1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/countbitsnode.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/idealKit.hpp"
  39 #include "opto/mathexactnode.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "trace/traceMacros.hpp"
  49 
  50 class LibraryIntrinsic : public InlineCallGenerator {
  51   // Extend the set of intrinsics known to the runtime:
  52  public:
  53  private:
  54   bool             _is_virtual;
  55   bool             _is_predicted;
  56   bool             _does_virtual_dispatch;
  57   vmIntrinsics::ID _intrinsic_id;
  58 
  59  public:
  60   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  61     : InlineCallGenerator(m),
  62       _is_virtual(is_virtual),
  63       _is_predicted(is_predicted),
  64       _does_virtual_dispatch(does_virtual_dispatch),
  65       _intrinsic_id(id)
  66   {
  67   }
  68   virtual bool is_intrinsic() const { return true; }
  69   virtual bool is_virtual()   const { return _is_virtual; }
  70   virtual bool is_predicted()   const { return _is_predicted; }
  71   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  72   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  73   virtual Node* generate_predicate(JVMState* jvms);
  74   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  75 };
  76 
  77 
  78 // Local helper class for LibraryIntrinsic:
  79 class LibraryCallKit : public GraphKit {
  80  private:
  81   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  82   Node*             _result;        // the result node, if any
  83   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  84 
  85   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  86 
  87  public:
  88   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  89     : GraphKit(jvms),
  90       _intrinsic(intrinsic),
  91       _result(NULL)
  92   {
  93     // Check if this is a root compile.  In that case we don't have a caller.
  94     if (!jvms->has_method()) {
  95       _reexecute_sp = sp();
  96     } else {
  97       // Find out how many arguments the interpreter needs when deoptimizing
  98       // and save the stack pointer value so it can used by uncommon_trap.
  99       // We find the argument count by looking at the declared signature.
 100       bool ignored_will_link;
 101       ciSignature* declared_signature = NULL;
 102       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 103       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 104       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 105     }
 106   }
 107 
 108   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 109 
 110   ciMethod*         caller()    const    { return jvms()->method(); }
 111   int               bci()       const    { return jvms()->bci(); }
 112   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 113   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 114   ciMethod*         callee()    const    { return _intrinsic->method(); }
 115 
 116   bool try_to_inline();
 117   Node* try_to_predicate();
 118 
 119   void push_result() {
 120     // Push the result onto the stack.
 121     if (!stopped() && result() != NULL) {
 122       BasicType bt = result()->bottom_type()->basic_type();
 123       push_node(bt, result());
 124     }
 125   }
 126 
 127  private:
 128   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 129     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 130   }
 131 
 132   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 133   void  set_result(RegionNode* region, PhiNode* value);
 134   Node*     result() { return _result; }
 135 
 136   virtual int reexecute_sp() { return _reexecute_sp; }
 137 
 138   // Helper functions to inline natives
 139   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 140   Node* generate_slow_guard(Node* test, RegionNode* region);
 141   Node* generate_fair_guard(Node* test, RegionNode* region);
 142   Node* generate_negative_guard(Node* index, RegionNode* region,
 143                                 // resulting CastII of index:
 144                                 Node* *pos_index = NULL);
 145   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 146                                    // resulting CastII of index:
 147                                    Node* *pos_index = NULL);
 148   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 149                              Node* array_length,
 150                              RegionNode* region);
 151   Node* generate_current_thread(Node* &tls_output);
 152   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 153                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 154   Node* load_mirror_from_klass(Node* klass);
 155   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 156                                       RegionNode* region, int null_path,
 157                                       int offset);
 158   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 159                                RegionNode* region, int null_path) {
 160     int offset = java_lang_Class::klass_offset_in_bytes();
 161     return load_klass_from_mirror_common(mirror, never_see_null,
 162                                          region, null_path,
 163                                          offset);
 164   }
 165   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                      RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::array_klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* generate_access_flags_guard(Node* kls,
 173                                     int modifier_mask, int modifier_bits,
 174                                     RegionNode* region);
 175   Node* generate_interface_guard(Node* kls, RegionNode* region);
 176   Node* generate_array_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, false, false);
 178   }
 179   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, false, true);
 181   }
 182   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, true, false);
 184   }
 185   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, true, true);
 187   }
 188   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 189                                     bool obj_array, bool not_array);
 190   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 191   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 192                                      bool is_virtual = false, bool is_static = false);
 193   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 194     return generate_method_call(method_id, false, true);
 195   }
 196   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 197     return generate_method_call(method_id, true, false);
 198   }
 199   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 200 
 201   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 202   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 203   bool inline_string_compareTo();
 204   bool inline_string_indexOf();
 205   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 206   bool inline_string_equals();
 207   Node* round_double_node(Node* n);
 208   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 209   bool inline_math_native(vmIntrinsics::ID id);
 210   bool inline_trig(vmIntrinsics::ID id);
 211   bool inline_math(vmIntrinsics::ID id);
 212   template <typename OverflowOp>
 213   bool inline_math_overflow(Node* arg1, Node* arg2);
 214   void inline_math_mathExact(Node* math, Node* test);
 215   bool inline_math_addExactI(bool is_increment);
 216   bool inline_math_addExactL(bool is_increment);
 217   bool inline_math_multiplyExactI();
 218   bool inline_math_multiplyExactL();
 219   bool inline_math_negateExactI();
 220   bool inline_math_negateExactL();
 221   bool inline_math_subtractExactI(bool is_decrement);
 222   bool inline_math_subtractExactL(bool is_decrement);
 223   bool inline_exp();
 224   bool inline_pow();
 225   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_min_max(vmIntrinsics::ID id);
 227   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 228   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 229   int classify_unsafe_addr(Node* &base, Node* &offset);
 230   Node* make_unsafe_address(Node* base, Node* offset);
 231   // Helper for inline_unsafe_access.
 232   // Generates the guards that check whether the result of
 233   // Unsafe.getObject should be recorded in an SATB log buffer.
 234   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 235   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 236   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   void generate_arraycopy(const TypePtr* adr_type,
 264                           BasicType basic_elem_type,
 265                           Node* src,  Node* src_offset,
 266                           Node* dest, Node* dest_offset,
 267                           Node* copy_length,
 268                           bool disjoint_bases = false,
 269                           bool length_never_negative = false,
 270                           RegionNode* slow_region = NULL);
 271   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 272                                                 RegionNode* slow_region);
 273   void generate_clear_array(const TypePtr* adr_type,
 274                             Node* dest,
 275                             BasicType basic_elem_type,
 276                             Node* slice_off,
 277                             Node* slice_len,
 278                             Node* slice_end);
 279   bool generate_block_arraycopy(const TypePtr* adr_type,
 280                                 BasicType basic_elem_type,
 281                                 AllocateNode* alloc,
 282                                 Node* src,  Node* src_offset,
 283                                 Node* dest, Node* dest_offset,
 284                                 Node* dest_size, bool dest_uninitialized);
 285   void generate_slow_arraycopy(const TypePtr* adr_type,
 286                                Node* src,  Node* src_offset,
 287                                Node* dest, Node* dest_offset,
 288                                Node* copy_length, bool dest_uninitialized);
 289   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 290                                      Node* dest_elem_klass,
 291                                      Node* src,  Node* src_offset,
 292                                      Node* dest, Node* dest_offset,
 293                                      Node* copy_length, bool dest_uninitialized);
 294   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 295                                    Node* src,  Node* src_offset,
 296                                    Node* dest, Node* dest_offset,
 297                                    Node* copy_length, bool dest_uninitialized);
 298   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 299                                     BasicType basic_elem_type,
 300                                     bool disjoint_bases,
 301                                     Node* src,  Node* src_offset,
 302                                     Node* dest, Node* dest_offset,
 303                                     Node* copy_length, bool dest_uninitialized);
 304   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 305   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 306   bool inline_unsafe_ordered_store(BasicType type);
 307   bool inline_unsafe_fence(vmIntrinsics::ID id);
 308   bool inline_fp_conversions(vmIntrinsics::ID id);
 309   bool inline_number_methods(vmIntrinsics::ID id);
 310   bool inline_reference_get();
 311   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 312   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 313   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 314   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 315   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 316   bool inline_encodeISOArray();
 317   bool inline_updateCRC32();
 318   bool inline_updateBytesCRC32();
 319   bool inline_updateByteBufferCRC32();
 320 };
 321 
 322 
 323 //---------------------------make_vm_intrinsic----------------------------
 324 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 325   vmIntrinsics::ID id = m->intrinsic_id();
 326   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 327 
 328   if (DisableIntrinsic[0] != '\0'
 329       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 330     // disabled by a user request on the command line:
 331     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 332     return NULL;
 333   }
 334 
 335   if (!m->is_loaded()) {
 336     // do not attempt to inline unloaded methods
 337     return NULL;
 338   }
 339 
 340   // Only a few intrinsics implement a virtual dispatch.
 341   // They are expensive calls which are also frequently overridden.
 342   if (is_virtual) {
 343     switch (id) {
 344     case vmIntrinsics::_hashCode:
 345     case vmIntrinsics::_clone:
 346       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 347       break;
 348     default:
 349       return NULL;
 350     }
 351   }
 352 
 353   // -XX:-InlineNatives disables nearly all intrinsics:
 354   if (!InlineNatives) {
 355     switch (id) {
 356     case vmIntrinsics::_indexOf:
 357     case vmIntrinsics::_compareTo:
 358     case vmIntrinsics::_equals:
 359     case vmIntrinsics::_equalsC:
 360     case vmIntrinsics::_getAndAddInt:
 361     case vmIntrinsics::_getAndAddLong:
 362     case vmIntrinsics::_getAndSetInt:
 363     case vmIntrinsics::_getAndSetLong:
 364     case vmIntrinsics::_getAndSetObject:
 365     case vmIntrinsics::_loadFence:
 366     case vmIntrinsics::_storeFence:
 367     case vmIntrinsics::_fullFence:
 368       break;  // InlineNatives does not control String.compareTo
 369     case vmIntrinsics::_Reference_get:
 370       break;  // InlineNatives does not control Reference.get
 371     default:
 372       return NULL;
 373     }
 374   }
 375 
 376   bool is_predicted = false;
 377   bool does_virtual_dispatch = false;
 378 
 379   switch (id) {
 380   case vmIntrinsics::_compareTo:
 381     if (!SpecialStringCompareTo)  return NULL;
 382     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 383     break;
 384   case vmIntrinsics::_indexOf:
 385     if (!SpecialStringIndexOf)  return NULL;
 386     break;
 387   case vmIntrinsics::_equals:
 388     if (!SpecialStringEquals)  return NULL;
 389     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 390     break;
 391   case vmIntrinsics::_equalsC:
 392     if (!SpecialArraysEquals)  return NULL;
 393     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 394     break;
 395   case vmIntrinsics::_arraycopy:
 396     if (!InlineArrayCopy)  return NULL;
 397     break;
 398   case vmIntrinsics::_copyMemory:
 399     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 400     if (!InlineArrayCopy)  return NULL;
 401     break;
 402   case vmIntrinsics::_hashCode:
 403     if (!InlineObjectHash)  return NULL;
 404     does_virtual_dispatch = true;
 405     break;
 406   case vmIntrinsics::_clone:
 407     does_virtual_dispatch = true;
 408   case vmIntrinsics::_copyOf:
 409   case vmIntrinsics::_copyOfRange:
 410     if (!InlineObjectCopy)  return NULL;
 411     // These also use the arraycopy intrinsic mechanism:
 412     if (!InlineArrayCopy)  return NULL;
 413     break;
 414   case vmIntrinsics::_encodeISOArray:
 415     if (!SpecialEncodeISOArray)  return NULL;
 416     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 417     break;
 418   case vmIntrinsics::_checkIndex:
 419     // We do not intrinsify this.  The optimizer does fine with it.
 420     return NULL;
 421 
 422   case vmIntrinsics::_getCallerClass:
 423     if (!InlineReflectionGetCallerClass)  return NULL;
 424     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_bitCount_i:
 428     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 429     break;
 430 
 431   case vmIntrinsics::_bitCount_l:
 432     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 433     break;
 434 
 435   case vmIntrinsics::_numberOfLeadingZeros_i:
 436     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 437     break;
 438 
 439   case vmIntrinsics::_numberOfLeadingZeros_l:
 440     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 441     break;
 442 
 443   case vmIntrinsics::_numberOfTrailingZeros_i:
 444     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 445     break;
 446 
 447   case vmIntrinsics::_numberOfTrailingZeros_l:
 448     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 449     break;
 450 
 451   case vmIntrinsics::_reverseBytes_c:
 452     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 453     break;
 454   case vmIntrinsics::_reverseBytes_s:
 455     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 456     break;
 457   case vmIntrinsics::_reverseBytes_i:
 458     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 459     break;
 460   case vmIntrinsics::_reverseBytes_l:
 461     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 462     break;
 463 
 464   case vmIntrinsics::_Reference_get:
 465     // Use the intrinsic version of Reference.get() so that the value in
 466     // the referent field can be registered by the G1 pre-barrier code.
 467     // Also add memory barrier to prevent commoning reads from this field
 468     // across safepoint since GC can change it value.
 469     break;
 470 
 471   case vmIntrinsics::_compareAndSwapObject:
 472 #ifdef _LP64
 473     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 474 #endif
 475     break;
 476 
 477   case vmIntrinsics::_compareAndSwapLong:
 478     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 479     break;
 480 
 481   case vmIntrinsics::_getAndAddInt:
 482     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 483     break;
 484 
 485   case vmIntrinsics::_getAndAddLong:
 486     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 487     break;
 488 
 489   case vmIntrinsics::_getAndSetInt:
 490     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 491     break;
 492 
 493   case vmIntrinsics::_getAndSetLong:
 494     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 495     break;
 496 
 497   case vmIntrinsics::_getAndSetObject:
 498 #ifdef _LP64
 499     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 500     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 501     break;
 502 #else
 503     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 504     break;
 505 #endif
 506 
 507   case vmIntrinsics::_aescrypt_encryptBlock:
 508   case vmIntrinsics::_aescrypt_decryptBlock:
 509     if (!UseAESIntrinsics) return NULL;
 510     break;
 511 
 512   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 513   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 514     if (!UseAESIntrinsics) return NULL;
 515     // these two require the predicated logic
 516     is_predicted = true;
 517     break;
 518 
 519   case vmIntrinsics::_updateCRC32:
 520   case vmIntrinsics::_updateBytesCRC32:
 521   case vmIntrinsics::_updateByteBufferCRC32:
 522     if (!UseCRC32Intrinsics) return NULL;
 523     break;
 524 
 525   case vmIntrinsics::_incrementExactI:
 526   case vmIntrinsics::_addExactI:
 527     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 528     break;
 529   case vmIntrinsics::_incrementExactL:
 530   case vmIntrinsics::_addExactL:
 531     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 532     break;
 533   case vmIntrinsics::_decrementExactI:
 534   case vmIntrinsics::_subtractExactI:
 535     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 536     break;
 537   case vmIntrinsics::_decrementExactL:
 538   case vmIntrinsics::_subtractExactL:
 539     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 540     break;
 541   case vmIntrinsics::_negateExactI:
 542     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 543     break;
 544   case vmIntrinsics::_negateExactL:
 545     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 546     break;
 547   case vmIntrinsics::_multiplyExactI:
 548     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 549     break;
 550   case vmIntrinsics::_multiplyExactL:
 551     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 552     break;
 553 
 554  default:
 555     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 556     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 557     break;
 558   }
 559 
 560   // -XX:-InlineClassNatives disables natives from the Class class.
 561   // The flag applies to all reflective calls, notably Array.newArray
 562   // (visible to Java programmers as Array.newInstance).
 563   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 564       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 565     if (!InlineClassNatives)  return NULL;
 566   }
 567 
 568   // -XX:-InlineThreadNatives disables natives from the Thread class.
 569   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 570     if (!InlineThreadNatives)  return NULL;
 571   }
 572 
 573   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 574   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 575       m->holder()->name() == ciSymbol::java_lang_Float() ||
 576       m->holder()->name() == ciSymbol::java_lang_Double()) {
 577     if (!InlineMathNatives)  return NULL;
 578   }
 579 
 580   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 581   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 582     if (!InlineUnsafeOps)  return NULL;
 583   }
 584 
 585   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 586 }
 587 
 588 //----------------------register_library_intrinsics-----------------------
 589 // Initialize this file's data structures, for each Compile instance.
 590 void Compile::register_library_intrinsics() {
 591   // Nothing to do here.
 592 }
 593 
 594 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 595   LibraryCallKit kit(jvms, this);
 596   Compile* C = kit.C;
 597   int nodes = C->unique();
 598 #ifndef PRODUCT
 599   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 600     char buf[1000];
 601     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 602     tty->print_cr("Intrinsic %s", str);
 603   }
 604 #endif
 605   ciMethod* callee = kit.callee();
 606   const int bci    = kit.bci();
 607 
 608   // Try to inline the intrinsic.
 609   if (kit.try_to_inline()) {
 610     if (C->print_intrinsics() || C->print_inlining()) {
 611       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 612     }
 613     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 614     if (C->log()) {
 615       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 616                      vmIntrinsics::name_at(intrinsic_id()),
 617                      (is_virtual() ? " virtual='1'" : ""),
 618                      C->unique() - nodes);
 619     }
 620     // Push the result from the inlined method onto the stack.
 621     kit.push_result();
 622     C->print_inlining_update(this);
 623     return kit.transfer_exceptions_into_jvms();
 624   }
 625 
 626   // The intrinsic bailed out
 627   if (C->print_intrinsics() || C->print_inlining()) {
 628     if (jvms->has_method()) {
 629       // Not a root compile.
 630       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 631       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 632     } else {
 633       // Root compile
 634       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 635                vmIntrinsics::name_at(intrinsic_id()),
 636                (is_virtual() ? " (virtual)" : ""), bci);
 637     }
 638   }
 639   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 640   C->print_inlining_update(this);
 641   return NULL;
 642 }
 643 
 644 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 645   LibraryCallKit kit(jvms, this);
 646   Compile* C = kit.C;
 647   int nodes = C->unique();
 648 #ifndef PRODUCT
 649   assert(is_predicted(), "sanity");
 650   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 651     char buf[1000];
 652     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 653     tty->print_cr("Predicate for intrinsic %s", str);
 654   }
 655 #endif
 656   ciMethod* callee = kit.callee();
 657   const int bci    = kit.bci();
 658 
 659   Node* slow_ctl = kit.try_to_predicate();
 660   if (!kit.failing()) {
 661     if (C->print_intrinsics() || C->print_inlining()) {
 662       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 663     }
 664     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 665     if (C->log()) {
 666       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 667                      vmIntrinsics::name_at(intrinsic_id()),
 668                      (is_virtual() ? " virtual='1'" : ""),
 669                      C->unique() - nodes);
 670     }
 671     return slow_ctl; // Could be NULL if the check folds.
 672   }
 673 
 674   // The intrinsic bailed out
 675   if (C->print_intrinsics() || C->print_inlining()) {
 676     if (jvms->has_method()) {
 677       // Not a root compile.
 678       const char* msg = "failed to generate predicate for intrinsic";
 679       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 680     } else {
 681       // Root compile
 682       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 683                                         vmIntrinsics::name_at(intrinsic_id()),
 684                                         (is_virtual() ? " (virtual)" : ""), bci);
 685     }
 686   }
 687   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 688   return NULL;
 689 }
 690 
 691 bool LibraryCallKit::try_to_inline() {
 692   // Handle symbolic names for otherwise undistinguished boolean switches:
 693   const bool is_store       = true;
 694   const bool is_native_ptr  = true;
 695   const bool is_static      = true;
 696   const bool is_volatile    = true;
 697 
 698   if (!jvms()->has_method()) {
 699     // Root JVMState has a null method.
 700     assert(map()->memory()->Opcode() == Op_Parm, "");
 701     // Insert the memory aliasing node
 702     set_all_memory(reset_memory());
 703   }
 704   assert(merged_memory(), "");
 705 
 706 
 707   switch (intrinsic_id()) {
 708   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 709   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 710   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 711 
 712   case vmIntrinsics::_dsin:
 713   case vmIntrinsics::_dcos:
 714   case vmIntrinsics::_dtan:
 715   case vmIntrinsics::_dabs:
 716   case vmIntrinsics::_datan2:
 717   case vmIntrinsics::_dsqrt:
 718   case vmIntrinsics::_dexp:
 719   case vmIntrinsics::_dlog:
 720   case vmIntrinsics::_dlog10:
 721   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 722 
 723   case vmIntrinsics::_min:
 724   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 725 
 726   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 727   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 728   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 729   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 730   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 731   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 732   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 733   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 734   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 735   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 736   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 737   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 738 
 739   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 740 
 741   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 742   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 743   case vmIntrinsics::_equals:                   return inline_string_equals();
 744 
 745   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 746   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 747   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 748   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 749   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 750   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 751   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 752   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 753   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 754 
 755   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 756   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 757   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 758   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 759   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 760   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 761   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 762   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 763   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 764 
 765   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 766   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 767   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 768   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 769   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 770   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 771   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 772   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 773 
 774   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 775   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 776   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 777   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 778   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 779   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 780   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 781   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 782 
 783   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 784   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 785   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 786   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 787   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 788   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 789   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 790   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 791   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 792 
 793   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 794   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 795   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 796   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 797   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 798   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 799   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 800   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 801   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 802 
 803   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 804   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 805   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 806   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 807 
 808   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 809   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 810   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 811 
 812   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 813   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 814   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 815 
 816   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 817   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 818   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 819   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 820   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 821 
 822   case vmIntrinsics::_loadFence:
 823   case vmIntrinsics::_storeFence:
 824   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 825 
 826   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 827   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 828 
 829 #ifdef TRACE_HAVE_INTRINSICS
 830   case vmIntrinsics::_classID:                  return inline_native_classID();
 831   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 832   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 833 #endif
 834   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 835   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 836   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 837   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 838   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 839   case vmIntrinsics::_getLength:                return inline_native_getLength();
 840   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 841   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 842   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 843   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 844 
 845   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 846 
 847   case vmIntrinsics::_isInstance:
 848   case vmIntrinsics::_getModifiers:
 849   case vmIntrinsics::_isInterface:
 850   case vmIntrinsics::_isArray:
 851   case vmIntrinsics::_isPrimitive:
 852   case vmIntrinsics::_getSuperclass:
 853   case vmIntrinsics::_getComponentType:
 854   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 855 
 856   case vmIntrinsics::_floatToRawIntBits:
 857   case vmIntrinsics::_floatToIntBits:
 858   case vmIntrinsics::_intBitsToFloat:
 859   case vmIntrinsics::_doubleToRawLongBits:
 860   case vmIntrinsics::_doubleToLongBits:
 861   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 862 
 863   case vmIntrinsics::_numberOfLeadingZeros_i:
 864   case vmIntrinsics::_numberOfLeadingZeros_l:
 865   case vmIntrinsics::_numberOfTrailingZeros_i:
 866   case vmIntrinsics::_numberOfTrailingZeros_l:
 867   case vmIntrinsics::_bitCount_i:
 868   case vmIntrinsics::_bitCount_l:
 869   case vmIntrinsics::_reverseBytes_i:
 870   case vmIntrinsics::_reverseBytes_l:
 871   case vmIntrinsics::_reverseBytes_s:
 872   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 873 
 874   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 875 
 876   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 877 
 878   case vmIntrinsics::_aescrypt_encryptBlock:
 879   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 880 
 881   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 882   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 883     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 884 
 885   case vmIntrinsics::_encodeISOArray:
 886     return inline_encodeISOArray();
 887 
 888   case vmIntrinsics::_updateCRC32:
 889     return inline_updateCRC32();
 890   case vmIntrinsics::_updateBytesCRC32:
 891     return inline_updateBytesCRC32();
 892   case vmIntrinsics::_updateByteBufferCRC32:
 893     return inline_updateByteBufferCRC32();
 894 
 895   default:
 896     // If you get here, it may be that someone has added a new intrinsic
 897     // to the list in vmSymbols.hpp without implementing it here.
 898 #ifndef PRODUCT
 899     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 900       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 901                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 902     }
 903 #endif
 904     return false;
 905   }
 906 }
 907 
 908 Node* LibraryCallKit::try_to_predicate() {
 909   if (!jvms()->has_method()) {
 910     // Root JVMState has a null method.
 911     assert(map()->memory()->Opcode() == Op_Parm, "");
 912     // Insert the memory aliasing node
 913     set_all_memory(reset_memory());
 914   }
 915   assert(merged_memory(), "");
 916 
 917   switch (intrinsic_id()) {
 918   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 919     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 920   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 921     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 922 
 923   default:
 924     // If you get here, it may be that someone has added a new intrinsic
 925     // to the list in vmSymbols.hpp without implementing it here.
 926 #ifndef PRODUCT
 927     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 928       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 929                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 930     }
 931 #endif
 932     Node* slow_ctl = control();
 933     set_control(top()); // No fast path instrinsic
 934     return slow_ctl;
 935   }
 936 }
 937 
 938 //------------------------------set_result-------------------------------
 939 // Helper function for finishing intrinsics.
 940 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 941   record_for_igvn(region);
 942   set_control(_gvn.transform(region));
 943   set_result( _gvn.transform(value));
 944   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 945 }
 946 
 947 //------------------------------generate_guard---------------------------
 948 // Helper function for generating guarded fast-slow graph structures.
 949 // The given 'test', if true, guards a slow path.  If the test fails
 950 // then a fast path can be taken.  (We generally hope it fails.)
 951 // In all cases, GraphKit::control() is updated to the fast path.
 952 // The returned value represents the control for the slow path.
 953 // The return value is never 'top'; it is either a valid control
 954 // or NULL if it is obvious that the slow path can never be taken.
 955 // Also, if region and the slow control are not NULL, the slow edge
 956 // is appended to the region.
 957 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 958   if (stopped()) {
 959     // Already short circuited.
 960     return NULL;
 961   }
 962 
 963   // Build an if node and its projections.
 964   // If test is true we take the slow path, which we assume is uncommon.
 965   if (_gvn.type(test) == TypeInt::ZERO) {
 966     // The slow branch is never taken.  No need to build this guard.
 967     return NULL;
 968   }
 969 
 970   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 971 
 972   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 973   if (if_slow == top()) {
 974     // The slow branch is never taken.  No need to build this guard.
 975     return NULL;
 976   }
 977 
 978   if (region != NULL)
 979     region->add_req(if_slow);
 980 
 981   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 982   set_control(if_fast);
 983 
 984   return if_slow;
 985 }
 986 
 987 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 988   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 989 }
 990 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 991   return generate_guard(test, region, PROB_FAIR);
 992 }
 993 
 994 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 995                                                      Node* *pos_index) {
 996   if (stopped())
 997     return NULL;                // already stopped
 998   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 999     return NULL;                // index is already adequately typed
1000   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1001   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1002   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1003   if (is_neg != NULL && pos_index != NULL) {
1004     // Emulate effect of Parse::adjust_map_after_if.
1005     Node* ccast = new CastIINode(index, TypeInt::POS);
1006     ccast->set_req(0, control());
1007     (*pos_index) = _gvn.transform(ccast);
1008   }
1009   return is_neg;
1010 }
1011 
1012 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1013                                                         Node* *pos_index) {
1014   if (stopped())
1015     return NULL;                // already stopped
1016   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1017     return NULL;                // index is already adequately typed
1018   Node* cmp_le = _gvn.transform(new CmpINode(index, intcon(0)));
1019   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1020   Node* bol_le = _gvn.transform(new BoolNode(cmp_le, le_or_eq));
1021   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1022   if (is_notp != NULL && pos_index != NULL) {
1023     // Emulate effect of Parse::adjust_map_after_if.
1024     Node* ccast = new CastIINode(index, TypeInt::POS1);
1025     ccast->set_req(0, control());
1026     (*pos_index) = _gvn.transform(ccast);
1027   }
1028   return is_notp;
1029 }
1030 
1031 // Make sure that 'position' is a valid limit index, in [0..length].
1032 // There are two equivalent plans for checking this:
1033 //   A. (offset + copyLength)  unsigned<=  arrayLength
1034 //   B. offset  <=  (arrayLength - copyLength)
1035 // We require that all of the values above, except for the sum and
1036 // difference, are already known to be non-negative.
1037 // Plan A is robust in the face of overflow, if offset and copyLength
1038 // are both hugely positive.
1039 //
1040 // Plan B is less direct and intuitive, but it does not overflow at
1041 // all, since the difference of two non-negatives is always
1042 // representable.  Whenever Java methods must perform the equivalent
1043 // check they generally use Plan B instead of Plan A.
1044 // For the moment we use Plan A.
1045 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1046                                                   Node* subseq_length,
1047                                                   Node* array_length,
1048                                                   RegionNode* region) {
1049   if (stopped())
1050     return NULL;                // already stopped
1051   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1052   if (zero_offset && subseq_length->eqv_uncast(array_length))
1053     return NULL;                // common case of whole-array copy
1054   Node* last = subseq_length;
1055   if (!zero_offset)             // last += offset
1056     last = _gvn.transform(new AddINode(last, offset));
1057   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1058   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1059   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1060   return is_over;
1061 }
1062 
1063 
1064 //--------------------------generate_current_thread--------------------
1065 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1066   ciKlass*    thread_klass = env()->Thread_klass();
1067   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1068   Node* thread = _gvn.transform(new ThreadLocalNode());
1069   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1070   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1071   tls_output = thread;
1072   return threadObj;
1073 }
1074 
1075 
1076 //------------------------------make_string_method_node------------------------
1077 // Helper method for String intrinsic functions. This version is called
1078 // with str1 and str2 pointing to String object nodes.
1079 //
1080 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1081   Node* no_ctrl = NULL;
1082 
1083   // Get start addr of string
1084   Node* str1_value   = load_String_value(no_ctrl, str1);
1085   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1086   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1087 
1088   // Get length of string 1
1089   Node* str1_len  = load_String_length(no_ctrl, str1);
1090 
1091   Node* str2_value   = load_String_value(no_ctrl, str2);
1092   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1093   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1094 
1095   Node* str2_len = NULL;
1096   Node* result = NULL;
1097 
1098   switch (opcode) {
1099   case Op_StrIndexOf:
1100     // Get length of string 2
1101     str2_len = load_String_length(no_ctrl, str2);
1102 
1103     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1104                                 str1_start, str1_len, str2_start, str2_len);
1105     break;
1106   case Op_StrComp:
1107     // Get length of string 2
1108     str2_len = load_String_length(no_ctrl, str2);
1109 
1110     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1111                              str1_start, str1_len, str2_start, str2_len);
1112     break;
1113   case Op_StrEquals:
1114     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1115                                str1_start, str2_start, str1_len);
1116     break;
1117   default:
1118     ShouldNotReachHere();
1119     return NULL;
1120   }
1121 
1122   // All these intrinsics have checks.
1123   C->set_has_split_ifs(true); // Has chance for split-if optimization
1124 
1125   return _gvn.transform(result);
1126 }
1127 
1128 // Helper method for String intrinsic functions. This version is called
1129 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1130 // to Int nodes containing the lenghts of str1 and str2.
1131 //
1132 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1133   Node* result = NULL;
1134   switch (opcode) {
1135   case Op_StrIndexOf:
1136     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1137                                 str1_start, cnt1, str2_start, cnt2);
1138     break;
1139   case Op_StrComp:
1140     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1141                              str1_start, cnt1, str2_start, cnt2);
1142     break;
1143   case Op_StrEquals:
1144     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1145                                str1_start, str2_start, cnt1);
1146     break;
1147   default:
1148     ShouldNotReachHere();
1149     return NULL;
1150   }
1151 
1152   // All these intrinsics have checks.
1153   C->set_has_split_ifs(true); // Has chance for split-if optimization
1154 
1155   return _gvn.transform(result);
1156 }
1157 
1158 //------------------------------inline_string_compareTo------------------------
1159 // public int java.lang.String.compareTo(String anotherString);
1160 bool LibraryCallKit::inline_string_compareTo() {
1161   Node* receiver = null_check(argument(0));
1162   Node* arg      = null_check(argument(1));
1163   if (stopped()) {
1164     return true;
1165   }
1166   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1167   return true;
1168 }
1169 
1170 //------------------------------inline_string_equals------------------------
1171 bool LibraryCallKit::inline_string_equals() {
1172   Node* receiver = null_check_receiver();
1173   // NOTE: Do not null check argument for String.equals() because spec
1174   // allows to specify NULL as argument.
1175   Node* argument = this->argument(1);
1176   if (stopped()) {
1177     return true;
1178   }
1179 
1180   // paths (plus control) merge
1181   RegionNode* region = new RegionNode(5);
1182   Node* phi = new PhiNode(region, TypeInt::BOOL);
1183 
1184   // does source == target string?
1185   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1186   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1187 
1188   Node* if_eq = generate_slow_guard(bol, NULL);
1189   if (if_eq != NULL) {
1190     // receiver == argument
1191     phi->init_req(2, intcon(1));
1192     region->init_req(2, if_eq);
1193   }
1194 
1195   // get String klass for instanceOf
1196   ciInstanceKlass* klass = env()->String_klass();
1197 
1198   if (!stopped()) {
1199     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1200     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1201     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1202 
1203     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1204     //instanceOf == true, fallthrough
1205 
1206     if (inst_false != NULL) {
1207       phi->init_req(3, intcon(0));
1208       region->init_req(3, inst_false);
1209     }
1210   }
1211 
1212   if (!stopped()) {
1213     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1214 
1215     // Properly cast the argument to String
1216     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1217     // This path is taken only when argument's type is String:NotNull.
1218     argument = cast_not_null(argument, false);
1219 
1220     Node* no_ctrl = NULL;
1221 
1222     // Get start addr of receiver
1223     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1224     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1225     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1226 
1227     // Get length of receiver
1228     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1229 
1230     // Get start addr of argument
1231     Node* argument_val    = load_String_value(no_ctrl, argument);
1232     Node* argument_offset = load_String_offset(no_ctrl, argument);
1233     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1234 
1235     // Get length of argument
1236     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1237 
1238     // Check for receiver count != argument count
1239     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1240     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1241     Node* if_ne = generate_slow_guard(bol, NULL);
1242     if (if_ne != NULL) {
1243       phi->init_req(4, intcon(0));
1244       region->init_req(4, if_ne);
1245     }
1246 
1247     // Check for count == 0 is done by assembler code for StrEquals.
1248 
1249     if (!stopped()) {
1250       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1251       phi->init_req(1, equals);
1252       region->init_req(1, control());
1253     }
1254   }
1255 
1256   // post merge
1257   set_control(_gvn.transform(region));
1258   record_for_igvn(region);
1259 
1260   set_result(_gvn.transform(phi));
1261   return true;
1262 }
1263 
1264 //------------------------------inline_array_equals----------------------------
1265 bool LibraryCallKit::inline_array_equals() {
1266   Node* arg1 = argument(0);
1267   Node* arg2 = argument(1);
1268   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1269   return true;
1270 }
1271 
1272 // Java version of String.indexOf(constant string)
1273 // class StringDecl {
1274 //   StringDecl(char[] ca) {
1275 //     offset = 0;
1276 //     count = ca.length;
1277 //     value = ca;
1278 //   }
1279 //   int offset;
1280 //   int count;
1281 //   char[] value;
1282 // }
1283 //
1284 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1285 //                             int targetOffset, int cache_i, int md2) {
1286 //   int cache = cache_i;
1287 //   int sourceOffset = string_object.offset;
1288 //   int sourceCount = string_object.count;
1289 //   int targetCount = target_object.length;
1290 //
1291 //   int targetCountLess1 = targetCount - 1;
1292 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1293 //
1294 //   char[] source = string_object.value;
1295 //   char[] target = target_object;
1296 //   int lastChar = target[targetCountLess1];
1297 //
1298 //  outer_loop:
1299 //   for (int i = sourceOffset; i < sourceEnd; ) {
1300 //     int src = source[i + targetCountLess1];
1301 //     if (src == lastChar) {
1302 //       // With random strings and a 4-character alphabet,
1303 //       // reverse matching at this point sets up 0.8% fewer
1304 //       // frames, but (paradoxically) makes 0.3% more probes.
1305 //       // Since those probes are nearer the lastChar probe,
1306 //       // there is may be a net D$ win with reverse matching.
1307 //       // But, reversing loop inhibits unroll of inner loop
1308 //       // for unknown reason.  So, does running outer loop from
1309 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1310 //       for (int j = 0; j < targetCountLess1; j++) {
1311 //         if (target[targetOffset + j] != source[i+j]) {
1312 //           if ((cache & (1 << source[i+j])) == 0) {
1313 //             if (md2 < j+1) {
1314 //               i += j+1;
1315 //               continue outer_loop;
1316 //             }
1317 //           }
1318 //           i += md2;
1319 //           continue outer_loop;
1320 //         }
1321 //       }
1322 //       return i - sourceOffset;
1323 //     }
1324 //     if ((cache & (1 << src)) == 0) {
1325 //       i += targetCountLess1;
1326 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1327 //     i++;
1328 //   }
1329 //   return -1;
1330 // }
1331 
1332 //------------------------------string_indexOf------------------------
1333 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1334                                      jint cache_i, jint md2_i) {
1335 
1336   Node* no_ctrl  = NULL;
1337   float likely   = PROB_LIKELY(0.9);
1338   float unlikely = PROB_UNLIKELY(0.9);
1339 
1340   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1341 
1342   Node* source        = load_String_value(no_ctrl, string_object);
1343   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1344   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1345 
1346   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1347   jint target_length = target_array->length();
1348   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1349   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1350 
1351   // String.value field is known to be @Stable.
1352   if (UseImplicitStableValues) {
1353     target = cast_array_to_stable(target, target_type);
1354   }
1355 
1356   IdealKit kit(this, false, true);
1357 #define __ kit.
1358   Node* zero             = __ ConI(0);
1359   Node* one              = __ ConI(1);
1360   Node* cache            = __ ConI(cache_i);
1361   Node* md2              = __ ConI(md2_i);
1362   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1363   Node* targetCount      = __ ConI(target_length);
1364   Node* targetCountLess1 = __ ConI(target_length - 1);
1365   Node* targetOffset     = __ ConI(targetOffset_i);
1366   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1367 
1368   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1369   Node* outer_loop = __ make_label(2 /* goto */);
1370   Node* return_    = __ make_label(1);
1371 
1372   __ set(rtn,__ ConI(-1));
1373   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1374        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1375        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1376        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1377        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1378          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1379               Node* tpj = __ AddI(targetOffset, __ value(j));
1380               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1381               Node* ipj  = __ AddI(__ value(i), __ value(j));
1382               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1383               __ if_then(targ, BoolTest::ne, src2); {
1384                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1385                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1386                     __ increment(i, __ AddI(__ value(j), one));
1387                     __ goto_(outer_loop);
1388                   } __ end_if(); __ dead(j);
1389                 }__ end_if(); __ dead(j);
1390                 __ increment(i, md2);
1391                 __ goto_(outer_loop);
1392               }__ end_if();
1393               __ increment(j, one);
1394          }__ end_loop(); __ dead(j);
1395          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1396          __ goto_(return_);
1397        }__ end_if();
1398        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1399          __ increment(i, targetCountLess1);
1400        }__ end_if();
1401        __ increment(i, one);
1402        __ bind(outer_loop);
1403   }__ end_loop(); __ dead(i);
1404   __ bind(return_);
1405 
1406   // Final sync IdealKit and GraphKit.
1407   final_sync(kit);
1408   Node* result = __ value(rtn);
1409 #undef __
1410   C->set_has_loops(true);
1411   return result;
1412 }
1413 
1414 //------------------------------inline_string_indexOf------------------------
1415 bool LibraryCallKit::inline_string_indexOf() {
1416   Node* receiver = argument(0);
1417   Node* arg      = argument(1);
1418 
1419   Node* result;
1420   // Disable the use of pcmpestri until it can be guaranteed that
1421   // the load doesn't cross into the uncommited space.
1422   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1423       UseSSE42Intrinsics) {
1424     // Generate SSE4.2 version of indexOf
1425     // We currently only have match rules that use SSE4.2
1426 
1427     receiver = null_check(receiver);
1428     arg      = null_check(arg);
1429     if (stopped()) {
1430       return true;
1431     }
1432 
1433     ciInstanceKlass* str_klass = env()->String_klass();
1434     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1435 
1436     // Make the merge point
1437     RegionNode* result_rgn = new RegionNode(4);
1438     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1439     Node* no_ctrl  = NULL;
1440 
1441     // Get start addr of source string
1442     Node* source = load_String_value(no_ctrl, receiver);
1443     Node* source_offset = load_String_offset(no_ctrl, receiver);
1444     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1445 
1446     // Get length of source string
1447     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1448 
1449     // Get start addr of substring
1450     Node* substr = load_String_value(no_ctrl, arg);
1451     Node* substr_offset = load_String_offset(no_ctrl, arg);
1452     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1453 
1454     // Get length of source string
1455     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1456 
1457     // Check for substr count > string count
1458     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1459     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1460     Node* if_gt = generate_slow_guard(bol, NULL);
1461     if (if_gt != NULL) {
1462       result_phi->init_req(2, intcon(-1));
1463       result_rgn->init_req(2, if_gt);
1464     }
1465 
1466     if (!stopped()) {
1467       // Check for substr count == 0
1468       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1469       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1470       Node* if_zero = generate_slow_guard(bol, NULL);
1471       if (if_zero != NULL) {
1472         result_phi->init_req(3, intcon(0));
1473         result_rgn->init_req(3, if_zero);
1474       }
1475     }
1476 
1477     if (!stopped()) {
1478       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1479       result_phi->init_req(1, result);
1480       result_rgn->init_req(1, control());
1481     }
1482     set_control(_gvn.transform(result_rgn));
1483     record_for_igvn(result_rgn);
1484     result = _gvn.transform(result_phi);
1485 
1486   } else { // Use LibraryCallKit::string_indexOf
1487     // don't intrinsify if argument isn't a constant string.
1488     if (!arg->is_Con()) {
1489      return false;
1490     }
1491     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1492     if (str_type == NULL) {
1493       return false;
1494     }
1495     ciInstanceKlass* klass = env()->String_klass();
1496     ciObject* str_const = str_type->const_oop();
1497     if (str_const == NULL || str_const->klass() != klass) {
1498       return false;
1499     }
1500     ciInstance* str = str_const->as_instance();
1501     assert(str != NULL, "must be instance");
1502 
1503     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1504     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1505 
1506     int o;
1507     int c;
1508     if (java_lang_String::has_offset_field()) {
1509       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1510       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1511     } else {
1512       o = 0;
1513       c = pat->length();
1514     }
1515 
1516     // constant strings have no offset and count == length which
1517     // simplifies the resulting code somewhat so lets optimize for that.
1518     if (o != 0 || c != pat->length()) {
1519      return false;
1520     }
1521 
1522     receiver = null_check(receiver, T_OBJECT);
1523     // NOTE: No null check on the argument is needed since it's a constant String oop.
1524     if (stopped()) {
1525       return true;
1526     }
1527 
1528     // The null string as a pattern always returns 0 (match at beginning of string)
1529     if (c == 0) {
1530       set_result(intcon(0));
1531       return true;
1532     }
1533 
1534     // Generate default indexOf
1535     jchar lastChar = pat->char_at(o + (c - 1));
1536     int cache = 0;
1537     int i;
1538     for (i = 0; i < c - 1; i++) {
1539       assert(i < pat->length(), "out of range");
1540       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1541     }
1542 
1543     int md2 = c;
1544     for (i = 0; i < c - 1; i++) {
1545       assert(i < pat->length(), "out of range");
1546       if (pat->char_at(o + i) == lastChar) {
1547         md2 = (c - 1) - i;
1548       }
1549     }
1550 
1551     result = string_indexOf(receiver, pat, o, cache, md2);
1552   }
1553   set_result(result);
1554   return true;
1555 }
1556 
1557 //--------------------------round_double_node--------------------------------
1558 // Round a double node if necessary.
1559 Node* LibraryCallKit::round_double_node(Node* n) {
1560   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1561     n = _gvn.transform(new RoundDoubleNode(0, n));
1562   return n;
1563 }
1564 
1565 //------------------------------inline_math-----------------------------------
1566 // public static double Math.abs(double)
1567 // public static double Math.sqrt(double)
1568 // public static double Math.log(double)
1569 // public static double Math.log10(double)
1570 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1571   Node* arg = round_double_node(argument(0));
1572   Node* n;
1573   switch (id) {
1574   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1575   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1576   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1577   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1578   default:  fatal_unexpected_iid(id);  break;
1579   }
1580   set_result(_gvn.transform(n));
1581   return true;
1582 }
1583 
1584 //------------------------------inline_trig----------------------------------
1585 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1586 // argument reduction which will turn into a fast/slow diamond.
1587 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1588   Node* arg = round_double_node(argument(0));
1589   Node* n = NULL;
1590 
1591   switch (id) {
1592   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1593   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1594   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1595   default:  fatal_unexpected_iid(id);  break;
1596   }
1597   n = _gvn.transform(n);
1598 
1599   // Rounding required?  Check for argument reduction!
1600   if (Matcher::strict_fp_requires_explicit_rounding) {
1601     static const double     pi_4 =  0.7853981633974483;
1602     static const double neg_pi_4 = -0.7853981633974483;
1603     // pi/2 in 80-bit extended precision
1604     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1605     // -pi/2 in 80-bit extended precision
1606     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1607     // Cutoff value for using this argument reduction technique
1608     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1609     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1610 
1611     // Pseudocode for sin:
1612     // if (x <= Math.PI / 4.0) {
1613     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1614     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1615     // } else {
1616     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1617     // }
1618     // return StrictMath.sin(x);
1619 
1620     // Pseudocode for cos:
1621     // if (x <= Math.PI / 4.0) {
1622     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1623     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1624     // } else {
1625     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1626     // }
1627     // return StrictMath.cos(x);
1628 
1629     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1630     // requires a special machine instruction to load it.  Instead we'll try
1631     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1632     // probably do the math inside the SIN encoding.
1633 
1634     // Make the merge point
1635     RegionNode* r = new RegionNode(3);
1636     Node* phi = new PhiNode(r, Type::DOUBLE);
1637 
1638     // Flatten arg so we need only 1 test
1639     Node *abs = _gvn.transform(new AbsDNode(arg));
1640     // Node for PI/4 constant
1641     Node *pi4 = makecon(TypeD::make(pi_4));
1642     // Check PI/4 : abs(arg)
1643     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1644     // Check: If PI/4 < abs(arg) then go slow
1645     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1646     // Branch either way
1647     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1648     set_control(opt_iff(r,iff));
1649 
1650     // Set fast path result
1651     phi->init_req(2, n);
1652 
1653     // Slow path - non-blocking leaf call
1654     Node* call = NULL;
1655     switch (id) {
1656     case vmIntrinsics::_dsin:
1657       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1658                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1659                                "Sin", NULL, arg, top());
1660       break;
1661     case vmIntrinsics::_dcos:
1662       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1663                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1664                                "Cos", NULL, arg, top());
1665       break;
1666     case vmIntrinsics::_dtan:
1667       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1668                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1669                                "Tan", NULL, arg, top());
1670       break;
1671     }
1672     assert(control()->in(0) == call, "");
1673     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1674     r->init_req(1, control());
1675     phi->init_req(1, slow_result);
1676 
1677     // Post-merge
1678     set_control(_gvn.transform(r));
1679     record_for_igvn(r);
1680     n = _gvn.transform(phi);
1681 
1682     C->set_has_split_ifs(true); // Has chance for split-if optimization
1683   }
1684   set_result(n);
1685   return true;
1686 }
1687 
1688 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1689   //-------------------
1690   //result=(result.isNaN())? funcAddr():result;
1691   // Check: If isNaN() by checking result!=result? then either trap
1692   // or go to runtime
1693   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1694   // Build the boolean node
1695   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1696 
1697   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1698     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1699       // The pow or exp intrinsic returned a NaN, which requires a call
1700       // to the runtime.  Recompile with the runtime call.
1701       uncommon_trap(Deoptimization::Reason_intrinsic,
1702                     Deoptimization::Action_make_not_entrant);
1703     }
1704     return result;
1705   } else {
1706     // If this inlining ever returned NaN in the past, we compile a call
1707     // to the runtime to properly handle corner cases
1708 
1709     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1710     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1711     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1712 
1713     if (!if_slow->is_top()) {
1714       RegionNode* result_region = new RegionNode(3);
1715       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1716 
1717       result_region->init_req(1, if_fast);
1718       result_val->init_req(1, result);
1719 
1720       set_control(if_slow);
1721 
1722       const TypePtr* no_memory_effects = NULL;
1723       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1724                                    no_memory_effects,
1725                                    x, top(), y, y ? top() : NULL);
1726       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1727 #ifdef ASSERT
1728       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1729       assert(value_top == top(), "second value must be top");
1730 #endif
1731 
1732       result_region->init_req(2, control());
1733       result_val->init_req(2, value);
1734       set_control(_gvn.transform(result_region));
1735       return _gvn.transform(result_val);
1736     } else {
1737       return result;
1738     }
1739   }
1740 }
1741 
1742 //------------------------------inline_exp-------------------------------------
1743 // Inline exp instructions, if possible.  The Intel hardware only misses
1744 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1745 bool LibraryCallKit::inline_exp() {
1746   Node* arg = round_double_node(argument(0));
1747   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1748 
1749   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1750   set_result(n);
1751 
1752   C->set_has_split_ifs(true); // Has chance for split-if optimization
1753   return true;
1754 }
1755 
1756 //------------------------------inline_pow-------------------------------------
1757 // Inline power instructions, if possible.
1758 bool LibraryCallKit::inline_pow() {
1759   // Pseudocode for pow
1760   // if (y == 2) {
1761   //   return x * x;
1762   // } else {
1763   //   if (x <= 0.0) {
1764   //     long longy = (long)y;
1765   //     if ((double)longy == y) { // if y is long
1766   //       if (y + 1 == y) longy = 0; // huge number: even
1767   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1768   //     } else {
1769   //       result = NaN;
1770   //     }
1771   //   } else {
1772   //     result = DPow(x,y);
1773   //   }
1774   //   if (result != result)?  {
1775   //     result = uncommon_trap() or runtime_call();
1776   //   }
1777   //   return result;
1778   // }
1779 
1780   Node* x = round_double_node(argument(0));
1781   Node* y = round_double_node(argument(2));
1782 
1783   Node* result = NULL;
1784 
1785   Node*   const_two_node = makecon(TypeD::make(2.0));
1786   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1787   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1788   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1789   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1790   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1791 
1792   RegionNode* region_node = new RegionNode(3);
1793   region_node->init_req(1, if_true);
1794 
1795   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1796   // special case for x^y where y == 2, we can convert it to x * x
1797   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1798 
1799   // set control to if_false since we will now process the false branch
1800   set_control(if_false);
1801 
1802   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1803     // Short form: skip the fancy tests and just check for NaN result.
1804     result = _gvn.transform(new PowDNode(C, control(), x, y));
1805   } else {
1806     // If this inlining ever returned NaN in the past, include all
1807     // checks + call to the runtime.
1808 
1809     // Set the merge point for If node with condition of (x <= 0.0)
1810     // There are four possible paths to region node and phi node
1811     RegionNode *r = new RegionNode(4);
1812     Node *phi = new PhiNode(r, Type::DOUBLE);
1813 
1814     // Build the first if node: if (x <= 0.0)
1815     // Node for 0 constant
1816     Node *zeronode = makecon(TypeD::ZERO);
1817     // Check x:0
1818     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1819     // Check: If (x<=0) then go complex path
1820     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1821     // Branch either way
1822     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1823     // Fast path taken; set region slot 3
1824     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1825     r->init_req(3,fast_taken); // Capture fast-control
1826 
1827     // Fast path not-taken, i.e. slow path
1828     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1829 
1830     // Set fast path result
1831     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1832     phi->init_req(3, fast_result);
1833 
1834     // Complex path
1835     // Build the second if node (if y is long)
1836     // Node for (long)y
1837     Node *longy = _gvn.transform(new ConvD2LNode(y));
1838     // Node for (double)((long) y)
1839     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1840     // Check (double)((long) y) : y
1841     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1842     // Check if (y isn't long) then go to slow path
1843 
1844     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1845     // Branch either way
1846     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1847     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1848 
1849     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1850 
1851     // Calculate DPow(abs(x), y)*(1 & (long)y)
1852     // Node for constant 1
1853     Node *conone = longcon(1);
1854     // 1& (long)y
1855     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1856 
1857     // A huge number is always even. Detect a huge number by checking
1858     // if y + 1 == y and set integer to be tested for parity to 0.
1859     // Required for corner case:
1860     // (long)9.223372036854776E18 = max_jlong
1861     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1862     // max_jlong is odd but 9.223372036854776E18 is even
1863     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1864     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1865     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1866     Node* correctedsign = NULL;
1867     if (ConditionalMoveLimit != 0) {
1868       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1869     } else {
1870       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1871       RegionNode *r = new RegionNode(3);
1872       Node *phi = new PhiNode(r, TypeLong::LONG);
1873       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1874       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1875       phi->init_req(1, signnode);
1876       phi->init_req(2, longcon(0));
1877       correctedsign = _gvn.transform(phi);
1878       ylong_path = _gvn.transform(r);
1879       record_for_igvn(r);
1880     }
1881 
1882     // zero node
1883     Node *conzero = longcon(0);
1884     // Check (1&(long)y)==0?
1885     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1886     // Check if (1&(long)y)!=0?, if so the result is negative
1887     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1888     // abs(x)
1889     Node *absx=_gvn.transform(new AbsDNode(x));
1890     // abs(x)^y
1891     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1892     // -abs(x)^y
1893     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1894     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1895     Node *signresult = NULL;
1896     if (ConditionalMoveLimit != 0) {
1897       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1898     } else {
1899       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1900       RegionNode *r = new RegionNode(3);
1901       Node *phi = new PhiNode(r, Type::DOUBLE);
1902       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1903       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1904       phi->init_req(1, absxpowy);
1905       phi->init_req(2, negabsxpowy);
1906       signresult = _gvn.transform(phi);
1907       ylong_path = _gvn.transform(r);
1908       record_for_igvn(r);
1909     }
1910     // Set complex path fast result
1911     r->init_req(2, ylong_path);
1912     phi->init_req(2, signresult);
1913 
1914     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1915     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1916     r->init_req(1,slow_path);
1917     phi->init_req(1,slow_result);
1918 
1919     // Post merge
1920     set_control(_gvn.transform(r));
1921     record_for_igvn(r);
1922     result = _gvn.transform(phi);
1923   }
1924 
1925   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1926 
1927   // control from finish_pow_exp is now input to the region node
1928   region_node->set_req(2, control());
1929   // the result from finish_pow_exp is now input to the phi node
1930   phi_node->init_req(2, result);
1931   set_control(_gvn.transform(region_node));
1932   record_for_igvn(region_node);
1933   set_result(_gvn.transform(phi_node));
1934 
1935   C->set_has_split_ifs(true); // Has chance for split-if optimization
1936   return true;
1937 }
1938 
1939 //------------------------------runtime_math-----------------------------
1940 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1941   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1942          "must be (DD)D or (D)D type");
1943 
1944   // Inputs
1945   Node* a = round_double_node(argument(0));
1946   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1947 
1948   const TypePtr* no_memory_effects = NULL;
1949   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1950                                  no_memory_effects,
1951                                  a, top(), b, b ? top() : NULL);
1952   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1953 #ifdef ASSERT
1954   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1955   assert(value_top == top(), "second value must be top");
1956 #endif
1957 
1958   set_result(value);
1959   return true;
1960 }
1961 
1962 //------------------------------inline_math_native-----------------------------
1963 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1964 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1965   switch (id) {
1966     // These intrinsics are not properly supported on all hardware
1967   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1968     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1969   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1970     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1971   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1972     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1973 
1974   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1975     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1976   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1977     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1978 
1979     // These intrinsics are supported on all hardware
1980   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1981   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1982 
1983   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1984     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1985   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1986     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1987 #undef FN_PTR
1988 
1989    // These intrinsics are not yet correctly implemented
1990   case vmIntrinsics::_datan2:
1991     return false;
1992 
1993   default:
1994     fatal_unexpected_iid(id);
1995     return false;
1996   }
1997 }
1998 
1999 static bool is_simple_name(Node* n) {
2000   return (n->req() == 1         // constant
2001           || (n->is_Type() && n->as_Type()->type()->singleton())
2002           || n->is_Proj()       // parameter or return value
2003           || n->is_Phi()        // local of some sort
2004           );
2005 }
2006 
2007 //----------------------------inline_min_max-----------------------------------
2008 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2009   set_result(generate_min_max(id, argument(0), argument(1)));
2010   return true;
2011 }
2012 
2013 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2014   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2015   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2016   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2017   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2018 
2019   {
2020     PreserveJVMState pjvms(this);
2021     PreserveReexecuteState preexecs(this);
2022     jvms()->set_should_reexecute(true);
2023 
2024     set_control(slow_path);
2025     set_i_o(i_o());
2026 
2027     uncommon_trap(Deoptimization::Reason_intrinsic,
2028                   Deoptimization::Action_none);
2029   }
2030 
2031   set_control(fast_path);
2032   set_result(math);
2033 }
2034 
2035 template <typename OverflowOp>
2036 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2037   typedef typename OverflowOp::MathOp MathOp;
2038 
2039   MathOp* mathOp = new MathOp(arg1, arg2);
2040   Node* operation = _gvn.transform( mathOp );
2041   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2042   inline_math_mathExact(operation, ofcheck);
2043   return true;
2044 }
2045 
2046 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2047   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2048 }
2049 
2050 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2051   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2052 }
2053 
2054 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2055   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2056 }
2057 
2058 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2059   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2060 }
2061 
2062 bool LibraryCallKit::inline_math_negateExactI() {
2063   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2064 }
2065 
2066 bool LibraryCallKit::inline_math_negateExactL() {
2067   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2068 }
2069 
2070 bool LibraryCallKit::inline_math_multiplyExactI() {
2071   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2072 }
2073 
2074 bool LibraryCallKit::inline_math_multiplyExactL() {
2075   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2076 }
2077 
2078 Node*
2079 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2080   // These are the candidate return value:
2081   Node* xvalue = x0;
2082   Node* yvalue = y0;
2083 
2084   if (xvalue == yvalue) {
2085     return xvalue;
2086   }
2087 
2088   bool want_max = (id == vmIntrinsics::_max);
2089 
2090   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2091   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2092   if (txvalue == NULL || tyvalue == NULL)  return top();
2093   // This is not really necessary, but it is consistent with a
2094   // hypothetical MaxINode::Value method:
2095   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2096 
2097   // %%% This folding logic should (ideally) be in a different place.
2098   // Some should be inside IfNode, and there to be a more reliable
2099   // transformation of ?: style patterns into cmoves.  We also want
2100   // more powerful optimizations around cmove and min/max.
2101 
2102   // Try to find a dominating comparison of these guys.
2103   // It can simplify the index computation for Arrays.copyOf
2104   // and similar uses of System.arraycopy.
2105   // First, compute the normalized version of CmpI(x, y).
2106   int   cmp_op = Op_CmpI;
2107   Node* xkey = xvalue;
2108   Node* ykey = yvalue;
2109   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2110   if (ideal_cmpxy->is_Cmp()) {
2111     // E.g., if we have CmpI(length - offset, count),
2112     // it might idealize to CmpI(length, count + offset)
2113     cmp_op = ideal_cmpxy->Opcode();
2114     xkey = ideal_cmpxy->in(1);
2115     ykey = ideal_cmpxy->in(2);
2116   }
2117 
2118   // Start by locating any relevant comparisons.
2119   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2120   Node* cmpxy = NULL;
2121   Node* cmpyx = NULL;
2122   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2123     Node* cmp = start_from->fast_out(k);
2124     if (cmp->outcnt() > 0 &&            // must have prior uses
2125         cmp->in(0) == NULL &&           // must be context-independent
2126         cmp->Opcode() == cmp_op) {      // right kind of compare
2127       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2128       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2129     }
2130   }
2131 
2132   const int NCMPS = 2;
2133   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2134   int cmpn;
2135   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2136     if (cmps[cmpn] != NULL)  break;     // find a result
2137   }
2138   if (cmpn < NCMPS) {
2139     // Look for a dominating test that tells us the min and max.
2140     int depth = 0;                // Limit search depth for speed
2141     Node* dom = control();
2142     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2143       if (++depth >= 100)  break;
2144       Node* ifproj = dom;
2145       if (!ifproj->is_Proj())  continue;
2146       Node* iff = ifproj->in(0);
2147       if (!iff->is_If())  continue;
2148       Node* bol = iff->in(1);
2149       if (!bol->is_Bool())  continue;
2150       Node* cmp = bol->in(1);
2151       if (cmp == NULL)  continue;
2152       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2153         if (cmps[cmpn] == cmp)  break;
2154       if (cmpn == NCMPS)  continue;
2155       BoolTest::mask btest = bol->as_Bool()->_test._test;
2156       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2157       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2158       // At this point, we know that 'x btest y' is true.
2159       switch (btest) {
2160       case BoolTest::eq:
2161         // They are proven equal, so we can collapse the min/max.
2162         // Either value is the answer.  Choose the simpler.
2163         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2164           return yvalue;
2165         return xvalue;
2166       case BoolTest::lt:          // x < y
2167       case BoolTest::le:          // x <= y
2168         return (want_max ? yvalue : xvalue);
2169       case BoolTest::gt:          // x > y
2170       case BoolTest::ge:          // x >= y
2171         return (want_max ? xvalue : yvalue);
2172       }
2173     }
2174   }
2175 
2176   // We failed to find a dominating test.
2177   // Let's pick a test that might GVN with prior tests.
2178   Node*          best_bol   = NULL;
2179   BoolTest::mask best_btest = BoolTest::illegal;
2180   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2181     Node* cmp = cmps[cmpn];
2182     if (cmp == NULL)  continue;
2183     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2184       Node* bol = cmp->fast_out(j);
2185       if (!bol->is_Bool())  continue;
2186       BoolTest::mask btest = bol->as_Bool()->_test._test;
2187       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2188       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2189       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2190         best_bol   = bol->as_Bool();
2191         best_btest = btest;
2192       }
2193     }
2194   }
2195 
2196   Node* answer_if_true  = NULL;
2197   Node* answer_if_false = NULL;
2198   switch (best_btest) {
2199   default:
2200     if (cmpxy == NULL)
2201       cmpxy = ideal_cmpxy;
2202     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2203     // and fall through:
2204   case BoolTest::lt:          // x < y
2205   case BoolTest::le:          // x <= y
2206     answer_if_true  = (want_max ? yvalue : xvalue);
2207     answer_if_false = (want_max ? xvalue : yvalue);
2208     break;
2209   case BoolTest::gt:          // x > y
2210   case BoolTest::ge:          // x >= y
2211     answer_if_true  = (want_max ? xvalue : yvalue);
2212     answer_if_false = (want_max ? yvalue : xvalue);
2213     break;
2214   }
2215 
2216   jint hi, lo;
2217   if (want_max) {
2218     // We can sharpen the minimum.
2219     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2220     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2221   } else {
2222     // We can sharpen the maximum.
2223     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2224     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2225   }
2226 
2227   // Use a flow-free graph structure, to avoid creating excess control edges
2228   // which could hinder other optimizations.
2229   // Since Math.min/max is often used with arraycopy, we want
2230   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2231   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2232                                answer_if_false, answer_if_true,
2233                                TypeInt::make(lo, hi, widen));
2234 
2235   return _gvn.transform(cmov);
2236 
2237   /*
2238   // This is not as desirable as it may seem, since Min and Max
2239   // nodes do not have a full set of optimizations.
2240   // And they would interfere, anyway, with 'if' optimizations
2241   // and with CMoveI canonical forms.
2242   switch (id) {
2243   case vmIntrinsics::_min:
2244     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2245   case vmIntrinsics::_max:
2246     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2247   default:
2248     ShouldNotReachHere();
2249   }
2250   */
2251 }
2252 
2253 inline int
2254 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2255   const TypePtr* base_type = TypePtr::NULL_PTR;
2256   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2257   if (base_type == NULL) {
2258     // Unknown type.
2259     return Type::AnyPtr;
2260   } else if (base_type == TypePtr::NULL_PTR) {
2261     // Since this is a NULL+long form, we have to switch to a rawptr.
2262     base   = _gvn.transform(new CastX2PNode(offset));
2263     offset = MakeConX(0);
2264     return Type::RawPtr;
2265   } else if (base_type->base() == Type::RawPtr) {
2266     return Type::RawPtr;
2267   } else if (base_type->isa_oopptr()) {
2268     // Base is never null => always a heap address.
2269     if (base_type->ptr() == TypePtr::NotNull) {
2270       return Type::OopPtr;
2271     }
2272     // Offset is small => always a heap address.
2273     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2274     if (offset_type != NULL &&
2275         base_type->offset() == 0 &&     // (should always be?)
2276         offset_type->_lo >= 0 &&
2277         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2278       return Type::OopPtr;
2279     }
2280     // Otherwise, it might either be oop+off or NULL+addr.
2281     return Type::AnyPtr;
2282   } else {
2283     // No information:
2284     return Type::AnyPtr;
2285   }
2286 }
2287 
2288 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2289   int kind = classify_unsafe_addr(base, offset);
2290   if (kind == Type::RawPtr) {
2291     return basic_plus_adr(top(), base, offset);
2292   } else {
2293     return basic_plus_adr(base, offset);
2294   }
2295 }
2296 
2297 //--------------------------inline_number_methods-----------------------------
2298 // inline int     Integer.numberOfLeadingZeros(int)
2299 // inline int        Long.numberOfLeadingZeros(long)
2300 //
2301 // inline int     Integer.numberOfTrailingZeros(int)
2302 // inline int        Long.numberOfTrailingZeros(long)
2303 //
2304 // inline int     Integer.bitCount(int)
2305 // inline int        Long.bitCount(long)
2306 //
2307 // inline char  Character.reverseBytes(char)
2308 // inline short     Short.reverseBytes(short)
2309 // inline int     Integer.reverseBytes(int)
2310 // inline long       Long.reverseBytes(long)
2311 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2312   Node* arg = argument(0);
2313   Node* n;
2314   switch (id) {
2315   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2316   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2317   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2318   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2319   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2320   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2321   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2322   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2323   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2324   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2325   default:  fatal_unexpected_iid(id);  break;
2326   }
2327   set_result(_gvn.transform(n));
2328   return true;
2329 }
2330 
2331 //----------------------------inline_unsafe_access----------------------------
2332 
2333 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2334 
2335 // Helper that guards and inserts a pre-barrier.
2336 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2337                                         Node* pre_val, bool need_mem_bar) {
2338   // We could be accessing the referent field of a reference object. If so, when G1
2339   // is enabled, we need to log the value in the referent field in an SATB buffer.
2340   // This routine performs some compile time filters and generates suitable
2341   // runtime filters that guard the pre-barrier code.
2342   // Also add memory barrier for non volatile load from the referent field
2343   // to prevent commoning of loads across safepoint.
2344   if (!UseG1GC && !need_mem_bar)
2345     return;
2346 
2347   // Some compile time checks.
2348 
2349   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2350   const TypeX* otype = offset->find_intptr_t_type();
2351   if (otype != NULL && otype->is_con() &&
2352       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2353     // Constant offset but not the reference_offset so just return
2354     return;
2355   }
2356 
2357   // We only need to generate the runtime guards for instances.
2358   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2359   if (btype != NULL) {
2360     if (btype->isa_aryptr()) {
2361       // Array type so nothing to do
2362       return;
2363     }
2364 
2365     const TypeInstPtr* itype = btype->isa_instptr();
2366     if (itype != NULL) {
2367       // Can the klass of base_oop be statically determined to be
2368       // _not_ a sub-class of Reference and _not_ Object?
2369       ciKlass* klass = itype->klass();
2370       if ( klass->is_loaded() &&
2371           !klass->is_subtype_of(env()->Reference_klass()) &&
2372           !env()->Object_klass()->is_subtype_of(klass)) {
2373         return;
2374       }
2375     }
2376   }
2377 
2378   // The compile time filters did not reject base_oop/offset so
2379   // we need to generate the following runtime filters
2380   //
2381   // if (offset == java_lang_ref_Reference::_reference_offset) {
2382   //   if (instance_of(base, java.lang.ref.Reference)) {
2383   //     pre_barrier(_, pre_val, ...);
2384   //   }
2385   // }
2386 
2387   float likely   = PROB_LIKELY(  0.999);
2388   float unlikely = PROB_UNLIKELY(0.999);
2389 
2390   IdealKit ideal(this);
2391 #define __ ideal.
2392 
2393   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2394 
2395   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2396       // Update graphKit memory and control from IdealKit.
2397       sync_kit(ideal);
2398 
2399       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2400       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2401 
2402       // Update IdealKit memory and control from graphKit.
2403       __ sync_kit(this);
2404 
2405       Node* one = __ ConI(1);
2406       // is_instof == 0 if base_oop == NULL
2407       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2408 
2409         // Update graphKit from IdeakKit.
2410         sync_kit(ideal);
2411 
2412         // Use the pre-barrier to record the value in the referent field
2413         pre_barrier(false /* do_load */,
2414                     __ ctrl(),
2415                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2416                     pre_val /* pre_val */,
2417                     T_OBJECT);
2418         if (need_mem_bar) {
2419           // Add memory barrier to prevent commoning reads from this field
2420           // across safepoint since GC can change its value.
2421           insert_mem_bar(Op_MemBarCPUOrder);
2422         }
2423         // Update IdealKit from graphKit.
2424         __ sync_kit(this);
2425 
2426       } __ end_if(); // _ref_type != ref_none
2427   } __ end_if(); // offset == referent_offset
2428 
2429   // Final sync IdealKit and GraphKit.
2430   final_sync(ideal);
2431 #undef __
2432 }
2433 
2434 
2435 // Interpret Unsafe.fieldOffset cookies correctly:
2436 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2437 
2438 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2439   // Attempt to infer a sharper value type from the offset and base type.
2440   ciKlass* sharpened_klass = NULL;
2441 
2442   // See if it is an instance field, with an object type.
2443   if (alias_type->field() != NULL) {
2444     assert(!is_native_ptr, "native pointer op cannot use a java address");
2445     if (alias_type->field()->type()->is_klass()) {
2446       sharpened_klass = alias_type->field()->type()->as_klass();
2447     }
2448   }
2449 
2450   // See if it is a narrow oop array.
2451   if (adr_type->isa_aryptr()) {
2452     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2453       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2454       if (elem_type != NULL) {
2455         sharpened_klass = elem_type->klass();
2456       }
2457     }
2458   }
2459 
2460   // The sharpened class might be unloaded if there is no class loader
2461   // contraint in place.
2462   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2463     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2464 
2465 #ifndef PRODUCT
2466     if (C->print_intrinsics() || C->print_inlining()) {
2467       tty->print("  from base type: ");  adr_type->dump();
2468       tty->print("  sharpened value: ");  tjp->dump();
2469     }
2470 #endif
2471     // Sharpen the value type.
2472     return tjp;
2473   }
2474   return NULL;
2475 }
2476 
2477 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2478   if (callee()->is_static())  return false;  // caller must have the capability!
2479 
2480 #ifndef PRODUCT
2481   {
2482     ResourceMark rm;
2483     // Check the signatures.
2484     ciSignature* sig = callee()->signature();
2485 #ifdef ASSERT
2486     if (!is_store) {
2487       // Object getObject(Object base, int/long offset), etc.
2488       BasicType rtype = sig->return_type()->basic_type();
2489       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2490           rtype = T_ADDRESS;  // it is really a C void*
2491       assert(rtype == type, "getter must return the expected value");
2492       if (!is_native_ptr) {
2493         assert(sig->count() == 2, "oop getter has 2 arguments");
2494         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2495         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2496       } else {
2497         assert(sig->count() == 1, "native getter has 1 argument");
2498         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2499       }
2500     } else {
2501       // void putObject(Object base, int/long offset, Object x), etc.
2502       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2503       if (!is_native_ptr) {
2504         assert(sig->count() == 3, "oop putter has 3 arguments");
2505         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2506         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2507       } else {
2508         assert(sig->count() == 2, "native putter has 2 arguments");
2509         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2510       }
2511       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2512       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2513         vtype = T_ADDRESS;  // it is really a C void*
2514       assert(vtype == type, "putter must accept the expected value");
2515     }
2516 #endif // ASSERT
2517  }
2518 #endif //PRODUCT
2519 
2520   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2521 
2522   Node* receiver = argument(0);  // type: oop
2523 
2524   // Build address expression.  See the code in inline_unsafe_prefetch.
2525   Node* adr;
2526   Node* heap_base_oop = top();
2527   Node* offset = top();
2528   Node* val;
2529 
2530   if (!is_native_ptr) {
2531     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2532     Node* base = argument(1);  // type: oop
2533     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2534     offset = argument(2);  // type: long
2535     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2536     // to be plain byte offsets, which are also the same as those accepted
2537     // by oopDesc::field_base.
2538     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2539            "fieldOffset must be byte-scaled");
2540     // 32-bit machines ignore the high half!
2541     offset = ConvL2X(offset);
2542     adr = make_unsafe_address(base, offset);
2543     heap_base_oop = base;
2544     val = is_store ? argument(4) : NULL;
2545   } else {
2546     Node* ptr = argument(1);  // type: long
2547     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2548     adr = make_unsafe_address(NULL, ptr);
2549     val = is_store ? argument(3) : NULL;
2550   }
2551 
2552   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2553 
2554   // First guess at the value type.
2555   const Type *value_type = Type::get_const_basic_type(type);
2556 
2557   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2558   // there was not enough information to nail it down.
2559   Compile::AliasType* alias_type = C->alias_type(adr_type);
2560   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2561 
2562   // We will need memory barriers unless we can determine a unique
2563   // alias category for this reference.  (Note:  If for some reason
2564   // the barriers get omitted and the unsafe reference begins to "pollute"
2565   // the alias analysis of the rest of the graph, either Compile::can_alias
2566   // or Compile::must_alias will throw a diagnostic assert.)
2567   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2568 
2569   // If we are reading the value of the referent field of a Reference
2570   // object (either by using Unsafe directly or through reflection)
2571   // then, if G1 is enabled, we need to record the referent in an
2572   // SATB log buffer using the pre-barrier mechanism.
2573   // Also we need to add memory barrier to prevent commoning reads
2574   // from this field across safepoint since GC can change its value.
2575   bool need_read_barrier = !is_native_ptr && !is_store &&
2576                            offset != top() && heap_base_oop != top();
2577 
2578   if (!is_store && type == T_OBJECT) {
2579     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2580     if (tjp != NULL) {
2581       value_type = tjp;
2582     }
2583   }
2584 
2585   receiver = null_check(receiver);
2586   if (stopped()) {
2587     return true;
2588   }
2589   // Heap pointers get a null-check from the interpreter,
2590   // as a courtesy.  However, this is not guaranteed by Unsafe,
2591   // and it is not possible to fully distinguish unintended nulls
2592   // from intended ones in this API.
2593 
2594   if (is_volatile) {
2595     // We need to emit leading and trailing CPU membars (see below) in
2596     // addition to memory membars when is_volatile. This is a little
2597     // too strong, but avoids the need to insert per-alias-type
2598     // volatile membars (for stores; compare Parse::do_put_xxx), which
2599     // we cannot do effectively here because we probably only have a
2600     // rough approximation of type.
2601     need_mem_bar = true;
2602     // For Stores, place a memory ordering barrier now.
2603     if (is_store) {
2604       insert_mem_bar(Op_MemBarRelease);
2605     } else {
2606       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2607         insert_mem_bar(Op_MemBarVolatile);
2608       }
2609     }
2610   }
2611 
2612   // Memory barrier to prevent normal and 'unsafe' accesses from
2613   // bypassing each other.  Happens after null checks, so the
2614   // exception paths do not take memory state from the memory barrier,
2615   // so there's no problems making a strong assert about mixing users
2616   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2617   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2618   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2619 
2620   if (!is_store) {
2621     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2622     // load value
2623     switch (type) {
2624     case T_BOOLEAN:
2625     case T_CHAR:
2626     case T_BYTE:
2627     case T_SHORT:
2628     case T_INT:
2629     case T_LONG:
2630     case T_FLOAT:
2631     case T_DOUBLE:
2632       break;
2633     case T_OBJECT:
2634       if (need_read_barrier) {
2635         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2636       }
2637       break;
2638     case T_ADDRESS:
2639       // Cast to an int type.
2640       p = _gvn.transform(new CastP2XNode(NULL, p));
2641       p = ConvX2UL(p);
2642       break;
2643     default:
2644       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2645       break;
2646     }
2647     // The load node has the control of the preceding MemBarCPUOrder.  All
2648     // following nodes will have the control of the MemBarCPUOrder inserted at
2649     // the end of this method.  So, pushing the load onto the stack at a later
2650     // point is fine.
2651     set_result(p);
2652   } else {
2653     // place effect of store into memory
2654     switch (type) {
2655     case T_DOUBLE:
2656       val = dstore_rounding(val);
2657       break;
2658     case T_ADDRESS:
2659       // Repackage the long as a pointer.
2660       val = ConvL2X(val);
2661       val = _gvn.transform(new CastX2PNode(val));
2662       break;
2663     }
2664 
2665     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2666     if (type != T_OBJECT ) {
2667       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2668     } else {
2669       // Possibly an oop being stored to Java heap or native memory
2670       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2671         // oop to Java heap.
2672         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2673       } else {
2674         // We can't tell at compile time if we are storing in the Java heap or outside
2675         // of it. So we need to emit code to conditionally do the proper type of
2676         // store.
2677 
2678         IdealKit ideal(this);
2679 #define __ ideal.
2680         // QQQ who knows what probability is here??
2681         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2682           // Sync IdealKit and graphKit.
2683           sync_kit(ideal);
2684           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2685           // Update IdealKit memory.
2686           __ sync_kit(this);
2687         } __ else_(); {
2688           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2689         } __ end_if();
2690         // Final sync IdealKit and GraphKit.
2691         final_sync(ideal);
2692 #undef __
2693       }
2694     }
2695   }
2696 
2697   if (is_volatile) {
2698     if (!is_store) {
2699       insert_mem_bar(Op_MemBarAcquire);
2700     } else {
2701       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2702         insert_mem_bar(Op_MemBarVolatile);
2703       }
2704     }
2705   }
2706 
2707   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2708 
2709   return true;
2710 }
2711 
2712 //----------------------------inline_unsafe_prefetch----------------------------
2713 
2714 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2715 #ifndef PRODUCT
2716   {
2717     ResourceMark rm;
2718     // Check the signatures.
2719     ciSignature* sig = callee()->signature();
2720 #ifdef ASSERT
2721     // Object getObject(Object base, int/long offset), etc.
2722     BasicType rtype = sig->return_type()->basic_type();
2723     if (!is_native_ptr) {
2724       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2725       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2726       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2727     } else {
2728       assert(sig->count() == 1, "native prefetch has 1 argument");
2729       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2730     }
2731 #endif // ASSERT
2732   }
2733 #endif // !PRODUCT
2734 
2735   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2736 
2737   const int idx = is_static ? 0 : 1;
2738   if (!is_static) {
2739     null_check_receiver();
2740     if (stopped()) {
2741       return true;
2742     }
2743   }
2744 
2745   // Build address expression.  See the code in inline_unsafe_access.
2746   Node *adr;
2747   if (!is_native_ptr) {
2748     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2749     Node* base   = argument(idx + 0);  // type: oop
2750     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2751     Node* offset = argument(idx + 1);  // type: long
2752     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2753     // to be plain byte offsets, which are also the same as those accepted
2754     // by oopDesc::field_base.
2755     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2756            "fieldOffset must be byte-scaled");
2757     // 32-bit machines ignore the high half!
2758     offset = ConvL2X(offset);
2759     adr = make_unsafe_address(base, offset);
2760   } else {
2761     Node* ptr = argument(idx + 0);  // type: long
2762     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2763     adr = make_unsafe_address(NULL, ptr);
2764   }
2765 
2766   // Generate the read or write prefetch
2767   Node *prefetch;
2768   if (is_store) {
2769     prefetch = new PrefetchWriteNode(i_o(), adr);
2770   } else {
2771     prefetch = new PrefetchReadNode(i_o(), adr);
2772   }
2773   prefetch->init_req(0, control());
2774   set_i_o(_gvn.transform(prefetch));
2775 
2776   return true;
2777 }
2778 
2779 //----------------------------inline_unsafe_load_store----------------------------
2780 // This method serves a couple of different customers (depending on LoadStoreKind):
2781 //
2782 // LS_cmpxchg:
2783 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2784 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2785 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2786 //
2787 // LS_xadd:
2788 //   public int  getAndAddInt( Object o, long offset, int  delta)
2789 //   public long getAndAddLong(Object o, long offset, long delta)
2790 //
2791 // LS_xchg:
2792 //   int    getAndSet(Object o, long offset, int    newValue)
2793 //   long   getAndSet(Object o, long offset, long   newValue)
2794 //   Object getAndSet(Object o, long offset, Object newValue)
2795 //
2796 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2797   // This basic scheme here is the same as inline_unsafe_access, but
2798   // differs in enough details that combining them would make the code
2799   // overly confusing.  (This is a true fact! I originally combined
2800   // them, but even I was confused by it!) As much code/comments as
2801   // possible are retained from inline_unsafe_access though to make
2802   // the correspondences clearer. - dl
2803 
2804   if (callee()->is_static())  return false;  // caller must have the capability!
2805 
2806 #ifndef PRODUCT
2807   BasicType rtype;
2808   {
2809     ResourceMark rm;
2810     // Check the signatures.
2811     ciSignature* sig = callee()->signature();
2812     rtype = sig->return_type()->basic_type();
2813     if (kind == LS_xadd || kind == LS_xchg) {
2814       // Check the signatures.
2815 #ifdef ASSERT
2816       assert(rtype == type, "get and set must return the expected type");
2817       assert(sig->count() == 3, "get and set has 3 arguments");
2818       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2819       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2820       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2821 #endif // ASSERT
2822     } else if (kind == LS_cmpxchg) {
2823       // Check the signatures.
2824 #ifdef ASSERT
2825       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2826       assert(sig->count() == 4, "CAS has 4 arguments");
2827       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2828       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2829 #endif // ASSERT
2830     } else {
2831       ShouldNotReachHere();
2832     }
2833   }
2834 #endif //PRODUCT
2835 
2836   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2837 
2838   // Get arguments:
2839   Node* receiver = NULL;
2840   Node* base     = NULL;
2841   Node* offset   = NULL;
2842   Node* oldval   = NULL;
2843   Node* newval   = NULL;
2844   if (kind == LS_cmpxchg) {
2845     const bool two_slot_type = type2size[type] == 2;
2846     receiver = argument(0);  // type: oop
2847     base     = argument(1);  // type: oop
2848     offset   = argument(2);  // type: long
2849     oldval   = argument(4);  // type: oop, int, or long
2850     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2851   } else if (kind == LS_xadd || kind == LS_xchg){
2852     receiver = argument(0);  // type: oop
2853     base     = argument(1);  // type: oop
2854     offset   = argument(2);  // type: long
2855     oldval   = NULL;
2856     newval   = argument(4);  // type: oop, int, or long
2857   }
2858 
2859   // Null check receiver.
2860   receiver = null_check(receiver);
2861   if (stopped()) {
2862     return true;
2863   }
2864 
2865   // Build field offset expression.
2866   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2867   // to be plain byte offsets, which are also the same as those accepted
2868   // by oopDesc::field_base.
2869   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2870   // 32-bit machines ignore the high half of long offsets
2871   offset = ConvL2X(offset);
2872   Node* adr = make_unsafe_address(base, offset);
2873   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2874 
2875   // For CAS, unlike inline_unsafe_access, there seems no point in
2876   // trying to refine types. Just use the coarse types here.
2877   const Type *value_type = Type::get_const_basic_type(type);
2878   Compile::AliasType* alias_type = C->alias_type(adr_type);
2879   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2880 
2881   if (kind == LS_xchg && type == T_OBJECT) {
2882     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2883     if (tjp != NULL) {
2884       value_type = tjp;
2885     }
2886   }
2887 
2888   int alias_idx = C->get_alias_index(adr_type);
2889 
2890   // Memory-model-wise, a LoadStore acts like a little synchronized
2891   // block, so needs barriers on each side.  These don't translate
2892   // into actual barriers on most machines, but we still need rest of
2893   // compiler to respect ordering.
2894 
2895   insert_mem_bar(Op_MemBarRelease);
2896   insert_mem_bar(Op_MemBarCPUOrder);
2897 
2898   // 4984716: MemBars must be inserted before this
2899   //          memory node in order to avoid a false
2900   //          dependency which will confuse the scheduler.
2901   Node *mem = memory(alias_idx);
2902 
2903   // For now, we handle only those cases that actually exist: ints,
2904   // longs, and Object. Adding others should be straightforward.
2905   Node* load_store;
2906   switch(type) {
2907   case T_INT:
2908     if (kind == LS_xadd) {
2909       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2910     } else if (kind == LS_xchg) {
2911       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2912     } else if (kind == LS_cmpxchg) {
2913       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2914     } else {
2915       ShouldNotReachHere();
2916     }
2917     break;
2918   case T_LONG:
2919     if (kind == LS_xadd) {
2920       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2921     } else if (kind == LS_xchg) {
2922       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2923     } else if (kind == LS_cmpxchg) {
2924       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2925     } else {
2926       ShouldNotReachHere();
2927     }
2928     break;
2929   case T_OBJECT:
2930     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2931     // could be delayed during Parse (for example, in adjust_map_after_if()).
2932     // Execute transformation here to avoid barrier generation in such case.
2933     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2934       newval = _gvn.makecon(TypePtr::NULL_PTR);
2935 
2936     // Reference stores need a store barrier.
2937     if (kind == LS_xchg) {
2938       // If pre-barrier must execute before the oop store, old value will require do_load here.
2939       if (!can_move_pre_barrier()) {
2940         pre_barrier(true /* do_load*/,
2941                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2942                     NULL /* pre_val*/,
2943                     T_OBJECT);
2944       } // Else move pre_barrier to use load_store value, see below.
2945     } else if (kind == LS_cmpxchg) {
2946       // Same as for newval above:
2947       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2948         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2949       }
2950       // The only known value which might get overwritten is oldval.
2951       pre_barrier(false /* do_load */,
2952                   control(), NULL, NULL, max_juint, NULL, NULL,
2953                   oldval /* pre_val */,
2954                   T_OBJECT);
2955     } else {
2956       ShouldNotReachHere();
2957     }
2958 
2959 #ifdef _LP64
2960     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2961       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2962       if (kind == LS_xchg) {
2963         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2964                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2965       } else {
2966         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2967         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2968         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2969                                                                 newval_enc, oldval_enc));
2970       }
2971     } else
2972 #endif
2973     {
2974       if (kind == LS_xchg) {
2975         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2976       } else {
2977         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2978         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2979       }
2980     }
2981     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2982     break;
2983   default:
2984     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2985     break;
2986   }
2987 
2988   // SCMemProjNodes represent the memory state of a LoadStore. Their
2989   // main role is to prevent LoadStore nodes from being optimized away
2990   // when their results aren't used.
2991   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2992   set_memory(proj, alias_idx);
2993 
2994   if (type == T_OBJECT && kind == LS_xchg) {
2995 #ifdef _LP64
2996     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2997       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2998     }
2999 #endif
3000     if (can_move_pre_barrier()) {
3001       // Don't need to load pre_val. The old value is returned by load_store.
3002       // The pre_barrier can execute after the xchg as long as no safepoint
3003       // gets inserted between them.
3004       pre_barrier(false /* do_load */,
3005                   control(), NULL, NULL, max_juint, NULL, NULL,
3006                   load_store /* pre_val */,
3007                   T_OBJECT);
3008     }
3009   }
3010 
3011   // Add the trailing membar surrounding the access
3012   insert_mem_bar(Op_MemBarCPUOrder);
3013   insert_mem_bar(Op_MemBarAcquire);
3014 
3015   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3016   set_result(load_store);
3017   return true;
3018 }
3019 
3020 //----------------------------inline_unsafe_ordered_store----------------------
3021 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3022 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3023 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3024 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3025   // This is another variant of inline_unsafe_access, differing in
3026   // that it always issues store-store ("release") barrier and ensures
3027   // store-atomicity (which only matters for "long").
3028 
3029   if (callee()->is_static())  return false;  // caller must have the capability!
3030 
3031 #ifndef PRODUCT
3032   {
3033     ResourceMark rm;
3034     // Check the signatures.
3035     ciSignature* sig = callee()->signature();
3036 #ifdef ASSERT
3037     BasicType rtype = sig->return_type()->basic_type();
3038     assert(rtype == T_VOID, "must return void");
3039     assert(sig->count() == 3, "has 3 arguments");
3040     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3041     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3042 #endif // ASSERT
3043   }
3044 #endif //PRODUCT
3045 
3046   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3047 
3048   // Get arguments:
3049   Node* receiver = argument(0);  // type: oop
3050   Node* base     = argument(1);  // type: oop
3051   Node* offset   = argument(2);  // type: long
3052   Node* val      = argument(4);  // type: oop, int, or long
3053 
3054   // Null check receiver.
3055   receiver = null_check(receiver);
3056   if (stopped()) {
3057     return true;
3058   }
3059 
3060   // Build field offset expression.
3061   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3062   // 32-bit machines ignore the high half of long offsets
3063   offset = ConvL2X(offset);
3064   Node* adr = make_unsafe_address(base, offset);
3065   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3066   const Type *value_type = Type::get_const_basic_type(type);
3067   Compile::AliasType* alias_type = C->alias_type(adr_type);
3068 
3069   insert_mem_bar(Op_MemBarRelease);
3070   insert_mem_bar(Op_MemBarCPUOrder);
3071   // Ensure that the store is atomic for longs:
3072   const bool require_atomic_access = true;
3073   Node* store;
3074   if (type == T_OBJECT) // reference stores need a store barrier.
3075     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3076   else {
3077     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3078   }
3079   insert_mem_bar(Op_MemBarCPUOrder);
3080   return true;
3081 }
3082 
3083 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3084   // Regardless of form, don't allow previous ld/st to move down,
3085   // then issue acquire, release, or volatile mem_bar.
3086   insert_mem_bar(Op_MemBarCPUOrder);
3087   switch(id) {
3088     case vmIntrinsics::_loadFence:
3089       insert_mem_bar(Op_LoadFence);
3090       return true;
3091     case vmIntrinsics::_storeFence:
3092       insert_mem_bar(Op_StoreFence);
3093       return true;
3094     case vmIntrinsics::_fullFence:
3095       insert_mem_bar(Op_MemBarVolatile);
3096       return true;
3097     default:
3098       fatal_unexpected_iid(id);
3099       return false;
3100   }
3101 }
3102 
3103 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3104   if (!kls->is_Con()) {
3105     return true;
3106   }
3107   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3108   if (klsptr == NULL) {
3109     return true;
3110   }
3111   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3112   // don't need a guard for a klass that is already initialized
3113   return !ik->is_initialized();
3114 }
3115 
3116 //----------------------------inline_unsafe_allocate---------------------------
3117 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3118 bool LibraryCallKit::inline_unsafe_allocate() {
3119   if (callee()->is_static())  return false;  // caller must have the capability!
3120 
3121   null_check_receiver();  // null-check, then ignore
3122   Node* cls = null_check(argument(1));
3123   if (stopped())  return true;
3124 
3125   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3126   kls = null_check(kls);
3127   if (stopped())  return true;  // argument was like int.class
3128 
3129   Node* test = NULL;
3130   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3131     // Note:  The argument might still be an illegal value like
3132     // Serializable.class or Object[].class.   The runtime will handle it.
3133     // But we must make an explicit check for initialization.
3134     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3135     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3136     // can generate code to load it as unsigned byte.
3137     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3138     Node* bits = intcon(InstanceKlass::fully_initialized);
3139     test = _gvn.transform(new SubINode(inst, bits));
3140     // The 'test' is non-zero if we need to take a slow path.
3141   }
3142 
3143   Node* obj = new_instance(kls, test);
3144   set_result(obj);
3145   return true;
3146 }
3147 
3148 #ifdef TRACE_HAVE_INTRINSICS
3149 /*
3150  * oop -> myklass
3151  * myklass->trace_id |= USED
3152  * return myklass->trace_id & ~0x3
3153  */
3154 bool LibraryCallKit::inline_native_classID() {
3155   null_check_receiver();  // null-check, then ignore
3156   Node* cls = null_check(argument(1), T_OBJECT);
3157   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3158   kls = null_check(kls, T_OBJECT);
3159   ByteSize offset = TRACE_ID_OFFSET;
3160   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3161   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3162   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3163   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3164   Node* clsused = longcon(0x01l); // set the class bit
3165   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3166 
3167   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3168   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3169   set_result(andl);
3170   return true;
3171 }
3172 
3173 bool LibraryCallKit::inline_native_threadID() {
3174   Node* tls_ptr = NULL;
3175   Node* cur_thr = generate_current_thread(tls_ptr);
3176   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3177   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3178   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3179 
3180   Node* threadid = NULL;
3181   size_t thread_id_size = OSThread::thread_id_size();
3182   if (thread_id_size == (size_t) BytesPerLong) {
3183     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3184   } else if (thread_id_size == (size_t) BytesPerInt) {
3185     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3186   } else {
3187     ShouldNotReachHere();
3188   }
3189   set_result(threadid);
3190   return true;
3191 }
3192 #endif
3193 
3194 //------------------------inline_native_time_funcs--------------
3195 // inline code for System.currentTimeMillis() and System.nanoTime()
3196 // these have the same type and signature
3197 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3198   const TypeFunc* tf = OptoRuntime::void_long_Type();
3199   const TypePtr* no_memory_effects = NULL;
3200   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3201   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3202 #ifdef ASSERT
3203   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3204   assert(value_top == top(), "second value must be top");
3205 #endif
3206   set_result(value);
3207   return true;
3208 }
3209 
3210 //------------------------inline_native_currentThread------------------
3211 bool LibraryCallKit::inline_native_currentThread() {
3212   Node* junk = NULL;
3213   set_result(generate_current_thread(junk));
3214   return true;
3215 }
3216 
3217 //------------------------inline_native_isInterrupted------------------
3218 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3219 bool LibraryCallKit::inline_native_isInterrupted() {
3220   // Add a fast path to t.isInterrupted(clear_int):
3221   //   (t == Thread.current() &&
3222   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3223   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3224   // So, in the common case that the interrupt bit is false,
3225   // we avoid making a call into the VM.  Even if the interrupt bit
3226   // is true, if the clear_int argument is false, we avoid the VM call.
3227   // However, if the receiver is not currentThread, we must call the VM,
3228   // because there must be some locking done around the operation.
3229 
3230   // We only go to the fast case code if we pass two guards.
3231   // Paths which do not pass are accumulated in the slow_region.
3232 
3233   enum {
3234     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3235     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3236     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3237     PATH_LIMIT
3238   };
3239 
3240   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3241   // out of the function.
3242   insert_mem_bar(Op_MemBarCPUOrder);
3243 
3244   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3245   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3246 
3247   RegionNode* slow_region = new RegionNode(1);
3248   record_for_igvn(slow_region);
3249 
3250   // (a) Receiving thread must be the current thread.
3251   Node* rec_thr = argument(0);
3252   Node* tls_ptr = NULL;
3253   Node* cur_thr = generate_current_thread(tls_ptr);
3254   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3255   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3256 
3257   generate_slow_guard(bol_thr, slow_region);
3258 
3259   // (b) Interrupt bit on TLS must be false.
3260   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3261   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3262   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3263 
3264   // Set the control input on the field _interrupted read to prevent it floating up.
3265   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3266   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3267   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3268 
3269   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3270 
3271   // First fast path:  if (!TLS._interrupted) return false;
3272   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3273   result_rgn->init_req(no_int_result_path, false_bit);
3274   result_val->init_req(no_int_result_path, intcon(0));
3275 
3276   // drop through to next case
3277   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3278 
3279 #ifndef TARGET_OS_FAMILY_windows
3280   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3281   Node* clr_arg = argument(1);
3282   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3283   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3284   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3285 
3286   // Second fast path:  ... else if (!clear_int) return true;
3287   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3288   result_rgn->init_req(no_clear_result_path, false_arg);
3289   result_val->init_req(no_clear_result_path, intcon(1));
3290 
3291   // drop through to next case
3292   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3293 #else
3294   // To return true on Windows you must read the _interrupted field
3295   // and check the the event state i.e. take the slow path.
3296 #endif // TARGET_OS_FAMILY_windows
3297 
3298   // (d) Otherwise, go to the slow path.
3299   slow_region->add_req(control());
3300   set_control( _gvn.transform(slow_region));
3301 
3302   if (stopped()) {
3303     // There is no slow path.
3304     result_rgn->init_req(slow_result_path, top());
3305     result_val->init_req(slow_result_path, top());
3306   } else {
3307     // non-virtual because it is a private non-static
3308     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3309 
3310     Node* slow_val = set_results_for_java_call(slow_call);
3311     // this->control() comes from set_results_for_java_call
3312 
3313     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3314     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3315 
3316     // These two phis are pre-filled with copies of of the fast IO and Memory
3317     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3318     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3319 
3320     result_rgn->init_req(slow_result_path, control());
3321     result_io ->init_req(slow_result_path, i_o());
3322     result_mem->init_req(slow_result_path, reset_memory());
3323     result_val->init_req(slow_result_path, slow_val);
3324 
3325     set_all_memory(_gvn.transform(result_mem));
3326     set_i_o(       _gvn.transform(result_io));
3327   }
3328 
3329   C->set_has_split_ifs(true); // Has chance for split-if optimization
3330   set_result(result_rgn, result_val);
3331   return true;
3332 }
3333 
3334 //---------------------------load_mirror_from_klass----------------------------
3335 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3336 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3337   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3338   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3339 }
3340 
3341 //-----------------------load_klass_from_mirror_common-------------------------
3342 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3343 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3344 // and branch to the given path on the region.
3345 // If never_see_null, take an uncommon trap on null, so we can optimistically
3346 // compile for the non-null case.
3347 // If the region is NULL, force never_see_null = true.
3348 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3349                                                     bool never_see_null,
3350                                                     RegionNode* region,
3351                                                     int null_path,
3352                                                     int offset) {
3353   if (region == NULL)  never_see_null = true;
3354   Node* p = basic_plus_adr(mirror, offset);
3355   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3356   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3357   Node* null_ctl = top();
3358   kls = null_check_oop(kls, &null_ctl, never_see_null);
3359   if (region != NULL) {
3360     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3361     region->init_req(null_path, null_ctl);
3362   } else {
3363     assert(null_ctl == top(), "no loose ends");
3364   }
3365   return kls;
3366 }
3367 
3368 //--------------------(inline_native_Class_query helpers)---------------------
3369 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3370 // Fall through if (mods & mask) == bits, take the guard otherwise.
3371 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3372   // Branch around if the given klass has the given modifier bit set.
3373   // Like generate_guard, adds a new path onto the region.
3374   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3375   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3376   Node* mask = intcon(modifier_mask);
3377   Node* bits = intcon(modifier_bits);
3378   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3379   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3380   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3381   return generate_fair_guard(bol, region);
3382 }
3383 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3384   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3385 }
3386 
3387 //-------------------------inline_native_Class_query-------------------
3388 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3389   const Type* return_type = TypeInt::BOOL;
3390   Node* prim_return_value = top();  // what happens if it's a primitive class?
3391   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3392   bool expect_prim = false;     // most of these guys expect to work on refs
3393 
3394   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3395 
3396   Node* mirror = argument(0);
3397   Node* obj    = top();
3398 
3399   switch (id) {
3400   case vmIntrinsics::_isInstance:
3401     // nothing is an instance of a primitive type
3402     prim_return_value = intcon(0);
3403     obj = argument(1);
3404     break;
3405   case vmIntrinsics::_getModifiers:
3406     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3407     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3408     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3409     break;
3410   case vmIntrinsics::_isInterface:
3411     prim_return_value = intcon(0);
3412     break;
3413   case vmIntrinsics::_isArray:
3414     prim_return_value = intcon(0);
3415     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3416     break;
3417   case vmIntrinsics::_isPrimitive:
3418     prim_return_value = intcon(1);
3419     expect_prim = true;  // obviously
3420     break;
3421   case vmIntrinsics::_getSuperclass:
3422     prim_return_value = null();
3423     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3424     break;
3425   case vmIntrinsics::_getComponentType:
3426     prim_return_value = null();
3427     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3428     break;
3429   case vmIntrinsics::_getClassAccessFlags:
3430     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3431     return_type = TypeInt::INT;  // not bool!  6297094
3432     break;
3433   default:
3434     fatal_unexpected_iid(id);
3435     break;
3436   }
3437 
3438   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3439   if (mirror_con == NULL)  return false;  // cannot happen?
3440 
3441 #ifndef PRODUCT
3442   if (C->print_intrinsics() || C->print_inlining()) {
3443     ciType* k = mirror_con->java_mirror_type();
3444     if (k) {
3445       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3446       k->print_name();
3447       tty->cr();
3448     }
3449   }
3450 #endif
3451 
3452   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3453   RegionNode* region = new RegionNode(PATH_LIMIT);
3454   record_for_igvn(region);
3455   PhiNode* phi = new PhiNode(region, return_type);
3456 
3457   // The mirror will never be null of Reflection.getClassAccessFlags, however
3458   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3459   // if it is. See bug 4774291.
3460 
3461   // For Reflection.getClassAccessFlags(), the null check occurs in
3462   // the wrong place; see inline_unsafe_access(), above, for a similar
3463   // situation.
3464   mirror = null_check(mirror);
3465   // If mirror or obj is dead, only null-path is taken.
3466   if (stopped())  return true;
3467 
3468   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3469 
3470   // Now load the mirror's klass metaobject, and null-check it.
3471   // Side-effects region with the control path if the klass is null.
3472   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3473   // If kls is null, we have a primitive mirror.
3474   phi->init_req(_prim_path, prim_return_value);
3475   if (stopped()) { set_result(region, phi); return true; }
3476   bool safe_for_replace = (region->in(_prim_path) == top());
3477 
3478   Node* p;  // handy temp
3479   Node* null_ctl;
3480 
3481   // Now that we have the non-null klass, we can perform the real query.
3482   // For constant classes, the query will constant-fold in LoadNode::Value.
3483   Node* query_value = top();
3484   switch (id) {
3485   case vmIntrinsics::_isInstance:
3486     // nothing is an instance of a primitive type
3487     query_value = gen_instanceof(obj, kls, safe_for_replace);
3488     break;
3489 
3490   case vmIntrinsics::_getModifiers:
3491     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3492     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3493     break;
3494 
3495   case vmIntrinsics::_isInterface:
3496     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3497     if (generate_interface_guard(kls, region) != NULL)
3498       // A guard was added.  If the guard is taken, it was an interface.
3499       phi->add_req(intcon(1));
3500     // If we fall through, it's a plain class.
3501     query_value = intcon(0);
3502     break;
3503 
3504   case vmIntrinsics::_isArray:
3505     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3506     if (generate_array_guard(kls, region) != NULL)
3507       // A guard was added.  If the guard is taken, it was an array.
3508       phi->add_req(intcon(1));
3509     // If we fall through, it's a plain class.
3510     query_value = intcon(0);
3511     break;
3512 
3513   case vmIntrinsics::_isPrimitive:
3514     query_value = intcon(0); // "normal" path produces false
3515     break;
3516 
3517   case vmIntrinsics::_getSuperclass:
3518     // The rules here are somewhat unfortunate, but we can still do better
3519     // with random logic than with a JNI call.
3520     // Interfaces store null or Object as _super, but must report null.
3521     // Arrays store an intermediate super as _super, but must report Object.
3522     // Other types can report the actual _super.
3523     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3524     if (generate_interface_guard(kls, region) != NULL)
3525       // A guard was added.  If the guard is taken, it was an interface.
3526       phi->add_req(null());
3527     if (generate_array_guard(kls, region) != NULL)
3528       // A guard was added.  If the guard is taken, it was an array.
3529       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3530     // If we fall through, it's a plain class.  Get its _super.
3531     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3532     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3533     null_ctl = top();
3534     kls = null_check_oop(kls, &null_ctl);
3535     if (null_ctl != top()) {
3536       // If the guard is taken, Object.superClass is null (both klass and mirror).
3537       region->add_req(null_ctl);
3538       phi   ->add_req(null());
3539     }
3540     if (!stopped()) {
3541       query_value = load_mirror_from_klass(kls);
3542     }
3543     break;
3544 
3545   case vmIntrinsics::_getComponentType:
3546     if (generate_array_guard(kls, region) != NULL) {
3547       // Be sure to pin the oop load to the guard edge just created:
3548       Node* is_array_ctrl = region->in(region->req()-1);
3549       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3550       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3551       phi->add_req(cmo);
3552     }
3553     query_value = null();  // non-array case is null
3554     break;
3555 
3556   case vmIntrinsics::_getClassAccessFlags:
3557     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3558     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3559     break;
3560 
3561   default:
3562     fatal_unexpected_iid(id);
3563     break;
3564   }
3565 
3566   // Fall-through is the normal case of a query to a real class.
3567   phi->init_req(1, query_value);
3568   region->init_req(1, control());
3569 
3570   C->set_has_split_ifs(true); // Has chance for split-if optimization
3571   set_result(region, phi);
3572   return true;
3573 }
3574 
3575 //--------------------------inline_native_subtype_check------------------------
3576 // This intrinsic takes the JNI calls out of the heart of
3577 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3578 bool LibraryCallKit::inline_native_subtype_check() {
3579   // Pull both arguments off the stack.
3580   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3581   args[0] = argument(0);
3582   args[1] = argument(1);
3583   Node* klasses[2];             // corresponding Klasses: superk, subk
3584   klasses[0] = klasses[1] = top();
3585 
3586   enum {
3587     // A full decision tree on {superc is prim, subc is prim}:
3588     _prim_0_path = 1,           // {P,N} => false
3589                                 // {P,P} & superc!=subc => false
3590     _prim_same_path,            // {P,P} & superc==subc => true
3591     _prim_1_path,               // {N,P} => false
3592     _ref_subtype_path,          // {N,N} & subtype check wins => true
3593     _both_ref_path,             // {N,N} & subtype check loses => false
3594     PATH_LIMIT
3595   };
3596 
3597   RegionNode* region = new RegionNode(PATH_LIMIT);
3598   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3599   record_for_igvn(region);
3600 
3601   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3602   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3603   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3604 
3605   // First null-check both mirrors and load each mirror's klass metaobject.
3606   int which_arg;
3607   for (which_arg = 0; which_arg <= 1; which_arg++) {
3608     Node* arg = args[which_arg];
3609     arg = null_check(arg);
3610     if (stopped())  break;
3611     args[which_arg] = arg;
3612 
3613     Node* p = basic_plus_adr(arg, class_klass_offset);
3614     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3615     klasses[which_arg] = _gvn.transform(kls);
3616   }
3617 
3618   // Having loaded both klasses, test each for null.
3619   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3620   for (which_arg = 0; which_arg <= 1; which_arg++) {
3621     Node* kls = klasses[which_arg];
3622     Node* null_ctl = top();
3623     kls = null_check_oop(kls, &null_ctl, never_see_null);
3624     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3625     region->init_req(prim_path, null_ctl);
3626     if (stopped())  break;
3627     klasses[which_arg] = kls;
3628   }
3629 
3630   if (!stopped()) {
3631     // now we have two reference types, in klasses[0..1]
3632     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3633     Node* superk = klasses[0];  // the receiver
3634     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3635     // now we have a successful reference subtype check
3636     region->set_req(_ref_subtype_path, control());
3637   }
3638 
3639   // If both operands are primitive (both klasses null), then
3640   // we must return true when they are identical primitives.
3641   // It is convenient to test this after the first null klass check.
3642   set_control(region->in(_prim_0_path)); // go back to first null check
3643   if (!stopped()) {
3644     // Since superc is primitive, make a guard for the superc==subc case.
3645     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3646     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3647     generate_guard(bol_eq, region, PROB_FAIR);
3648     if (region->req() == PATH_LIMIT+1) {
3649       // A guard was added.  If the added guard is taken, superc==subc.
3650       region->swap_edges(PATH_LIMIT, _prim_same_path);
3651       region->del_req(PATH_LIMIT);
3652     }
3653     region->set_req(_prim_0_path, control()); // Not equal after all.
3654   }
3655 
3656   // these are the only paths that produce 'true':
3657   phi->set_req(_prim_same_path,   intcon(1));
3658   phi->set_req(_ref_subtype_path, intcon(1));
3659 
3660   // pull together the cases:
3661   assert(region->req() == PATH_LIMIT, "sane region");
3662   for (uint i = 1; i < region->req(); i++) {
3663     Node* ctl = region->in(i);
3664     if (ctl == NULL || ctl == top()) {
3665       region->set_req(i, top());
3666       phi   ->set_req(i, top());
3667     } else if (phi->in(i) == NULL) {
3668       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3669     }
3670   }
3671 
3672   set_control(_gvn.transform(region));
3673   set_result(_gvn.transform(phi));
3674   return true;
3675 }
3676 
3677 //---------------------generate_array_guard_common------------------------
3678 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3679                                                   bool obj_array, bool not_array) {
3680   // If obj_array/non_array==false/false:
3681   // Branch around if the given klass is in fact an array (either obj or prim).
3682   // If obj_array/non_array==false/true:
3683   // Branch around if the given klass is not an array klass of any kind.
3684   // If obj_array/non_array==true/true:
3685   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3686   // If obj_array/non_array==true/false:
3687   // Branch around if the kls is an oop array (Object[] or subtype)
3688   //
3689   // Like generate_guard, adds a new path onto the region.
3690   jint  layout_con = 0;
3691   Node* layout_val = get_layout_helper(kls, layout_con);
3692   if (layout_val == NULL) {
3693     bool query = (obj_array
3694                   ? Klass::layout_helper_is_objArray(layout_con)
3695                   : Klass::layout_helper_is_array(layout_con));
3696     if (query == not_array) {
3697       return NULL;                       // never a branch
3698     } else {                             // always a branch
3699       Node* always_branch = control();
3700       if (region != NULL)
3701         region->add_req(always_branch);
3702       set_control(top());
3703       return always_branch;
3704     }
3705   }
3706   // Now test the correct condition.
3707   jint  nval = (obj_array
3708                 ? ((jint)Klass::_lh_array_tag_type_value
3709                    <<    Klass::_lh_array_tag_shift)
3710                 : Klass::_lh_neutral_value);
3711   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3712   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3713   // invert the test if we are looking for a non-array
3714   if (not_array)  btest = BoolTest(btest).negate();
3715   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3716   return generate_fair_guard(bol, region);
3717 }
3718 
3719 
3720 //-----------------------inline_native_newArray--------------------------
3721 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3722 bool LibraryCallKit::inline_native_newArray() {
3723   Node* mirror    = argument(0);
3724   Node* count_val = argument(1);
3725 
3726   mirror = null_check(mirror);
3727   // If mirror or obj is dead, only null-path is taken.
3728   if (stopped())  return true;
3729 
3730   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3731   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3732   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3733   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3734   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3735 
3736   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3737   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3738                                                   result_reg, _slow_path);
3739   Node* normal_ctl   = control();
3740   Node* no_array_ctl = result_reg->in(_slow_path);
3741 
3742   // Generate code for the slow case.  We make a call to newArray().
3743   set_control(no_array_ctl);
3744   if (!stopped()) {
3745     // Either the input type is void.class, or else the
3746     // array klass has not yet been cached.  Either the
3747     // ensuing call will throw an exception, or else it
3748     // will cache the array klass for next time.
3749     PreserveJVMState pjvms(this);
3750     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3751     Node* slow_result = set_results_for_java_call(slow_call);
3752     // this->control() comes from set_results_for_java_call
3753     result_reg->set_req(_slow_path, control());
3754     result_val->set_req(_slow_path, slow_result);
3755     result_io ->set_req(_slow_path, i_o());
3756     result_mem->set_req(_slow_path, reset_memory());
3757   }
3758 
3759   set_control(normal_ctl);
3760   if (!stopped()) {
3761     // Normal case:  The array type has been cached in the java.lang.Class.
3762     // The following call works fine even if the array type is polymorphic.
3763     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3764     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3765     result_reg->init_req(_normal_path, control());
3766     result_val->init_req(_normal_path, obj);
3767     result_io ->init_req(_normal_path, i_o());
3768     result_mem->init_req(_normal_path, reset_memory());
3769   }
3770 
3771   // Return the combined state.
3772   set_i_o(        _gvn.transform(result_io)  );
3773   set_all_memory( _gvn.transform(result_mem));
3774 
3775   C->set_has_split_ifs(true); // Has chance for split-if optimization
3776   set_result(result_reg, result_val);
3777   return true;
3778 }
3779 
3780 //----------------------inline_native_getLength--------------------------
3781 // public static native int java.lang.reflect.Array.getLength(Object array);
3782 bool LibraryCallKit::inline_native_getLength() {
3783   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3784 
3785   Node* array = null_check(argument(0));
3786   // If array is dead, only null-path is taken.
3787   if (stopped())  return true;
3788 
3789   // Deoptimize if it is a non-array.
3790   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3791 
3792   if (non_array != NULL) {
3793     PreserveJVMState pjvms(this);
3794     set_control(non_array);
3795     uncommon_trap(Deoptimization::Reason_intrinsic,
3796                   Deoptimization::Action_maybe_recompile);
3797   }
3798 
3799   // If control is dead, only non-array-path is taken.
3800   if (stopped())  return true;
3801 
3802   // The works fine even if the array type is polymorphic.
3803   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3804   Node* result = load_array_length(array);
3805 
3806   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3807   set_result(result);
3808   return true;
3809 }
3810 
3811 //------------------------inline_array_copyOf----------------------------
3812 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3813 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3814 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3815   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3816 
3817   // Get the arguments.
3818   Node* original          = argument(0);
3819   Node* start             = is_copyOfRange? argument(1): intcon(0);
3820   Node* end               = is_copyOfRange? argument(2): argument(1);
3821   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3822 
3823   Node* newcopy;
3824 
3825   // Set the original stack and the reexecute bit for the interpreter to reexecute
3826   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3827   { PreserveReexecuteState preexecs(this);
3828     jvms()->set_should_reexecute(true);
3829 
3830     array_type_mirror = null_check(array_type_mirror);
3831     original          = null_check(original);
3832 
3833     // Check if a null path was taken unconditionally.
3834     if (stopped())  return true;
3835 
3836     Node* orig_length = load_array_length(original);
3837 
3838     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3839     klass_node = null_check(klass_node);
3840 
3841     RegionNode* bailout = new RegionNode(1);
3842     record_for_igvn(bailout);
3843 
3844     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3845     // Bail out if that is so.
3846     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3847     if (not_objArray != NULL) {
3848       // Improve the klass node's type from the new optimistic assumption:
3849       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3850       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3851       Node* cast = new CastPPNode(klass_node, akls);
3852       cast->init_req(0, control());
3853       klass_node = _gvn.transform(cast);
3854     }
3855 
3856     // Bail out if either start or end is negative.
3857     generate_negative_guard(start, bailout, &start);
3858     generate_negative_guard(end,   bailout, &end);
3859 
3860     Node* length = end;
3861     if (_gvn.type(start) != TypeInt::ZERO) {
3862       length = _gvn.transform(new SubINode(end, start));
3863     }
3864 
3865     // Bail out if length is negative.
3866     // Without this the new_array would throw
3867     // NegativeArraySizeException but IllegalArgumentException is what
3868     // should be thrown
3869     generate_negative_guard(length, bailout, &length);
3870 
3871     if (bailout->req() > 1) {
3872       PreserveJVMState pjvms(this);
3873       set_control(_gvn.transform(bailout));
3874       uncommon_trap(Deoptimization::Reason_intrinsic,
3875                     Deoptimization::Action_maybe_recompile);
3876     }
3877 
3878     if (!stopped()) {
3879       // How many elements will we copy from the original?
3880       // The answer is MinI(orig_length - start, length).
3881       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3882       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3883 
3884       newcopy = new_array(klass_node, length, 0);  // no argments to push
3885 
3886       // Generate a direct call to the right arraycopy function(s).
3887       // We know the copy is disjoint but we might not know if the
3888       // oop stores need checking.
3889       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3890       // This will fail a store-check if x contains any non-nulls.
3891       bool disjoint_bases = true;
3892       // if start > orig_length then the length of the copy may be
3893       // negative.
3894       bool length_never_negative = !is_copyOfRange;
3895       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3896                          original, start, newcopy, intcon(0), moved,
3897                          disjoint_bases, length_never_negative);
3898     }
3899   } // original reexecute is set back here
3900 
3901   C->set_has_split_ifs(true); // Has chance for split-if optimization
3902   if (!stopped()) {
3903     set_result(newcopy);
3904   }
3905   return true;
3906 }
3907 
3908 
3909 //----------------------generate_virtual_guard---------------------------
3910 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3911 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3912                                              RegionNode* slow_region) {
3913   ciMethod* method = callee();
3914   int vtable_index = method->vtable_index();
3915   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3916          err_msg_res("bad index %d", vtable_index));
3917   // Get the Method* out of the appropriate vtable entry.
3918   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3919                      vtable_index*vtableEntry::size()) * wordSize +
3920                      vtableEntry::method_offset_in_bytes();
3921   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3922   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3923 
3924   // Compare the target method with the expected method (e.g., Object.hashCode).
3925   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3926 
3927   Node* native_call = makecon(native_call_addr);
3928   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3929   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3930 
3931   return generate_slow_guard(test_native, slow_region);
3932 }
3933 
3934 //-----------------------generate_method_call----------------------------
3935 // Use generate_method_call to make a slow-call to the real
3936 // method if the fast path fails.  An alternative would be to
3937 // use a stub like OptoRuntime::slow_arraycopy_Java.
3938 // This only works for expanding the current library call,
3939 // not another intrinsic.  (E.g., don't use this for making an
3940 // arraycopy call inside of the copyOf intrinsic.)
3941 CallJavaNode*
3942 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3943   // When compiling the intrinsic method itself, do not use this technique.
3944   guarantee(callee() != C->method(), "cannot make slow-call to self");
3945 
3946   ciMethod* method = callee();
3947   // ensure the JVMS we have will be correct for this call
3948   guarantee(method_id == method->intrinsic_id(), "must match");
3949 
3950   const TypeFunc* tf = TypeFunc::make(method);
3951   CallJavaNode* slow_call;
3952   if (is_static) {
3953     assert(!is_virtual, "");
3954     slow_call = new CallStaticJavaNode(C, tf,
3955                            SharedRuntime::get_resolve_static_call_stub(),
3956                            method, bci());
3957   } else if (is_virtual) {
3958     null_check_receiver();
3959     int vtable_index = Method::invalid_vtable_index;
3960     if (UseInlineCaches) {
3961       // Suppress the vtable call
3962     } else {
3963       // hashCode and clone are not a miranda methods,
3964       // so the vtable index is fixed.
3965       // No need to use the linkResolver to get it.
3966        vtable_index = method->vtable_index();
3967        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3968               err_msg_res("bad index %d", vtable_index));
3969     }
3970     slow_call = new CallDynamicJavaNode(tf,
3971                           SharedRuntime::get_resolve_virtual_call_stub(),
3972                           method, vtable_index, bci());
3973   } else {  // neither virtual nor static:  opt_virtual
3974     null_check_receiver();
3975     slow_call = new CallStaticJavaNode(C, tf,
3976                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3977                                 method, bci());
3978     slow_call->set_optimized_virtual(true);
3979   }
3980   set_arguments_for_java_call(slow_call);
3981   set_edges_for_java_call(slow_call);
3982   return slow_call;
3983 }
3984 
3985 
3986 /**
3987  * Build special case code for calls to hashCode on an object. This call may
3988  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3989  * slightly different code.
3990  */
3991 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3992   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3993   assert(!(is_virtual && is_static), "either virtual, special, or static");
3994 
3995   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3996 
3997   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3998   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3999   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4000   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4001   Node* obj = NULL;
4002   if (!is_static) {
4003     // Check for hashing null object
4004     obj = null_check_receiver();
4005     if (stopped())  return true;        // unconditionally null
4006     result_reg->init_req(_null_path, top());
4007     result_val->init_req(_null_path, top());
4008   } else {
4009     // Do a null check, and return zero if null.
4010     // System.identityHashCode(null) == 0
4011     obj = argument(0);
4012     Node* null_ctl = top();
4013     obj = null_check_oop(obj, &null_ctl);
4014     result_reg->init_req(_null_path, null_ctl);
4015     result_val->init_req(_null_path, _gvn.intcon(0));
4016   }
4017 
4018   // Unconditionally null?  Then return right away.
4019   if (stopped()) {
4020     set_control( result_reg->in(_null_path));
4021     if (!stopped())
4022       set_result(result_val->in(_null_path));
4023     return true;
4024   }
4025 
4026   // We only go to the fast case code if we pass a number of guards.  The
4027   // paths which do not pass are accumulated in the slow_region.
4028   RegionNode* slow_region = new RegionNode(1);
4029   record_for_igvn(slow_region);
4030 
4031   // If this is a virtual call, we generate a funny guard.  We pull out
4032   // the vtable entry corresponding to hashCode() from the target object.
4033   // If the target method which we are calling happens to be the native
4034   // Object hashCode() method, we pass the guard.  We do not need this
4035   // guard for non-virtual calls -- the caller is known to be the native
4036   // Object hashCode().
4037   if (is_virtual) {
4038     // After null check, get the object's klass.
4039     Node* obj_klass = load_object_klass(obj);
4040     generate_virtual_guard(obj_klass, slow_region);
4041   }
4042 
4043   // Get the header out of the object, use LoadMarkNode when available
4044   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4045   // The control of the load must be NULL. Otherwise, the load can move before
4046   // the null check after castPP removal.
4047   Node* no_ctrl = NULL;
4048   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4049 
4050   // Test the header to see if it is unlocked.
4051   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4052   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4053   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4054   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4055   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4056 
4057   generate_slow_guard(test_unlocked, slow_region);
4058 
4059   // Get the hash value and check to see that it has been properly assigned.
4060   // We depend on hash_mask being at most 32 bits and avoid the use of
4061   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4062   // vm: see markOop.hpp.
4063   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4064   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4065   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4066   // This hack lets the hash bits live anywhere in the mark object now, as long
4067   // as the shift drops the relevant bits into the low 32 bits.  Note that
4068   // Java spec says that HashCode is an int so there's no point in capturing
4069   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4070   hshifted_header      = ConvX2I(hshifted_header);
4071   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4072 
4073   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4074   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4075   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4076 
4077   generate_slow_guard(test_assigned, slow_region);
4078 
4079   Node* init_mem = reset_memory();
4080   // fill in the rest of the null path:
4081   result_io ->init_req(_null_path, i_o());
4082   result_mem->init_req(_null_path, init_mem);
4083 
4084   result_val->init_req(_fast_path, hash_val);
4085   result_reg->init_req(_fast_path, control());
4086   result_io ->init_req(_fast_path, i_o());
4087   result_mem->init_req(_fast_path, init_mem);
4088 
4089   // Generate code for the slow case.  We make a call to hashCode().
4090   set_control(_gvn.transform(slow_region));
4091   if (!stopped()) {
4092     // No need for PreserveJVMState, because we're using up the present state.
4093     set_all_memory(init_mem);
4094     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4095     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4096     Node* slow_result = set_results_for_java_call(slow_call);
4097     // this->control() comes from set_results_for_java_call
4098     result_reg->init_req(_slow_path, control());
4099     result_val->init_req(_slow_path, slow_result);
4100     result_io  ->set_req(_slow_path, i_o());
4101     result_mem ->set_req(_slow_path, reset_memory());
4102   }
4103 
4104   // Return the combined state.
4105   set_i_o(        _gvn.transform(result_io)  );
4106   set_all_memory( _gvn.transform(result_mem));
4107 
4108   set_result(result_reg, result_val);
4109   return true;
4110 }
4111 
4112 //---------------------------inline_native_getClass----------------------------
4113 // public final native Class<?> java.lang.Object.getClass();
4114 //
4115 // Build special case code for calls to getClass on an object.
4116 bool LibraryCallKit::inline_native_getClass() {
4117   Node* obj = null_check_receiver();
4118   if (stopped())  return true;
4119   set_result(load_mirror_from_klass(load_object_klass(obj)));
4120   return true;
4121 }
4122 
4123 //-----------------inline_native_Reflection_getCallerClass---------------------
4124 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4125 //
4126 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4127 //
4128 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4129 // in that it must skip particular security frames and checks for
4130 // caller sensitive methods.
4131 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4132 #ifndef PRODUCT
4133   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4134     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4135   }
4136 #endif
4137 
4138   if (!jvms()->has_method()) {
4139 #ifndef PRODUCT
4140     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4141       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4142     }
4143 #endif
4144     return false;
4145   }
4146 
4147   // Walk back up the JVM state to find the caller at the required
4148   // depth.
4149   JVMState* caller_jvms = jvms();
4150 
4151   // Cf. JVM_GetCallerClass
4152   // NOTE: Start the loop at depth 1 because the current JVM state does
4153   // not include the Reflection.getCallerClass() frame.
4154   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4155     ciMethod* m = caller_jvms->method();
4156     switch (n) {
4157     case 0:
4158       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4159       break;
4160     case 1:
4161       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4162       if (!m->caller_sensitive()) {
4163 #ifndef PRODUCT
4164         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4165           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4166         }
4167 #endif
4168         return false;  // bail-out; let JVM_GetCallerClass do the work
4169       }
4170       break;
4171     default:
4172       if (!m->is_ignored_by_security_stack_walk()) {
4173         // We have reached the desired frame; return the holder class.
4174         // Acquire method holder as java.lang.Class and push as constant.
4175         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4176         ciInstance* caller_mirror = caller_klass->java_mirror();
4177         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4178 
4179 #ifndef PRODUCT
4180         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4181           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4182           tty->print_cr("  JVM state at this point:");
4183           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4184             ciMethod* m = jvms()->of_depth(i)->method();
4185             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4186           }
4187         }
4188 #endif
4189         return true;
4190       }
4191       break;
4192     }
4193   }
4194 
4195 #ifndef PRODUCT
4196   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4197     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4198     tty->print_cr("  JVM state at this point:");
4199     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4200       ciMethod* m = jvms()->of_depth(i)->method();
4201       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4202     }
4203   }
4204 #endif
4205 
4206   return false;  // bail-out; let JVM_GetCallerClass do the work
4207 }
4208 
4209 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4210   Node* arg = argument(0);
4211   Node* result;
4212 
4213   switch (id) {
4214   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4215   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4216   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4217   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4218 
4219   case vmIntrinsics::_doubleToLongBits: {
4220     // two paths (plus control) merge in a wood
4221     RegionNode *r = new RegionNode(3);
4222     Node *phi = new PhiNode(r, TypeLong::LONG);
4223 
4224     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4225     // Build the boolean node
4226     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4227 
4228     // Branch either way.
4229     // NaN case is less traveled, which makes all the difference.
4230     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4231     Node *opt_isnan = _gvn.transform(ifisnan);
4232     assert( opt_isnan->is_If(), "Expect an IfNode");
4233     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4234     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4235 
4236     set_control(iftrue);
4237 
4238     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4239     Node *slow_result = longcon(nan_bits); // return NaN
4240     phi->init_req(1, _gvn.transform( slow_result ));
4241     r->init_req(1, iftrue);
4242 
4243     // Else fall through
4244     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4245     set_control(iffalse);
4246 
4247     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4248     r->init_req(2, iffalse);
4249 
4250     // Post merge
4251     set_control(_gvn.transform(r));
4252     record_for_igvn(r);
4253 
4254     C->set_has_split_ifs(true); // Has chance for split-if optimization
4255     result = phi;
4256     assert(result->bottom_type()->isa_long(), "must be");
4257     break;
4258   }
4259 
4260   case vmIntrinsics::_floatToIntBits: {
4261     // two paths (plus control) merge in a wood
4262     RegionNode *r = new RegionNode(3);
4263     Node *phi = new PhiNode(r, TypeInt::INT);
4264 
4265     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4266     // Build the boolean node
4267     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4268 
4269     // Branch either way.
4270     // NaN case is less traveled, which makes all the difference.
4271     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4272     Node *opt_isnan = _gvn.transform(ifisnan);
4273     assert( opt_isnan->is_If(), "Expect an IfNode");
4274     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4275     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4276 
4277     set_control(iftrue);
4278 
4279     static const jint nan_bits = 0x7fc00000;
4280     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4281     phi->init_req(1, _gvn.transform( slow_result ));
4282     r->init_req(1, iftrue);
4283 
4284     // Else fall through
4285     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4286     set_control(iffalse);
4287 
4288     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4289     r->init_req(2, iffalse);
4290 
4291     // Post merge
4292     set_control(_gvn.transform(r));
4293     record_for_igvn(r);
4294 
4295     C->set_has_split_ifs(true); // Has chance for split-if optimization
4296     result = phi;
4297     assert(result->bottom_type()->isa_int(), "must be");
4298     break;
4299   }
4300 
4301   default:
4302     fatal_unexpected_iid(id);
4303     break;
4304   }
4305   set_result(_gvn.transform(result));
4306   return true;
4307 }
4308 
4309 #ifdef _LP64
4310 #define XTOP ,top() /*additional argument*/
4311 #else  //_LP64
4312 #define XTOP        /*no additional argument*/
4313 #endif //_LP64
4314 
4315 //----------------------inline_unsafe_copyMemory-------------------------
4316 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4317 bool LibraryCallKit::inline_unsafe_copyMemory() {
4318   if (callee()->is_static())  return false;  // caller must have the capability!
4319   null_check_receiver();  // null-check receiver
4320   if (stopped())  return true;
4321 
4322   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4323 
4324   Node* src_ptr =         argument(1);   // type: oop
4325   Node* src_off = ConvL2X(argument(2));  // type: long
4326   Node* dst_ptr =         argument(4);   // type: oop
4327   Node* dst_off = ConvL2X(argument(5));  // type: long
4328   Node* size    = ConvL2X(argument(7));  // type: long
4329 
4330   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4331          "fieldOffset must be byte-scaled");
4332 
4333   Node* src = make_unsafe_address(src_ptr, src_off);
4334   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4335 
4336   // Conservatively insert a memory barrier on all memory slices.
4337   // Do not let writes of the copy source or destination float below the copy.
4338   insert_mem_bar(Op_MemBarCPUOrder);
4339 
4340   // Call it.  Note that the length argument is not scaled.
4341   make_runtime_call(RC_LEAF|RC_NO_FP,
4342                     OptoRuntime::fast_arraycopy_Type(),
4343                     StubRoutines::unsafe_arraycopy(),
4344                     "unsafe_arraycopy",
4345                     TypeRawPtr::BOTTOM,
4346                     src, dst, size XTOP);
4347 
4348   // Do not let reads of the copy destination float above the copy.
4349   insert_mem_bar(Op_MemBarCPUOrder);
4350 
4351   return true;
4352 }
4353 
4354 //------------------------clone_coping-----------------------------------
4355 // Helper function for inline_native_clone.
4356 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4357   assert(obj_size != NULL, "");
4358   Node* raw_obj = alloc_obj->in(1);
4359   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4360 
4361   AllocateNode* alloc = NULL;
4362   if (ReduceBulkZeroing) {
4363     // We will be completely responsible for initializing this object -
4364     // mark Initialize node as complete.
4365     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4366     // The object was just allocated - there should be no any stores!
4367     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4368     // Mark as complete_with_arraycopy so that on AllocateNode
4369     // expansion, we know this AllocateNode is initialized by an array
4370     // copy and a StoreStore barrier exists after the array copy.
4371     alloc->initialization()->set_complete_with_arraycopy();
4372   }
4373 
4374   // Copy the fastest available way.
4375   // TODO: generate fields copies for small objects instead.
4376   Node* src  = obj;
4377   Node* dest = alloc_obj;
4378   Node* size = _gvn.transform(obj_size);
4379 
4380   // Exclude the header but include array length to copy by 8 bytes words.
4381   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4382   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4383                             instanceOopDesc::base_offset_in_bytes();
4384   // base_off:
4385   // 8  - 32-bit VM
4386   // 12 - 64-bit VM, compressed klass
4387   // 16 - 64-bit VM, normal klass
4388   if (base_off % BytesPerLong != 0) {
4389     assert(UseCompressedClassPointers, "");
4390     if (is_array) {
4391       // Exclude length to copy by 8 bytes words.
4392       base_off += sizeof(int);
4393     } else {
4394       // Include klass to copy by 8 bytes words.
4395       base_off = instanceOopDesc::klass_offset_in_bytes();
4396     }
4397     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4398   }
4399   src  = basic_plus_adr(src,  base_off);
4400   dest = basic_plus_adr(dest, base_off);
4401 
4402   // Compute the length also, if needed:
4403   Node* countx = size;
4404   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4405   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4406 
4407   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4408   bool disjoint_bases = true;
4409   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4410                                src, NULL, dest, NULL, countx,
4411                                /*dest_uninitialized*/true);
4412 
4413   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4414   if (card_mark) {
4415     assert(!is_array, "");
4416     // Put in store barrier for any and all oops we are sticking
4417     // into this object.  (We could avoid this if we could prove
4418     // that the object type contains no oop fields at all.)
4419     Node* no_particular_value = NULL;
4420     Node* no_particular_field = NULL;
4421     int raw_adr_idx = Compile::AliasIdxRaw;
4422     post_barrier(control(),
4423                  memory(raw_adr_type),
4424                  alloc_obj,
4425                  no_particular_field,
4426                  raw_adr_idx,
4427                  no_particular_value,
4428                  T_OBJECT,
4429                  false);
4430   }
4431 
4432   // Do not let reads from the cloned object float above the arraycopy.
4433   if (alloc != NULL) {
4434     // Do not let stores that initialize this object be reordered with
4435     // a subsequent store that would make this object accessible by
4436     // other threads.
4437     // Record what AllocateNode this StoreStore protects so that
4438     // escape analysis can go from the MemBarStoreStoreNode to the
4439     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4440     // based on the escape status of the AllocateNode.
4441     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4442   } else {
4443     insert_mem_bar(Op_MemBarCPUOrder);
4444   }
4445 }
4446 
4447 //------------------------inline_native_clone----------------------------
4448 // protected native Object java.lang.Object.clone();
4449 //
4450 // Here are the simple edge cases:
4451 //  null receiver => normal trap
4452 //  virtual and clone was overridden => slow path to out-of-line clone
4453 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4454 //
4455 // The general case has two steps, allocation and copying.
4456 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4457 //
4458 // Copying also has two cases, oop arrays and everything else.
4459 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4460 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4461 //
4462 // These steps fold up nicely if and when the cloned object's klass
4463 // can be sharply typed as an object array, a type array, or an instance.
4464 //
4465 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4466   PhiNode* result_val;
4467 
4468   // Set the reexecute bit for the interpreter to reexecute
4469   // the bytecode that invokes Object.clone if deoptimization happens.
4470   { PreserveReexecuteState preexecs(this);
4471     jvms()->set_should_reexecute(true);
4472 
4473     Node* obj = null_check_receiver();
4474     if (stopped())  return true;
4475 
4476     Node* obj_klass = load_object_klass(obj);
4477     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4478     const TypeOopPtr*   toop   = ((tklass != NULL)
4479                                 ? tklass->as_instance_type()
4480                                 : TypeInstPtr::NOTNULL);
4481 
4482     // Conservatively insert a memory barrier on all memory slices.
4483     // Do not let writes into the original float below the clone.
4484     insert_mem_bar(Op_MemBarCPUOrder);
4485 
4486     // paths into result_reg:
4487     enum {
4488       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4489       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4490       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4491       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4492       PATH_LIMIT
4493     };
4494     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4495     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4496     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4497     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4498     record_for_igvn(result_reg);
4499 
4500     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4501     int raw_adr_idx = Compile::AliasIdxRaw;
4502 
4503     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4504     if (array_ctl != NULL) {
4505       // It's an array.
4506       PreserveJVMState pjvms(this);
4507       set_control(array_ctl);
4508       Node* obj_length = load_array_length(obj);
4509       Node* obj_size  = NULL;
4510       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4511 
4512       if (!use_ReduceInitialCardMarks()) {
4513         // If it is an oop array, it requires very special treatment,
4514         // because card marking is required on each card of the array.
4515         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4516         if (is_obja != NULL) {
4517           PreserveJVMState pjvms2(this);
4518           set_control(is_obja);
4519           // Generate a direct call to the right arraycopy function(s).
4520           bool disjoint_bases = true;
4521           bool length_never_negative = true;
4522           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4523                              obj, intcon(0), alloc_obj, intcon(0),
4524                              obj_length,
4525                              disjoint_bases, length_never_negative);
4526           result_reg->init_req(_objArray_path, control());
4527           result_val->init_req(_objArray_path, alloc_obj);
4528           result_i_o ->set_req(_objArray_path, i_o());
4529           result_mem ->set_req(_objArray_path, reset_memory());
4530         }
4531       }
4532       // Otherwise, there are no card marks to worry about.
4533       // (We can dispense with card marks if we know the allocation
4534       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4535       //  causes the non-eden paths to take compensating steps to
4536       //  simulate a fresh allocation, so that no further
4537       //  card marks are required in compiled code to initialize
4538       //  the object.)
4539 
4540       if (!stopped()) {
4541         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4542 
4543         // Present the results of the copy.
4544         result_reg->init_req(_array_path, control());
4545         result_val->init_req(_array_path, alloc_obj);
4546         result_i_o ->set_req(_array_path, i_o());
4547         result_mem ->set_req(_array_path, reset_memory());
4548       }
4549     }
4550 
4551     // We only go to the instance fast case code if we pass a number of guards.
4552     // The paths which do not pass are accumulated in the slow_region.
4553     RegionNode* slow_region = new RegionNode(1);
4554     record_for_igvn(slow_region);
4555     if (!stopped()) {
4556       // It's an instance (we did array above).  Make the slow-path tests.
4557       // If this is a virtual call, we generate a funny guard.  We grab
4558       // the vtable entry corresponding to clone() from the target object.
4559       // If the target method which we are calling happens to be the
4560       // Object clone() method, we pass the guard.  We do not need this
4561       // guard for non-virtual calls; the caller is known to be the native
4562       // Object clone().
4563       if (is_virtual) {
4564         generate_virtual_guard(obj_klass, slow_region);
4565       }
4566 
4567       // The object must be cloneable and must not have a finalizer.
4568       // Both of these conditions may be checked in a single test.
4569       // We could optimize the cloneable test further, but we don't care.
4570       generate_access_flags_guard(obj_klass,
4571                                   // Test both conditions:
4572                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4573                                   // Must be cloneable but not finalizer:
4574                                   JVM_ACC_IS_CLONEABLE,
4575                                   slow_region);
4576     }
4577 
4578     if (!stopped()) {
4579       // It's an instance, and it passed the slow-path tests.
4580       PreserveJVMState pjvms(this);
4581       Node* obj_size  = NULL;
4582       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4583 
4584       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4585 
4586       // Present the results of the slow call.
4587       result_reg->init_req(_instance_path, control());
4588       result_val->init_req(_instance_path, alloc_obj);
4589       result_i_o ->set_req(_instance_path, i_o());
4590       result_mem ->set_req(_instance_path, reset_memory());
4591     }
4592 
4593     // Generate code for the slow case.  We make a call to clone().
4594     set_control(_gvn.transform(slow_region));
4595     if (!stopped()) {
4596       PreserveJVMState pjvms(this);
4597       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4598       Node* slow_result = set_results_for_java_call(slow_call);
4599       // this->control() comes from set_results_for_java_call
4600       result_reg->init_req(_slow_path, control());
4601       result_val->init_req(_slow_path, slow_result);
4602       result_i_o ->set_req(_slow_path, i_o());
4603       result_mem ->set_req(_slow_path, reset_memory());
4604     }
4605 
4606     // Return the combined state.
4607     set_control(    _gvn.transform(result_reg));
4608     set_i_o(        _gvn.transform(result_i_o));
4609     set_all_memory( _gvn.transform(result_mem));
4610   } // original reexecute is set back here
4611 
4612   set_result(_gvn.transform(result_val));
4613   return true;
4614 }
4615 
4616 //------------------------------basictype2arraycopy----------------------------
4617 address LibraryCallKit::basictype2arraycopy(BasicType t,
4618                                             Node* src_offset,
4619                                             Node* dest_offset,
4620                                             bool disjoint_bases,
4621                                             const char* &name,
4622                                             bool dest_uninitialized) {
4623   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4624   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4625 
4626   bool aligned = false;
4627   bool disjoint = disjoint_bases;
4628 
4629   // if the offsets are the same, we can treat the memory regions as
4630   // disjoint, because either the memory regions are in different arrays,
4631   // or they are identical (which we can treat as disjoint.)  We can also
4632   // treat a copy with a destination index  less that the source index
4633   // as disjoint since a low->high copy will work correctly in this case.
4634   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4635       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4636     // both indices are constants
4637     int s_offs = src_offset_inttype->get_con();
4638     int d_offs = dest_offset_inttype->get_con();
4639     int element_size = type2aelembytes(t);
4640     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4641               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4642     if (s_offs >= d_offs)  disjoint = true;
4643   } else if (src_offset == dest_offset && src_offset != NULL) {
4644     // This can occur if the offsets are identical non-constants.
4645     disjoint = true;
4646   }
4647 
4648   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4649 }
4650 
4651 
4652 //------------------------------inline_arraycopy-----------------------
4653 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4654 //                                                      Object dest, int destPos,
4655 //                                                      int length);
4656 bool LibraryCallKit::inline_arraycopy() {
4657   // Get the arguments.
4658   Node* src         = argument(0);  // type: oop
4659   Node* src_offset  = argument(1);  // type: int
4660   Node* dest        = argument(2);  // type: oop
4661   Node* dest_offset = argument(3);  // type: int
4662   Node* length      = argument(4);  // type: int
4663 
4664   // Compile time checks.  If any of these checks cannot be verified at compile time,
4665   // we do not make a fast path for this call.  Instead, we let the call remain as it
4666   // is.  The checks we choose to mandate at compile time are:
4667   //
4668   // (1) src and dest are arrays.
4669   const Type* src_type  = src->Value(&_gvn);
4670   const Type* dest_type = dest->Value(&_gvn);
4671   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4672   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4673 
4674   // Do we have the type of src?
4675   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4676   // Do we have the type of dest?
4677   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4678   // Is the type for src from speculation?
4679   bool src_spec = false;
4680   // Is the type for dest from speculation?
4681   bool dest_spec = false;
4682 
4683   if (!has_src || !has_dest) {
4684     // We don't have sufficient type information, let's see if
4685     // speculative types can help. We need to have types for both src
4686     // and dest so that it pays off.
4687 
4688     // Do we already have or could we have type information for src
4689     bool could_have_src = has_src;
4690     // Do we already have or could we have type information for dest
4691     bool could_have_dest = has_dest;
4692 
4693     ciKlass* src_k = NULL;
4694     if (!has_src) {
4695       src_k = src_type->speculative_type_not_null();
4696       if (src_k != NULL && src_k->is_array_klass()) {
4697         could_have_src = true;
4698       }
4699     }
4700 
4701     ciKlass* dest_k = NULL;
4702     if (!has_dest) {
4703       dest_k = dest_type->speculative_type_not_null();
4704       if (dest_k != NULL && dest_k->is_array_klass()) {
4705         could_have_dest = true;
4706       }
4707     }
4708 
4709     if (could_have_src && could_have_dest) {
4710       // This is going to pay off so emit the required guards
4711       if (!has_src) {
4712         src = maybe_cast_profiled_obj(src, src_k);
4713         src_type  = _gvn.type(src);
4714         top_src  = src_type->isa_aryptr();
4715         has_src = (top_src != NULL && top_src->klass() != NULL);
4716         src_spec = true;
4717       }
4718       if (!has_dest) {
4719         dest = maybe_cast_profiled_obj(dest, dest_k);
4720         dest_type  = _gvn.type(dest);
4721         top_dest  = dest_type->isa_aryptr();
4722         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4723         dest_spec = true;
4724       }
4725     }
4726   }
4727 
4728   if (!has_src || !has_dest) {
4729     // Conservatively insert a memory barrier on all memory slices.
4730     // Do not let writes into the source float below the arraycopy.
4731     insert_mem_bar(Op_MemBarCPUOrder);
4732 
4733     // Call StubRoutines::generic_arraycopy stub.
4734     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4735                        src, src_offset, dest, dest_offset, length);
4736 
4737     // Do not let reads from the destination float above the arraycopy.
4738     // Since we cannot type the arrays, we don't know which slices
4739     // might be affected.  We could restrict this barrier only to those
4740     // memory slices which pertain to array elements--but don't bother.
4741     if (!InsertMemBarAfterArraycopy)
4742       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4743       insert_mem_bar(Op_MemBarCPUOrder);
4744     return true;
4745   }
4746 
4747   // (2) src and dest arrays must have elements of the same BasicType
4748   // Figure out the size and type of the elements we will be copying.
4749   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4750   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4751   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4752   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4753 
4754   if (src_elem != dest_elem || dest_elem == T_VOID) {
4755     // The component types are not the same or are not recognized.  Punt.
4756     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4757     generate_slow_arraycopy(TypePtr::BOTTOM,
4758                             src, src_offset, dest, dest_offset, length,
4759                             /*dest_uninitialized*/false);
4760     return true;
4761   }
4762 
4763   if (src_elem == T_OBJECT) {
4764     // If both arrays are object arrays then having the exact types
4765     // for both will remove the need for a subtype check at runtime
4766     // before the call and may make it possible to pick a faster copy
4767     // routine (without a subtype check on every element)
4768     // Do we have the exact type of src?
4769     bool could_have_src = src_spec;
4770     // Do we have the exact type of dest?
4771     bool could_have_dest = dest_spec;
4772     ciKlass* src_k = top_src->klass();
4773     ciKlass* dest_k = top_dest->klass();
4774     if (!src_spec) {
4775       src_k = src_type->speculative_type_not_null();
4776       if (src_k != NULL && src_k->is_array_klass()) {
4777           could_have_src = true;
4778       }
4779     }
4780     if (!dest_spec) {
4781       dest_k = dest_type->speculative_type_not_null();
4782       if (dest_k != NULL && dest_k->is_array_klass()) {
4783         could_have_dest = true;
4784       }
4785     }
4786     if (could_have_src && could_have_dest) {
4787       // If we can have both exact types, emit the missing guards
4788       if (could_have_src && !src_spec) {
4789         src = maybe_cast_profiled_obj(src, src_k);
4790       }
4791       if (could_have_dest && !dest_spec) {
4792         dest = maybe_cast_profiled_obj(dest, dest_k);
4793       }
4794     }
4795   }
4796 
4797   //---------------------------------------------------------------------------
4798   // We will make a fast path for this call to arraycopy.
4799 
4800   // We have the following tests left to perform:
4801   //
4802   // (3) src and dest must not be null.
4803   // (4) src_offset must not be negative.
4804   // (5) dest_offset must not be negative.
4805   // (6) length must not be negative.
4806   // (7) src_offset + length must not exceed length of src.
4807   // (8) dest_offset + length must not exceed length of dest.
4808   // (9) each element of an oop array must be assignable
4809 
4810   RegionNode* slow_region = new RegionNode(1);
4811   record_for_igvn(slow_region);
4812 
4813   // (3) operands must not be null
4814   // We currently perform our null checks with the null_check routine.
4815   // This means that the null exceptions will be reported in the caller
4816   // rather than (correctly) reported inside of the native arraycopy call.
4817   // This should be corrected, given time.  We do our null check with the
4818   // stack pointer restored.
4819   src  = null_check(src,  T_ARRAY);
4820   dest = null_check(dest, T_ARRAY);
4821 
4822   // (4) src_offset must not be negative.
4823   generate_negative_guard(src_offset, slow_region);
4824 
4825   // (5) dest_offset must not be negative.
4826   generate_negative_guard(dest_offset, slow_region);
4827 
4828   // (6) length must not be negative (moved to generate_arraycopy()).
4829   // generate_negative_guard(length, slow_region);
4830 
4831   // (7) src_offset + length must not exceed length of src.
4832   generate_limit_guard(src_offset, length,
4833                        load_array_length(src),
4834                        slow_region);
4835 
4836   // (8) dest_offset + length must not exceed length of dest.
4837   generate_limit_guard(dest_offset, length,
4838                        load_array_length(dest),
4839                        slow_region);
4840 
4841   // (9) each element of an oop array must be assignable
4842   // The generate_arraycopy subroutine checks this.
4843 
4844   // This is where the memory effects are placed:
4845   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4846   generate_arraycopy(adr_type, dest_elem,
4847                      src, src_offset, dest, dest_offset, length,
4848                      false, false, slow_region);
4849 
4850   return true;
4851 }
4852 
4853 //-----------------------------generate_arraycopy----------------------
4854 // Generate an optimized call to arraycopy.
4855 // Caller must guard against non-arrays.
4856 // Caller must determine a common array basic-type for both arrays.
4857 // Caller must validate offsets against array bounds.
4858 // The slow_region has already collected guard failure paths
4859 // (such as out of bounds length or non-conformable array types).
4860 // The generated code has this shape, in general:
4861 //
4862 //     if (length == 0)  return   // via zero_path
4863 //     slowval = -1
4864 //     if (types unknown) {
4865 //       slowval = call generic copy loop
4866 //       if (slowval == 0)  return  // via checked_path
4867 //     } else if (indexes in bounds) {
4868 //       if ((is object array) && !(array type check)) {
4869 //         slowval = call checked copy loop
4870 //         if (slowval == 0)  return  // via checked_path
4871 //       } else {
4872 //         call bulk copy loop
4873 //         return  // via fast_path
4874 //       }
4875 //     }
4876 //     // adjust params for remaining work:
4877 //     if (slowval != -1) {
4878 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4879 //     }
4880 //   slow_region:
4881 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4882 //     return  // via slow_call_path
4883 //
4884 // This routine is used from several intrinsics:  System.arraycopy,
4885 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4886 //
4887 void
4888 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4889                                    BasicType basic_elem_type,
4890                                    Node* src,  Node* src_offset,
4891                                    Node* dest, Node* dest_offset,
4892                                    Node* copy_length,
4893                                    bool disjoint_bases,
4894                                    bool length_never_negative,
4895                                    RegionNode* slow_region) {
4896 
4897   if (slow_region == NULL) {
4898     slow_region = new RegionNode(1);
4899     record_for_igvn(slow_region);
4900   }
4901 
4902   Node* original_dest      = dest;
4903   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4904   bool  dest_uninitialized = false;
4905 
4906   // See if this is the initialization of a newly-allocated array.
4907   // If so, we will take responsibility here for initializing it to zero.
4908   // (Note:  Because tightly_coupled_allocation performs checks on the
4909   // out-edges of the dest, we need to avoid making derived pointers
4910   // from it until we have checked its uses.)
4911   if (ReduceBulkZeroing
4912       && !ZeroTLAB              // pointless if already zeroed
4913       && basic_elem_type != T_CONFLICT // avoid corner case
4914       && !src->eqv_uncast(dest)
4915       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4916           != NULL)
4917       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4918       && alloc->maybe_set_complete(&_gvn)) {
4919     // "You break it, you buy it."
4920     InitializeNode* init = alloc->initialization();
4921     assert(init->is_complete(), "we just did this");
4922     init->set_complete_with_arraycopy();
4923     assert(dest->is_CheckCastPP(), "sanity");
4924     assert(dest->in(0)->in(0) == init, "dest pinned");
4925     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4926     // From this point on, every exit path is responsible for
4927     // initializing any non-copied parts of the object to zero.
4928     // Also, if this flag is set we make sure that arraycopy interacts properly
4929     // with G1, eliding pre-barriers. See CR 6627983.
4930     dest_uninitialized = true;
4931   } else {
4932     // No zeroing elimination here.
4933     alloc             = NULL;
4934     //original_dest   = dest;
4935     //dest_uninitialized = false;
4936   }
4937 
4938   // Results are placed here:
4939   enum { fast_path        = 1,  // normal void-returning assembly stub
4940          checked_path     = 2,  // special assembly stub with cleanup
4941          slow_call_path   = 3,  // something went wrong; call the VM
4942          zero_path        = 4,  // bypass when length of copy is zero
4943          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4944          PATH_LIMIT       = 6
4945   };
4946   RegionNode* result_region = new RegionNode(PATH_LIMIT);
4947   PhiNode*    result_i_o    = new PhiNode(result_region, Type::ABIO);
4948   PhiNode*    result_memory = new PhiNode(result_region, Type::MEMORY, adr_type);
4949   record_for_igvn(result_region);
4950   _gvn.set_type_bottom(result_i_o);
4951   _gvn.set_type_bottom(result_memory);
4952   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4953 
4954   // The slow_control path:
4955   Node* slow_control;
4956   Node* slow_i_o = i_o();
4957   Node* slow_mem = memory(adr_type);
4958   debug_only(slow_control = (Node*) badAddress);
4959 
4960   // Checked control path:
4961   Node* checked_control = top();
4962   Node* checked_mem     = NULL;
4963   Node* checked_i_o     = NULL;
4964   Node* checked_value   = NULL;
4965 
4966   if (basic_elem_type == T_CONFLICT) {
4967     assert(!dest_uninitialized, "");
4968     Node* cv = generate_generic_arraycopy(adr_type,
4969                                           src, src_offset, dest, dest_offset,
4970                                           copy_length, dest_uninitialized);
4971     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4972     checked_control = control();
4973     checked_i_o     = i_o();
4974     checked_mem     = memory(adr_type);
4975     checked_value   = cv;
4976     set_control(top());         // no fast path
4977   }
4978 
4979   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4980   if (not_pos != NULL) {
4981     PreserveJVMState pjvms(this);
4982     set_control(not_pos);
4983 
4984     // (6) length must not be negative.
4985     if (!length_never_negative) {
4986       generate_negative_guard(copy_length, slow_region);
4987     }
4988 
4989     // copy_length is 0.
4990     if (!stopped() && dest_uninitialized) {
4991       Node* dest_length = alloc->in(AllocateNode::ALength);
4992       if (copy_length->eqv_uncast(dest_length)
4993           || _gvn.find_int_con(dest_length, 1) <= 0) {
4994         // There is no zeroing to do. No need for a secondary raw memory barrier.
4995       } else {
4996         // Clear the whole thing since there are no source elements to copy.
4997         generate_clear_array(adr_type, dest, basic_elem_type,
4998                              intcon(0), NULL,
4999                              alloc->in(AllocateNode::AllocSize));
5000         // Use a secondary InitializeNode as raw memory barrier.
5001         // Currently it is needed only on this path since other
5002         // paths have stub or runtime calls as raw memory barriers.
5003         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5004                                                        Compile::AliasIdxRaw,
5005                                                        top())->as_Initialize();
5006         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5007       }
5008     }
5009 
5010     // Present the results of the fast call.
5011     result_region->init_req(zero_path, control());
5012     result_i_o   ->init_req(zero_path, i_o());
5013     result_memory->init_req(zero_path, memory(adr_type));
5014   }
5015 
5016   if (!stopped() && dest_uninitialized) {
5017     // We have to initialize the *uncopied* part of the array to zero.
5018     // The copy destination is the slice dest[off..off+len].  The other slices
5019     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5020     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5021     Node* dest_length = alloc->in(AllocateNode::ALength);
5022     Node* dest_tail   = _gvn.transform(new AddINode(dest_offset, copy_length));
5023 
5024     // If there is a head section that needs zeroing, do it now.
5025     if (find_int_con(dest_offset, -1) != 0) {
5026       generate_clear_array(adr_type, dest, basic_elem_type,
5027                            intcon(0), dest_offset,
5028                            NULL);
5029     }
5030 
5031     // Next, perform a dynamic check on the tail length.
5032     // It is often zero, and we can win big if we prove this.
5033     // There are two wins:  Avoid generating the ClearArray
5034     // with its attendant messy index arithmetic, and upgrade
5035     // the copy to a more hardware-friendly word size of 64 bits.
5036     Node* tail_ctl = NULL;
5037     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5038       Node* cmp_lt   = _gvn.transform(new CmpINode(dest_tail, dest_length));
5039       Node* bol_lt   = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
5040       tail_ctl = generate_slow_guard(bol_lt, NULL);
5041       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5042     }
5043 
5044     // At this point, let's assume there is no tail.
5045     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5046       // There is no tail.  Try an upgrade to a 64-bit copy.
5047       bool didit = false;
5048       { PreserveJVMState pjvms(this);
5049         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5050                                          src, src_offset, dest, dest_offset,
5051                                          dest_size, dest_uninitialized);
5052         if (didit) {
5053           // Present the results of the block-copying fast call.
5054           result_region->init_req(bcopy_path, control());
5055           result_i_o   ->init_req(bcopy_path, i_o());
5056           result_memory->init_req(bcopy_path, memory(adr_type));
5057         }
5058       }
5059       if (didit)
5060         set_control(top());     // no regular fast path
5061     }
5062 
5063     // Clear the tail, if any.
5064     if (tail_ctl != NULL) {
5065       Node* notail_ctl = stopped() ? NULL : control();
5066       set_control(tail_ctl);
5067       if (notail_ctl == NULL) {
5068         generate_clear_array(adr_type, dest, basic_elem_type,
5069                              dest_tail, NULL,
5070                              dest_size);
5071       } else {
5072         // Make a local merge.
5073         Node* done_ctl = new RegionNode(3);
5074         Node* done_mem = new PhiNode(done_ctl, Type::MEMORY, adr_type);
5075         done_ctl->init_req(1, notail_ctl);
5076         done_mem->init_req(1, memory(adr_type));
5077         generate_clear_array(adr_type, dest, basic_elem_type,
5078                              dest_tail, NULL,
5079                              dest_size);
5080         done_ctl->init_req(2, control());
5081         done_mem->init_req(2, memory(adr_type));
5082         set_control( _gvn.transform(done_ctl));
5083         set_memory(  _gvn.transform(done_mem), adr_type );
5084       }
5085     }
5086   }
5087 
5088   BasicType copy_type = basic_elem_type;
5089   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5090   if (!stopped() && copy_type == T_OBJECT) {
5091     // If src and dest have compatible element types, we can copy bits.
5092     // Types S[] and D[] are compatible if D is a supertype of S.
5093     //
5094     // If they are not, we will use checked_oop_disjoint_arraycopy,
5095     // which performs a fast optimistic per-oop check, and backs off
5096     // further to JVM_ArrayCopy on the first per-oop check that fails.
5097     // (Actually, we don't move raw bits only; the GC requires card marks.)
5098 
5099     // Get the Klass* for both src and dest
5100     Node* src_klass  = load_object_klass(src);
5101     Node* dest_klass = load_object_klass(dest);
5102 
5103     // Generate the subtype check.
5104     // This might fold up statically, or then again it might not.
5105     //
5106     // Non-static example:  Copying List<String>.elements to a new String[].
5107     // The backing store for a List<String> is always an Object[],
5108     // but its elements are always type String, if the generic types
5109     // are correct at the source level.
5110     //
5111     // Test S[] against D[], not S against D, because (probably)
5112     // the secondary supertype cache is less busy for S[] than S.
5113     // This usually only matters when D is an interface.
5114     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5115     // Plug failing path into checked_oop_disjoint_arraycopy
5116     if (not_subtype_ctrl != top()) {
5117       PreserveJVMState pjvms(this);
5118       set_control(not_subtype_ctrl);
5119       // (At this point we can assume disjoint_bases, since types differ.)
5120       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5121       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5122       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5123       Node* dest_elem_klass = _gvn.transform(n1);
5124       Node* cv = generate_checkcast_arraycopy(adr_type,
5125                                               dest_elem_klass,
5126                                               src, src_offset, dest, dest_offset,
5127                                               ConvI2X(copy_length), dest_uninitialized);
5128       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5129       checked_control = control();
5130       checked_i_o     = i_o();
5131       checked_mem     = memory(adr_type);
5132       checked_value   = cv;
5133     }
5134     // At this point we know we do not need type checks on oop stores.
5135 
5136     // Let's see if we need card marks:
5137     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5138       // If we do not need card marks, copy using the jint or jlong stub.
5139       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5140       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5141              "sizes agree");
5142     }
5143   }
5144 
5145   if (!stopped()) {
5146     // Generate the fast path, if possible.
5147     PreserveJVMState pjvms(this);
5148     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5149                                  src, src_offset, dest, dest_offset,
5150                                  ConvI2X(copy_length), dest_uninitialized);
5151 
5152     // Present the results of the fast call.
5153     result_region->init_req(fast_path, control());
5154     result_i_o   ->init_req(fast_path, i_o());
5155     result_memory->init_req(fast_path, memory(adr_type));
5156   }
5157 
5158   // Here are all the slow paths up to this point, in one bundle:
5159   slow_control = top();
5160   if (slow_region != NULL)
5161     slow_control = _gvn.transform(slow_region);
5162   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5163 
5164   set_control(checked_control);
5165   if (!stopped()) {
5166     // Clean up after the checked call.
5167     // The returned value is either 0 or -1^K,
5168     // where K = number of partially transferred array elements.
5169     Node* cmp = _gvn.transform(new CmpINode(checked_value, intcon(0)));
5170     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
5171     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5172 
5173     // If it is 0, we are done, so transfer to the end.
5174     Node* checks_done = _gvn.transform(new IfTrueNode(iff));
5175     result_region->init_req(checked_path, checks_done);
5176     result_i_o   ->init_req(checked_path, checked_i_o);
5177     result_memory->init_req(checked_path, checked_mem);
5178 
5179     // If it is not zero, merge into the slow call.
5180     set_control( _gvn.transform(new IfFalseNode(iff) ));
5181     RegionNode* slow_reg2 = new RegionNode(3);
5182     PhiNode*    slow_i_o2 = new PhiNode(slow_reg2, Type::ABIO);
5183     PhiNode*    slow_mem2 = new PhiNode(slow_reg2, Type::MEMORY, adr_type);
5184     record_for_igvn(slow_reg2);
5185     slow_reg2  ->init_req(1, slow_control);
5186     slow_i_o2  ->init_req(1, slow_i_o);
5187     slow_mem2  ->init_req(1, slow_mem);
5188     slow_reg2  ->init_req(2, control());
5189     slow_i_o2  ->init_req(2, checked_i_o);
5190     slow_mem2  ->init_req(2, checked_mem);
5191 
5192     slow_control = _gvn.transform(slow_reg2);
5193     slow_i_o     = _gvn.transform(slow_i_o2);
5194     slow_mem     = _gvn.transform(slow_mem2);
5195 
5196     if (alloc != NULL) {
5197       // We'll restart from the very beginning, after zeroing the whole thing.
5198       // This can cause double writes, but that's OK since dest is brand new.
5199       // So we ignore the low 31 bits of the value returned from the stub.
5200     } else {
5201       // We must continue the copy exactly where it failed, or else
5202       // another thread might see the wrong number of writes to dest.
5203       Node* checked_offset = _gvn.transform(new XorINode(checked_value, intcon(-1)));
5204       Node* slow_offset    = new PhiNode(slow_reg2, TypeInt::INT);
5205       slow_offset->init_req(1, intcon(0));
5206       slow_offset->init_req(2, checked_offset);
5207       slow_offset  = _gvn.transform(slow_offset);
5208 
5209       // Adjust the arguments by the conditionally incoming offset.
5210       Node* src_off_plus  = _gvn.transform(new AddINode(src_offset,  slow_offset));
5211       Node* dest_off_plus = _gvn.transform(new AddINode(dest_offset, slow_offset));
5212       Node* length_minus  = _gvn.transform(new SubINode(copy_length, slow_offset));
5213 
5214       // Tweak the node variables to adjust the code produced below:
5215       src_offset  = src_off_plus;
5216       dest_offset = dest_off_plus;
5217       copy_length = length_minus;
5218     }
5219   }
5220 
5221   set_control(slow_control);
5222   if (!stopped()) {
5223     // Generate the slow path, if needed.
5224     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5225 
5226     set_memory(slow_mem, adr_type);
5227     set_i_o(slow_i_o);
5228 
5229     if (dest_uninitialized) {
5230       generate_clear_array(adr_type, dest, basic_elem_type,
5231                            intcon(0), NULL,
5232                            alloc->in(AllocateNode::AllocSize));
5233     }
5234 
5235     generate_slow_arraycopy(adr_type,
5236                             src, src_offset, dest, dest_offset,
5237                             copy_length, /*dest_uninitialized*/false);
5238 
5239     result_region->init_req(slow_call_path, control());
5240     result_i_o   ->init_req(slow_call_path, i_o());
5241     result_memory->init_req(slow_call_path, memory(adr_type));
5242   }
5243 
5244   // Remove unused edges.
5245   for (uint i = 1; i < result_region->req(); i++) {
5246     if (result_region->in(i) == NULL)
5247       result_region->init_req(i, top());
5248   }
5249 
5250   // Finished; return the combined state.
5251   set_control( _gvn.transform(result_region));
5252   set_i_o(     _gvn.transform(result_i_o)    );
5253   set_memory(  _gvn.transform(result_memory), adr_type );
5254 
5255   // The memory edges above are precise in order to model effects around
5256   // array copies accurately to allow value numbering of field loads around
5257   // arraycopy.  Such field loads, both before and after, are common in Java
5258   // collections and similar classes involving header/array data structures.
5259   //
5260   // But with low number of register or when some registers are used or killed
5261   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5262   // The next memory barrier is added to avoid it. If the arraycopy can be
5263   // optimized away (which it can, sometimes) then we can manually remove
5264   // the membar also.
5265   //
5266   // Do not let reads from the cloned object float above the arraycopy.
5267   if (alloc != NULL) {
5268     // Do not let stores that initialize this object be reordered with
5269     // a subsequent store that would make this object accessible by
5270     // other threads.
5271     // Record what AllocateNode this StoreStore protects so that
5272     // escape analysis can go from the MemBarStoreStoreNode to the
5273     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5274     // based on the escape status of the AllocateNode.
5275     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5276   } else if (InsertMemBarAfterArraycopy)
5277     insert_mem_bar(Op_MemBarCPUOrder);
5278 }
5279 
5280 
5281 // Helper function which determines if an arraycopy immediately follows
5282 // an allocation, with no intervening tests or other escapes for the object.
5283 AllocateArrayNode*
5284 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5285                                            RegionNode* slow_region) {
5286   if (stopped())             return NULL;  // no fast path
5287   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5288 
5289   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5290   if (alloc == NULL)  return NULL;
5291 
5292   Node* rawmem = memory(Compile::AliasIdxRaw);
5293   // Is the allocation's memory state untouched?
5294   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5295     // Bail out if there have been raw-memory effects since the allocation.
5296     // (Example:  There might have been a call or safepoint.)
5297     return NULL;
5298   }
5299   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5300   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5301     return NULL;
5302   }
5303 
5304   // There must be no unexpected observers of this allocation.
5305   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5306     Node* obs = ptr->fast_out(i);
5307     if (obs != this->map()) {
5308       return NULL;
5309     }
5310   }
5311 
5312   // This arraycopy must unconditionally follow the allocation of the ptr.
5313   Node* alloc_ctl = ptr->in(0);
5314   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5315 
5316   Node* ctl = control();
5317   while (ctl != alloc_ctl) {
5318     // There may be guards which feed into the slow_region.
5319     // Any other control flow means that we might not get a chance
5320     // to finish initializing the allocated object.
5321     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5322       IfNode* iff = ctl->in(0)->as_If();
5323       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5324       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5325       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5326         ctl = iff->in(0);       // This test feeds the known slow_region.
5327         continue;
5328       }
5329       // One more try:  Various low-level checks bottom out in
5330       // uncommon traps.  If the debug-info of the trap omits
5331       // any reference to the allocation, as we've already
5332       // observed, then there can be no objection to the trap.
5333       bool found_trap = false;
5334       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5335         Node* obs = not_ctl->fast_out(j);
5336         if (obs->in(0) == not_ctl && obs->is_Call() &&
5337             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5338           found_trap = true; break;
5339         }
5340       }
5341       if (found_trap) {
5342         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5343         continue;
5344       }
5345     }
5346     return NULL;
5347   }
5348 
5349   // If we get this far, we have an allocation which immediately
5350   // precedes the arraycopy, and we can take over zeroing the new object.
5351   // The arraycopy will finish the initialization, and provide
5352   // a new control state to which we will anchor the destination pointer.
5353 
5354   return alloc;
5355 }
5356 
5357 // Helper for initialization of arrays, creating a ClearArray.
5358 // It writes zero bits in [start..end), within the body of an array object.
5359 // The memory effects are all chained onto the 'adr_type' alias category.
5360 //
5361 // Since the object is otherwise uninitialized, we are free
5362 // to put a little "slop" around the edges of the cleared area,
5363 // as long as it does not go back into the array's header,
5364 // or beyond the array end within the heap.
5365 //
5366 // The lower edge can be rounded down to the nearest jint and the
5367 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5368 //
5369 // Arguments:
5370 //   adr_type           memory slice where writes are generated
5371 //   dest               oop of the destination array
5372 //   basic_elem_type    element type of the destination
5373 //   slice_idx          array index of first element to store
5374 //   slice_len          number of elements to store (or NULL)
5375 //   dest_size          total size in bytes of the array object
5376 //
5377 // Exactly one of slice_len or dest_size must be non-NULL.
5378 // If dest_size is non-NULL, zeroing extends to the end of the object.
5379 // If slice_len is non-NULL, the slice_idx value must be a constant.
5380 void
5381 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5382                                      Node* dest,
5383                                      BasicType basic_elem_type,
5384                                      Node* slice_idx,
5385                                      Node* slice_len,
5386                                      Node* dest_size) {
5387   // one or the other but not both of slice_len and dest_size:
5388   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5389   if (slice_len == NULL)  slice_len = top();
5390   if (dest_size == NULL)  dest_size = top();
5391 
5392   // operate on this memory slice:
5393   Node* mem = memory(adr_type); // memory slice to operate on
5394 
5395   // scaling and rounding of indexes:
5396   int scale = exact_log2(type2aelembytes(basic_elem_type));
5397   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5398   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5399   int bump_bit  = (-1 << scale) & BytesPerInt;
5400 
5401   // determine constant starts and ends
5402   const intptr_t BIG_NEG = -128;
5403   assert(BIG_NEG + 2*abase < 0, "neg enough");
5404   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5405   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5406   if (slice_len_con == 0) {
5407     return;                     // nothing to do here
5408   }
5409   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5410   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5411   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5412     assert(end_con < 0, "not two cons");
5413     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5414                        BytesPerLong);
5415   }
5416 
5417   if (start_con >= 0 && end_con >= 0) {
5418     // Constant start and end.  Simple.
5419     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5420                                        start_con, end_con, &_gvn);
5421   } else if (start_con >= 0 && dest_size != top()) {
5422     // Constant start, pre-rounded end after the tail of the array.
5423     Node* end = dest_size;
5424     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5425                                        start_con, end, &_gvn);
5426   } else if (start_con >= 0 && slice_len != top()) {
5427     // Constant start, non-constant end.  End needs rounding up.
5428     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5429     intptr_t end_base  = abase + (slice_idx_con << scale);
5430     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5431     Node*    end       = ConvI2X(slice_len);
5432     if (scale != 0)
5433       end = _gvn.transform(new LShiftXNode(end, intcon(scale) ));
5434     end_base += end_round;
5435     end = _gvn.transform(new AddXNode(end, MakeConX(end_base)));
5436     end = _gvn.transform(new AndXNode(end, MakeConX(~end_round)));
5437     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5438                                        start_con, end, &_gvn);
5439   } else if (start_con < 0 && dest_size != top()) {
5440     // Non-constant start, pre-rounded end after the tail of the array.
5441     // This is almost certainly a "round-to-end" operation.
5442     Node* start = slice_idx;
5443     start = ConvI2X(start);
5444     if (scale != 0)
5445       start = _gvn.transform(new LShiftXNode( start, intcon(scale) ));
5446     start = _gvn.transform(new AddXNode(start, MakeConX(abase)));
5447     if ((bump_bit | clear_low) != 0) {
5448       int to_clear = (bump_bit | clear_low);
5449       // Align up mod 8, then store a jint zero unconditionally
5450       // just before the mod-8 boundary.
5451       if (((abase + bump_bit) & ~to_clear) - bump_bit
5452           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5453         bump_bit = 0;
5454         assert((abase & to_clear) == 0, "array base must be long-aligned");
5455       } else {
5456         // Bump 'start' up to (or past) the next jint boundary:
5457         start = _gvn.transform(new AddXNode(start, MakeConX(bump_bit)));
5458         assert((abase & clear_low) == 0, "array base must be int-aligned");
5459       }
5460       // Round bumped 'start' down to jlong boundary in body of array.
5461       start = _gvn.transform(new AndXNode(start, MakeConX(~to_clear)));
5462       if (bump_bit != 0) {
5463         // Store a zero to the immediately preceding jint:
5464         Node* x1 = _gvn.transform(new AddXNode(start, MakeConX(-bump_bit)));
5465         Node* p1 = basic_plus_adr(dest, x1);
5466         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5467         mem = _gvn.transform(mem);
5468       }
5469     }
5470     Node* end = dest_size; // pre-rounded
5471     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5472                                        start, end, &_gvn);
5473   } else {
5474     // Non-constant start, unrounded non-constant end.
5475     // (Nobody zeroes a random midsection of an array using this routine.)
5476     ShouldNotReachHere();       // fix caller
5477   }
5478 
5479   // Done.
5480   set_memory(mem, adr_type);
5481 }
5482 
5483 
5484 bool
5485 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5486                                          BasicType basic_elem_type,
5487                                          AllocateNode* alloc,
5488                                          Node* src,  Node* src_offset,
5489                                          Node* dest, Node* dest_offset,
5490                                          Node* dest_size, bool dest_uninitialized) {
5491   // See if there is an advantage from block transfer.
5492   int scale = exact_log2(type2aelembytes(basic_elem_type));
5493   if (scale >= LogBytesPerLong)
5494     return false;               // it is already a block transfer
5495 
5496   // Look at the alignment of the starting offsets.
5497   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5498 
5499   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5500   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5501   if (src_off_con < 0 || dest_off_con < 0)
5502     // At present, we can only understand constants.
5503     return false;
5504 
5505   intptr_t src_off  = abase + (src_off_con  << scale);
5506   intptr_t dest_off = abase + (dest_off_con << scale);
5507 
5508   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5509     // Non-aligned; too bad.
5510     // One more chance:  Pick off an initial 32-bit word.
5511     // This is a common case, since abase can be odd mod 8.
5512     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5513         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5514       Node* sptr = basic_plus_adr(src,  src_off);
5515       Node* dptr = basic_plus_adr(dest, dest_off);
5516       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5517       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5518       src_off += BytesPerInt;
5519       dest_off += BytesPerInt;
5520     } else {
5521       return false;
5522     }
5523   }
5524   assert(src_off % BytesPerLong == 0, "");
5525   assert(dest_off % BytesPerLong == 0, "");
5526 
5527   // Do this copy by giant steps.
5528   Node* sptr  = basic_plus_adr(src,  src_off);
5529   Node* dptr  = basic_plus_adr(dest, dest_off);
5530   Node* countx = dest_size;
5531   countx = _gvn.transform(new SubXNode(countx, MakeConX(dest_off)));
5532   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong)));
5533 
5534   bool disjoint_bases = true;   // since alloc != NULL
5535   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5536                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5537 
5538   return true;
5539 }
5540 
5541 
5542 // Helper function; generates code for the slow case.
5543 // We make a call to a runtime method which emulates the native method,
5544 // but without the native wrapper overhead.
5545 void
5546 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5547                                         Node* src,  Node* src_offset,
5548                                         Node* dest, Node* dest_offset,
5549                                         Node* copy_length, bool dest_uninitialized) {
5550   assert(!dest_uninitialized, "Invariant");
5551   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5552                                  OptoRuntime::slow_arraycopy_Type(),
5553                                  OptoRuntime::slow_arraycopy_Java(),
5554                                  "slow_arraycopy", adr_type,
5555                                  src, src_offset, dest, dest_offset,
5556                                  copy_length);
5557 
5558   // Handle exceptions thrown by this fellow:
5559   make_slow_call_ex(call, env()->Throwable_klass(), false);
5560 }
5561 
5562 // Helper function; generates code for cases requiring runtime checks.
5563 Node*
5564 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5565                                              Node* dest_elem_klass,
5566                                              Node* src,  Node* src_offset,
5567                                              Node* dest, Node* dest_offset,
5568                                              Node* copy_length, bool dest_uninitialized) {
5569   if (stopped())  return NULL;
5570 
5571   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5572   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5573     return NULL;
5574   }
5575 
5576   // Pick out the parameters required to perform a store-check
5577   // for the target array.  This is an optimistic check.  It will
5578   // look in each non-null element's class, at the desired klass's
5579   // super_check_offset, for the desired klass.
5580   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5581   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5582   Node* n3 = new LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5583   Node* check_offset = ConvI2X(_gvn.transform(n3));
5584   Node* check_value  = dest_elem_klass;
5585 
5586   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5587   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5588 
5589   // (We know the arrays are never conjoint, because their types differ.)
5590   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5591                                  OptoRuntime::checkcast_arraycopy_Type(),
5592                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5593                                  // five arguments, of which two are
5594                                  // intptr_t (jlong in LP64)
5595                                  src_start, dest_start,
5596                                  copy_length XTOP,
5597                                  check_offset XTOP,
5598                                  check_value);
5599 
5600   return _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5601 }
5602 
5603 
5604 // Helper function; generates code for cases requiring runtime checks.
5605 Node*
5606 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5607                                            Node* src,  Node* src_offset,
5608                                            Node* dest, Node* dest_offset,
5609                                            Node* copy_length, bool dest_uninitialized) {
5610   assert(!dest_uninitialized, "Invariant");
5611   if (stopped())  return NULL;
5612   address copyfunc_addr = StubRoutines::generic_arraycopy();
5613   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5614     return NULL;
5615   }
5616 
5617   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5618                     OptoRuntime::generic_arraycopy_Type(),
5619                     copyfunc_addr, "generic_arraycopy", adr_type,
5620                     src, src_offset, dest, dest_offset, copy_length);
5621 
5622   return _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5623 }
5624 
5625 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5626 void
5627 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5628                                              BasicType basic_elem_type,
5629                                              bool disjoint_bases,
5630                                              Node* src,  Node* src_offset,
5631                                              Node* dest, Node* dest_offset,
5632                                              Node* copy_length, bool dest_uninitialized) {
5633   if (stopped())  return;               // nothing to do
5634 
5635   Node* src_start  = src;
5636   Node* dest_start = dest;
5637   if (src_offset != NULL || dest_offset != NULL) {
5638     assert(src_offset != NULL && dest_offset != NULL, "");
5639     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5640     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5641   }
5642 
5643   // Figure out which arraycopy runtime method to call.
5644   const char* copyfunc_name = "arraycopy";
5645   address     copyfunc_addr =
5646       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5647                           disjoint_bases, copyfunc_name, dest_uninitialized);
5648 
5649   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5650   make_runtime_call(RC_LEAF|RC_NO_FP,
5651                     OptoRuntime::fast_arraycopy_Type(),
5652                     copyfunc_addr, copyfunc_name, adr_type,
5653                     src_start, dest_start, copy_length XTOP);
5654 }
5655 
5656 //-------------inline_encodeISOArray-----------------------------------
5657 // encode char[] to byte[] in ISO_8859_1
5658 bool LibraryCallKit::inline_encodeISOArray() {
5659   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5660   // no receiver since it is static method
5661   Node *src         = argument(0);
5662   Node *src_offset  = argument(1);
5663   Node *dst         = argument(2);
5664   Node *dst_offset  = argument(3);
5665   Node *length      = argument(4);
5666 
5667   const Type* src_type = src->Value(&_gvn);
5668   const Type* dst_type = dst->Value(&_gvn);
5669   const TypeAryPtr* top_src = src_type->isa_aryptr();
5670   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5671   if (top_src  == NULL || top_src->klass()  == NULL ||
5672       top_dest == NULL || top_dest->klass() == NULL) {
5673     // failed array check
5674     return false;
5675   }
5676 
5677   // Figure out the size and type of the elements we will be copying.
5678   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5679   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5680   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5681     return false;
5682   }
5683   Node* src_start = array_element_address(src, src_offset, src_elem);
5684   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5685   // 'src_start' points to src array + scaled offset
5686   // 'dst_start' points to dst array + scaled offset
5687 
5688   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5689   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5690   enc = _gvn.transform(enc);
5691   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5692   set_memory(res_mem, mtype);
5693   set_result(enc);
5694   return true;
5695 }
5696 
5697 /**
5698  * Calculate CRC32 for byte.
5699  * int java.util.zip.CRC32.update(int crc, int b)
5700  */
5701 bool LibraryCallKit::inline_updateCRC32() {
5702   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5703   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5704   // no receiver since it is static method
5705   Node* crc  = argument(0); // type: int
5706   Node* b    = argument(1); // type: int
5707 
5708   /*
5709    *    int c = ~ crc;
5710    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5711    *    b = b ^ (c >>> 8);
5712    *    crc = ~b;
5713    */
5714 
5715   Node* M1 = intcon(-1);
5716   crc = _gvn.transform(new XorINode(crc, M1));
5717   Node* result = _gvn.transform(new XorINode(crc, b));
5718   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5719 
5720   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5721   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5722   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5723   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5724 
5725   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5726   result = _gvn.transform(new XorINode(crc, result));
5727   result = _gvn.transform(new XorINode(result, M1));
5728   set_result(result);
5729   return true;
5730 }
5731 
5732 /**
5733  * Calculate CRC32 for byte[] array.
5734  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5735  */
5736 bool LibraryCallKit::inline_updateBytesCRC32() {
5737   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5738   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5739   // no receiver since it is static method
5740   Node* crc     = argument(0); // type: int
5741   Node* src     = argument(1); // type: oop
5742   Node* offset  = argument(2); // type: int
5743   Node* length  = argument(3); // type: int
5744 
5745   const Type* src_type = src->Value(&_gvn);
5746   const TypeAryPtr* top_src = src_type->isa_aryptr();
5747   if (top_src  == NULL || top_src->klass()  == NULL) {
5748     // failed array check
5749     return false;
5750   }
5751 
5752   // Figure out the size and type of the elements we will be copying.
5753   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5754   if (src_elem != T_BYTE) {
5755     return false;
5756   }
5757 
5758   // 'src_start' points to src array + scaled offset
5759   Node* src_start = array_element_address(src, offset, src_elem);
5760 
5761   // We assume that range check is done by caller.
5762   // TODO: generate range check (offset+length < src.length) in debug VM.
5763 
5764   // Call the stub.
5765   address stubAddr = StubRoutines::updateBytesCRC32();
5766   const char *stubName = "updateBytesCRC32";
5767 
5768   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5769                                  stubAddr, stubName, TypePtr::BOTTOM,
5770                                  crc, src_start, length);
5771   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5772   set_result(result);
5773   return true;
5774 }
5775 
5776 /**
5777  * Calculate CRC32 for ByteBuffer.
5778  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5779  */
5780 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5781   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5782   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5783   // no receiver since it is static method
5784   Node* crc     = argument(0); // type: int
5785   Node* src     = argument(1); // type: long
5786   Node* offset  = argument(3); // type: int
5787   Node* length  = argument(4); // type: int
5788 
5789   src = ConvL2X(src);  // adjust Java long to machine word
5790   Node* base = _gvn.transform(new CastX2PNode(src));
5791   offset = ConvI2X(offset);
5792 
5793   // 'src_start' points to src array + scaled offset
5794   Node* src_start = basic_plus_adr(top(), base, offset);
5795 
5796   // Call the stub.
5797   address stubAddr = StubRoutines::updateBytesCRC32();
5798   const char *stubName = "updateBytesCRC32";
5799 
5800   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5801                                  stubAddr, stubName, TypePtr::BOTTOM,
5802                                  crc, src_start, length);
5803   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5804   set_result(result);
5805   return true;
5806 }
5807 
5808 //----------------------------inline_reference_get----------------------------
5809 // public T java.lang.ref.Reference.get();
5810 bool LibraryCallKit::inline_reference_get() {
5811   const int referent_offset = java_lang_ref_Reference::referent_offset;
5812   guarantee(referent_offset > 0, "should have already been set");
5813 
5814   // Get the argument:
5815   Node* reference_obj = null_check_receiver();
5816   if (stopped()) return true;
5817 
5818   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5819 
5820   ciInstanceKlass* klass = env()->Object_klass();
5821   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5822 
5823   Node* no_ctrl = NULL;
5824   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5825 
5826   // Use the pre-barrier to record the value in the referent field
5827   pre_barrier(false /* do_load */,
5828               control(),
5829               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5830               result /* pre_val */,
5831               T_OBJECT);
5832 
5833   // Add memory barrier to prevent commoning reads from this field
5834   // across safepoint since GC can change its value.
5835   insert_mem_bar(Op_MemBarCPUOrder);
5836 
5837   set_result(result);
5838   return true;
5839 }
5840 
5841 
5842 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5843                                               bool is_exact=true, bool is_static=false) {
5844 
5845   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5846   assert(tinst != NULL, "obj is null");
5847   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5848   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5849 
5850   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5851                                                                           ciSymbol::make(fieldTypeString),
5852                                                                           is_static);
5853   if (field == NULL) return (Node *) NULL;
5854   assert (field != NULL, "undefined field");
5855 
5856   // Next code  copied from Parse::do_get_xxx():
5857 
5858   // Compute address and memory type.
5859   int offset  = field->offset_in_bytes();
5860   bool is_vol = field->is_volatile();
5861   ciType* field_klass = field->type();
5862   assert(field_klass->is_loaded(), "should be loaded");
5863   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5864   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5865   BasicType bt = field->layout_type();
5866 
5867   // Build the resultant type of the load
5868   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5869 
5870   // Build the load.
5871   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5872   return loadedField;
5873 }
5874 
5875 
5876 //------------------------------inline_aescrypt_Block-----------------------
5877 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5878   address stubAddr;
5879   const char *stubName;
5880   assert(UseAES, "need AES instruction support");
5881 
5882   switch(id) {
5883   case vmIntrinsics::_aescrypt_encryptBlock:
5884     stubAddr = StubRoutines::aescrypt_encryptBlock();
5885     stubName = "aescrypt_encryptBlock";
5886     break;
5887   case vmIntrinsics::_aescrypt_decryptBlock:
5888     stubAddr = StubRoutines::aescrypt_decryptBlock();
5889     stubName = "aescrypt_decryptBlock";
5890     break;
5891   }
5892   if (stubAddr == NULL) return false;
5893 
5894   Node* aescrypt_object = argument(0);
5895   Node* src             = argument(1);
5896   Node* src_offset      = argument(2);
5897   Node* dest            = argument(3);
5898   Node* dest_offset     = argument(4);
5899 
5900   // (1) src and dest are arrays.
5901   const Type* src_type = src->Value(&_gvn);
5902   const Type* dest_type = dest->Value(&_gvn);
5903   const TypeAryPtr* top_src = src_type->isa_aryptr();
5904   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5905   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5906 
5907   // for the quick and dirty code we will skip all the checks.
5908   // we are just trying to get the call to be generated.
5909   Node* src_start  = src;
5910   Node* dest_start = dest;
5911   if (src_offset != NULL || dest_offset != NULL) {
5912     assert(src_offset != NULL && dest_offset != NULL, "");
5913     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5914     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5915   }
5916 
5917   // now need to get the start of its expanded key array
5918   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5919   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5920   if (k_start == NULL) return false;
5921 
5922   if (Matcher::pass_original_key_for_aes()) {
5923     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5924     // compatibility issues between Java key expansion and SPARC crypto instructions
5925     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5926     if (original_k_start == NULL) return false;
5927 
5928     // Call the stub.
5929     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5930                       stubAddr, stubName, TypePtr::BOTTOM,
5931                       src_start, dest_start, k_start, original_k_start);
5932   } else {
5933     // Call the stub.
5934     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5935                       stubAddr, stubName, TypePtr::BOTTOM,
5936                       src_start, dest_start, k_start);
5937   }
5938 
5939   return true;
5940 }
5941 
5942 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5943 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5944   address stubAddr;
5945   const char *stubName;
5946 
5947   assert(UseAES, "need AES instruction support");
5948 
5949   switch(id) {
5950   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5951     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5952     stubName = "cipherBlockChaining_encryptAESCrypt";
5953     break;
5954   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5955     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5956     stubName = "cipherBlockChaining_decryptAESCrypt";
5957     break;
5958   }
5959   if (stubAddr == NULL) return false;
5960 
5961   Node* cipherBlockChaining_object = argument(0);
5962   Node* src                        = argument(1);
5963   Node* src_offset                 = argument(2);
5964   Node* len                        = argument(3);
5965   Node* dest                       = argument(4);
5966   Node* dest_offset                = argument(5);
5967 
5968   // (1) src and dest are arrays.
5969   const Type* src_type = src->Value(&_gvn);
5970   const Type* dest_type = dest->Value(&_gvn);
5971   const TypeAryPtr* top_src = src_type->isa_aryptr();
5972   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5973   assert (top_src  != NULL && top_src->klass()  != NULL
5974           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5975 
5976   // checks are the responsibility of the caller
5977   Node* src_start  = src;
5978   Node* dest_start = dest;
5979   if (src_offset != NULL || dest_offset != NULL) {
5980     assert(src_offset != NULL && dest_offset != NULL, "");
5981     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5982     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5983   }
5984 
5985   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5986   // (because of the predicated logic executed earlier).
5987   // so we cast it here safely.
5988   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5989 
5990   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5991   if (embeddedCipherObj == NULL) return false;
5992 
5993   // cast it to what we know it will be at runtime
5994   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5995   assert(tinst != NULL, "CBC obj is null");
5996   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5997   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5998   if (!klass_AESCrypt->is_loaded()) return false;
5999 
6000   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6001   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6002   const TypeOopPtr* xtype = aklass->as_instance_type();
6003   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6004   aescrypt_object = _gvn.transform(aescrypt_object);
6005 
6006   // we need to get the start of the aescrypt_object's expanded key array
6007   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6008   if (k_start == NULL) return false;
6009 
6010   // similarly, get the start address of the r vector
6011   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6012   if (objRvec == NULL) return false;
6013   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6014 
6015   Node* cbcCrypt;
6016   if (Matcher::pass_original_key_for_aes()) {
6017     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6018     // compatibility issues between Java key expansion and SPARC crypto instructions
6019     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6020     if (original_k_start == NULL) return false;
6021 
6022     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6023     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6024                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6025                                  stubAddr, stubName, TypePtr::BOTTOM,
6026                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6027   } else {
6028     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6029     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6030                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6031                                  stubAddr, stubName, TypePtr::BOTTOM,
6032                                  src_start, dest_start, k_start, r_start, len);
6033   }
6034 
6035   // return cipher length (int)
6036   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6037   set_result(retvalue);
6038   return true;
6039 }
6040 
6041 //------------------------------get_key_start_from_aescrypt_object-----------------------
6042 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6043   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6044   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6045   if (objAESCryptKey == NULL) return (Node *) NULL;
6046 
6047   // now have the array, need to get the start address of the K array
6048   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6049   return k_start;
6050 }
6051 
6052 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6053 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6054   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6055   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6056   if (objAESCryptKey == NULL) return (Node *) NULL;
6057 
6058   // now have the array, need to get the start address of the lastKey array
6059   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6060   return original_k_start;
6061 }
6062 
6063 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6064 // Return node representing slow path of predicate check.
6065 // the pseudo code we want to emulate with this predicate is:
6066 // for encryption:
6067 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6068 // for decryption:
6069 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6070 //    note cipher==plain is more conservative than the original java code but that's OK
6071 //
6072 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6073   // First, check receiver for NULL since it is virtual method.
6074   Node* objCBC = argument(0);
6075   objCBC = null_check(objCBC);
6076 
6077   if (stopped()) return NULL; // Always NULL
6078 
6079   // Load embeddedCipher field of CipherBlockChaining object.
6080   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6081 
6082   // get AESCrypt klass for instanceOf check
6083   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6084   // will have same classloader as CipherBlockChaining object
6085   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6086   assert(tinst != NULL, "CBCobj is null");
6087   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6088 
6089   // we want to do an instanceof comparison against the AESCrypt class
6090   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6091   if (!klass_AESCrypt->is_loaded()) {
6092     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6093     Node* ctrl = control();
6094     set_control(top()); // no regular fast path
6095     return ctrl;
6096   }
6097   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6098 
6099   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6100   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6101   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6102 
6103   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6104 
6105   // for encryption, we are done
6106   if (!decrypting)
6107     return instof_false;  // even if it is NULL
6108 
6109   // for decryption, we need to add a further check to avoid
6110   // taking the intrinsic path when cipher and plain are the same
6111   // see the original java code for why.
6112   RegionNode* region = new RegionNode(3);
6113   region->init_req(1, instof_false);
6114   Node* src = argument(1);
6115   Node* dest = argument(4);
6116   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6117   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6118   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6119   region->init_req(2, src_dest_conjoint);
6120 
6121   record_for_igvn(region);
6122   return _gvn.transform(region);
6123 }