1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/connode.hpp"
  31 #include "opto/convertnode.hpp"
  32 #include "opto/divnode.hpp"
  33 #include "opto/loopnode.hpp"
  34 #include "opto/mulnode.hpp"
  35 #include "opto/movenode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 
  41 //------------------------------is_loop_exit-----------------------------------
  42 // Given an IfNode, return the loop-exiting projection or NULL if both
  43 // arms remain in the loop.
  44 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  45   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  46   PhaseIdealLoop *phase = _phase;
  47   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  48   // we need loop unswitching instead of peeling.
  49   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  50     return iff->raw_out(0);
  51   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  52     return iff->raw_out(1);
  53   return NULL;
  54 }
  55 
  56 
  57 //=============================================================================
  58 
  59 
  60 //------------------------------record_for_igvn----------------------------
  61 // Put loop body on igvn work list
  62 void IdealLoopTree::record_for_igvn() {
  63   for( uint i = 0; i < _body.size(); i++ ) {
  64     Node *n = _body.at(i);
  65     _phase->_igvn._worklist.push(n);
  66   }
  67 }
  68 
  69 //------------------------------compute_exact_trip_count-----------------------
  70 // Compute loop exact trip count if possible. Do not recalculate trip count for
  71 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
  72 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  73   if (!_head->as_Loop()->is_valid_counted_loop()) {
  74     return;
  75   }
  76   CountedLoopNode* cl = _head->as_CountedLoop();
  77   // Trip count may become nonexact for iteration split loops since
  78   // RCE modifies limits. Note, _trip_count value is not reset since
  79   // it is used to limit unrolling of main loop.
  80   cl->set_nonexact_trip_count();
  81 
  82   // Loop's test should be part of loop.
  83   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  84     return; // Infinite loop
  85 
  86 #ifdef ASSERT
  87   BoolTest::mask bt = cl->loopexit()->test_trip();
  88   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
  89          bt == BoolTest::ne, "canonical test is expected");
  90 #endif
  91 
  92   Node* init_n = cl->init_trip();
  93   Node* limit_n = cl->limit();
  94   if (init_n  != NULL &&  init_n->is_Con() &&
  95       limit_n != NULL && limit_n->is_Con()) {
  96     // Use longs to avoid integer overflow.
  97     int stride_con  = cl->stride_con();
  98     jlong init_con   = cl->init_trip()->get_int();
  99     jlong limit_con  = cl->limit()->get_int();
 100     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
 101     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 102     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
 103       // Set exact trip count.
 104       cl->set_exact_trip_count((uint)trip_count);
 105     }
 106   }
 107 }
 108 
 109 //------------------------------compute_profile_trip_cnt----------------------------
 110 // Compute loop trip count from profile data as
 111 //    (backedge_count + loop_exit_count) / loop_exit_count
 112 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
 113   if (!_head->is_CountedLoop()) {
 114     return;
 115   }
 116   CountedLoopNode* head = _head->as_CountedLoop();
 117   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
 118     return; // Already computed
 119   }
 120   float trip_cnt = (float)max_jint; // default is big
 121 
 122   Node* back = head->in(LoopNode::LoopBackControl);
 123   while (back != head) {
 124     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 125         back->in(0) &&
 126         back->in(0)->is_If() &&
 127         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
 128         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
 129       break;
 130     }
 131     back = phase->idom(back);
 132   }
 133   if (back != head) {
 134     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 135            back->in(0), "if-projection exists");
 136     IfNode* back_if = back->in(0)->as_If();
 137     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
 138 
 139     // Now compute a loop exit count
 140     float loop_exit_cnt = 0.0f;
 141     for( uint i = 0; i < _body.size(); i++ ) {
 142       Node *n = _body[i];
 143       if( n->is_If() ) {
 144         IfNode *iff = n->as_If();
 145         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
 146           Node *exit = is_loop_exit(iff);
 147           if( exit ) {
 148             float exit_prob = iff->_prob;
 149             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
 150             if (exit_prob > PROB_MIN) {
 151               float exit_cnt = iff->_fcnt * exit_prob;
 152               loop_exit_cnt += exit_cnt;
 153             }
 154           }
 155         }
 156       }
 157     }
 158     if (loop_exit_cnt > 0.0f) {
 159       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 160     } else {
 161       // No exit count so use
 162       trip_cnt = loop_back_cnt;
 163     }
 164   }
 165 #ifndef PRODUCT
 166   if (TraceProfileTripCount) {
 167     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 168   }
 169 #endif
 170   head->set_profile_trip_cnt(trip_cnt);
 171 }
 172 
 173 //---------------------is_invariant_addition-----------------------------
 174 // Return nonzero index of invariant operand for an Add or Sub
 175 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 176 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 177   int op = n->Opcode();
 178   if (op == Op_AddI || op == Op_SubI) {
 179     bool in1_invar = this->is_invariant(n->in(1));
 180     bool in2_invar = this->is_invariant(n->in(2));
 181     if (in1_invar && !in2_invar) return 1;
 182     if (!in1_invar && in2_invar) return 2;
 183   }
 184   return 0;
 185 }
 186 
 187 //---------------------reassociate_add_sub-----------------------------
 188 // Reassociate invariant add and subtract expressions:
 189 //
 190 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 191 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 192 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 193 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 194 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 195 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 196 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 197 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 198 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 199 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 200 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 201 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 202 //
 203 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 204   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 205   if (is_invariant(n1)) return NULL;
 206   int inv1_idx = is_invariant_addition(n1, phase);
 207   if (!inv1_idx) return NULL;
 208   // Don't mess with add of constant (igvn moves them to expression tree root.)
 209   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 210   Node* inv1 = n1->in(inv1_idx);
 211   Node* n2 = n1->in(3 - inv1_idx);
 212   int inv2_idx = is_invariant_addition(n2, phase);
 213   if (!inv2_idx) return NULL;
 214   Node* x    = n2->in(3 - inv2_idx);
 215   Node* inv2 = n2->in(inv2_idx);
 216 
 217   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 218   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 219   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 220   if (n1->is_Sub() && inv1_idx == 1) {
 221     neg_x    = !neg_x;
 222     neg_inv2 = !neg_inv2;
 223   }
 224   Node* inv1_c = phase->get_ctrl(inv1);
 225   Node* inv2_c = phase->get_ctrl(inv2);
 226   Node* n_inv1;
 227   if (neg_inv1) {
 228     Node *zero = phase->_igvn.intcon(0);
 229     phase->set_ctrl(zero, phase->C->root());
 230     n_inv1 = new SubINode(zero, inv1);
 231     phase->register_new_node(n_inv1, inv1_c);
 232   } else {
 233     n_inv1 = inv1;
 234   }
 235   Node* inv;
 236   if (neg_inv2) {
 237     inv = new SubINode(n_inv1, inv2);
 238   } else {
 239     inv = new AddINode(n_inv1, inv2);
 240   }
 241   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 242 
 243   Node* addx;
 244   if (neg_x) {
 245     addx = new SubINode(inv, x);
 246   } else {
 247     addx = new AddINode(x, inv);
 248   }
 249   phase->register_new_node(addx, phase->get_ctrl(x));
 250   phase->_igvn.replace_node(n1, addx);
 251   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 252   _body.yank(n1);
 253   return addx;
 254 }
 255 
 256 //---------------------reassociate_invariants-----------------------------
 257 // Reassociate invariant expressions:
 258 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 259   for (int i = _body.size() - 1; i >= 0; i--) {
 260     Node *n = _body.at(i);
 261     for (int j = 0; j < 5; j++) {
 262       Node* nn = reassociate_add_sub(n, phase);
 263       if (nn == NULL) break;
 264       n = nn; // again
 265     };
 266   }
 267 }
 268 
 269 //------------------------------policy_peeling---------------------------------
 270 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 271 // make some loop-invariant test (usually a null-check) happen before the loop.
 272 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 273   Node *test = ((IdealLoopTree*)this)->tail();
 274   int  body_size = ((IdealLoopTree*)this)->_body.size();
 275   // Peeling does loop cloning which can result in O(N^2) node construction
 276   if( body_size > 255 /* Prevent overflow for large body_size */
 277       || (body_size * body_size + phase->C->live_nodes()) > phase->C->max_node_limit() ) {
 278     return false;           // too large to safely clone
 279   }
 280   while( test != _head ) {      // Scan till run off top of loop
 281     if( test->is_If() ) {       // Test?
 282       Node *ctrl = phase->get_ctrl(test->in(1));
 283       if (ctrl->is_top())
 284         return false;           // Found dead test on live IF?  No peeling!
 285       // Standard IF only has one input value to check for loop invariance
 286       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
 287       // Condition is not a member of this loop?
 288       if( !is_member(phase->get_loop(ctrl)) &&
 289           is_loop_exit(test) )
 290         return true;            // Found reason to peel!
 291     }
 292     // Walk up dominators to loop _head looking for test which is
 293     // executed on every path thru loop.
 294     test = phase->idom(test);
 295   }
 296   return false;
 297 }
 298 
 299 //------------------------------peeled_dom_test_elim---------------------------
 300 // If we got the effect of peeling, either by actually peeling or by making
 301 // a pre-loop which must execute at least once, we can remove all
 302 // loop-invariant dominated tests in the main body.
 303 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 304   bool progress = true;
 305   while( progress ) {
 306     progress = false;           // Reset for next iteration
 307     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 308     Node *test = prev->in(0);
 309     while( test != loop->_head ) { // Scan till run off top of loop
 310 
 311       int p_op = prev->Opcode();
 312       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 313           test->is_If() &&      // Test?
 314           !test->in(1)->is_Con() && // And not already obvious?
 315           // Condition is not a member of this loop?
 316           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 317         // Walk loop body looking for instances of this test
 318         for( uint i = 0; i < loop->_body.size(); i++ ) {
 319           Node *n = loop->_body.at(i);
 320           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 321             // IfNode was dominated by version in peeled loop body
 322             progress = true;
 323             dominated_by( old_new[prev->_idx], n );
 324           }
 325         }
 326       }
 327       prev = test;
 328       test = idom(test);
 329     } // End of scan tests in loop
 330 
 331   } // End of while( progress )
 332 }
 333 
 334 //------------------------------do_peeling-------------------------------------
 335 // Peel the first iteration of the given loop.
 336 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 337 //         The pre-loop illegally has 2 control users (old & new loops).
 338 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 339 //         Do this by making the old-loop fall-in edges act as if they came
 340 //         around the loopback from the prior iteration (follow the old-loop
 341 //         backedges) and then map to the new peeled iteration.  This leaves
 342 //         the pre-loop with only 1 user (the new peeled iteration), but the
 343 //         peeled-loop backedge has 2 users.
 344 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 345 //         extra backedge user.
 346 //
 347 //                   orig
 348 //
 349 //                  stmt1
 350 //                    |
 351 //                    v
 352 //              loop predicate
 353 //                    |
 354 //                    v
 355 //                   loop<----+
 356 //                     |      |
 357 //                   stmt2    |
 358 //                     |      |
 359 //                     v      |
 360 //                    if      ^
 361 //                   / \      |
 362 //                  /   \     |
 363 //                 v     v    |
 364 //               false true   |
 365 //               /       \    |
 366 //              /         ----+
 367 //             |
 368 //             v
 369 //           exit
 370 //
 371 //
 372 //            after clone loop
 373 //
 374 //                   stmt1
 375 //                     |
 376 //                     v
 377 //               loop predicate
 378 //                 /       \
 379 //        clone   /         \   orig
 380 //               /           \
 381 //              /             \
 382 //             v               v
 383 //   +---->loop clone          loop<----+
 384 //   |      |                    |      |
 385 //   |    stmt2 clone          stmt2    |
 386 //   |      |                    |      |
 387 //   |      v                    v      |
 388 //   ^      if clone            If      ^
 389 //   |      / \                / \      |
 390 //   |     /   \              /   \     |
 391 //   |    v     v            v     v    |
 392 //   |    true  false      false true   |
 393 //   |    /         \      /       \    |
 394 //   +----           \    /         ----+
 395 //                    \  /
 396 //                    1v v2
 397 //                  region
 398 //                     |
 399 //                     v
 400 //                   exit
 401 //
 402 //
 403 //         after peel and predicate move
 404 //
 405 //                   stmt1
 406 //                    /
 407 //                   /
 408 //        clone     /            orig
 409 //                 /
 410 //                /              +----------+
 411 //               /               |          |
 412 //              /          loop predicate   |
 413 //             /                 |          |
 414 //            v                  v          |
 415 //   TOP-->loop clone          loop<----+   |
 416 //          |                    |      |   |
 417 //        stmt2 clone          stmt2    |   |
 418 //          |                    |      |   ^
 419 //          v                    v      |   |
 420 //          if clone            If      ^   |
 421 //          / \                / \      |   |
 422 //         /   \              /   \     |   |
 423 //        v     v            v     v    |   |
 424 //      true   false      false  true   |   |
 425 //        |         \      /       \    |   |
 426 //        |          \    /         ----+   ^
 427 //        |           \  /                  |
 428 //        |           1v v2                 |
 429 //        v         region                  |
 430 //        |            |                    |
 431 //        |            v                    |
 432 //        |          exit                   |
 433 //        |                                 |
 434 //        +--------------->-----------------+
 435 //
 436 //
 437 //              final graph
 438 //
 439 //                  stmt1
 440 //                    |
 441 //                    v
 442 //                  stmt2 clone
 443 //                    |
 444 //                    v
 445 //                   if clone
 446 //                  / |
 447 //                 /  |
 448 //                v   v
 449 //            false  true
 450 //             |      |
 451 //             |      v
 452 //             | loop predicate
 453 //             |      |
 454 //             |      v
 455 //             |     loop<----+
 456 //             |      |       |
 457 //             |    stmt2     |
 458 //             |      |       |
 459 //             |      v       |
 460 //             v      if      ^
 461 //             |     /  \     |
 462 //             |    /    \    |
 463 //             |   v     v    |
 464 //             | false  true  |
 465 //             |  |        \  |
 466 //             v  v         --+
 467 //            region
 468 //              |
 469 //              v
 470 //             exit
 471 //
 472 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 473 
 474   C->set_major_progress();
 475   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 476   // 'pre' loop from the main and the 'pre' can no longer have it's
 477   // iterations adjusted.  Therefore, we need to declare this loop as
 478   // no longer a 'main' loop; it will need new pre and post loops before
 479   // we can do further RCE.
 480 #ifndef PRODUCT
 481   if (TraceLoopOpts) {
 482     tty->print("Peel         ");
 483     loop->dump_head();
 484   }
 485 #endif
 486   Node* head = loop->_head;
 487   bool counted_loop = head->is_CountedLoop();
 488   if (counted_loop) {
 489     CountedLoopNode *cl = head->as_CountedLoop();
 490     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 491     cl->set_trip_count(cl->trip_count() - 1);
 492     if (cl->is_main_loop()) {
 493       cl->set_normal_loop();
 494 #ifndef PRODUCT
 495       if (PrintOpto && VerifyLoopOptimizations) {
 496         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 497         loop->dump_head();
 498       }
 499 #endif
 500     }
 501   }
 502   Node* entry = head->in(LoopNode::EntryControl);
 503 
 504   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 505   //         The pre-loop illegally has 2 control users (old & new loops).
 506   clone_loop( loop, old_new, dom_depth(head) );
 507 
 508   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 509   //         Do this by making the old-loop fall-in edges act as if they came
 510   //         around the loopback from the prior iteration (follow the old-loop
 511   //         backedges) and then map to the new peeled iteration.  This leaves
 512   //         the pre-loop with only 1 user (the new peeled iteration), but the
 513   //         peeled-loop backedge has 2 users.
 514   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
 515   _igvn.hash_delete(head);
 516   head->set_req(LoopNode::EntryControl, new_entry);
 517   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
 518     Node* old = head->fast_out(j);
 519     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
 520       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 521       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
 522         // Then loop body backedge value remains the same.
 523         new_exit_value = old->in(LoopNode::LoopBackControl);
 524       _igvn.hash_delete(old);
 525       old->set_req(LoopNode::EntryControl, new_exit_value);
 526     }
 527   }
 528 
 529 
 530   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 531   //         extra backedge user.
 532   Node* new_head = old_new[head->_idx];
 533   _igvn.hash_delete(new_head);
 534   new_head->set_req(LoopNode::LoopBackControl, C->top());
 535   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
 536     Node* use = new_head->fast_out(j2);
 537     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
 538       _igvn.hash_delete(use);
 539       use->set_req(LoopNode::LoopBackControl, C->top());
 540     }
 541   }
 542 
 543 
 544   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 545   int dd = dom_depth(head);
 546   set_idom(head, head->in(1), dd);
 547   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 548     Node *old = loop->_body.at(j3);
 549     Node *nnn = old_new[old->_idx];
 550     if (!has_ctrl(nnn))
 551       set_idom(nnn, idom(nnn), dd-1);
 552   }
 553 
 554   // Now force out all loop-invariant dominating tests.  The optimizer
 555   // finds some, but we _know_ they are all useless.
 556   peeled_dom_test_elim(loop,old_new);
 557 
 558   loop->record_for_igvn();
 559 }
 560 
 561 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
 562 
 563 //------------------------------policy_maximally_unroll------------------------
 564 // Calculate exact loop trip count and return true if loop can be maximally
 565 // unrolled.
 566 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 567   CountedLoopNode *cl = _head->as_CountedLoop();
 568   assert(cl->is_normal_loop(), "");
 569   if (!cl->is_valid_counted_loop())
 570     return false; // Malformed counted loop
 571 
 572   if (!cl->has_exact_trip_count()) {
 573     // Trip count is not exact.
 574     return false;
 575   }
 576 
 577   uint trip_count = cl->trip_count();
 578   // Note, max_juint is used to indicate unknown trip count.
 579   assert(trip_count > 1, "one iteration loop should be optimized out already");
 580   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
 581 
 582   // Real policy: if we maximally unroll, does it get too big?
 583   // Allow the unrolled mess to get larger than standard loop
 584   // size.  After all, it will no longer be a loop.
 585   uint body_size    = _body.size();
 586   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 587   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 588   if (trip_count > unroll_limit || body_size > unroll_limit) {
 589     return false;
 590   }
 591 
 592   // Fully unroll a loop with few iterations regardless next
 593   // conditions since following loop optimizations will split
 594   // such loop anyway (pre-main-post).
 595   if (trip_count <= 3)
 596     return true;
 597 
 598   // Take into account that after unroll conjoined heads and tails will fold,
 599   // otherwise policy_unroll() may allow more unrolling than max unrolling.
 600   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
 601   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
 602   if (body_size != tst_body_size) // Check for int overflow
 603     return false;
 604   if (new_body_size > unroll_limit ||
 605       // Unrolling can result in a large amount of node construction
 606       new_body_size >= phase->C->max_node_limit() - phase->C->live_nodes()) {
 607     return false;
 608   }
 609 
 610   // Do not unroll a loop with String intrinsics code.
 611   // String intrinsics are large and have loops.
 612   for (uint k = 0; k < _body.size(); k++) {
 613     Node* n = _body.at(k);
 614     switch (n->Opcode()) {
 615       case Op_StrComp:
 616       case Op_StrEquals:
 617       case Op_StrIndexOf:
 618       case Op_EncodeISOArray:
 619       case Op_AryEq: {
 620         return false;
 621       }
 622 #if INCLUDE_RTM_OPT
 623       case Op_FastLock:
 624       case Op_FastUnlock: {
 625         // Don't unroll RTM locking code because it is large.
 626         if (UseRTMLocking) {
 627           return false;
 628         }
 629       }
 630 #endif
 631     } // switch
 632   }
 633 
 634   return true; // Do maximally unroll
 635 }
 636 
 637 
 638 //------------------------------policy_unroll----------------------------------
 639 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 640 // the loop is a CountedLoop and the body is small enough.
 641 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
 642 
 643   CountedLoopNode *cl = _head->as_CountedLoop();
 644   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
 645 
 646   if (!cl->is_valid_counted_loop())
 647     return false; // Malformed counted loop
 648 
 649   // Protect against over-unrolling.
 650   // After split at least one iteration will be executed in pre-loop.
 651   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
 652 
 653   int future_unroll_ct = cl->unrolled_count() * 2;
 654   if (future_unroll_ct > LoopMaxUnroll) return false;
 655 
 656   // Check for initial stride being a small enough constant
 657   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
 658 
 659   // Don't unroll if the next round of unrolling would push us
 660   // over the expected trip count of the loop.  One is subtracted
 661   // from the expected trip count because the pre-loop normally
 662   // executes 1 iteration.
 663   if (UnrollLimitForProfileCheck > 0 &&
 664       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 665       future_unroll_ct        > UnrollLimitForProfileCheck &&
 666       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 667     return false;
 668   }
 669 
 670   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 671   //   the residual iterations are more than 10% of the trip count
 672   //   and rounds of "unroll,optimize" are not making significant progress
 673   //   Progress defined as current size less than 20% larger than previous size.
 674   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 675       future_unroll_ct > LoopUnrollMin &&
 676       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
 677       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 678     return false;
 679   }
 680 
 681   Node *init_n = cl->init_trip();
 682   Node *limit_n = cl->limit();
 683   int stride_con = cl->stride_con();
 684   // Non-constant bounds.
 685   // Protect against over-unrolling when init or/and limit are not constant
 686   // (so that trip_count's init value is maxint) but iv range is known.
 687   if (init_n   == NULL || !init_n->is_Con()  ||
 688       limit_n  == NULL || !limit_n->is_Con()) {
 689     Node* phi = cl->phi();
 690     if (phi != NULL) {
 691       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 692       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 693       int next_stride = stride_con * 2; // stride after this unroll
 694       if (next_stride > 0) {
 695         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 696             iv_type->_lo + next_stride >  iv_type->_hi) {
 697           return false;  // over-unrolling
 698         }
 699       } else if (next_stride < 0) {
 700         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 701             iv_type->_hi + next_stride <  iv_type->_lo) {
 702           return false;  // over-unrolling
 703         }
 704       }
 705     }
 706   }
 707 
 708   // After unroll limit will be adjusted: new_limit = limit-stride.
 709   // Bailout if adjustment overflow.
 710   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
 711   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
 712       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
 713     return false;  // overflow
 714 
 715   // Adjust body_size to determine if we unroll or not
 716   uint body_size = _body.size();
 717   // Key test to unroll loop in CRC32 java code
 718   int xors_in_loop = 0;
 719   // Also count ModL, DivL and MulL which expand mightly
 720   for (uint k = 0; k < _body.size(); k++) {
 721     Node* n = _body.at(k);
 722     switch (n->Opcode()) {
 723       case Op_XorI: xors_in_loop++; break; // CRC32 java code
 724       case Op_ModL: body_size += 30; break;
 725       case Op_DivL: body_size += 30; break;
 726       case Op_MulL: body_size += 10; break;
 727       case Op_StrComp:
 728       case Op_StrEquals:
 729       case Op_StrIndexOf:
 730       case Op_EncodeISOArray:
 731       case Op_AryEq: {
 732         // Do not unroll a loop with String intrinsics code.
 733         // String intrinsics are large and have loops.
 734         return false;
 735       }
 736 #if INCLUDE_RTM_OPT
 737       case Op_FastLock:
 738       case Op_FastUnlock: {
 739         // Don't unroll RTM locking code because it is large.
 740         if (UseRTMLocking) {
 741           return false;
 742         }
 743       }
 744 #endif
 745     } // switch
 746   }
 747 
 748   // Check for being too big
 749   if (body_size > (uint)LoopUnrollLimit) {
 750     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
 751     // Normal case: loop too big
 752     return false;
 753   }
 754 
 755   // Unroll once!  (Each trip will soon do double iterations)
 756   return true;
 757 }
 758 
 759 //------------------------------policy_align-----------------------------------
 760 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 761 // expression that does the alignment.  Note that only one array base can be
 762 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 763 // if we vectorize short memory ops into longer memory ops, we may want to
 764 // increase alignment.
 765 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 766   return false;
 767 }
 768 
 769 //------------------------------policy_range_check-----------------------------
 770 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 771 // Actually we do iteration-splitting, a more powerful form of RCE.
 772 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 773   if (!RangeCheckElimination) return false;
 774 
 775   CountedLoopNode *cl = _head->as_CountedLoop();
 776   // If we unrolled with no intention of doing RCE and we later
 777   // changed our minds, we got no pre-loop.  Either we need to
 778   // make a new pre-loop, or we gotta disallow RCE.
 779   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
 780   Node *trip_counter = cl->phi();
 781 
 782   // Check loop body for tests of trip-counter plus loop-invariant vs
 783   // loop-invariant.
 784   for (uint i = 0; i < _body.size(); i++) {
 785     Node *iff = _body[i];
 786     if (iff->Opcode() == Op_If) { // Test?
 787 
 788       // Comparing trip+off vs limit
 789       Node *bol = iff->in(1);
 790       if (bol->req() != 2) continue; // dead constant test
 791       if (!bol->is_Bool()) {
 792         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 793         continue;
 794       }
 795       if (bol->as_Bool()->_test._test == BoolTest::ne)
 796         continue; // not RC
 797 
 798       Node *cmp = bol->in(1);
 799       Node *rc_exp = cmp->in(1);
 800       Node *limit = cmp->in(2);
 801 
 802       Node *limit_c = phase->get_ctrl(limit);
 803       if( limit_c == phase->C->top() )
 804         return false;           // Found dead test on live IF?  No RCE!
 805       if( is_member(phase->get_loop(limit_c) ) ) {
 806         // Compare might have operands swapped; commute them
 807         rc_exp = cmp->in(2);
 808         limit  = cmp->in(1);
 809         limit_c = phase->get_ctrl(limit);
 810         if( is_member(phase->get_loop(limit_c) ) )
 811           continue;             // Both inputs are loop varying; cannot RCE
 812       }
 813 
 814       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
 815         continue;
 816       }
 817       // Yeah!  Found a test like 'trip+off vs limit'
 818       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
 819       // we need loop unswitching instead of iteration splitting.
 820       if( is_loop_exit(iff) )
 821         return true;            // Found reason to split iterations
 822     } // End of is IF
 823   }
 824 
 825   return false;
 826 }
 827 
 828 //------------------------------policy_peel_only-------------------------------
 829 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
 830 // for unrolling loops with NO array accesses.
 831 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
 832 
 833   for( uint i = 0; i < _body.size(); i++ )
 834     if( _body[i]->is_Mem() )
 835       return false;
 836 
 837   // No memory accesses at all!
 838   return true;
 839 }
 840 
 841 //------------------------------clone_up_backedge_goo--------------------------
 842 // If Node n lives in the back_ctrl block and cannot float, we clone a private
 843 // version of n in preheader_ctrl block and return that, otherwise return n.
 844 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
 845   if( get_ctrl(n) != back_ctrl ) return n;
 846 
 847   // Only visit once
 848   if (visited.test_set(n->_idx)) {
 849     Node *x = clones.find(n->_idx);
 850     if (x != NULL)
 851       return x;
 852     return n;
 853   }
 854 
 855   Node *x = NULL;               // If required, a clone of 'n'
 856   // Check for 'n' being pinned in the backedge.
 857   if( n->in(0) && n->in(0) == back_ctrl ) {
 858     assert(clones.find(n->_idx) == NULL, "dead loop");
 859     x = n->clone();             // Clone a copy of 'n' to preheader
 860     clones.push(x, n->_idx);
 861     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
 862   }
 863 
 864   // Recursive fixup any other input edges into x.
 865   // If there are no changes we can just return 'n', otherwise
 866   // we need to clone a private copy and change it.
 867   for( uint i = 1; i < n->req(); i++ ) {
 868     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
 869     if( g != n->in(i) ) {
 870       if( !x ) {
 871         assert(clones.find(n->_idx) == NULL, "dead loop");
 872         x = n->clone();
 873         clones.push(x, n->_idx);
 874       }
 875       x->set_req(i, g);
 876     }
 877   }
 878   if( x ) {                     // x can legally float to pre-header location
 879     register_new_node( x, preheader_ctrl );
 880     return x;
 881   } else {                      // raise n to cover LCA of uses
 882     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
 883   }
 884   return n;
 885 }
 886 
 887 //------------------------------insert_pre_post_loops--------------------------
 888 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
 889 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
 890 // alignment.  Useful to unroll loops that do no array accesses.
 891 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
 892 
 893 #ifndef PRODUCT
 894   if (TraceLoopOpts) {
 895     if (peel_only)
 896       tty->print("PeelMainPost ");
 897     else
 898       tty->print("PreMainPost  ");
 899     loop->dump_head();
 900   }
 901 #endif
 902   C->set_major_progress();
 903 
 904   // Find common pieces of the loop being guarded with pre & post loops
 905   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
 906   assert( main_head->is_normal_loop(), "" );
 907   CountedLoopEndNode *main_end = main_head->loopexit();
 908   guarantee(main_end != NULL, "no loop exit node");
 909   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
 910   uint dd_main_head = dom_depth(main_head);
 911   uint max = main_head->outcnt();
 912 
 913   Node *pre_header= main_head->in(LoopNode::EntryControl);
 914   Node *init      = main_head->init_trip();
 915   Node *incr      = main_end ->incr();
 916   Node *limit     = main_end ->limit();
 917   Node *stride    = main_end ->stride();
 918   Node *cmp       = main_end ->cmp_node();
 919   BoolTest::mask b_test = main_end->test_trip();
 920 
 921   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
 922   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
 923   if( bol->outcnt() != 1 ) {
 924     bol = bol->clone();
 925     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
 926     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol);
 927   }
 928   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
 929   if( cmp->outcnt() != 1 ) {
 930     cmp = cmp->clone();
 931     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
 932     _igvn.replace_input_of(bol, 1, cmp);
 933   }
 934 
 935   //------------------------------
 936   // Step A: Create Post-Loop.
 937   Node* main_exit = main_end->proj_out(false);
 938   assert( main_exit->Opcode() == Op_IfFalse, "" );
 939   int dd_main_exit = dom_depth(main_exit);
 940 
 941   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
 942   // loop pre-header illegally has 2 control users (old & new loops).
 943   clone_loop( loop, old_new, dd_main_exit );
 944   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
 945   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
 946   post_head->set_post_loop(main_head);
 947 
 948   // Reduce the post-loop trip count.
 949   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
 950   post_end->_prob = PROB_FAIR;
 951 
 952   // Build the main-loop normal exit.
 953   IfFalseNode *new_main_exit = new IfFalseNode(main_end);
 954   _igvn.register_new_node_with_optimizer( new_main_exit );
 955   set_idom(new_main_exit, main_end, dd_main_exit );
 956   set_loop(new_main_exit, loop->_parent);
 957 
 958   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
 959   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
 960   // (the main-loop trip-counter exit value) because we will be changing
 961   // the exit value (via unrolling) so we cannot constant-fold away the zero
 962   // trip guard until all unrolling is done.
 963   Node *zer_opaq = new Opaque1Node(C, incr);
 964   Node *zer_cmp  = new CmpINode( zer_opaq, limit );
 965   Node *zer_bol  = new BoolNode( zer_cmp, b_test );
 966   register_new_node( zer_opaq, new_main_exit );
 967   register_new_node( zer_cmp , new_main_exit );
 968   register_new_node( zer_bol , new_main_exit );
 969 
 970   // Build the IfNode
 971   IfNode *zer_iff = new IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
 972   _igvn.register_new_node_with_optimizer( zer_iff );
 973   set_idom(zer_iff, new_main_exit, dd_main_exit);
 974   set_loop(zer_iff, loop->_parent);
 975 
 976   // Plug in the false-path, taken if we need to skip post-loop
 977   _igvn.replace_input_of(main_exit, 0, zer_iff);
 978   set_idom(main_exit, zer_iff, dd_main_exit);
 979   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
 980   // Make the true-path, must enter the post loop
 981   Node *zer_taken = new IfTrueNode( zer_iff );
 982   _igvn.register_new_node_with_optimizer( zer_taken );
 983   set_idom(zer_taken, zer_iff, dd_main_exit);
 984   set_loop(zer_taken, loop->_parent);
 985   // Plug in the true path
 986   _igvn.hash_delete( post_head );
 987   post_head->set_req(LoopNode::EntryControl, zer_taken);
 988   set_idom(post_head, zer_taken, dd_main_exit);
 989 
 990   Arena *a = Thread::current()->resource_area();
 991   VectorSet visited(a);
 992   Node_Stack clones(a, main_head->back_control()->outcnt());
 993   // Step A3: Make the fall-in values to the post-loop come from the
 994   // fall-out values of the main-loop.
 995   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
 996     Node* main_phi = main_head->fast_out(i);
 997     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
 998       Node *post_phi = old_new[main_phi->_idx];
 999       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
1000                                               post_head->init_control(),
1001                                               main_phi->in(LoopNode::LoopBackControl),
1002                                               visited, clones);
1003       _igvn.hash_delete(post_phi);
1004       post_phi->set_req( LoopNode::EntryControl, fallmain );
1005     }
1006   }
1007 
1008   // Update local caches for next stanza
1009   main_exit = new_main_exit;
1010 
1011 
1012   //------------------------------
1013   // Step B: Create Pre-Loop.
1014 
1015   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1016   // loop pre-header illegally has 2 control users (old & new loops).
1017   clone_loop( loop, old_new, dd_main_head );
1018   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1019   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1020   pre_head->set_pre_loop(main_head);
1021   Node *pre_incr = old_new[incr->_idx];
1022 
1023   // Reduce the pre-loop trip count.
1024   pre_end->_prob = PROB_FAIR;
1025 
1026   // Find the pre-loop normal exit.
1027   Node* pre_exit = pre_end->proj_out(false);
1028   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1029   IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
1030   _igvn.register_new_node_with_optimizer( new_pre_exit );
1031   set_idom(new_pre_exit, pre_end, dd_main_head);
1032   set_loop(new_pre_exit, loop->_parent);
1033 
1034   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1035   // pre-loop, the main-loop may not execute at all.  Later in life this
1036   // zero-trip guard will become the minimum-trip guard when we unroll
1037   // the main-loop.
1038   Node *min_opaq = new Opaque1Node(C, limit);
1039   Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
1040   Node *min_bol  = new BoolNode( min_cmp, b_test );
1041   register_new_node( min_opaq, new_pre_exit );
1042   register_new_node( min_cmp , new_pre_exit );
1043   register_new_node( min_bol , new_pre_exit );
1044 
1045   // Build the IfNode (assume the main-loop is executed always).
1046   IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1047   _igvn.register_new_node_with_optimizer( min_iff );
1048   set_idom(min_iff, new_pre_exit, dd_main_head);
1049   set_loop(min_iff, loop->_parent);
1050 
1051   // Plug in the false-path, taken if we need to skip main-loop
1052   _igvn.hash_delete( pre_exit );
1053   pre_exit->set_req(0, min_iff);
1054   set_idom(pre_exit, min_iff, dd_main_head);
1055   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1056   // Make the true-path, must enter the main loop
1057   Node *min_taken = new IfTrueNode( min_iff );
1058   _igvn.register_new_node_with_optimizer( min_taken );
1059   set_idom(min_taken, min_iff, dd_main_head);
1060   set_loop(min_taken, loop->_parent);
1061   // Plug in the true path
1062   _igvn.hash_delete( main_head );
1063   main_head->set_req(LoopNode::EntryControl, min_taken);
1064   set_idom(main_head, min_taken, dd_main_head);
1065 
1066   visited.Clear();
1067   clones.clear();
1068   // Step B3: Make the fall-in values to the main-loop come from the
1069   // fall-out values of the pre-loop.
1070   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1071     Node* main_phi = main_head->fast_out(i2);
1072     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1073       Node *pre_phi = old_new[main_phi->_idx];
1074       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1075                                              main_head->init_control(),
1076                                              pre_phi->in(LoopNode::LoopBackControl),
1077                                              visited, clones);
1078       _igvn.hash_delete(main_phi);
1079       main_phi->set_req( LoopNode::EntryControl, fallpre );
1080     }
1081   }
1082 
1083   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1084   // RCE and alignment may change this later.
1085   Node *cmp_end = pre_end->cmp_node();
1086   assert( cmp_end->in(2) == limit, "" );
1087   Node *pre_limit = new AddINode( init, stride );
1088 
1089   // Save the original loop limit in this Opaque1 node for
1090   // use by range check elimination.
1091   Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
1092 
1093   register_new_node( pre_limit, pre_head->in(0) );
1094   register_new_node( pre_opaq , pre_head->in(0) );
1095 
1096   // Since no other users of pre-loop compare, I can hack limit directly
1097   assert( cmp_end->outcnt() == 1, "no other users" );
1098   _igvn.hash_delete(cmp_end);
1099   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1100 
1101   // Special case for not-equal loop bounds:
1102   // Change pre loop test, main loop test, and the
1103   // main loop guard test to use lt or gt depending on stride
1104   // direction:
1105   // positive stride use <
1106   // negative stride use >
1107   //
1108   // not-equal test is kept for post loop to handle case
1109   // when init > limit when stride > 0 (and reverse).
1110 
1111   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1112 
1113     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1114     // Modify pre loop end condition
1115     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1116     BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
1117     register_new_node( new_bol0, pre_head->in(0) );
1118     _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0);
1119     // Modify main loop guard condition
1120     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1121     BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
1122     register_new_node( new_bol1, new_pre_exit );
1123     _igvn.hash_delete(min_iff);
1124     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1125     // Modify main loop end condition
1126     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1127     BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
1128     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1129     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2);
1130   }
1131 
1132   // Flag main loop
1133   main_head->set_main_loop();
1134   if( peel_only ) main_head->set_main_no_pre_loop();
1135 
1136   // Subtract a trip count for the pre-loop.
1137   main_head->set_trip_count(main_head->trip_count() - 1);
1138 
1139   // It's difficult to be precise about the trip-counts
1140   // for the pre/post loops.  They are usually very short,
1141   // so guess that 4 trips is a reasonable value.
1142   post_head->set_profile_trip_cnt(4.0);
1143   pre_head->set_profile_trip_cnt(4.0);
1144 
1145   // Now force out all loop-invariant dominating tests.  The optimizer
1146   // finds some, but we _know_ they are all useless.
1147   peeled_dom_test_elim(loop,old_new);
1148   loop->record_for_igvn();
1149 }
1150 
1151 //------------------------------is_invariant-----------------------------
1152 // Return true if n is invariant
1153 bool IdealLoopTree::is_invariant(Node* n) const {
1154   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1155   if (n_c->is_top()) return false;
1156   return !is_member(_phase->get_loop(n_c));
1157 }
1158 
1159 
1160 //------------------------------do_unroll--------------------------------------
1161 // Unroll the loop body one step - make each trip do 2 iterations.
1162 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1163   assert(LoopUnrollLimit, "");
1164   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1165   CountedLoopEndNode *loop_end = loop_head->loopexit();
1166   assert(loop_end, "");
1167 #ifndef PRODUCT
1168   if (PrintOpto && VerifyLoopOptimizations) {
1169     tty->print("Unrolling ");
1170     loop->dump_head();
1171   } else if (TraceLoopOpts) {
1172     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1173       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1174     } else {
1175       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1176     }
1177     loop->dump_head();
1178   }
1179 #endif
1180 
1181   // Remember loop node count before unrolling to detect
1182   // if rounds of unroll,optimize are making progress
1183   loop_head->set_node_count_before_unroll(loop->_body.size());
1184 
1185   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1186   Node *limit = loop_head->limit();
1187   Node *init  = loop_head->init_trip();
1188   Node *stride = loop_head->stride();
1189 
1190   Node *opaq = NULL;
1191   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1192     // Search for zero-trip guard.
1193     assert( loop_head->is_main_loop(), "" );
1194     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1195     Node *iff = ctrl->in(0);
1196     assert( iff->Opcode() == Op_If, "" );
1197     Node *bol = iff->in(1);
1198     assert( bol->Opcode() == Op_Bool, "" );
1199     Node *cmp = bol->in(1);
1200     assert( cmp->Opcode() == Op_CmpI, "" );
1201     opaq = cmp->in(2);
1202     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
1203     // optimized away and then another round of loop opts attempted.
1204     // We can not optimize this particular loop in that case.
1205     if (opaq->Opcode() != Op_Opaque1)
1206       return; // Cannot find zero-trip guard!  Bail out!
1207     // Zero-trip test uses an 'opaque' node which is not shared.
1208     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1209   }
1210 
1211   C->set_major_progress();
1212 
1213   Node* new_limit = NULL;
1214   if (UnrollLimitCheck) {
1215     int stride_con = stride->get_int();
1216     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1217     uint old_trip_count = loop_head->trip_count();
1218     // Verify that unroll policy result is still valid.
1219     assert(old_trip_count > 1 &&
1220            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1221 
1222     // Adjust loop limit to keep valid iterations number after unroll.
1223     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1224     // which may overflow.
1225     if (!adjust_min_trip) {
1226       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1227              "odd trip count for maximally unroll");
1228       // Don't need to adjust limit for maximally unroll since trip count is even.
1229     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1230       // Loop's limit is constant. Loop's init could be constant when pre-loop
1231       // become peeled iteration.
1232       jlong init_con = init->get_int();
1233       // We can keep old loop limit if iterations count stays the same:
1234       //   old_trip_count == new_trip_count * 2
1235       // Note: since old_trip_count >= 2 then new_trip_count >= 1
1236       // so we also don't need to adjust zero trip test.
1237       jlong limit_con  = limit->get_int();
1238       // (stride_con*2) not overflow since stride_con <= 8.
1239       int new_stride_con = stride_con * 2;
1240       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1241       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1242       // New trip count should satisfy next conditions.
1243       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1244       uint new_trip_count = (uint)trip_count;
1245       adjust_min_trip = (old_trip_count != new_trip_count*2);
1246     }
1247 
1248     if (adjust_min_trip) {
1249       // Step 2: Adjust the trip limit if it is called for.
1250       // The adjustment amount is -stride. Need to make sure if the
1251       // adjustment underflows or overflows, then the main loop is skipped.
1252       Node* cmp = loop_end->cmp_node();
1253       assert(cmp->in(2) == limit, "sanity");
1254       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1255 
1256       // Verify that policy_unroll result is still valid.
1257       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1258       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1259              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1260 
1261       if (limit->is_Con()) {
1262         // The check in policy_unroll and the assert above guarantee
1263         // no underflow if limit is constant.
1264         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1265         set_ctrl(new_limit, C->root());
1266       } else {
1267         // Limit is not constant.
1268         if (loop_head->unrolled_count() == 1) { // only for first unroll
1269           // Separate limit by Opaque node in case it is an incremented
1270           // variable from previous loop to avoid using pre-incremented
1271           // value which could increase register pressure.
1272           // Otherwise reorg_offsets() optimization will create a separate
1273           // Opaque node for each use of trip-counter and as result
1274           // zero trip guard limit will be different from loop limit.
1275           assert(has_ctrl(opaq), "should have it");
1276           Node* opaq_ctrl = get_ctrl(opaq);
1277           limit = new Opaque2Node( C, limit );
1278           register_new_node( limit, opaq_ctrl );
1279         }
1280         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1281                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1282           // No underflow.
1283           new_limit = new SubINode(limit, stride);
1284         } else {
1285           // (limit - stride) may underflow.
1286           // Clamp the adjustment value with MININT or MAXINT:
1287           //
1288           //   new_limit = limit-stride
1289           //   if (stride > 0)
1290           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1291           //   else
1292           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1293           //
1294           BoolTest::mask bt = loop_end->test_trip();
1295           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1296           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1297           set_ctrl(adj_max, C->root());
1298           Node* old_limit = NULL;
1299           Node* adj_limit = NULL;
1300           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1301           if (loop_head->unrolled_count() > 1 &&
1302               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1303               limit->in(CMoveNode::IfTrue) == adj_max &&
1304               bol->as_Bool()->_test._test == bt &&
1305               bol->in(1)->Opcode() == Op_CmpI &&
1306               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1307             // Loop was unrolled before.
1308             // Optimize the limit to avoid nested CMove:
1309             // use original limit as old limit.
1310             old_limit = bol->in(1)->in(1);
1311             // Adjust previous adjusted limit.
1312             adj_limit = limit->in(CMoveNode::IfFalse);
1313             adj_limit = new SubINode(adj_limit, stride);
1314           } else {
1315             old_limit = limit;
1316             adj_limit = new SubINode(limit, stride);
1317           }
1318           assert(old_limit != NULL && adj_limit != NULL, "");
1319           register_new_node( adj_limit, ctrl ); // adjust amount
1320           Node* adj_cmp = new CmpINode(old_limit, adj_limit);
1321           register_new_node( adj_cmp, ctrl );
1322           Node* adj_bool = new BoolNode(adj_cmp, bt);
1323           register_new_node( adj_bool, ctrl );
1324           new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1325         }
1326         register_new_node(new_limit, ctrl);
1327       }
1328       assert(new_limit != NULL, "");
1329       // Replace in loop test.
1330       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1331       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1332         // Don't need to create new test since only one user.
1333         _igvn.hash_delete(cmp);
1334         cmp->set_req(2, new_limit);
1335       } else {
1336         // Create new test since it is shared.
1337         Node* ctrl2 = loop_end->in(0);
1338         Node* cmp2  = cmp->clone();
1339         cmp2->set_req(2, new_limit);
1340         register_new_node(cmp2, ctrl2);
1341         Node* bol2 = loop_end->in(1)->clone();
1342         bol2->set_req(1, cmp2);
1343         register_new_node(bol2, ctrl2);
1344         _igvn.replace_input_of(loop_end, 1, bol2);
1345       }
1346       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1347       // Make it a 1-trip test (means at least 2 trips).
1348 
1349       // Guard test uses an 'opaque' node which is not shared.  Hence I
1350       // can edit it's inputs directly.  Hammer in the new limit for the
1351       // minimum-trip guard.
1352       assert(opaq->outcnt() == 1, "");
1353       _igvn.replace_input_of(opaq, 1, new_limit);
1354     }
1355 
1356     // Adjust max trip count. The trip count is intentionally rounded
1357     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1358     // the main, unrolled, part of the loop will never execute as it is protected
1359     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1360     // and later determined that part of the unrolled loop was dead.
1361     loop_head->set_trip_count(old_trip_count / 2);
1362 
1363     // Double the count of original iterations in the unrolled loop body.
1364     loop_head->double_unrolled_count();
1365 
1366   } else { // LoopLimitCheck
1367 
1368     // Adjust max trip count. The trip count is intentionally rounded
1369     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1370     // the main, unrolled, part of the loop will never execute as it is protected
1371     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1372     // and later determined that part of the unrolled loop was dead.
1373     loop_head->set_trip_count(loop_head->trip_count() / 2);
1374 
1375     // Double the count of original iterations in the unrolled loop body.
1376     loop_head->double_unrolled_count();
1377 
1378     // -----------
1379     // Step 2: Cut back the trip counter for an unroll amount of 2.
1380     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1381     // CountedLoop this is exact (stride divides limit-init exactly).
1382     // We are going to double the loop body, so we want to knock off any
1383     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1384     Node *span = new SubINode( limit, init );
1385     register_new_node( span, ctrl );
1386     Node *trip = new DivINode( 0, span, stride );
1387     register_new_node( trip, ctrl );
1388     Node *mtwo = _igvn.intcon(-2);
1389     set_ctrl(mtwo, C->root());
1390     Node *rond = new AndINode( trip, mtwo );
1391     register_new_node( rond, ctrl );
1392     Node *spn2 = new MulINode( rond, stride );
1393     register_new_node( spn2, ctrl );
1394     new_limit = new AddINode( spn2, init );
1395     register_new_node( new_limit, ctrl );
1396 
1397     // Hammer in the new limit
1398     Node *ctrl2 = loop_end->in(0);
1399     Node *cmp2 = new CmpINode( loop_head->incr(), new_limit );
1400     register_new_node( cmp2, ctrl2 );
1401     Node *bol2 = new BoolNode( cmp2, loop_end->test_trip() );
1402     register_new_node( bol2, ctrl2 );
1403     _igvn.replace_input_of(loop_end, CountedLoopEndNode::TestValue, bol2);
1404 
1405     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1406     // Make it a 1-trip test (means at least 2 trips).
1407     if( adjust_min_trip ) {
1408       assert( new_limit != NULL, "" );
1409       // Guard test uses an 'opaque' node which is not shared.  Hence I
1410       // can edit it's inputs directly.  Hammer in the new limit for the
1411       // minimum-trip guard.
1412       assert( opaq->outcnt() == 1, "" );
1413       _igvn.hash_delete(opaq);
1414       opaq->set_req(1, new_limit);
1415     }
1416   } // LoopLimitCheck
1417 
1418   // ---------
1419   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1420   // represents the odd iterations; since the loop trips an even number of
1421   // times its backedge is never taken.  Kill the backedge.
1422   uint dd = dom_depth(loop_head);
1423   clone_loop( loop, old_new, dd );
1424 
1425   // Make backedges of the clone equal to backedges of the original.
1426   // Make the fall-in from the original come from the fall-out of the clone.
1427   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1428     Node* phi = loop_head->fast_out(j);
1429     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1430       Node *newphi = old_new[phi->_idx];
1431       _igvn.hash_delete( phi );
1432       _igvn.hash_delete( newphi );
1433 
1434       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1435       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1436       phi   ->set_req(LoopNode::LoopBackControl, C->top());
1437     }
1438   }
1439   Node *clone_head = old_new[loop_head->_idx];
1440   _igvn.hash_delete( clone_head );
1441   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1442   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1443   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1444   loop->_head = clone_head;     // New loop header
1445 
1446   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1447   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1448 
1449   // Kill the clone's backedge
1450   Node *newcle = old_new[loop_end->_idx];
1451   _igvn.hash_delete( newcle );
1452   Node *one = _igvn.intcon(1);
1453   set_ctrl(one, C->root());
1454   newcle->set_req(1, one);
1455   // Force clone into same loop body
1456   uint max = loop->_body.size();
1457   for( uint k = 0; k < max; k++ ) {
1458     Node *old = loop->_body.at(k);
1459     Node *nnn = old_new[old->_idx];
1460     loop->_body.push(nnn);
1461     if (!has_ctrl(old))
1462       set_loop(nnn, loop);
1463   }
1464 
1465   loop->record_for_igvn();
1466 }
1467 
1468 //------------------------------do_maximally_unroll----------------------------
1469 
1470 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1471   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1472   assert(cl->has_exact_trip_count(), "trip count is not exact");
1473   assert(cl->trip_count() > 0, "");
1474 #ifndef PRODUCT
1475   if (TraceLoopOpts) {
1476     tty->print("MaxUnroll  %d ", cl->trip_count());
1477     loop->dump_head();
1478   }
1479 #endif
1480 
1481   // If loop is tripping an odd number of times, peel odd iteration
1482   if ((cl->trip_count() & 1) == 1) {
1483     do_peeling(loop, old_new);
1484   }
1485 
1486   // Now its tripping an even number of times remaining.  Double loop body.
1487   // Do not adjust pre-guards; they are not needed and do not exist.
1488   if (cl->trip_count() > 0) {
1489     assert((cl->trip_count() & 1) == 0, "missed peeling");
1490     do_unroll(loop, old_new, false);
1491   }
1492 }
1493 
1494 //------------------------------dominates_backedge---------------------------------
1495 // Returns true if ctrl is executed on every complete iteration
1496 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1497   assert(ctrl->is_CFG(), "must be control");
1498   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1499   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1500 }
1501 
1502 //------------------------------adjust_limit-----------------------------------
1503 // Helper function for add_constraint().
1504 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1505   // Compute "I :: (limit-offset)/scale"
1506   Node *con = new SubINode(rc_limit, offset);
1507   register_new_node(con, pre_ctrl);
1508   Node *X = new DivINode(0, con, scale);
1509   register_new_node(X, pre_ctrl);
1510 
1511   // Adjust loop limit
1512   loop_limit = (stride_con > 0)
1513                ? (Node*)(new MinINode(loop_limit, X))
1514                : (Node*)(new MaxINode(loop_limit, X));
1515   register_new_node(loop_limit, pre_ctrl);
1516   return loop_limit;
1517 }
1518 
1519 //------------------------------add_constraint---------------------------------
1520 // Constrain the main loop iterations so the conditions:
1521 //    low_limit <= scale_con * I + offset  <  upper_limit
1522 // always holds true.  That is, either increase the number of iterations in
1523 // the pre-loop or the post-loop until the condition holds true in the main
1524 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1525 // stride and scale are constants (offset and limit often are).
1526 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1527   // For positive stride, the pre-loop limit always uses a MAX function
1528   // and the main loop a MIN function.  For negative stride these are
1529   // reversed.
1530 
1531   // Also for positive stride*scale the affine function is increasing, so the
1532   // pre-loop must check for underflow and the post-loop for overflow.
1533   // Negative stride*scale reverses this; pre-loop checks for overflow and
1534   // post-loop for underflow.
1535 
1536   Node *scale = _igvn.intcon(scale_con);
1537   set_ctrl(scale, C->root());
1538 
1539   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1540     // The overflow limit: scale*I+offset < upper_limit
1541     // For main-loop compute
1542     //   ( if (scale > 0) /* and stride > 0 */
1543     //       I < (upper_limit-offset)/scale
1544     //     else /* scale < 0 and stride < 0 */
1545     //       I > (upper_limit-offset)/scale
1546     //   )
1547     //
1548     // (upper_limit-offset) may overflow or underflow.
1549     // But it is fine since main loop will either have
1550     // less iterations or will be skipped in such case.
1551     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1552 
1553     // The underflow limit: low_limit <= scale*I+offset.
1554     // For pre-loop compute
1555     //   NOT(scale*I+offset >= low_limit)
1556     //   scale*I+offset < low_limit
1557     //   ( if (scale > 0) /* and stride > 0 */
1558     //       I < (low_limit-offset)/scale
1559     //     else /* scale < 0 and stride < 0 */
1560     //       I > (low_limit-offset)/scale
1561     //   )
1562 
1563     if (low_limit->get_int() == -max_jint) {
1564       if (!RangeLimitCheck) return;
1565       // We need this guard when scale*pre_limit+offset >= limit
1566       // due to underflow. So we need execute pre-loop until
1567       // scale*I+offset >= min_int. But (min_int-offset) will
1568       // underflow when offset > 0 and X will be > original_limit
1569       // when stride > 0. To avoid it we replace positive offset with 0.
1570       //
1571       // Also (min_int+1 == -max_int) is used instead of min_int here
1572       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1573       Node* shift = _igvn.intcon(31);
1574       set_ctrl(shift, C->root());
1575       Node* sign = new RShiftINode(offset, shift);
1576       register_new_node(sign, pre_ctrl);
1577       offset = new AndINode(offset, sign);
1578       register_new_node(offset, pre_ctrl);
1579     } else {
1580       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1581       // The only problem we have here when offset == min_int
1582       // since (0-min_int) == min_int. It may be fine for stride > 0
1583       // but for stride < 0 X will be < original_limit. To avoid it
1584       // max(pre_limit, original_limit) is used in do_range_check().
1585     }
1586     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1587     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1588 
1589   } else { // stride_con*scale_con < 0
1590     // For negative stride*scale pre-loop checks for overflow and
1591     // post-loop for underflow.
1592     //
1593     // The overflow limit: scale*I+offset < upper_limit
1594     // For pre-loop compute
1595     //   NOT(scale*I+offset < upper_limit)
1596     //   scale*I+offset >= upper_limit
1597     //   scale*I+offset+1 > upper_limit
1598     //   ( if (scale < 0) /* and stride > 0 */
1599     //       I < (upper_limit-(offset+1))/scale
1600     //     else /* scale > 0 and stride < 0 */
1601     //       I > (upper_limit-(offset+1))/scale
1602     //   )
1603     //
1604     // (upper_limit-offset-1) may underflow or overflow.
1605     // To avoid it min(pre_limit, original_limit) is used
1606     // in do_range_check() for stride > 0 and max() for < 0.
1607     Node *one  = _igvn.intcon(1);
1608     set_ctrl(one, C->root());
1609 
1610     Node *plus_one = new AddINode(offset, one);
1611     register_new_node( plus_one, pre_ctrl );
1612     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1613     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1614 
1615     if (low_limit->get_int() == -max_jint) {
1616       if (!RangeLimitCheck) return;
1617       // We need this guard when scale*main_limit+offset >= limit
1618       // due to underflow. So we need execute main-loop while
1619       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1620       // underflow when (offset+1) > 0 and X will be < main_limit
1621       // when scale < 0 (and stride > 0). To avoid it we replace
1622       // positive (offset+1) with 0.
1623       //
1624       // Also (min_int+1 == -max_int) is used instead of min_int here
1625       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1626       Node* shift = _igvn.intcon(31);
1627       set_ctrl(shift, C->root());
1628       Node* sign = new RShiftINode(plus_one, shift);
1629       register_new_node(sign, pre_ctrl);
1630       plus_one = new AndINode(plus_one, sign);
1631       register_new_node(plus_one, pre_ctrl);
1632     } else {
1633       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1634       // The only problem we have here when offset == max_int
1635       // since (max_int+1) == min_int and (0-min_int) == min_int.
1636       // But it is fine since main loop will either have
1637       // less iterations or will be skipped in such case.
1638     }
1639     // The underflow limit: low_limit <= scale*I+offset.
1640     // For main-loop compute
1641     //   scale*I+offset+1 > low_limit
1642     //   ( if (scale < 0) /* and stride > 0 */
1643     //       I < (low_limit-(offset+1))/scale
1644     //     else /* scale > 0 and stride < 0 */
1645     //       I > (low_limit-(offset+1))/scale
1646     //   )
1647 
1648     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1649   }
1650 }
1651 
1652 
1653 //------------------------------is_scaled_iv---------------------------------
1654 // Return true if exp is a constant times an induction var
1655 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1656   if (exp == iv) {
1657     if (p_scale != NULL) {
1658       *p_scale = 1;
1659     }
1660     return true;
1661   }
1662   int opc = exp->Opcode();
1663   if (opc == Op_MulI) {
1664     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1665       if (p_scale != NULL) {
1666         *p_scale = exp->in(2)->get_int();
1667       }
1668       return true;
1669     }
1670     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1671       if (p_scale != NULL) {
1672         *p_scale = exp->in(1)->get_int();
1673       }
1674       return true;
1675     }
1676   } else if (opc == Op_LShiftI) {
1677     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1678       if (p_scale != NULL) {
1679         *p_scale = 1 << exp->in(2)->get_int();
1680       }
1681       return true;
1682     }
1683   }
1684   return false;
1685 }
1686 
1687 //-----------------------------is_scaled_iv_plus_offset------------------------------
1688 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1689 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1690   if (is_scaled_iv(exp, iv, p_scale)) {
1691     if (p_offset != NULL) {
1692       Node *zero = _igvn.intcon(0);
1693       set_ctrl(zero, C->root());
1694       *p_offset = zero;
1695     }
1696     return true;
1697   }
1698   int opc = exp->Opcode();
1699   if (opc == Op_AddI) {
1700     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1701       if (p_offset != NULL) {
1702         *p_offset = exp->in(2);
1703       }
1704       return true;
1705     }
1706     if (exp->in(2)->is_Con()) {
1707       Node* offset2 = NULL;
1708       if (depth < 2 &&
1709           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1710                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1711         if (p_offset != NULL) {
1712           Node *ctrl_off2 = get_ctrl(offset2);
1713           Node* offset = new AddINode(offset2, exp->in(2));
1714           register_new_node(offset, ctrl_off2);
1715           *p_offset = offset;
1716         }
1717         return true;
1718       }
1719     }
1720   } else if (opc == Op_SubI) {
1721     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1722       if (p_offset != NULL) {
1723         Node *zero = _igvn.intcon(0);
1724         set_ctrl(zero, C->root());
1725         Node *ctrl_off = get_ctrl(exp->in(2));
1726         Node* offset = new SubINode(zero, exp->in(2));
1727         register_new_node(offset, ctrl_off);
1728         *p_offset = offset;
1729       }
1730       return true;
1731     }
1732     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1733       if (p_offset != NULL) {
1734         *p_scale *= -1;
1735         *p_offset = exp->in(1);
1736       }
1737       return true;
1738     }
1739   }
1740   return false;
1741 }
1742 
1743 //------------------------------do_range_check---------------------------------
1744 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1745 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1746 #ifndef PRODUCT
1747   if (PrintOpto && VerifyLoopOptimizations) {
1748     tty->print("Range Check Elimination ");
1749     loop->dump_head();
1750   } else if (TraceLoopOpts) {
1751     tty->print("RangeCheck   ");
1752     loop->dump_head();
1753   }
1754 #endif
1755   assert(RangeCheckElimination, "");
1756   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1757   assert(cl->is_main_loop(), "");
1758 
1759   // protect against stride not being a constant
1760   if (!cl->stride_is_con())
1761     return;
1762 
1763   // Find the trip counter; we are iteration splitting based on it
1764   Node *trip_counter = cl->phi();
1765   // Find the main loop limit; we will trim it's iterations
1766   // to not ever trip end tests
1767   Node *main_limit = cl->limit();
1768 
1769   // Need to find the main-loop zero-trip guard
1770   Node *ctrl  = cl->in(LoopNode::EntryControl);
1771   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
1772   Node *iffm = ctrl->in(0);
1773   assert(iffm->Opcode() == Op_If, "");
1774   Node *bolzm = iffm->in(1);
1775   assert(bolzm->Opcode() == Op_Bool, "");
1776   Node *cmpzm = bolzm->in(1);
1777   assert(cmpzm->is_Cmp(), "");
1778   Node *opqzm = cmpzm->in(2);
1779   // Can not optimize a loop if zero-trip Opaque1 node is optimized
1780   // away and then another round of loop opts attempted.
1781   if (opqzm->Opcode() != Op_Opaque1)
1782     return;
1783   assert(opqzm->in(1) == main_limit, "do not understand situation");
1784 
1785   // Find the pre-loop limit; we will expand it's iterations to
1786   // not ever trip low tests.
1787   Node *p_f = iffm->in(0);
1788   assert(p_f->Opcode() == Op_IfFalse, "");
1789   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1790   assert(pre_end->loopnode()->is_pre_loop(), "");
1791   Node *pre_opaq1 = pre_end->limit();
1792   // Occasionally it's possible for a pre-loop Opaque1 node to be
1793   // optimized away and then another round of loop opts attempted.
1794   // We can not optimize this particular loop in that case.
1795   if (pre_opaq1->Opcode() != Op_Opaque1)
1796     return;
1797   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1798   Node *pre_limit = pre_opaq->in(1);
1799 
1800   // Where do we put new limit calculations
1801   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1802 
1803   // Ensure the original loop limit is available from the
1804   // pre-loop Opaque1 node.
1805   Node *orig_limit = pre_opaq->original_loop_limit();
1806   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
1807     return;
1808 
1809   // Must know if its a count-up or count-down loop
1810 
1811   int stride_con = cl->stride_con();
1812   Node *zero = _igvn.intcon(0);
1813   Node *one  = _igvn.intcon(1);
1814   // Use symmetrical int range [-max_jint,max_jint]
1815   Node *mini = _igvn.intcon(-max_jint);
1816   set_ctrl(zero, C->root());
1817   set_ctrl(one,  C->root());
1818   set_ctrl(mini, C->root());
1819 
1820   // Range checks that do not dominate the loop backedge (ie.
1821   // conditionally executed) can lengthen the pre loop limit beyond
1822   // the original loop limit. To prevent this, the pre limit is
1823   // (for stride > 0) MINed with the original loop limit (MAXed
1824   // stride < 0) when some range_check (rc) is conditionally
1825   // executed.
1826   bool conditional_rc = false;
1827 
1828   // Check loop body for tests of trip-counter plus loop-invariant vs
1829   // loop-invariant.
1830   for( uint i = 0; i < loop->_body.size(); i++ ) {
1831     Node *iff = loop->_body[i];
1832     if( iff->Opcode() == Op_If ) { // Test?
1833 
1834       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
1835       // we need loop unswitching instead of iteration splitting.
1836       Node *exit = loop->is_loop_exit(iff);
1837       if( !exit ) continue;
1838       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
1839 
1840       // Get boolean condition to test
1841       Node *i1 = iff->in(1);
1842       if( !i1->is_Bool() ) continue;
1843       BoolNode *bol = i1->as_Bool();
1844       BoolTest b_test = bol->_test;
1845       // Flip sense of test if exit condition is flipped
1846       if( flip )
1847         b_test = b_test.negate();
1848 
1849       // Get compare
1850       Node *cmp = bol->in(1);
1851 
1852       // Look for trip_counter + offset vs limit
1853       Node *rc_exp = cmp->in(1);
1854       Node *limit  = cmp->in(2);
1855       jint scale_con= 1;        // Assume trip counter not scaled
1856 
1857       Node *limit_c = get_ctrl(limit);
1858       if( loop->is_member(get_loop(limit_c) ) ) {
1859         // Compare might have operands swapped; commute them
1860         b_test = b_test.commute();
1861         rc_exp = cmp->in(2);
1862         limit  = cmp->in(1);
1863         limit_c = get_ctrl(limit);
1864         if( loop->is_member(get_loop(limit_c) ) )
1865           continue;             // Both inputs are loop varying; cannot RCE
1866       }
1867       // Here we know 'limit' is loop invariant
1868 
1869       // 'limit' maybe pinned below the zero trip test (probably from a
1870       // previous round of rce), in which case, it can't be used in the
1871       // zero trip test expression which must occur before the zero test's if.
1872       if( limit_c == ctrl ) {
1873         continue;  // Don't rce this check but continue looking for other candidates.
1874       }
1875 
1876       // Check for scaled induction variable plus an offset
1877       Node *offset = NULL;
1878 
1879       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
1880         continue;
1881       }
1882 
1883       Node *offset_c = get_ctrl(offset);
1884       if( loop->is_member( get_loop(offset_c) ) )
1885         continue;               // Offset is not really loop invariant
1886       // Here we know 'offset' is loop invariant.
1887 
1888       // As above for the 'limit', the 'offset' maybe pinned below the
1889       // zero trip test.
1890       if( offset_c == ctrl ) {
1891         continue; // Don't rce this check but continue looking for other candidates.
1892       }
1893 #ifdef ASSERT
1894       if (TraceRangeLimitCheck) {
1895         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
1896         bol->dump(2);
1897       }
1898 #endif
1899       // At this point we have the expression as:
1900       //   scale_con * trip_counter + offset :: limit
1901       // where scale_con, offset and limit are loop invariant.  Trip_counter
1902       // monotonically increases by stride_con, a constant.  Both (or either)
1903       // stride_con and scale_con can be negative which will flip about the
1904       // sense of the test.
1905 
1906       // Adjust pre and main loop limits to guard the correct iteration set
1907       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
1908         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
1909           // The underflow and overflow limits: 0 <= scale*I+offset < limit
1910           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
1911           if (!conditional_rc) {
1912             // (0-offset)/scale could be outside of loop iterations range.
1913             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1914           }
1915         } else {
1916 #ifndef PRODUCT
1917           if( PrintOpto )
1918             tty->print_cr("missed RCE opportunity");
1919 #endif
1920           continue;             // In release mode, ignore it
1921         }
1922       } else {                  // Otherwise work on normal compares
1923         switch( b_test._test ) {
1924         case BoolTest::gt:
1925           // Fall into GE case
1926         case BoolTest::ge:
1927           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
1928           scale_con = -scale_con;
1929           offset = new SubINode( zero, offset );
1930           register_new_node( offset, pre_ctrl );
1931           limit  = new SubINode( zero, limit  );
1932           register_new_node( limit, pre_ctrl );
1933           // Fall into LE case
1934         case BoolTest::le:
1935           if (b_test._test != BoolTest::gt) {
1936             // Convert X <= Y to X < Y+1
1937             limit = new AddINode( limit, one );
1938             register_new_node( limit, pre_ctrl );
1939           }
1940           // Fall into LT case
1941         case BoolTest::lt:
1942           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
1943           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
1944           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
1945           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
1946           if (!conditional_rc) {
1947             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
1948             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
1949             // still be outside of loop range.
1950             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1951           }
1952           break;
1953         default:
1954 #ifndef PRODUCT
1955           if( PrintOpto )
1956             tty->print_cr("missed RCE opportunity");
1957 #endif
1958           continue;             // Unhandled case
1959         }
1960       }
1961 
1962       // Kill the eliminated test
1963       C->set_major_progress();
1964       Node *kill_con = _igvn.intcon( 1-flip );
1965       set_ctrl(kill_con, C->root());
1966       _igvn.replace_input_of(iff, 1, kill_con);
1967       // Find surviving projection
1968       assert(iff->is_If(), "");
1969       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
1970       // Find loads off the surviving projection; remove their control edge
1971       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
1972         Node* cd = dp->fast_out(i); // Control-dependent node
1973         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
1974           // Allow the load to float around in the loop, or before it
1975           // but NOT before the pre-loop.
1976           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
1977           --i;
1978           --imax;
1979         }
1980       }
1981 
1982     } // End of is IF
1983 
1984   }
1985 
1986   // Update loop limits
1987   if (conditional_rc) {
1988     pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
1989                                  : (Node*)new MaxINode(pre_limit, orig_limit);
1990     register_new_node(pre_limit, pre_ctrl);
1991   }
1992   _igvn.replace_input_of(pre_opaq, 1, pre_limit);
1993 
1994   // Note:: we are making the main loop limit no longer precise;
1995   // need to round up based on stride.
1996   cl->set_nonexact_trip_count();
1997   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
1998     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
1999     // Hopefully, compiler will optimize for powers of 2.
2000     Node *ctrl = get_ctrl(main_limit);
2001     Node *stride = cl->stride();
2002     Node *init = cl->init_trip();
2003     Node *span = new SubINode(main_limit,init);
2004     register_new_node(span,ctrl);
2005     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2006     Node *add = new AddINode(span,rndup);
2007     register_new_node(add,ctrl);
2008     Node *div = new DivINode(0,add,stride);
2009     register_new_node(div,ctrl);
2010     Node *mul = new MulINode(div,stride);
2011     register_new_node(mul,ctrl);
2012     Node *newlim = new AddINode(mul,init);
2013     register_new_node(newlim,ctrl);
2014     main_limit = newlim;
2015   }
2016 
2017   Node *main_cle = cl->loopexit();
2018   Node *main_bol = main_cle->in(1);
2019   // Hacking loop bounds; need private copies of exit test
2020   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2021     main_bol = main_bol->clone();// Clone a private BoolNode
2022     register_new_node( main_bol, main_cle->in(0) );
2023     _igvn.replace_input_of(main_cle, 1, main_bol);
2024   }
2025   Node *main_cmp = main_bol->in(1);
2026   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2027     _igvn.hash_delete(main_bol);
2028     main_cmp = main_cmp->clone();// Clone a private CmpNode
2029     register_new_node( main_cmp, main_cle->in(0) );
2030     main_bol->set_req(1,main_cmp);
2031   }
2032   // Hack the now-private loop bounds
2033   _igvn.replace_input_of(main_cmp, 2, main_limit);
2034   // The OpaqueNode is unshared by design
2035   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2036   _igvn.replace_input_of(opqzm, 1, main_limit);
2037 }
2038 
2039 //------------------------------DCE_loop_body----------------------------------
2040 // Remove simplistic dead code from loop body
2041 void IdealLoopTree::DCE_loop_body() {
2042   for( uint i = 0; i < _body.size(); i++ )
2043     if( _body.at(i)->outcnt() == 0 )
2044       _body.map( i--, _body.pop() );
2045 }
2046 
2047 
2048 //------------------------------adjust_loop_exit_prob--------------------------
2049 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2050 // Replace with a 1-in-10 exit guess.
2051 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2052   Node *test = tail();
2053   while( test != _head ) {
2054     uint top = test->Opcode();
2055     if( top == Op_IfTrue || top == Op_IfFalse ) {
2056       int test_con = ((ProjNode*)test)->_con;
2057       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2058       IfNode *iff = test->in(0)->as_If();
2059       if( iff->outcnt() == 2 ) {        // Ignore dead tests
2060         Node *bol = iff->in(1);
2061         if( bol && bol->req() > 1 && bol->in(1) &&
2062             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2063              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2064              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2065              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2066              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2067              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2068              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2069           return;               // Allocation loops RARELY take backedge
2070         // Find the OTHER exit path from the IF
2071         Node* ex = iff->proj_out(1-test_con);
2072         float p = iff->_prob;
2073         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2074           if( top == Op_IfTrue ) {
2075             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2076               iff->_prob = PROB_STATIC_FREQUENT;
2077             }
2078           } else {
2079             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2080               iff->_prob = PROB_STATIC_INFREQUENT;
2081             }
2082           }
2083         }
2084       }
2085     }
2086     test = phase->idom(test);
2087   }
2088 }
2089 
2090 
2091 //------------------------------policy_do_remove_empty_loop--------------------
2092 // Micro-benchmark spamming.  Policy is to always remove empty loops.
2093 // The 'DO' part is to replace the trip counter with the value it will
2094 // have on the last iteration.  This will break the loop.
2095 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2096   // Minimum size must be empty loop
2097   if (_body.size() > EMPTY_LOOP_SIZE)
2098     return false;
2099 
2100   if (!_head->is_CountedLoop())
2101     return false;     // Dead loop
2102   CountedLoopNode *cl = _head->as_CountedLoop();
2103   if (!cl->is_valid_counted_loop())
2104     return false; // Malformed loop
2105   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2106     return false;             // Infinite loop
2107 
2108 #ifdef ASSERT
2109   // Ensure only one phi which is the iv.
2110   Node* iv = NULL;
2111   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2112     Node* n = cl->fast_out(i);
2113     if (n->Opcode() == Op_Phi) {
2114       assert(iv == NULL, "Too many phis" );
2115       iv = n;
2116     }
2117   }
2118   assert(iv == cl->phi(), "Wrong phi" );
2119 #endif
2120 
2121   // main and post loops have explicitly created zero trip guard
2122   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2123   if (needs_guard) {
2124     // Skip guard if values not overlap.
2125     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2126     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2127     int  stride_con = cl->stride_con();
2128     if (stride_con > 0) {
2129       needs_guard = (init_t->_hi >= limit_t->_lo);
2130     } else {
2131       needs_guard = (init_t->_lo <= limit_t->_hi);
2132     }
2133   }
2134   if (needs_guard) {
2135     // Check for an obvious zero trip guard.
2136     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2137     if (inctrl->Opcode() == Op_IfTrue) {
2138       // The test should look like just the backedge of a CountedLoop
2139       Node* iff = inctrl->in(0);
2140       if (iff->is_If()) {
2141         Node* bol = iff->in(1);
2142         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
2143           Node* cmp = bol->in(1);
2144           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
2145             needs_guard = false;
2146           }
2147         }
2148       }
2149     }
2150   }
2151 
2152 #ifndef PRODUCT
2153   if (PrintOpto) {
2154     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2155     this->dump_head();
2156   } else if (TraceLoopOpts) {
2157     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2158     this->dump_head();
2159   }
2160 #endif
2161 
2162   if (needs_guard) {
2163     // Peel the loop to ensure there's a zero trip guard
2164     Node_List old_new;
2165     phase->do_peeling(this, old_new);
2166   }
2167 
2168   // Replace the phi at loop head with the final value of the last
2169   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2170   // taken) and all loop-invariant uses of the exit values will be correct.
2171   Node *phi = cl->phi();
2172   Node *exact_limit = phase->exact_limit(this);
2173   if (exact_limit != cl->limit()) {
2174     // We also need to replace the original limit to collapse loop exit.
2175     Node* cmp = cl->loopexit()->cmp_node();
2176     assert(cl->limit() == cmp->in(2), "sanity");
2177     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2178     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2179   }
2180   // Note: the final value after increment should not overflow since
2181   // counted loop has limit check predicate.
2182   Node *final = new SubINode( exact_limit, cl->stride() );
2183   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2184   phase->_igvn.replace_node(phi,final);
2185   phase->C->set_major_progress();
2186   return true;
2187 }
2188 
2189 //------------------------------policy_do_one_iteration_loop-------------------
2190 // Convert one iteration loop into normal code.
2191 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2192   if (!_head->as_Loop()->is_valid_counted_loop())
2193     return false; // Only for counted loop
2194 
2195   CountedLoopNode *cl = _head->as_CountedLoop();
2196   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2197     return false;
2198   }
2199 
2200 #ifndef PRODUCT
2201   if(TraceLoopOpts) {
2202     tty->print("OneIteration ");
2203     this->dump_head();
2204   }
2205 #endif
2206 
2207   Node *init_n = cl->init_trip();
2208 #ifdef ASSERT
2209   // Loop boundaries should be constant since trip count is exact.
2210   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2211 #endif
2212   // Replace the phi at loop head with the value of the init_trip.
2213   // Then the CountedLoopEnd will collapse (backedge will not be taken)
2214   // and all loop-invariant uses of the exit values will be correct.
2215   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2216   phase->C->set_major_progress();
2217   return true;
2218 }
2219 
2220 //=============================================================================
2221 //------------------------------iteration_split_impl---------------------------
2222 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2223   // Compute exact loop trip count if possible.
2224   compute_exact_trip_count(phase);
2225 
2226   // Convert one iteration loop into normal code.
2227   if (policy_do_one_iteration_loop(phase))
2228     return true;
2229 
2230   // Check and remove empty loops (spam micro-benchmarks)
2231   if (policy_do_remove_empty_loop(phase))
2232     return true;  // Here we removed an empty loop
2233 
2234   bool should_peel = policy_peeling(phase); // Should we peel?
2235 
2236   bool should_unswitch = policy_unswitching(phase);
2237 
2238   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2239   // This removes loop-invariant tests (usually null checks).
2240   if (!_head->is_CountedLoop()) { // Non-counted loop
2241     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2242       // Partial peel succeeded so terminate this round of loop opts
2243       return false;
2244     }
2245     if (should_peel) {            // Should we peel?
2246 #ifndef PRODUCT
2247       if (PrintOpto) tty->print_cr("should_peel");
2248 #endif
2249       phase->do_peeling(this,old_new);
2250     } else if (should_unswitch) {
2251       phase->do_unswitching(this, old_new);
2252     }
2253     return true;
2254   }
2255   CountedLoopNode *cl = _head->as_CountedLoop();
2256 
2257   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
2258 
2259   // Do nothing special to pre- and post- loops
2260   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2261 
2262   // Compute loop trip count from profile data
2263   compute_profile_trip_cnt(phase);
2264 
2265   // Before attempting fancy unrolling, RCE or alignment, see if we want
2266   // to completely unroll this loop or do loop unswitching.
2267   if (cl->is_normal_loop()) {
2268     if (should_unswitch) {
2269       phase->do_unswitching(this, old_new);
2270       return true;
2271     }
2272     bool should_maximally_unroll =  policy_maximally_unroll(phase);
2273     if (should_maximally_unroll) {
2274       // Here we did some unrolling and peeling.  Eventually we will
2275       // completely unroll this loop and it will no longer be a loop.
2276       phase->do_maximally_unroll(this,old_new);
2277       return true;
2278     }
2279   }
2280 
2281   // Skip next optimizations if running low on nodes. Note that
2282   // policy_unswitching and policy_maximally_unroll have this check.
2283   int nodes_left = phase->C->max_node_limit() - phase->C->live_nodes();
2284   if ((int)(2 * _body.size()) > nodes_left) {
2285     return true;
2286   }
2287 
2288   // Counted loops may be peeled, may need some iterations run up
2289   // front for RCE, and may want to align loop refs to a cache
2290   // line.  Thus we clone a full loop up front whose trip count is
2291   // at least 1 (if peeling), but may be several more.
2292 
2293   // The main loop will start cache-line aligned with at least 1
2294   // iteration of the unrolled body (zero-trip test required) and
2295   // will have some range checks removed.
2296 
2297   // A post-loop will finish any odd iterations (leftover after
2298   // unrolling), plus any needed for RCE purposes.
2299 
2300   bool should_unroll = policy_unroll(phase);
2301 
2302   bool should_rce = policy_range_check(phase);
2303 
2304   bool should_align = policy_align(phase);
2305 
2306   // If not RCE'ing (iteration splitting) or Aligning, then we do not
2307   // need a pre-loop.  We may still need to peel an initial iteration but
2308   // we will not be needing an unknown number of pre-iterations.
2309   //
2310   // Basically, if may_rce_align reports FALSE first time through,
2311   // we will not be able to later do RCE or Aligning on this loop.
2312   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2313 
2314   // If we have any of these conditions (RCE, alignment, unrolling) met, then
2315   // we switch to the pre-/main-/post-loop model.  This model also covers
2316   // peeling.
2317   if (should_rce || should_align || should_unroll) {
2318     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2319       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2320 
2321     // Adjust the pre- and main-loop limits to let the pre and post loops run
2322     // with full checks, but the main-loop with no checks.  Remove said
2323     // checks from the main body.
2324     if (should_rce)
2325       phase->do_range_check(this,old_new);
2326 
2327     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2328     // twice as many iterations as before) and the main body limit (only do
2329     // an even number of trips).  If we are peeling, we might enable some RCE
2330     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2331     // peeling.
2332     if (should_unroll && !should_peel)
2333       phase->do_unroll(this,old_new, true);
2334 
2335     // Adjust the pre-loop limits to align the main body
2336     // iterations.
2337     if (should_align)
2338       Unimplemented();
2339 
2340   } else {                      // Else we have an unchanged counted loop
2341     if (should_peel)           // Might want to peel but do nothing else
2342       phase->do_peeling(this,old_new);
2343   }
2344   return true;
2345 }
2346 
2347 
2348 //=============================================================================
2349 //------------------------------iteration_split--------------------------------
2350 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2351   // Recursively iteration split nested loops
2352   if (_child && !_child->iteration_split(phase, old_new))
2353     return false;
2354 
2355   // Clean out prior deadwood
2356   DCE_loop_body();
2357 
2358 
2359   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2360   // Replace with a 1-in-10 exit guess.
2361   if (_parent /*not the root loop*/ &&
2362       !_irreducible &&
2363       // Also ignore the occasional dead backedge
2364       !tail()->is_top()) {
2365     adjust_loop_exit_prob(phase);
2366   }
2367 
2368   // Gate unrolling, RCE and peeling efforts.
2369   if (!_child &&                // If not an inner loop, do not split
2370       !_irreducible &&
2371       _allow_optimizations &&
2372       !tail()->is_top()) {     // Also ignore the occasional dead backedge
2373     if (!_has_call) {
2374         if (!iteration_split_impl(phase, old_new)) {
2375           return false;
2376         }
2377     } else if (policy_unswitching(phase)) {
2378       phase->do_unswitching(this, old_new);
2379     }
2380   }
2381 
2382   // Minor offset re-organization to remove loop-fallout uses of
2383   // trip counter when there was no major reshaping.
2384   phase->reorg_offsets(this);
2385 
2386   if (_next && !_next->iteration_split(phase, old_new))
2387     return false;
2388   return true;
2389 }
2390 
2391 
2392 //=============================================================================
2393 // Process all the loops in the loop tree and replace any fill
2394 // patterns with an intrisc version.
2395 bool PhaseIdealLoop::do_intrinsify_fill() {
2396   bool changed = false;
2397   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2398     IdealLoopTree* lpt = iter.current();
2399     changed |= intrinsify_fill(lpt);
2400   }
2401   return changed;
2402 }
2403 
2404 
2405 // Examine an inner loop looking for a a single store of an invariant
2406 // value in a unit stride loop,
2407 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2408                                      Node*& shift, Node*& con) {
2409   const char* msg = NULL;
2410   Node* msg_node = NULL;
2411 
2412   store_value = NULL;
2413   con = NULL;
2414   shift = NULL;
2415 
2416   // Process the loop looking for stores.  If there are multiple
2417   // stores or extra control flow give at this point.
2418   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2419   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2420     Node* n = lpt->_body.at(i);
2421     if (n->outcnt() == 0) continue; // Ignore dead
2422     if (n->is_Store()) {
2423       if (store != NULL) {
2424         msg = "multiple stores";
2425         break;
2426       }
2427       int opc = n->Opcode();
2428       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
2429         msg = "oop fills not handled";
2430         break;
2431       }
2432       Node* value = n->in(MemNode::ValueIn);
2433       if (!lpt->is_invariant(value)) {
2434         msg  = "variant store value";
2435       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2436         msg = "not array address";
2437       }
2438       store = n;
2439       store_value = value;
2440     } else if (n->is_If() && n != head->loopexit()) {
2441       msg = "extra control flow";
2442       msg_node = n;
2443     }
2444   }
2445 
2446   if (store == NULL) {
2447     // No store in loop
2448     return false;
2449   }
2450 
2451   if (msg == NULL && head->stride_con() != 1) {
2452     // could handle negative strides too
2453     if (head->stride_con() < 0) {
2454       msg = "negative stride";
2455     } else {
2456       msg = "non-unit stride";
2457     }
2458   }
2459 
2460   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2461     msg = "can't handle store address";
2462     msg_node = store->in(MemNode::Address);
2463   }
2464 
2465   if (msg == NULL &&
2466       (!store->in(MemNode::Memory)->is_Phi() ||
2467        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2468     msg = "store memory isn't proper phi";
2469     msg_node = store->in(MemNode::Memory);
2470   }
2471 
2472   // Make sure there is an appropriate fill routine
2473   BasicType t = store->as_Mem()->memory_type();
2474   const char* fill_name;
2475   if (msg == NULL &&
2476       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2477     msg = "unsupported store";
2478     msg_node = store;
2479   }
2480 
2481   if (msg != NULL) {
2482 #ifndef PRODUCT
2483     if (TraceOptimizeFill) {
2484       tty->print_cr("not fill intrinsic candidate: %s", msg);
2485       if (msg_node != NULL) msg_node->dump();
2486     }
2487 #endif
2488     return false;
2489   }
2490 
2491   // Make sure the address expression can be handled.  It should be
2492   // head->phi * elsize + con.  head->phi might have a ConvI2L.
2493   Node* elements[4];
2494   Node* conv = NULL;
2495   bool found_index = false;
2496   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
2497   for (int e = 0; e < count; e++) {
2498     Node* n = elements[e];
2499     if (n->is_Con() && con == NULL) {
2500       con = n;
2501     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
2502       Node* value = n->in(1);
2503 #ifdef _LP64
2504       if (value->Opcode() == Op_ConvI2L) {
2505         conv = value;
2506         value = value->in(1);
2507       }
2508 #endif
2509       if (value != head->phi()) {
2510         msg = "unhandled shift in address";
2511       } else {
2512         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
2513           msg = "scale doesn't match";
2514         } else {
2515           found_index = true;
2516           shift = n;
2517         }
2518       }
2519     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
2520       if (n->in(1) == head->phi()) {
2521         found_index = true;
2522         conv = n;
2523       } else {
2524         msg = "unhandled input to ConvI2L";
2525       }
2526     } else if (n == head->phi()) {
2527       // no shift, check below for allowed cases
2528       found_index = true;
2529     } else {
2530       msg = "unhandled node in address";
2531       msg_node = n;
2532     }
2533   }
2534 
2535   if (count == -1) {
2536     msg = "malformed address expression";
2537     msg_node = store;
2538   }
2539 
2540   if (!found_index) {
2541     msg = "missing use of index";
2542   }
2543 
2544   // byte sized items won't have a shift
2545   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
2546     msg = "can't find shift";
2547     msg_node = store;
2548   }
2549 
2550   if (msg != NULL) {
2551 #ifndef PRODUCT
2552     if (TraceOptimizeFill) {
2553       tty->print_cr("not fill intrinsic: %s", msg);
2554       if (msg_node != NULL) msg_node->dump();
2555     }
2556 #endif
2557     return false;
2558   }
2559 
2560   // No make sure all the other nodes in the loop can be handled
2561   VectorSet ok(Thread::current()->resource_area());
2562 
2563   // store related values are ok
2564   ok.set(store->_idx);
2565   ok.set(store->in(MemNode::Memory)->_idx);
2566 
2567   CountedLoopEndNode* loop_exit = head->loopexit();
2568   guarantee(loop_exit != NULL, "no loop exit node");
2569 
2570   // Loop structure is ok
2571   ok.set(head->_idx);
2572   ok.set(loop_exit->_idx);
2573   ok.set(head->phi()->_idx);
2574   ok.set(head->incr()->_idx);
2575   ok.set(loop_exit->cmp_node()->_idx);
2576   ok.set(loop_exit->in(1)->_idx);
2577 
2578   // Address elements are ok
2579   if (con)   ok.set(con->_idx);
2580   if (shift) ok.set(shift->_idx);
2581   if (conv)  ok.set(conv->_idx);
2582 
2583   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2584     Node* n = lpt->_body.at(i);
2585     if (n->outcnt() == 0) continue; // Ignore dead
2586     if (ok.test(n->_idx)) continue;
2587     // Backedge projection is ok
2588     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
2589     if (!n->is_AddP()) {
2590       msg = "unhandled node";
2591       msg_node = n;
2592       break;
2593     }
2594   }
2595 
2596   // Make sure no unexpected values are used outside the loop
2597   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2598     Node* n = lpt->_body.at(i);
2599     // These values can be replaced with other nodes if they are used
2600     // outside the loop.
2601     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
2602     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
2603       Node* use = iter.get();
2604       if (!lpt->_body.contains(use)) {
2605         msg = "node is used outside loop";
2606         // lpt->_body.dump();
2607         msg_node = n;
2608         break;
2609       }
2610     }
2611   }
2612 
2613 #ifdef ASSERT
2614   if (TraceOptimizeFill) {
2615     if (msg != NULL) {
2616       tty->print_cr("no fill intrinsic: %s", msg);
2617       if (msg_node != NULL) msg_node->dump();
2618     } else {
2619       tty->print_cr("fill intrinsic for:");
2620     }
2621     store->dump();
2622     if (Verbose) {
2623       lpt->_body.dump();
2624     }
2625   }
2626 #endif
2627 
2628   return msg == NULL;
2629 }
2630 
2631 
2632 
2633 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
2634   // Only for counted inner loops
2635   if (!lpt->is_counted() || !lpt->is_inner()) {
2636     return false;
2637   }
2638 
2639   // Must have constant stride
2640   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2641   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
2642     return false;
2643   }
2644 
2645   // Check that the body only contains a store of a loop invariant
2646   // value that is indexed by the loop phi.
2647   Node* store = NULL;
2648   Node* store_value = NULL;
2649   Node* shift = NULL;
2650   Node* offset = NULL;
2651   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2652     return false;
2653   }
2654 
2655 #ifndef PRODUCT
2656   if (TraceLoopOpts) {
2657     tty->print("ArrayFill    ");
2658     lpt->dump_head();
2659   }
2660 #endif
2661 
2662   // Now replace the whole loop body by a call to a fill routine that
2663   // covers the same region as the loop.
2664   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2665 
2666   // Build an expression for the beginning of the copy region
2667   Node* index = head->init_trip();
2668 #ifdef _LP64
2669   index = new ConvI2LNode(index);
2670   _igvn.register_new_node_with_optimizer(index);
2671 #endif
2672   if (shift != NULL) {
2673     // byte arrays don't require a shift but others do.
2674     index = new LShiftXNode(index, shift->in(2));
2675     _igvn.register_new_node_with_optimizer(index);
2676   }
2677   index = new AddPNode(base, base, index);
2678   _igvn.register_new_node_with_optimizer(index);
2679   Node* from = new AddPNode(base, index, offset);
2680   _igvn.register_new_node_with_optimizer(from);
2681   // Compute the number of elements to copy
2682   Node* len = new SubINode(head->limit(), head->init_trip());
2683   _igvn.register_new_node_with_optimizer(len);
2684 
2685   BasicType t = store->as_Mem()->memory_type();
2686   bool aligned = false;
2687   if (offset != NULL && head->init_trip()->is_Con()) {
2688     int element_size = type2aelembytes(t);
2689     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2690   }
2691 
2692   // Build a call to the fill routine
2693   const char* fill_name;
2694   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2695   assert(fill != NULL, "what?");
2696 
2697   // Convert float/double to int/long for fill routines
2698   if (t == T_FLOAT) {
2699     store_value = new MoveF2INode(store_value);
2700     _igvn.register_new_node_with_optimizer(store_value);
2701   } else if (t == T_DOUBLE) {
2702     store_value = new MoveD2LNode(store_value);
2703     _igvn.register_new_node_with_optimizer(store_value);
2704   }
2705 
2706   if (CCallingConventionRequiresIntsAsLongs &&
2707       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
2708       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
2709     store_value = new ConvI2LNode(store_value);
2710     _igvn.register_new_node_with_optimizer(store_value);
2711   }
2712 
2713   Node* mem_phi = store->in(MemNode::Memory);
2714   Node* result_ctrl;
2715   Node* result_mem;
2716   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2717   CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
2718                                             fill_name, TypeAryPtr::get_array_body_type(t));
2719   uint cnt = 0;
2720   call->init_req(TypeFunc::Parms + cnt++, from);
2721   call->init_req(TypeFunc::Parms + cnt++, store_value);
2722   if (CCallingConventionRequiresIntsAsLongs) {
2723     call->init_req(TypeFunc::Parms + cnt++, C->top());
2724   }
2725 #ifdef _LP64
2726   len = new ConvI2LNode(len);
2727   _igvn.register_new_node_with_optimizer(len);
2728 #endif
2729   call->init_req(TypeFunc::Parms + cnt++, len);
2730 #ifdef _LP64
2731   call->init_req(TypeFunc::Parms + cnt++, C->top());
2732 #endif
2733   call->init_req(TypeFunc::Control,   head->init_control());
2734   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
2735   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
2736   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
2737   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
2738   _igvn.register_new_node_with_optimizer(call);
2739   result_ctrl = new ProjNode(call,TypeFunc::Control);
2740   _igvn.register_new_node_with_optimizer(result_ctrl);
2741   result_mem = new ProjNode(call,TypeFunc::Memory);
2742   _igvn.register_new_node_with_optimizer(result_mem);
2743 
2744 /* Disable following optimization until proper fix (add missing checks).
2745 
2746   // If this fill is tightly coupled to an allocation and overwrites
2747   // the whole body, allow it to take over the zeroing.
2748   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2749   if (alloc != NULL && alloc->is_AllocateArray()) {
2750     Node* length = alloc->as_AllocateArray()->Ideal_length();
2751     if (head->limit() == length &&
2752         head->init_trip() == _igvn.intcon(0)) {
2753       if (TraceOptimizeFill) {
2754         tty->print_cr("Eliminated zeroing in allocation");
2755       }
2756       alloc->maybe_set_complete(&_igvn);
2757     } else {
2758 #ifdef ASSERT
2759       if (TraceOptimizeFill) {
2760         tty->print_cr("filling array but bounds don't match");
2761         alloc->dump();
2762         head->init_trip()->dump();
2763         head->limit()->dump();
2764         length->dump();
2765       }
2766 #endif
2767     }
2768   }
2769 */
2770 
2771   // Redirect the old control and memory edges that are outside the loop.
2772   Node* exit = head->loopexit()->proj_out(0);
2773   // Sometimes the memory phi of the head is used as the outgoing
2774   // state of the loop.  It's safe in this case to replace it with the
2775   // result_mem.
2776   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
2777   _igvn.replace_node(exit, result_ctrl);
2778   _igvn.replace_node(store, result_mem);
2779   // Any uses the increment outside of the loop become the loop limit.
2780   _igvn.replace_node(head->incr(), head->limit());
2781 
2782   // Disconnect the head from the loop.
2783   for (uint i = 0; i < lpt->_body.size(); i++) {
2784     Node* n = lpt->_body.at(i);
2785     _igvn.replace_node(n, C->top());
2786   }
2787 
2788   return true;
2789 }