     // Change to task list or spurious wakeup of some kind
1279     if (timedout || _should_terminate) {
1280         break;
1281     }
1282 
1283     remaining = PeriodicTask::time_to_wait();
1284     if (remaining == 0) {
1285         // Last task was just disenrolled so loop around and wait until
1286         // another task gets enrolled
1287         continue;
1288     }
1289 
1290     remaining -= time_slept;
1291     if (remaining <= 0)
1292       break;
1293   }
1294 
1295   return time_slept;
1296 }
1297 
1298 void WatcherThread::run() {
1299   assert(this == watcher_thread(), "just checking");
1300 
1301   this->record_stack_base_and_size();
1302   this->initialize_thread_local_storage();
1303   this->set_active_handles(JNIHandleBlock::allocate_block());
1304   while(!_should_terminate) {
1305     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1306     assert(watcher_thread() == this,  "thread consistency check");
1307 
1308     // Calculate how long it'll be until the next PeriodicTask work
1309     // should be done, and sleep that amount of time.
1310     int time_waited = sleep();
1311 
1312     if (is_error_reported()) {
1313       // A fatal error has happened, the error handler(VMError::report_and_die)
1314       // should abort JVM after creating an error log file. However in some
1315       // rare cases, the error handler itself might deadlock. Here we try to
1316       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1317       //
1318       // This code is in WatcherThread because WatcherThread wakes up
1319       // periodically so the fatal error handler doesn't need to do anything;
1320       // also because the WatcherThread is less likely to crash than other
1321       // threads.
1322 
1323       for (;;) {
1324         if (!ShowMessageBoxOnError
1325          && (OnError == NULL || OnError[0] == '\0')
1326          && Arguments::abort_hook() == NULL) {
1327              os::sleep(this, 2 * 60 * 1000, false);
1328              fdStream err(defaultStream::output_fd());
1329              err.print_raw_cr("# [ timer expired, abort... ]");
1330              // skip atexit/vm_exit/vm_abort hooks
1331              os::die();
1332         }
1333 
1334         // Wake up 5 seconds later, the fatal handler may reset OnError or
1335         // ShowMessageBoxOnError when it is ready to abort.
1336         os::sleep(this, 5 * 1000, false);
1337       }
1338     }
1339 
1340     PeriodicTask::real_time_tick(time_waited);
1341   }
1342 
1343   // Signal that it is terminated
1344   {
1345     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1346     _watcher_thread = NULL;
1347     Terminator_lock->notify();
1348   }
1349 
1350   // Thread destructor usually does this..
1351   ThreadLocalStorage::set_thread(NULL);
1352 }
1353 
1354 void WatcherThread::start() {
1355   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1356 
1357   if (watcher_thread() == NULL && _startable) {
1358     _should_terminate = false;
1359     // Create the single instance of WatcherThread
1360     new WatcherThread();
1361   }
1362 }
1363 
1364 void WatcherThread::make_startable() {
1365   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1366   _startable = true;
1367 }
1368 
1369 void WatcherThread::stop() {
1370   {
1371     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1372     _should_terminate = true;
1373     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1374 
1375     WatcherThread* watcher = watcher_thread();
1376     if (watcher != NULL)
1377       watcher->unpark();
1378   }
1379 
1380   // it is ok to take late safepoints here, if needed
1381   MutexLocker mu(Terminator_lock);
1382 
1383   while(watcher_thread() != NULL) {
1384     // This wait should make safepoint checks, wait without a timeout,
1385     // and wait as a suspend-equivalent condition.
1386     //
1387     // Note: If the FlatProfiler is running, then this thread is waiting
1388     // for the WatcherThread to terminate and the WatcherThread, via the
1389     // FlatProfiler task, is waiting for the external suspend request on
1390     // this thread to complete. wait_for_ext_suspend_completion() will
1391     // eventually timeout, but that takes time. Making this wait a
1392     // suspend-equivalent condition solves that timeout problem.
1393     //
1394     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1395                           Mutex::_as_suspend_equivalent_flag);
1396   }
1397 }
1398 
1399 void WatcherThread::unpark() {
1400   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1401   PeriodicTask_lock->notify();
1402 }
1403 
1404 void WatcherThread::print_on(outputStream* st) const {
1405   st->print("\"%s\" ", name());
1406   Thread::print_on(st);
1407   st->cr();
1408 }
1409 
1410 // ======= JavaThread ========
1411 
1412 // A JavaThread is a normal Java thread
1413 
1414 void JavaThread::initialize() {
1415   // Initialize fields
1416 
1417   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1418   set_claimed_par_id(-1);
1419 
1420   set_saved_exception_pc(NULL);
1421   set_threadObj(NULL);
1422   _anchor.clear();
1423   set_entry_point(NULL);
1424   set_jni_functions(jni_functions());
1425   set_callee_target(NULL);
1426   set_vm_result(NULL);
1427   set_vm_result_2(NULL);
1428   set_vframe_array_head(NULL);
1429   set_vframe_array_last(NULL);
1430   set_deferred_locals(NULL);
1431   set_deopt_mark(NULL);
1432   set_deopt_nmethod(NULL);
1433   clear_must_deopt_id();
1434   set_monitor_chunks(NULL);
1435   set_next(NULL);
1436   set_thread_state(_thread_new);
1437 #if INCLUDE_NMT
1438   set_recorder(NULL);
1439 #endif
1440   _terminated = _not_terminated;
1441   _privileged_stack_top = NULL;
1442   _array_for_gc = NULL;
1443   _suspend_equivalent = false;
1444   _in_deopt_handler = 0;
1445   _doing_unsafe_access = false;
1446   _stack_guard_state = stack_guard_unused;
1447   _exception_oop = NULL;
1448   _exception_pc  = 0;
1449   _exception_handler_pc = 0;
1450   _is_method_handle_return = 0;
1451   _jvmti_thread_state= NULL;
1452   _should_post_on_exceptions_flag = JNI_FALSE;
1453   _jvmti_get_loaded_classes_closure = NULL;
1454   _interp_only_mode    = 0;
1455   _special_runtime_exit_condition = _no_async_condition;
1456   _pending_async_exception = NULL;
1457   _is_compiling = false;
1458   _thread_stat = NULL;
1459   _thread_stat = new ThreadStatistics();
1460   _blocked_on_compilation = false;
1461   _jni_active_critical = 0;
1462   _do_not_unlock_if_synchronized = false;
1463   _cached_monitor_info = NULL;
1464   _parker = Parker::Allocate(this) ;
1465 
1466 #ifndef PRODUCT
1467   _jmp_ring_index = 0;
1468   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1469     record_jump(NULL, NULL, NULL, 0);
1470   }
1471 #endif /* PRODUCT */
1472 
1473   set_thread_profiler(NULL);
1474   if (FlatProfiler::is_active()) {
1475     // This is where we would decide to either give each thread it's own profiler
1476     // or use one global one from FlatProfiler,
1477     // or up to some count of the number of profiled threads, etc.
1478     ThreadProfiler* pp = new ThreadProfiler();
1479     pp->engage();
1480     set_thread_profiler(pp);
1481   }
1482 
1483   // Setup safepoint state info for this thread
1484   ThreadSafepointState::create(this);
1485 
1486   debug_only(_java_call_counter = 0);
1487 
1488   // JVMTI PopFrame support
1489   _popframe_condition = popframe_inactive;
1490   _popframe_preserved_args = NULL;
1491   _popframe_preserved_args_size = 0;
1492 
1493   pd_initialize();
1494 }
1495 
1496 #if INCLUDE_ALL_GCS
1497 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1498 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1499 #endif // INCLUDE_ALL_GCS
1500 
1501 JavaThread::JavaThread(bool is_attaching_via_jni) :
1502   Thread()
1503 #if INCLUDE_ALL_GCS
1504   , _satb_mark_queue(&_satb_mark_queue_set),
1505   _dirty_card_queue(&_dirty_card_queue_set)
1506 #endif // INCLUDE_ALL_GCS
1507 {
1508   initialize();
1509   if (is_attaching_via_jni) {
1510     _jni_attach_state = _attaching_via_jni;
1511   } else {
1512     _jni_attach_state = _not_attaching_via_jni;
1513   }
1514   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1515   _safepoint_visible = false;
1516 }
1517 
1518 bool JavaThread::reguard_stack(address cur_sp) {
1519   if (_stack_guard_state != stack_guard_yellow_disabled) {
1520     return true; // Stack already guarded or guard pages not needed.
1521   }
1522 
1523   if (register_stack_overflow()) {
1524     // For those architectures which have separate register and
1525     // memory stacks, we must check the register stack to see if
1526     // it has overflowed.
1527     return false;
1528   }
1529 
1530   // Java code never executes within the yellow zone: the latter is only
1531   // there to provoke an exception during stack banging.  If java code
1532   // is executing there, either StackShadowPages should be larger, or
1533   // some exception code in c1, c2 or the interpreter isn't unwinding
1534   // when it should.
1535   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1536 
1537   enable_stack_yellow_zone();
1538   return true;
1539 }
1540 
1541 bool JavaThread::reguard_stack(void) {
1542   return reguard_stack(os::current_stack_pointer());
1543 }
1544 
1545 
1546 void JavaThread::block_if_vm_exited() {
1547   if (_terminated == _vm_exited) {
1548     // _vm_exited is set at safepoint, and Threads_lock is never released
1549     // we will block here forever
1550     Threads_lock->lock_without_safepoint_check();
1551     ShouldNotReachHere();
1552   }
1553 }
1554 
1555 
1556 // Remove this ifdef when C1 is ported to the compiler interface.
1557 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1558 
1559 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1560   Thread()
1561 #if INCLUDE_ALL_GCS
1562   , _satb_mark_queue(&_satb_mark_queue_set),
1563   _dirty_card_queue(&_dirty_card_queue_set)
1564 #endif // INCLUDE_ALL_GCS
1565 {
1566   if (TraceThreadEvents) {
1567     tty->print_cr("creating thread %p", this);
1568   }
1569   initialize();
1570   _jni_attach_state = _not_attaching_via_jni;
1571   set_entry_point(entry_point);
1572   // Create the native thread itself.
1573   // %note runtime_23
1574   os::ThreadType thr_type = os::java_thread;
1575   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1576                                                      os::java_thread;
1577   os::create_thread(this, thr_type, stack_sz);
1578   _safepoint_visible = false;
1579   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1580   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1581   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1582   // the exception consists of creating the exception object & initializing it, initialization
1583   // will leave the VM via a JavaCall and then all locks must be unlocked).
1584   //
1585   // The thread is still suspended when we reach here. Thread must be explicit started
1586   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1587   // by calling Threads:add. The reason why this is not done here, is because the thread
1588   // object must be fully initialized (take a look at JVM_Start)
1589 }
1590 
1591 JavaThread::~JavaThread() {
1592   if (TraceThreadEvents) {
1593       tty->print_cr("terminate thread %p", this);
1594   }
1595 
1596   // By now, this thread should already be invisible to safepoint,
1597   // and its per-thread recorder also collected.
1598   assert(!is_safepoint_visible(), "wrong state");
1599 #if INCLUDE_NMT
1600   assert(get_recorder() == NULL, "Already collected");
1601 #endif // INCLUDE_NMT
1602 
1603   // JSR166 -- return the parker to the free list
1604   Parker::Release(_parker);
1605   _parker = NULL ;
1606 
1607   // Free any remaining  previous UnrollBlock
1608   vframeArray* old_array = vframe_array_last();
1609 
1610   if (old_array != NULL) {
1611     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1612     old_array->set_unroll_block(NULL);
1613     delete old_info;
1614     delete old_array;
1615   }
1616 
1617   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1618   if (deferred != NULL) {
1619     // This can only happen if thread is destroyed before deoptimization occurs.
1620     assert(deferred->length() != 0, "empty array!");
1621     do {
1622       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1623       deferred->remove_at(0);
1624       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1625       delete dlv;
1626     } while (deferred->length() != 0);
1627     delete deferred;
1628   }
1629 
1630   // All Java related clean up happens in exit
1631   ThreadSafepointState::destroy(this);
1632   if (_thread_profiler != NULL) delete _thread_profiler;
1633   if (_thread_stat != NULL) delete _thread_stat;
1634 }
1635 
1636 
1637 // The first routine called by a new Java thread
1638 void JavaThread::run() {
1639   // initialize thread-local alloc buffer related fields
1640   this->initialize_tlab();
1641 
1642   // used to test validitity of stack trace backs
1643   this->record_base_of_stack_pointer();
1644 
1645   // Record real stack base and size.
1646   this->record_stack_base_and_size();
1647 
1648   // Initialize thread local storage; set before calling MutexLocker
1649   this->initialize_thread_local_storage();
1650 
1651   this->create_stack_guard_pages();
1652 
1653   this->cache_global_variables();
1654 
1655   // Thread is now sufficient initialized to be handled by the safepoint code as being
1656   // in the VM. Change thread state from _thread_new to _thread_in_vm
1657   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1658 
1659   assert(JavaThread::current() == this, "sanity check");
1660   assert(!Thread::current()->owns_locks(), "sanity check");
1661 
1662   DTRACE_THREAD_PROBE(start, this);
1663 
1664   // This operation might block. We call that after all safepoint checks for a new thread has
1665   // been completed.
1666   this->set_active_handles(JNIHandleBlock::allocate_block());
1667 
1668   if (JvmtiExport::should_post_thread_life()) {
1669     JvmtiExport::post_thread_start(this);
1670   }
1671 
1672   EventThreadStart event;
1673   if (event.should_commit()) {
1674      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1675      event.commit();
1676   }
1677 
1678   // We call another function to do the rest so we are sure that the stack addresses used
1679   // from there will be lower than the stack base just computed
1680   thread_main_inner();
1681 
1682   // Note, thread is no longer valid at this point!
1683 }
1684 
1685 
1686 void JavaThread::thread_main_inner() {
1687   assert(JavaThread::current() == this, "sanity check");
1688   assert(this->threadObj() != NULL, "just checking");
1689 
1690   // Execute thread entry point unless this thread has a pending exception
1691   // or has been stopped before starting.
1692   // Note: Due to JVM_StopThread we can have pending exceptions already!
1693   if (!this->has_pending_exception() &&
1694       !java_lang_Thread::is_stillborn(this->threadObj())) {
1695     {
1696       ResourceMark rm(this);
1697       this->set_native_thread_name(this->get_thread_name());
1698     }
1699     HandleMark hm(this);
1700     this->entry_point()(this, this);
1701   }
1702 
1703   DTRACE_THREAD_PROBE(stop, this);
1704 
1705   this->exit(false);
1706   delete this;
1707 }
1708 
1709 
1710 static void ensure_join(JavaThread* thread) {
1711   // We do not need to grap the Threads_lock, since we are operating on ourself.
1712   Handle threadObj(thread, thread->threadObj());
1713   assert(threadObj.not_null(), "java thread object must exist");
1714   ObjectLocker lock(threadObj, thread);
1715   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1716   thread->clear_pending_exception();
1717   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1718   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1719   // Clear the native thread instance - this makes isAlive return false and allows the join()
1720   // to complete once we've done the notify_all below
1721   java_lang_Thread::set_thread(threadObj(), NULL);
1722   lock.notify_all(thread);
1723   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1724   thread->clear_pending_exception();
1725 }
1726 
1727 
1728 // For any new cleanup additions, please check to see if they need to be applied to
1729 // cleanup_failed_attach_current_thread as well.
1730 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1731   assert(this == JavaThread::current(),  "thread consistency check");
1732 
1733   HandleMark hm(this);
1734   Handle uncaught_exception(this, this->pending_exception());
1735   this->clear_pending_exception();
1736   Handle threadObj(this, this->threadObj());
1737   assert(threadObj.not_null(), "Java thread object should be created");
1738 
1739   if (get_thread_profiler() != NULL) {
1740     get_thread_profiler()->disengage();
1741     ResourceMark rm;
1742     get_thread_profiler()->print(get_thread_name());
1743   }
1744 
1745 
1746   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1747   {
1748     EXCEPTION_MARK;
1749 
1750     CLEAR_PENDING_EXCEPTION;
1751   }
1752   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1753   // has to be fixed by a runtime query method
1754   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1755     // JSR-166: change call from from ThreadGroup.uncaughtException to
1756     // java.lang.Thread.dispatchUncaughtException
1757     if (uncaught_exception.not_null()) {
1758       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1759       {
1760         EXCEPTION_MARK;
1761         // Check if the method Thread.dispatchUncaughtException() exists. If so
1762         // call it.  Otherwise we have an older library without the JSR-166 changes,
1763         // so call ThreadGroup.uncaughtException()
1764         KlassHandle recvrKlass(THREAD, threadObj->klass());
1765         CallInfo callinfo;
1766         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1767         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1768                                            vmSymbols::dispatchUncaughtException_name(),
1769                                            vmSymbols::throwable_void_signature(),
1770                                            KlassHandle(), false, false, THREAD);
1771         CLEAR_PENDING_EXCEPTION;
1772         methodHandle method = callinfo.selected_method();
1773         if (method.not_null()) {
1774           JavaValue result(T_VOID);
1775           JavaCalls::call_virtual(&result,
1776                                   threadObj, thread_klass,
1777                                   vmSymbols::dispatchUncaughtException_name(),
1778                                   vmSymbols::throwable_void_signature(),
1779                                   uncaught_exception,
1780                                   THREAD);
1781         } else {
1782           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1783           JavaValue result(T_VOID);
1784           JavaCalls::call_virtual(&result,
1785                                   group, thread_group,
1786                                   vmSymbols::uncaughtException_name(),
1787                                   vmSymbols::thread_throwable_void_signature(),
1788                                   threadObj,           // Arg 1
1789                                   uncaught_exception,  // Arg 2
1790                                   THREAD);
1791         }
1792         if (HAS_PENDING_EXCEPTION) {
1793           ResourceMark rm(this);
1794           jio_fprintf(defaultStream::error_stream(),
1795                 "\nException: %s thrown from the UncaughtExceptionHandler"
1796                 " in thread \"%s\"\n",
1797                 pending_exception()->klass()->external_name(),
1798                 get_thread_name());
1799           CLEAR_PENDING_EXCEPTION;
1800         }
1801       }
1802     }
1803 
1804     // Called before the java thread exit since we want to read info
1805     // from java_lang_Thread object
1806     EventThreadEnd event;
1807     if (event.should_commit()) {
1808         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1809         event.commit();
1810     }
1811 
1812     // Call after last event on thread
1813     EVENT_THREAD_EXIT(this);
1814 
1815     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1816     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1817     // is deprecated anyhow.
1818     { int count = 3;
1819       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1820         EXCEPTION_MARK;
1821         JavaValue result(T_VOID);
1822         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1823         JavaCalls::call_virtual(&result,
1824                               threadObj, thread_klass,
1825                               vmSymbols::exit_method_name(),
1826                               vmSymbols::void_method_signature(),
1827                               THREAD);
1828         CLEAR_PENDING_EXCEPTION;
1829       }
1830     }
1831 
1832     // notify JVMTI
1833     if (JvmtiExport::should_post_thread_life()) {
1834       JvmtiExport::post_thread_end(this);
1835     }
1836 
1837     // We have notified the agents that we are exiting, before we go on,
1838     // we must check for a pending external suspend request and honor it
1839     // in order to not surprise the thread that made the suspend request.
1840     while (true) {
1841       {
1842         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1843         if (!is_external_suspend()) {
1844           set_terminated(_thread_exiting);
1845           ThreadService::current_thread_exiting(this);
1846           break;
1847         }
1848         // Implied else:
1849         // Things get a little tricky here. We have a pending external
1850         // suspend request, but we are holding the SR_lock so we
1851         // can't just self-suspend. So we temporarily drop the lock
1852         // and then self-suspend.
1853       }
1854 
1855       ThreadBlockInVM tbivm(this);
1856       java_suspend_self();
1857 
1858       // We're done with this suspend request, but we have to loop around
1859       // and check again. Eventually we will get SR_lock without a pending
1860       // external suspend request and will be able to mark ourselves as
1861       // exiting.
1862     }
1863     // no more external suspends are allowed at this point
1864   } else {
1865     // before_exit() has already posted JVMTI THREAD_END events
1866   }
1867 
1868   // Notify waiters on thread object. This has to be done after exit() is called
1869   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1870   // group should have the destroyed bit set before waiters are notified).
1871   ensure_join(this);
1872   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1873 
1874   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1875   // held by this thread must be released.  A detach operation must only
1876   // get here if there are no Java frames on the stack.  Therefore, any
1877   // owned monitors at this point MUST be JNI-acquired monitors which are
1878   // pre-inflated and in the monitor cache.
1879   //
1880   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1881   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1882     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1883     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1884     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1885   }
1886 
1887   // These things needs to be done while we are still a Java Thread. Make sure that thread
1888   // is in a consistent state, in case GC happens
1889   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1890 
1891   if (active_handles() != NULL) {
1892     JNIHandleBlock* block = active_handles();
1893     set_active_handles(NULL);
1894     JNIHandleBlock::release_block(block);
1895   }
1896 
1897   if (free_handle_block() != NULL) {
1898     JNIHandleBlock* block = free_handle_block();
1899     set_free_handle_block(NULL);
1900     JNIHandleBlock::release_block(block);
1901   }
1902 
1903   // These have to be removed while this is still a valid thread.
1904   remove_stack_guard_pages();
1905 
1906   if (UseTLAB) {
1907     tlab().make_parsable(true);  // retire TLAB
1908   }
1909 
1910   if (JvmtiEnv::environments_might_exist()) {
1911     JvmtiExport::cleanup_thread(this);
1912   }
1913 
1914   // We must flush any deferred card marks before removing a thread from
1915   // the list of active threads.
1916   Universe::heap()->flush_deferred_store_barrier(this);
1917   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1918 
1919 #if INCLUDE_ALL_GCS
1920   // We must flush the G1-related buffers before removing a thread
1921   // from the list of active threads. We must do this after any deferred
1922   // card marks have been flushed (above) so that any entries that are
1923   // added to the thread's dirty card queue as a result are not lost.
1924   if (UseG1GC) {
1925     flush_barrier_queues();
1926   }
1927 #endif // INCLUDE_ALL_GCS
1928 
1929   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1930   Threads::remove(this);
1931 }
1932 
1933 #if INCLUDE_ALL_GCS
1934 // Flush G1-related queues.
1935 void JavaThread::flush_barrier_queues() {
1936   satb_mark_queue().flush();
1937   dirty_card_queue().flush();
1938 }
1939 
1940 void JavaThread::initialize_queues() {
1941   assert(!SafepointSynchronize::is_at_safepoint(),
1942          "we should not be at a safepoint");
1943 
1944   ObjPtrQueue& satb_queue = satb_mark_queue();
1945   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1946   // The SATB queue should have been constructed with its active
1947   // field set to false.
1948   assert(!satb_queue.is_active(), "SATB queue should not be active");
1949   assert(satb_queue.is_empty(), "SATB queue should be empty");
1950   // If we are creating the thread during a marking cycle, we should
1951   // set the active field of the SATB queue to true.
1952   if (satb_queue_set.is_active()) {
1953     satb_queue.set_active(true);
1954   }
1955 
1956   DirtyCardQueue& dirty_queue = dirty_card_queue();
1957   // The dirty card queue should have been constructed with its
1958   // active field set to true.
1959   assert(dirty_queue.is_active(), "dirty card queue should be active");
1960 }
1961 #endif // INCLUDE_ALL_GCS
1962 
1963 void JavaThread::cleanup_failed_attach_current_thread() {
1964   if (get_thread_profiler() != NULL) {
1965     get_thread_profiler()->disengage();
1966     ResourceMark rm;
1967     get_thread_profiler()->print(get_thread_name());
1968   }
1969 
1970   if (active_handles() != NULL) {
1971     JNIHandleBlock* block = active_handles();
1972     set_active_handles(NULL);
1973     JNIHandleBlock::release_block(block);
1974   }
1975 
1976   if (free_handle_block() != NULL) {
1977     JNIHandleBlock* block = free_handle_block();
1978     set_free_handle_block(NULL);
1979     JNIHandleBlock::release_block(block);
1980   }
1981 
1982   // These have to be removed while this is still a valid thread.
1983   remove_stack_guard_pages();
1984 
1985   if (UseTLAB) {
1986     tlab().make_parsable(true);  // retire TLAB, if any
1987   }
1988 
1989 #if INCLUDE_ALL_GCS
1990   if (UseG1GC) {
1991     flush_barrier_queues();
1992   }
1993 #endif // INCLUDE_ALL_GCS
1994 
1995   Threads::remove(this);
1996   delete this;
1997 }
1998 
1999 
2000 
2001 
2002 JavaThread* JavaThread::active() {
2003   Thread* thread = ThreadLocalStorage::thread();
2004   assert(thread != NULL, "just checking");
2005   if (thread->is_Java_thread()) {
2006     return (JavaThread*) thread;
2007   } else {
2008     assert(thread->is_VM_thread(), "this must be a vm thread");
2009     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2010     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2011     assert(ret->is_Java_thread(), "must be a Java thread");
2012     return ret;
2013   }
2014 }
2015 
2016 bool JavaThread::is_lock_owned(address adr) const {
2017   if (Thread::is_lock_owned(adr)) return true;
2018 
2019   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2020     if (chunk->contains(adr)) return true;
2021   }
2022 
2023   return false;
2024 }
2025 
2026 
2027 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2028   chunk->set_next(monitor_chunks());
2029   set_monitor_chunks(chunk);
2030 }
2031 
2032 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2033   guarantee(monitor_chunks() != NULL, "must be non empty");
2034   if (monitor_chunks() == chunk) {
2035     set_monitor_chunks(chunk->next());
2036   } else {
2037     MonitorChunk* prev = monitor_chunks();
2038     while (prev->next() != chunk) prev = prev->next();
2039     prev->set_next(chunk->next());
2040   }
2041 }
2042 
2043 // JVM support.
2044 
2045 // Note: this function shouldn't block if it's called in
2046 // _thread_in_native_trans state (such as from
2047 // check_special_condition_for_native_trans()).
2048 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2049 
2050   if (has_last_Java_frame() && has_async_condition()) {
2051     // If we are at a polling page safepoint (not a poll return)
2052     // then we must defer async exception because live registers
2053     // will be clobbered by the exception path. Poll return is
2054     // ok because the call we a returning from already collides
2055     // with exception handling registers and so there is no issue.
2056     // (The exception handling path kills call result registers but
2057     //  this is ok since the exception kills the result anyway).
2058 
2059     if (is_at_poll_safepoint()) {
2060       // if the code we are returning to has deoptimized we must defer
2061       // the exception otherwise live registers get clobbered on the
2062       // exception path before deoptimization is able to retrieve them.
2063       //
2064       RegisterMap map(this, false);
2065       frame caller_fr = last_frame().sender(&map);
2066       assert(caller_fr.is_compiled_frame(), "what?");
2067       if (caller_fr.is_deoptimized_frame()) {
2068         if (TraceExceptions) {
2069           ResourceMark rm;
2070           tty->print_cr("deferred async exception at compiled safepoint");
2071         }
2072         return;
2073       }
2074     }
2075   }
2076 
2077   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2078   if (condition == _no_async_condition) {
2079     // Conditions have changed since has_special_runtime_exit_condition()
2080     // was called:
2081     // - if we were here only because of an external suspend request,
2082     //   then that was taken care of above (or cancelled) so we are done
2083     // - if we were here because of another async request, then it has
2084     //   been cleared between the has_special_runtime_exit_condition()
2085     //   and now so again we are done
2086     return;
2087   }
2088 
2089   // Check for pending async. exception
2090   if (_pending_async_exception != NULL) {
2091     // Only overwrite an already pending exception, if it is not a threadDeath.
2092     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2093 
2094       // We cannot call Exceptions::_throw(...) here because we cannot block
2095       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2096 
2097       if (TraceExceptions) {
2098         ResourceMark rm;
2099         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2100         if (has_last_Java_frame() ) {
2101           frame f = last_frame();
2102           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2103         }
2104         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2105       }
2106       _pending_async_exception = NULL;
2107       clear_has_async_exception();
2108     }
2109   }
2110 
2111   if (check_unsafe_error &&
2112       condition == _async_unsafe_access_error && !has_pending_exception()) {
2113     condition = _no_async_condition;  // done
2114     switch (thread_state()) {
2115     case _thread_in_vm:
2116       {
2117         JavaThread* THREAD = this;
2118         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2119       }
2120     case _thread_in_native:
2121       {
2122         ThreadInVMfromNative tiv(this);
2123         JavaThread* THREAD = this;
2124         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2125       }
2126     case _thread_in_Java:
2127       {
2128         ThreadInVMfromJava tiv(this);
2129         JavaThread* THREAD = this;
2130         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2131       }
2132     default:
2133       ShouldNotReachHere();
2134     }
2135   }
2136 
2137   assert(condition == _no_async_condition || has_pending_exception() ||
2138          (!check_unsafe_error && condition == _async_unsafe_access_error),
2139          "must have handled the async condition, if no exception");
2140 }
2141 
2142 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2143   //
2144   // Check for pending external suspend. Internal suspend requests do
2145   // not use handle_special_runtime_exit_condition().
2146   // If JNIEnv proxies are allowed, don't self-suspend if the target
2147   // thread is not the current thread. In older versions of jdbx, jdbx
2148   // threads could call into the VM with another thread's JNIEnv so we
2149   // can be here operating on behalf of a suspended thread (4432884).
2150   bool do_self_suspend = is_external_suspend_with_lock();
2151   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2152     //
2153     // Because thread is external suspended the safepoint code will count
2154     // thread as at a safepoint. This can be odd because we can be here
2155     // as _thread_in_Java which would normally transition to _thread_blocked
2156     // at a safepoint. We would like to mark the thread as _thread_blocked
2157     // before calling java_suspend_self like all other callers of it but
2158     // we must then observe proper safepoint protocol. (We can't leave
2159     // _thread_blocked with a safepoint in progress). However we can be
2160     // here as _thread_in_native_trans so we can't use a normal transition
2161     // constructor/destructor pair because they assert on that type of
2162     // transition. We could do something like:
2163     //
2164     // JavaThreadState state = thread_state();
2165     // set_thread_state(_thread_in_vm);
2166     // {
2167     //   ThreadBlockInVM tbivm(this);
2168     //   java_suspend_self()
2169     // }
2170     // set_thread_state(_thread_in_vm_trans);
2171     // if (safepoint) block;
2172     // set_thread_state(state);
2173     //
2174     // but that is pretty messy. Instead we just go with the way the
2175     // code has worked before and note that this is the only path to
2176     // java_suspend_self that doesn't put the thread in _thread_blocked
2177     // mode.
2178 
2179     frame_anchor()->make_walkable(this);
2180     java_suspend_self();
2181 
2182     // We might be here for reasons in addition to the self-suspend request
2183     // so check for other async requests.
2184   }
2185 
2186   if (check_asyncs) {
2187     check_and_handle_async_exceptions();
2188   }
2189 }
2190 
2191 void JavaThread::send_thread_stop(oop java_throwable)  {
2192   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2193   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2194   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2195 
2196   // Do not throw asynchronous exceptions against the compiler thread
2197   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2198   if (is_Compiler_thread()) return;
2199 
2200   {
2201     // Actually throw the Throwable against the target Thread - however
2202     // only if there is no thread death exception installed already.
2203     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2204       // If the topmost frame is a runtime stub, then we are calling into
2205       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2206       // must deoptimize the caller before continuing, as the compiled  exception handler table
2207       // may not be valid
2208       if (has_last_Java_frame()) {
2209         frame f = last_frame();
2210         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2211           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2212           RegisterMap reg_map(this, UseBiasedLocking);
2213           frame compiled_frame = f.sender(&reg_map);
2214           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2215             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2216           }
2217         }
2218       }
2219 
2220       // Set async. pending exception in thread.
2221       set_pending_async_exception(java_throwable);
2222 
2223       if (TraceExceptions) {
2224        ResourceMark rm;
2225        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2226       }
2227       // for AbortVMOnException flag
2228       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2229     }
2230   }
2231 
2232 
2233   // Interrupt thread so it will wake up from a potential wait()
2234   Thread::interrupt(this);
2235 }
2236 
2237 // External suspension mechanism.
2238 //
2239 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2240 // to any VM_locks and it is at a transition
2241 // Self-suspension will happen on the transition out of the vm.
2242 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2243 //
2244 // Guarantees on return:
2245 //   + Target thread will not execute any new bytecode (that's why we need to
2246 //     force a safepoint)
2247 //   + Target thread will not enter any new monitors
2248 //
2249 void JavaThread::java_suspend() {
2250   { MutexLocker mu(Threads_lock);
2251     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2252        return;
2253     }
2254   }
2255 
2256   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2257     if (!is_external_suspend()) {
2258       // a racing resume has cancelled us; bail out now
2259       return;
2260     }
2261 
2262     // suspend is done
2263     uint32_t debug_bits = 0;
2264     // Warning: is_ext_suspend_completed() may temporarily drop the
2265     // SR_lock to allow the thread to reach a stable thread state if
2266     // it is currently in a transient thread state.
2267     if (is_ext_suspend_completed(false /* !called_by_wait */,
2268                                  SuspendRetryDelay, &debug_bits) ) {
2269       return;
2270     }
2271   }
2272 
2273   VM_ForceSafepoint vm_suspend;
2274   VMThread::execute(&vm_suspend);
2275 }
2276 
2277 // Part II of external suspension.
2278 // A JavaThread self suspends when it detects a pending external suspend
2279 // request. This is usually on transitions. It is also done in places
2280 // where continuing to the next transition would surprise the caller,
2281 // e.g., monitor entry.
2282 //
2283 // Returns the number of times that the thread self-suspended.
2284 //
2285 // Note: DO NOT call java_suspend_self() when you just want to block current
2286 //       thread. java_suspend_self() is the second stage of cooperative
2287 //       suspension for external suspend requests and should only be used
2288 //       to complete an external suspend request.
2289 //
2290 int JavaThread::java_suspend_self() {
2291   int ret = 0;
2292 
2293   // we are in the process of exiting so don't suspend
2294   if (is_exiting()) {
2295      clear_external_suspend();
2296      return ret;
2297   }
2298 
2299   assert(_anchor.walkable() ||
2300     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2301     "must have walkable stack");
2302 
2303   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2304 
2305   assert(!this->is_ext_suspended(),
2306     "a thread trying to self-suspend should not already be suspended");
2307 
2308   if (this->is_suspend_equivalent()) {
2309     // If we are self-suspending as a result of the lifting of a
2310     // suspend equivalent condition, then the suspend_equivalent
2311     // flag is not cleared until we set the ext_suspended flag so
2312     // that wait_for_ext_suspend_completion() returns consistent
2313     // results.
2314     this->clear_suspend_equivalent();
2315   }
2316 
2317   // A racing resume may have cancelled us before we grabbed SR_lock
2318   // above. Or another external suspend request could be waiting for us
2319   // by the time we return from SR_lock()->wait(). The thread
2320   // that requested the suspension may already be trying to walk our
2321   // stack and if we return now, we can change the stack out from under
2322   // it. This would be a "bad thing (TM)" and cause the stack walker
2323   // to crash. We stay self-suspended until there are no more pending
2324   // external suspend requests.
2325   while (is_external_suspend()) {
2326     ret++;
2327     this->set_ext_suspended();
2328 
2329     // _ext_suspended flag is cleared by java_resume()
2330     while (is_ext_suspended()) {
2331       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2332     }
2333   }
2334 
2335   return ret;
2336 }
2337 
2338 #ifdef ASSERT
2339 // verify the JavaThread has not yet been published in the Threads::list, and
2340 // hence doesn't need protection from concurrent access at this stage
2341 void JavaThread::verify_not_published() {
2342   if (!Threads_lock->owned_by_self()) {
2343    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2344    assert( !Threads::includes(this),
2345            "java thread shouldn't have been published yet!");
2346   }
2347   else {
2348    assert( !Threads::includes(this),
2349            "java thread shouldn't have been published yet!");
2350   }
2351 }
2352 #endif
2353 
2354 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2355 // progress or when _suspend_flags is non-zero.
2356 // Current thread needs to self-suspend if there is a suspend request and/or
2357 // block if a safepoint is in progress.
2358 // Async exception ISN'T checked.
2359 // Note only the ThreadInVMfromNative transition can call this function
2360 // directly and when thread state is _thread_in_native_trans
2361 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2362   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2363 
2364   JavaThread *curJT = JavaThread::current();
2365   bool do_self_suspend = thread->is_external_suspend();
2366 
2367   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2368 
2369   // If JNIEnv proxies are allowed, don't self-suspend if the target
2370   // thread is not the current thread. In older versions of jdbx, jdbx
2371   // threads could call into the VM with another thread's JNIEnv so we
2372   // can be here operating on behalf of a suspended thread (4432884).
2373   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2374     JavaThreadState state = thread->thread_state();
2375 
2376     // We mark this thread_blocked state as a suspend-equivalent so
2377     // that a caller to is_ext_suspend_completed() won't be confused.
2378     // The suspend-equivalent state is cleared by java_suspend_self().
2379     thread->set_suspend_equivalent();
2380 
2381     // If the safepoint code sees the _thread_in_native_trans state, it will
2382     // wait until the thread changes to other thread state. There is no
2383     // guarantee on how soon we can obtain the SR_lock and complete the
2384     // self-suspend request. It would be a bad idea to let safepoint wait for
2385     // too long. Temporarily change the state to _thread_blocked to
2386     // let the VM thread know that this thread is ready for GC. The problem
2387     // of changing thread state is that safepoint could happen just after
2388     // java_suspend_self() returns after being resumed, and VM thread will
2389     // see the _thread_blocked state. We must check for safepoint
2390     // after restoring the state and make sure we won't leave while a safepoint
2391     // is in progress.
2392     thread->set_thread_state(_thread_blocked);
2393     thread->java_suspend_self();
2394     thread->set_thread_state(state);
2395     // Make sure new state is seen by VM thread
2396     if (os::is_MP()) {
2397       if (UseMembar) {
2398         // Force a fence between the write above and read below
2399         OrderAccess::fence();
2400       } else {
2401         // Must use this rather than serialization page in particular on Windows
2402         InterfaceSupport::serialize_memory(thread);
2403       }
2404     }
2405   }
2406 
2407   if (SafepointSynchronize::do_call_back()) {
2408     // If we are safepointing, then block the caller which may not be
2409     // the same as the target thread (see above).
2410     SafepointSynchronize::block(curJT);
2411   }
2412 
2413   if (thread->is_deopt_suspend()) {
2414     thread->clear_deopt_suspend();
2415     RegisterMap map(thread, false);
2416     frame f = thread->last_frame();
2417     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2418       f = f.sender(&map);
2419     }
2420     if (f.id() == thread->must_deopt_id()) {
2421       thread->clear_must_deopt_id();
2422       f.deoptimize(thread);
2423     } else {
2424       fatal("missed deoptimization!");
2425     }
2426   }
2427 }
2428 
2429 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2430 // progress or when _suspend_flags is non-zero.
2431 // Current thread needs to self-suspend if there is a suspend request and/or
2432 // block if a safepoint is in progress.
2433 // Also check for pending async exception (not including unsafe access error).
2434 // Note only the native==>VM/Java barriers can call this function and when
2435 // thread state is _thread_in_native_trans.
2436 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2437   check_safepoint_and_suspend_for_native_trans(thread);
2438 
2439   if (thread->has_async_exception()) {
2440     // We are in _thread_in_native_trans state, don't handle unsafe
2441     // access error since that may block.
2442     thread->check_and_handle_async_exceptions(false);
2443   }
2444 }
2445 
2446 // This is a variant of the normal
2447 // check_special_condition_for_native_trans with slightly different
2448 // semantics for use by critical native wrappers.  It does all the
2449 // normal checks but also performs the transition back into
2450 // thread_in_Java state.  This is required so that critical natives
2451 // can potentially block and perform a GC if they are the last thread
2452 // exiting the GC_locker.
2453 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2454   check_special_condition_for_native_trans(thread);
2455 
2456   // Finish the transition
2457   thread->set_thread_state(_thread_in_Java);
2458 
2459   if (thread->do_critical_native_unlock()) {
2460     ThreadInVMfromJavaNoAsyncException tiv(thread);
2461     GC_locker::unlock_critical(thread);
2462     thread->clear_critical_native_unlock();
2463   }
2464 }
2465 
2466 // We need to guarantee the Threads_lock here, since resumes are not
2467 // allowed during safepoint synchronization
2468 // Can only resume from an external suspension
2469 void JavaThread::java_resume() {
2470   assert_locked_or_safepoint(Threads_lock);
2471 
2472   // Sanity check: thread is gone, has started exiting or the thread
2473   // was not externally suspended.
2474   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2475     return;
2476   }
2477 
2478   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2479 
2480   clear_external_suspend();
2481 
2482   if (is_ext_suspended()) {
2483     clear_ext_suspended();
2484     SR_lock()->notify_all();
2485   }
2486 }
2487 
2488 void JavaThread::create_stack_guard_pages() {
2489   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2490   address low_addr = stack_base() - stack_size();
2491   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2492 
2493   int allocate = os::allocate_stack_guard_pages();
2494   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2495 
2496   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2497     warning("Attempt to allocate stack guard pages failed.");
2498     return;
2499   }
2500 
2501   if (os::guard_memory((char *) low_addr, len)) {
2502     _stack_guard_state = stack_guard_enabled;
2503   } else {
2504     warning("Attempt to protect stack guard pages failed.");
2505     if (os::uncommit_memory((char *) low_addr, len)) {
2506       warning("Attempt to deallocate stack guard pages failed.");
2507     }
2508   }
2509 }
2510 
2511 void JavaThread::remove_stack_guard_pages() {
2512   assert(Thread::current() == this, "from different thread");
2513   if (_stack_guard_state == stack_guard_unused) return;
2514   address low_addr = stack_base() - stack_size();
2515   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2516 
2517   if (os::allocate_stack_guard_pages()) {
2518     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2519       _stack_guard_state = stack_guard_unused;
2520     } else {
2521       warning("Attempt to deallocate stack guard pages failed.");
2522     }
2523   } else {
2524     if (_stack_guard_state == stack_guard_unused) return;
2525     if (os::unguard_memory((char *) low_addr, len)) {
2526       _stack_guard_state = stack_guard_unused;
2527     } else {
2528         warning("Attempt to unprotect stack guard pages failed.");
2529     }
2530   }
2531 }
2532 
2533 void JavaThread::enable_stack_yellow_zone() {
2534   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2535   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2536 
2537   // The base notation is from the stacks point of view, growing downward.
2538   // We need to adjust it to work correctly with guard_memory()
2539   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2540 
2541   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2542   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2543 
2544   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2545     _stack_guard_state = stack_guard_enabled;
2546   } else {
2547     warning("Attempt to guard stack yellow zone failed.");
2548   }
2549   enable_register_stack_guard();
2550 }
2551 
2552 void JavaThread::disable_stack_yellow_zone() {
2553   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2554   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2555 
2556   // Simply return if called for a thread that does not use guard pages.
2557   if (_stack_guard_state == stack_guard_unused) return;
2558 
2559   // The base notation is from the stacks point of view, growing downward.
2560   // We need to adjust it to work correctly with guard_memory()
2561   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2562 
2563   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2564     _stack_guard_state = stack_guard_yellow_disabled;
2565   } else {
2566     warning("Attempt to unguard stack yellow zone failed.");
2567   }
2568   disable_register_stack_guard();
2569 }
2570 
2571 void JavaThread::enable_stack_red_zone() {
2572   // The base notation is from the stacks point of view, growing downward.
2573   // We need to adjust it to work correctly with guard_memory()
2574   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2575   address base = stack_red_zone_base() - stack_red_zone_size();
2576 
2577   guarantee(base < stack_base(),"Error calculating stack red zone");
2578   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2579 
2580   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2581     warning("Attempt to guard stack red zone failed.");
2582   }
2583 }
2584 
2585 void JavaThread::disable_stack_red_zone() {
2586   // The base notation is from the stacks point of view, growing downward.
2587   // We need to adjust it to work correctly with guard_memory()
2588   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2589   address base = stack_red_zone_base() - stack_red_zone_size();
2590   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2591     warning("Attempt to unguard stack red zone failed.");
2592   }
2593 }
2594 
2595 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2596   // ignore is there is no stack
2597   if (!has_last_Java_frame()) return;
2598   // traverse the stack frames. Starts from top frame.
2599   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2600     frame* fr = fst.current();
2601     f(fr, fst.register_map());
2602   }
2603 }
2604 
2605 
2606 #ifndef PRODUCT
2607 // Deoptimization
2608 // Function for testing deoptimization
2609 void JavaThread::deoptimize() {
2610   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2611   StackFrameStream fst(this, UseBiasedLocking);
2612   bool deopt = false;           // Dump stack only if a deopt actually happens.
2613   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2614   // Iterate over all frames in the thread and deoptimize
2615   for(; !fst.is_done(); fst.next()) {
2616     if(fst.current()->can_be_deoptimized()) {
2617 
2618       if (only_at) {
2619         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2620         // consists of comma or carriage return separated numbers so
2621         // search for the current bci in that string.
2622         address pc = fst.current()->pc();
2623         nmethod* nm =  (nmethod*) fst.current()->cb();
2624         ScopeDesc* sd = nm->scope_desc_at( pc);
2625         char buffer[8];
2626         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2627         size_t len = strlen(buffer);
2628         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2629         while (found != NULL) {
2630           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2631               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2632             // Check that the bci found is bracketed by terminators.
2633             break;
2634           }
2635           found = strstr(found + 1, buffer);
2636         }
2637         if (!found) {
2638           continue;
2639         }
2640       }
2641 
2642       if (DebugDeoptimization && !deopt) {
2643         deopt = true; // One-time only print before deopt
2644         tty->print_cr("[BEFORE Deoptimization]");
2645         trace_frames();
2646         trace_stack();
2647       }
2648       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2649     }
2650   }
2651 
2652   if (DebugDeoptimization && deopt) {
2653     tty->print_cr("[AFTER Deoptimization]");
2654     trace_frames();
2655   }
2656 }
2657 
2658 
2659 // Make zombies
2660 void JavaThread::make_zombies() {
2661   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2662     if (fst.current()->can_be_deoptimized()) {
2663       // it is a Java nmethod
2664       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2665       nm->make_not_entrant();
2666     }
2667   }
2668 }
2669 #endif // PRODUCT
2670 
2671 
2672 void JavaThread::deoptimized_wrt_marked_nmethods() {
2673   if (!has_last_Java_frame()) return;
2674   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2675   StackFrameStream fst(this, UseBiasedLocking);
2676   for(; !fst.is_done(); fst.next()) {
2677     if (fst.current()->should_be_deoptimized()) {
2678       if (LogCompilation && xtty != NULL) {
2679         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2680         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2681                    this->name(), nm != NULL ? nm->compile_id() : -1);
2682       }
2683 
2684       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2685     }
2686   }
2687 }
2688 
2689 
2690 // GC support
2691 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2692 
2693 void JavaThread::gc_epilogue() {
2694   frames_do(frame_gc_epilogue);
2695 }
2696 
2697 
2698 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2699 
2700 void JavaThread::gc_prologue() {
2701   frames_do(frame_gc_prologue);
2702 }
2703 
2704 // If the caller is a NamedThread, then remember, in the current scope,
2705 // the given JavaThread in its _processed_thread field.
2706 class RememberProcessedThread: public StackObj {
2707   NamedThread* _cur_thr;
2708 public:
2709   RememberProcessedThread(JavaThread* jthr) {
2710     Thread* thread = Thread::current();
2711     if (thread->is_Named_thread()) {
2712       _cur_thr = (NamedThread *)thread;
2713       _cur_thr->set_processed_thread(jthr);
2714     } else {
2715       _cur_thr = NULL;
2716     }
2717   }
2718 
2719   ~RememberProcessedThread() {
2720     if (_cur_thr) {
2721       _cur_thr->set_processed_thread(NULL);
2722     }
2723   }
2724 };
2725 
2726 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2727   // Verify that the deferred card marks have been flushed.
2728   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2729 
2730   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2731   // since there may be more than one thread using each ThreadProfiler.
2732 
2733   // Traverse the GCHandles
2734   Thread::oops_do(f, cld_f, cf);
2735 
2736   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2737           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2738 
2739   if (has_last_Java_frame()) {
2740     // Record JavaThread to GC thread
2741     RememberProcessedThread rpt(this);
2742 
2743     // Traverse the privileged stack
2744     if (_privileged_stack_top != NULL) {
2745       _privileged_stack_top->oops_do(f);
2746     }
2747 
2748     // traverse the registered growable array
2749     if (_array_for_gc != NULL) {
2750       for (int index = 0; index < _array_for_gc->length(); index++) {
2751         f->do_oop(_array_for_gc->adr_at(index));
2752       }
2753     }
2754 
2755     // Traverse the monitor chunks
2756     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2757       chunk->oops_do(f);
2758     }
2759 
2760     // Traverse the execution stack
2761     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2762       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2763     }
2764   }
2765 
2766   // callee_target is never live across a gc point so NULL it here should
2767   // it still contain a methdOop.
2768 
2769   set_callee_target(NULL);
2770 
2771   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2772   // If we have deferred set_locals there might be oops waiting to be
2773   // written
2774   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2775   if (list != NULL) {
2776     for (int i = 0; i < list->length(); i++) {
2777       list->at(i)->oops_do(f);
2778     }
2779   }
2780 
2781   // Traverse instance variables at the end since the GC may be moving things
2782   // around using this function
2783   f->do_oop((oop*) &_threadObj);
2784   f->do_oop((oop*) &_vm_result);
2785   f->do_oop((oop*) &_exception_oop);
2786   f->do_oop((oop*) &_pending_async_exception);
2787 
2788   if (jvmti_thread_state() != NULL) {
2789     jvmti_thread_state()->oops_do(f);
2790   }
2791 }
2792 
2793 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2794   Thread::nmethods_do(cf);  // (super method is a no-op)
2795 
2796   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2797           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2798 
2799   if (has_last_Java_frame()) {
2800     // Traverse the execution stack
2801     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2802       fst.current()->nmethods_do(cf);
2803     }
2804   }
2805 }
2806 
2807 void JavaThread::metadata_do(void f(Metadata*)) {
2808   Thread::metadata_do(f);
2809   if (has_last_Java_frame()) {
2810     // Traverse the execution stack to call f() on the methods in the stack
2811     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2812       fst.current()->metadata_do(f);
2813     }
2814   } else if (is_Compiler_thread()) {
2815     // need to walk ciMetadata in current compile tasks to keep alive.
2816     CompilerThread* ct = (CompilerThread*)this;
2817     if (ct->env() != NULL) {
2818       ct->env()->metadata_do(f);
2819     }
2820   }
2821 }
2822 
2823 // Printing
2824 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2825   switch (_thread_state) {
2826   case _thread_uninitialized:     return "_thread_uninitialized";
2827   case _thread_new:               return "_thread_new";
2828   case _thread_new_trans:         return "_thread_new_trans";
2829   case _thread_in_native:         return "_thread_in_native";
2830   case _thread_in_native_trans:   return "_thread_in_native_trans";
2831   case _thread_in_vm:             return "_thread_in_vm";
2832   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2833   case _thread_in_Java:           return "_thread_in_Java";
2834   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2835   case _thread_blocked:           return "_thread_blocked";
2836   case _thread_blocked_trans:     return "_thread_blocked_trans";
2837   default:                        return "unknown thread state";
2838   }
2839 }
2840 
2841 #ifndef PRODUCT
2842 void JavaThread::print_thread_state_on(outputStream *st) const {
2843   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2844 };
2845 void JavaThread::print_thread_state() const {
2846   print_thread_state_on(tty);
2847 };
2848 #endif // PRODUCT
2849 
2850 // Called by Threads::print() for VM_PrintThreads operation
2851 void JavaThread::print_on(outputStream *st) const {
2852   st->print("\"%s\" ", get_thread_name());
2853   oop thread_oop = threadObj();
2854   if (thread_oop != NULL) {
2855     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2856     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2857     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2858   }
2859   Thread::print_on(st);
2860   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2861   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2862   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2863     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2864   }
2865 #ifndef PRODUCT
2866   print_thread_state_on(st);
2867   _safepoint_state->print_on(st);
2868 #endif // PRODUCT
2869 }
2870 
2871 // Called by fatal error handler. The difference between this and
2872 // JavaThread::print() is that we can't grab lock or allocate memory.
2873 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2874   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2875   oop thread_obj = threadObj();
2876   if (thread_obj != NULL) {
2877      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2878   }
2879   st->print(" [");
2880   st->print("%s", _get_thread_state_name(_thread_state));
2881   if (osthread()) {
2882     st->print(", id=%d", osthread()->thread_id());
2883   }
2884   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2885             _stack_base - _stack_size, _stack_base);
2886   st->print("]");
2887   return;
2888 }
2889 
2890 // Verification
2891 
2892 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2893 
2894 void JavaThread::verify() {
2895   // Verify oops in the thread.
2896   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2897 
2898   // Verify the stack frames.
2899   frames_do(frame_verify);
2900 }
2901 
2902 // CR 6300358 (sub-CR 2137150)
2903 // Most callers of this method assume that it can't return NULL but a
2904 // thread may not have a name whilst it is in the process of attaching to
2905 // the VM - see CR 6412693, and there are places where a JavaThread can be
2906 // seen prior to having it's threadObj set (eg JNI attaching threads and
2907 // if vm exit occurs during initialization). These cases can all be accounted
2908 // for such that this method never returns NULL.
2909 const char* JavaThread::get_thread_name() const {
2910 #ifdef ASSERT
2911   // early safepoints can hit while current thread does not yet have TLS
2912   if (!SafepointSynchronize::is_at_safepoint()) {
2913     Thread *cur = Thread::current();
2914     if (!(cur->is_Java_thread() && cur == this)) {
2915       // Current JavaThreads are allowed to get their own name without
2916       // the Threads_lock.
2917       assert_locked_or_safepoint(Threads_lock);
2918     }
2919   }
2920 #endif // ASSERT
2921     return get_thread_name_string();
2922 }
2923 
2924 // Returns a non-NULL representation of this thread's name, or a suitable
2925 // descriptive string if there is no set name
2926 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2927   const char* name_str;
2928   oop thread_obj = threadObj();
2929   if (thread_obj != NULL) {
2930     typeArrayOop name = java_lang_Thread::name(thread_obj);
2931     if (name != NULL) {
2932       if (buf == NULL) {
2933         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2934       }
2935       else {
2936         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2937       }
2938     }
2939     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2940       name_str = "<no-name - thread is attaching>";
2941     }
2942     else {
2943       name_str = Thread::name();
2944     }
2945   }
2946   else {
2947     name_str = Thread::name();
2948   }
2949   assert(name_str != NULL, "unexpected NULL thread name");
2950   return name_str;
2951 }
2952 
2953 
2954 const char* JavaThread::get_threadgroup_name() const {
2955   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2956   oop thread_obj = threadObj();
2957   if (thread_obj != NULL) {
2958     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2959     if (thread_group != NULL) {
2960       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2961       // ThreadGroup.name can be null
2962       if (name != NULL) {
2963         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2964         return str;
2965       }
2966     }
2967   }
2968   return NULL;
2969 }
2970 
2971 const char* JavaThread::get_parent_name() const {
2972   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2973   oop thread_obj = threadObj();
2974   if (thread_obj != NULL) {
2975     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2976     if (thread_group != NULL) {
2977       oop parent = java_lang_ThreadGroup::parent(thread_group);
2978       if (parent != NULL) {
2979         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2980         // ThreadGroup.name can be null
2981         if (name != NULL) {
2982           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2983           return str;
2984         }
2985       }
2986     }
2987   }
2988   return NULL;
2989 }
2990 
2991 ThreadPriority JavaThread::java_priority() const {
2992   oop thr_oop = threadObj();
2993   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2994   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2995   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2996   return priority;
2997 }
2998 
2999 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3000 
3001   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3002   // Link Java Thread object <-> C++ Thread
3003 
3004   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3005   // and put it into a new Handle.  The Handle "thread_oop" can then
3006   // be used to pass the C++ thread object to other methods.
3007 
3008   // Set the Java level thread object (jthread) field of the
3009   // new thread (a JavaThread *) to C++ thread object using the
3010   // "thread_oop" handle.
3011 
3012   // Set the thread field (a JavaThread *) of the
3013   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3014 
3015   Handle thread_oop(Thread::current(),
3016                     JNIHandles::resolve_non_null(jni_thread));
3017   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3018     "must be initialized");
3019   set_threadObj(thread_oop());
3020   java_lang_Thread::set_thread(thread_oop(), this);
3021 
3022   if (prio == NoPriority) {
3023     prio = java_lang_Thread::priority(thread_oop());
3024     assert(prio != NoPriority, "A valid priority should be present");
3025   }
3026 
3027   // Push the Java priority down to the native thread; needs Threads_lock
3028   Thread::set_priority(this, prio);
3029 
3030   // Add the new thread to the Threads list and set it in motion.
3031   // We must have threads lock in order to call Threads::add.
3032   // It is crucial that we do not block before the thread is
3033   // added to the Threads list for if a GC happens, then the java_thread oop
3034   // will not be visited by GC.
3035   Threads::add(this);
3036 }
3037 
3038 oop JavaThread::current_park_blocker() {
3039   // Support for JSR-166 locks
3040   oop thread_oop = threadObj();
3041   if (thread_oop != NULL &&
3042       JDK_Version::current().supports_thread_park_blocker()) {
3043     return java_lang_Thread::park_blocker(thread_oop);
3044   }
3045   return NULL;
3046 }
3047 
3048 
3049 void JavaThread::print_stack_on(outputStream* st) {
3050   if (!has_last_Java_frame()) return;
3051   ResourceMark rm;
3052   HandleMark   hm;
3053 
3054   RegisterMap reg_map(this);
3055   vframe* start_vf = last_java_vframe(&reg_map);
3056   int count = 0;
3057   for (vframe* f = start_vf; f; f = f->sender() ) {
3058     if (f->is_java_frame()) {
3059       javaVFrame* jvf = javaVFrame::cast(f);
3060       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3061 
3062       // Print out lock information
3063       if (JavaMonitorsInStackTrace) {
3064         jvf->print_lock_info_on(st, count);
3065       }
3066     } else {
3067       // Ignore non-Java frames
3068     }
3069 
3070     // Bail-out case for too deep stacks
3071     count++;
3072     if (MaxJavaStackTraceDepth == count) return;
3073   }
3074 }
3075 
3076 
3077 // JVMTI PopFrame support
3078 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3079   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3080   if (in_bytes(size_in_bytes) != 0) {
3081     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3082     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3083     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3084   }
3085 }
3086 
3087 void* JavaThread::popframe_preserved_args() {
3088   return _popframe_preserved_args;
3089 }
3090 
3091 ByteSize JavaThread::popframe_preserved_args_size() {
3092   return in_ByteSize(_popframe_preserved_args_size);
3093 }
3094 
3095 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3096   int sz = in_bytes(popframe_preserved_args_size());
3097   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3098   return in_WordSize(sz / wordSize);
3099 }
3100 
3101 void JavaThread::popframe_free_preserved_args() {
3102   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3103   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3104   _popframe_preserved_args = NULL;
3105   _popframe_preserved_args_size = 0;
3106 }
3107 
3108 #ifndef PRODUCT
3109 
3110 void JavaThread::trace_frames() {
3111   tty->print_cr("[Describe stack]");
3112   int frame_no = 1;
3113   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3114     tty->print("  %d. ", frame_no++);
3115     fst.current()->print_value_on(tty,this);
3116     tty->cr();
3117   }
3118 }
3119 
3120 class PrintAndVerifyOopClosure: public OopClosure {
3121  protected:
3122   template <class T> inline void do_oop_work(T* p) {
3123     oop obj = oopDesc::load_decode_heap_oop(p);
3124     if (obj == NULL) return;
3125     tty->print(INTPTR_FORMAT ": ", p);
3126     if (obj->is_oop_or_null()) {
3127       if (obj->is_objArray()) {
3128         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3129       } else {
3130         obj->print();
3131       }
3132     } else {
3133       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3134     }
3135     tty->cr();
3136   }
3137  public:
3138   virtual void do_oop(oop* p) { do_oop_work(p); }
3139   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3140 };
3141 
3142 
3143 static void oops_print(frame* f, const RegisterMap *map) {
3144   PrintAndVerifyOopClosure print;
3145   f->print_value();
3146   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3147 }
3148 
3149 // Print our all the locations that contain oops and whether they are
3150 // valid or not.  This useful when trying to find the oldest frame
3151 // where an oop has gone bad since the frame walk is from youngest to
3152 // oldest.
3153 void JavaThread::trace_oops() {
3154   tty->print_cr("[Trace oops]");
3155   frames_do(oops_print);
3156 }
3157 
3158 
3159 #ifdef ASSERT
3160 // Print or validate the layout of stack frames
3161 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3162   ResourceMark rm;
3163   PRESERVE_EXCEPTION_MARK;
3164   FrameValues values;
3165   int frame_no = 0;
3166   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3167     fst.current()->describe(values, ++frame_no);
3168     if (depth == frame_no) break;
3169   }
3170   if (validate_only) {
3171     values.validate();
3172   } else {
3173     tty->print_cr("[Describe stack layout]");
3174     values.print(this);
3175   }
3176 }
3177 #endif
3178 
3179 void JavaThread::trace_stack_from(vframe* start_vf) {
3180   ResourceMark rm;
3181   int vframe_no = 1;
3182   for (vframe* f = start_vf; f; f = f->sender() ) {
3183     if (f->is_java_frame()) {
3184       javaVFrame::cast(f)->print_activation(vframe_no++);
3185     } else {
3186       f->print();
3187     }
3188     if (vframe_no > StackPrintLimit) {
3189       tty->print_cr("...<more frames>...");
3190       return;
3191     }
3192   }
3193 }
3194 
3195 
3196 void JavaThread::trace_stack() {
3197   if (!has_last_Java_frame()) return;
3198   ResourceMark rm;
3199   HandleMark   hm;
3200   RegisterMap reg_map(this);
3201   trace_stack_from(last_java_vframe(&reg_map));
3202 }
3203 
3204 
3205 #endif // PRODUCT
3206 
3207 
3208 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3209   assert(reg_map != NULL, "a map must be given");
3210   frame f = last_frame();
3211   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3212     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3213   }
3214   return NULL;
3215 }
3216 
3217 
3218 Klass* JavaThread::security_get_caller_class(int depth) {
3219   vframeStream vfst(this);
3220   vfst.security_get_caller_frame(depth);
3221   if (!vfst.at_end()) {
3222     return vfst.method()->method_holder();
3223   }
3224   return NULL;
3225 }
3226 
3227 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3228   assert(thread->is_Compiler_thread(), "must be compiler thread");
3229   CompileBroker::compiler_thread_loop();
3230 }
3231 
3232 // Create a CompilerThread
3233 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3234 : JavaThread(&compiler_thread_entry) {
3235   _env   = NULL;
3236   _log   = NULL;
3237   _task  = NULL;
3238   _queue = queue;
3239   _counters = counters;
3240   _buffer_blob = NULL;
3241   _scanned_nmethod = NULL;
3242 
3243 #ifndef PRODUCT
3244   _ideal_graph_printer = NULL;
3245 #endif
3246 }
3247 
3248 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3249   JavaThread::oops_do(f, cld_f, cf);
3250   if (_scanned_nmethod != NULL && cf != NULL) {
3251     // Safepoints can occur when the sweeper is scanning an nmethod so
3252     // process it here to make sure it isn't unloaded in the middle of
3253     // a scan.
3254     cf->do_code_blob(_scanned_nmethod);
3255   }
3256 }
3257 
3258 // ======= Threads ========
3259 
3260 // The Threads class links together all active threads, and provides
3261 // operations over all threads.  It is protected by its own Mutex
3262 // lock, which is also used in other contexts to protect thread
3263 // operations from having the thread being operated on from exiting
3264 // and going away unexpectedly (e.g., safepoint synchronization)
3265 
3266 JavaThread* Threads::_thread_list = NULL;
3267 int         Threads::_number_of_threads = 0;
3268 int         Threads::_number_of_non_daemon_threads = 0;
3269 int         Threads::_return_code = 0;
3270 size_t      JavaThread::_stack_size_at_create = 0;
3271 #ifdef ASSERT
3272 bool        Threads::_vm_complete = false;
3273 #endif
3274 
3275 // All JavaThreads
3276 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3277 
3278 void os_stream();
3279 
3280 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3281 void Threads::threads_do(ThreadClosure* tc) {
3282   assert_locked_or_safepoint(Threads_lock);
3283   // ALL_JAVA_THREADS iterates through all JavaThreads
3284   ALL_JAVA_THREADS(p) {
3285     tc->do_thread(p);
3286   }
3287   // Someday we could have a table or list of all non-JavaThreads.
3288   // For now, just manually iterate through them.
3289   tc->do_thread(VMThread::vm_thread());
3290   Universe::heap()->gc_threads_do(tc);
3291   WatcherThread *wt = WatcherThread::watcher_thread();
3292   // Strictly speaking, the following NULL check isn't sufficient to make sure
3293   // the data for WatcherThread is still valid upon being examined. However,
3294   // considering that WatchThread terminates when the VM is on the way to
3295   // exit at safepoint, the chance of the above is extremely small. The right
3296   // way to prevent termination of WatcherThread would be to acquire
3297   // Terminator_lock, but we can't do that without violating the lock rank
3298   // checking in some cases.
3299   if (wt != NULL)
3300     tc->do_thread(wt);
3301 
3302   // If CompilerThreads ever become non-JavaThreads, add them here
3303 }
3304 
3305 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3306 
3307   extern void JDK_Version_init();
3308 
3309   // Check version
3310   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3311 
3312   // Initialize the output stream module
3313   ostream_init();
3314 
3315   // Process java launcher properties.
3316   Arguments::process_sun_java_launcher_properties(args);
3317 
3318   // Initialize the os module before using TLS
3319   os::init();
3320 
3321   // Initialize system properties.
3322   Arguments::init_system_properties();
3323 
3324   // So that JDK version can be used as a discrimintor when parsing arguments
3325   JDK_Version_init();
3326 
3327   // Update/Initialize System properties after JDK version number is known
3328   Arguments::init_version_specific_system_properties();
3329 
3330   // Parse arguments
3331   jint parse_result = Arguments::parse(args);
3332   if (parse_result != JNI_OK) return parse_result;
3333 
3334   os::init_before_ergo();
3335 
3336   jint ergo_result = Arguments::apply_ergo();
3337   if (ergo_result != JNI_OK) return ergo_result;
3338 
3339   if (PauseAtStartup) {
3340     os::pause();
3341   }
3342 
3343 #ifndef USDT2
3344   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3345 #else /* USDT2 */
3346   HOTSPOT_VM_INIT_BEGIN();
3347 #endif /* USDT2 */
3348 
3349   // Record VM creation timing statistics
3350   TraceVmCreationTime create_vm_timer;
3351   create_vm_timer.start();
3352 
3353   // Timing (must come after argument parsing)
3354   TraceTime timer("Create VM", TraceStartupTime);
3355 
3356   // Initialize the os module after parsing the args
3357   jint os_init_2_result = os::init_2();
3358   if (os_init_2_result != JNI_OK) return os_init_2_result;
3359 
3360   jint adjust_after_os_result = Arguments::adjust_after_os();
3361   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3362 
3363   // intialize TLS
3364   ThreadLocalStorage::init();
3365 
3366   // Bootstrap native memory tracking, so it can start recording memory
3367   // activities before worker thread is started. This is the first phase
3368   // of bootstrapping, VM is currently running in single-thread mode.
3369   MemTracker::bootstrap_single_thread();
3370 
3371   // Initialize output stream logging
3372   ostream_init_log();
3373 
3374   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3375   // Must be before create_vm_init_agents()
3376   if (Arguments::init_libraries_at_startup()) {
3377     convert_vm_init_libraries_to_agents();
3378   }
3379 
3380   // Launch -agentlib/-agentpath and converted -Xrun agents
3381   if (Arguments::init_agents_at_startup()) {
3382     create_vm_init_agents();
3383   }
3384 
3385   // Initialize Threads state
3386   _thread_list = NULL;
3387   _number_of_threads = 0;
3388   _number_of_non_daemon_threads = 0;
3389 
3390   // Initialize global data structures and create system classes in heap
3391   vm_init_globals();
3392 
3393   // Attach the main thread to this os thread
3394   JavaThread* main_thread = new JavaThread();
3395   main_thread->set_thread_state(_thread_in_vm);
3396   // must do this before set_active_handles and initialize_thread_local_storage
3397   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3398   // change the stack size recorded here to one based on the java thread
3399   // stacksize. This adjusted size is what is used to figure the placement
3400   // of the guard pages.
3401   main_thread->record_stack_base_and_size();
3402   main_thread->initialize_thread_local_storage();
3403 
3404   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3405 
3406   if (!main_thread->set_as_starting_thread()) {
3407     vm_shutdown_during_initialization(
3408       "Failed necessary internal allocation. Out of swap space");
3409     delete main_thread;
3410     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3411     return JNI_ENOMEM;
3412   }
3413 
3414   // Enable guard page *after* os::create_main_thread(), otherwise it would
3415   // crash Linux VM, see notes in os_linux.cpp.
3416   main_thread->create_stack_guard_pages();
3417 
3418   // Initialize Java-Level synchronization subsystem
3419   ObjectMonitor::Initialize() ;
3420 
3421   // Second phase of bootstrapping, VM is about entering multi-thread mode
3422   MemTracker::bootstrap_multi_thread();
3423 
3424   // Initialize global modules
3425   jint status = init_globals();
3426   if (status != JNI_OK) {
3427     delete main_thread;
3428     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3429     return status;
3430   }
3431 
3432   // Should be done after the heap is fully created
3433   main_thread->cache_global_variables();
3434 
3435   HandleMark hm;
3436 
3437   { MutexLocker mu(Threads_lock);
3438     Threads::add(main_thread);
3439   }
3440 
3441   // Any JVMTI raw monitors entered in onload will transition into
3442   // real raw monitor. VM is setup enough here for raw monitor enter.
3443   JvmtiExport::transition_pending_onload_raw_monitors();
3444 
3445   // Fully start NMT
3446   MemTracker::start();
3447 
3448   // Create the VMThread
3449   { TraceTime timer("Start VMThread", TraceStartupTime);
3450     VMThread::create();
3451     Thread* vmthread = VMThread::vm_thread();
3452 
3453     if (!os::create_thread(vmthread, os::vm_thread))
3454       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3455 
3456     // Wait for the VM thread to become ready, and VMThread::run to initialize
3457     // Monitors can have spurious returns, must always check another state flag
3458     {
3459       MutexLocker ml(Notify_lock);
3460       os::start_thread(vmthread);
3461       while (vmthread->active_handles() == NULL) {
3462         Notify_lock->wait();
3463       }
3464     }
3465   }
3466 
3467   assert (Universe::is_fully_initialized(), "not initialized");
3468   if (VerifyDuringStartup) {
3469     // Make sure we're starting with a clean slate.
3470     VM_Verify verify_op;
3471     VMThread::execute(&verify_op);
3472   }
3473 
3474   EXCEPTION_MARK;
3475 
3476   // At this point, the Universe is initialized, but we have not executed
3477   // any byte code.  Now is a good time (the only time) to dump out the
3478   // internal state of the JVM for sharing.
3479   if (DumpSharedSpaces) {
3480     MetaspaceShared::preload_and_dump(CHECK_0);
3481     ShouldNotReachHere();
3482   }
3483 
3484   // Always call even when there are not JVMTI environments yet, since environments
3485   // may be attached late and JVMTI must track phases of VM execution
3486   JvmtiExport::enter_start_phase();
3487 
3488   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3489   JvmtiExport::post_vm_start();
3490 
3491   {
3492     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3493 
3494     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3495       create_vm_init_libraries();
3496     }
3497 
3498     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3499 
3500     // Initialize java_lang.System (needed before creating the thread)
3501     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3502     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3503     Handle thread_group = create_initial_thread_group(CHECK_0);
3504     Universe::set_main_thread_group(thread_group());
3505     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3506     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3507     main_thread->set_threadObj(thread_object);
3508     // Set thread status to running since main thread has
3509     // been started and running.
3510     java_lang_Thread::set_thread_status(thread_object,
3511                                         java_lang_Thread::RUNNABLE);
3512 
3513     // The VM creates & returns objects of this class. Make sure it's initialized.
3514     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3515 
3516     // The VM preresolves methods to these classes. Make sure that they get initialized
3517     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3518     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3519     call_initializeSystemClass(CHECK_0);
3520 
3521     // get the Java runtime name after java.lang.System is initialized
3522     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3523     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3524 
3525     // an instance of OutOfMemory exception has been allocated earlier
3526     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3527     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3528     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3529     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3530     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3531     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3532     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3533     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3534   }
3535 
3536   // See        : bugid 4211085.
3537   // Background : the static initializer of java.lang.Compiler tries to read
3538   //              property"java.compiler" and read & write property "java.vm.info".
3539   //              When a security manager is installed through the command line
3540   //              option "-Djava.security.manager", the above properties are not
3541   //              readable and the static initializer for java.lang.Compiler fails
3542   //              resulting in a NoClassDefFoundError.  This can happen in any
3543   //              user code which calls methods in java.lang.Compiler.
3544   // Hack :       the hack is to pre-load and initialize this class, so that only
3545   //              system domains are on the stack when the properties are read.
3546   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3547   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3548   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3549   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3550   //              Once that is done, we should remove this hack.
3551   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3552 
3553   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3554   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3555   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3556   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3557   // This should also be taken out as soon as 4211383 gets fixed.
3558   reset_vm_info_property(CHECK_0);
3559 
3560   quicken_jni_functions();
3561 
3562   // Must be run after init_ft which initializes ft_enabled
3563   if (TRACE_INITIALIZE() != JNI_OK) {
3564     vm_exit_during_initialization("Failed to initialize tracing backend");
3565   }
3566 
3567   // Set flag that basic initialization has completed. Used by exceptions and various
3568   // debug stuff, that does not work until all basic classes have been initialized.
3569   set_init_completed();
3570 
3571 #ifndef USDT2
3572   HS_DTRACE_PROBE(hotspot, vm__init__end);
3573 #else /* USDT2 */
3574   HOTSPOT_VM_INIT_END();
3575 #endif /* USDT2 */
3576 
3577   // record VM initialization completion time
3578 #if INCLUDE_MANAGEMENT
3579   Management::record_vm_init_completed();
3580 #endif // INCLUDE_MANAGEMENT
3581 
3582   // Compute system loader. Note that this has to occur after set_init_completed, since
3583   // valid exceptions may be thrown in the process.
3584   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3585   // set_init_completed has just been called, causing exceptions not to be shortcut
3586   // anymore. We call vm_exit_during_initialization directly instead.
3587   SystemDictionary::compute_java_system_loader(THREAD);
3588   if (HAS_PENDING_EXCEPTION) {
3589     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3590   }
3591 
3592 #if INCLUDE_ALL_GCS
3593   // Support for ConcurrentMarkSweep. This should be cleaned up
3594   // and better encapsulated. The ugly nested if test would go away
3595   // once things are properly refactored. XXX YSR
3596   if (UseConcMarkSweepGC || UseG1GC) {
3597     if (UseConcMarkSweepGC) {
3598       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3599     } else {
3600       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3601     }
3602     if (HAS_PENDING_EXCEPTION) {
3603       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3604     }
3605   }
3606 #endif // INCLUDE_ALL_GCS
3607 
3608   // Always call even when there are not JVMTI environments yet, since environments
3609   // may be attached late and JVMTI must track phases of VM execution
3610   JvmtiExport::enter_live_phase();
3611 
3612   // Signal Dispatcher needs to be started before VMInit event is posted
3613   os::signal_init();
3614 
3615   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3616   if (!DisableAttachMechanism) {
3617     AttachListener::vm_start();
3618     if (StartAttachListener || AttachListener::init_at_startup()) {
3619       AttachListener::init();
3620     }
3621   }
3622 
3623   // Launch -Xrun agents
3624   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3625   // back-end can launch with -Xdebug -Xrunjdwp.
3626   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3627     create_vm_init_libraries();
3628   }
3629 
3630   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3631   JvmtiExport::post_vm_initialized();
3632 
3633   if (TRACE_START() != JNI_OK) {
3634     vm_exit_during_initialization("Failed to start tracing backend.");
3635   }
3636 
3637   if (CleanChunkPoolAsync) {
3638     Chunk::start_chunk_pool_cleaner_task();
3639   }
3640 
3641   // initialize compiler(s)
3642 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3643   CompileBroker::compilation_init();
3644 #endif
3645 
3646   if (EnableInvokeDynamic) {
3647     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3648     // It is done after compilers are initialized, because otherwise compilations of
3649     // signature polymorphic MH intrinsics can be missed
3650     // (see SystemDictionary::find_method_handle_intrinsic).
3651     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3652     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3653     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3654   }
3655 
3656 #if INCLUDE_MANAGEMENT
3657   Management::initialize(THREAD);
3658 #endif // INCLUDE_MANAGEMENT
3659 
3660   if (HAS_PENDING_EXCEPTION) {
3661     // management agent fails to start possibly due to
3662     // configuration problem and is responsible for printing
3663     // stack trace if appropriate. Simply exit VM.
3664     vm_exit(1);
3665   }
3666 
3667   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3668   if (MemProfiling)                   MemProfiler::engage();
3669   StatSampler::engage();
3670   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3671 
3672   BiasedLocking::init();
3673 
3674   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3675     call_postVMInitHook(THREAD);
3676     // The Java side of PostVMInitHook.run must deal with all
3677     // exceptions and provide means of diagnosis.
3678     if (HAS_PENDING_EXCEPTION) {
3679       CLEAR_PENDING_EXCEPTION;
3680     }
3681   }
3682 
3683   {
3684       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3685       // Make sure the watcher thread can be started by WatcherThread::start()
3686       // or by dynamic enrollment.
3687       WatcherThread::make_startable();
3688       // Start up the WatcherThread if there are any periodic tasks
3689       // NOTE:  All PeriodicTasks should be registered by now. If they
3690       //   aren't, late joiners might appear to start slowly (we might
3691       //   take a while to process their first tick).
3692       if (PeriodicTask::num_tasks() > 0) {
3693           WatcherThread::start();
3694       }
3695   }
3696 
3697   // Give os specific code one last chance to start
3698   os::init_3();
3699 
3700   create_vm_timer.end();
3701 #ifdef ASSERT
3702   _vm_complete = true;
3703 #endif
3704   return JNI_OK;
3705 }
3706 
3707 // type for the Agent_OnLoad and JVM_OnLoad entry points
3708 extern "C" {
3709   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3710 }
3711 // Find a command line agent library and return its entry point for
3712 //         -agentlib:  -agentpath:   -Xrun
3713 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3714 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3715   OnLoadEntry_t on_load_entry = NULL;
3716   void *library = NULL;
3717 
3718   if (!agent->valid()) {
3719     char buffer[JVM_MAXPATHLEN];
3720     char ebuf[1024];
3721     const char *name = agent->name();
3722     const char *msg = "Could not find agent library ";
3723 
3724     // First check to see if agent is statically linked into executable
3725     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3726       library = agent->os_lib();
3727     } else if (agent->is_absolute_path()) {
3728       library = os::dll_load(name, ebuf, sizeof ebuf);
3729       if (library == NULL) {
3730         const char *sub_msg = " in absolute path, with error: ";
3731         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3732         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3733         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3734         // If we can't find the agent, exit.
3735         vm_exit_during_initialization(buf, NULL);
3736         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3737       }
3738     } else {
3739       // Try to load the agent from the standard dll directory
3740       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3741                              name)) {
3742         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3743       }
3744       if (library == NULL) { // Try the local directory
3745         char ns[1] = {0};
3746         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3747           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3748         }
3749         if (library == NULL) {
3750           const char *sub_msg = " on the library path, with error: ";
3751           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3752           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3753           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3754           // If we can't find the agent, exit.
3755           vm_exit_during_initialization(buf, NULL);
3756           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3757         }
3758       }
3759     }
3760     agent->set_os_lib(library);
3761     agent->set_valid();
3762   }
3763 
3764   // Find the OnLoad function.
3765   on_load_entry =
3766     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3767                                                           false,
3768                                                           on_load_symbols,
3769                                                           num_symbol_entries));
3770   return on_load_entry;
3771 }
3772 
3773 // Find the JVM_OnLoad entry point
3774 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3775   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3776   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3777 }
3778 
3779 // Find the Agent_OnLoad entry point
3780 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3781   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3782   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3783 }
3784 
3785 // For backwards compatibility with -Xrun
3786 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3787 // treated like -agentpath:
3788 // Must be called before agent libraries are created
3789 void Threads::convert_vm_init_libraries_to_agents() {
3790   AgentLibrary* agent;
3791   AgentLibrary* next;
3792 
3793   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3794     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3795     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3796 
3797     // If there is an JVM_OnLoad function it will get called later,
3798     // otherwise see if there is an Agent_OnLoad
3799     if (on_load_entry == NULL) {
3800       on_load_entry = lookup_agent_on_load(agent);
3801       if (on_load_entry != NULL) {
3802         // switch it to the agent list -- so that Agent_OnLoad will be called,
3803         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3804         Arguments::convert_library_to_agent(agent);
3805       } else {
3806         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3807       }
3808     }
3809   }
3810 }
3811 
3812 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3813 // Invokes Agent_OnLoad
3814 // Called very early -- before JavaThreads exist
3815 void Threads::create_vm_init_agents() {
3816   extern struct JavaVM_ main_vm;
3817   AgentLibrary* agent;
3818 
3819   JvmtiExport::enter_onload_phase();
3820 
3821   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3822     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3823 
3824     if (on_load_entry != NULL) {
3825       // Invoke the Agent_OnLoad function
3826       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3827       if (err != JNI_OK) {
3828         vm_exit_during_initialization("agent library failed to init", agent->name());
3829       }
3830     } else {
3831       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3832     }
3833   }
3834   JvmtiExport::enter_primordial_phase();
3835 }
3836 
3837 extern "C" {
3838   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3839 }
3840 
3841 void Threads::shutdown_vm_agents() {
3842   // Send any Agent_OnUnload notifications
3843   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3844   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3845   extern struct JavaVM_ main_vm;
3846   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3847 
3848     // Find the Agent_OnUnload function.
3849     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3850       os::find_agent_function(agent,
3851       false,
3852       on_unload_symbols,
3853       num_symbol_entries));
3854 
3855     // Invoke the Agent_OnUnload function
3856     if (unload_entry != NULL) {
3857       JavaThread* thread = JavaThread::current();
3858       ThreadToNativeFromVM ttn(thread);
3859       HandleMark hm(thread);
3860       (*unload_entry)(&main_vm);
3861     }
3862   }
3863 }
3864 
3865 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3866 // Invokes JVM_OnLoad
3867 void Threads::create_vm_init_libraries() {
3868   extern struct JavaVM_ main_vm;
3869   AgentLibrary* agent;
3870 
3871   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3872     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3873 
3874     if (on_load_entry != NULL) {
3875       // Invoke the JVM_OnLoad function
3876       JavaThread* thread = JavaThread::current();
3877       ThreadToNativeFromVM ttn(thread);
3878       HandleMark hm(thread);
3879       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3880       if (err != JNI_OK) {
3881         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3882       }
3883     } else {
3884       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3885     }
3886   }
3887 }
3888 
3889 // Last thread running calls java.lang.Shutdown.shutdown()
3890 void JavaThread::invoke_shutdown_hooks() {
3891   HandleMark hm(this);
3892 
3893   // We could get here with a pending exception, if so clear it now.
3894   if (this->has_pending_exception()) {
3895     this->clear_pending_exception();
3896   }
3897 
3898   EXCEPTION_MARK;
3899   Klass* k =
3900     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3901                                       THREAD);
3902   if (k != NULL) {
3903     // SystemDictionary::resolve_or_null will return null if there was
3904     // an exception.  If we cannot load the Shutdown class, just don't
3905     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3906     // and finalizers (if runFinalizersOnExit is set) won't be run.
3907     // Note that if a shutdown hook was registered or runFinalizersOnExit
3908     // was called, the Shutdown class would have already been loaded
3909     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3910     instanceKlassHandle shutdown_klass (THREAD, k);
3911     JavaValue result(T_VOID);
3912     JavaCalls::call_static(&result,
3913                            shutdown_klass,
3914                            vmSymbols::shutdown_method_name(),
3915                            vmSymbols::void_method_signature(),
3916                            THREAD);
3917   }
3918   CLEAR_PENDING_EXCEPTION;
3919 }
3920 
3921 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3922 // the program falls off the end of main(). Another VM exit path is through
3923 // vm_exit() when the program calls System.exit() to return a value or when
3924 // there is a serious error in VM. The two shutdown paths are not exactly
3925 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3926 // and VM_Exit op at VM level.
3927 //
3928 // Shutdown sequence:
3929 //   + Shutdown native memory tracking if it is on
3930 //   + Wait until we are the last non-daemon thread to execute
3931 //     <-- every thing is still working at this moment -->
3932 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3933 //        shutdown hooks, run finalizers if finalization-on-exit
3934 //   + Call before_exit(), prepare for VM exit
3935 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3936 //        currently the only user of this mechanism is File.deleteOnExit())
3937 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3938 //        post thread end and vm death events to JVMTI,
3939 //        stop signal thread
3940 //   + Call JavaThread::exit(), it will:
3941 //      > release JNI handle blocks, remove stack guard pages
3942 //      > remove this thread from Threads list
3943 //     <-- no more Java code from this thread after this point -->
3944 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3945 //     the compiler threads at safepoint
3946 //     <-- do not use anything that could get blocked by Safepoint -->
3947 //   + Disable tracing at JNI/JVM barriers
3948 //   + Set _vm_exited flag for threads that are still running native code
3949 //   + Delete this thread
3950 //   + Call exit_globals()
3951 //      > deletes tty
3952 //      > deletes PerfMemory resources
3953 //   + Return to caller
3954 
3955 bool Threads::destroy_vm() {
3956   JavaThread* thread = JavaThread::current();
3957 
3958 #ifdef ASSERT
3959   _vm_complete = false;
3960 #endif
3961   // Wait until we are the last non-daemon thread to execute
3962   { MutexLocker nu(Threads_lock);
3963     while (Threads::number_of_non_daemon_threads() > 1 )
3964       // This wait should make safepoint checks, wait without a timeout,
3965       // and wait as a suspend-equivalent condition.
3966       //
3967       // Note: If the FlatProfiler is running and this thread is waiting
3968       // for another non-daemon thread to finish, then the FlatProfiler
3969       // is waiting for the external suspend request on this thread to
3970       // complete. wait_for_ext_suspend_completion() will eventually
3971       // timeout, but that takes time. Making this wait a suspend-
3972       // equivalent condition solves that timeout problem.
3973       //
3974       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3975                          Mutex::_as_suspend_equivalent_flag);
3976   }
3977 
3978   // Hang forever on exit if we are reporting an error.
3979   if (ShowMessageBoxOnError && is_error_reported()) {
3980     os::infinite_sleep();
3981   }
3982   os::wait_for_keypress_at_exit();
3983 
3984   if (JDK_Version::is_jdk12x_version()) {
3985     // We are the last thread running, so check if finalizers should be run.
3986     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3987     HandleMark rm(thread);
3988     Universe::run_finalizers_on_exit();
3989   } else {
3990     // run Java level shutdown hooks
3991     thread->invoke_shutdown_hooks();
3992   }
3993 
3994   before_exit(thread);
3995 
3996   thread->exit(true);
3997 
3998   // Stop VM thread.
3999   {
4000     // 4945125 The vm thread comes to a safepoint during exit.
4001     // GC vm_operations can get caught at the safepoint, and the
4002     // heap is unparseable if they are caught. Grab the Heap_lock
4003     // to prevent this. The GC vm_operations will not be able to
4004     // queue until after the vm thread is dead.
4005     // After this point, we'll never emerge out of the safepoint before
4006     // the VM exits, so concurrent GC threads do not need to be explicitly
4007     // stopped; they remain inactive until the process exits.
4008     // Note: some concurrent G1 threads may be running during a safepoint,
4009     // but these will not be accessing the heap, just some G1-specific side
4010     // data structures that are not accessed by any other threads but them
4011     // after this point in a terminal safepoint.
4012 
4013     MutexLocker ml(Heap_lock);
4014 
4015     VMThread::wait_for_vm_thread_exit();
4016     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4017     VMThread::destroy();
4018   }
4019 
4020   // clean up ideal graph printers
4021 #if defined(COMPILER2) && !defined(PRODUCT)
4022   IdealGraphPrinter::clean_up();
4023 #endif
4024 
4025   // Now, all Java threads are gone except daemon threads. Daemon threads
4026   // running Java code or in VM are stopped by the Safepoint. However,
4027   // daemon threads executing native code are still running.  But they
4028   // will be stopped at native=>Java/VM barriers. Note that we can't
4029   // simply kill or suspend them, as it is inherently deadlock-prone.
4030 
4031 #ifndef PRODUCT
4032   // disable function tracing at JNI/JVM barriers
4033   TraceJNICalls = false;
4034   TraceJVMCalls = false;
4035   TraceRuntimeCalls = false;
4036 #endif
4037 
4038   VM_Exit::set_vm_exited();
4039 
4040   notify_vm_shutdown();
4041 
4042   delete thread;
4043 
4044   // exit_globals() will delete tty
4045   exit_globals();
4046 
4047   return true;
4048 }
4049 
4050 
4051 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4052   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4053   return is_supported_jni_version(version);
4054 }
4055 
4056 
4057 jboolean Threads::is_supported_jni_version(jint version) {
4058   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4059   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4060   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4061   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4062   return JNI_FALSE;
4063 }
4064 
4065 
4066 void Threads::add(JavaThread* p, bool force_daemon) {
4067   // The threads lock must be owned at this point
4068   assert_locked_or_safepoint(Threads_lock);
4069 
4070   // See the comment for this method in thread.hpp for its purpose and
4071   // why it is called here.
4072   p->initialize_queues();
4073   p->set_next(_thread_list);
4074   _thread_list = p;
4075   _number_of_threads++;
4076   oop threadObj = p->threadObj();
4077   bool daemon = true;
4078   // Bootstrapping problem: threadObj can be null for initial
4079   // JavaThread (or for threads attached via JNI)
4080   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4081     _number_of_non_daemon_threads++;
4082     daemon = false;
4083   }
4084 
4085   p->set_safepoint_visible(true);
4086 
4087   ThreadService::add_thread(p, daemon);
4088 
4089   // Possible GC point.
4090   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4091 }
4092 
4093 void Threads::remove(JavaThread* p) {
4094   // Extra scope needed for Thread_lock, so we can check
4095   // that we do not remove thread without safepoint code notice
4096   { MutexLocker ml(Threads_lock);
4097 
4098     assert(includes(p), "p must be present");
4099 
4100     JavaThread* current = _thread_list;
4101     JavaThread* prev    = NULL;
4102 
4103     while (current != p) {
4104       prev    = current;
4105       current = current->next();
4106     }
4107 
4108     if (prev) {
4109       prev->set_next(current->next());
4110     } else {
4111       _thread_list = p->next();
4112     }
4113     _number_of_threads--;
4114     oop threadObj = p->threadObj();
4115     bool daemon = true;
4116     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4117       _number_of_non_daemon_threads--;
4118       daemon = false;
4119 
4120       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4121       // on destroy_vm will wake up.
4122       if (number_of_non_daemon_threads() == 1)
4123         Threads_lock->notify_all();
4124     }
4125     ThreadService::remove_thread(p, daemon);
4126 
4127     // Make sure that safepoint code disregard this thread. This is needed since
4128     // the thread might mess around with locks after this point. This can cause it
4129     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4130     // of this thread since it is removed from the queue.
4131     p->set_terminated_value();
4132 
4133     // Now, this thread is not visible to safepoint
4134     p->set_safepoint_visible(false);
4135     // once the thread becomes safepoint invisible, we can not use its per-thread
4136     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4137     // to release its per-thread recorder here.
4138     MemTracker::thread_exiting(p);
4139   } // unlock Threads_lock
4140 
4141   // Since Events::log uses a lock, we grab it outside the Threads_lock
4142   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4143 }
4144 
4145 // Threads_lock must be held when this is called (or must be called during a safepoint)
4146 bool Threads::includes(JavaThread* p) {
4147   assert(Threads_lock->is_locked(), "sanity check");
4148   ALL_JAVA_THREADS(q) {
4149     if (q == p ) {
4150       return true;
4151     }
4152   }
4153   return false;
4154 }
4155 
4156 // Operations on the Threads list for GC.  These are not explicitly locked,
4157 // but the garbage collector must provide a safe context for them to run.
4158 // In particular, these things should never be called when the Threads_lock
4159 // is held by some other thread. (Note: the Safepoint abstraction also
4160 // uses the Threads_lock to gurantee this property. It also makes sure that
4161 // all threads gets blocked when exiting or starting).
4162 
4163 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4164   ALL_JAVA_THREADS(p) {
4165     p->oops_do(f, cld_f, cf);
4166   }
4167   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4168 }
4169 
4170 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4171   // Introduce a mechanism allowing parallel threads to claim threads as
4172   // root groups.  Overhead should be small enough to use all the time,
4173   // even in sequential code.
4174   SharedHeap* sh = SharedHeap::heap();
4175   // Cannot yet substitute active_workers for n_par_threads
4176   // because of G1CollectedHeap::verify() use of
4177   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4178   // turn off parallelism in process_strong_roots while active_workers
4179   // is being used for parallelism elsewhere.
4180   bool is_par = sh->n_par_threads() > 0;
4181   assert(!is_par ||
4182          (SharedHeap::heap()->n_par_threads() ==
4183           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4184   int cp = SharedHeap::heap()->strong_roots_parity();
4185   ALL_JAVA_THREADS(p) {
4186     if (p->claim_oops_do(is_par, cp)) {
4187       p->oops_do(f, cld_f, cf);
4188     }
4189   }
4190   VMThread* vmt = VMThread::vm_thread();
4191   if (vmt->claim_oops_do(is_par, cp)) {
4192     vmt->oops_do(f, cld_f, cf);
4193   }
4194 }
4195 
4196 #if INCLUDE_ALL_GCS
4197 // Used by ParallelScavenge
4198 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4199   ALL_JAVA_THREADS(p) {
4200     q->enqueue(new ThreadRootsTask(p));
4201   }
4202   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4203 }
4204 
4205 // Used by Parallel Old
4206 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4207   ALL_JAVA_THREADS(p) {
4208     q->enqueue(new ThreadRootsMarkingTask(p));
4209   }
4210   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4211 }
4212 #endif // INCLUDE_ALL_GCS
4213 
4214 void Threads::nmethods_do(CodeBlobClosure* cf) {
4215   ALL_JAVA_THREADS(p) {
4216     p->nmethods_do(cf);
4217   }
4218   VMThread::vm_thread()->nmethods_do(cf);
4219 }
4220 
4221 void Threads::metadata_do(void f(Metadata*)) {
4222   ALL_JAVA_THREADS(p) {
4223     p->metadata_do(f);
4224   }
4225 }
4226 
4227 void Threads::gc_epilogue() {
4228   ALL_JAVA_THREADS(p) {
4229     p->gc_epilogue();
4230   }
4231 }
4232 
4233 void Threads::gc_prologue() {
4234   ALL_JAVA_THREADS(p) {
4235     p->gc_prologue();
4236   }
4237 }
4238 
4239 void Threads::deoptimized_wrt_marked_nmethods() {
4240   ALL_JAVA_THREADS(p) {
4241     p->deoptimized_wrt_marked_nmethods();
4242   }
4243 }
4244 
4245 
4246 // Get count Java threads that are waiting to enter the specified monitor.
4247 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4248   address monitor, bool doLock) {
4249   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4250     "must grab Threads_lock or be at safepoint");
4251   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4252 
4253   int i = 0;
4254   {
4255     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4256     ALL_JAVA_THREADS(p) {
4257       if (p->is_Compiler_thread()) continue;
4258 
4259       address pending = (address)p->current_pending_monitor();
4260       if (pending == monitor) {             // found a match
4261         if (i < count) result->append(p);   // save the first count matches
4262         i++;
4263       }
4264     }
4265   }
4266   return result;
4267 }
4268 
4269 
4270 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4271   assert(doLock ||
4272          Threads_lock->owned_by_self() ||
4273          SafepointSynchronize::is_at_safepoint(),
4274          "must grab Threads_lock or be at safepoint");
4275 
4276   // NULL owner means not locked so we can skip the search
4277   if (owner == NULL) return NULL;
4278 
4279   {
4280     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4281     ALL_JAVA_THREADS(p) {
4282       // first, see if owner is the address of a Java thread
4283       if (owner == (address)p) return p;
4284     }
4285   }
4286   // Cannot assert on lack of success here since this function may be
4287   // used by code that is trying to report useful problem information
4288   // like deadlock detection.
4289   if (UseHeavyMonitors) return NULL;
4290 
4291   //
4292   // If we didn't find a matching Java thread and we didn't force use of
4293   // heavyweight monitors, then the owner is the stack address of the
4294   // Lock Word in the owning Java thread's stack.
4295   //
4296   JavaThread* the_owner = NULL;
4297   {
4298     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4299     ALL_JAVA_THREADS(q) {
4300       if (q->is_lock_owned(owner)) {
4301         the_owner = q;
4302         break;
4303       }
4304     }
4305   }
4306   // cannot assert on lack of success here; see above comment
4307   return the_owner;
4308 }
4309 
4310 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4311 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4312   char buf[32];
4313   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4314 
4315   st->print_cr("Full thread dump %s (%s %s):",
4316                 Abstract_VM_Version::vm_name(),
4317                 Abstract_VM_Version::vm_release(),
4318                 Abstract_VM_Version::vm_info_string()
4319                );
4320   st->cr();
4321 
4322 #if INCLUDE_ALL_GCS
4323   // Dump concurrent locks
4324   ConcurrentLocksDump concurrent_locks;
4325   if (print_concurrent_locks) {
4326     concurrent_locks.dump_at_safepoint();
4327   }
4328 #endif // INCLUDE_ALL_GCS
4329 
4330   ALL_JAVA_THREADS(p) {
4331     ResourceMark rm;
4332     p->print_on(st);
4333     if (print_stacks) {
4334       if (internal_format) {
4335         p->trace_stack();
4336       } else {
4337         p->print_stack_on(st);
4338       }
4339     }
4340     st->cr();
4341 #if INCLUDE_ALL_GCS
4342     if (print_concurrent_locks) {
4343       concurrent_locks.print_locks_on(p, st);
4344     }
4345 #endif // INCLUDE_ALL_GCS
4346   }
4347 
4348   VMThread::vm_thread()->print_on(st);
4349   st->cr();
4350   Universe::heap()->print_gc_threads_on(st);
4351   WatcherThread* wt = WatcherThread::watcher_thread();
4352   if (wt != NULL) {
4353     wt->print_on(st);
4354     st->cr();
4355   }
4356   CompileBroker::print_compiler_threads_on(st);
4357   st->flush();
4358 }
4359 
4360 // Threads::print_on_error() is called by fatal error handler. It's possible
4361 // that VM is not at safepoint and/or current thread is inside signal handler.
4362 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4363 // memory (even in resource area), it might deadlock the error handler.
4364 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4365   bool found_current = false;
4366   st->print_cr("Java Threads: ( => current thread )");
4367   ALL_JAVA_THREADS(thread) {
4368     bool is_current = (current == thread);
4369     found_current = found_current || is_current;
4370 
4371     st->print("%s", is_current ? "=>" : "  ");
4372 
4373     st->print(PTR_FORMAT, thread);
4374     st->print(" ");
4375     thread->print_on_error(st, buf, buflen);
4376     st->cr();
4377   }
4378   st->cr();
4379 
4380   st->print_cr("Other Threads:");
4381   if (VMThread::vm_thread()) {
4382     bool is_current = (current == VMThread::vm_thread());
4383     found_current = found_current || is_current;
4384     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4385 
4386     st->print(PTR_FORMAT, VMThread::vm_thread());
4387     st->print(" ");
4388     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4389     st->cr();
4390   }
4391   WatcherThread* wt = WatcherThread::watcher_thread();
4392   if (wt != NULL) {
4393     bool is_current = (current == wt);
4394     found_current = found_current || is_current;
4395     st->print("%s", is_current ? "=>" : "  ");
4396 
4397     st->print(PTR_FORMAT, wt);
4398     st->print(" ");
4399     wt->print_on_error(st, buf, buflen);
4400     st->cr();
4401   }
4402   if (!found_current) {
4403     st->cr();
4404     st->print("=>" PTR_FORMAT " (exited) ", current);
4405     current->print_on_error(st, buf, buflen);
4406     st->cr();
4407   }
4408 }
4409 
4410 // Internal SpinLock and Mutex
4411 // Based on ParkEvent
4412 
4413 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4414 //
4415 // We employ SpinLocks _only for low-contention, fixed-length
4416 // short-duration critical sections where we're concerned
4417 // about native mutex_t or HotSpot Mutex:: latency.
4418 // The mux construct provides a spin-then-block mutual exclusion
4419 // mechanism.
4420 //
4421 // Testing has shown that contention on the ListLock guarding gFreeList
4422 // is common.  If we implement ListLock as a simple SpinLock it's common
4423 // for the JVM to devolve to yielding with little progress.  This is true
4424 // despite the fact that the critical sections protected by ListLock are
4425 // extremely short.
4426 //
4427 // TODO-FIXME: ListLock should be of type SpinLock.
4428 // We should make this a 1st-class type, integrated into the lock
4429 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4430 // should have sufficient padding to avoid false-sharing and excessive
4431 // cache-coherency traffic.
4432 
4433 
4434 typedef volatile int SpinLockT ;
4435 
4436 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4437   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4438      return ;   // normal fast-path return
4439   }
4440 
4441   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4442   TEVENT (SpinAcquire - ctx) ;
4443   int ctr = 0 ;
4444   int Yields = 0 ;
4445   for (;;) {
4446      while (*adr != 0) {
4447         ++ctr ;
4448         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4449            if (Yields > 5) {
4450              // Consider using a simple NakedSleep() instead.
4451              // Then SpinAcquire could be called by non-JVM threads
4452              Thread::current()->_ParkEvent->park(1) ;
4453            } else {
4454              os::NakedYield() ;
4455              ++Yields ;
4456            }
4457         } else {
4458            SpinPause() ;
4459         }
4460      }
4461      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4462   }
4463 }
4464 
4465 void Thread::SpinRelease (volatile int * adr) {
4466   assert (*adr != 0, "invariant") ;
4467   OrderAccess::fence() ;      // guarantee at least release consistency.
4468   // Roach-motel semantics.
4469   // It's safe if subsequent LDs and STs float "up" into the critical section,
4470   // but prior LDs and STs within the critical section can't be allowed
4471   // to reorder or float past the ST that releases the lock.
4472   *adr = 0 ;
4473 }
4474 
4475 // muxAcquire and muxRelease:
4476 //
4477 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4478 //    The LSB of the word is set IFF the lock is held.
4479 //    The remainder of the word points to the head of a singly-linked list
4480 //    of threads blocked on the lock.
4481 //
4482 // *  The current implementation of muxAcquire-muxRelease uses its own
4483 //    dedicated Thread._MuxEvent instance.  If we're interested in
4484 //    minimizing the peak number of extant ParkEvent instances then
4485 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4486 //    as certain invariants were satisfied.  Specifically, care would need
4487 //    to be taken with regards to consuming unpark() "permits".
4488 //    A safe rule of thumb is that a thread would never call muxAcquire()
4489 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4490 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4491 //    consume an unpark() permit intended for monitorenter, for instance.
4492 //    One way around this would be to widen the restricted-range semaphore
4493 //    implemented in park().  Another alternative would be to provide
4494 //    multiple instances of the PlatformEvent() for each thread.  One
4495 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4496 //
4497 // *  Usage:
4498 //    -- Only as leaf locks
4499 //    -- for short-term locking only as muxAcquire does not perform
4500 //       thread state transitions.
4501 //
4502 // Alternatives:
4503 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4504 //    but with parking or spin-then-park instead of pure spinning.
4505 // *  Use Taura-Oyama-Yonenzawa locks.
4506 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4507 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4508 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4509 //    acquiring threads use timers (ParkTimed) to detect and recover from
4510 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4511 //    boundaries by using placement-new.
4512 // *  Augment MCS with advisory back-link fields maintained with CAS().
4513 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4514 //    The validity of the backlinks must be ratified before we trust the value.
4515 //    If the backlinks are invalid the exiting thread must back-track through the
4516 //    the forward links, which are always trustworthy.
4517 // *  Add a successor indication.  The LockWord is currently encoded as
4518 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4519 //    to provide the usual futile-wakeup optimization.
4520 //    See RTStt for details.
4521 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4522 //
4523 
4524 
4525 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4526 enum MuxBits { LOCKBIT = 1 } ;
4527 
4528 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4529   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4530   if (w == 0) return ;
4531   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4532      return ;
4533   }
4534 
4535   TEVENT (muxAcquire - Contention) ;
4536   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4537   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4538   for (;;) {
4539      int its = (os::is_MP() ? 100 : 0) + 1 ;
4540 
4541      // Optional spin phase: spin-then-park strategy
4542      while (--its >= 0) {
4543        w = *Lock ;
4544        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4545           return ;
4546        }
4547      }
4548 
4549      Self->reset() ;
4550      Self->OnList = intptr_t(Lock) ;
4551      // The following fence() isn't _strictly necessary as the subsequent
4552      // CAS() both serializes execution and ratifies the fetched *Lock value.
4553      OrderAccess::fence();
4554      for (;;) {
4555         w = *Lock ;
4556         if ((w & LOCKBIT) == 0) {
4557             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4558                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4559                 return ;
4560             }
4561             continue ;      // Interference -- *Lock changed -- Just retry
4562         }
4563         assert (w & LOCKBIT, "invariant") ;
4564         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4565         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4566      }
4567 
4568      while (Self->OnList != 0) {
4569         Self->park() ;
4570      }
4571   }
4572 }
4573 
4574 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4575   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4576   if (w == 0) return ;
4577   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4578     return ;
4579   }
4580 
4581   TEVENT (muxAcquire - Contention) ;
4582   ParkEvent * ReleaseAfter = NULL ;
4583   if (ev == NULL) {
4584     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4585   }
4586   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4587   for (;;) {
4588     guarantee (ev->OnList == 0, "invariant") ;
4589     int its = (os::is_MP() ? 100 : 0) + 1 ;
4590 
4591     // Optional spin phase: spin-then-park strategy
4592     while (--its >= 0) {
4593       w = *Lock ;
4594       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4595         if (ReleaseAfter != NULL) {
4596           ParkEvent::Release (ReleaseAfter) ;
4597         }
4598         return ;
4599       }
4600     }
4601 
4602     ev->reset() ;
4603     ev->OnList = intptr_t(Lock) ;
4604     // The following fence() isn't _strictly necessary as the subsequent
4605     // CAS() both serializes execution and ratifies the fetched *Lock value.
4606     OrderAccess::fence();
4607     for (;;) {
4608       w = *Lock ;
4609       if ((w & LOCKBIT) == 0) {
4610         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4611           ev->OnList = 0 ;
4612           // We call ::Release while holding the outer lock, thus
4613           // artificially lengthening the critical section.
4614           // Consider deferring the ::Release() until the subsequent unlock(),
4615           // after we've dropped the outer lock.
4616           if (ReleaseAfter != NULL) {
4617             ParkEvent::Release (ReleaseAfter) ;
4618           }
4619           return ;
4620         }
4621         continue ;      // Interference -- *Lock changed -- Just retry
4622       }
4623       assert (w & LOCKBIT, "invariant") ;
4624       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4625       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4626     }
4627 
4628     while (ev->OnList != 0) {
4629       ev->park() ;
4630     }
4631   }
4632 }
4633 
4634 // Release() must extract a successor from the list and then wake that thread.
4635 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4636 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4637 // Release() would :
4638 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4639 // (B) Extract a successor from the private list "in-hand"
4640 // (C) attempt to CAS() the residual back into *Lock over null.
4641 //     If there were any newly arrived threads and the CAS() would fail.
4642 //     In that case Release() would detach the RATs, re-merge the list in-hand
4643 //     with the RATs and repeat as needed.  Alternately, Release() might
4644 //     detach and extract a successor, but then pass the residual list to the wakee.
4645 //     The wakee would be responsible for reattaching and remerging before it
4646 //     competed for the lock.
4647 //
4648 // Both "pop" and DMR are immune from ABA corruption -- there can be
4649 // multiple concurrent pushers, but only one popper or detacher.
4650 // This implementation pops from the head of the list.  This is unfair,
4651 // but tends to provide excellent throughput as hot threads remain hot.
4652 // (We wake recently run threads first).
4653 
4654 void Thread::muxRelease (volatile intptr_t * Lock)  {
4655   for (;;) {
4656     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4657     assert (w & LOCKBIT, "invariant") ;
4658     if (w == LOCKBIT) return ;
4659     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4660     assert (List != NULL, "invariant") ;
4661     assert (List->OnList == intptr_t(Lock), "invariant") ;
4662     ParkEvent * nxt = List->ListNext ;
4663 
4664     // The following CAS() releases the lock and pops the head element.
4665     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4666       continue ;
4667     }
4668     List->OnList = 0 ;
4669     OrderAccess::fence() ;
4670     List->unpark () ;
4671     return ;
4672   }
4673 }
4674 
4675 
4676 void Threads::verify() {
4677   ALL_JAVA_THREADS(p) {
4678     p->verify();
4679   }
4680   VMThread* thread = VMThread::vm_thread();
4681   if (thread != NULL) thread->verify();
4682 }