1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_interface/collectedHeap.hpp"
  27 #include "opto/machnode.hpp"
  28 #include "opto/regalloc.hpp"
  29 
  30 //=============================================================================
  31 // Return the value requested
  32 // result register lookup, corresponding to int_format
  33 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const {
  34   return (int)ra_->get_encode(node);
  35 }
  36 // input register lookup, corresponding to ext_format
  37 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {
  38   return (int)(ra_->get_encode(node->in(idx)));
  39 }
  40 intptr_t  MachOper::constant() const { return 0x00; }
  41 relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; }
  42 jdouble MachOper::constantD() const { ShouldNotReachHere(); return 0.0; }
  43 jfloat  MachOper::constantF() const { ShouldNotReachHere(); return 0.0; }
  44 jlong   MachOper::constantL() const { ShouldNotReachHere(); return CONST64(0) ; }
  45 TypeOopPtr *MachOper::oop() const { return NULL; }
  46 int MachOper::ccode() const { return 0x00; }
  47 // A zero, default, indicates this value is not needed.
  48 // May need to lookup the base register, as done in int_ and ext_format
  49 int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  50 int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  51 int MachOper::scale()  const { return 0x00; }
  52 int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  53 int MachOper::constant_disp()  const { return 0; }
  54 int MachOper::base_position()  const { return -1; }  // no base input
  55 int MachOper::index_position() const { return -1; }  // no index input
  56 // Check for PC-Relative displacement
  57 relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; }
  58 // Return the label
  59 Label*   MachOper::label()  const { ShouldNotReachHere(); return 0; }
  60 intptr_t MachOper::method() const { ShouldNotReachHere(); return 0; }
  61 
  62 
  63 //------------------------------negate-----------------------------------------
  64 // Negate conditional branches.  Error for non-branch operands
  65 void MachOper::negate() {
  66   ShouldNotCallThis();
  67 }
  68 
  69 //-----------------------------type--------------------------------------------
  70 const Type *MachOper::type() const {
  71   return Type::BOTTOM;
  72 }
  73 
  74 //------------------------------in_RegMask-------------------------------------
  75 const RegMask *MachOper::in_RegMask(int index) const {
  76   ShouldNotReachHere();
  77   return NULL;
  78 }
  79 
  80 //------------------------------dump_spec--------------------------------------
  81 // Print any per-operand special info
  82 #ifndef PRODUCT
  83 void MachOper::dump_spec(outputStream *st) const { }
  84 #endif
  85 
  86 //------------------------------hash-------------------------------------------
  87 // Print any per-operand special info
  88 uint MachOper::hash() const {
  89   ShouldNotCallThis();
  90   return 5;
  91 }
  92 
  93 //------------------------------cmp--------------------------------------------
  94 // Print any per-operand special info
  95 uint MachOper::cmp( const MachOper &oper ) const {
  96   ShouldNotCallThis();
  97   return opcode() == oper.opcode();
  98 }
  99 
 100 //------------------------------hash-------------------------------------------
 101 // Print any per-operand special info
 102 uint labelOper::hash() const {
 103   return _block_num;
 104 }
 105 
 106 //------------------------------cmp--------------------------------------------
 107 // Print any per-operand special info
 108 uint labelOper::cmp( const MachOper &oper ) const {
 109   return (opcode() == oper.opcode()) && (_label == oper.label());
 110 }
 111 
 112 //------------------------------hash-------------------------------------------
 113 // Print any per-operand special info
 114 uint methodOper::hash() const {
 115   return (uint)_method;
 116 }
 117 
 118 //------------------------------cmp--------------------------------------------
 119 // Print any per-operand special info
 120 uint methodOper::cmp( const MachOper &oper ) const {
 121   return (opcode() == oper.opcode()) && (_method == oper.method());
 122 }
 123 
 124 
 125 //=============================================================================
 126 //------------------------------MachNode---------------------------------------
 127 
 128 //------------------------------emit-------------------------------------------
 129 void MachNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 130   #ifdef ASSERT
 131   tty->print("missing MachNode emit function: ");
 132   dump();
 133   #endif
 134   ShouldNotCallThis();
 135 }
 136 
 137 //---------------------------postalloc_expand----------------------------------
 138 // Expand node after register allocation.
 139 void MachNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {}
 140 
 141 //------------------------------size-------------------------------------------
 142 // Size of instruction in bytes
 143 uint MachNode::size(PhaseRegAlloc *ra_) const {
 144   // If a virtual was not defined for this specific instruction,
 145   // Call the helper which finds the size by emitting the bits.
 146   return MachNode::emit_size(ra_);
 147 }
 148 
 149 //------------------------------size-------------------------------------------
 150 // Helper function that computes size by emitting code
 151 uint MachNode::emit_size(PhaseRegAlloc *ra_) const {
 152   // Emit into a trash buffer and count bytes emitted.
 153   assert(ra_ == ra_->C->regalloc(), "sanity");
 154   return ra_->C->scratch_emit_size(this);
 155 }
 156 
 157 
 158 
 159 //------------------------------hash-------------------------------------------
 160 uint MachNode::hash() const {
 161   uint no = num_opnds();
 162   uint sum = rule();
 163   for( uint i=0; i<no; i++ )
 164     sum += _opnds[i]->hash();
 165   return sum+Node::hash();
 166 }
 167 
 168 //-----------------------------cmp---------------------------------------------
 169 uint MachNode::cmp( const Node &node ) const {
 170   MachNode& n = *((Node&)node).as_Mach();
 171   uint no = num_opnds();
 172   if( no != n.num_opnds() ) return 0;
 173   if( rule() != n.rule() ) return 0;
 174   for( uint i=0; i<no; i++ )    // All operands must match
 175     if( !_opnds[i]->cmp( *n._opnds[i] ) )
 176       return 0;                 // mis-matched operands
 177   return 1;                     // match
 178 }
 179 
 180 // Return an equivalent instruction using memory for cisc_operand position
 181 MachNode *MachNode::cisc_version(int offset) {
 182   ShouldNotCallThis();
 183   return NULL;
 184 }
 185 
 186 void MachNode::use_cisc_RegMask() {
 187   ShouldNotReachHere();
 188 }
 189 
 190 
 191 //-----------------------------in_RegMask--------------------------------------
 192 const RegMask &MachNode::in_RegMask( uint idx ) const {
 193   uint numopnds = num_opnds();        // Virtual call for number of operands
 194   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
 195   if( idx < skipped ) {
 196     assert( ideal_Opcode() == Op_AddP, "expected base ptr here" );
 197     assert( idx == 1, "expected base ptr here" );
 198     // debug info can be anywhere
 199     return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP];
 200   }
 201   uint opcnt     = 1;                 // First operand
 202   uint num_edges = _opnds[1]->num_edges(); // leaves for first operand
 203   while( idx >= skipped+num_edges ) {
 204     skipped += num_edges;
 205     opcnt++;                          // Bump operand count
 206     assert( opcnt < numopnds, "Accessing non-existent operand" );
 207     num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand
 208   }
 209 
 210   const RegMask *rm = cisc_RegMask();
 211   if( rm == NULL || (int)opcnt != cisc_operand() ) {
 212     rm = _opnds[opcnt]->in_RegMask(idx-skipped);
 213   }
 214   return *rm;
 215 }
 216 
 217 //-----------------------------memory_inputs--------------------------------
 218 const MachOper*  MachNode::memory_inputs(Node* &base, Node* &index) const {
 219   const MachOper* oper = memory_operand();
 220 
 221   if (oper == (MachOper*)-1) {
 222     base = NodeSentinel;
 223     index = NodeSentinel;
 224   } else {
 225     base = NULL;
 226     index = NULL;
 227     if (oper != NULL) {
 228       // It has a unique memory operand.  Find its index.
 229       int oper_idx = num_opnds();
 230       while (--oper_idx >= 0) {
 231         if (_opnds[oper_idx] == oper)  break;
 232       }
 233       int oper_pos = operand_index(oper_idx);
 234       int base_pos = oper->base_position();
 235       if (base_pos >= 0) {
 236         base = _in[oper_pos+base_pos];
 237       }
 238       int index_pos = oper->index_position();
 239       if (index_pos >= 0) {
 240         index = _in[oper_pos+index_pos];
 241       }
 242     }
 243   }
 244 
 245   return oper;
 246 }
 247 
 248 //-----------------------------get_base_and_disp----------------------------
 249 const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const {
 250 
 251   // Find the memory inputs using our helper function
 252   Node* base;
 253   Node* index;
 254   const MachOper* oper = memory_inputs(base, index);
 255 
 256   if (oper == NULL) {
 257     // Base has been set to NULL
 258     offset = 0;
 259   } else if (oper == (MachOper*)-1) {
 260     // Base has been set to NodeSentinel
 261     // There is not a unique memory use here.  We will fall to AliasIdxBot.
 262     offset = Type::OffsetBot;
 263   } else {
 264     // Base may be NULL, even if offset turns out to be != 0
 265 
 266     intptr_t disp = oper->constant_disp();
 267     int scale = oper->scale();
 268     // Now we have collected every part of the ADLC MEMORY_INTER.
 269     // See if it adds up to a base + offset.
 270     if (index != NULL) {
 271       const Type* t_index = index->bottom_type();
 272       if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass,
 273                                                                     // EncodeNKlass, LoadConNklass.
 274         // Memory references through narrow oops have a
 275         // funny base so grab the type from the index:
 276         // [R12 + narrow_oop_reg<<3 + offset]
 277         assert(base == NULL, "Memory references through narrow oops have no base");
 278         offset = disp;
 279         adr_type = t_index->make_ptr()->add_offset(offset);
 280         return NULL;
 281       } else if (!index->is_Con()) {
 282         disp = Type::OffsetBot;
 283       } else if (disp != Type::OffsetBot) {
 284         const TypeX* ti = t_index->isa_intptr_t();
 285         if (ti == NULL) {
 286           disp = Type::OffsetBot;  // a random constant??
 287         } else {
 288           disp += ti->get_con() << scale;
 289         }
 290       }
 291     }
 292     offset = disp;
 293 
 294     // In i486.ad, indOffset32X uses base==RegI and disp==RegP,
 295     // this will prevent alias analysis without the following support:
 296     // Lookup the TypePtr used by indOffset32X, a compile-time constant oop,
 297     // Add the offset determined by the "base", or use Type::OffsetBot.
 298     if( adr_type == TYPE_PTR_SENTINAL ) {
 299       const TypePtr *t_disp = oper->disp_as_type();  // only !NULL for indOffset32X
 300       if (t_disp != NULL) {
 301         offset = Type::OffsetBot;
 302         const Type* t_base = base->bottom_type();
 303         if (t_base->isa_intptr_t()) {
 304           const TypeX *t_offset = t_base->is_intptr_t();
 305           if( t_offset->is_con() ) {
 306             offset = t_offset->get_con();
 307           }
 308         }
 309         adr_type = t_disp->add_offset(offset);
 310       } else if( base == NULL && offset != 0 && offset != Type::OffsetBot ) {
 311         // Use ideal type if it is oop ptr.
 312         const TypePtr *tp = oper->type()->isa_ptr();
 313         if( tp != NULL) {
 314           adr_type = tp;
 315         }
 316       }
 317     }
 318 
 319   }
 320   return base;
 321 }
 322 
 323 
 324 //---------------------------------adr_type---------------------------------
 325 const class TypePtr *MachNode::adr_type() const {
 326   intptr_t offset = 0;
 327   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // attempt computing adr_type
 328   const Node *base = get_base_and_disp(offset, adr_type);
 329   if( adr_type != TYPE_PTR_SENTINAL ) {
 330     return adr_type;      // get_base_and_disp has the answer
 331   }
 332 
 333   // Direct addressing modes have no base node, simply an indirect
 334   // offset, which is always to raw memory.
 335   // %%%%% Someday we'd like to allow constant oop offsets which
 336   // would let Intel load from static globals in 1 instruction.
 337   // Currently Intel requires 2 instructions and a register temp.
 338   if (base == NULL) {
 339     // NULL base, zero offset means no memory at all (a null pointer!)
 340     if (offset == 0) {
 341       return NULL;
 342     }
 343     // NULL base, any offset means any pointer whatever
 344     if (offset == Type::OffsetBot) {
 345       return TypePtr::BOTTOM;
 346     }
 347     // %%% make offset be intptr_t
 348     assert(!Universe::heap()->is_in_reserved(cast_to_oop(offset)), "must be a raw ptr");
 349     return TypeRawPtr::BOTTOM;
 350   }
 351 
 352   // base of -1 with no particular offset means all of memory
 353   if (base == NodeSentinel)  return TypePtr::BOTTOM;
 354 
 355   const Type* t = base->bottom_type();
 356   if (t->isa_narrowoop() && Universe::narrow_oop_shift() == 0) {
 357     // 32-bit unscaled narrow oop can be the base of any address expression
 358     t = t->make_ptr();
 359   }
 360   if (t->isa_narrowklass() && Universe::narrow_klass_shift() == 0) {
 361     // 32-bit unscaled narrow oop can be the base of any address expression
 362     t = t->make_ptr();
 363   }
 364   if (t->isa_intptr_t() && offset != 0 && offset != Type::OffsetBot) {
 365     // We cannot assert that the offset does not look oop-ish here.
 366     // Depending on the heap layout the cardmark base could land
 367     // inside some oopish region.  It definitely does for Win2K.
 368     // The sum of cardmark-base plus shift-by-9-oop lands outside
 369     // the oop-ish area but we can't assert for that statically.
 370     return TypeRawPtr::BOTTOM;
 371   }
 372 
 373   const TypePtr *tp = t->isa_ptr();
 374 
 375   // be conservative if we do not recognize the type
 376   if (tp == NULL) {
 377     assert(false, "this path may produce not optimal code");
 378     return TypePtr::BOTTOM;
 379   }
 380   assert(tp->base() != Type::AnyPtr, "not a bare pointer");
 381 
 382   return tp->add_offset(offset);
 383 }
 384 
 385 
 386 //-----------------------------operand_index---------------------------------
 387 int MachNode::operand_index( uint operand ) const {
 388   if( operand < 1 )  return -1;
 389   assert(operand < num_opnds(), "oob");
 390   if( _opnds[operand]->num_edges() == 0 )  return -1;
 391 
 392   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
 393   for (uint opcnt = 1; opcnt < operand; opcnt++) {
 394     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
 395     skipped += num_edges;
 396   }
 397   return skipped;
 398 }
 399 
 400 int MachNode::operand_index(const MachOper *oper) const {
 401   uint skipped = oper_input_base(); // Sum of leaves skipped so far
 402   uint opcnt;
 403   for (opcnt = 1; opcnt < num_opnds(); opcnt++) {
 404     if (_opnds[opcnt] == oper) break;
 405     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
 406     skipped += num_edges;
 407   }
 408   if (_opnds[opcnt] != oper) return -1;
 409   return skipped;
 410 }
 411 
 412 //------------------------------peephole---------------------------------------
 413 // Apply peephole rule(s) to this instruction
 414 MachNode *MachNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {
 415   return NULL;
 416 }
 417 
 418 //------------------------------add_case_label---------------------------------
 419 // Adds the label for the case
 420 void MachNode::add_case_label( int index_num, Label* blockLabel) {
 421   ShouldNotCallThis();
 422 }
 423 
 424 //------------------------------method_set-------------------------------------
 425 // Set the absolute address of a method
 426 void MachNode::method_set( intptr_t addr ) {
 427   ShouldNotCallThis();
 428 }
 429 
 430 //------------------------------rematerialize----------------------------------
 431 bool MachNode::rematerialize() const {
 432   // Temps are always rematerializable
 433   if (is_MachTemp()) return true;
 434 
 435   uint r = rule();              // Match rule
 436   if( r <  Matcher::_begin_rematerialize ||
 437       r >= Matcher::_end_rematerialize )
 438     return false;
 439 
 440   // For 2-address instructions, the input live range is also the output
 441   // live range.  Remateralizing does not make progress on the that live range.
 442   if( two_adr() )  return false;
 443 
 444   // Check for rematerializing float constants, or not
 445   if( !Matcher::rematerialize_float_constants ) {
 446     int op = ideal_Opcode();
 447     if( op == Op_ConF || op == Op_ConD )
 448       return false;
 449   }
 450 
 451   // Defining flags - can't spill these!  Must remateralize.
 452   if( ideal_reg() == Op_RegFlags )
 453     return true;
 454 
 455   // Stretching lots of inputs - don't do it.
 456   if( req() > 2 )
 457     return false;
 458 
 459   // Don't remateralize somebody with bound inputs - it stretches a
 460   // fixed register lifetime.
 461   uint idx = oper_input_base();
 462   if (req() > idx) {
 463     const RegMask &rm = in_RegMask(idx);
 464     if (rm.is_bound(ideal_reg()))
 465       return false;
 466   }
 467 
 468   return true;
 469 }
 470 
 471 #ifndef PRODUCT
 472 //------------------------------dump_spec--------------------------------------
 473 // Print any per-operand special info
 474 void MachNode::dump_spec(outputStream *st) const {
 475   uint cnt = num_opnds();
 476   for( uint i=0; i<cnt; i++ )
 477     _opnds[i]->dump_spec(st);
 478   const TypePtr *t = adr_type();
 479   if( t ) {
 480     Compile* C = Compile::current();
 481     if( C->alias_type(t)->is_volatile() )
 482       st->print(" Volatile!");
 483   }
 484 }
 485 
 486 //------------------------------dump_format------------------------------------
 487 // access to virtual
 488 void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const {
 489   format(ra, st); // access to virtual
 490 }
 491 #endif
 492 
 493 //=============================================================================
 494 #ifndef PRODUCT
 495 void MachTypeNode::dump_spec(outputStream *st) const {
 496   _bottom_type->dump_on(st);
 497 }
 498 #endif
 499 
 500 
 501 //=============================================================================
 502 int MachConstantNode::constant_offset() {
 503   // Bind the offset lazily.
 504   if (_constant.offset() == -1) {
 505     Compile::ConstantTable& constant_table = Compile::current()->constant_table();
 506     int offset = constant_table.find_offset(_constant);
 507     // If called from Compile::scratch_emit_size return the
 508     // pre-calculated offset.
 509     // NOTE: If the AD file does some table base offset optimizations
 510     // later the AD file needs to take care of this fact.
 511     if (Compile::current()->in_scratch_emit_size()) {
 512       return constant_table.calculate_table_base_offset() + offset;
 513     }
 514     _constant.set_offset(constant_table.table_base_offset() + offset);
 515   }
 516   return _constant.offset();
 517 }
 518 
 519 int MachConstantNode::constant_offset_unchecked() const {
 520   return _constant.offset();
 521 }
 522 
 523 //=============================================================================
 524 #ifndef PRODUCT
 525 void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
 526   int reg = ra_->get_reg_first(in(1)->in(_vidx));
 527   st->print("%s %s", Name(), Matcher::regName[reg]);
 528 }
 529 #endif
 530 
 531 void MachNullCheckNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 532   // only emits entries in the null-pointer exception handler table
 533 }
 534 void MachNullCheckNode::label_set(Label* label, uint block_num) {
 535   // Nothing to emit
 536 }
 537 void MachNullCheckNode::save_label( Label** label, uint* block_num ) {
 538   // Nothing to emit
 539 }
 540 
 541 const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const {
 542   if( idx == 0 ) return RegMask::Empty;
 543   else return in(1)->as_Mach()->out_RegMask();
 544 }
 545 
 546 //=============================================================================
 547 const Type *MachProjNode::bottom_type() const {
 548   if( _ideal_reg == fat_proj ) return Type::BOTTOM;
 549   // Try the normal mechanism first
 550   const Type *t = in(0)->bottom_type();
 551   if( t->base() == Type::Tuple ) {
 552     const TypeTuple *tt = t->is_tuple();
 553     if (_con < tt->cnt())
 554       return tt->field_at(_con);
 555   }
 556   // Else use generic type from ideal register set
 557   assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds");
 558   return Type::mreg2type[_ideal_reg];
 559 }
 560 
 561 const TypePtr *MachProjNode::adr_type() const {
 562   if (bottom_type() == Type::MEMORY) {
 563     // in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM
 564     const TypePtr* adr_type = in(0)->adr_type();
 565     #ifdef ASSERT
 566     if (!is_error_reported() && !Node::in_dump())
 567       assert(adr_type != NULL, "source must have adr_type");
 568     #endif
 569     return adr_type;
 570   }
 571   assert(bottom_type()->base() != Type::Memory, "no other memories?");
 572   return NULL;
 573 }
 574 
 575 #ifndef PRODUCT
 576 void MachProjNode::dump_spec(outputStream *st) const {
 577   ProjNode::dump_spec(st);
 578   switch (_ideal_reg) {
 579   case unmatched_proj:  st->print("/unmatched");                         break;
 580   case fat_proj:        st->print("/fat"); if (WizardMode) _rout.dump(); break;
 581   }
 582 }
 583 #endif
 584 
 585 //=============================================================================
 586 #ifndef PRODUCT
 587 void MachIfNode::dump_spec(outputStream *st) const {
 588   st->print("P=%f, C=%f",_prob, _fcnt);
 589 }
 590 #endif
 591 
 592 //=============================================================================
 593 uint MachReturnNode::size_of() const { return sizeof(*this); }
 594 
 595 //------------------------------Registers--------------------------------------
 596 const RegMask &MachReturnNode::in_RegMask( uint idx ) const {
 597   return _in_rms[idx];
 598 }
 599 
 600 const TypePtr *MachReturnNode::adr_type() const {
 601   // most returns and calls are assumed to consume & modify all of memory
 602   // the matcher will copy non-wide adr_types from ideal originals
 603   return _adr_type;
 604 }
 605 
 606 //=============================================================================
 607 const Type *MachSafePointNode::bottom_type() const {  return TypeTuple::MEMBAR; }
 608 
 609 //------------------------------Registers--------------------------------------
 610 const RegMask &MachSafePointNode::in_RegMask( uint idx ) const {
 611   // Values in the domain use the users calling convention, embodied in the
 612   // _in_rms array of RegMasks.
 613   if( idx < TypeFunc::Parms ) return _in_rms[idx];
 614 
 615   if (SafePointNode::needs_polling_address_input() &&
 616       idx == TypeFunc::Parms &&
 617       ideal_Opcode() == Op_SafePoint) {
 618     return MachNode::in_RegMask(idx);
 619   }
 620 
 621   // Values outside the domain represent debug info
 622   return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()];
 623 }
 624 
 625 
 626 //=============================================================================
 627 
 628 uint MachCallNode::cmp( const Node &n ) const
 629 { return _tf == ((MachCallNode&)n)._tf; }
 630 const Type *MachCallNode::bottom_type() const { return tf()->range(); }
 631 const Type *MachCallNode::Value(PhaseTransform *phase) const { return tf()->range(); }
 632 
 633 #ifndef PRODUCT
 634 void MachCallNode::dump_spec(outputStream *st) const {
 635   st->print("# ");
 636   tf()->dump_on(st);
 637   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 638   if (jvms() != NULL)  jvms()->dump_spec(st);
 639 }
 640 #endif
 641 
 642 bool MachCallNode::return_value_is_used() const {
 643   if (tf()->range()->cnt() == TypeFunc::Parms) {
 644     // void return
 645     return false;
 646   }
 647 
 648   // find the projection corresponding to the return value
 649   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 650     Node *use = fast_out(i);
 651     if (!use->is_Proj()) continue;
 652     if (use->as_Proj()->_con == TypeFunc::Parms) {
 653       return true;
 654     }
 655   }
 656   return false;
 657 }
 658 
 659 // Similar to cousin class CallNode::returns_pointer
 660 // Because this is used in deoptimization, we want the type info, not the data
 661 // flow info; the interpreter will "use" things that are dead to the optimizer.
 662 bool MachCallNode::returns_pointer() const {
 663   const TypeTuple *r = tf()->range();
 664   return (r->cnt() > TypeFunc::Parms &&
 665           r->field_at(TypeFunc::Parms)->isa_ptr());
 666 }
 667 
 668 //------------------------------Registers--------------------------------------
 669 const RegMask &MachCallNode::in_RegMask(uint idx) const {
 670   // Values in the domain use the users calling convention, embodied in the
 671   // _in_rms array of RegMasks.
 672   if (idx < tf()->domain()->cnt()) {
 673     return _in_rms[idx];
 674   }
 675   if (idx == mach_constant_base_node_input()) {
 676     return MachConstantBaseNode::static_out_RegMask();
 677   }
 678   // Values outside the domain represent debug info
 679   return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()];
 680 }
 681 
 682 //=============================================================================
 683 uint MachCallJavaNode::size_of() const { return sizeof(*this); }
 684 uint MachCallJavaNode::cmp( const Node &n ) const {
 685   MachCallJavaNode &call = (MachCallJavaNode&)n;
 686   return MachCallNode::cmp(call) && _method->equals(call._method);
 687 }
 688 #ifndef PRODUCT
 689 void MachCallJavaNode::dump_spec(outputStream *st) const {
 690   if (_method_handle_invoke)
 691     st->print("MethodHandle ");
 692   if (_method) {
 693     _method->print_short_name(st);
 694     st->print(" ");
 695   }
 696   MachCallNode::dump_spec(st);
 697 }
 698 #endif
 699 
 700 //------------------------------Registers--------------------------------------
 701 const RegMask &MachCallJavaNode::in_RegMask(uint idx) const {
 702   // Values in the domain use the users calling convention, embodied in the
 703   // _in_rms array of RegMasks.
 704   if (idx < tf()->domain()->cnt()) {
 705     return _in_rms[idx];
 706   }
 707   if (idx == mach_constant_base_node_input()) {
 708     return MachConstantBaseNode::static_out_RegMask();
 709   }
 710   // Values outside the domain represent debug info
 711   Matcher* m = Compile::current()->matcher();
 712   // If this call is a MethodHandle invoke we have to use a different
 713   // debugmask which does not include the register we use to save the
 714   // SP over MH invokes.
 715   RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask;
 716   return *debugmask[in(idx)->ideal_reg()];
 717 }
 718 
 719 //=============================================================================
 720 uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); }
 721 uint MachCallStaticJavaNode::cmp( const Node &n ) const {
 722   MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n;
 723   return MachCallJavaNode::cmp(call) && _name == call._name;
 724 }
 725 
 726 //----------------------------uncommon_trap_request----------------------------
 727 // If this is an uncommon trap, return the request code, else zero.
 728 int MachCallStaticJavaNode::uncommon_trap_request() const {
 729   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 730     return CallStaticJavaNode::extract_uncommon_trap_request(this);
 731   }
 732   return 0;
 733 }
 734 
 735 #ifndef PRODUCT
 736 // Helper for summarizing uncommon_trap arguments.
 737 void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const {
 738   int trap_req = uncommon_trap_request();
 739   if (trap_req != 0) {
 740     char buf[100];
 741     st->print("(%s)",
 742                Deoptimization::format_trap_request(buf, sizeof(buf),
 743                                                    trap_req));
 744   }
 745 }
 746 
 747 void MachCallStaticJavaNode::dump_spec(outputStream *st) const {
 748   st->print("Static ");
 749   if (_name != NULL) {
 750     st->print("wrapper for: %s", _name );
 751     dump_trap_args(st);
 752     st->print(" ");
 753   }
 754   MachCallJavaNode::dump_spec(st);
 755 }
 756 #endif
 757 
 758 //=============================================================================
 759 #ifndef PRODUCT
 760 void MachCallDynamicJavaNode::dump_spec(outputStream *st) const {
 761   st->print("Dynamic ");
 762   MachCallJavaNode::dump_spec(st);
 763 }
 764 #endif
 765 //=============================================================================
 766 uint MachCallRuntimeNode::size_of() const { return sizeof(*this); }
 767 uint MachCallRuntimeNode::cmp( const Node &n ) const {
 768   MachCallRuntimeNode &call = (MachCallRuntimeNode&)n;
 769   return MachCallNode::cmp(call) && !strcmp(_name,call._name);
 770 }
 771 #ifndef PRODUCT
 772 void MachCallRuntimeNode::dump_spec(outputStream *st) const {
 773   st->print("%s ",_name);
 774   MachCallNode::dump_spec(st);
 775 }
 776 #endif
 777 //=============================================================================
 778 // A shared JVMState for all HaltNodes.  Indicates the start of debug info
 779 // is at TypeFunc::Parms.  Only required for SOE register spill handling -
 780 // to indicate where the stack-slot-only debug info inputs begin.
 781 // There is no other JVM state needed here.
 782 JVMState jvms_for_throw(0);
 783 JVMState *MachHaltNode::jvms() const {
 784   return &jvms_for_throw;
 785 }
 786 
 787 //=============================================================================
 788 #ifndef PRODUCT
 789 void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
 790   st->print("B%d", _block_num);
 791 }
 792 #endif // PRODUCT
 793 
 794 //=============================================================================
 795 #ifndef PRODUCT
 796 void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
 797   st->print(INTPTR_FORMAT, _method);
 798 }
 799 #endif // PRODUCT