1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/node.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/output.hpp"
  59 #include "opto/parse.hpp"
  60 #include "opto/phaseX.hpp"
  61 #include "opto/rootnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/stringopts.hpp"
  64 #include "opto/type.hpp"
  65 #include "opto/vectornode.hpp"
  66 #include "runtime/arguments.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "trace/tracing.hpp"
  71 #include "utilities/copy.hpp"
  72 
  73 
  74 // -------------------- Compile::mach_constant_base_node -----------------------
  75 // Constant table base node singleton.
  76 MachConstantBaseNode* Compile::mach_constant_base_node() {
  77   if (_mach_constant_base_node == NULL) {
  78     _mach_constant_base_node = new MachConstantBaseNode();
  79     _mach_constant_base_node->add_req(C->root());
  80   }
  81   return _mach_constant_base_node;
  82 }
  83 
  84 
  85 /// Support for intrinsics.
  86 
  87 // Return the index at which m must be inserted (or already exists).
  88 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  89 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  90 #ifdef ASSERT
  91   for (int i = 1; i < _intrinsics->length(); i++) {
  92     CallGenerator* cg1 = _intrinsics->at(i-1);
  93     CallGenerator* cg2 = _intrinsics->at(i);
  94     assert(cg1->method() != cg2->method()
  95            ? cg1->method()     < cg2->method()
  96            : cg1->is_virtual() < cg2->is_virtual(),
  97            "compiler intrinsics list must stay sorted");
  98   }
  99 #endif
 100   // Binary search sorted list, in decreasing intervals [lo, hi].
 101   int lo = 0, hi = _intrinsics->length()-1;
 102   while (lo <= hi) {
 103     int mid = (uint)(hi + lo) / 2;
 104     ciMethod* mid_m = _intrinsics->at(mid)->method();
 105     if (m < mid_m) {
 106       hi = mid-1;
 107     } else if (m > mid_m) {
 108       lo = mid+1;
 109     } else {
 110       // look at minor sort key
 111       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 112       if (is_virtual < mid_virt) {
 113         hi = mid-1;
 114       } else if (is_virtual > mid_virt) {
 115         lo = mid+1;
 116       } else {
 117         return mid;  // exact match
 118       }
 119     }
 120   }
 121   return lo;  // inexact match
 122 }
 123 
 124 void Compile::register_intrinsic(CallGenerator* cg) {
 125   if (_intrinsics == NULL) {
 126     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 127   }
 128   // This code is stolen from ciObjectFactory::insert.
 129   // Really, GrowableArray should have methods for
 130   // insert_at, remove_at, and binary_search.
 131   int len = _intrinsics->length();
 132   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 133   if (index == len) {
 134     _intrinsics->append(cg);
 135   } else {
 136 #ifdef ASSERT
 137     CallGenerator* oldcg = _intrinsics->at(index);
 138     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 139 #endif
 140     _intrinsics->append(_intrinsics->at(len-1));
 141     int pos;
 142     for (pos = len-2; pos >= index; pos--) {
 143       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 144     }
 145     _intrinsics->at_put(index, cg);
 146   }
 147   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 148 }
 149 
 150 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 151   assert(m->is_loaded(), "don't try this on unloaded methods");
 152   if (_intrinsics != NULL) {
 153     int index = intrinsic_insertion_index(m, is_virtual);
 154     if (index < _intrinsics->length()
 155         && _intrinsics->at(index)->method() == m
 156         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 157       return _intrinsics->at(index);
 158     }
 159   }
 160   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 161   if (m->intrinsic_id() != vmIntrinsics::_none &&
 162       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 163     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 164     if (cg != NULL) {
 165       // Save it for next time:
 166       register_intrinsic(cg);
 167       return cg;
 168     } else {
 169       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 170     }
 171   }
 172   return NULL;
 173 }
 174 
 175 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 176 // in library_call.cpp.
 177 
 178 
 179 #ifndef PRODUCT
 180 // statistics gathering...
 181 
 182 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 183 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 184 
 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 186   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 187   int oflags = _intrinsic_hist_flags[id];
 188   assert(flags != 0, "what happened?");
 189   if (is_virtual) {
 190     flags |= _intrinsic_virtual;
 191   }
 192   bool changed = (flags != oflags);
 193   if ((flags & _intrinsic_worked) != 0) {
 194     juint count = (_intrinsic_hist_count[id] += 1);
 195     if (count == 1) {
 196       changed = true;           // first time
 197     }
 198     // increment the overall count also:
 199     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 200   }
 201   if (changed) {
 202     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 203       // Something changed about the intrinsic's virtuality.
 204       if ((flags & _intrinsic_virtual) != 0) {
 205         // This is the first use of this intrinsic as a virtual call.
 206         if (oflags != 0) {
 207           // We already saw it as a non-virtual, so note both cases.
 208           flags |= _intrinsic_both;
 209         }
 210       } else if ((oflags & _intrinsic_both) == 0) {
 211         // This is the first use of this intrinsic as a non-virtual
 212         flags |= _intrinsic_both;
 213       }
 214     }
 215     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 216   }
 217   // update the overall flags also:
 218   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 219   return changed;
 220 }
 221 
 222 static char* format_flags(int flags, char* buf) {
 223   buf[0] = 0;
 224   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 225   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 226   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 227   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 228   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 229   if (buf[0] == 0)  strcat(buf, ",");
 230   assert(buf[0] == ',', "must be");
 231   return &buf[1];
 232 }
 233 
 234 void Compile::print_intrinsic_statistics() {
 235   char flagsbuf[100];
 236   ttyLocker ttyl;
 237   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 238   tty->print_cr("Compiler intrinsic usage:");
 239   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 240   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 241   #define PRINT_STAT_LINE(name, c, f) \
 242     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 243   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 244     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 245     int   flags = _intrinsic_hist_flags[id];
 246     juint count = _intrinsic_hist_count[id];
 247     if ((flags | count) != 0) {
 248       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 249     }
 250   }
 251   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 252   if (xtty != NULL)  xtty->tail("statistics");
 253 }
 254 
 255 void Compile::print_statistics() {
 256   { ttyLocker ttyl;
 257     if (xtty != NULL)  xtty->head("statistics type='opto'");
 258     Parse::print_statistics();
 259     PhaseCCP::print_statistics();
 260     PhaseRegAlloc::print_statistics();
 261     Scheduling::print_statistics();
 262     PhasePeephole::print_statistics();
 263     PhaseIdealLoop::print_statistics();
 264     if (xtty != NULL)  xtty->tail("statistics");
 265   }
 266   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 267     // put this under its own <statistics> element.
 268     print_intrinsic_statistics();
 269   }
 270 }
 271 #endif //PRODUCT
 272 
 273 // Support for bundling info
 274 Bundle* Compile::node_bundling(const Node *n) {
 275   assert(valid_bundle_info(n), "oob");
 276   return &_node_bundling_base[n->_idx];
 277 }
 278 
 279 bool Compile::valid_bundle_info(const Node *n) {
 280   return (_node_bundling_limit > n->_idx);
 281 }
 282 
 283 
 284 void Compile::gvn_replace_by(Node* n, Node* nn) {
 285   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 286     Node* use = n->last_out(i);
 287     bool is_in_table = initial_gvn()->hash_delete(use);
 288     uint uses_found = 0;
 289     for (uint j = 0; j < use->len(); j++) {
 290       if (use->in(j) == n) {
 291         if (j < use->req())
 292           use->set_req(j, nn);
 293         else
 294           use->set_prec(j, nn);
 295         uses_found++;
 296       }
 297     }
 298     if (is_in_table) {
 299       // reinsert into table
 300       initial_gvn()->hash_find_insert(use);
 301     }
 302     record_for_igvn(use);
 303     i -= uses_found;    // we deleted 1 or more copies of this edge
 304   }
 305 }
 306 
 307 
 308 static inline bool not_a_node(const Node* n) {
 309   if (n == NULL)                   return true;
 310   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 311   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 312   return false;
 313 }
 314 
 315 // Identify all nodes that are reachable from below, useful.
 316 // Use breadth-first pass that records state in a Unique_Node_List,
 317 // recursive traversal is slower.
 318 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 319   int estimated_worklist_size = unique();
 320   useful.map( estimated_worklist_size, NULL );  // preallocate space
 321 
 322   // Initialize worklist
 323   if (root() != NULL)     { useful.push(root()); }
 324   // If 'top' is cached, declare it useful to preserve cached node
 325   if( cached_top_node() ) { useful.push(cached_top_node()); }
 326 
 327   // Push all useful nodes onto the list, breadthfirst
 328   for( uint next = 0; next < useful.size(); ++next ) {
 329     assert( next < unique(), "Unique useful nodes < total nodes");
 330     Node *n  = useful.at(next);
 331     uint max = n->len();
 332     for( uint i = 0; i < max; ++i ) {
 333       Node *m = n->in(i);
 334       if (not_a_node(m))  continue;
 335       useful.push(m);
 336     }
 337   }
 338 }
 339 
 340 // Update dead_node_list with any missing dead nodes using useful
 341 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 342 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 343   uint max_idx = unique();
 344   VectorSet& useful_node_set = useful.member_set();
 345 
 346   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 347     // If node with index node_idx is not in useful set,
 348     // mark it as dead in dead node list.
 349     if (! useful_node_set.test(node_idx) ) {
 350       record_dead_node(node_idx);
 351     }
 352   }
 353 }
 354 
 355 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 356   int shift = 0;
 357   for (int i = 0; i < inlines->length(); i++) {
 358     CallGenerator* cg = inlines->at(i);
 359     CallNode* call = cg->call_node();
 360     if (shift > 0) {
 361       inlines->at_put(i-shift, cg);
 362     }
 363     if (!useful.member(call)) {
 364       shift++;
 365     }
 366   }
 367   inlines->trunc_to(inlines->length()-shift);
 368 }
 369 
 370 // Disconnect all useless nodes by disconnecting those at the boundary.
 371 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 372   uint next = 0;
 373   while (next < useful.size()) {
 374     Node *n = useful.at(next++);
 375     if (n->is_SafePoint()) {
 376       // We're done with a parsing phase. Replaced nodes are not valid
 377       // beyond that point.
 378       n->as_SafePoint()->delete_replaced_nodes();
 379     }
 380     // Use raw traversal of out edges since this code removes out edges
 381     int max = n->outcnt();
 382     for (int j = 0; j < max; ++j) {
 383       Node* child = n->raw_out(j);
 384       if (! useful.member(child)) {
 385         assert(!child->is_top() || child != top(),
 386                "If top is cached in Compile object it is in useful list");
 387         // Only need to remove this out-edge to the useless node
 388         n->raw_del_out(j);
 389         --j;
 390         --max;
 391       }
 392     }
 393     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 394       record_for_igvn(n->unique_out());
 395     }
 396   }
 397   // Remove useless macro and predicate opaq nodes
 398   for (int i = C->macro_count()-1; i >= 0; i--) {
 399     Node* n = C->macro_node(i);
 400     if (!useful.member(n)) {
 401       remove_macro_node(n);
 402     }
 403   }
 404   // Remove useless expensive node
 405   for (int i = C->expensive_count()-1; i >= 0; i--) {
 406     Node* n = C->expensive_node(i);
 407     if (!useful.member(n)) {
 408       remove_expensive_node(n);
 409     }
 410   }
 411   // clean up the late inline lists
 412   remove_useless_late_inlines(&_string_late_inlines, useful);
 413   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 414   remove_useless_late_inlines(&_late_inlines, useful);
 415   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 416 }
 417 
 418 //------------------------------frame_size_in_words-----------------------------
 419 // frame_slots in units of words
 420 int Compile::frame_size_in_words() const {
 421   // shift is 0 in LP32 and 1 in LP64
 422   const int shift = (LogBytesPerWord - LogBytesPerInt);
 423   int words = _frame_slots >> shift;
 424   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 425   return words;
 426 }
 427 
 428 // To bang the stack of this compiled method we use the stack size
 429 // that the interpreter would need in case of a deoptimization. This
 430 // removes the need to bang the stack in the deoptimization blob which
 431 // in turn simplifies stack overflow handling.
 432 int Compile::bang_size_in_bytes() const {
 433   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 434 }
 435 
 436 // ============================================================================
 437 //------------------------------CompileWrapper---------------------------------
 438 class CompileWrapper : public StackObj {
 439   Compile *const _compile;
 440  public:
 441   CompileWrapper(Compile* compile);
 442 
 443   ~CompileWrapper();
 444 };
 445 
 446 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 447   // the Compile* pointer is stored in the current ciEnv:
 448   ciEnv* env = compile->env();
 449   assert(env == ciEnv::current(), "must already be a ciEnv active");
 450   assert(env->compiler_data() == NULL, "compile already active?");
 451   env->set_compiler_data(compile);
 452   assert(compile == Compile::current(), "sanity");
 453 
 454   compile->set_type_dict(NULL);
 455   compile->set_type_hwm(NULL);
 456   compile->set_type_last_size(0);
 457   compile->set_last_tf(NULL, NULL);
 458   compile->set_indexSet_arena(NULL);
 459   compile->set_indexSet_free_block_list(NULL);
 460   compile->init_type_arena();
 461   Type::Initialize(compile);
 462   _compile->set_scratch_buffer_blob(NULL);
 463   _compile->begin_method();
 464 }
 465 CompileWrapper::~CompileWrapper() {
 466   _compile->end_method();
 467   if (_compile->scratch_buffer_blob() != NULL)
 468     BufferBlob::free(_compile->scratch_buffer_blob());
 469   _compile->env()->set_compiler_data(NULL);
 470 }
 471 
 472 
 473 //----------------------------print_compile_messages---------------------------
 474 void Compile::print_compile_messages() {
 475 #ifndef PRODUCT
 476   // Check if recompiling
 477   if (_subsume_loads == false && PrintOpto) {
 478     // Recompiling without allowing machine instructions to subsume loads
 479     tty->print_cr("*********************************************************");
 480     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 481     tty->print_cr("*********************************************************");
 482   }
 483   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 484     // Recompiling without escape analysis
 485     tty->print_cr("*********************************************************");
 486     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 487     tty->print_cr("*********************************************************");
 488   }
 489   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 490     // Recompiling without boxing elimination
 491     tty->print_cr("*********************************************************");
 492     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 493     tty->print_cr("*********************************************************");
 494   }
 495   if (env()->break_at_compile()) {
 496     // Open the debugger when compiling this method.
 497     tty->print("### Breaking when compiling: ");
 498     method()->print_short_name();
 499     tty->cr();
 500     BREAKPOINT;
 501   }
 502 
 503   if( PrintOpto ) {
 504     if (is_osr_compilation()) {
 505       tty->print("[OSR]%3d", _compile_id);
 506     } else {
 507       tty->print("%3d", _compile_id);
 508     }
 509   }
 510 #endif
 511 }
 512 
 513 
 514 //-----------------------init_scratch_buffer_blob------------------------------
 515 // Construct a temporary BufferBlob and cache it for this compile.
 516 void Compile::init_scratch_buffer_blob(int const_size) {
 517   // If there is already a scratch buffer blob allocated and the
 518   // constant section is big enough, use it.  Otherwise free the
 519   // current and allocate a new one.
 520   BufferBlob* blob = scratch_buffer_blob();
 521   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 522     // Use the current blob.
 523   } else {
 524     if (blob != NULL) {
 525       BufferBlob::free(blob);
 526     }
 527 
 528     ResourceMark rm;
 529     _scratch_const_size = const_size;
 530     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 531     blob = BufferBlob::create("Compile::scratch_buffer", size);
 532     // Record the buffer blob for next time.
 533     set_scratch_buffer_blob(blob);
 534     // Have we run out of code space?
 535     if (scratch_buffer_blob() == NULL) {
 536       // Let CompilerBroker disable further compilations.
 537       record_failure("Not enough space for scratch buffer in CodeCache");
 538       CompileBroker::handle_full_code_cache(CodeBlobType::NonNMethod);
 539       return;
 540     }
 541   }
 542 
 543   // Initialize the relocation buffers
 544   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 545   set_scratch_locs_memory(locs_buf);
 546 }
 547 
 548 
 549 //-----------------------scratch_emit_size-------------------------------------
 550 // Helper function that computes size by emitting code
 551 uint Compile::scratch_emit_size(const Node* n) {
 552   // Start scratch_emit_size section.
 553   set_in_scratch_emit_size(true);
 554 
 555   // Emit into a trash buffer and count bytes emitted.
 556   // This is a pretty expensive way to compute a size,
 557   // but it works well enough if seldom used.
 558   // All common fixed-size instructions are given a size
 559   // method by the AD file.
 560   // Note that the scratch buffer blob and locs memory are
 561   // allocated at the beginning of the compile task, and
 562   // may be shared by several calls to scratch_emit_size.
 563   // The allocation of the scratch buffer blob is particularly
 564   // expensive, since it has to grab the code cache lock.
 565   BufferBlob* blob = this->scratch_buffer_blob();
 566   assert(blob != NULL, "Initialize BufferBlob at start");
 567   assert(blob->size() > MAX_inst_size, "sanity");
 568   relocInfo* locs_buf = scratch_locs_memory();
 569   address blob_begin = blob->content_begin();
 570   address blob_end   = (address)locs_buf;
 571   assert(blob->content_contains(blob_end), "sanity");
 572   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 573   buf.initialize_consts_size(_scratch_const_size);
 574   buf.initialize_stubs_size(MAX_stubs_size);
 575   assert(locs_buf != NULL, "sanity");
 576   int lsize = MAX_locs_size / 3;
 577   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 578   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 579   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 580 
 581   // Do the emission.
 582 
 583   Label fakeL; // Fake label for branch instructions.
 584   Label*   saveL = NULL;
 585   uint save_bnum = 0;
 586   bool is_branch = n->is_MachBranch();
 587   if (is_branch) {
 588     MacroAssembler masm(&buf);
 589     masm.bind(fakeL);
 590     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 591     n->as_MachBranch()->label_set(&fakeL, 0);
 592   }
 593   n->emit(buf, this->regalloc());
 594   if (is_branch) // Restore label.
 595     n->as_MachBranch()->label_set(saveL, save_bnum);
 596 
 597   // End scratch_emit_size section.
 598   set_in_scratch_emit_size(false);
 599 
 600   return buf.insts_size();
 601 }
 602 
 603 
 604 // ============================================================================
 605 //------------------------------Compile standard-------------------------------
 606 debug_only( int Compile::_debug_idx = 100000; )
 607 
 608 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 609 // the continuation bci for on stack replacement.
 610 
 611 
 612 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 613                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 614                 : Phase(Compiler),
 615                   _env(ci_env),
 616                   _log(ci_env->log()),
 617                   _compile_id(ci_env->compile_id()),
 618                   _save_argument_registers(false),
 619                   _stub_name(NULL),
 620                   _stub_function(NULL),
 621                   _stub_entry_point(NULL),
 622                   _method(target),
 623                   _entry_bci(osr_bci),
 624                   _initial_gvn(NULL),
 625                   _for_igvn(NULL),
 626                   _warm_calls(NULL),
 627                   _subsume_loads(subsume_loads),
 628                   _do_escape_analysis(do_escape_analysis),
 629                   _eliminate_boxing(eliminate_boxing),
 630                   _failure_reason(NULL),
 631                   _code_buffer("Compile::Fill_buffer"),
 632                   _orig_pc_slot(0),
 633                   _orig_pc_slot_offset_in_bytes(0),
 634                   _has_method_handle_invokes(false),
 635                   _mach_constant_base_node(NULL),
 636                   _node_bundling_limit(0),
 637                   _node_bundling_base(NULL),
 638                   _java_calls(0),
 639                   _inner_loops(0),
 640                   _scratch_const_size(-1),
 641                   _in_scratch_emit_size(false),
 642                   _dead_node_list(comp_arena()),
 643                   _dead_node_count(0),
 644 #ifndef PRODUCT
 645                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 646                   _in_dump_cnt(0),
 647                   _printer(IdealGraphPrinter::printer()),
 648 #endif
 649                   _congraph(NULL),
 650                   _comp_arena(mtCompiler),
 651                   _node_arena(mtCompiler),
 652                   _old_arena(mtCompiler),
 653                   _Compile_types(mtCompiler),
 654                   _replay_inline_data(NULL),
 655                   _late_inlines(comp_arena(), 2, 0, NULL),
 656                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 657                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 658                   _late_inlines_pos(0),
 659                   _number_of_mh_late_inlines(0),
 660                   _inlining_progress(false),
 661                   _inlining_incrementally(false),
 662                   _print_inlining_list(NULL),
 663                   _print_inlining_stream(NULL),
 664                   _print_inlining_idx(0),
 665                   _print_inlining_output(NULL),
 666                   _interpreter_frame_size(0),
 667                   _max_node_limit(MaxNodeLimit) {
 668   C = this;
 669 
 670   CompileWrapper cw(this);
 671 
 672   if (CITimeVerbose) {
 673     tty->print(" ");
 674     target->holder()->name()->print();
 675     tty->print(".");
 676     target->print_short_name();
 677     tty->print("  ");
 678   }
 679   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 680   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 681 
 682 #ifndef PRODUCT
 683   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 684   if (!print_opto_assembly) {
 685     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 686     if (print_assembly && !Disassembler::can_decode()) {
 687       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 688       print_opto_assembly = true;
 689     }
 690   }
 691   set_print_assembly(print_opto_assembly);
 692   set_parsed_irreducible_loop(false);
 693 
 694   if (method()->has_option("ReplayInline")) {
 695     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 696   }
 697 #endif
 698   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 699   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 700   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 701 
 702   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 703     // Make sure the method being compiled gets its own MDO,
 704     // so we can at least track the decompile_count().
 705     // Need MDO to record RTM code generation state.
 706     method()->ensure_method_data();
 707   }
 708 
 709   Init(::AliasLevel);
 710 
 711 
 712   print_compile_messages();
 713 
 714   _ilt = InlineTree::build_inline_tree_root();
 715 
 716   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 717   assert(num_alias_types() >= AliasIdxRaw, "");
 718 
 719 #define MINIMUM_NODE_HASH  1023
 720   // Node list that Iterative GVN will start with
 721   Unique_Node_List for_igvn(comp_arena());
 722   set_for_igvn(&for_igvn);
 723 
 724   // GVN that will be run immediately on new nodes
 725   uint estimated_size = method()->code_size()*4+64;
 726   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 727   PhaseGVN gvn(node_arena(), estimated_size);
 728   set_initial_gvn(&gvn);
 729 
 730   print_inlining_init();
 731   { // Scope for timing the parser
 732     TracePhase tp("parse", &timers[_t_parser]);
 733 
 734     // Put top into the hash table ASAP.
 735     initial_gvn()->transform_no_reclaim(top());
 736 
 737     // Set up tf(), start(), and find a CallGenerator.
 738     CallGenerator* cg = NULL;
 739     if (is_osr_compilation()) {
 740       const TypeTuple *domain = StartOSRNode::osr_domain();
 741       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 742       init_tf(TypeFunc::make(domain, range));
 743       StartNode* s = new StartOSRNode(root(), domain);
 744       initial_gvn()->set_type_bottom(s);
 745       init_start(s);
 746       cg = CallGenerator::for_osr(method(), entry_bci());
 747     } else {
 748       // Normal case.
 749       init_tf(TypeFunc::make(method()));
 750       StartNode* s = new StartNode(root(), tf()->domain());
 751       initial_gvn()->set_type_bottom(s);
 752       init_start(s);
 753       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 754         // With java.lang.ref.reference.get() we must go through the
 755         // intrinsic when G1 is enabled - even when get() is the root
 756         // method of the compile - so that, if necessary, the value in
 757         // the referent field of the reference object gets recorded by
 758         // the pre-barrier code.
 759         // Specifically, if G1 is enabled, the value in the referent
 760         // field is recorded by the G1 SATB pre barrier. This will
 761         // result in the referent being marked live and the reference
 762         // object removed from the list of discovered references during
 763         // reference processing.
 764         cg = find_intrinsic(method(), false);
 765       }
 766       if (cg == NULL) {
 767         float past_uses = method()->interpreter_invocation_count();
 768         float expected_uses = past_uses;
 769         cg = CallGenerator::for_inline(method(), expected_uses);
 770       }
 771     }
 772     if (failing())  return;
 773     if (cg == NULL) {
 774       record_method_not_compilable_all_tiers("cannot parse method");
 775       return;
 776     }
 777     JVMState* jvms = build_start_state(start(), tf());
 778     if ((jvms = cg->generate(jvms)) == NULL) {
 779       record_method_not_compilable("method parse failed");
 780       return;
 781     }
 782     GraphKit kit(jvms);
 783 
 784     if (!kit.stopped()) {
 785       // Accept return values, and transfer control we know not where.
 786       // This is done by a special, unique ReturnNode bound to root.
 787       return_values(kit.jvms());
 788     }
 789 
 790     if (kit.has_exceptions()) {
 791       // Any exceptions that escape from this call must be rethrown
 792       // to whatever caller is dynamically above us on the stack.
 793       // This is done by a special, unique RethrowNode bound to root.
 794       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 795     }
 796 
 797     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 798 
 799     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 800       inline_string_calls(true);
 801     }
 802 
 803     if (failing())  return;
 804 
 805     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 806 
 807     // Remove clutter produced by parsing.
 808     if (!failing()) {
 809       ResourceMark rm;
 810       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 811     }
 812   }
 813 
 814   // Note:  Large methods are capped off in do_one_bytecode().
 815   if (failing())  return;
 816 
 817   // After parsing, node notes are no longer automagic.
 818   // They must be propagated by register_new_node_with_optimizer(),
 819   // clone(), or the like.
 820   set_default_node_notes(NULL);
 821 
 822   for (;;) {
 823     int successes = Inline_Warm();
 824     if (failing())  return;
 825     if (successes == 0)  break;
 826   }
 827 
 828   // Drain the list.
 829   Finish_Warm();
 830 #ifndef PRODUCT
 831   if (_printer && _printer->should_print(_method)) {
 832     _printer->print_inlining(this);
 833   }
 834 #endif
 835 
 836   if (failing())  return;
 837   NOT_PRODUCT( verify_graph_edges(); )
 838 
 839   // Now optimize
 840   Optimize();
 841   if (failing())  return;
 842   NOT_PRODUCT( verify_graph_edges(); )
 843 
 844 #ifndef PRODUCT
 845   if (PrintIdeal) {
 846     ttyLocker ttyl;  // keep the following output all in one block
 847     // This output goes directly to the tty, not the compiler log.
 848     // To enable tools to match it up with the compilation activity,
 849     // be sure to tag this tty output with the compile ID.
 850     if (xtty != NULL) {
 851       xtty->head("ideal compile_id='%d'%s", compile_id(),
 852                  is_osr_compilation()    ? " compile_kind='osr'" :
 853                  "");
 854     }
 855     root()->dump(9999);
 856     if (xtty != NULL) {
 857       xtty->tail("ideal");
 858     }
 859   }
 860 #endif
 861 
 862   NOT_PRODUCT( verify_barriers(); )
 863 
 864   // Dump compilation data to replay it.
 865   if (method()->has_option("DumpReplay")) {
 866     env()->dump_replay_data(_compile_id);
 867   }
 868   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 869     env()->dump_inline_data(_compile_id);
 870   }
 871 
 872   // Now that we know the size of all the monitors we can add a fixed slot
 873   // for the original deopt pc.
 874 
 875   _orig_pc_slot =  fixed_slots();
 876   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 877   set_fixed_slots(next_slot);
 878 
 879   // Compute when to use implicit null checks. Used by matching trap based
 880   // nodes and NullCheck optimization.
 881   set_allowed_deopt_reasons();
 882 
 883   // Now generate code
 884   Code_Gen();
 885   if (failing())  return;
 886 
 887   // Check if we want to skip execution of all compiled code.
 888   {
 889 #ifndef PRODUCT
 890     if (OptoNoExecute) {
 891       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 892       return;
 893     }
 894 #endif
 895     TracePhase tp("install_code", &timers[_t_registerMethod]);
 896 
 897     if (is_osr_compilation()) {
 898       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 899       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 900     } else {
 901       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 902       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 903     }
 904 
 905     env()->register_method(_method, _entry_bci,
 906                            &_code_offsets,
 907                            _orig_pc_slot_offset_in_bytes,
 908                            code_buffer(),
 909                            frame_size_in_words(), _oop_map_set,
 910                            &_handler_table, &_inc_table,
 911                            compiler,
 912                            env()->comp_level(),
 913                            has_unsafe_access(),
 914                            SharedRuntime::is_wide_vector(max_vector_size()),
 915                            rtm_state()
 916                            );
 917 
 918     if (log() != NULL) // Print code cache state into compiler log
 919       log()->code_cache_state();
 920   }
 921 }
 922 
 923 //------------------------------Compile----------------------------------------
 924 // Compile a runtime stub
 925 Compile::Compile( ciEnv* ci_env,
 926                   TypeFunc_generator generator,
 927                   address stub_function,
 928                   const char *stub_name,
 929                   int is_fancy_jump,
 930                   bool pass_tls,
 931                   bool save_arg_registers,
 932                   bool return_pc )
 933   : Phase(Compiler),
 934     _env(ci_env),
 935     _log(ci_env->log()),
 936     _compile_id(0),
 937     _save_argument_registers(save_arg_registers),
 938     _method(NULL),
 939     _stub_name(stub_name),
 940     _stub_function(stub_function),
 941     _stub_entry_point(NULL),
 942     _entry_bci(InvocationEntryBci),
 943     _initial_gvn(NULL),
 944     _for_igvn(NULL),
 945     _warm_calls(NULL),
 946     _orig_pc_slot(0),
 947     _orig_pc_slot_offset_in_bytes(0),
 948     _subsume_loads(true),
 949     _do_escape_analysis(false),
 950     _eliminate_boxing(false),
 951     _failure_reason(NULL),
 952     _code_buffer("Compile::Fill_buffer"),
 953     _has_method_handle_invokes(false),
 954     _mach_constant_base_node(NULL),
 955     _node_bundling_limit(0),
 956     _node_bundling_base(NULL),
 957     _java_calls(0),
 958     _inner_loops(0),
 959 #ifndef PRODUCT
 960     _trace_opto_output(TraceOptoOutput),
 961     _in_dump_cnt(0),
 962     _printer(NULL),
 963 #endif
 964     _comp_arena(mtCompiler),
 965     _node_arena(mtCompiler),
 966     _old_arena(mtCompiler),
 967     _Compile_types(mtCompiler),
 968     _dead_node_list(comp_arena()),
 969     _dead_node_count(0),
 970     _congraph(NULL),
 971     _replay_inline_data(NULL),
 972     _number_of_mh_late_inlines(0),
 973     _inlining_progress(false),
 974     _inlining_incrementally(false),
 975     _print_inlining_list(NULL),
 976     _print_inlining_stream(NULL),
 977     _print_inlining_idx(0),
 978     _print_inlining_output(NULL),
 979     _allowed_reasons(0),
 980     _interpreter_frame_size(0),
 981     _max_node_limit(MaxNodeLimit) {
 982   C = this;
 983 
 984   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 985   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 986 
 987 #ifndef PRODUCT
 988   set_print_assembly(PrintFrameConverterAssembly);
 989   set_parsed_irreducible_loop(false);
 990 #endif
 991   set_has_irreducible_loop(false); // no loops
 992 
 993   CompileWrapper cw(this);
 994   Init(/*AliasLevel=*/ 0);
 995   init_tf((*generator)());
 996 
 997   {
 998     // The following is a dummy for the sake of GraphKit::gen_stub
 999     Unique_Node_List for_igvn(comp_arena());
1000     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1001     PhaseGVN gvn(Thread::current()->resource_area(),255);
1002     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1003     gvn.transform_no_reclaim(top());
1004 
1005     GraphKit kit;
1006     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1007   }
1008 
1009   NOT_PRODUCT( verify_graph_edges(); )
1010   Code_Gen();
1011   if (failing())  return;
1012 
1013 
1014   // Entry point will be accessed using compile->stub_entry_point();
1015   if (code_buffer() == NULL) {
1016     Matcher::soft_match_failure();
1017   } else {
1018     if (PrintAssembly && (WizardMode || Verbose))
1019       tty->print_cr("### Stub::%s", stub_name);
1020 
1021     if (!failing()) {
1022       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1023 
1024       // Make the NMethod
1025       // For now we mark the frame as never safe for profile stackwalking
1026       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1027                                                       code_buffer(),
1028                                                       CodeOffsets::frame_never_safe,
1029                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1030                                                       frame_size_in_words(),
1031                                                       _oop_map_set,
1032                                                       save_arg_registers);
1033       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1034 
1035       _stub_entry_point = rs->entry_point();
1036     }
1037   }
1038 }
1039 
1040 //------------------------------Init-------------------------------------------
1041 // Prepare for a single compilation
1042 void Compile::Init(int aliaslevel) {
1043   _unique  = 0;
1044   _regalloc = NULL;
1045 
1046   _tf      = NULL;  // filled in later
1047   _top     = NULL;  // cached later
1048   _matcher = NULL;  // filled in later
1049   _cfg     = NULL;  // filled in later
1050 
1051   set_24_bit_selection_and_mode(Use24BitFP, false);
1052 
1053   _node_note_array = NULL;
1054   _default_node_notes = NULL;
1055   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1056 
1057   _immutable_memory = NULL; // filled in at first inquiry
1058 
1059   // Globally visible Nodes
1060   // First set TOP to NULL to give safe behavior during creation of RootNode
1061   set_cached_top_node(NULL);
1062   set_root(new RootNode());
1063   // Now that you have a Root to point to, create the real TOP
1064   set_cached_top_node( new ConNode(Type::TOP) );
1065   set_recent_alloc(NULL, NULL);
1066 
1067   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1068   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1069   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1070   env()->set_dependencies(new Dependencies(env()));
1071 
1072   _fixed_slots = 0;
1073   set_has_split_ifs(false);
1074   set_has_loops(has_method() && method()->has_loops()); // first approximation
1075   set_has_stringbuilder(false);
1076   set_has_boxed_value(false);
1077   _trap_can_recompile = false;  // no traps emitted yet
1078   _major_progress = true; // start out assuming good things will happen
1079   set_has_unsafe_access(false);
1080   set_max_vector_size(0);
1081   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1082   set_decompile_count(0);
1083 
1084   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1085   set_num_loop_opts(LoopOptsCount);
1086   set_do_inlining(Inline);
1087   set_max_inline_size(MaxInlineSize);
1088   set_freq_inline_size(FreqInlineSize);
1089   set_do_scheduling(OptoScheduling);
1090   set_do_count_invocations(false);
1091   set_do_method_data_update(false);
1092   set_age_code(has_method() && method()->profile_aging());
1093   set_rtm_state(NoRTM); // No RTM lock eliding by default
1094   method_has_option_value("MaxNodeLimit", _max_node_limit);
1095 #if INCLUDE_RTM_OPT
1096   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1097     int rtm_state = method()->method_data()->rtm_state();
1098     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1099       // Don't generate RTM lock eliding code.
1100       set_rtm_state(NoRTM);
1101     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1102       // Generate RTM lock eliding code without abort ratio calculation code.
1103       set_rtm_state(UseRTM);
1104     } else if (UseRTMDeopt) {
1105       // Generate RTM lock eliding code and include abort ratio calculation
1106       // code if UseRTMDeopt is on.
1107       set_rtm_state(ProfileRTM);
1108     }
1109   }
1110 #endif
1111   if (debug_info()->recording_non_safepoints()) {
1112     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1113                         (comp_arena(), 8, 0, NULL));
1114     set_default_node_notes(Node_Notes::make(this));
1115   }
1116 
1117   // // -- Initialize types before each compile --
1118   // // Update cached type information
1119   // if( _method && _method->constants() )
1120   //   Type::update_loaded_types(_method, _method->constants());
1121 
1122   // Init alias_type map.
1123   if (!_do_escape_analysis && aliaslevel == 3)
1124     aliaslevel = 2;  // No unique types without escape analysis
1125   _AliasLevel = aliaslevel;
1126   const int grow_ats = 16;
1127   _max_alias_types = grow_ats;
1128   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1129   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1130   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1131   {
1132     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1133   }
1134   // Initialize the first few types.
1135   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1136   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1137   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1138   _num_alias_types = AliasIdxRaw+1;
1139   // Zero out the alias type cache.
1140   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1141   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1142   probe_alias_cache(NULL)->_index = AliasIdxTop;
1143 
1144   _intrinsics = NULL;
1145   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1146   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1147   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1148   register_library_intrinsics();
1149 }
1150 
1151 //---------------------------init_start----------------------------------------
1152 // Install the StartNode on this compile object.
1153 void Compile::init_start(StartNode* s) {
1154   if (failing())
1155     return; // already failing
1156   assert(s == start(), "");
1157 }
1158 
1159 /**
1160  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1161  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1162  * the ideal graph.
1163  */
1164 StartNode* Compile::start() const {
1165   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
1166   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1167     Node* start = root()->fast_out(i);
1168     if (start->is_Start()) {
1169       return start->as_Start();
1170     }
1171   }
1172   fatal("Did not find Start node!");
1173   return NULL;
1174 }
1175 
1176 //-------------------------------immutable_memory-------------------------------------
1177 // Access immutable memory
1178 Node* Compile::immutable_memory() {
1179   if (_immutable_memory != NULL) {
1180     return _immutable_memory;
1181   }
1182   StartNode* s = start();
1183   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1184     Node *p = s->fast_out(i);
1185     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1186       _immutable_memory = p;
1187       return _immutable_memory;
1188     }
1189   }
1190   ShouldNotReachHere();
1191   return NULL;
1192 }
1193 
1194 //----------------------set_cached_top_node------------------------------------
1195 // Install the cached top node, and make sure Node::is_top works correctly.
1196 void Compile::set_cached_top_node(Node* tn) {
1197   if (tn != NULL)  verify_top(tn);
1198   Node* old_top = _top;
1199   _top = tn;
1200   // Calling Node::setup_is_top allows the nodes the chance to adjust
1201   // their _out arrays.
1202   if (_top != NULL)     _top->setup_is_top();
1203   if (old_top != NULL)  old_top->setup_is_top();
1204   assert(_top == NULL || top()->is_top(), "");
1205 }
1206 
1207 #ifdef ASSERT
1208 uint Compile::count_live_nodes_by_graph_walk() {
1209   Unique_Node_List useful(comp_arena());
1210   // Get useful node list by walking the graph.
1211   identify_useful_nodes(useful);
1212   return useful.size();
1213 }
1214 
1215 void Compile::print_missing_nodes() {
1216 
1217   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1218   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1219     return;
1220   }
1221 
1222   // This is an expensive function. It is executed only when the user
1223   // specifies VerifyIdealNodeCount option or otherwise knows the
1224   // additional work that needs to be done to identify reachable nodes
1225   // by walking the flow graph and find the missing ones using
1226   // _dead_node_list.
1227 
1228   Unique_Node_List useful(comp_arena());
1229   // Get useful node list by walking the graph.
1230   identify_useful_nodes(useful);
1231 
1232   uint l_nodes = C->live_nodes();
1233   uint l_nodes_by_walk = useful.size();
1234 
1235   if (l_nodes != l_nodes_by_walk) {
1236     if (_log != NULL) {
1237       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1238       _log->stamp();
1239       _log->end_head();
1240     }
1241     VectorSet& useful_member_set = useful.member_set();
1242     int last_idx = l_nodes_by_walk;
1243     for (int i = 0; i < last_idx; i++) {
1244       if (useful_member_set.test(i)) {
1245         if (_dead_node_list.test(i)) {
1246           if (_log != NULL) {
1247             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1248           }
1249           if (PrintIdealNodeCount) {
1250             // Print the log message to tty
1251               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1252               useful.at(i)->dump();
1253           }
1254         }
1255       }
1256       else if (! _dead_node_list.test(i)) {
1257         if (_log != NULL) {
1258           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1259         }
1260         if (PrintIdealNodeCount) {
1261           // Print the log message to tty
1262           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1263         }
1264       }
1265     }
1266     if (_log != NULL) {
1267       _log->tail("mismatched_nodes");
1268     }
1269   }
1270 }
1271 void Compile::record_modified_node(Node* n) {
1272   if (_modified_nodes != NULL && !_inlining_incrementally &&
1273       n->outcnt() != 0 && !n->is_Con()) {
1274     _modified_nodes->push(n);
1275   }
1276 }
1277 
1278 void Compile::remove_modified_node(Node* n) {
1279   if (_modified_nodes != NULL) {
1280     _modified_nodes->remove(n);
1281   }
1282 }
1283 #endif
1284 
1285 #ifndef PRODUCT
1286 void Compile::verify_top(Node* tn) const {
1287   if (tn != NULL) {
1288     assert(tn->is_Con(), "top node must be a constant");
1289     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1290     assert(tn->in(0) != NULL, "must have live top node");
1291   }
1292 }
1293 #endif
1294 
1295 
1296 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1297 
1298 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1299   guarantee(arr != NULL, "");
1300   int num_blocks = arr->length();
1301   if (grow_by < num_blocks)  grow_by = num_blocks;
1302   int num_notes = grow_by * _node_notes_block_size;
1303   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1304   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1305   while (num_notes > 0) {
1306     arr->append(notes);
1307     notes     += _node_notes_block_size;
1308     num_notes -= _node_notes_block_size;
1309   }
1310   assert(num_notes == 0, "exact multiple, please");
1311 }
1312 
1313 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1314   if (source == NULL || dest == NULL)  return false;
1315 
1316   if (dest->is_Con())
1317     return false;               // Do not push debug info onto constants.
1318 
1319 #ifdef ASSERT
1320   // Leave a bread crumb trail pointing to the original node:
1321   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1322     dest->set_debug_orig(source);
1323   }
1324 #endif
1325 
1326   if (node_note_array() == NULL)
1327     return false;               // Not collecting any notes now.
1328 
1329   // This is a copy onto a pre-existing node, which may already have notes.
1330   // If both nodes have notes, do not overwrite any pre-existing notes.
1331   Node_Notes* source_notes = node_notes_at(source->_idx);
1332   if (source_notes == NULL || source_notes->is_clear())  return false;
1333   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1334   if (dest_notes == NULL || dest_notes->is_clear()) {
1335     return set_node_notes_at(dest->_idx, source_notes);
1336   }
1337 
1338   Node_Notes merged_notes = (*source_notes);
1339   // The order of operations here ensures that dest notes will win...
1340   merged_notes.update_from(dest_notes);
1341   return set_node_notes_at(dest->_idx, &merged_notes);
1342 }
1343 
1344 
1345 //--------------------------allow_range_check_smearing-------------------------
1346 // Gating condition for coalescing similar range checks.
1347 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1348 // single covering check that is at least as strong as any of them.
1349 // If the optimization succeeds, the simplified (strengthened) range check
1350 // will always succeed.  If it fails, we will deopt, and then give up
1351 // on the optimization.
1352 bool Compile::allow_range_check_smearing() const {
1353   // If this method has already thrown a range-check,
1354   // assume it was because we already tried range smearing
1355   // and it failed.
1356   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1357   return !already_trapped;
1358 }
1359 
1360 
1361 //------------------------------flatten_alias_type-----------------------------
1362 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1363   int offset = tj->offset();
1364   TypePtr::PTR ptr = tj->ptr();
1365 
1366   // Known instance (scalarizable allocation) alias only with itself.
1367   bool is_known_inst = tj->isa_oopptr() != NULL &&
1368                        tj->is_oopptr()->is_known_instance();
1369 
1370   // Process weird unsafe references.
1371   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1372     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1373     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1374     tj = TypeOopPtr::BOTTOM;
1375     ptr = tj->ptr();
1376     offset = tj->offset();
1377   }
1378 
1379   // Array pointers need some flattening
1380   const TypeAryPtr *ta = tj->isa_aryptr();
1381   if (ta && ta->is_stable()) {
1382     // Erase stability property for alias analysis.
1383     tj = ta = ta->cast_to_stable(false);
1384   }
1385   if( ta && is_known_inst ) {
1386     if ( offset != Type::OffsetBot &&
1387          offset > arrayOopDesc::length_offset_in_bytes() ) {
1388       offset = Type::OffsetBot; // Flatten constant access into array body only
1389       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1390     }
1391   } else if( ta && _AliasLevel >= 2 ) {
1392     // For arrays indexed by constant indices, we flatten the alias
1393     // space to include all of the array body.  Only the header, klass
1394     // and array length can be accessed un-aliased.
1395     if( offset != Type::OffsetBot ) {
1396       if( ta->const_oop() ) { // MethodData* or Method*
1397         offset = Type::OffsetBot;   // Flatten constant access into array body
1398         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1399       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1400         // range is OK as-is.
1401         tj = ta = TypeAryPtr::RANGE;
1402       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1403         tj = TypeInstPtr::KLASS; // all klass loads look alike
1404         ta = TypeAryPtr::RANGE; // generic ignored junk
1405         ptr = TypePtr::BotPTR;
1406       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1407         tj = TypeInstPtr::MARK;
1408         ta = TypeAryPtr::RANGE; // generic ignored junk
1409         ptr = TypePtr::BotPTR;
1410       } else {                  // Random constant offset into array body
1411         offset = Type::OffsetBot;   // Flatten constant access into array body
1412         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1413       }
1414     }
1415     // Arrays of fixed size alias with arrays of unknown size.
1416     if (ta->size() != TypeInt::POS) {
1417       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1418       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1419     }
1420     // Arrays of known objects become arrays of unknown objects.
1421     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1422       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1423       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1424     }
1425     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1426       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1427       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1428     }
1429     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1430     // cannot be distinguished by bytecode alone.
1431     if (ta->elem() == TypeInt::BOOL) {
1432       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1433       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1434       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1435     }
1436     // During the 2nd round of IterGVN, NotNull castings are removed.
1437     // Make sure the Bottom and NotNull variants alias the same.
1438     // Also, make sure exact and non-exact variants alias the same.
1439     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1440       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1441     }
1442   }
1443 
1444   // Oop pointers need some flattening
1445   const TypeInstPtr *to = tj->isa_instptr();
1446   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1447     ciInstanceKlass *k = to->klass()->as_instance_klass();
1448     if( ptr == TypePtr::Constant ) {
1449       if (to->klass() != ciEnv::current()->Class_klass() ||
1450           offset < k->size_helper() * wordSize) {
1451         // No constant oop pointers (such as Strings); they alias with
1452         // unknown strings.
1453         assert(!is_known_inst, "not scalarizable allocation");
1454         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1455       }
1456     } else if( is_known_inst ) {
1457       tj = to; // Keep NotNull and klass_is_exact for instance type
1458     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1459       // During the 2nd round of IterGVN, NotNull castings are removed.
1460       // Make sure the Bottom and NotNull variants alias the same.
1461       // Also, make sure exact and non-exact variants alias the same.
1462       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1463     }
1464     if (to->speculative() != NULL) {
1465       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1466     }
1467     // Canonicalize the holder of this field
1468     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1469       // First handle header references such as a LoadKlassNode, even if the
1470       // object's klass is unloaded at compile time (4965979).
1471       if (!is_known_inst) { // Do it only for non-instance types
1472         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1473       }
1474     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1475       // Static fields are in the space above the normal instance
1476       // fields in the java.lang.Class instance.
1477       if (to->klass() != ciEnv::current()->Class_klass()) {
1478         to = NULL;
1479         tj = TypeOopPtr::BOTTOM;
1480         offset = tj->offset();
1481       }
1482     } else {
1483       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1484       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1485         if( is_known_inst ) {
1486           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1487         } else {
1488           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1489         }
1490       }
1491     }
1492   }
1493 
1494   // Klass pointers to object array klasses need some flattening
1495   const TypeKlassPtr *tk = tj->isa_klassptr();
1496   if( tk ) {
1497     // If we are referencing a field within a Klass, we need
1498     // to assume the worst case of an Object.  Both exact and
1499     // inexact types must flatten to the same alias class so
1500     // use NotNull as the PTR.
1501     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1502 
1503       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1504                                    TypeKlassPtr::OBJECT->klass(),
1505                                    offset);
1506     }
1507 
1508     ciKlass* klass = tk->klass();
1509     if( klass->is_obj_array_klass() ) {
1510       ciKlass* k = TypeAryPtr::OOPS->klass();
1511       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1512         k = TypeInstPtr::BOTTOM->klass();
1513       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1514     }
1515 
1516     // Check for precise loads from the primary supertype array and force them
1517     // to the supertype cache alias index.  Check for generic array loads from
1518     // the primary supertype array and also force them to the supertype cache
1519     // alias index.  Since the same load can reach both, we need to merge
1520     // these 2 disparate memories into the same alias class.  Since the
1521     // primary supertype array is read-only, there's no chance of confusion
1522     // where we bypass an array load and an array store.
1523     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1524     if (offset == Type::OffsetBot ||
1525         (offset >= primary_supers_offset &&
1526          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1527         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1528       offset = in_bytes(Klass::secondary_super_cache_offset());
1529       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1530     }
1531   }
1532 
1533   // Flatten all Raw pointers together.
1534   if (tj->base() == Type::RawPtr)
1535     tj = TypeRawPtr::BOTTOM;
1536 
1537   if (tj->base() == Type::AnyPtr)
1538     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1539 
1540   // Flatten all to bottom for now
1541   switch( _AliasLevel ) {
1542   case 0:
1543     tj = TypePtr::BOTTOM;
1544     break;
1545   case 1:                       // Flatten to: oop, static, field or array
1546     switch (tj->base()) {
1547     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1548     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1549     case Type::AryPtr:   // do not distinguish arrays at all
1550     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1551     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1552     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1553     default: ShouldNotReachHere();
1554     }
1555     break;
1556   case 2:                       // No collapsing at level 2; keep all splits
1557   case 3:                       // No collapsing at level 3; keep all splits
1558     break;
1559   default:
1560     Unimplemented();
1561   }
1562 
1563   offset = tj->offset();
1564   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1565 
1566   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1567           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1568           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1569           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1570           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1571           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1572           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1573           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1574   assert( tj->ptr() != TypePtr::TopPTR &&
1575           tj->ptr() != TypePtr::AnyNull &&
1576           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1577 //    assert( tj->ptr() != TypePtr::Constant ||
1578 //            tj->base() == Type::RawPtr ||
1579 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1580 
1581   return tj;
1582 }
1583 
1584 void Compile::AliasType::Init(int i, const TypePtr* at) {
1585   _index = i;
1586   _adr_type = at;
1587   _field = NULL;
1588   _element = NULL;
1589   _is_rewritable = true; // default
1590   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1591   if (atoop != NULL && atoop->is_known_instance()) {
1592     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1593     _general_index = Compile::current()->get_alias_index(gt);
1594   } else {
1595     _general_index = 0;
1596   }
1597 }
1598 
1599 //---------------------------------print_on------------------------------------
1600 #ifndef PRODUCT
1601 void Compile::AliasType::print_on(outputStream* st) {
1602   if (index() < 10)
1603         st->print("@ <%d> ", index());
1604   else  st->print("@ <%d>",  index());
1605   st->print(is_rewritable() ? "   " : " RO");
1606   int offset = adr_type()->offset();
1607   if (offset == Type::OffsetBot)
1608         st->print(" +any");
1609   else  st->print(" +%-3d", offset);
1610   st->print(" in ");
1611   adr_type()->dump_on(st);
1612   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1613   if (field() != NULL && tjp) {
1614     if (tjp->klass()  != field()->holder() ||
1615         tjp->offset() != field()->offset_in_bytes()) {
1616       st->print(" != ");
1617       field()->print();
1618       st->print(" ***");
1619     }
1620   }
1621 }
1622 
1623 void print_alias_types() {
1624   Compile* C = Compile::current();
1625   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1626   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1627     C->alias_type(idx)->print_on(tty);
1628     tty->cr();
1629   }
1630 }
1631 #endif
1632 
1633 
1634 //----------------------------probe_alias_cache--------------------------------
1635 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1636   intptr_t key = (intptr_t) adr_type;
1637   key ^= key >> logAliasCacheSize;
1638   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1639 }
1640 
1641 
1642 //-----------------------------grow_alias_types--------------------------------
1643 void Compile::grow_alias_types() {
1644   const int old_ats  = _max_alias_types; // how many before?
1645   const int new_ats  = old_ats;          // how many more?
1646   const int grow_ats = old_ats+new_ats;  // how many now?
1647   _max_alias_types = grow_ats;
1648   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1649   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1650   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1651   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1652 }
1653 
1654 
1655 //--------------------------------find_alias_type------------------------------
1656 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1657   if (_AliasLevel == 0)
1658     return alias_type(AliasIdxBot);
1659 
1660   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1661   if (ace->_adr_type == adr_type) {
1662     return alias_type(ace->_index);
1663   }
1664 
1665   // Handle special cases.
1666   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1667   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1668 
1669   // Do it the slow way.
1670   const TypePtr* flat = flatten_alias_type(adr_type);
1671 
1672 #ifdef ASSERT
1673   assert(flat == flatten_alias_type(flat), "idempotent");
1674   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1675   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1676     const TypeOopPtr* foop = flat->is_oopptr();
1677     // Scalarizable allocations have exact klass always.
1678     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1679     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1680     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1681   }
1682   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1683 #endif
1684 
1685   int idx = AliasIdxTop;
1686   for (int i = 0; i < num_alias_types(); i++) {
1687     if (alias_type(i)->adr_type() == flat) {
1688       idx = i;
1689       break;
1690     }
1691   }
1692 
1693   if (idx == AliasIdxTop) {
1694     if (no_create)  return NULL;
1695     // Grow the array if necessary.
1696     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1697     // Add a new alias type.
1698     idx = _num_alias_types++;
1699     _alias_types[idx]->Init(idx, flat);
1700     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1701     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1702     if (flat->isa_instptr()) {
1703       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1704           && flat->is_instptr()->klass() == env()->Class_klass())
1705         alias_type(idx)->set_rewritable(false);
1706     }
1707     if (flat->isa_aryptr()) {
1708 #ifdef ASSERT
1709       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1710       // (T_BYTE has the weakest alignment and size restrictions...)
1711       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1712 #endif
1713       if (flat->offset() == TypePtr::OffsetBot) {
1714         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1715       }
1716     }
1717     if (flat->isa_klassptr()) {
1718       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1719         alias_type(idx)->set_rewritable(false);
1720       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1721         alias_type(idx)->set_rewritable(false);
1722       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1723         alias_type(idx)->set_rewritable(false);
1724       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1725         alias_type(idx)->set_rewritable(false);
1726     }
1727     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1728     // but the base pointer type is not distinctive enough to identify
1729     // references into JavaThread.)
1730 
1731     // Check for final fields.
1732     const TypeInstPtr* tinst = flat->isa_instptr();
1733     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1734       ciField* field;
1735       if (tinst->const_oop() != NULL &&
1736           tinst->klass() == ciEnv::current()->Class_klass() &&
1737           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1738         // static field
1739         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1740         field = k->get_field_by_offset(tinst->offset(), true);
1741       } else {
1742         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1743         field = k->get_field_by_offset(tinst->offset(), false);
1744       }
1745       assert(field == NULL ||
1746              original_field == NULL ||
1747              (field->holder() == original_field->holder() &&
1748               field->offset() == original_field->offset() &&
1749               field->is_static() == original_field->is_static()), "wrong field?");
1750       // Set field() and is_rewritable() attributes.
1751       if (field != NULL)  alias_type(idx)->set_field(field);
1752     }
1753   }
1754 
1755   // Fill the cache for next time.
1756   ace->_adr_type = adr_type;
1757   ace->_index    = idx;
1758   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1759 
1760   // Might as well try to fill the cache for the flattened version, too.
1761   AliasCacheEntry* face = probe_alias_cache(flat);
1762   if (face->_adr_type == NULL) {
1763     face->_adr_type = flat;
1764     face->_index    = idx;
1765     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1766   }
1767 
1768   return alias_type(idx);
1769 }
1770 
1771 
1772 Compile::AliasType* Compile::alias_type(ciField* field) {
1773   const TypeOopPtr* t;
1774   if (field->is_static())
1775     t = TypeInstPtr::make(field->holder()->java_mirror());
1776   else
1777     t = TypeOopPtr::make_from_klass_raw(field->holder());
1778   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1779   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1780   return atp;
1781 }
1782 
1783 
1784 //------------------------------have_alias_type--------------------------------
1785 bool Compile::have_alias_type(const TypePtr* adr_type) {
1786   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1787   if (ace->_adr_type == adr_type) {
1788     return true;
1789   }
1790 
1791   // Handle special cases.
1792   if (adr_type == NULL)             return true;
1793   if (adr_type == TypePtr::BOTTOM)  return true;
1794 
1795   return find_alias_type(adr_type, true, NULL) != NULL;
1796 }
1797 
1798 //-----------------------------must_alias--------------------------------------
1799 // True if all values of the given address type are in the given alias category.
1800 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1801   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1802   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1803   if (alias_idx == AliasIdxTop)         return false; // the empty category
1804   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1805 
1806   // the only remaining possible overlap is identity
1807   int adr_idx = get_alias_index(adr_type);
1808   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1809   assert(adr_idx == alias_idx ||
1810          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1811           && adr_type                       != TypeOopPtr::BOTTOM),
1812          "should not be testing for overlap with an unsafe pointer");
1813   return adr_idx == alias_idx;
1814 }
1815 
1816 //------------------------------can_alias--------------------------------------
1817 // True if any values of the given address type are in the given alias category.
1818 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1819   if (alias_idx == AliasIdxTop)         return false; // the empty category
1820   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1821   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1822   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1823 
1824   // the only remaining possible overlap is identity
1825   int adr_idx = get_alias_index(adr_type);
1826   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1827   return adr_idx == alias_idx;
1828 }
1829 
1830 
1831 
1832 //---------------------------pop_warm_call-------------------------------------
1833 WarmCallInfo* Compile::pop_warm_call() {
1834   WarmCallInfo* wci = _warm_calls;
1835   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1836   return wci;
1837 }
1838 
1839 //----------------------------Inline_Warm--------------------------------------
1840 int Compile::Inline_Warm() {
1841   // If there is room, try to inline some more warm call sites.
1842   // %%% Do a graph index compaction pass when we think we're out of space?
1843   if (!InlineWarmCalls)  return 0;
1844 
1845   int calls_made_hot = 0;
1846   int room_to_grow   = NodeCountInliningCutoff - unique();
1847   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1848   int amount_grown   = 0;
1849   WarmCallInfo* call;
1850   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1851     int est_size = (int)call->size();
1852     if (est_size > (room_to_grow - amount_grown)) {
1853       // This one won't fit anyway.  Get rid of it.
1854       call->make_cold();
1855       continue;
1856     }
1857     call->make_hot();
1858     calls_made_hot++;
1859     amount_grown   += est_size;
1860     amount_to_grow -= est_size;
1861   }
1862 
1863   if (calls_made_hot > 0)  set_major_progress();
1864   return calls_made_hot;
1865 }
1866 
1867 
1868 //----------------------------Finish_Warm--------------------------------------
1869 void Compile::Finish_Warm() {
1870   if (!InlineWarmCalls)  return;
1871   if (failing())  return;
1872   if (warm_calls() == NULL)  return;
1873 
1874   // Clean up loose ends, if we are out of space for inlining.
1875   WarmCallInfo* call;
1876   while ((call = pop_warm_call()) != NULL) {
1877     call->make_cold();
1878   }
1879 }
1880 
1881 //---------------------cleanup_loop_predicates-----------------------
1882 // Remove the opaque nodes that protect the predicates so that all unused
1883 // checks and uncommon_traps will be eliminated from the ideal graph
1884 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1885   if (predicate_count()==0) return;
1886   for (int i = predicate_count(); i > 0; i--) {
1887     Node * n = predicate_opaque1_node(i-1);
1888     assert(n->Opcode() == Op_Opaque1, "must be");
1889     igvn.replace_node(n, n->in(1));
1890   }
1891   assert(predicate_count()==0, "should be clean!");
1892 }
1893 
1894 // StringOpts and late inlining of string methods
1895 void Compile::inline_string_calls(bool parse_time) {
1896   {
1897     // remove useless nodes to make the usage analysis simpler
1898     ResourceMark rm;
1899     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1900   }
1901 
1902   {
1903     ResourceMark rm;
1904     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1905     PhaseStringOpts pso(initial_gvn(), for_igvn());
1906     print_method(PHASE_AFTER_STRINGOPTS, 3);
1907   }
1908 
1909   // now inline anything that we skipped the first time around
1910   if (!parse_time) {
1911     _late_inlines_pos = _late_inlines.length();
1912   }
1913 
1914   while (_string_late_inlines.length() > 0) {
1915     CallGenerator* cg = _string_late_inlines.pop();
1916     cg->do_late_inline();
1917     if (failing())  return;
1918   }
1919   _string_late_inlines.trunc_to(0);
1920 }
1921 
1922 // Late inlining of boxing methods
1923 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1924   if (_boxing_late_inlines.length() > 0) {
1925     assert(has_boxed_value(), "inconsistent");
1926 
1927     PhaseGVN* gvn = initial_gvn();
1928     set_inlining_incrementally(true);
1929 
1930     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1931     for_igvn()->clear();
1932     gvn->replace_with(&igvn);
1933 
1934     _late_inlines_pos = _late_inlines.length();
1935 
1936     while (_boxing_late_inlines.length() > 0) {
1937       CallGenerator* cg = _boxing_late_inlines.pop();
1938       cg->do_late_inline();
1939       if (failing())  return;
1940     }
1941     _boxing_late_inlines.trunc_to(0);
1942 
1943     {
1944       ResourceMark rm;
1945       PhaseRemoveUseless pru(gvn, for_igvn());
1946     }
1947 
1948     igvn = PhaseIterGVN(gvn);
1949     igvn.optimize();
1950 
1951     set_inlining_progress(false);
1952     set_inlining_incrementally(false);
1953   }
1954 }
1955 
1956 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1957   assert(IncrementalInline, "incremental inlining should be on");
1958   PhaseGVN* gvn = initial_gvn();
1959 
1960   set_inlining_progress(false);
1961   for_igvn()->clear();
1962   gvn->replace_with(&igvn);
1963 
1964   {
1965     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1966     int i = 0;
1967     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1968       CallGenerator* cg = _late_inlines.at(i);
1969       _late_inlines_pos = i+1;
1970       cg->do_late_inline();
1971       if (failing())  return;
1972     }
1973     int j = 0;
1974     for (; i < _late_inlines.length(); i++, j++) {
1975       _late_inlines.at_put(j, _late_inlines.at(i));
1976     }
1977     _late_inlines.trunc_to(j);
1978   }
1979 
1980   {
1981     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
1982     ResourceMark rm;
1983     PhaseRemoveUseless pru(gvn, for_igvn());
1984   }
1985 
1986   {
1987     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
1988     igvn = PhaseIterGVN(gvn);
1989   }
1990 }
1991 
1992 // Perform incremental inlining until bound on number of live nodes is reached
1993 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1994   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
1995 
1996   PhaseGVN* gvn = initial_gvn();
1997 
1998   set_inlining_incrementally(true);
1999   set_inlining_progress(true);
2000   uint low_live_nodes = 0;
2001 
2002   while(inlining_progress() && _late_inlines.length() > 0) {
2003 
2004     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2005       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2006         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2007         // PhaseIdealLoop is expensive so we only try it once we are
2008         // out of live nodes and we only try it again if the previous
2009         // helped got the number of nodes down significantly
2010         PhaseIdealLoop ideal_loop( igvn, false, true );
2011         if (failing())  return;
2012         low_live_nodes = live_nodes();
2013         _major_progress = true;
2014       }
2015 
2016       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2017         break;
2018       }
2019     }
2020 
2021     inline_incrementally_one(igvn);
2022 
2023     if (failing())  return;
2024 
2025     {
2026       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2027       igvn.optimize();
2028     }
2029 
2030     if (failing())  return;
2031   }
2032 
2033   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2034 
2035   if (_string_late_inlines.length() > 0) {
2036     assert(has_stringbuilder(), "inconsistent");
2037     for_igvn()->clear();
2038     initial_gvn()->replace_with(&igvn);
2039 
2040     inline_string_calls(false);
2041 
2042     if (failing())  return;
2043 
2044     {
2045       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2046       ResourceMark rm;
2047       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2048     }
2049 
2050     {
2051       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2052       igvn = PhaseIterGVN(gvn);
2053       igvn.optimize();
2054     }
2055   }
2056 
2057   set_inlining_incrementally(false);
2058 }
2059 
2060 
2061 //------------------------------Optimize---------------------------------------
2062 // Given a graph, optimize it.
2063 void Compile::Optimize() {
2064   TracePhase tp("optimizer", &timers[_t_optimizer]);
2065 
2066 #ifndef PRODUCT
2067   if (env()->break_at_compile()) {
2068     BREAKPOINT;
2069   }
2070 
2071 #endif
2072 
2073   ResourceMark rm;
2074   int          loop_opts_cnt;
2075 
2076   print_inlining_reinit();
2077 
2078   NOT_PRODUCT( verify_graph_edges(); )
2079 
2080   print_method(PHASE_AFTER_PARSING);
2081 
2082  {
2083   // Iterative Global Value Numbering, including ideal transforms
2084   // Initialize IterGVN with types and values from parse-time GVN
2085   PhaseIterGVN igvn(initial_gvn());
2086 #ifdef ASSERT
2087   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2088 #endif
2089   {
2090     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2091     igvn.optimize();
2092   }
2093 
2094   print_method(PHASE_ITER_GVN1, 2);
2095 
2096   if (failing())  return;
2097 
2098   inline_incrementally(igvn);
2099 
2100   print_method(PHASE_INCREMENTAL_INLINE, 2);
2101 
2102   if (failing())  return;
2103 
2104   if (eliminate_boxing()) {
2105     // Inline valueOf() methods now.
2106     inline_boxing_calls(igvn);
2107 
2108     if (AlwaysIncrementalInline) {
2109       inline_incrementally(igvn);
2110     }
2111 
2112     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2113 
2114     if (failing())  return;
2115   }
2116 
2117   // Remove the speculative part of types and clean up the graph from
2118   // the extra CastPP nodes whose only purpose is to carry them. Do
2119   // that early so that optimizations are not disrupted by the extra
2120   // CastPP nodes.
2121   remove_speculative_types(igvn);
2122 
2123   // No more new expensive nodes will be added to the list from here
2124   // so keep only the actual candidates for optimizations.
2125   cleanup_expensive_nodes(igvn);
2126 
2127   // Perform escape analysis
2128   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2129     if (has_loops()) {
2130       // Cleanup graph (remove dead nodes).
2131       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2132       PhaseIdealLoop ideal_loop( igvn, false, true );
2133       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2134       if (failing())  return;
2135     }
2136     ConnectionGraph::do_analysis(this, &igvn);
2137 
2138     if (failing())  return;
2139 
2140     // Optimize out fields loads from scalar replaceable allocations.
2141     igvn.optimize();
2142     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2143 
2144     if (failing())  return;
2145 
2146     if (congraph() != NULL && macro_count() > 0) {
2147       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2148       PhaseMacroExpand mexp(igvn);
2149       mexp.eliminate_macro_nodes();
2150       igvn.set_delay_transform(false);
2151 
2152       igvn.optimize();
2153       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2154 
2155       if (failing())  return;
2156     }
2157   }
2158 
2159   // Loop transforms on the ideal graph.  Range Check Elimination,
2160   // peeling, unrolling, etc.
2161 
2162   // Set loop opts counter
2163   loop_opts_cnt = num_loop_opts();
2164   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2165     {
2166       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2167       PhaseIdealLoop ideal_loop( igvn, true );
2168       loop_opts_cnt--;
2169       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2170       if (failing())  return;
2171     }
2172     // Loop opts pass if partial peeling occurred in previous pass
2173     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2174       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2175       PhaseIdealLoop ideal_loop( igvn, false );
2176       loop_opts_cnt--;
2177       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2178       if (failing())  return;
2179     }
2180     // Loop opts pass for loop-unrolling before CCP
2181     if(major_progress() && (loop_opts_cnt > 0)) {
2182       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2183       PhaseIdealLoop ideal_loop( igvn, false );
2184       loop_opts_cnt--;
2185       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2186     }
2187     if (!failing()) {
2188       // Verify that last round of loop opts produced a valid graph
2189       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2190       PhaseIdealLoop::verify(igvn);
2191     }
2192   }
2193   if (failing())  return;
2194 
2195   // Conditional Constant Propagation;
2196   PhaseCCP ccp( &igvn );
2197   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2198   {
2199     TracePhase tp("ccp", &timers[_t_ccp]);
2200     ccp.do_transform();
2201   }
2202   print_method(PHASE_CPP1, 2);
2203 
2204   assert( true, "Break here to ccp.dump_old2new_map()");
2205 
2206   // Iterative Global Value Numbering, including ideal transforms
2207   {
2208     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2209     igvn = ccp;
2210     igvn.optimize();
2211   }
2212 
2213   print_method(PHASE_ITER_GVN2, 2);
2214 
2215   if (failing())  return;
2216 
2217   // Loop transforms on the ideal graph.  Range Check Elimination,
2218   // peeling, unrolling, etc.
2219   if(loop_opts_cnt > 0) {
2220     debug_only( int cnt = 0; );
2221     while(major_progress() && (loop_opts_cnt > 0)) {
2222       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2223       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2224       PhaseIdealLoop ideal_loop( igvn, true);
2225       loop_opts_cnt--;
2226       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2227       if (failing())  return;
2228     }
2229   }
2230 
2231   {
2232     // Verify that all previous optimizations produced a valid graph
2233     // at least to this point, even if no loop optimizations were done.
2234     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2235     PhaseIdealLoop::verify(igvn);
2236   }
2237 
2238   {
2239     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2240     PhaseMacroExpand  mex(igvn);
2241     if (mex.expand_macro_nodes()) {
2242       assert(failing(), "must bail out w/ explicit message");
2243       return;
2244     }
2245   }
2246 
2247   DEBUG_ONLY( _modified_nodes = NULL; )
2248  } // (End scope of igvn; run destructor if necessary for asserts.)
2249 
2250   process_print_inlining();
2251   // A method with only infinite loops has no edges entering loops from root
2252   {
2253     TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2254     if (final_graph_reshaping()) {
2255       assert(failing(), "must bail out w/ explicit message");
2256       return;
2257     }
2258   }
2259 
2260   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2261 }
2262 
2263 
2264 //------------------------------Code_Gen---------------------------------------
2265 // Given a graph, generate code for it
2266 void Compile::Code_Gen() {
2267   if (failing()) {
2268     return;
2269   }
2270 
2271   // Perform instruction selection.  You might think we could reclaim Matcher
2272   // memory PDQ, but actually the Matcher is used in generating spill code.
2273   // Internals of the Matcher (including some VectorSets) must remain live
2274   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2275   // set a bit in reclaimed memory.
2276 
2277   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2278   // nodes.  Mapping is only valid at the root of each matched subtree.
2279   NOT_PRODUCT( verify_graph_edges(); )
2280 
2281   Matcher matcher;
2282   _matcher = &matcher;
2283   {
2284     TracePhase tp("matcher", &timers[_t_matcher]);
2285     matcher.match();
2286   }
2287   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2288   // nodes.  Mapping is only valid at the root of each matched subtree.
2289   NOT_PRODUCT( verify_graph_edges(); )
2290 
2291   // If you have too many nodes, or if matching has failed, bail out
2292   check_node_count(0, "out of nodes matching instructions");
2293   if (failing()) {
2294     return;
2295   }
2296 
2297   // Build a proper-looking CFG
2298   PhaseCFG cfg(node_arena(), root(), matcher);
2299   _cfg = &cfg;
2300   {
2301     TracePhase tp("scheduler", &timers[_t_scheduler]);
2302     bool success = cfg.do_global_code_motion();
2303     if (!success) {
2304       return;
2305     }
2306 
2307     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2308     NOT_PRODUCT( verify_graph_edges(); )
2309     debug_only( cfg.verify(); )
2310   }
2311 
2312   PhaseChaitin regalloc(unique(), cfg, matcher);
2313   _regalloc = &regalloc;
2314   {
2315     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2316     // Perform register allocation.  After Chaitin, use-def chains are
2317     // no longer accurate (at spill code) and so must be ignored.
2318     // Node->LRG->reg mappings are still accurate.
2319     _regalloc->Register_Allocate();
2320 
2321     // Bail out if the allocator builds too many nodes
2322     if (failing()) {
2323       return;
2324     }
2325   }
2326 
2327   // Prior to register allocation we kept empty basic blocks in case the
2328   // the allocator needed a place to spill.  After register allocation we
2329   // are not adding any new instructions.  If any basic block is empty, we
2330   // can now safely remove it.
2331   {
2332     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2333     cfg.remove_empty_blocks();
2334     if (do_freq_based_layout()) {
2335       PhaseBlockLayout layout(cfg);
2336     } else {
2337       cfg.set_loop_alignment();
2338     }
2339     cfg.fixup_flow();
2340   }
2341 
2342   // Apply peephole optimizations
2343   if( OptoPeephole ) {
2344     TracePhase tp("peephole", &timers[_t_peephole]);
2345     PhasePeephole peep( _regalloc, cfg);
2346     peep.do_transform();
2347   }
2348 
2349   // Do late expand if CPU requires this.
2350   if (Matcher::require_postalloc_expand) {
2351     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2352     cfg.postalloc_expand(_regalloc);
2353   }
2354 
2355   // Convert Nodes to instruction bits in a buffer
2356   {
2357     TraceTime tp("output", &timers[_t_output], CITime);
2358     Output();
2359   }
2360 
2361   print_method(PHASE_FINAL_CODE);
2362 
2363   // He's dead, Jim.
2364   _cfg     = (PhaseCFG*)0xdeadbeef;
2365   _regalloc = (PhaseChaitin*)0xdeadbeef;
2366 }
2367 
2368 
2369 //------------------------------dump_asm---------------------------------------
2370 // Dump formatted assembly
2371 #ifndef PRODUCT
2372 void Compile::dump_asm(int *pcs, uint pc_limit) {
2373   bool cut_short = false;
2374   tty->print_cr("#");
2375   tty->print("#  ");  _tf->dump();  tty->cr();
2376   tty->print_cr("#");
2377 
2378   // For all blocks
2379   int pc = 0x0;                 // Program counter
2380   char starts_bundle = ' ';
2381   _regalloc->dump_frame();
2382 
2383   Node *n = NULL;
2384   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2385     if (VMThread::should_terminate()) {
2386       cut_short = true;
2387       break;
2388     }
2389     Block* block = _cfg->get_block(i);
2390     if (block->is_connector() && !Verbose) {
2391       continue;
2392     }
2393     n = block->head();
2394     if (pcs && n->_idx < pc_limit) {
2395       tty->print("%3.3x   ", pcs[n->_idx]);
2396     } else {
2397       tty->print("      ");
2398     }
2399     block->dump_head(_cfg);
2400     if (block->is_connector()) {
2401       tty->print_cr("        # Empty connector block");
2402     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2403       tty->print_cr("        # Block is sole successor of call");
2404     }
2405 
2406     // For all instructions
2407     Node *delay = NULL;
2408     for (uint j = 0; j < block->number_of_nodes(); j++) {
2409       if (VMThread::should_terminate()) {
2410         cut_short = true;
2411         break;
2412       }
2413       n = block->get_node(j);
2414       if (valid_bundle_info(n)) {
2415         Bundle* bundle = node_bundling(n);
2416         if (bundle->used_in_unconditional_delay()) {
2417           delay = n;
2418           continue;
2419         }
2420         if (bundle->starts_bundle()) {
2421           starts_bundle = '+';
2422         }
2423       }
2424 
2425       if (WizardMode) {
2426         n->dump();
2427       }
2428 
2429       if( !n->is_Region() &&    // Dont print in the Assembly
2430           !n->is_Phi() &&       // a few noisely useless nodes
2431           !n->is_Proj() &&
2432           !n->is_MachTemp() &&
2433           !n->is_SafePointScalarObject() &&
2434           !n->is_Catch() &&     // Would be nice to print exception table targets
2435           !n->is_MergeMem() &&  // Not very interesting
2436           !n->is_top() &&       // Debug info table constants
2437           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2438           ) {
2439         if (pcs && n->_idx < pc_limit)
2440           tty->print("%3.3x", pcs[n->_idx]);
2441         else
2442           tty->print("   ");
2443         tty->print(" %c ", starts_bundle);
2444         starts_bundle = ' ';
2445         tty->print("\t");
2446         n->format(_regalloc, tty);
2447         tty->cr();
2448       }
2449 
2450       // If we have an instruction with a delay slot, and have seen a delay,
2451       // then back up and print it
2452       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2453         assert(delay != NULL, "no unconditional delay instruction");
2454         if (WizardMode) delay->dump();
2455 
2456         if (node_bundling(delay)->starts_bundle())
2457           starts_bundle = '+';
2458         if (pcs && n->_idx < pc_limit)
2459           tty->print("%3.3x", pcs[n->_idx]);
2460         else
2461           tty->print("   ");
2462         tty->print(" %c ", starts_bundle);
2463         starts_bundle = ' ';
2464         tty->print("\t");
2465         delay->format(_regalloc, tty);
2466         tty->cr();
2467         delay = NULL;
2468       }
2469 
2470       // Dump the exception table as well
2471       if( n->is_Catch() && (Verbose || WizardMode) ) {
2472         // Print the exception table for this offset
2473         _handler_table.print_subtable_for(pc);
2474       }
2475     }
2476 
2477     if (pcs && n->_idx < pc_limit)
2478       tty->print_cr("%3.3x", pcs[n->_idx]);
2479     else
2480       tty->cr();
2481 
2482     assert(cut_short || delay == NULL, "no unconditional delay branch");
2483 
2484   } // End of per-block dump
2485   tty->cr();
2486 
2487   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2488 }
2489 #endif
2490 
2491 //------------------------------Final_Reshape_Counts---------------------------
2492 // This class defines counters to help identify when a method
2493 // may/must be executed using hardware with only 24-bit precision.
2494 struct Final_Reshape_Counts : public StackObj {
2495   int  _call_count;             // count non-inlined 'common' calls
2496   int  _float_count;            // count float ops requiring 24-bit precision
2497   int  _double_count;           // count double ops requiring more precision
2498   int  _java_call_count;        // count non-inlined 'java' calls
2499   int  _inner_loop_count;       // count loops which need alignment
2500   VectorSet _visited;           // Visitation flags
2501   Node_List _tests;             // Set of IfNodes & PCTableNodes
2502 
2503   Final_Reshape_Counts() :
2504     _call_count(0), _float_count(0), _double_count(0),
2505     _java_call_count(0), _inner_loop_count(0),
2506     _visited( Thread::current()->resource_area() ) { }
2507 
2508   void inc_call_count  () { _call_count  ++; }
2509   void inc_float_count () { _float_count ++; }
2510   void inc_double_count() { _double_count++; }
2511   void inc_java_call_count() { _java_call_count++; }
2512   void inc_inner_loop_count() { _inner_loop_count++; }
2513 
2514   int  get_call_count  () const { return _call_count  ; }
2515   int  get_float_count () const { return _float_count ; }
2516   int  get_double_count() const { return _double_count; }
2517   int  get_java_call_count() const { return _java_call_count; }
2518   int  get_inner_loop_count() const { return _inner_loop_count; }
2519 };
2520 
2521 #ifdef ASSERT
2522 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2523   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2524   // Make sure the offset goes inside the instance layout.
2525   return k->contains_field_offset(tp->offset());
2526   // Note that OffsetBot and OffsetTop are very negative.
2527 }
2528 #endif
2529 
2530 // Eliminate trivially redundant StoreCMs and accumulate their
2531 // precedence edges.
2532 void Compile::eliminate_redundant_card_marks(Node* n) {
2533   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2534   if (n->in(MemNode::Address)->outcnt() > 1) {
2535     // There are multiple users of the same address so it might be
2536     // possible to eliminate some of the StoreCMs
2537     Node* mem = n->in(MemNode::Memory);
2538     Node* adr = n->in(MemNode::Address);
2539     Node* val = n->in(MemNode::ValueIn);
2540     Node* prev = n;
2541     bool done = false;
2542     // Walk the chain of StoreCMs eliminating ones that match.  As
2543     // long as it's a chain of single users then the optimization is
2544     // safe.  Eliminating partially redundant StoreCMs would require
2545     // cloning copies down the other paths.
2546     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2547       if (adr == mem->in(MemNode::Address) &&
2548           val == mem->in(MemNode::ValueIn)) {
2549         // redundant StoreCM
2550         if (mem->req() > MemNode::OopStore) {
2551           // Hasn't been processed by this code yet.
2552           n->add_prec(mem->in(MemNode::OopStore));
2553         } else {
2554           // Already converted to precedence edge
2555           for (uint i = mem->req(); i < mem->len(); i++) {
2556             // Accumulate any precedence edges
2557             if (mem->in(i) != NULL) {
2558               n->add_prec(mem->in(i));
2559             }
2560           }
2561           // Everything above this point has been processed.
2562           done = true;
2563         }
2564         // Eliminate the previous StoreCM
2565         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2566         assert(mem->outcnt() == 0, "should be dead");
2567         mem->disconnect_inputs(NULL, this);
2568       } else {
2569         prev = mem;
2570       }
2571       mem = prev->in(MemNode::Memory);
2572     }
2573   }
2574 }
2575 
2576 //------------------------------final_graph_reshaping_impl----------------------
2577 // Implement items 1-5 from final_graph_reshaping below.
2578 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2579 
2580   if ( n->outcnt() == 0 ) return; // dead node
2581   uint nop = n->Opcode();
2582 
2583   // Check for 2-input instruction with "last use" on right input.
2584   // Swap to left input.  Implements item (2).
2585   if( n->req() == 3 &&          // two-input instruction
2586       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2587       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2588       n->in(2)->outcnt() == 1 &&// right use IS a last use
2589       !n->in(2)->is_Con() ) {   // right use is not a constant
2590     // Check for commutative opcode
2591     switch( nop ) {
2592     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2593     case Op_MaxI:  case Op_MinI:
2594     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2595     case Op_AndL:  case Op_XorL:  case Op_OrL:
2596     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2597       // Move "last use" input to left by swapping inputs
2598       n->swap_edges(1, 2);
2599       break;
2600     }
2601     default:
2602       break;
2603     }
2604   }
2605 
2606 #ifdef ASSERT
2607   if( n->is_Mem() ) {
2608     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2609     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2610             // oop will be recorded in oop map if load crosses safepoint
2611             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2612                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2613             "raw memory operations should have control edge");
2614   }
2615 #endif
2616   // Count FPU ops and common calls, implements item (3)
2617   switch( nop ) {
2618   // Count all float operations that may use FPU
2619   case Op_AddF:
2620   case Op_SubF:
2621   case Op_MulF:
2622   case Op_DivF:
2623   case Op_NegF:
2624   case Op_ModF:
2625   case Op_ConvI2F:
2626   case Op_ConF:
2627   case Op_CmpF:
2628   case Op_CmpF3:
2629   // case Op_ConvL2F: // longs are split into 32-bit halves
2630     frc.inc_float_count();
2631     break;
2632 
2633   case Op_ConvF2D:
2634   case Op_ConvD2F:
2635     frc.inc_float_count();
2636     frc.inc_double_count();
2637     break;
2638 
2639   // Count all double operations that may use FPU
2640   case Op_AddD:
2641   case Op_SubD:
2642   case Op_MulD:
2643   case Op_DivD:
2644   case Op_NegD:
2645   case Op_ModD:
2646   case Op_ConvI2D:
2647   case Op_ConvD2I:
2648   // case Op_ConvL2D: // handled by leaf call
2649   // case Op_ConvD2L: // handled by leaf call
2650   case Op_ConD:
2651   case Op_CmpD:
2652   case Op_CmpD3:
2653     frc.inc_double_count();
2654     break;
2655   case Op_Opaque1:              // Remove Opaque Nodes before matching
2656   case Op_Opaque2:              // Remove Opaque Nodes before matching
2657   case Op_Opaque3:
2658     n->subsume_by(n->in(1), this);
2659     break;
2660   case Op_CallStaticJava:
2661   case Op_CallJava:
2662   case Op_CallDynamicJava:
2663     frc.inc_java_call_count(); // Count java call site;
2664   case Op_CallRuntime:
2665   case Op_CallLeaf:
2666   case Op_CallLeafNoFP: {
2667     assert( n->is_Call(), "" );
2668     CallNode *call = n->as_Call();
2669     // Count call sites where the FP mode bit would have to be flipped.
2670     // Do not count uncommon runtime calls:
2671     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2672     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2673     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2674       frc.inc_call_count();   // Count the call site
2675     } else {                  // See if uncommon argument is shared
2676       Node *n = call->in(TypeFunc::Parms);
2677       int nop = n->Opcode();
2678       // Clone shared simple arguments to uncommon calls, item (1).
2679       if( n->outcnt() > 1 &&
2680           !n->is_Proj() &&
2681           nop != Op_CreateEx &&
2682           nop != Op_CheckCastPP &&
2683           nop != Op_DecodeN &&
2684           nop != Op_DecodeNKlass &&
2685           !n->is_Mem() ) {
2686         Node *x = n->clone();
2687         call->set_req( TypeFunc::Parms, x );
2688       }
2689     }
2690     break;
2691   }
2692 
2693   case Op_StoreD:
2694   case Op_LoadD:
2695   case Op_LoadD_unaligned:
2696     frc.inc_double_count();
2697     goto handle_mem;
2698   case Op_StoreF:
2699   case Op_LoadF:
2700     frc.inc_float_count();
2701     goto handle_mem;
2702 
2703   case Op_StoreCM:
2704     {
2705       // Convert OopStore dependence into precedence edge
2706       Node* prec = n->in(MemNode::OopStore);
2707       n->del_req(MemNode::OopStore);
2708       n->add_prec(prec);
2709       eliminate_redundant_card_marks(n);
2710     }
2711 
2712     // fall through
2713 
2714   case Op_StoreB:
2715   case Op_StoreC:
2716   case Op_StorePConditional:
2717   case Op_StoreI:
2718   case Op_StoreL:
2719   case Op_StoreIConditional:
2720   case Op_StoreLConditional:
2721   case Op_CompareAndSwapI:
2722   case Op_CompareAndSwapL:
2723   case Op_CompareAndSwapP:
2724   case Op_CompareAndSwapN:
2725   case Op_GetAndAddI:
2726   case Op_GetAndAddL:
2727   case Op_GetAndSetI:
2728   case Op_GetAndSetL:
2729   case Op_GetAndSetP:
2730   case Op_GetAndSetN:
2731   case Op_StoreP:
2732   case Op_StoreN:
2733   case Op_StoreNKlass:
2734   case Op_LoadB:
2735   case Op_LoadUB:
2736   case Op_LoadUS:
2737   case Op_LoadI:
2738   case Op_LoadKlass:
2739   case Op_LoadNKlass:
2740   case Op_LoadL:
2741   case Op_LoadL_unaligned:
2742   case Op_LoadPLocked:
2743   case Op_LoadP:
2744   case Op_LoadN:
2745   case Op_LoadRange:
2746   case Op_LoadS: {
2747   handle_mem:
2748 #ifdef ASSERT
2749     if( VerifyOptoOopOffsets ) {
2750       assert( n->is_Mem(), "" );
2751       MemNode *mem  = (MemNode*)n;
2752       // Check to see if address types have grounded out somehow.
2753       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2754       assert( !tp || oop_offset_is_sane(tp), "" );
2755     }
2756 #endif
2757     break;
2758   }
2759 
2760   case Op_AddP: {               // Assert sane base pointers
2761     Node *addp = n->in(AddPNode::Address);
2762     assert( !addp->is_AddP() ||
2763             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2764             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2765             "Base pointers must match" );
2766 #ifdef _LP64
2767     if ((UseCompressedOops || UseCompressedClassPointers) &&
2768         addp->Opcode() == Op_ConP &&
2769         addp == n->in(AddPNode::Base) &&
2770         n->in(AddPNode::Offset)->is_Con()) {
2771       // Use addressing with narrow klass to load with offset on x86.
2772       // On sparc loading 32-bits constant and decoding it have less
2773       // instructions (4) then load 64-bits constant (7).
2774       // Do this transformation here since IGVN will convert ConN back to ConP.
2775       const Type* t = addp->bottom_type();
2776       if (t->isa_oopptr() || t->isa_klassptr()) {
2777         Node* nn = NULL;
2778 
2779         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2780 
2781         // Look for existing ConN node of the same exact type.
2782         Node* r  = root();
2783         uint cnt = r->outcnt();
2784         for (uint i = 0; i < cnt; i++) {
2785           Node* m = r->raw_out(i);
2786           if (m!= NULL && m->Opcode() == op &&
2787               m->bottom_type()->make_ptr() == t) {
2788             nn = m;
2789             break;
2790           }
2791         }
2792         if (nn != NULL) {
2793           // Decode a narrow oop to match address
2794           // [R12 + narrow_oop_reg<<3 + offset]
2795           if (t->isa_oopptr()) {
2796             nn = new DecodeNNode(nn, t);
2797           } else {
2798             nn = new DecodeNKlassNode(nn, t);
2799           }
2800           n->set_req(AddPNode::Base, nn);
2801           n->set_req(AddPNode::Address, nn);
2802           if (addp->outcnt() == 0) {
2803             addp->disconnect_inputs(NULL, this);
2804           }
2805         }
2806       }
2807     }
2808 #endif
2809     break;
2810   }
2811 
2812 #ifdef _LP64
2813   case Op_CastPP:
2814     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2815       Node* in1 = n->in(1);
2816       const Type* t = n->bottom_type();
2817       Node* new_in1 = in1->clone();
2818       new_in1->as_DecodeN()->set_type(t);
2819 
2820       if (!Matcher::narrow_oop_use_complex_address()) {
2821         //
2822         // x86, ARM and friends can handle 2 adds in addressing mode
2823         // and Matcher can fold a DecodeN node into address by using
2824         // a narrow oop directly and do implicit NULL check in address:
2825         //
2826         // [R12 + narrow_oop_reg<<3 + offset]
2827         // NullCheck narrow_oop_reg
2828         //
2829         // On other platforms (Sparc) we have to keep new DecodeN node and
2830         // use it to do implicit NULL check in address:
2831         //
2832         // decode_not_null narrow_oop_reg, base_reg
2833         // [base_reg + offset]
2834         // NullCheck base_reg
2835         //
2836         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2837         // to keep the information to which NULL check the new DecodeN node
2838         // corresponds to use it as value in implicit_null_check().
2839         //
2840         new_in1->set_req(0, n->in(0));
2841       }
2842 
2843       n->subsume_by(new_in1, this);
2844       if (in1->outcnt() == 0) {
2845         in1->disconnect_inputs(NULL, this);
2846       }
2847     }
2848     break;
2849 
2850   case Op_CmpP:
2851     // Do this transformation here to preserve CmpPNode::sub() and
2852     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2853     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2854       Node* in1 = n->in(1);
2855       Node* in2 = n->in(2);
2856       if (!in1->is_DecodeNarrowPtr()) {
2857         in2 = in1;
2858         in1 = n->in(2);
2859       }
2860       assert(in1->is_DecodeNarrowPtr(), "sanity");
2861 
2862       Node* new_in2 = NULL;
2863       if (in2->is_DecodeNarrowPtr()) {
2864         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2865         new_in2 = in2->in(1);
2866       } else if (in2->Opcode() == Op_ConP) {
2867         const Type* t = in2->bottom_type();
2868         if (t == TypePtr::NULL_PTR) {
2869           assert(in1->is_DecodeN(), "compare klass to null?");
2870           // Don't convert CmpP null check into CmpN if compressed
2871           // oops implicit null check is not generated.
2872           // This will allow to generate normal oop implicit null check.
2873           if (Matcher::gen_narrow_oop_implicit_null_checks())
2874             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2875           //
2876           // This transformation together with CastPP transformation above
2877           // will generated code for implicit NULL checks for compressed oops.
2878           //
2879           // The original code after Optimize()
2880           //
2881           //    LoadN memory, narrow_oop_reg
2882           //    decode narrow_oop_reg, base_reg
2883           //    CmpP base_reg, NULL
2884           //    CastPP base_reg // NotNull
2885           //    Load [base_reg + offset], val_reg
2886           //
2887           // after these transformations will be
2888           //
2889           //    LoadN memory, narrow_oop_reg
2890           //    CmpN narrow_oop_reg, NULL
2891           //    decode_not_null narrow_oop_reg, base_reg
2892           //    Load [base_reg + offset], val_reg
2893           //
2894           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2895           // since narrow oops can be used in debug info now (see the code in
2896           // final_graph_reshaping_walk()).
2897           //
2898           // At the end the code will be matched to
2899           // on x86:
2900           //
2901           //    Load_narrow_oop memory, narrow_oop_reg
2902           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2903           //    NullCheck narrow_oop_reg
2904           //
2905           // and on sparc:
2906           //
2907           //    Load_narrow_oop memory, narrow_oop_reg
2908           //    decode_not_null narrow_oop_reg, base_reg
2909           //    Load [base_reg + offset], val_reg
2910           //    NullCheck base_reg
2911           //
2912         } else if (t->isa_oopptr()) {
2913           new_in2 = ConNode::make(t->make_narrowoop());
2914         } else if (t->isa_klassptr()) {
2915           new_in2 = ConNode::make(t->make_narrowklass());
2916         }
2917       }
2918       if (new_in2 != NULL) {
2919         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2920         n->subsume_by(cmpN, this);
2921         if (in1->outcnt() == 0) {
2922           in1->disconnect_inputs(NULL, this);
2923         }
2924         if (in2->outcnt() == 0) {
2925           in2->disconnect_inputs(NULL, this);
2926         }
2927       }
2928     }
2929     break;
2930 
2931   case Op_DecodeN:
2932   case Op_DecodeNKlass:
2933     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2934     // DecodeN could be pinned when it can't be fold into
2935     // an address expression, see the code for Op_CastPP above.
2936     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2937     break;
2938 
2939   case Op_EncodeP:
2940   case Op_EncodePKlass: {
2941     Node* in1 = n->in(1);
2942     if (in1->is_DecodeNarrowPtr()) {
2943       n->subsume_by(in1->in(1), this);
2944     } else if (in1->Opcode() == Op_ConP) {
2945       const Type* t = in1->bottom_type();
2946       if (t == TypePtr::NULL_PTR) {
2947         assert(t->isa_oopptr(), "null klass?");
2948         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
2949       } else if (t->isa_oopptr()) {
2950         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
2951       } else if (t->isa_klassptr()) {
2952         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
2953       }
2954     }
2955     if (in1->outcnt() == 0) {
2956       in1->disconnect_inputs(NULL, this);
2957     }
2958     break;
2959   }
2960 
2961   case Op_Proj: {
2962     if (OptimizeStringConcat) {
2963       ProjNode* p = n->as_Proj();
2964       if (p->_is_io_use) {
2965         // Separate projections were used for the exception path which
2966         // are normally removed by a late inline.  If it wasn't inlined
2967         // then they will hang around and should just be replaced with
2968         // the original one.
2969         Node* proj = NULL;
2970         // Replace with just one
2971         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2972           Node *use = i.get();
2973           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2974             proj = use;
2975             break;
2976           }
2977         }
2978         assert(proj != NULL, "must be found");
2979         p->subsume_by(proj, this);
2980       }
2981     }
2982     break;
2983   }
2984 
2985   case Op_Phi:
2986     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2987       // The EncodeP optimization may create Phi with the same edges
2988       // for all paths. It is not handled well by Register Allocator.
2989       Node* unique_in = n->in(1);
2990       assert(unique_in != NULL, "");
2991       uint cnt = n->req();
2992       for (uint i = 2; i < cnt; i++) {
2993         Node* m = n->in(i);
2994         assert(m != NULL, "");
2995         if (unique_in != m)
2996           unique_in = NULL;
2997       }
2998       if (unique_in != NULL) {
2999         n->subsume_by(unique_in, this);
3000       }
3001     }
3002     break;
3003 
3004 #endif
3005 
3006   case Op_ModI:
3007     if (UseDivMod) {
3008       // Check if a%b and a/b both exist
3009       Node* d = n->find_similar(Op_DivI);
3010       if (d) {
3011         // Replace them with a fused divmod if supported
3012         if (Matcher::has_match_rule(Op_DivModI)) {
3013           DivModINode* divmod = DivModINode::make(n);
3014           d->subsume_by(divmod->div_proj(), this);
3015           n->subsume_by(divmod->mod_proj(), this);
3016         } else {
3017           // replace a%b with a-((a/b)*b)
3018           Node* mult = new MulINode(d, d->in(2));
3019           Node* sub  = new SubINode(d->in(1), mult);
3020           n->subsume_by(sub, this);
3021         }
3022       }
3023     }
3024     break;
3025 
3026   case Op_ModL:
3027     if (UseDivMod) {
3028       // Check if a%b and a/b both exist
3029       Node* d = n->find_similar(Op_DivL);
3030       if (d) {
3031         // Replace them with a fused divmod if supported
3032         if (Matcher::has_match_rule(Op_DivModL)) {
3033           DivModLNode* divmod = DivModLNode::make(n);
3034           d->subsume_by(divmod->div_proj(), this);
3035           n->subsume_by(divmod->mod_proj(), this);
3036         } else {
3037           // replace a%b with a-((a/b)*b)
3038           Node* mult = new MulLNode(d, d->in(2));
3039           Node* sub  = new SubLNode(d->in(1), mult);
3040           n->subsume_by(sub, this);
3041         }
3042       }
3043     }
3044     break;
3045 
3046   case Op_LoadVector:
3047   case Op_StoreVector:
3048     break;
3049 
3050   case Op_PackB:
3051   case Op_PackS:
3052   case Op_PackI:
3053   case Op_PackF:
3054   case Op_PackL:
3055   case Op_PackD:
3056     if (n->req()-1 > 2) {
3057       // Replace many operand PackNodes with a binary tree for matching
3058       PackNode* p = (PackNode*) n;
3059       Node* btp = p->binary_tree_pack(1, n->req());
3060       n->subsume_by(btp, this);
3061     }
3062     break;
3063   case Op_Loop:
3064   case Op_CountedLoop:
3065     if (n->as_Loop()->is_inner_loop()) {
3066       frc.inc_inner_loop_count();
3067     }
3068     break;
3069   case Op_LShiftI:
3070   case Op_RShiftI:
3071   case Op_URShiftI:
3072   case Op_LShiftL:
3073   case Op_RShiftL:
3074   case Op_URShiftL:
3075     if (Matcher::need_masked_shift_count) {
3076       // The cpu's shift instructions don't restrict the count to the
3077       // lower 5/6 bits. We need to do the masking ourselves.
3078       Node* in2 = n->in(2);
3079       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3080       const TypeInt* t = in2->find_int_type();
3081       if (t != NULL && t->is_con()) {
3082         juint shift = t->get_con();
3083         if (shift > mask) { // Unsigned cmp
3084           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3085         }
3086       } else {
3087         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3088           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3089           n->set_req(2, shift);
3090         }
3091       }
3092       if (in2->outcnt() == 0) { // Remove dead node
3093         in2->disconnect_inputs(NULL, this);
3094       }
3095     }
3096     break;
3097   case Op_MemBarStoreStore:
3098   case Op_MemBarRelease:
3099     // Break the link with AllocateNode: it is no longer useful and
3100     // confuses register allocation.
3101     if (n->req() > MemBarNode::Precedent) {
3102       n->set_req(MemBarNode::Precedent, top());
3103     }
3104     break;
3105   default:
3106     assert( !n->is_Call(), "" );
3107     assert( !n->is_Mem(), "" );
3108     break;
3109   }
3110 
3111   // Collect CFG split points
3112   if (n->is_MultiBranch())
3113     frc._tests.push(n);
3114 }
3115 
3116 //------------------------------final_graph_reshaping_walk---------------------
3117 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3118 // requires that the walk visits a node's inputs before visiting the node.
3119 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3120   ResourceArea *area = Thread::current()->resource_area();
3121   Unique_Node_List sfpt(area);
3122 
3123   frc._visited.set(root->_idx); // first, mark node as visited
3124   uint cnt = root->req();
3125   Node *n = root;
3126   uint  i = 0;
3127   while (true) {
3128     if (i < cnt) {
3129       // Place all non-visited non-null inputs onto stack
3130       Node* m = n->in(i);
3131       ++i;
3132       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3133         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3134           // compute worst case interpreter size in case of a deoptimization
3135           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3136 
3137           sfpt.push(m);
3138         }
3139         cnt = m->req();
3140         nstack.push(n, i); // put on stack parent and next input's index
3141         n = m;
3142         i = 0;
3143       }
3144     } else {
3145       // Now do post-visit work
3146       final_graph_reshaping_impl( n, frc );
3147       if (nstack.is_empty())
3148         break;             // finished
3149       n = nstack.node();   // Get node from stack
3150       cnt = n->req();
3151       i = nstack.index();
3152       nstack.pop();        // Shift to the next node on stack
3153     }
3154   }
3155 
3156   // Skip next transformation if compressed oops are not used.
3157   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3158       (!UseCompressedOops && !UseCompressedClassPointers))
3159     return;
3160 
3161   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3162   // It could be done for an uncommon traps or any safepoints/calls
3163   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3164   while (sfpt.size() > 0) {
3165     n = sfpt.pop();
3166     JVMState *jvms = n->as_SafePoint()->jvms();
3167     assert(jvms != NULL, "sanity");
3168     int start = jvms->debug_start();
3169     int end   = n->req();
3170     bool is_uncommon = (n->is_CallStaticJava() &&
3171                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3172     for (int j = start; j < end; j++) {
3173       Node* in = n->in(j);
3174       if (in->is_DecodeNarrowPtr()) {
3175         bool safe_to_skip = true;
3176         if (!is_uncommon ) {
3177           // Is it safe to skip?
3178           for (uint i = 0; i < in->outcnt(); i++) {
3179             Node* u = in->raw_out(i);
3180             if (!u->is_SafePoint() ||
3181                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3182               safe_to_skip = false;
3183             }
3184           }
3185         }
3186         if (safe_to_skip) {
3187           n->set_req(j, in->in(1));
3188         }
3189         if (in->outcnt() == 0) {
3190           in->disconnect_inputs(NULL, this);
3191         }
3192       }
3193     }
3194   }
3195 }
3196 
3197 //------------------------------final_graph_reshaping--------------------------
3198 // Final Graph Reshaping.
3199 //
3200 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3201 //     and not commoned up and forced early.  Must come after regular
3202 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3203 //     inputs to Loop Phis; these will be split by the allocator anyways.
3204 //     Remove Opaque nodes.
3205 // (2) Move last-uses by commutative operations to the left input to encourage
3206 //     Intel update-in-place two-address operations and better register usage
3207 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3208 //     calls canonicalizing them back.
3209 // (3) Count the number of double-precision FP ops, single-precision FP ops
3210 //     and call sites.  On Intel, we can get correct rounding either by
3211 //     forcing singles to memory (requires extra stores and loads after each
3212 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3213 //     clearing the mode bit around call sites).  The mode bit is only used
3214 //     if the relative frequency of single FP ops to calls is low enough.
3215 //     This is a key transform for SPEC mpeg_audio.
3216 // (4) Detect infinite loops; blobs of code reachable from above but not
3217 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3218 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3219 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3220 //     Detection is by looking for IfNodes where only 1 projection is
3221 //     reachable from below or CatchNodes missing some targets.
3222 // (5) Assert for insane oop offsets in debug mode.
3223 
3224 bool Compile::final_graph_reshaping() {
3225   // an infinite loop may have been eliminated by the optimizer,
3226   // in which case the graph will be empty.
3227   if (root()->req() == 1) {
3228     record_method_not_compilable("trivial infinite loop");
3229     return true;
3230   }
3231 
3232   // Expensive nodes have their control input set to prevent the GVN
3233   // from freely commoning them. There's no GVN beyond this point so
3234   // no need to keep the control input. We want the expensive nodes to
3235   // be freely moved to the least frequent code path by gcm.
3236   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3237   for (int i = 0; i < expensive_count(); i++) {
3238     _expensive_nodes->at(i)->set_req(0, NULL);
3239   }
3240 
3241   Final_Reshape_Counts frc;
3242 
3243   // Visit everybody reachable!
3244   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3245   Node_Stack nstack(unique() >> 1);
3246   final_graph_reshaping_walk(nstack, root(), frc);
3247 
3248   // Check for unreachable (from below) code (i.e., infinite loops).
3249   for( uint i = 0; i < frc._tests.size(); i++ ) {
3250     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3251     // Get number of CFG targets.
3252     // Note that PCTables include exception targets after calls.
3253     uint required_outcnt = n->required_outcnt();
3254     if (n->outcnt() != required_outcnt) {
3255       // Check for a few special cases.  Rethrow Nodes never take the
3256       // 'fall-thru' path, so expected kids is 1 less.
3257       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3258         if (n->in(0)->in(0)->is_Call()) {
3259           CallNode *call = n->in(0)->in(0)->as_Call();
3260           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3261             required_outcnt--;      // Rethrow always has 1 less kid
3262           } else if (call->req() > TypeFunc::Parms &&
3263                      call->is_CallDynamicJava()) {
3264             // Check for null receiver. In such case, the optimizer has
3265             // detected that the virtual call will always result in a null
3266             // pointer exception. The fall-through projection of this CatchNode
3267             // will not be populated.
3268             Node *arg0 = call->in(TypeFunc::Parms);
3269             if (arg0->is_Type() &&
3270                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3271               required_outcnt--;
3272             }
3273           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3274                      call->req() > TypeFunc::Parms+1 &&
3275                      call->is_CallStaticJava()) {
3276             // Check for negative array length. In such case, the optimizer has
3277             // detected that the allocation attempt will always result in an
3278             // exception. There is no fall-through projection of this CatchNode .
3279             Node *arg1 = call->in(TypeFunc::Parms+1);
3280             if (arg1->is_Type() &&
3281                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3282               required_outcnt--;
3283             }
3284           }
3285         }
3286       }
3287       // Recheck with a better notion of 'required_outcnt'
3288       if (n->outcnt() != required_outcnt) {
3289         record_method_not_compilable("malformed control flow");
3290         return true;            // Not all targets reachable!
3291       }
3292     }
3293     // Check that I actually visited all kids.  Unreached kids
3294     // must be infinite loops.
3295     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3296       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3297         record_method_not_compilable("infinite loop");
3298         return true;            // Found unvisited kid; must be unreach
3299       }
3300   }
3301 
3302   // If original bytecodes contained a mixture of floats and doubles
3303   // check if the optimizer has made it homogenous, item (3).
3304   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3305       frc.get_float_count() > 32 &&
3306       frc.get_double_count() == 0 &&
3307       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3308     set_24_bit_selection_and_mode( false,  true );
3309   }
3310 
3311   set_java_calls(frc.get_java_call_count());
3312   set_inner_loops(frc.get_inner_loop_count());
3313 
3314   // No infinite loops, no reason to bail out.
3315   return false;
3316 }
3317 
3318 //-----------------------------too_many_traps----------------------------------
3319 // Report if there are too many traps at the current method and bci.
3320 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3321 bool Compile::too_many_traps(ciMethod* method,
3322                              int bci,
3323                              Deoptimization::DeoptReason reason) {
3324   ciMethodData* md = method->method_data();
3325   if (md->is_empty()) {
3326     // Assume the trap has not occurred, or that it occurred only
3327     // because of a transient condition during start-up in the interpreter.
3328     return false;
3329   }
3330   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3331   if (md->has_trap_at(bci, m, reason) != 0) {
3332     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3333     // Also, if there are multiple reasons, or if there is no per-BCI record,
3334     // assume the worst.
3335     if (log())
3336       log()->elem("observe trap='%s' count='%d'",
3337                   Deoptimization::trap_reason_name(reason),
3338                   md->trap_count(reason));
3339     return true;
3340   } else {
3341     // Ignore method/bci and see if there have been too many globally.
3342     return too_many_traps(reason, md);
3343   }
3344 }
3345 
3346 // Less-accurate variant which does not require a method and bci.
3347 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3348                              ciMethodData* logmd) {
3349   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3350     // Too many traps globally.
3351     // Note that we use cumulative trap_count, not just md->trap_count.
3352     if (log()) {
3353       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3354       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3355                   Deoptimization::trap_reason_name(reason),
3356                   mcount, trap_count(reason));
3357     }
3358     return true;
3359   } else {
3360     // The coast is clear.
3361     return false;
3362   }
3363 }
3364 
3365 //--------------------------too_many_recompiles--------------------------------
3366 // Report if there are too many recompiles at the current method and bci.
3367 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3368 // Is not eager to return true, since this will cause the compiler to use
3369 // Action_none for a trap point, to avoid too many recompilations.
3370 bool Compile::too_many_recompiles(ciMethod* method,
3371                                   int bci,
3372                                   Deoptimization::DeoptReason reason) {
3373   ciMethodData* md = method->method_data();
3374   if (md->is_empty()) {
3375     // Assume the trap has not occurred, or that it occurred only
3376     // because of a transient condition during start-up in the interpreter.
3377     return false;
3378   }
3379   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3380   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3381   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3382   Deoptimization::DeoptReason per_bc_reason
3383     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3384   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3385   if ((per_bc_reason == Deoptimization::Reason_none
3386        || md->has_trap_at(bci, m, reason) != 0)
3387       // The trap frequency measure we care about is the recompile count:
3388       && md->trap_recompiled_at(bci, m)
3389       && md->overflow_recompile_count() >= bc_cutoff) {
3390     // Do not emit a trap here if it has already caused recompilations.
3391     // Also, if there are multiple reasons, or if there is no per-BCI record,
3392     // assume the worst.
3393     if (log())
3394       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3395                   Deoptimization::trap_reason_name(reason),
3396                   md->trap_count(reason),
3397                   md->overflow_recompile_count());
3398     return true;
3399   } else if (trap_count(reason) != 0
3400              && decompile_count() >= m_cutoff) {
3401     // Too many recompiles globally, and we have seen this sort of trap.
3402     // Use cumulative decompile_count, not just md->decompile_count.
3403     if (log())
3404       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3405                   Deoptimization::trap_reason_name(reason),
3406                   md->trap_count(reason), trap_count(reason),
3407                   md->decompile_count(), decompile_count());
3408     return true;
3409   } else {
3410     // The coast is clear.
3411     return false;
3412   }
3413 }
3414 
3415 // Compute when not to trap. Used by matching trap based nodes and
3416 // NullCheck optimization.
3417 void Compile::set_allowed_deopt_reasons() {
3418   _allowed_reasons = 0;
3419   if (is_method_compilation()) {
3420     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3421       assert(rs < BitsPerInt, "recode bit map");
3422       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3423         _allowed_reasons |= nth_bit(rs);
3424       }
3425     }
3426   }
3427 }
3428 
3429 #ifndef PRODUCT
3430 //------------------------------verify_graph_edges---------------------------
3431 // Walk the Graph and verify that there is a one-to-one correspondence
3432 // between Use-Def edges and Def-Use edges in the graph.
3433 void Compile::verify_graph_edges(bool no_dead_code) {
3434   if (VerifyGraphEdges) {
3435     ResourceArea *area = Thread::current()->resource_area();
3436     Unique_Node_List visited(area);
3437     // Call recursive graph walk to check edges
3438     _root->verify_edges(visited);
3439     if (no_dead_code) {
3440       // Now make sure that no visited node is used by an unvisited node.
3441       bool dead_nodes = false;
3442       Unique_Node_List checked(area);
3443       while (visited.size() > 0) {
3444         Node* n = visited.pop();
3445         checked.push(n);
3446         for (uint i = 0; i < n->outcnt(); i++) {
3447           Node* use = n->raw_out(i);
3448           if (checked.member(use))  continue;  // already checked
3449           if (visited.member(use))  continue;  // already in the graph
3450           if (use->is_Con())        continue;  // a dead ConNode is OK
3451           // At this point, we have found a dead node which is DU-reachable.
3452           if (!dead_nodes) {
3453             tty->print_cr("*** Dead nodes reachable via DU edges:");
3454             dead_nodes = true;
3455           }
3456           use->dump(2);
3457           tty->print_cr("---");
3458           checked.push(use);  // No repeats; pretend it is now checked.
3459         }
3460       }
3461       assert(!dead_nodes, "using nodes must be reachable from root");
3462     }
3463   }
3464 }
3465 
3466 // Verify GC barriers consistency
3467 // Currently supported:
3468 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3469 void Compile::verify_barriers() {
3470   if (UseG1GC) {
3471     // Verify G1 pre-barriers
3472     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3473 
3474     ResourceArea *area = Thread::current()->resource_area();
3475     Unique_Node_List visited(area);
3476     Node_List worklist(area);
3477     // We're going to walk control flow backwards starting from the Root
3478     worklist.push(_root);
3479     while (worklist.size() > 0) {
3480       Node* x = worklist.pop();
3481       if (x == NULL || x == top()) continue;
3482       if (visited.member(x)) {
3483         continue;
3484       } else {
3485         visited.push(x);
3486       }
3487 
3488       if (x->is_Region()) {
3489         for (uint i = 1; i < x->req(); i++) {
3490           worklist.push(x->in(i));
3491         }
3492       } else {
3493         worklist.push(x->in(0));
3494         // We are looking for the pattern:
3495         //                            /->ThreadLocal
3496         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3497         //              \->ConI(0)
3498         // We want to verify that the If and the LoadB have the same control
3499         // See GraphKit::g1_write_barrier_pre()
3500         if (x->is_If()) {
3501           IfNode *iff = x->as_If();
3502           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3503             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3504             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3505                 && cmp->in(1)->is_Load()) {
3506               LoadNode* load = cmp->in(1)->as_Load();
3507               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3508                   && load->in(2)->in(3)->is_Con()
3509                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3510 
3511                 Node* if_ctrl = iff->in(0);
3512                 Node* load_ctrl = load->in(0);
3513 
3514                 if (if_ctrl != load_ctrl) {
3515                   // Skip possible CProj->NeverBranch in infinite loops
3516                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3517                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3518                     if_ctrl = if_ctrl->in(0)->in(0);
3519                   }
3520                 }
3521                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3522               }
3523             }
3524           }
3525         }
3526       }
3527     }
3528   }
3529 }
3530 
3531 #endif
3532 
3533 // The Compile object keeps track of failure reasons separately from the ciEnv.
3534 // This is required because there is not quite a 1-1 relation between the
3535 // ciEnv and its compilation task and the Compile object.  Note that one
3536 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3537 // to backtrack and retry without subsuming loads.  Other than this backtracking
3538 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3539 // by the logic in C2Compiler.
3540 void Compile::record_failure(const char* reason) {
3541   if (log() != NULL) {
3542     log()->elem("failure reason='%s' phase='compile'", reason);
3543   }
3544   if (_failure_reason == NULL) {
3545     // Record the first failure reason.
3546     _failure_reason = reason;
3547   }
3548 
3549   EventCompilerFailure event;
3550   if (event.should_commit()) {
3551     event.set_compileID(Compile::compile_id());
3552     event.set_failure(reason);
3553     event.commit();
3554   }
3555 
3556   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3557     C->print_method(PHASE_FAILURE);
3558   }
3559   _root = NULL;  // flush the graph, too
3560 }
3561 
3562 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3563   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3564     _phase_name(name), _dolog(CITimeVerbose)
3565 {
3566   if (_dolog) {
3567     C = Compile::current();
3568     _log = C->log();
3569   } else {
3570     C = NULL;
3571     _log = NULL;
3572   }
3573   if (_log != NULL) {
3574     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3575     _log->stamp();
3576     _log->end_head();
3577   }
3578 }
3579 
3580 Compile::TracePhase::~TracePhase() {
3581 
3582   C = Compile::current();
3583   if (_dolog) {
3584     _log = C->log();
3585   } else {
3586     _log = NULL;
3587   }
3588 
3589 #ifdef ASSERT
3590   if (PrintIdealNodeCount) {
3591     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3592                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3593   }
3594 
3595   if (VerifyIdealNodeCount) {
3596     Compile::current()->print_missing_nodes();
3597   }
3598 #endif
3599 
3600   if (_log != NULL) {
3601     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3602   }
3603 }
3604 
3605 //=============================================================================
3606 // Two Constant's are equal when the type and the value are equal.
3607 bool Compile::Constant::operator==(const Constant& other) {
3608   if (type()          != other.type()         )  return false;
3609   if (can_be_reused() != other.can_be_reused())  return false;
3610   // For floating point values we compare the bit pattern.
3611   switch (type()) {
3612   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3613   case T_LONG:
3614   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3615   case T_OBJECT:
3616   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3617   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3618   case T_METADATA: return (_v._metadata == other._v._metadata);
3619   default: ShouldNotReachHere();
3620   }
3621   return false;
3622 }
3623 
3624 static int type_to_size_in_bytes(BasicType t) {
3625   switch (t) {
3626   case T_LONG:    return sizeof(jlong  );
3627   case T_FLOAT:   return sizeof(jfloat );
3628   case T_DOUBLE:  return sizeof(jdouble);
3629   case T_METADATA: return sizeof(Metadata*);
3630     // We use T_VOID as marker for jump-table entries (labels) which
3631     // need an internal word relocation.
3632   case T_VOID:
3633   case T_ADDRESS:
3634   case T_OBJECT:  return sizeof(jobject);
3635   }
3636 
3637   ShouldNotReachHere();
3638   return -1;
3639 }
3640 
3641 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3642   // sort descending
3643   if (a->freq() > b->freq())  return -1;
3644   if (a->freq() < b->freq())  return  1;
3645   return 0;
3646 }
3647 
3648 void Compile::ConstantTable::calculate_offsets_and_size() {
3649   // First, sort the array by frequencies.
3650   _constants.sort(qsort_comparator);
3651 
3652 #ifdef ASSERT
3653   // Make sure all jump-table entries were sorted to the end of the
3654   // array (they have a negative frequency).
3655   bool found_void = false;
3656   for (int i = 0; i < _constants.length(); i++) {
3657     Constant con = _constants.at(i);
3658     if (con.type() == T_VOID)
3659       found_void = true;  // jump-tables
3660     else
3661       assert(!found_void, "wrong sorting");
3662   }
3663 #endif
3664 
3665   int offset = 0;
3666   for (int i = 0; i < _constants.length(); i++) {
3667     Constant* con = _constants.adr_at(i);
3668 
3669     // Align offset for type.
3670     int typesize = type_to_size_in_bytes(con->type());
3671     offset = align_size_up(offset, typesize);
3672     con->set_offset(offset);   // set constant's offset
3673 
3674     if (con->type() == T_VOID) {
3675       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3676       offset = offset + typesize * n->outcnt();  // expand jump-table
3677     } else {
3678       offset = offset + typesize;
3679     }
3680   }
3681 
3682   // Align size up to the next section start (which is insts; see
3683   // CodeBuffer::align_at_start).
3684   assert(_size == -1, "already set?");
3685   _size = align_size_up(offset, CodeEntryAlignment);
3686 }
3687 
3688 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3689   MacroAssembler _masm(&cb);
3690   for (int i = 0; i < _constants.length(); i++) {
3691     Constant con = _constants.at(i);
3692     address constant_addr;
3693     switch (con.type()) {
3694     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3695     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3696     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3697     case T_OBJECT: {
3698       jobject obj = con.get_jobject();
3699       int oop_index = _masm.oop_recorder()->find_index(obj);
3700       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3701       break;
3702     }
3703     case T_ADDRESS: {
3704       address addr = (address) con.get_jobject();
3705       constant_addr = _masm.address_constant(addr);
3706       break;
3707     }
3708     // We use T_VOID as marker for jump-table entries (labels) which
3709     // need an internal word relocation.
3710     case T_VOID: {
3711       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3712       // Fill the jump-table with a dummy word.  The real value is
3713       // filled in later in fill_jump_table.
3714       address dummy = (address) n;
3715       constant_addr = _masm.address_constant(dummy);
3716       // Expand jump-table
3717       for (uint i = 1; i < n->outcnt(); i++) {
3718         address temp_addr = _masm.address_constant(dummy + i);
3719         assert(temp_addr, "consts section too small");
3720       }
3721       break;
3722     }
3723     case T_METADATA: {
3724       Metadata* obj = con.get_metadata();
3725       int metadata_index = _masm.oop_recorder()->find_index(obj);
3726       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3727       break;
3728     }
3729     default: ShouldNotReachHere();
3730     }
3731     assert(constant_addr, "consts section too small");
3732     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3733             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3734   }
3735 }
3736 
3737 int Compile::ConstantTable::find_offset(Constant& con) const {
3738   int idx = _constants.find(con);
3739   assert(idx != -1, "constant must be in constant table");
3740   int offset = _constants.at(idx).offset();
3741   assert(offset != -1, "constant table not emitted yet?");
3742   return offset;
3743 }
3744 
3745 void Compile::ConstantTable::add(Constant& con) {
3746   if (con.can_be_reused()) {
3747     int idx = _constants.find(con);
3748     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3749       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3750       return;
3751     }
3752   }
3753   (void) _constants.append(con);
3754 }
3755 
3756 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3757   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3758   Constant con(type, value, b->_freq);
3759   add(con);
3760   return con;
3761 }
3762 
3763 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3764   Constant con(metadata);
3765   add(con);
3766   return con;
3767 }
3768 
3769 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3770   jvalue value;
3771   BasicType type = oper->type()->basic_type();
3772   switch (type) {
3773   case T_LONG:    value.j = oper->constantL(); break;
3774   case T_FLOAT:   value.f = oper->constantF(); break;
3775   case T_DOUBLE:  value.d = oper->constantD(); break;
3776   case T_OBJECT:
3777   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3778   case T_METADATA: return add((Metadata*)oper->constant()); break;
3779   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3780   }
3781   return add(n, type, value);
3782 }
3783 
3784 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3785   jvalue value;
3786   // We can use the node pointer here to identify the right jump-table
3787   // as this method is called from Compile::Fill_buffer right before
3788   // the MachNodes are emitted and the jump-table is filled (means the
3789   // MachNode pointers do not change anymore).
3790   value.l = (jobject) n;
3791   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3792   add(con);
3793   return con;
3794 }
3795 
3796 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3797   // If called from Compile::scratch_emit_size do nothing.
3798   if (Compile::current()->in_scratch_emit_size())  return;
3799 
3800   assert(labels.is_nonempty(), "must be");
3801   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3802 
3803   // Since MachConstantNode::constant_offset() also contains
3804   // table_base_offset() we need to subtract the table_base_offset()
3805   // to get the plain offset into the constant table.
3806   int offset = n->constant_offset() - table_base_offset();
3807 
3808   MacroAssembler _masm(&cb);
3809   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3810 
3811   for (uint i = 0; i < n->outcnt(); i++) {
3812     address* constant_addr = &jump_table_base[i];
3813     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3814     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3815     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3816   }
3817 }
3818 
3819 //----------------------------static_subtype_check-----------------------------
3820 // Shortcut important common cases when superklass is exact:
3821 // (0) superklass is java.lang.Object (can occur in reflective code)
3822 // (1) subklass is already limited to a subtype of superklass => always ok
3823 // (2) subklass does not overlap with superklass => always fail
3824 // (3) superklass has NO subtypes and we can check with a simple compare.
3825 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3826   if (StressReflectiveCode) {
3827     return SSC_full_test;       // Let caller generate the general case.
3828   }
3829 
3830   if (superk == env()->Object_klass()) {
3831     return SSC_always_true;     // (0) this test cannot fail
3832   }
3833 
3834   ciType* superelem = superk;
3835   if (superelem->is_array_klass())
3836     superelem = superelem->as_array_klass()->base_element_type();
3837 
3838   if (!subk->is_interface()) {  // cannot trust static interface types yet
3839     if (subk->is_subtype_of(superk)) {
3840       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3841     }
3842     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3843         !superk->is_subtype_of(subk)) {
3844       return SSC_always_false;
3845     }
3846   }
3847 
3848   // If casting to an instance klass, it must have no subtypes
3849   if (superk->is_interface()) {
3850     // Cannot trust interfaces yet.
3851     // %%% S.B. superk->nof_implementors() == 1
3852   } else if (superelem->is_instance_klass()) {
3853     ciInstanceKlass* ik = superelem->as_instance_klass();
3854     if (!ik->has_subklass() && !ik->is_interface()) {
3855       if (!ik->is_final()) {
3856         // Add a dependency if there is a chance of a later subclass.
3857         dependencies()->assert_leaf_type(ik);
3858       }
3859       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3860     }
3861   } else {
3862     // A primitive array type has no subtypes.
3863     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3864   }
3865 
3866   return SSC_full_test;
3867 }
3868 
3869 // The message about the current inlining is accumulated in
3870 // _print_inlining_stream and transfered into the _print_inlining_list
3871 // once we know whether inlining succeeds or not. For regular
3872 // inlining, messages are appended to the buffer pointed by
3873 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3874 // a new buffer is added after _print_inlining_idx in the list. This
3875 // way we can update the inlining message for late inlining call site
3876 // when the inlining is attempted again.
3877 void Compile::print_inlining_init() {
3878   if (print_inlining() || print_intrinsics()) {
3879     _print_inlining_stream = new stringStream();
3880     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3881   }
3882 }
3883 
3884 void Compile::print_inlining_reinit() {
3885   if (print_inlining() || print_intrinsics()) {
3886     // Re allocate buffer when we change ResourceMark
3887     _print_inlining_stream = new stringStream();
3888   }
3889 }
3890 
3891 void Compile::print_inlining_reset() {
3892   _print_inlining_stream->reset();
3893 }
3894 
3895 void Compile::print_inlining_commit() {
3896   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3897   // Transfer the message from _print_inlining_stream to the current
3898   // _print_inlining_list buffer and clear _print_inlining_stream.
3899   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3900   print_inlining_reset();
3901 }
3902 
3903 void Compile::print_inlining_push() {
3904   // Add new buffer to the _print_inlining_list at current position
3905   _print_inlining_idx++;
3906   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3907 }
3908 
3909 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3910   return _print_inlining_list->at(_print_inlining_idx);
3911 }
3912 
3913 void Compile::print_inlining_update(CallGenerator* cg) {
3914   if (print_inlining() || print_intrinsics()) {
3915     if (!cg->is_late_inline()) {
3916       if (print_inlining_current().cg() != NULL) {
3917         print_inlining_push();
3918       }
3919       print_inlining_commit();
3920     } else {
3921       if (print_inlining_current().cg() != cg &&
3922           (print_inlining_current().cg() != NULL ||
3923            print_inlining_current().ss()->size() != 0)) {
3924         print_inlining_push();
3925       }
3926       print_inlining_commit();
3927       print_inlining_current().set_cg(cg);
3928     }
3929   }
3930 }
3931 
3932 void Compile::print_inlining_move_to(CallGenerator* cg) {
3933   // We resume inlining at a late inlining call site. Locate the
3934   // corresponding inlining buffer so that we can update it.
3935   if (print_inlining()) {
3936     for (int i = 0; i < _print_inlining_list->length(); i++) {
3937       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3938         _print_inlining_idx = i;
3939         return;
3940       }
3941     }
3942     ShouldNotReachHere();
3943   }
3944 }
3945 
3946 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3947   if (print_inlining()) {
3948     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3949     assert(print_inlining_current().cg() == cg, "wrong entry");
3950     // replace message with new message
3951     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3952     print_inlining_commit();
3953     print_inlining_current().set_cg(cg);
3954   }
3955 }
3956 
3957 void Compile::print_inlining_assert_ready() {
3958   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3959 }
3960 
3961 void Compile::process_print_inlining() {
3962   bool do_print_inlining = print_inlining() || print_intrinsics();
3963   if (do_print_inlining || log() != NULL) {
3964     // Print inlining message for candidates that we couldn't inline
3965     // for lack of space
3966     for (int i = 0; i < _late_inlines.length(); i++) {
3967       CallGenerator* cg = _late_inlines.at(i);
3968       if (!cg->is_mh_late_inline()) {
3969         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3970         if (do_print_inlining) {
3971           cg->print_inlining_late(msg);
3972         }
3973         log_late_inline_failure(cg, msg);
3974       }
3975     }
3976   }
3977   if (do_print_inlining) {
3978     ResourceMark rm;
3979     stringStream ss;
3980     for (int i = 0; i < _print_inlining_list->length(); i++) {
3981       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3982     }
3983     size_t end = ss.size();
3984     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3985     strncpy(_print_inlining_output, ss.base(), end+1);
3986     _print_inlining_output[end] = 0;
3987   }
3988 }
3989 
3990 void Compile::dump_print_inlining() {
3991   if (_print_inlining_output != NULL) {
3992     tty->print_raw(_print_inlining_output);
3993   }
3994 }
3995 
3996 void Compile::log_late_inline(CallGenerator* cg) {
3997   if (log() != NULL) {
3998     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3999                 cg->unique_id());
4000     JVMState* p = cg->call_node()->jvms();
4001     while (p != NULL) {
4002       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4003       p = p->caller();
4004     }
4005     log()->tail("late_inline");
4006   }
4007 }
4008 
4009 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4010   log_late_inline(cg);
4011   if (log() != NULL) {
4012     log()->inline_fail(msg);
4013   }
4014 }
4015 
4016 void Compile::log_inline_id(CallGenerator* cg) {
4017   if (log() != NULL) {
4018     // The LogCompilation tool needs a unique way to identify late
4019     // inline call sites. This id must be unique for this call site in
4020     // this compilation. Try to have it unique across compilations as
4021     // well because it can be convenient when grepping through the log
4022     // file.
4023     // Distinguish OSR compilations from others in case CICountOSR is
4024     // on.
4025     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4026     cg->set_unique_id(id);
4027     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4028   }
4029 }
4030 
4031 void Compile::log_inline_failure(const char* msg) {
4032   if (C->log() != NULL) {
4033     C->log()->inline_fail(msg);
4034   }
4035 }
4036 
4037 
4038 // Dump inlining replay data to the stream.
4039 // Don't change thread state and acquire any locks.
4040 void Compile::dump_inline_data(outputStream* out) {
4041   InlineTree* inl_tree = ilt();
4042   if (inl_tree != NULL) {
4043     out->print(" inline %d", inl_tree->count());
4044     inl_tree->dump_replay_data(out);
4045   }
4046 }
4047 
4048 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4049   if (n1->Opcode() < n2->Opcode())      return -1;
4050   else if (n1->Opcode() > n2->Opcode()) return 1;
4051 
4052   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4053   for (uint i = 1; i < n1->req(); i++) {
4054     if (n1->in(i) < n2->in(i))      return -1;
4055     else if (n1->in(i) > n2->in(i)) return 1;
4056   }
4057 
4058   return 0;
4059 }
4060 
4061 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4062   Node* n1 = *n1p;
4063   Node* n2 = *n2p;
4064 
4065   return cmp_expensive_nodes(n1, n2);
4066 }
4067 
4068 void Compile::sort_expensive_nodes() {
4069   if (!expensive_nodes_sorted()) {
4070     _expensive_nodes->sort(cmp_expensive_nodes);
4071   }
4072 }
4073 
4074 bool Compile::expensive_nodes_sorted() const {
4075   for (int i = 1; i < _expensive_nodes->length(); i++) {
4076     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4077       return false;
4078     }
4079   }
4080   return true;
4081 }
4082 
4083 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4084   if (_expensive_nodes->length() == 0) {
4085     return false;
4086   }
4087 
4088   assert(OptimizeExpensiveOps, "optimization off?");
4089 
4090   // Take this opportunity to remove dead nodes from the list
4091   int j = 0;
4092   for (int i = 0; i < _expensive_nodes->length(); i++) {
4093     Node* n = _expensive_nodes->at(i);
4094     if (!n->is_unreachable(igvn)) {
4095       assert(n->is_expensive(), "should be expensive");
4096       _expensive_nodes->at_put(j, n);
4097       j++;
4098     }
4099   }
4100   _expensive_nodes->trunc_to(j);
4101 
4102   // Then sort the list so that similar nodes are next to each other
4103   // and check for at least two nodes of identical kind with same data
4104   // inputs.
4105   sort_expensive_nodes();
4106 
4107   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4108     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4109       return true;
4110     }
4111   }
4112 
4113   return false;
4114 }
4115 
4116 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4117   if (_expensive_nodes->length() == 0) {
4118     return;
4119   }
4120 
4121   assert(OptimizeExpensiveOps, "optimization off?");
4122 
4123   // Sort to bring similar nodes next to each other and clear the
4124   // control input of nodes for which there's only a single copy.
4125   sort_expensive_nodes();
4126 
4127   int j = 0;
4128   int identical = 0;
4129   int i = 0;
4130   bool modified = false;
4131   for (; i < _expensive_nodes->length()-1; i++) {
4132     assert(j <= i, "can't write beyond current index");
4133     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4134       identical++;
4135       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4136       continue;
4137     }
4138     if (identical > 0) {
4139       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4140       identical = 0;
4141     } else {
4142       Node* n = _expensive_nodes->at(i);
4143       igvn.replace_input_of(n, 0, NULL);
4144       igvn.hash_insert(n);
4145       modified = true;
4146     }
4147   }
4148   if (identical > 0) {
4149     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4150   } else if (_expensive_nodes->length() >= 1) {
4151     Node* n = _expensive_nodes->at(i);
4152     igvn.replace_input_of(n, 0, NULL);
4153     igvn.hash_insert(n);
4154     modified = true;
4155   }
4156   _expensive_nodes->trunc_to(j);
4157   if (modified) {
4158     igvn.optimize();
4159   }
4160 }
4161 
4162 void Compile::add_expensive_node(Node * n) {
4163   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4164   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4165   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4166   if (OptimizeExpensiveOps) {
4167     _expensive_nodes->append(n);
4168   } else {
4169     // Clear control input and let IGVN optimize expensive nodes if
4170     // OptimizeExpensiveOps is off.
4171     n->set_req(0, NULL);
4172   }
4173 }
4174 
4175 /**
4176  * Remove the speculative part of types and clean up the graph
4177  */
4178 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4179   if (UseTypeSpeculation) {
4180     Unique_Node_List worklist;
4181     worklist.push(root());
4182     int modified = 0;
4183     // Go over all type nodes that carry a speculative type, drop the
4184     // speculative part of the type and enqueue the node for an igvn
4185     // which may optimize it out.
4186     for (uint next = 0; next < worklist.size(); ++next) {
4187       Node *n  = worklist.at(next);
4188       if (n->is_Type()) {
4189         TypeNode* tn = n->as_Type();
4190         const Type* t = tn->type();
4191         const Type* t_no_spec = t->remove_speculative();
4192         if (t_no_spec != t) {
4193           bool in_hash = igvn.hash_delete(n);
4194           assert(in_hash, "node should be in igvn hash table");
4195           tn->set_type(t_no_spec);
4196           igvn.hash_insert(n);
4197           igvn._worklist.push(n); // give it a chance to go away
4198           modified++;
4199         }
4200       }
4201       uint max = n->len();
4202       for( uint i = 0; i < max; ++i ) {
4203         Node *m = n->in(i);
4204         if (not_a_node(m))  continue;
4205         worklist.push(m);
4206       }
4207     }
4208     // Drop the speculative part of all types in the igvn's type table
4209     igvn.remove_speculative_types();
4210     if (modified > 0) {
4211       igvn.optimize();
4212     }
4213 #ifdef ASSERT
4214     // Verify that after the IGVN is over no speculative type has resurfaced
4215     worklist.clear();
4216     worklist.push(root());
4217     for (uint next = 0; next < worklist.size(); ++next) {
4218       Node *n  = worklist.at(next);
4219       const Type* t = igvn.type_or_null(n);
4220       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4221       if (n->is_Type()) {
4222         t = n->as_Type()->type();
4223         assert(t == t->remove_speculative(), "no more speculative types");
4224       }
4225       uint max = n->len();
4226       for( uint i = 0; i < max; ++i ) {
4227         Node *m = n->in(i);
4228         if (not_a_node(m))  continue;
4229         worklist.push(m);
4230       }
4231     }
4232     igvn.check_no_speculative_types();
4233 #endif
4234   }
4235 }
4236 
4237 // Auxiliary method to support randomized stressing/fuzzing.
4238 //
4239 // This method can be called the arbitrary number of times, with current count
4240 // as the argument. The logic allows selecting a single candidate from the
4241 // running list of candidates as follows:
4242 //    int count = 0;
4243 //    Cand* selected = null;
4244 //    while(cand = cand->next()) {
4245 //      if (randomized_select(++count)) {
4246 //        selected = cand;
4247 //      }
4248 //    }
4249 //
4250 // Including count equalizes the chances any candidate is "selected".
4251 // This is useful when we don't have the complete list of candidates to choose
4252 // from uniformly. In this case, we need to adjust the randomicity of the
4253 // selection, or else we will end up biasing the selection towards the latter
4254 // candidates.
4255 //
4256 // Quick back-envelope calculation shows that for the list of n candidates
4257 // the equal probability for the candidate to persist as "best" can be
4258 // achieved by replacing it with "next" k-th candidate with the probability
4259 // of 1/k. It can be easily shown that by the end of the run, the
4260 // probability for any candidate is converged to 1/n, thus giving the
4261 // uniform distribution among all the candidates.
4262 //
4263 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4264 #define RANDOMIZED_DOMAIN_POW 29
4265 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4266 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4267 bool Compile::randomized_select(int count) {
4268   assert(count > 0, "only positive");
4269   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4270 }