1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/node.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/output.hpp"
  59 #include "opto/parse.hpp"
  60 #include "opto/phaseX.hpp"
  61 #include "opto/rootnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/stringopts.hpp"
  64 #include "opto/type.hpp"
  65 #include "opto/vectornode.hpp"
  66 #include "runtime/arguments.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "trace/tracing.hpp"
  71 #include "utilities/copy.hpp"
  72 
  73 
  74 // -------------------- Compile::mach_constant_base_node -----------------------
  75 // Constant table base node singleton.
  76 MachConstantBaseNode* Compile::mach_constant_base_node() {
  77   if (_mach_constant_base_node == NULL) {
  78     _mach_constant_base_node = new MachConstantBaseNode();
  79     _mach_constant_base_node->add_req(C->root());
  80   }
  81   return _mach_constant_base_node;
  82 }
  83 
  84 
  85 /// Support for intrinsics.
  86 
  87 // Return the index at which m must be inserted (or already exists).
  88 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  89 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  90 #ifdef ASSERT
  91   for (int i = 1; i < _intrinsics->length(); i++) {
  92     CallGenerator* cg1 = _intrinsics->at(i-1);
  93     CallGenerator* cg2 = _intrinsics->at(i);
  94     assert(cg1->method() != cg2->method()
  95            ? cg1->method()     < cg2->method()
  96            : cg1->is_virtual() < cg2->is_virtual(),
  97            "compiler intrinsics list must stay sorted");
  98   }
  99 #endif
 100   // Binary search sorted list, in decreasing intervals [lo, hi].
 101   int lo = 0, hi = _intrinsics->length()-1;
 102   while (lo <= hi) {
 103     int mid = (uint)(hi + lo) / 2;
 104     ciMethod* mid_m = _intrinsics->at(mid)->method();
 105     if (m < mid_m) {
 106       hi = mid-1;
 107     } else if (m > mid_m) {
 108       lo = mid+1;
 109     } else {
 110       // look at minor sort key
 111       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 112       if (is_virtual < mid_virt) {
 113         hi = mid-1;
 114       } else if (is_virtual > mid_virt) {
 115         lo = mid+1;
 116       } else {
 117         return mid;  // exact match
 118       }
 119     }
 120   }
 121   return lo;  // inexact match
 122 }
 123 
 124 void Compile::register_intrinsic(CallGenerator* cg) {
 125   if (_intrinsics == NULL) {
 126     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 127   }
 128   // This code is stolen from ciObjectFactory::insert.
 129   // Really, GrowableArray should have methods for
 130   // insert_at, remove_at, and binary_search.
 131   int len = _intrinsics->length();
 132   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 133   if (index == len) {
 134     _intrinsics->append(cg);
 135   } else {
 136 #ifdef ASSERT
 137     CallGenerator* oldcg = _intrinsics->at(index);
 138     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 139 #endif
 140     _intrinsics->append(_intrinsics->at(len-1));
 141     int pos;
 142     for (pos = len-2; pos >= index; pos--) {
 143       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 144     }
 145     _intrinsics->at_put(index, cg);
 146   }
 147   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 148 }
 149 
 150 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 151   assert(m->is_loaded(), "don't try this on unloaded methods");
 152   if (_intrinsics != NULL) {
 153     int index = intrinsic_insertion_index(m, is_virtual);
 154     if (index < _intrinsics->length()
 155         && _intrinsics->at(index)->method() == m
 156         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 157       return _intrinsics->at(index);
 158     }
 159   }
 160   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 161   if (m->intrinsic_id() != vmIntrinsics::_none &&
 162       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 163     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 164     if (cg != NULL) {
 165       // Save it for next time:
 166       register_intrinsic(cg);
 167       return cg;
 168     } else {
 169       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 170     }
 171   }
 172   return NULL;
 173 }
 174 
 175 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 176 // in library_call.cpp.
 177 
 178 
 179 #ifndef PRODUCT
 180 // statistics gathering...
 181 
 182 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 183 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 184 
 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 186   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 187   int oflags = _intrinsic_hist_flags[id];
 188   assert(flags != 0, "what happened?");
 189   if (is_virtual) {
 190     flags |= _intrinsic_virtual;
 191   }
 192   bool changed = (flags != oflags);
 193   if ((flags & _intrinsic_worked) != 0) {
 194     juint count = (_intrinsic_hist_count[id] += 1);
 195     if (count == 1) {
 196       changed = true;           // first time
 197     }
 198     // increment the overall count also:
 199     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 200   }
 201   if (changed) {
 202     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 203       // Something changed about the intrinsic's virtuality.
 204       if ((flags & _intrinsic_virtual) != 0) {
 205         // This is the first use of this intrinsic as a virtual call.
 206         if (oflags != 0) {
 207           // We already saw it as a non-virtual, so note both cases.
 208           flags |= _intrinsic_both;
 209         }
 210       } else if ((oflags & _intrinsic_both) == 0) {
 211         // This is the first use of this intrinsic as a non-virtual
 212         flags |= _intrinsic_both;
 213       }
 214     }
 215     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 216   }
 217   // update the overall flags also:
 218   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 219   return changed;
 220 }
 221 
 222 static char* format_flags(int flags, char* buf) {
 223   buf[0] = 0;
 224   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 225   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 226   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 227   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 228   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 229   if (buf[0] == 0)  strcat(buf, ",");
 230   assert(buf[0] == ',', "must be");
 231   return &buf[1];
 232 }
 233 
 234 void Compile::print_intrinsic_statistics() {
 235   char flagsbuf[100];
 236   ttyLocker ttyl;
 237   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 238   tty->print_cr("Compiler intrinsic usage:");
 239   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 240   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 241   #define PRINT_STAT_LINE(name, c, f) \
 242     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 243   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 244     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 245     int   flags = _intrinsic_hist_flags[id];
 246     juint count = _intrinsic_hist_count[id];
 247     if ((flags | count) != 0) {
 248       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 249     }
 250   }
 251   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 252   if (xtty != NULL)  xtty->tail("statistics");
 253 }
 254 
 255 void Compile::print_statistics() {
 256   { ttyLocker ttyl;
 257     if (xtty != NULL)  xtty->head("statistics type='opto'");
 258     Parse::print_statistics();
 259     PhaseCCP::print_statistics();
 260     PhaseRegAlloc::print_statistics();
 261     Scheduling::print_statistics();
 262     PhasePeephole::print_statistics();
 263     PhaseIdealLoop::print_statistics();
 264     if (xtty != NULL)  xtty->tail("statistics");
 265   }
 266   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 267     // put this under its own <statistics> element.
 268     print_intrinsic_statistics();
 269   }
 270 }
 271 #endif //PRODUCT
 272 
 273 // Support for bundling info
 274 Bundle* Compile::node_bundling(const Node *n) {
 275   assert(valid_bundle_info(n), "oob");
 276   return &_node_bundling_base[n->_idx];
 277 }
 278 
 279 bool Compile::valid_bundle_info(const Node *n) {
 280   return (_node_bundling_limit > n->_idx);
 281 }
 282 
 283 
 284 void Compile::gvn_replace_by(Node* n, Node* nn) {
 285   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 286     Node* use = n->last_out(i);
 287     bool is_in_table = initial_gvn()->hash_delete(use);
 288     uint uses_found = 0;
 289     for (uint j = 0; j < use->len(); j++) {
 290       if (use->in(j) == n) {
 291         if (j < use->req())
 292           use->set_req(j, nn);
 293         else
 294           use->set_prec(j, nn);
 295         uses_found++;
 296       }
 297     }
 298     if (is_in_table) {
 299       // reinsert into table
 300       initial_gvn()->hash_find_insert(use);
 301     }
 302     record_for_igvn(use);
 303     i -= uses_found;    // we deleted 1 or more copies of this edge
 304   }
 305 }
 306 
 307 
 308 static inline bool not_a_node(const Node* n) {
 309   if (n == NULL)                   return true;
 310   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 311   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 312   return false;
 313 }
 314 
 315 // Identify all nodes that are reachable from below, useful.
 316 // Use breadth-first pass that records state in a Unique_Node_List,
 317 // recursive traversal is slower.
 318 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 319   int estimated_worklist_size = unique();
 320   useful.map( estimated_worklist_size, NULL );  // preallocate space
 321 
 322   // Initialize worklist
 323   if (root() != NULL)     { useful.push(root()); }
 324   // If 'top' is cached, declare it useful to preserve cached node
 325   if( cached_top_node() ) { useful.push(cached_top_node()); }
 326 
 327   // Push all useful nodes onto the list, breadthfirst
 328   for( uint next = 0; next < useful.size(); ++next ) {
 329     assert( next < unique(), "Unique useful nodes < total nodes");
 330     Node *n  = useful.at(next);
 331     uint max = n->len();
 332     for( uint i = 0; i < max; ++i ) {
 333       Node *m = n->in(i);
 334       if (not_a_node(m))  continue;
 335       useful.push(m);
 336     }
 337   }
 338 }
 339 
 340 // Update dead_node_list with any missing dead nodes using useful
 341 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 342 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 343   uint max_idx = unique();
 344   VectorSet& useful_node_set = useful.member_set();
 345 
 346   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 347     // If node with index node_idx is not in useful set,
 348     // mark it as dead in dead node list.
 349     if (! useful_node_set.test(node_idx) ) {
 350       record_dead_node(node_idx);
 351     }
 352   }
 353 }
 354 
 355 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 356   int shift = 0;
 357   for (int i = 0; i < inlines->length(); i++) {
 358     CallGenerator* cg = inlines->at(i);
 359     CallNode* call = cg->call_node();
 360     if (shift > 0) {
 361       inlines->at_put(i-shift, cg);
 362     }
 363     if (!useful.member(call)) {
 364       shift++;
 365     }
 366   }
 367   inlines->trunc_to(inlines->length()-shift);
 368 }
 369 
 370 // Disconnect all useless nodes by disconnecting those at the boundary.
 371 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 372   uint next = 0;
 373   while (next < useful.size()) {
 374     Node *n = useful.at(next++);
 375     if (n->is_SafePoint()) {
 376       // We're done with a parsing phase. Replaced nodes are not valid
 377       // beyond that point.
 378       n->as_SafePoint()->delete_replaced_nodes();
 379     }
 380     // Use raw traversal of out edges since this code removes out edges
 381     int max = n->outcnt();
 382     for (int j = 0; j < max; ++j) {
 383       Node* child = n->raw_out(j);
 384       if (! useful.member(child)) {
 385         assert(!child->is_top() || child != top(),
 386                "If top is cached in Compile object it is in useful list");
 387         // Only need to remove this out-edge to the useless node
 388         n->raw_del_out(j);
 389         --j;
 390         --max;
 391       }
 392     }
 393     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 394       record_for_igvn(n->unique_out());
 395     }
 396   }
 397   // Remove useless macro and predicate opaq nodes
 398   for (int i = C->macro_count()-1; i >= 0; i--) {
 399     Node* n = C->macro_node(i);
 400     if (!useful.member(n)) {
 401       remove_macro_node(n);
 402     }
 403   }
 404   // Remove useless expensive node
 405   for (int i = C->expensive_count()-1; i >= 0; i--) {
 406     Node* n = C->expensive_node(i);
 407     if (!useful.member(n)) {
 408       remove_expensive_node(n);
 409     }
 410   }
 411   // clean up the late inline lists
 412   remove_useless_late_inlines(&_string_late_inlines, useful);
 413   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 414   remove_useless_late_inlines(&_late_inlines, useful);
 415   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 416 }
 417 
 418 //------------------------------frame_size_in_words-----------------------------
 419 // frame_slots in units of words
 420 int Compile::frame_size_in_words() const {
 421   // shift is 0 in LP32 and 1 in LP64
 422   const int shift = (LogBytesPerWord - LogBytesPerInt);
 423   int words = _frame_slots >> shift;
 424   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 425   return words;
 426 }
 427 
 428 // To bang the stack of this compiled method we use the stack size
 429 // that the interpreter would need in case of a deoptimization. This
 430 // removes the need to bang the stack in the deoptimization blob which
 431 // in turn simplifies stack overflow handling.
 432 int Compile::bang_size_in_bytes() const {
 433   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 434 }
 435 
 436 // ============================================================================
 437 //------------------------------CompileWrapper---------------------------------
 438 class CompileWrapper : public StackObj {
 439   Compile *const _compile;
 440  public:
 441   CompileWrapper(Compile* compile);
 442 
 443   ~CompileWrapper();
 444 };
 445 
 446 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 447   // the Compile* pointer is stored in the current ciEnv:
 448   ciEnv* env = compile->env();
 449   assert(env == ciEnv::current(), "must already be a ciEnv active");
 450   assert(env->compiler_data() == NULL, "compile already active?");
 451   env->set_compiler_data(compile);
 452   assert(compile == Compile::current(), "sanity");
 453 
 454   compile->set_type_dict(NULL);
 455   compile->set_type_hwm(NULL);
 456   compile->set_type_last_size(0);
 457   compile->set_last_tf(NULL, NULL);
 458   compile->set_indexSet_arena(NULL);
 459   compile->set_indexSet_free_block_list(NULL);
 460   compile->init_type_arena();
 461   Type::Initialize(compile);
 462   _compile->set_scratch_buffer_blob(NULL);
 463   _compile->begin_method();
 464 }
 465 CompileWrapper::~CompileWrapper() {
 466   _compile->end_method();
 467   if (_compile->scratch_buffer_blob() != NULL)
 468     BufferBlob::free(_compile->scratch_buffer_blob());
 469   _compile->env()->set_compiler_data(NULL);
 470 }
 471 
 472 
 473 //----------------------------print_compile_messages---------------------------
 474 void Compile::print_compile_messages() {
 475 #ifndef PRODUCT
 476   // Check if recompiling
 477   if (_subsume_loads == false && PrintOpto) {
 478     // Recompiling without allowing machine instructions to subsume loads
 479     tty->print_cr("*********************************************************");
 480     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 481     tty->print_cr("*********************************************************");
 482   }
 483   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 484     // Recompiling without escape analysis
 485     tty->print_cr("*********************************************************");
 486     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 487     tty->print_cr("*********************************************************");
 488   }
 489   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 490     // Recompiling without boxing elimination
 491     tty->print_cr("*********************************************************");
 492     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 493     tty->print_cr("*********************************************************");
 494   }
 495   if (env()->break_at_compile()) {
 496     // Open the debugger when compiling this method.
 497     tty->print("### Breaking when compiling: ");
 498     method()->print_short_name();
 499     tty->cr();
 500     BREAKPOINT;
 501   }
 502 
 503   if( PrintOpto ) {
 504     if (is_osr_compilation()) {
 505       tty->print("[OSR]%3d", _compile_id);
 506     } else {
 507       tty->print("%3d", _compile_id);
 508     }
 509   }
 510 #endif
 511 }
 512 
 513 
 514 //-----------------------init_scratch_buffer_blob------------------------------
 515 // Construct a temporary BufferBlob and cache it for this compile.
 516 void Compile::init_scratch_buffer_blob(int const_size) {
 517   // If there is already a scratch buffer blob allocated and the
 518   // constant section is big enough, use it.  Otherwise free the
 519   // current and allocate a new one.
 520   BufferBlob* blob = scratch_buffer_blob();
 521   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 522     // Use the current blob.
 523   } else {
 524     if (blob != NULL) {
 525       BufferBlob::free(blob);
 526     }
 527 
 528     ResourceMark rm;
 529     _scratch_const_size = const_size;
 530     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 531     blob = BufferBlob::create("Compile::scratch_buffer", size);
 532     // Record the buffer blob for next time.
 533     set_scratch_buffer_blob(blob);
 534     // Have we run out of code space?
 535     if (scratch_buffer_blob() == NULL) {
 536       // Let CompilerBroker disable further compilations.
 537       record_failure("Not enough space for scratch buffer in CodeCache");
 538       return;
 539     }
 540   }
 541 
 542   // Initialize the relocation buffers
 543   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 544   set_scratch_locs_memory(locs_buf);
 545 }
 546 
 547 
 548 //-----------------------scratch_emit_size-------------------------------------
 549 // Helper function that computes size by emitting code
 550 uint Compile::scratch_emit_size(const Node* n) {
 551   // Start scratch_emit_size section.
 552   set_in_scratch_emit_size(true);
 553 
 554   // Emit into a trash buffer and count bytes emitted.
 555   // This is a pretty expensive way to compute a size,
 556   // but it works well enough if seldom used.
 557   // All common fixed-size instructions are given a size
 558   // method by the AD file.
 559   // Note that the scratch buffer blob and locs memory are
 560   // allocated at the beginning of the compile task, and
 561   // may be shared by several calls to scratch_emit_size.
 562   // The allocation of the scratch buffer blob is particularly
 563   // expensive, since it has to grab the code cache lock.
 564   BufferBlob* blob = this->scratch_buffer_blob();
 565   assert(blob != NULL, "Initialize BufferBlob at start");
 566   assert(blob->size() > MAX_inst_size, "sanity");
 567   relocInfo* locs_buf = scratch_locs_memory();
 568   address blob_begin = blob->content_begin();
 569   address blob_end   = (address)locs_buf;
 570   assert(blob->content_contains(blob_end), "sanity");
 571   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 572   buf.initialize_consts_size(_scratch_const_size);
 573   buf.initialize_stubs_size(MAX_stubs_size);
 574   assert(locs_buf != NULL, "sanity");
 575   int lsize = MAX_locs_size / 3;
 576   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 577   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 578   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 579 
 580   // Do the emission.
 581 
 582   Label fakeL; // Fake label for branch instructions.
 583   Label*   saveL = NULL;
 584   uint save_bnum = 0;
 585   bool is_branch = n->is_MachBranch();
 586   if (is_branch) {
 587     MacroAssembler masm(&buf);
 588     masm.bind(fakeL);
 589     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 590     n->as_MachBranch()->label_set(&fakeL, 0);
 591   }
 592   n->emit(buf, this->regalloc());
 593   if (is_branch) // Restore label.
 594     n->as_MachBranch()->label_set(saveL, save_bnum);
 595 
 596   // End scratch_emit_size section.
 597   set_in_scratch_emit_size(false);
 598 
 599   return buf.insts_size();
 600 }
 601 
 602 
 603 // ============================================================================
 604 //------------------------------Compile standard-------------------------------
 605 debug_only( int Compile::_debug_idx = 100000; )
 606 
 607 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 608 // the continuation bci for on stack replacement.
 609 
 610 
 611 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 612                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 613                 : Phase(Compiler),
 614                   _env(ci_env),
 615                   _log(ci_env->log()),
 616                   _compile_id(ci_env->compile_id()),
 617                   _save_argument_registers(false),
 618                   _stub_name(NULL),
 619                   _stub_function(NULL),
 620                   _stub_entry_point(NULL),
 621                   _method(target),
 622                   _entry_bci(osr_bci),
 623                   _initial_gvn(NULL),
 624                   _for_igvn(NULL),
 625                   _warm_calls(NULL),
 626                   _subsume_loads(subsume_loads),
 627                   _do_escape_analysis(do_escape_analysis),
 628                   _eliminate_boxing(eliminate_boxing),
 629                   _failure_reason(NULL),
 630                   _code_buffer("Compile::Fill_buffer"),
 631                   _orig_pc_slot(0),
 632                   _orig_pc_slot_offset_in_bytes(0),
 633                   _has_method_handle_invokes(false),
 634                   _mach_constant_base_node(NULL),
 635                   _node_bundling_limit(0),
 636                   _node_bundling_base(NULL),
 637                   _java_calls(0),
 638                   _inner_loops(0),
 639                   _scratch_const_size(-1),
 640                   _in_scratch_emit_size(false),
 641                   _dead_node_list(comp_arena()),
 642                   _dead_node_count(0),
 643 #ifndef PRODUCT
 644                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 645                   _in_dump_cnt(0),
 646                   _printer(IdealGraphPrinter::printer()),
 647 #endif
 648                   _congraph(NULL),
 649                   _comp_arena(mtCompiler),
 650                   _node_arena(mtCompiler),
 651                   _old_arena(mtCompiler),
 652                   _Compile_types(mtCompiler),
 653                   _replay_inline_data(NULL),
 654                   _late_inlines(comp_arena(), 2, 0, NULL),
 655                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 656                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 657                   _late_inlines_pos(0),
 658                   _number_of_mh_late_inlines(0),
 659                   _inlining_progress(false),
 660                   _inlining_incrementally(false),
 661                   _print_inlining_list(NULL),
 662                   _print_inlining_stream(NULL),
 663                   _print_inlining_idx(0),
 664                   _print_inlining_output(NULL),
 665                   _interpreter_frame_size(0) {
 666   C = this;
 667 
 668   CompileWrapper cw(this);
 669 
 670   if (CITimeVerbose) {
 671     tty->print(" ");
 672     target->holder()->name()->print();
 673     tty->print(".");
 674     target->print_short_name();
 675     tty->print("  ");
 676   }
 677   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 678   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 679 
 680 #ifndef PRODUCT
 681   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 682   if (!print_opto_assembly) {
 683     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 684     if (print_assembly && !Disassembler::can_decode()) {
 685       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 686       print_opto_assembly = true;
 687     }
 688   }
 689   set_print_assembly(print_opto_assembly);
 690   set_parsed_irreducible_loop(false);
 691 
 692   if (method()->has_option("ReplayInline")) {
 693     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 694   }
 695 #endif
 696   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 697   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 698   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 699 
 700   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 701     // Make sure the method being compiled gets its own MDO,
 702     // so we can at least track the decompile_count().
 703     // Need MDO to record RTM code generation state.
 704     method()->ensure_method_data();
 705   }
 706 
 707   Init(::AliasLevel);
 708 
 709 
 710   print_compile_messages();
 711 
 712   _ilt = InlineTree::build_inline_tree_root();
 713 
 714   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 715   assert(num_alias_types() >= AliasIdxRaw, "");
 716 
 717 #define MINIMUM_NODE_HASH  1023
 718   // Node list that Iterative GVN will start with
 719   Unique_Node_List for_igvn(comp_arena());
 720   set_for_igvn(&for_igvn);
 721 
 722   // GVN that will be run immediately on new nodes
 723   uint estimated_size = method()->code_size()*4+64;
 724   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 725   PhaseGVN gvn(node_arena(), estimated_size);
 726   set_initial_gvn(&gvn);
 727 
 728   print_inlining_init();
 729   { // Scope for timing the parser
 730     TracePhase tp("parse", &timers[_t_parser]);
 731 
 732     // Put top into the hash table ASAP.
 733     initial_gvn()->transform_no_reclaim(top());
 734 
 735     // Set up tf(), start(), and find a CallGenerator.
 736     CallGenerator* cg = NULL;
 737     if (is_osr_compilation()) {
 738       const TypeTuple *domain = StartOSRNode::osr_domain();
 739       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 740       init_tf(TypeFunc::make(domain, range));
 741       StartNode* s = new StartOSRNode(root(), domain);
 742       initial_gvn()->set_type_bottom(s);
 743       init_start(s);
 744       cg = CallGenerator::for_osr(method(), entry_bci());
 745     } else {
 746       // Normal case.
 747       init_tf(TypeFunc::make(method()));
 748       StartNode* s = new StartNode(root(), tf()->domain());
 749       initial_gvn()->set_type_bottom(s);
 750       init_start(s);
 751       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 752         // With java.lang.ref.reference.get() we must go through the
 753         // intrinsic when G1 is enabled - even when get() is the root
 754         // method of the compile - so that, if necessary, the value in
 755         // the referent field of the reference object gets recorded by
 756         // the pre-barrier code.
 757         // Specifically, if G1 is enabled, the value in the referent
 758         // field is recorded by the G1 SATB pre barrier. This will
 759         // result in the referent being marked live and the reference
 760         // object removed from the list of discovered references during
 761         // reference processing.
 762         cg = find_intrinsic(method(), false);
 763       }
 764       if (cg == NULL) {
 765         float past_uses = method()->interpreter_invocation_count();
 766         float expected_uses = past_uses;
 767         cg = CallGenerator::for_inline(method(), expected_uses);
 768       }
 769     }
 770     if (failing())  return;
 771     if (cg == NULL) {
 772       record_method_not_compilable_all_tiers("cannot parse method");
 773       return;
 774     }
 775     JVMState* jvms = build_start_state(start(), tf());
 776     if ((jvms = cg->generate(jvms)) == NULL) {
 777       record_method_not_compilable("method parse failed");
 778       return;
 779     }
 780     GraphKit kit(jvms);
 781 
 782     if (!kit.stopped()) {
 783       // Accept return values, and transfer control we know not where.
 784       // This is done by a special, unique ReturnNode bound to root.
 785       return_values(kit.jvms());
 786     }
 787 
 788     if (kit.has_exceptions()) {
 789       // Any exceptions that escape from this call must be rethrown
 790       // to whatever caller is dynamically above us on the stack.
 791       // This is done by a special, unique RethrowNode bound to root.
 792       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 793     }
 794 
 795     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 796 
 797     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 798       inline_string_calls(true);
 799     }
 800 
 801     if (failing())  return;
 802 
 803     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 804 
 805     // Remove clutter produced by parsing.
 806     if (!failing()) {
 807       ResourceMark rm;
 808       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 809     }
 810   }
 811 
 812   // Note:  Large methods are capped off in do_one_bytecode().
 813   if (failing())  return;
 814 
 815   // After parsing, node notes are no longer automagic.
 816   // They must be propagated by register_new_node_with_optimizer(),
 817   // clone(), or the like.
 818   set_default_node_notes(NULL);
 819 
 820   for (;;) {
 821     int successes = Inline_Warm();
 822     if (failing())  return;
 823     if (successes == 0)  break;
 824   }
 825 
 826   // Drain the list.
 827   Finish_Warm();
 828 #ifndef PRODUCT
 829   if (_printer && _printer->should_print(_method)) {
 830     _printer->print_inlining(this);
 831   }
 832 #endif
 833 
 834   if (failing())  return;
 835   NOT_PRODUCT( verify_graph_edges(); )
 836 
 837   // Now optimize
 838   Optimize();
 839   if (failing())  return;
 840   NOT_PRODUCT( verify_graph_edges(); )
 841 
 842 #ifndef PRODUCT
 843   if (PrintIdeal) {
 844     ttyLocker ttyl;  // keep the following output all in one block
 845     // This output goes directly to the tty, not the compiler log.
 846     // To enable tools to match it up with the compilation activity,
 847     // be sure to tag this tty output with the compile ID.
 848     if (xtty != NULL) {
 849       xtty->head("ideal compile_id='%d'%s", compile_id(),
 850                  is_osr_compilation()    ? " compile_kind='osr'" :
 851                  "");
 852     }
 853     root()->dump(9999);
 854     if (xtty != NULL) {
 855       xtty->tail("ideal");
 856     }
 857   }
 858 #endif
 859 
 860   NOT_PRODUCT( verify_barriers(); )
 861 
 862   // Dump compilation data to replay it.
 863   if (method()->has_option("DumpReplay")) {
 864     env()->dump_replay_data(_compile_id);
 865   }
 866   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 867     env()->dump_inline_data(_compile_id);
 868   }
 869 
 870   // Now that we know the size of all the monitors we can add a fixed slot
 871   // for the original deopt pc.
 872 
 873   _orig_pc_slot =  fixed_slots();
 874   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 875   set_fixed_slots(next_slot);
 876 
 877   // Compute when to use implicit null checks. Used by matching trap based
 878   // nodes and NullCheck optimization.
 879   set_allowed_deopt_reasons();
 880 
 881   // Now generate code
 882   Code_Gen();
 883   if (failing())  return;
 884 
 885   // Check if we want to skip execution of all compiled code.
 886   {
 887 #ifndef PRODUCT
 888     if (OptoNoExecute) {
 889       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 890       return;
 891     }
 892 #endif
 893     TracePhase tp("install_code", &timers[_t_registerMethod]);
 894 
 895     if (is_osr_compilation()) {
 896       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 897       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 898     } else {
 899       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 900       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 901     }
 902 
 903     env()->register_method(_method, _entry_bci,
 904                            &_code_offsets,
 905                            _orig_pc_slot_offset_in_bytes,
 906                            code_buffer(),
 907                            frame_size_in_words(), _oop_map_set,
 908                            &_handler_table, &_inc_table,
 909                            compiler,
 910                            env()->comp_level(),
 911                            has_unsafe_access(),
 912                            SharedRuntime::is_wide_vector(max_vector_size()),
 913                            rtm_state()
 914                            );
 915 
 916     if (log() != NULL) // Print code cache state into compiler log
 917       log()->code_cache_state();
 918   }
 919 }
 920 
 921 //------------------------------Compile----------------------------------------
 922 // Compile a runtime stub
 923 Compile::Compile( ciEnv* ci_env,
 924                   TypeFunc_generator generator,
 925                   address stub_function,
 926                   const char *stub_name,
 927                   int is_fancy_jump,
 928                   bool pass_tls,
 929                   bool save_arg_registers,
 930                   bool return_pc )
 931   : Phase(Compiler),
 932     _env(ci_env),
 933     _log(ci_env->log()),
 934     _compile_id(0),
 935     _save_argument_registers(save_arg_registers),
 936     _method(NULL),
 937     _stub_name(stub_name),
 938     _stub_function(stub_function),
 939     _stub_entry_point(NULL),
 940     _entry_bci(InvocationEntryBci),
 941     _initial_gvn(NULL),
 942     _for_igvn(NULL),
 943     _warm_calls(NULL),
 944     _orig_pc_slot(0),
 945     _orig_pc_slot_offset_in_bytes(0),
 946     _subsume_loads(true),
 947     _do_escape_analysis(false),
 948     _eliminate_boxing(false),
 949     _failure_reason(NULL),
 950     _code_buffer("Compile::Fill_buffer"),
 951     _has_method_handle_invokes(false),
 952     _mach_constant_base_node(NULL),
 953     _node_bundling_limit(0),
 954     _node_bundling_base(NULL),
 955     _java_calls(0),
 956     _inner_loops(0),
 957 #ifndef PRODUCT
 958     _trace_opto_output(TraceOptoOutput),
 959     _in_dump_cnt(0),
 960     _printer(NULL),
 961 #endif
 962     _comp_arena(mtCompiler),
 963     _node_arena(mtCompiler),
 964     _old_arena(mtCompiler),
 965     _Compile_types(mtCompiler),
 966     _dead_node_list(comp_arena()),
 967     _dead_node_count(0),
 968     _congraph(NULL),
 969     _replay_inline_data(NULL),
 970     _number_of_mh_late_inlines(0),
 971     _inlining_progress(false),
 972     _inlining_incrementally(false),
 973     _print_inlining_list(NULL),
 974     _print_inlining_stream(NULL),
 975     _print_inlining_idx(0),
 976     _print_inlining_output(NULL),
 977     _allowed_reasons(0),
 978     _interpreter_frame_size(0) {
 979   C = this;
 980 
 981   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 982   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 983 
 984 #ifndef PRODUCT
 985   set_print_assembly(PrintFrameConverterAssembly);
 986   set_parsed_irreducible_loop(false);
 987 #endif
 988   set_has_irreducible_loop(false); // no loops
 989 
 990   CompileWrapper cw(this);
 991   Init(/*AliasLevel=*/ 0);
 992   init_tf((*generator)());
 993 
 994   {
 995     // The following is a dummy for the sake of GraphKit::gen_stub
 996     Unique_Node_List for_igvn(comp_arena());
 997     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 998     PhaseGVN gvn(Thread::current()->resource_area(),255);
 999     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1000     gvn.transform_no_reclaim(top());
1001 
1002     GraphKit kit;
1003     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1004   }
1005 
1006   NOT_PRODUCT( verify_graph_edges(); )
1007   Code_Gen();
1008   if (failing())  return;
1009 
1010 
1011   // Entry point will be accessed using compile->stub_entry_point();
1012   if (code_buffer() == NULL) {
1013     Matcher::soft_match_failure();
1014   } else {
1015     if (PrintAssembly && (WizardMode || Verbose))
1016       tty->print_cr("### Stub::%s", stub_name);
1017 
1018     if (!failing()) {
1019       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1020 
1021       // Make the NMethod
1022       // For now we mark the frame as never safe for profile stackwalking
1023       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1024                                                       code_buffer(),
1025                                                       CodeOffsets::frame_never_safe,
1026                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1027                                                       frame_size_in_words(),
1028                                                       _oop_map_set,
1029                                                       save_arg_registers);
1030       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1031 
1032       _stub_entry_point = rs->entry_point();
1033     }
1034   }
1035 }
1036 
1037 //------------------------------Init-------------------------------------------
1038 // Prepare for a single compilation
1039 void Compile::Init(int aliaslevel) {
1040   _unique  = 0;
1041   _regalloc = NULL;
1042 
1043   _tf      = NULL;  // filled in later
1044   _top     = NULL;  // cached later
1045   _matcher = NULL;  // filled in later
1046   _cfg     = NULL;  // filled in later
1047 
1048   set_24_bit_selection_and_mode(Use24BitFP, false);
1049 
1050   _node_note_array = NULL;
1051   _default_node_notes = NULL;
1052   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1053 
1054   _immutable_memory = NULL; // filled in at first inquiry
1055 
1056   // Globally visible Nodes
1057   // First set TOP to NULL to give safe behavior during creation of RootNode
1058   set_cached_top_node(NULL);
1059   set_root(new RootNode());
1060   // Now that you have a Root to point to, create the real TOP
1061   set_cached_top_node( new ConNode(Type::TOP) );
1062   set_recent_alloc(NULL, NULL);
1063 
1064   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1065   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1066   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1067   env()->set_dependencies(new Dependencies(env()));
1068 
1069   _fixed_slots = 0;
1070   set_has_split_ifs(false);
1071   set_has_loops(has_method() && method()->has_loops()); // first approximation
1072   set_has_stringbuilder(false);
1073   set_has_boxed_value(false);
1074   _trap_can_recompile = false;  // no traps emitted yet
1075   _major_progress = true; // start out assuming good things will happen
1076   set_has_unsafe_access(false);
1077   set_max_vector_size(0);
1078   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1079   set_decompile_count(0);
1080 
1081   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1082   set_num_loop_opts(LoopOptsCount);
1083   set_do_inlining(Inline);
1084   set_max_inline_size(MaxInlineSize);
1085   set_freq_inline_size(FreqInlineSize);
1086   set_do_scheduling(OptoScheduling);
1087   set_do_count_invocations(false);
1088   set_do_method_data_update(false);
1089   set_age_code(has_method() && method()->profile_aging());
1090   set_rtm_state(NoRTM); // No RTM lock eliding by default
1091 #if INCLUDE_RTM_OPT
1092   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1093     int rtm_state = method()->method_data()->rtm_state();
1094     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1095       // Don't generate RTM lock eliding code.
1096       set_rtm_state(NoRTM);
1097     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1098       // Generate RTM lock eliding code without abort ratio calculation code.
1099       set_rtm_state(UseRTM);
1100     } else if (UseRTMDeopt) {
1101       // Generate RTM lock eliding code and include abort ratio calculation
1102       // code if UseRTMDeopt is on.
1103       set_rtm_state(ProfileRTM);
1104     }
1105   }
1106 #endif
1107   if (debug_info()->recording_non_safepoints()) {
1108     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1109                         (comp_arena(), 8, 0, NULL));
1110     set_default_node_notes(Node_Notes::make(this));
1111   }
1112 
1113   // // -- Initialize types before each compile --
1114   // // Update cached type information
1115   // if( _method && _method->constants() )
1116   //   Type::update_loaded_types(_method, _method->constants());
1117 
1118   // Init alias_type map.
1119   if (!_do_escape_analysis && aliaslevel == 3)
1120     aliaslevel = 2;  // No unique types without escape analysis
1121   _AliasLevel = aliaslevel;
1122   const int grow_ats = 16;
1123   _max_alias_types = grow_ats;
1124   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1125   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1126   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1127   {
1128     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1129   }
1130   // Initialize the first few types.
1131   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1132   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1133   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1134   _num_alias_types = AliasIdxRaw+1;
1135   // Zero out the alias type cache.
1136   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1137   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1138   probe_alias_cache(NULL)->_index = AliasIdxTop;
1139 
1140   _intrinsics = NULL;
1141   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1142   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1143   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1144   register_library_intrinsics();
1145 }
1146 
1147 //---------------------------init_start----------------------------------------
1148 // Install the StartNode on this compile object.
1149 void Compile::init_start(StartNode* s) {
1150   if (failing())
1151     return; // already failing
1152   assert(s == start(), "");
1153 }
1154 
1155 /**
1156  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1157  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1158  * the ideal graph.
1159  */
1160 StartNode* Compile::start() const {
1161   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
1162   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1163     Node* start = root()->fast_out(i);
1164     if (start->is_Start()) {
1165       return start->as_Start();
1166     }
1167   }
1168   fatal("Did not find Start node!");
1169   return NULL;
1170 }
1171 
1172 //-------------------------------immutable_memory-------------------------------------
1173 // Access immutable memory
1174 Node* Compile::immutable_memory() {
1175   if (_immutable_memory != NULL) {
1176     return _immutable_memory;
1177   }
1178   StartNode* s = start();
1179   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1180     Node *p = s->fast_out(i);
1181     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1182       _immutable_memory = p;
1183       return _immutable_memory;
1184     }
1185   }
1186   ShouldNotReachHere();
1187   return NULL;
1188 }
1189 
1190 //----------------------set_cached_top_node------------------------------------
1191 // Install the cached top node, and make sure Node::is_top works correctly.
1192 void Compile::set_cached_top_node(Node* tn) {
1193   if (tn != NULL)  verify_top(tn);
1194   Node* old_top = _top;
1195   _top = tn;
1196   // Calling Node::setup_is_top allows the nodes the chance to adjust
1197   // their _out arrays.
1198   if (_top != NULL)     _top->setup_is_top();
1199   if (old_top != NULL)  old_top->setup_is_top();
1200   assert(_top == NULL || top()->is_top(), "");
1201 }
1202 
1203 #ifdef ASSERT
1204 uint Compile::count_live_nodes_by_graph_walk() {
1205   Unique_Node_List useful(comp_arena());
1206   // Get useful node list by walking the graph.
1207   identify_useful_nodes(useful);
1208   return useful.size();
1209 }
1210 
1211 void Compile::print_missing_nodes() {
1212 
1213   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1214   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1215     return;
1216   }
1217 
1218   // This is an expensive function. It is executed only when the user
1219   // specifies VerifyIdealNodeCount option or otherwise knows the
1220   // additional work that needs to be done to identify reachable nodes
1221   // by walking the flow graph and find the missing ones using
1222   // _dead_node_list.
1223 
1224   Unique_Node_List useful(comp_arena());
1225   // Get useful node list by walking the graph.
1226   identify_useful_nodes(useful);
1227 
1228   uint l_nodes = C->live_nodes();
1229   uint l_nodes_by_walk = useful.size();
1230 
1231   if (l_nodes != l_nodes_by_walk) {
1232     if (_log != NULL) {
1233       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1234       _log->stamp();
1235       _log->end_head();
1236     }
1237     VectorSet& useful_member_set = useful.member_set();
1238     int last_idx = l_nodes_by_walk;
1239     for (int i = 0; i < last_idx; i++) {
1240       if (useful_member_set.test(i)) {
1241         if (_dead_node_list.test(i)) {
1242           if (_log != NULL) {
1243             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1244           }
1245           if (PrintIdealNodeCount) {
1246             // Print the log message to tty
1247               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1248               useful.at(i)->dump();
1249           }
1250         }
1251       }
1252       else if (! _dead_node_list.test(i)) {
1253         if (_log != NULL) {
1254           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1255         }
1256         if (PrintIdealNodeCount) {
1257           // Print the log message to tty
1258           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1259         }
1260       }
1261     }
1262     if (_log != NULL) {
1263       _log->tail("mismatched_nodes");
1264     }
1265   }
1266 }
1267 void Compile::record_modified_node(Node* n) {
1268   if (_modified_nodes != NULL && !_inlining_incrementally &&
1269       n->outcnt() != 0 && !n->is_Con()) {
1270     _modified_nodes->push(n);
1271   }
1272 }
1273 
1274 void Compile::remove_modified_node(Node* n) {
1275   if (_modified_nodes != NULL) {
1276     _modified_nodes->remove(n);
1277   }
1278 }
1279 #endif
1280 
1281 #ifndef PRODUCT
1282 void Compile::verify_top(Node* tn) const {
1283   if (tn != NULL) {
1284     assert(tn->is_Con(), "top node must be a constant");
1285     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1286     assert(tn->in(0) != NULL, "must have live top node");
1287   }
1288 }
1289 #endif
1290 
1291 
1292 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1293 
1294 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1295   guarantee(arr != NULL, "");
1296   int num_blocks = arr->length();
1297   if (grow_by < num_blocks)  grow_by = num_blocks;
1298   int num_notes = grow_by * _node_notes_block_size;
1299   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1300   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1301   while (num_notes > 0) {
1302     arr->append(notes);
1303     notes     += _node_notes_block_size;
1304     num_notes -= _node_notes_block_size;
1305   }
1306   assert(num_notes == 0, "exact multiple, please");
1307 }
1308 
1309 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1310   if (source == NULL || dest == NULL)  return false;
1311 
1312   if (dest->is_Con())
1313     return false;               // Do not push debug info onto constants.
1314 
1315 #ifdef ASSERT
1316   // Leave a bread crumb trail pointing to the original node:
1317   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1318     dest->set_debug_orig(source);
1319   }
1320 #endif
1321 
1322   if (node_note_array() == NULL)
1323     return false;               // Not collecting any notes now.
1324 
1325   // This is a copy onto a pre-existing node, which may already have notes.
1326   // If both nodes have notes, do not overwrite any pre-existing notes.
1327   Node_Notes* source_notes = node_notes_at(source->_idx);
1328   if (source_notes == NULL || source_notes->is_clear())  return false;
1329   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1330   if (dest_notes == NULL || dest_notes->is_clear()) {
1331     return set_node_notes_at(dest->_idx, source_notes);
1332   }
1333 
1334   Node_Notes merged_notes = (*source_notes);
1335   // The order of operations here ensures that dest notes will win...
1336   merged_notes.update_from(dest_notes);
1337   return set_node_notes_at(dest->_idx, &merged_notes);
1338 }
1339 
1340 
1341 //--------------------------allow_range_check_smearing-------------------------
1342 // Gating condition for coalescing similar range checks.
1343 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1344 // single covering check that is at least as strong as any of them.
1345 // If the optimization succeeds, the simplified (strengthened) range check
1346 // will always succeed.  If it fails, we will deopt, and then give up
1347 // on the optimization.
1348 bool Compile::allow_range_check_smearing() const {
1349   // If this method has already thrown a range-check,
1350   // assume it was because we already tried range smearing
1351   // and it failed.
1352   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1353   return !already_trapped;
1354 }
1355 
1356 
1357 //------------------------------flatten_alias_type-----------------------------
1358 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1359   int offset = tj->offset();
1360   TypePtr::PTR ptr = tj->ptr();
1361 
1362   // Known instance (scalarizable allocation) alias only with itself.
1363   bool is_known_inst = tj->isa_oopptr() != NULL &&
1364                        tj->is_oopptr()->is_known_instance();
1365 
1366   // Process weird unsafe references.
1367   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1368     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1369     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1370     tj = TypeOopPtr::BOTTOM;
1371     ptr = tj->ptr();
1372     offset = tj->offset();
1373   }
1374 
1375   // Array pointers need some flattening
1376   const TypeAryPtr *ta = tj->isa_aryptr();
1377   if (ta && ta->is_stable()) {
1378     // Erase stability property for alias analysis.
1379     tj = ta = ta->cast_to_stable(false);
1380   }
1381   if( ta && is_known_inst ) {
1382     if ( offset != Type::OffsetBot &&
1383          offset > arrayOopDesc::length_offset_in_bytes() ) {
1384       offset = Type::OffsetBot; // Flatten constant access into array body only
1385       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1386     }
1387   } else if( ta && _AliasLevel >= 2 ) {
1388     // For arrays indexed by constant indices, we flatten the alias
1389     // space to include all of the array body.  Only the header, klass
1390     // and array length can be accessed un-aliased.
1391     if( offset != Type::OffsetBot ) {
1392       if( ta->const_oop() ) { // MethodData* or Method*
1393         offset = Type::OffsetBot;   // Flatten constant access into array body
1394         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1395       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1396         // range is OK as-is.
1397         tj = ta = TypeAryPtr::RANGE;
1398       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1399         tj = TypeInstPtr::KLASS; // all klass loads look alike
1400         ta = TypeAryPtr::RANGE; // generic ignored junk
1401         ptr = TypePtr::BotPTR;
1402       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1403         tj = TypeInstPtr::MARK;
1404         ta = TypeAryPtr::RANGE; // generic ignored junk
1405         ptr = TypePtr::BotPTR;
1406       } else {                  // Random constant offset into array body
1407         offset = Type::OffsetBot;   // Flatten constant access into array body
1408         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1409       }
1410     }
1411     // Arrays of fixed size alias with arrays of unknown size.
1412     if (ta->size() != TypeInt::POS) {
1413       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1414       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1415     }
1416     // Arrays of known objects become arrays of unknown objects.
1417     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1418       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1419       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1420     }
1421     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1422       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1423       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1424     }
1425     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1426     // cannot be distinguished by bytecode alone.
1427     if (ta->elem() == TypeInt::BOOL) {
1428       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1429       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1430       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1431     }
1432     // During the 2nd round of IterGVN, NotNull castings are removed.
1433     // Make sure the Bottom and NotNull variants alias the same.
1434     // Also, make sure exact and non-exact variants alias the same.
1435     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1436       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1437     }
1438   }
1439 
1440   // Oop pointers need some flattening
1441   const TypeInstPtr *to = tj->isa_instptr();
1442   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1443     ciInstanceKlass *k = to->klass()->as_instance_klass();
1444     if( ptr == TypePtr::Constant ) {
1445       if (to->klass() != ciEnv::current()->Class_klass() ||
1446           offset < k->size_helper() * wordSize) {
1447         // No constant oop pointers (such as Strings); they alias with
1448         // unknown strings.
1449         assert(!is_known_inst, "not scalarizable allocation");
1450         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1451       }
1452     } else if( is_known_inst ) {
1453       tj = to; // Keep NotNull and klass_is_exact for instance type
1454     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1455       // During the 2nd round of IterGVN, NotNull castings are removed.
1456       // Make sure the Bottom and NotNull variants alias the same.
1457       // Also, make sure exact and non-exact variants alias the same.
1458       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1459     }
1460     if (to->speculative() != NULL) {
1461       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1462     }
1463     // Canonicalize the holder of this field
1464     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1465       // First handle header references such as a LoadKlassNode, even if the
1466       // object's klass is unloaded at compile time (4965979).
1467       if (!is_known_inst) { // Do it only for non-instance types
1468         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1469       }
1470     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1471       // Static fields are in the space above the normal instance
1472       // fields in the java.lang.Class instance.
1473       if (to->klass() != ciEnv::current()->Class_klass()) {
1474         to = NULL;
1475         tj = TypeOopPtr::BOTTOM;
1476         offset = tj->offset();
1477       }
1478     } else {
1479       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1480       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1481         if( is_known_inst ) {
1482           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1483         } else {
1484           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1485         }
1486       }
1487     }
1488   }
1489 
1490   // Klass pointers to object array klasses need some flattening
1491   const TypeKlassPtr *tk = tj->isa_klassptr();
1492   if( tk ) {
1493     // If we are referencing a field within a Klass, we need
1494     // to assume the worst case of an Object.  Both exact and
1495     // inexact types must flatten to the same alias class so
1496     // use NotNull as the PTR.
1497     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1498 
1499       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1500                                    TypeKlassPtr::OBJECT->klass(),
1501                                    offset);
1502     }
1503 
1504     ciKlass* klass = tk->klass();
1505     if( klass->is_obj_array_klass() ) {
1506       ciKlass* k = TypeAryPtr::OOPS->klass();
1507       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1508         k = TypeInstPtr::BOTTOM->klass();
1509       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1510     }
1511 
1512     // Check for precise loads from the primary supertype array and force them
1513     // to the supertype cache alias index.  Check for generic array loads from
1514     // the primary supertype array and also force them to the supertype cache
1515     // alias index.  Since the same load can reach both, we need to merge
1516     // these 2 disparate memories into the same alias class.  Since the
1517     // primary supertype array is read-only, there's no chance of confusion
1518     // where we bypass an array load and an array store.
1519     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1520     if (offset == Type::OffsetBot ||
1521         (offset >= primary_supers_offset &&
1522          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1523         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1524       offset = in_bytes(Klass::secondary_super_cache_offset());
1525       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1526     }
1527   }
1528 
1529   // Flatten all Raw pointers together.
1530   if (tj->base() == Type::RawPtr)
1531     tj = TypeRawPtr::BOTTOM;
1532 
1533   if (tj->base() == Type::AnyPtr)
1534     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1535 
1536   // Flatten all to bottom for now
1537   switch( _AliasLevel ) {
1538   case 0:
1539     tj = TypePtr::BOTTOM;
1540     break;
1541   case 1:                       // Flatten to: oop, static, field or array
1542     switch (tj->base()) {
1543     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1544     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1545     case Type::AryPtr:   // do not distinguish arrays at all
1546     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1547     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1548     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1549     default: ShouldNotReachHere();
1550     }
1551     break;
1552   case 2:                       // No collapsing at level 2; keep all splits
1553   case 3:                       // No collapsing at level 3; keep all splits
1554     break;
1555   default:
1556     Unimplemented();
1557   }
1558 
1559   offset = tj->offset();
1560   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1561 
1562   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1563           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1564           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1565           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1566           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1567           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1568           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1569           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1570   assert( tj->ptr() != TypePtr::TopPTR &&
1571           tj->ptr() != TypePtr::AnyNull &&
1572           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1573 //    assert( tj->ptr() != TypePtr::Constant ||
1574 //            tj->base() == Type::RawPtr ||
1575 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1576 
1577   return tj;
1578 }
1579 
1580 void Compile::AliasType::Init(int i, const TypePtr* at) {
1581   _index = i;
1582   _adr_type = at;
1583   _field = NULL;
1584   _element = NULL;
1585   _is_rewritable = true; // default
1586   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1587   if (atoop != NULL && atoop->is_known_instance()) {
1588     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1589     _general_index = Compile::current()->get_alias_index(gt);
1590   } else {
1591     _general_index = 0;
1592   }
1593 }
1594 
1595 //---------------------------------print_on------------------------------------
1596 #ifndef PRODUCT
1597 void Compile::AliasType::print_on(outputStream* st) {
1598   if (index() < 10)
1599         st->print("@ <%d> ", index());
1600   else  st->print("@ <%d>",  index());
1601   st->print(is_rewritable() ? "   " : " RO");
1602   int offset = adr_type()->offset();
1603   if (offset == Type::OffsetBot)
1604         st->print(" +any");
1605   else  st->print(" +%-3d", offset);
1606   st->print(" in ");
1607   adr_type()->dump_on(st);
1608   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1609   if (field() != NULL && tjp) {
1610     if (tjp->klass()  != field()->holder() ||
1611         tjp->offset() != field()->offset_in_bytes()) {
1612       st->print(" != ");
1613       field()->print();
1614       st->print(" ***");
1615     }
1616   }
1617 }
1618 
1619 void print_alias_types() {
1620   Compile* C = Compile::current();
1621   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1622   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1623     C->alias_type(idx)->print_on(tty);
1624     tty->cr();
1625   }
1626 }
1627 #endif
1628 
1629 
1630 //----------------------------probe_alias_cache--------------------------------
1631 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1632   intptr_t key = (intptr_t) adr_type;
1633   key ^= key >> logAliasCacheSize;
1634   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1635 }
1636 
1637 
1638 //-----------------------------grow_alias_types--------------------------------
1639 void Compile::grow_alias_types() {
1640   const int old_ats  = _max_alias_types; // how many before?
1641   const int new_ats  = old_ats;          // how many more?
1642   const int grow_ats = old_ats+new_ats;  // how many now?
1643   _max_alias_types = grow_ats;
1644   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1645   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1646   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1647   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1648 }
1649 
1650 
1651 //--------------------------------find_alias_type------------------------------
1652 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1653   if (_AliasLevel == 0)
1654     return alias_type(AliasIdxBot);
1655 
1656   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1657   if (ace->_adr_type == adr_type) {
1658     return alias_type(ace->_index);
1659   }
1660 
1661   // Handle special cases.
1662   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1663   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1664 
1665   // Do it the slow way.
1666   const TypePtr* flat = flatten_alias_type(adr_type);
1667 
1668 #ifdef ASSERT
1669   assert(flat == flatten_alias_type(flat), "idempotent");
1670   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1671   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1672     const TypeOopPtr* foop = flat->is_oopptr();
1673     // Scalarizable allocations have exact klass always.
1674     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1675     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1676     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1677   }
1678   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1679 #endif
1680 
1681   int idx = AliasIdxTop;
1682   for (int i = 0; i < num_alias_types(); i++) {
1683     if (alias_type(i)->adr_type() == flat) {
1684       idx = i;
1685       break;
1686     }
1687   }
1688 
1689   if (idx == AliasIdxTop) {
1690     if (no_create)  return NULL;
1691     // Grow the array if necessary.
1692     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1693     // Add a new alias type.
1694     idx = _num_alias_types++;
1695     _alias_types[idx]->Init(idx, flat);
1696     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1697     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1698     if (flat->isa_instptr()) {
1699       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1700           && flat->is_instptr()->klass() == env()->Class_klass())
1701         alias_type(idx)->set_rewritable(false);
1702     }
1703     if (flat->isa_aryptr()) {
1704 #ifdef ASSERT
1705       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1706       // (T_BYTE has the weakest alignment and size restrictions...)
1707       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1708 #endif
1709       if (flat->offset() == TypePtr::OffsetBot) {
1710         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1711       }
1712     }
1713     if (flat->isa_klassptr()) {
1714       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1715         alias_type(idx)->set_rewritable(false);
1716       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1717         alias_type(idx)->set_rewritable(false);
1718       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1719         alias_type(idx)->set_rewritable(false);
1720       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1721         alias_type(idx)->set_rewritable(false);
1722     }
1723     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1724     // but the base pointer type is not distinctive enough to identify
1725     // references into JavaThread.)
1726 
1727     // Check for final fields.
1728     const TypeInstPtr* tinst = flat->isa_instptr();
1729     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1730       ciField* field;
1731       if (tinst->const_oop() != NULL &&
1732           tinst->klass() == ciEnv::current()->Class_klass() &&
1733           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1734         // static field
1735         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1736         field = k->get_field_by_offset(tinst->offset(), true);
1737       } else {
1738         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1739         field = k->get_field_by_offset(tinst->offset(), false);
1740       }
1741       assert(field == NULL ||
1742              original_field == NULL ||
1743              (field->holder() == original_field->holder() &&
1744               field->offset() == original_field->offset() &&
1745               field->is_static() == original_field->is_static()), "wrong field?");
1746       // Set field() and is_rewritable() attributes.
1747       if (field != NULL)  alias_type(idx)->set_field(field);
1748     }
1749   }
1750 
1751   // Fill the cache for next time.
1752   ace->_adr_type = adr_type;
1753   ace->_index    = idx;
1754   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1755 
1756   // Might as well try to fill the cache for the flattened version, too.
1757   AliasCacheEntry* face = probe_alias_cache(flat);
1758   if (face->_adr_type == NULL) {
1759     face->_adr_type = flat;
1760     face->_index    = idx;
1761     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1762   }
1763 
1764   return alias_type(idx);
1765 }
1766 
1767 
1768 Compile::AliasType* Compile::alias_type(ciField* field) {
1769   const TypeOopPtr* t;
1770   if (field->is_static())
1771     t = TypeInstPtr::make(field->holder()->java_mirror());
1772   else
1773     t = TypeOopPtr::make_from_klass_raw(field->holder());
1774   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1775   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1776   return atp;
1777 }
1778 
1779 
1780 //------------------------------have_alias_type--------------------------------
1781 bool Compile::have_alias_type(const TypePtr* adr_type) {
1782   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1783   if (ace->_adr_type == adr_type) {
1784     return true;
1785   }
1786 
1787   // Handle special cases.
1788   if (adr_type == NULL)             return true;
1789   if (adr_type == TypePtr::BOTTOM)  return true;
1790 
1791   return find_alias_type(adr_type, true, NULL) != NULL;
1792 }
1793 
1794 //-----------------------------must_alias--------------------------------------
1795 // True if all values of the given address type are in the given alias category.
1796 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1797   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1798   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1799   if (alias_idx == AliasIdxTop)         return false; // the empty category
1800   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1801 
1802   // the only remaining possible overlap is identity
1803   int adr_idx = get_alias_index(adr_type);
1804   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1805   assert(adr_idx == alias_idx ||
1806          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1807           && adr_type                       != TypeOopPtr::BOTTOM),
1808          "should not be testing for overlap with an unsafe pointer");
1809   return adr_idx == alias_idx;
1810 }
1811 
1812 //------------------------------can_alias--------------------------------------
1813 // True if any values of the given address type are in the given alias category.
1814 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1815   if (alias_idx == AliasIdxTop)         return false; // the empty category
1816   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1817   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1818   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1819 
1820   // the only remaining possible overlap is identity
1821   int adr_idx = get_alias_index(adr_type);
1822   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1823   return adr_idx == alias_idx;
1824 }
1825 
1826 
1827 
1828 //---------------------------pop_warm_call-------------------------------------
1829 WarmCallInfo* Compile::pop_warm_call() {
1830   WarmCallInfo* wci = _warm_calls;
1831   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1832   return wci;
1833 }
1834 
1835 //----------------------------Inline_Warm--------------------------------------
1836 int Compile::Inline_Warm() {
1837   // If there is room, try to inline some more warm call sites.
1838   // %%% Do a graph index compaction pass when we think we're out of space?
1839   if (!InlineWarmCalls)  return 0;
1840 
1841   int calls_made_hot = 0;
1842   int room_to_grow   = NodeCountInliningCutoff - unique();
1843   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1844   int amount_grown   = 0;
1845   WarmCallInfo* call;
1846   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1847     int est_size = (int)call->size();
1848     if (est_size > (room_to_grow - amount_grown)) {
1849       // This one won't fit anyway.  Get rid of it.
1850       call->make_cold();
1851       continue;
1852     }
1853     call->make_hot();
1854     calls_made_hot++;
1855     amount_grown   += est_size;
1856     amount_to_grow -= est_size;
1857   }
1858 
1859   if (calls_made_hot > 0)  set_major_progress();
1860   return calls_made_hot;
1861 }
1862 
1863 
1864 //----------------------------Finish_Warm--------------------------------------
1865 void Compile::Finish_Warm() {
1866   if (!InlineWarmCalls)  return;
1867   if (failing())  return;
1868   if (warm_calls() == NULL)  return;
1869 
1870   // Clean up loose ends, if we are out of space for inlining.
1871   WarmCallInfo* call;
1872   while ((call = pop_warm_call()) != NULL) {
1873     call->make_cold();
1874   }
1875 }
1876 
1877 //---------------------cleanup_loop_predicates-----------------------
1878 // Remove the opaque nodes that protect the predicates so that all unused
1879 // checks and uncommon_traps will be eliminated from the ideal graph
1880 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1881   if (predicate_count()==0) return;
1882   for (int i = predicate_count(); i > 0; i--) {
1883     Node * n = predicate_opaque1_node(i-1);
1884     assert(n->Opcode() == Op_Opaque1, "must be");
1885     igvn.replace_node(n, n->in(1));
1886   }
1887   assert(predicate_count()==0, "should be clean!");
1888 }
1889 
1890 // StringOpts and late inlining of string methods
1891 void Compile::inline_string_calls(bool parse_time) {
1892   {
1893     // remove useless nodes to make the usage analysis simpler
1894     ResourceMark rm;
1895     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1896   }
1897 
1898   {
1899     ResourceMark rm;
1900     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1901     PhaseStringOpts pso(initial_gvn(), for_igvn());
1902     print_method(PHASE_AFTER_STRINGOPTS, 3);
1903   }
1904 
1905   // now inline anything that we skipped the first time around
1906   if (!parse_time) {
1907     _late_inlines_pos = _late_inlines.length();
1908   }
1909 
1910   while (_string_late_inlines.length() > 0) {
1911     CallGenerator* cg = _string_late_inlines.pop();
1912     cg->do_late_inline();
1913     if (failing())  return;
1914   }
1915   _string_late_inlines.trunc_to(0);
1916 }
1917 
1918 // Late inlining of boxing methods
1919 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1920   if (_boxing_late_inlines.length() > 0) {
1921     assert(has_boxed_value(), "inconsistent");
1922 
1923     PhaseGVN* gvn = initial_gvn();
1924     set_inlining_incrementally(true);
1925 
1926     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1927     for_igvn()->clear();
1928     gvn->replace_with(&igvn);
1929 
1930     _late_inlines_pos = _late_inlines.length();
1931 
1932     while (_boxing_late_inlines.length() > 0) {
1933       CallGenerator* cg = _boxing_late_inlines.pop();
1934       cg->do_late_inline();
1935       if (failing())  return;
1936     }
1937     _boxing_late_inlines.trunc_to(0);
1938 
1939     {
1940       ResourceMark rm;
1941       PhaseRemoveUseless pru(gvn, for_igvn());
1942     }
1943 
1944     igvn = PhaseIterGVN(gvn);
1945     igvn.optimize();
1946 
1947     set_inlining_progress(false);
1948     set_inlining_incrementally(false);
1949   }
1950 }
1951 
1952 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1953   assert(IncrementalInline, "incremental inlining should be on");
1954   PhaseGVN* gvn = initial_gvn();
1955 
1956   set_inlining_progress(false);
1957   for_igvn()->clear();
1958   gvn->replace_with(&igvn);
1959 
1960   {
1961     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1962     int i = 0;
1963     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1964       CallGenerator* cg = _late_inlines.at(i);
1965       _late_inlines_pos = i+1;
1966       cg->do_late_inline();
1967       if (failing())  return;
1968     }
1969     int j = 0;
1970     for (; i < _late_inlines.length(); i++, j++) {
1971       _late_inlines.at_put(j, _late_inlines.at(i));
1972     }
1973     _late_inlines.trunc_to(j);
1974   }
1975 
1976   {
1977     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
1978     ResourceMark rm;
1979     PhaseRemoveUseless pru(gvn, for_igvn());
1980   }
1981 
1982   {
1983     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
1984     igvn = PhaseIterGVN(gvn);
1985   }
1986 }
1987 
1988 // Perform incremental inlining until bound on number of live nodes is reached
1989 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1990   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
1991 
1992   PhaseGVN* gvn = initial_gvn();
1993 
1994   set_inlining_incrementally(true);
1995   set_inlining_progress(true);
1996   uint low_live_nodes = 0;
1997 
1998   while(inlining_progress() && _late_inlines.length() > 0) {
1999 
2000     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2001       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2002         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2003         // PhaseIdealLoop is expensive so we only try it once we are
2004         // out of live nodes and we only try it again if the previous
2005         // helped got the number of nodes down significantly
2006         PhaseIdealLoop ideal_loop( igvn, false, true );
2007         if (failing())  return;
2008         low_live_nodes = live_nodes();
2009         _major_progress = true;
2010       }
2011 
2012       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2013         break;
2014       }
2015     }
2016 
2017     inline_incrementally_one(igvn);
2018 
2019     if (failing())  return;
2020 
2021     {
2022       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2023       igvn.optimize();
2024     }
2025 
2026     if (failing())  return;
2027   }
2028 
2029   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2030 
2031   if (_string_late_inlines.length() > 0) {
2032     assert(has_stringbuilder(), "inconsistent");
2033     for_igvn()->clear();
2034     initial_gvn()->replace_with(&igvn);
2035 
2036     inline_string_calls(false);
2037 
2038     if (failing())  return;
2039 
2040     {
2041       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2042       ResourceMark rm;
2043       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2044     }
2045 
2046     {
2047       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2048       igvn = PhaseIterGVN(gvn);
2049       igvn.optimize();
2050     }
2051   }
2052 
2053   set_inlining_incrementally(false);
2054 }
2055 
2056 
2057 //------------------------------Optimize---------------------------------------
2058 // Given a graph, optimize it.
2059 void Compile::Optimize() {
2060   TracePhase tp("optimizer", &timers[_t_optimizer]);
2061 
2062 #ifndef PRODUCT
2063   if (env()->break_at_compile()) {
2064     BREAKPOINT;
2065   }
2066 
2067 #endif
2068 
2069   ResourceMark rm;
2070   int          loop_opts_cnt;
2071 
2072   print_inlining_reinit();
2073 
2074   NOT_PRODUCT( verify_graph_edges(); )
2075 
2076   print_method(PHASE_AFTER_PARSING);
2077 
2078  {
2079   // Iterative Global Value Numbering, including ideal transforms
2080   // Initialize IterGVN with types and values from parse-time GVN
2081   PhaseIterGVN igvn(initial_gvn());
2082 #ifdef ASSERT
2083   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2084 #endif
2085   {
2086     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2087     igvn.optimize();
2088   }
2089 
2090   print_method(PHASE_ITER_GVN1, 2);
2091 
2092   if (failing())  return;
2093 
2094   inline_incrementally(igvn);
2095 
2096   print_method(PHASE_INCREMENTAL_INLINE, 2);
2097 
2098   if (failing())  return;
2099 
2100   if (eliminate_boxing()) {
2101     // Inline valueOf() methods now.
2102     inline_boxing_calls(igvn);
2103 
2104     if (AlwaysIncrementalInline) {
2105       inline_incrementally(igvn);
2106     }
2107 
2108     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2109 
2110     if (failing())  return;
2111   }
2112 
2113   // Remove the speculative part of types and clean up the graph from
2114   // the extra CastPP nodes whose only purpose is to carry them. Do
2115   // that early so that optimizations are not disrupted by the extra
2116   // CastPP nodes.
2117   remove_speculative_types(igvn);
2118 
2119   // No more new expensive nodes will be added to the list from here
2120   // so keep only the actual candidates for optimizations.
2121   cleanup_expensive_nodes(igvn);
2122 
2123   // Perform escape analysis
2124   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2125     if (has_loops()) {
2126       // Cleanup graph (remove dead nodes).
2127       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2128       PhaseIdealLoop ideal_loop( igvn, false, true );
2129       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2130       if (failing())  return;
2131     }
2132     ConnectionGraph::do_analysis(this, &igvn);
2133 
2134     if (failing())  return;
2135 
2136     // Optimize out fields loads from scalar replaceable allocations.
2137     igvn.optimize();
2138     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2139 
2140     if (failing())  return;
2141 
2142     if (congraph() != NULL && macro_count() > 0) {
2143       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2144       PhaseMacroExpand mexp(igvn);
2145       mexp.eliminate_macro_nodes();
2146       igvn.set_delay_transform(false);
2147 
2148       igvn.optimize();
2149       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2150 
2151       if (failing())  return;
2152     }
2153   }
2154 
2155   // Loop transforms on the ideal graph.  Range Check Elimination,
2156   // peeling, unrolling, etc.
2157 
2158   // Set loop opts counter
2159   loop_opts_cnt = num_loop_opts();
2160   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2161     {
2162       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2163       PhaseIdealLoop ideal_loop( igvn, true );
2164       loop_opts_cnt--;
2165       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2166       if (failing())  return;
2167     }
2168     // Loop opts pass if partial peeling occurred in previous pass
2169     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2170       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2171       PhaseIdealLoop ideal_loop( igvn, false );
2172       loop_opts_cnt--;
2173       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2174       if (failing())  return;
2175     }
2176     // Loop opts pass for loop-unrolling before CCP
2177     if(major_progress() && (loop_opts_cnt > 0)) {
2178       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2179       PhaseIdealLoop ideal_loop( igvn, false );
2180       loop_opts_cnt--;
2181       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2182     }
2183     if (!failing()) {
2184       // Verify that last round of loop opts produced a valid graph
2185       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2186       PhaseIdealLoop::verify(igvn);
2187     }
2188   }
2189   if (failing())  return;
2190 
2191   // Conditional Constant Propagation;
2192   PhaseCCP ccp( &igvn );
2193   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2194   {
2195     TracePhase tp("ccp", &timers[_t_ccp]);
2196     ccp.do_transform();
2197   }
2198   print_method(PHASE_CPP1, 2);
2199 
2200   assert( true, "Break here to ccp.dump_old2new_map()");
2201 
2202   // Iterative Global Value Numbering, including ideal transforms
2203   {
2204     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2205     igvn = ccp;
2206     igvn.optimize();
2207   }
2208 
2209   print_method(PHASE_ITER_GVN2, 2);
2210 
2211   if (failing())  return;
2212 
2213   // Loop transforms on the ideal graph.  Range Check Elimination,
2214   // peeling, unrolling, etc.
2215   if(loop_opts_cnt > 0) {
2216     debug_only( int cnt = 0; );
2217     while(major_progress() && (loop_opts_cnt > 0)) {
2218       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2219       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2220       PhaseIdealLoop ideal_loop( igvn, true);
2221       loop_opts_cnt--;
2222       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2223       if (failing())  return;
2224     }
2225   }
2226 
2227   {
2228     // Verify that all previous optimizations produced a valid graph
2229     // at least to this point, even if no loop optimizations were done.
2230     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2231     PhaseIdealLoop::verify(igvn);
2232   }
2233 
2234   {
2235     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2236     PhaseMacroExpand  mex(igvn);
2237     if (mex.expand_macro_nodes()) {
2238       assert(failing(), "must bail out w/ explicit message");
2239       return;
2240     }
2241   }
2242 
2243   DEBUG_ONLY( _modified_nodes = NULL; )
2244  } // (End scope of igvn; run destructor if necessary for asserts.)
2245 
2246   process_print_inlining();
2247   // A method with only infinite loops has no edges entering loops from root
2248   {
2249     TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2250     if (final_graph_reshaping()) {
2251       assert(failing(), "must bail out w/ explicit message");
2252       return;
2253     }
2254   }
2255 
2256   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2257 }
2258 
2259 
2260 //------------------------------Code_Gen---------------------------------------
2261 // Given a graph, generate code for it
2262 void Compile::Code_Gen() {
2263   if (failing()) {
2264     return;
2265   }
2266 
2267   // Perform instruction selection.  You might think we could reclaim Matcher
2268   // memory PDQ, but actually the Matcher is used in generating spill code.
2269   // Internals of the Matcher (including some VectorSets) must remain live
2270   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2271   // set a bit in reclaimed memory.
2272 
2273   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2274   // nodes.  Mapping is only valid at the root of each matched subtree.
2275   NOT_PRODUCT( verify_graph_edges(); )
2276 
2277   Matcher matcher;
2278   _matcher = &matcher;
2279   {
2280     TracePhase tp("matcher", &timers[_t_matcher]);
2281     matcher.match();
2282   }
2283   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2284   // nodes.  Mapping is only valid at the root of each matched subtree.
2285   NOT_PRODUCT( verify_graph_edges(); )
2286 
2287   // If you have too many nodes, or if matching has failed, bail out
2288   check_node_count(0, "out of nodes matching instructions");
2289   if (failing()) {
2290     return;
2291   }
2292 
2293   // Build a proper-looking CFG
2294   PhaseCFG cfg(node_arena(), root(), matcher);
2295   _cfg = &cfg;
2296   {
2297     TracePhase tp("scheduler", &timers[_t_scheduler]);
2298     bool success = cfg.do_global_code_motion();
2299     if (!success) {
2300       return;
2301     }
2302 
2303     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2304     NOT_PRODUCT( verify_graph_edges(); )
2305     debug_only( cfg.verify(); )
2306   }
2307 
2308   PhaseChaitin regalloc(unique(), cfg, matcher);
2309   _regalloc = &regalloc;
2310   {
2311     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2312     // Perform register allocation.  After Chaitin, use-def chains are
2313     // no longer accurate (at spill code) and so must be ignored.
2314     // Node->LRG->reg mappings are still accurate.
2315     _regalloc->Register_Allocate();
2316 
2317     // Bail out if the allocator builds too many nodes
2318     if (failing()) {
2319       return;
2320     }
2321   }
2322 
2323   // Prior to register allocation we kept empty basic blocks in case the
2324   // the allocator needed a place to spill.  After register allocation we
2325   // are not adding any new instructions.  If any basic block is empty, we
2326   // can now safely remove it.
2327   {
2328     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2329     cfg.remove_empty_blocks();
2330     if (do_freq_based_layout()) {
2331       PhaseBlockLayout layout(cfg);
2332     } else {
2333       cfg.set_loop_alignment();
2334     }
2335     cfg.fixup_flow();
2336   }
2337 
2338   // Apply peephole optimizations
2339   if( OptoPeephole ) {
2340     TracePhase tp("peephole", &timers[_t_peephole]);
2341     PhasePeephole peep( _regalloc, cfg);
2342     peep.do_transform();
2343   }
2344 
2345   // Do late expand if CPU requires this.
2346   if (Matcher::require_postalloc_expand) {
2347     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2348     cfg.postalloc_expand(_regalloc);
2349   }
2350 
2351   // Convert Nodes to instruction bits in a buffer
2352   {
2353     TraceTime tp("output", &timers[_t_output], CITime);
2354     Output();
2355   }
2356 
2357   print_method(PHASE_FINAL_CODE);
2358 
2359   // He's dead, Jim.
2360   _cfg     = (PhaseCFG*)0xdeadbeef;
2361   _regalloc = (PhaseChaitin*)0xdeadbeef;
2362 }
2363 
2364 
2365 //------------------------------dump_asm---------------------------------------
2366 // Dump formatted assembly
2367 #ifndef PRODUCT
2368 void Compile::dump_asm(int *pcs, uint pc_limit) {
2369   bool cut_short = false;
2370   tty->print_cr("#");
2371   tty->print("#  ");  _tf->dump();  tty->cr();
2372   tty->print_cr("#");
2373 
2374   // For all blocks
2375   int pc = 0x0;                 // Program counter
2376   char starts_bundle = ' ';
2377   _regalloc->dump_frame();
2378 
2379   Node *n = NULL;
2380   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2381     if (VMThread::should_terminate()) {
2382       cut_short = true;
2383       break;
2384     }
2385     Block* block = _cfg->get_block(i);
2386     if (block->is_connector() && !Verbose) {
2387       continue;
2388     }
2389     n = block->head();
2390     if (pcs && n->_idx < pc_limit) {
2391       tty->print("%3.3x   ", pcs[n->_idx]);
2392     } else {
2393       tty->print("      ");
2394     }
2395     block->dump_head(_cfg);
2396     if (block->is_connector()) {
2397       tty->print_cr("        # Empty connector block");
2398     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2399       tty->print_cr("        # Block is sole successor of call");
2400     }
2401 
2402     // For all instructions
2403     Node *delay = NULL;
2404     for (uint j = 0; j < block->number_of_nodes(); j++) {
2405       if (VMThread::should_terminate()) {
2406         cut_short = true;
2407         break;
2408       }
2409       n = block->get_node(j);
2410       if (valid_bundle_info(n)) {
2411         Bundle* bundle = node_bundling(n);
2412         if (bundle->used_in_unconditional_delay()) {
2413           delay = n;
2414           continue;
2415         }
2416         if (bundle->starts_bundle()) {
2417           starts_bundle = '+';
2418         }
2419       }
2420 
2421       if (WizardMode) {
2422         n->dump();
2423       }
2424 
2425       if( !n->is_Region() &&    // Dont print in the Assembly
2426           !n->is_Phi() &&       // a few noisely useless nodes
2427           !n->is_Proj() &&
2428           !n->is_MachTemp() &&
2429           !n->is_SafePointScalarObject() &&
2430           !n->is_Catch() &&     // Would be nice to print exception table targets
2431           !n->is_MergeMem() &&  // Not very interesting
2432           !n->is_top() &&       // Debug info table constants
2433           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2434           ) {
2435         if (pcs && n->_idx < pc_limit)
2436           tty->print("%3.3x", pcs[n->_idx]);
2437         else
2438           tty->print("   ");
2439         tty->print(" %c ", starts_bundle);
2440         starts_bundle = ' ';
2441         tty->print("\t");
2442         n->format(_regalloc, tty);
2443         tty->cr();
2444       }
2445 
2446       // If we have an instruction with a delay slot, and have seen a delay,
2447       // then back up and print it
2448       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2449         assert(delay != NULL, "no unconditional delay instruction");
2450         if (WizardMode) delay->dump();
2451 
2452         if (node_bundling(delay)->starts_bundle())
2453           starts_bundle = '+';
2454         if (pcs && n->_idx < pc_limit)
2455           tty->print("%3.3x", pcs[n->_idx]);
2456         else
2457           tty->print("   ");
2458         tty->print(" %c ", starts_bundle);
2459         starts_bundle = ' ';
2460         tty->print("\t");
2461         delay->format(_regalloc, tty);
2462         tty->cr();
2463         delay = NULL;
2464       }
2465 
2466       // Dump the exception table as well
2467       if( n->is_Catch() && (Verbose || WizardMode) ) {
2468         // Print the exception table for this offset
2469         _handler_table.print_subtable_for(pc);
2470       }
2471     }
2472 
2473     if (pcs && n->_idx < pc_limit)
2474       tty->print_cr("%3.3x", pcs[n->_idx]);
2475     else
2476       tty->cr();
2477 
2478     assert(cut_short || delay == NULL, "no unconditional delay branch");
2479 
2480   } // End of per-block dump
2481   tty->cr();
2482 
2483   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2484 }
2485 #endif
2486 
2487 //------------------------------Final_Reshape_Counts---------------------------
2488 // This class defines counters to help identify when a method
2489 // may/must be executed using hardware with only 24-bit precision.
2490 struct Final_Reshape_Counts : public StackObj {
2491   int  _call_count;             // count non-inlined 'common' calls
2492   int  _float_count;            // count float ops requiring 24-bit precision
2493   int  _double_count;           // count double ops requiring more precision
2494   int  _java_call_count;        // count non-inlined 'java' calls
2495   int  _inner_loop_count;       // count loops which need alignment
2496   VectorSet _visited;           // Visitation flags
2497   Node_List _tests;             // Set of IfNodes & PCTableNodes
2498 
2499   Final_Reshape_Counts() :
2500     _call_count(0), _float_count(0), _double_count(0),
2501     _java_call_count(0), _inner_loop_count(0),
2502     _visited( Thread::current()->resource_area() ) { }
2503 
2504   void inc_call_count  () { _call_count  ++; }
2505   void inc_float_count () { _float_count ++; }
2506   void inc_double_count() { _double_count++; }
2507   void inc_java_call_count() { _java_call_count++; }
2508   void inc_inner_loop_count() { _inner_loop_count++; }
2509 
2510   int  get_call_count  () const { return _call_count  ; }
2511   int  get_float_count () const { return _float_count ; }
2512   int  get_double_count() const { return _double_count; }
2513   int  get_java_call_count() const { return _java_call_count; }
2514   int  get_inner_loop_count() const { return _inner_loop_count; }
2515 };
2516 
2517 #ifdef ASSERT
2518 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2519   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2520   // Make sure the offset goes inside the instance layout.
2521   return k->contains_field_offset(tp->offset());
2522   // Note that OffsetBot and OffsetTop are very negative.
2523 }
2524 #endif
2525 
2526 // Eliminate trivially redundant StoreCMs and accumulate their
2527 // precedence edges.
2528 void Compile::eliminate_redundant_card_marks(Node* n) {
2529   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2530   if (n->in(MemNode::Address)->outcnt() > 1) {
2531     // There are multiple users of the same address so it might be
2532     // possible to eliminate some of the StoreCMs
2533     Node* mem = n->in(MemNode::Memory);
2534     Node* adr = n->in(MemNode::Address);
2535     Node* val = n->in(MemNode::ValueIn);
2536     Node* prev = n;
2537     bool done = false;
2538     // Walk the chain of StoreCMs eliminating ones that match.  As
2539     // long as it's a chain of single users then the optimization is
2540     // safe.  Eliminating partially redundant StoreCMs would require
2541     // cloning copies down the other paths.
2542     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2543       if (adr == mem->in(MemNode::Address) &&
2544           val == mem->in(MemNode::ValueIn)) {
2545         // redundant StoreCM
2546         if (mem->req() > MemNode::OopStore) {
2547           // Hasn't been processed by this code yet.
2548           n->add_prec(mem->in(MemNode::OopStore));
2549         } else {
2550           // Already converted to precedence edge
2551           for (uint i = mem->req(); i < mem->len(); i++) {
2552             // Accumulate any precedence edges
2553             if (mem->in(i) != NULL) {
2554               n->add_prec(mem->in(i));
2555             }
2556           }
2557           // Everything above this point has been processed.
2558           done = true;
2559         }
2560         // Eliminate the previous StoreCM
2561         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2562         assert(mem->outcnt() == 0, "should be dead");
2563         mem->disconnect_inputs(NULL, this);
2564       } else {
2565         prev = mem;
2566       }
2567       mem = prev->in(MemNode::Memory);
2568     }
2569   }
2570 }
2571 
2572 //------------------------------final_graph_reshaping_impl----------------------
2573 // Implement items 1-5 from final_graph_reshaping below.
2574 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2575 
2576   if ( n->outcnt() == 0 ) return; // dead node
2577   uint nop = n->Opcode();
2578 
2579   // Check for 2-input instruction with "last use" on right input.
2580   // Swap to left input.  Implements item (2).
2581   if( n->req() == 3 &&          // two-input instruction
2582       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2583       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2584       n->in(2)->outcnt() == 1 &&// right use IS a last use
2585       !n->in(2)->is_Con() ) {   // right use is not a constant
2586     // Check for commutative opcode
2587     switch( nop ) {
2588     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2589     case Op_MaxI:  case Op_MinI:
2590     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2591     case Op_AndL:  case Op_XorL:  case Op_OrL:
2592     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2593       // Move "last use" input to left by swapping inputs
2594       n->swap_edges(1, 2);
2595       break;
2596     }
2597     default:
2598       break;
2599     }
2600   }
2601 
2602 #ifdef ASSERT
2603   if( n->is_Mem() ) {
2604     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2605     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2606             // oop will be recorded in oop map if load crosses safepoint
2607             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2608                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2609             "raw memory operations should have control edge");
2610   }
2611 #endif
2612   // Count FPU ops and common calls, implements item (3)
2613   switch( nop ) {
2614   // Count all float operations that may use FPU
2615   case Op_AddF:
2616   case Op_SubF:
2617   case Op_MulF:
2618   case Op_DivF:
2619   case Op_NegF:
2620   case Op_ModF:
2621   case Op_ConvI2F:
2622   case Op_ConF:
2623   case Op_CmpF:
2624   case Op_CmpF3:
2625   // case Op_ConvL2F: // longs are split into 32-bit halves
2626     frc.inc_float_count();
2627     break;
2628 
2629   case Op_ConvF2D:
2630   case Op_ConvD2F:
2631     frc.inc_float_count();
2632     frc.inc_double_count();
2633     break;
2634 
2635   // Count all double operations that may use FPU
2636   case Op_AddD:
2637   case Op_SubD:
2638   case Op_MulD:
2639   case Op_DivD:
2640   case Op_NegD:
2641   case Op_ModD:
2642   case Op_ConvI2D:
2643   case Op_ConvD2I:
2644   // case Op_ConvL2D: // handled by leaf call
2645   // case Op_ConvD2L: // handled by leaf call
2646   case Op_ConD:
2647   case Op_CmpD:
2648   case Op_CmpD3:
2649     frc.inc_double_count();
2650     break;
2651   case Op_Opaque1:              // Remove Opaque Nodes before matching
2652   case Op_Opaque2:              // Remove Opaque Nodes before matching
2653   case Op_Opaque3:
2654     n->subsume_by(n->in(1), this);
2655     break;
2656   case Op_CallStaticJava:
2657   case Op_CallJava:
2658   case Op_CallDynamicJava:
2659     frc.inc_java_call_count(); // Count java call site;
2660   case Op_CallRuntime:
2661   case Op_CallLeaf:
2662   case Op_CallLeafNoFP: {
2663     assert( n->is_Call(), "" );
2664     CallNode *call = n->as_Call();
2665     // Count call sites where the FP mode bit would have to be flipped.
2666     // Do not count uncommon runtime calls:
2667     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2668     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2669     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2670       frc.inc_call_count();   // Count the call site
2671     } else {                  // See if uncommon argument is shared
2672       Node *n = call->in(TypeFunc::Parms);
2673       int nop = n->Opcode();
2674       // Clone shared simple arguments to uncommon calls, item (1).
2675       if( n->outcnt() > 1 &&
2676           !n->is_Proj() &&
2677           nop != Op_CreateEx &&
2678           nop != Op_CheckCastPP &&
2679           nop != Op_DecodeN &&
2680           nop != Op_DecodeNKlass &&
2681           !n->is_Mem() ) {
2682         Node *x = n->clone();
2683         call->set_req( TypeFunc::Parms, x );
2684       }
2685     }
2686     break;
2687   }
2688 
2689   case Op_StoreD:
2690   case Op_LoadD:
2691   case Op_LoadD_unaligned:
2692     frc.inc_double_count();
2693     goto handle_mem;
2694   case Op_StoreF:
2695   case Op_LoadF:
2696     frc.inc_float_count();
2697     goto handle_mem;
2698 
2699   case Op_StoreCM:
2700     {
2701       // Convert OopStore dependence into precedence edge
2702       Node* prec = n->in(MemNode::OopStore);
2703       n->del_req(MemNode::OopStore);
2704       n->add_prec(prec);
2705       eliminate_redundant_card_marks(n);
2706     }
2707 
2708     // fall through
2709 
2710   case Op_StoreB:
2711   case Op_StoreC:
2712   case Op_StorePConditional:
2713   case Op_StoreI:
2714   case Op_StoreL:
2715   case Op_StoreIConditional:
2716   case Op_StoreLConditional:
2717   case Op_CompareAndSwapI:
2718   case Op_CompareAndSwapL:
2719   case Op_CompareAndSwapP:
2720   case Op_CompareAndSwapN:
2721   case Op_GetAndAddI:
2722   case Op_GetAndAddL:
2723   case Op_GetAndSetI:
2724   case Op_GetAndSetL:
2725   case Op_GetAndSetP:
2726   case Op_GetAndSetN:
2727   case Op_StoreP:
2728   case Op_StoreN:
2729   case Op_StoreNKlass:
2730   case Op_LoadB:
2731   case Op_LoadUB:
2732   case Op_LoadUS:
2733   case Op_LoadI:
2734   case Op_LoadKlass:
2735   case Op_LoadNKlass:
2736   case Op_LoadL:
2737   case Op_LoadL_unaligned:
2738   case Op_LoadPLocked:
2739   case Op_LoadP:
2740   case Op_LoadN:
2741   case Op_LoadRange:
2742   case Op_LoadS: {
2743   handle_mem:
2744 #ifdef ASSERT
2745     if( VerifyOptoOopOffsets ) {
2746       assert( n->is_Mem(), "" );
2747       MemNode *mem  = (MemNode*)n;
2748       // Check to see if address types have grounded out somehow.
2749       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2750       assert( !tp || oop_offset_is_sane(tp), "" );
2751     }
2752 #endif
2753     break;
2754   }
2755 
2756   case Op_AddP: {               // Assert sane base pointers
2757     Node *addp = n->in(AddPNode::Address);
2758     assert( !addp->is_AddP() ||
2759             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2760             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2761             "Base pointers must match" );
2762 #ifdef _LP64
2763     if ((UseCompressedOops || UseCompressedClassPointers) &&
2764         addp->Opcode() == Op_ConP &&
2765         addp == n->in(AddPNode::Base) &&
2766         n->in(AddPNode::Offset)->is_Con()) {
2767       // Use addressing with narrow klass to load with offset on x86.
2768       // On sparc loading 32-bits constant and decoding it have less
2769       // instructions (4) then load 64-bits constant (7).
2770       // Do this transformation here since IGVN will convert ConN back to ConP.
2771       const Type* t = addp->bottom_type();
2772       if (t->isa_oopptr() || t->isa_klassptr()) {
2773         Node* nn = NULL;
2774 
2775         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2776 
2777         // Look for existing ConN node of the same exact type.
2778         Node* r  = root();
2779         uint cnt = r->outcnt();
2780         for (uint i = 0; i < cnt; i++) {
2781           Node* m = r->raw_out(i);
2782           if (m!= NULL && m->Opcode() == op &&
2783               m->bottom_type()->make_ptr() == t) {
2784             nn = m;
2785             break;
2786           }
2787         }
2788         if (nn != NULL) {
2789           // Decode a narrow oop to match address
2790           // [R12 + narrow_oop_reg<<3 + offset]
2791           if (t->isa_oopptr()) {
2792             nn = new DecodeNNode(nn, t);
2793           } else {
2794             nn = new DecodeNKlassNode(nn, t);
2795           }
2796           n->set_req(AddPNode::Base, nn);
2797           n->set_req(AddPNode::Address, nn);
2798           if (addp->outcnt() == 0) {
2799             addp->disconnect_inputs(NULL, this);
2800           }
2801         }
2802       }
2803     }
2804 #endif
2805     break;
2806   }
2807 
2808 #ifdef _LP64
2809   case Op_CastPP:
2810     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2811       Node* in1 = n->in(1);
2812       const Type* t = n->bottom_type();
2813       Node* new_in1 = in1->clone();
2814       new_in1->as_DecodeN()->set_type(t);
2815 
2816       if (!Matcher::narrow_oop_use_complex_address()) {
2817         //
2818         // x86, ARM and friends can handle 2 adds in addressing mode
2819         // and Matcher can fold a DecodeN node into address by using
2820         // a narrow oop directly and do implicit NULL check in address:
2821         //
2822         // [R12 + narrow_oop_reg<<3 + offset]
2823         // NullCheck narrow_oop_reg
2824         //
2825         // On other platforms (Sparc) we have to keep new DecodeN node and
2826         // use it to do implicit NULL check in address:
2827         //
2828         // decode_not_null narrow_oop_reg, base_reg
2829         // [base_reg + offset]
2830         // NullCheck base_reg
2831         //
2832         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2833         // to keep the information to which NULL check the new DecodeN node
2834         // corresponds to use it as value in implicit_null_check().
2835         //
2836         new_in1->set_req(0, n->in(0));
2837       }
2838 
2839       n->subsume_by(new_in1, this);
2840       if (in1->outcnt() == 0) {
2841         in1->disconnect_inputs(NULL, this);
2842       }
2843     }
2844     break;
2845 
2846   case Op_CmpP:
2847     // Do this transformation here to preserve CmpPNode::sub() and
2848     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2849     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2850       Node* in1 = n->in(1);
2851       Node* in2 = n->in(2);
2852       if (!in1->is_DecodeNarrowPtr()) {
2853         in2 = in1;
2854         in1 = n->in(2);
2855       }
2856       assert(in1->is_DecodeNarrowPtr(), "sanity");
2857 
2858       Node* new_in2 = NULL;
2859       if (in2->is_DecodeNarrowPtr()) {
2860         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2861         new_in2 = in2->in(1);
2862       } else if (in2->Opcode() == Op_ConP) {
2863         const Type* t = in2->bottom_type();
2864         if (t == TypePtr::NULL_PTR) {
2865           assert(in1->is_DecodeN(), "compare klass to null?");
2866           // Don't convert CmpP null check into CmpN if compressed
2867           // oops implicit null check is not generated.
2868           // This will allow to generate normal oop implicit null check.
2869           if (Matcher::gen_narrow_oop_implicit_null_checks())
2870             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2871           //
2872           // This transformation together with CastPP transformation above
2873           // will generated code for implicit NULL checks for compressed oops.
2874           //
2875           // The original code after Optimize()
2876           //
2877           //    LoadN memory, narrow_oop_reg
2878           //    decode narrow_oop_reg, base_reg
2879           //    CmpP base_reg, NULL
2880           //    CastPP base_reg // NotNull
2881           //    Load [base_reg + offset], val_reg
2882           //
2883           // after these transformations will be
2884           //
2885           //    LoadN memory, narrow_oop_reg
2886           //    CmpN narrow_oop_reg, NULL
2887           //    decode_not_null narrow_oop_reg, base_reg
2888           //    Load [base_reg + offset], val_reg
2889           //
2890           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2891           // since narrow oops can be used in debug info now (see the code in
2892           // final_graph_reshaping_walk()).
2893           //
2894           // At the end the code will be matched to
2895           // on x86:
2896           //
2897           //    Load_narrow_oop memory, narrow_oop_reg
2898           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2899           //    NullCheck narrow_oop_reg
2900           //
2901           // and on sparc:
2902           //
2903           //    Load_narrow_oop memory, narrow_oop_reg
2904           //    decode_not_null narrow_oop_reg, base_reg
2905           //    Load [base_reg + offset], val_reg
2906           //    NullCheck base_reg
2907           //
2908         } else if (t->isa_oopptr()) {
2909           new_in2 = ConNode::make(t->make_narrowoop());
2910         } else if (t->isa_klassptr()) {
2911           new_in2 = ConNode::make(t->make_narrowklass());
2912         }
2913       }
2914       if (new_in2 != NULL) {
2915         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2916         n->subsume_by(cmpN, this);
2917         if (in1->outcnt() == 0) {
2918           in1->disconnect_inputs(NULL, this);
2919         }
2920         if (in2->outcnt() == 0) {
2921           in2->disconnect_inputs(NULL, this);
2922         }
2923       }
2924     }
2925     break;
2926 
2927   case Op_DecodeN:
2928   case Op_DecodeNKlass:
2929     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2930     // DecodeN could be pinned when it can't be fold into
2931     // an address expression, see the code for Op_CastPP above.
2932     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2933     break;
2934 
2935   case Op_EncodeP:
2936   case Op_EncodePKlass: {
2937     Node* in1 = n->in(1);
2938     if (in1->is_DecodeNarrowPtr()) {
2939       n->subsume_by(in1->in(1), this);
2940     } else if (in1->Opcode() == Op_ConP) {
2941       const Type* t = in1->bottom_type();
2942       if (t == TypePtr::NULL_PTR) {
2943         assert(t->isa_oopptr(), "null klass?");
2944         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
2945       } else if (t->isa_oopptr()) {
2946         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
2947       } else if (t->isa_klassptr()) {
2948         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
2949       }
2950     }
2951     if (in1->outcnt() == 0) {
2952       in1->disconnect_inputs(NULL, this);
2953     }
2954     break;
2955   }
2956 
2957   case Op_Proj: {
2958     if (OptimizeStringConcat) {
2959       ProjNode* p = n->as_Proj();
2960       if (p->_is_io_use) {
2961         // Separate projections were used for the exception path which
2962         // are normally removed by a late inline.  If it wasn't inlined
2963         // then they will hang around and should just be replaced with
2964         // the original one.
2965         Node* proj = NULL;
2966         // Replace with just one
2967         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2968           Node *use = i.get();
2969           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2970             proj = use;
2971             break;
2972           }
2973         }
2974         assert(proj != NULL, "must be found");
2975         p->subsume_by(proj, this);
2976       }
2977     }
2978     break;
2979   }
2980 
2981   case Op_Phi:
2982     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2983       // The EncodeP optimization may create Phi with the same edges
2984       // for all paths. It is not handled well by Register Allocator.
2985       Node* unique_in = n->in(1);
2986       assert(unique_in != NULL, "");
2987       uint cnt = n->req();
2988       for (uint i = 2; i < cnt; i++) {
2989         Node* m = n->in(i);
2990         assert(m != NULL, "");
2991         if (unique_in != m)
2992           unique_in = NULL;
2993       }
2994       if (unique_in != NULL) {
2995         n->subsume_by(unique_in, this);
2996       }
2997     }
2998     break;
2999 
3000 #endif
3001 
3002   case Op_ModI:
3003     if (UseDivMod) {
3004       // Check if a%b and a/b both exist
3005       Node* d = n->find_similar(Op_DivI);
3006       if (d) {
3007         // Replace them with a fused divmod if supported
3008         if (Matcher::has_match_rule(Op_DivModI)) {
3009           DivModINode* divmod = DivModINode::make(n);
3010           d->subsume_by(divmod->div_proj(), this);
3011           n->subsume_by(divmod->mod_proj(), this);
3012         } else {
3013           // replace a%b with a-((a/b)*b)
3014           Node* mult = new MulINode(d, d->in(2));
3015           Node* sub  = new SubINode(d->in(1), mult);
3016           n->subsume_by(sub, this);
3017         }
3018       }
3019     }
3020     break;
3021 
3022   case Op_ModL:
3023     if (UseDivMod) {
3024       // Check if a%b and a/b both exist
3025       Node* d = n->find_similar(Op_DivL);
3026       if (d) {
3027         // Replace them with a fused divmod if supported
3028         if (Matcher::has_match_rule(Op_DivModL)) {
3029           DivModLNode* divmod = DivModLNode::make(n);
3030           d->subsume_by(divmod->div_proj(), this);
3031           n->subsume_by(divmod->mod_proj(), this);
3032         } else {
3033           // replace a%b with a-((a/b)*b)
3034           Node* mult = new MulLNode(d, d->in(2));
3035           Node* sub  = new SubLNode(d->in(1), mult);
3036           n->subsume_by(sub, this);
3037         }
3038       }
3039     }
3040     break;
3041 
3042   case Op_LoadVector:
3043   case Op_StoreVector:
3044     break;
3045 
3046   case Op_PackB:
3047   case Op_PackS:
3048   case Op_PackI:
3049   case Op_PackF:
3050   case Op_PackL:
3051   case Op_PackD:
3052     if (n->req()-1 > 2) {
3053       // Replace many operand PackNodes with a binary tree for matching
3054       PackNode* p = (PackNode*) n;
3055       Node* btp = p->binary_tree_pack(1, n->req());
3056       n->subsume_by(btp, this);
3057     }
3058     break;
3059   case Op_Loop:
3060   case Op_CountedLoop:
3061     if (n->as_Loop()->is_inner_loop()) {
3062       frc.inc_inner_loop_count();
3063     }
3064     break;
3065   case Op_LShiftI:
3066   case Op_RShiftI:
3067   case Op_URShiftI:
3068   case Op_LShiftL:
3069   case Op_RShiftL:
3070   case Op_URShiftL:
3071     if (Matcher::need_masked_shift_count) {
3072       // The cpu's shift instructions don't restrict the count to the
3073       // lower 5/6 bits. We need to do the masking ourselves.
3074       Node* in2 = n->in(2);
3075       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3076       const TypeInt* t = in2->find_int_type();
3077       if (t != NULL && t->is_con()) {
3078         juint shift = t->get_con();
3079         if (shift > mask) { // Unsigned cmp
3080           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3081         }
3082       } else {
3083         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3084           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3085           n->set_req(2, shift);
3086         }
3087       }
3088       if (in2->outcnt() == 0) { // Remove dead node
3089         in2->disconnect_inputs(NULL, this);
3090       }
3091     }
3092     break;
3093   case Op_MemBarStoreStore:
3094   case Op_MemBarRelease:
3095     // Break the link with AllocateNode: it is no longer useful and
3096     // confuses register allocation.
3097     if (n->req() > MemBarNode::Precedent) {
3098       n->set_req(MemBarNode::Precedent, top());
3099     }
3100     break;
3101   default:
3102     assert( !n->is_Call(), "" );
3103     assert( !n->is_Mem(), "" );
3104     break;
3105   }
3106 
3107   // Collect CFG split points
3108   if (n->is_MultiBranch())
3109     frc._tests.push(n);
3110 }
3111 
3112 //------------------------------final_graph_reshaping_walk---------------------
3113 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3114 // requires that the walk visits a node's inputs before visiting the node.
3115 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3116   ResourceArea *area = Thread::current()->resource_area();
3117   Unique_Node_List sfpt(area);
3118 
3119   frc._visited.set(root->_idx); // first, mark node as visited
3120   uint cnt = root->req();
3121   Node *n = root;
3122   uint  i = 0;
3123   while (true) {
3124     if (i < cnt) {
3125       // Place all non-visited non-null inputs onto stack
3126       Node* m = n->in(i);
3127       ++i;
3128       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3129         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3130           // compute worst case interpreter size in case of a deoptimization
3131           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3132 
3133           sfpt.push(m);
3134         }
3135         cnt = m->req();
3136         nstack.push(n, i); // put on stack parent and next input's index
3137         n = m;
3138         i = 0;
3139       }
3140     } else {
3141       // Now do post-visit work
3142       final_graph_reshaping_impl( n, frc );
3143       if (nstack.is_empty())
3144         break;             // finished
3145       n = nstack.node();   // Get node from stack
3146       cnt = n->req();
3147       i = nstack.index();
3148       nstack.pop();        // Shift to the next node on stack
3149     }
3150   }
3151 
3152   // Skip next transformation if compressed oops are not used.
3153   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3154       (!UseCompressedOops && !UseCompressedClassPointers))
3155     return;
3156 
3157   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3158   // It could be done for an uncommon traps or any safepoints/calls
3159   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3160   while (sfpt.size() > 0) {
3161     n = sfpt.pop();
3162     JVMState *jvms = n->as_SafePoint()->jvms();
3163     assert(jvms != NULL, "sanity");
3164     int start = jvms->debug_start();
3165     int end   = n->req();
3166     bool is_uncommon = (n->is_CallStaticJava() &&
3167                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3168     for (int j = start; j < end; j++) {
3169       Node* in = n->in(j);
3170       if (in->is_DecodeNarrowPtr()) {
3171         bool safe_to_skip = true;
3172         if (!is_uncommon ) {
3173           // Is it safe to skip?
3174           for (uint i = 0; i < in->outcnt(); i++) {
3175             Node* u = in->raw_out(i);
3176             if (!u->is_SafePoint() ||
3177                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3178               safe_to_skip = false;
3179             }
3180           }
3181         }
3182         if (safe_to_skip) {
3183           n->set_req(j, in->in(1));
3184         }
3185         if (in->outcnt() == 0) {
3186           in->disconnect_inputs(NULL, this);
3187         }
3188       }
3189     }
3190   }
3191 }
3192 
3193 //------------------------------final_graph_reshaping--------------------------
3194 // Final Graph Reshaping.
3195 //
3196 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3197 //     and not commoned up and forced early.  Must come after regular
3198 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3199 //     inputs to Loop Phis; these will be split by the allocator anyways.
3200 //     Remove Opaque nodes.
3201 // (2) Move last-uses by commutative operations to the left input to encourage
3202 //     Intel update-in-place two-address operations and better register usage
3203 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3204 //     calls canonicalizing them back.
3205 // (3) Count the number of double-precision FP ops, single-precision FP ops
3206 //     and call sites.  On Intel, we can get correct rounding either by
3207 //     forcing singles to memory (requires extra stores and loads after each
3208 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3209 //     clearing the mode bit around call sites).  The mode bit is only used
3210 //     if the relative frequency of single FP ops to calls is low enough.
3211 //     This is a key transform for SPEC mpeg_audio.
3212 // (4) Detect infinite loops; blobs of code reachable from above but not
3213 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3214 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3215 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3216 //     Detection is by looking for IfNodes where only 1 projection is
3217 //     reachable from below or CatchNodes missing some targets.
3218 // (5) Assert for insane oop offsets in debug mode.
3219 
3220 bool Compile::final_graph_reshaping() {
3221   // an infinite loop may have been eliminated by the optimizer,
3222   // in which case the graph will be empty.
3223   if (root()->req() == 1) {
3224     record_method_not_compilable("trivial infinite loop");
3225     return true;
3226   }
3227 
3228   // Expensive nodes have their control input set to prevent the GVN
3229   // from freely commoning them. There's no GVN beyond this point so
3230   // no need to keep the control input. We want the expensive nodes to
3231   // be freely moved to the least frequent code path by gcm.
3232   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3233   for (int i = 0; i < expensive_count(); i++) {
3234     _expensive_nodes->at(i)->set_req(0, NULL);
3235   }
3236 
3237   Final_Reshape_Counts frc;
3238 
3239   // Visit everybody reachable!
3240   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3241   Node_Stack nstack(unique() >> 1);
3242   final_graph_reshaping_walk(nstack, root(), frc);
3243 
3244   // Check for unreachable (from below) code (i.e., infinite loops).
3245   for( uint i = 0; i < frc._tests.size(); i++ ) {
3246     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3247     // Get number of CFG targets.
3248     // Note that PCTables include exception targets after calls.
3249     uint required_outcnt = n->required_outcnt();
3250     if (n->outcnt() != required_outcnt) {
3251       // Check for a few special cases.  Rethrow Nodes never take the
3252       // 'fall-thru' path, so expected kids is 1 less.
3253       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3254         if (n->in(0)->in(0)->is_Call()) {
3255           CallNode *call = n->in(0)->in(0)->as_Call();
3256           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3257             required_outcnt--;      // Rethrow always has 1 less kid
3258           } else if (call->req() > TypeFunc::Parms &&
3259                      call->is_CallDynamicJava()) {
3260             // Check for null receiver. In such case, the optimizer has
3261             // detected that the virtual call will always result in a null
3262             // pointer exception. The fall-through projection of this CatchNode
3263             // will not be populated.
3264             Node *arg0 = call->in(TypeFunc::Parms);
3265             if (arg0->is_Type() &&
3266                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3267               required_outcnt--;
3268             }
3269           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3270                      call->req() > TypeFunc::Parms+1 &&
3271                      call->is_CallStaticJava()) {
3272             // Check for negative array length. In such case, the optimizer has
3273             // detected that the allocation attempt will always result in an
3274             // exception. There is no fall-through projection of this CatchNode .
3275             Node *arg1 = call->in(TypeFunc::Parms+1);
3276             if (arg1->is_Type() &&
3277                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3278               required_outcnt--;
3279             }
3280           }
3281         }
3282       }
3283       // Recheck with a better notion of 'required_outcnt'
3284       if (n->outcnt() != required_outcnt) {
3285         record_method_not_compilable("malformed control flow");
3286         return true;            // Not all targets reachable!
3287       }
3288     }
3289     // Check that I actually visited all kids.  Unreached kids
3290     // must be infinite loops.
3291     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3292       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3293         record_method_not_compilable("infinite loop");
3294         return true;            // Found unvisited kid; must be unreach
3295       }
3296   }
3297 
3298   // If original bytecodes contained a mixture of floats and doubles
3299   // check if the optimizer has made it homogenous, item (3).
3300   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3301       frc.get_float_count() > 32 &&
3302       frc.get_double_count() == 0 &&
3303       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3304     set_24_bit_selection_and_mode( false,  true );
3305   }
3306 
3307   set_java_calls(frc.get_java_call_count());
3308   set_inner_loops(frc.get_inner_loop_count());
3309 
3310   // No infinite loops, no reason to bail out.
3311   return false;
3312 }
3313 
3314 //-----------------------------too_many_traps----------------------------------
3315 // Report if there are too many traps at the current method and bci.
3316 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3317 bool Compile::too_many_traps(ciMethod* method,
3318                              int bci,
3319                              Deoptimization::DeoptReason reason) {
3320   ciMethodData* md = method->method_data();
3321   if (md->is_empty()) {
3322     // Assume the trap has not occurred, or that it occurred only
3323     // because of a transient condition during start-up in the interpreter.
3324     return false;
3325   }
3326   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3327   if (md->has_trap_at(bci, m, reason) != 0) {
3328     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3329     // Also, if there are multiple reasons, or if there is no per-BCI record,
3330     // assume the worst.
3331     if (log())
3332       log()->elem("observe trap='%s' count='%d'",
3333                   Deoptimization::trap_reason_name(reason),
3334                   md->trap_count(reason));
3335     return true;
3336   } else {
3337     // Ignore method/bci and see if there have been too many globally.
3338     return too_many_traps(reason, md);
3339   }
3340 }
3341 
3342 // Less-accurate variant which does not require a method and bci.
3343 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3344                              ciMethodData* logmd) {
3345   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3346     // Too many traps globally.
3347     // Note that we use cumulative trap_count, not just md->trap_count.
3348     if (log()) {
3349       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3350       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3351                   Deoptimization::trap_reason_name(reason),
3352                   mcount, trap_count(reason));
3353     }
3354     return true;
3355   } else {
3356     // The coast is clear.
3357     return false;
3358   }
3359 }
3360 
3361 //--------------------------too_many_recompiles--------------------------------
3362 // Report if there are too many recompiles at the current method and bci.
3363 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3364 // Is not eager to return true, since this will cause the compiler to use
3365 // Action_none for a trap point, to avoid too many recompilations.
3366 bool Compile::too_many_recompiles(ciMethod* method,
3367                                   int bci,
3368                                   Deoptimization::DeoptReason reason) {
3369   ciMethodData* md = method->method_data();
3370   if (md->is_empty()) {
3371     // Assume the trap has not occurred, or that it occurred only
3372     // because of a transient condition during start-up in the interpreter.
3373     return false;
3374   }
3375   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3376   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3377   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3378   Deoptimization::DeoptReason per_bc_reason
3379     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3380   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3381   if ((per_bc_reason == Deoptimization::Reason_none
3382        || md->has_trap_at(bci, m, reason) != 0)
3383       // The trap frequency measure we care about is the recompile count:
3384       && md->trap_recompiled_at(bci, m)
3385       && md->overflow_recompile_count() >= bc_cutoff) {
3386     // Do not emit a trap here if it has already caused recompilations.
3387     // Also, if there are multiple reasons, or if there is no per-BCI record,
3388     // assume the worst.
3389     if (log())
3390       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3391                   Deoptimization::trap_reason_name(reason),
3392                   md->trap_count(reason),
3393                   md->overflow_recompile_count());
3394     return true;
3395   } else if (trap_count(reason) != 0
3396              && decompile_count() >= m_cutoff) {
3397     // Too many recompiles globally, and we have seen this sort of trap.
3398     // Use cumulative decompile_count, not just md->decompile_count.
3399     if (log())
3400       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3401                   Deoptimization::trap_reason_name(reason),
3402                   md->trap_count(reason), trap_count(reason),
3403                   md->decompile_count(), decompile_count());
3404     return true;
3405   } else {
3406     // The coast is clear.
3407     return false;
3408   }
3409 }
3410 
3411 // Compute when not to trap. Used by matching trap based nodes and
3412 // NullCheck optimization.
3413 void Compile::set_allowed_deopt_reasons() {
3414   _allowed_reasons = 0;
3415   if (is_method_compilation()) {
3416     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3417       assert(rs < BitsPerInt, "recode bit map");
3418       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3419         _allowed_reasons |= nth_bit(rs);
3420       }
3421     }
3422   }
3423 }
3424 
3425 #ifndef PRODUCT
3426 //------------------------------verify_graph_edges---------------------------
3427 // Walk the Graph and verify that there is a one-to-one correspondence
3428 // between Use-Def edges and Def-Use edges in the graph.
3429 void Compile::verify_graph_edges(bool no_dead_code) {
3430   if (VerifyGraphEdges) {
3431     ResourceArea *area = Thread::current()->resource_area();
3432     Unique_Node_List visited(area);
3433     // Call recursive graph walk to check edges
3434     _root->verify_edges(visited);
3435     if (no_dead_code) {
3436       // Now make sure that no visited node is used by an unvisited node.
3437       bool dead_nodes = false;
3438       Unique_Node_List checked(area);
3439       while (visited.size() > 0) {
3440         Node* n = visited.pop();
3441         checked.push(n);
3442         for (uint i = 0; i < n->outcnt(); i++) {
3443           Node* use = n->raw_out(i);
3444           if (checked.member(use))  continue;  // already checked
3445           if (visited.member(use))  continue;  // already in the graph
3446           if (use->is_Con())        continue;  // a dead ConNode is OK
3447           // At this point, we have found a dead node which is DU-reachable.
3448           if (!dead_nodes) {
3449             tty->print_cr("*** Dead nodes reachable via DU edges:");
3450             dead_nodes = true;
3451           }
3452           use->dump(2);
3453           tty->print_cr("---");
3454           checked.push(use);  // No repeats; pretend it is now checked.
3455         }
3456       }
3457       assert(!dead_nodes, "using nodes must be reachable from root");
3458     }
3459   }
3460 }
3461 
3462 // Verify GC barriers consistency
3463 // Currently supported:
3464 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3465 void Compile::verify_barriers() {
3466   if (UseG1GC) {
3467     // Verify G1 pre-barriers
3468     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3469 
3470     ResourceArea *area = Thread::current()->resource_area();
3471     Unique_Node_List visited(area);
3472     Node_List worklist(area);
3473     // We're going to walk control flow backwards starting from the Root
3474     worklist.push(_root);
3475     while (worklist.size() > 0) {
3476       Node* x = worklist.pop();
3477       if (x == NULL || x == top()) continue;
3478       if (visited.member(x)) {
3479         continue;
3480       } else {
3481         visited.push(x);
3482       }
3483 
3484       if (x->is_Region()) {
3485         for (uint i = 1; i < x->req(); i++) {
3486           worklist.push(x->in(i));
3487         }
3488       } else {
3489         worklist.push(x->in(0));
3490         // We are looking for the pattern:
3491         //                            /->ThreadLocal
3492         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3493         //              \->ConI(0)
3494         // We want to verify that the If and the LoadB have the same control
3495         // See GraphKit::g1_write_barrier_pre()
3496         if (x->is_If()) {
3497           IfNode *iff = x->as_If();
3498           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3499             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3500             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3501                 && cmp->in(1)->is_Load()) {
3502               LoadNode* load = cmp->in(1)->as_Load();
3503               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3504                   && load->in(2)->in(3)->is_Con()
3505                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3506 
3507                 Node* if_ctrl = iff->in(0);
3508                 Node* load_ctrl = load->in(0);
3509 
3510                 if (if_ctrl != load_ctrl) {
3511                   // Skip possible CProj->NeverBranch in infinite loops
3512                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3513                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3514                     if_ctrl = if_ctrl->in(0)->in(0);
3515                   }
3516                 }
3517                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3518               }
3519             }
3520           }
3521         }
3522       }
3523     }
3524   }
3525 }
3526 
3527 #endif
3528 
3529 // The Compile object keeps track of failure reasons separately from the ciEnv.
3530 // This is required because there is not quite a 1-1 relation between the
3531 // ciEnv and its compilation task and the Compile object.  Note that one
3532 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3533 // to backtrack and retry without subsuming loads.  Other than this backtracking
3534 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3535 // by the logic in C2Compiler.
3536 void Compile::record_failure(const char* reason) {
3537   if (log() != NULL) {
3538     log()->elem("failure reason='%s' phase='compile'", reason);
3539   }
3540   if (_failure_reason == NULL) {
3541     // Record the first failure reason.
3542     _failure_reason = reason;
3543   }
3544 
3545   EventCompilerFailure event;
3546   if (event.should_commit()) {
3547     event.set_compileID(Compile::compile_id());
3548     event.set_failure(reason);
3549     event.commit();
3550   }
3551 
3552   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3553     C->print_method(PHASE_FAILURE);
3554   }
3555   _root = NULL;  // flush the graph, too
3556 }
3557 
3558 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3559   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3560     _phase_name(name), _dolog(CITimeVerbose)
3561 {
3562   if (_dolog) {
3563     C = Compile::current();
3564     _log = C->log();
3565   } else {
3566     C = NULL;
3567     _log = NULL;
3568   }
3569   if (_log != NULL) {
3570     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3571     _log->stamp();
3572     _log->end_head();
3573   }
3574 }
3575 
3576 Compile::TracePhase::~TracePhase() {
3577 
3578   C = Compile::current();
3579   if (_dolog) {
3580     _log = C->log();
3581   } else {
3582     _log = NULL;
3583   }
3584 
3585 #ifdef ASSERT
3586   if (PrintIdealNodeCount) {
3587     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3588                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3589   }
3590 
3591   if (VerifyIdealNodeCount) {
3592     Compile::current()->print_missing_nodes();
3593   }
3594 #endif
3595 
3596   if (_log != NULL) {
3597     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3598   }
3599 }
3600 
3601 //=============================================================================
3602 // Two Constant's are equal when the type and the value are equal.
3603 bool Compile::Constant::operator==(const Constant& other) {
3604   if (type()          != other.type()         )  return false;
3605   if (can_be_reused() != other.can_be_reused())  return false;
3606   // For floating point values we compare the bit pattern.
3607   switch (type()) {
3608   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3609   case T_LONG:
3610   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3611   case T_OBJECT:
3612   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3613   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3614   case T_METADATA: return (_v._metadata == other._v._metadata);
3615   default: ShouldNotReachHere();
3616   }
3617   return false;
3618 }
3619 
3620 static int type_to_size_in_bytes(BasicType t) {
3621   switch (t) {
3622   case T_LONG:    return sizeof(jlong  );
3623   case T_FLOAT:   return sizeof(jfloat );
3624   case T_DOUBLE:  return sizeof(jdouble);
3625   case T_METADATA: return sizeof(Metadata*);
3626     // We use T_VOID as marker for jump-table entries (labels) which
3627     // need an internal word relocation.
3628   case T_VOID:
3629   case T_ADDRESS:
3630   case T_OBJECT:  return sizeof(jobject);
3631   }
3632 
3633   ShouldNotReachHere();
3634   return -1;
3635 }
3636 
3637 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3638   // sort descending
3639   if (a->freq() > b->freq())  return -1;
3640   if (a->freq() < b->freq())  return  1;
3641   return 0;
3642 }
3643 
3644 void Compile::ConstantTable::calculate_offsets_and_size() {
3645   // First, sort the array by frequencies.
3646   _constants.sort(qsort_comparator);
3647 
3648 #ifdef ASSERT
3649   // Make sure all jump-table entries were sorted to the end of the
3650   // array (they have a negative frequency).
3651   bool found_void = false;
3652   for (int i = 0; i < _constants.length(); i++) {
3653     Constant con = _constants.at(i);
3654     if (con.type() == T_VOID)
3655       found_void = true;  // jump-tables
3656     else
3657       assert(!found_void, "wrong sorting");
3658   }
3659 #endif
3660 
3661   int offset = 0;
3662   for (int i = 0; i < _constants.length(); i++) {
3663     Constant* con = _constants.adr_at(i);
3664 
3665     // Align offset for type.
3666     int typesize = type_to_size_in_bytes(con->type());
3667     offset = align_size_up(offset, typesize);
3668     con->set_offset(offset);   // set constant's offset
3669 
3670     if (con->type() == T_VOID) {
3671       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3672       offset = offset + typesize * n->outcnt();  // expand jump-table
3673     } else {
3674       offset = offset + typesize;
3675     }
3676   }
3677 
3678   // Align size up to the next section start (which is insts; see
3679   // CodeBuffer::align_at_start).
3680   assert(_size == -1, "already set?");
3681   _size = align_size_up(offset, CodeEntryAlignment);
3682 }
3683 
3684 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3685   MacroAssembler _masm(&cb);
3686   for (int i = 0; i < _constants.length(); i++) {
3687     Constant con = _constants.at(i);
3688     address constant_addr;
3689     switch (con.type()) {
3690     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3691     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3692     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3693     case T_OBJECT: {
3694       jobject obj = con.get_jobject();
3695       int oop_index = _masm.oop_recorder()->find_index(obj);
3696       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3697       break;
3698     }
3699     case T_ADDRESS: {
3700       address addr = (address) con.get_jobject();
3701       constant_addr = _masm.address_constant(addr);
3702       break;
3703     }
3704     // We use T_VOID as marker for jump-table entries (labels) which
3705     // need an internal word relocation.
3706     case T_VOID: {
3707       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3708       // Fill the jump-table with a dummy word.  The real value is
3709       // filled in later in fill_jump_table.
3710       address dummy = (address) n;
3711       constant_addr = _masm.address_constant(dummy);
3712       // Expand jump-table
3713       for (uint i = 1; i < n->outcnt(); i++) {
3714         address temp_addr = _masm.address_constant(dummy + i);
3715         assert(temp_addr, "consts section too small");
3716       }
3717       break;
3718     }
3719     case T_METADATA: {
3720       Metadata* obj = con.get_metadata();
3721       int metadata_index = _masm.oop_recorder()->find_index(obj);
3722       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3723       break;
3724     }
3725     default: ShouldNotReachHere();
3726     }
3727     assert(constant_addr, "consts section too small");
3728     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3729             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3730   }
3731 }
3732 
3733 int Compile::ConstantTable::find_offset(Constant& con) const {
3734   int idx = _constants.find(con);
3735   assert(idx != -1, "constant must be in constant table");
3736   int offset = _constants.at(idx).offset();
3737   assert(offset != -1, "constant table not emitted yet?");
3738   return offset;
3739 }
3740 
3741 void Compile::ConstantTable::add(Constant& con) {
3742   if (con.can_be_reused()) {
3743     int idx = _constants.find(con);
3744     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3745       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3746       return;
3747     }
3748   }
3749   (void) _constants.append(con);
3750 }
3751 
3752 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3753   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3754   Constant con(type, value, b->_freq);
3755   add(con);
3756   return con;
3757 }
3758 
3759 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3760   Constant con(metadata);
3761   add(con);
3762   return con;
3763 }
3764 
3765 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3766   jvalue value;
3767   BasicType type = oper->type()->basic_type();
3768   switch (type) {
3769   case T_LONG:    value.j = oper->constantL(); break;
3770   case T_FLOAT:   value.f = oper->constantF(); break;
3771   case T_DOUBLE:  value.d = oper->constantD(); break;
3772   case T_OBJECT:
3773   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3774   case T_METADATA: return add((Metadata*)oper->constant()); break;
3775   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3776   }
3777   return add(n, type, value);
3778 }
3779 
3780 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3781   jvalue value;
3782   // We can use the node pointer here to identify the right jump-table
3783   // as this method is called from Compile::Fill_buffer right before
3784   // the MachNodes are emitted and the jump-table is filled (means the
3785   // MachNode pointers do not change anymore).
3786   value.l = (jobject) n;
3787   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3788   add(con);
3789   return con;
3790 }
3791 
3792 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3793   // If called from Compile::scratch_emit_size do nothing.
3794   if (Compile::current()->in_scratch_emit_size())  return;
3795 
3796   assert(labels.is_nonempty(), "must be");
3797   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3798 
3799   // Since MachConstantNode::constant_offset() also contains
3800   // table_base_offset() we need to subtract the table_base_offset()
3801   // to get the plain offset into the constant table.
3802   int offset = n->constant_offset() - table_base_offset();
3803 
3804   MacroAssembler _masm(&cb);
3805   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3806 
3807   for (uint i = 0; i < n->outcnt(); i++) {
3808     address* constant_addr = &jump_table_base[i];
3809     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3810     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3811     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3812   }
3813 }
3814 
3815 //----------------------------static_subtype_check-----------------------------
3816 // Shortcut important common cases when superklass is exact:
3817 // (0) superklass is java.lang.Object (can occur in reflective code)
3818 // (1) subklass is already limited to a subtype of superklass => always ok
3819 // (2) subklass does not overlap with superklass => always fail
3820 // (3) superklass has NO subtypes and we can check with a simple compare.
3821 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3822   if (StressReflectiveCode) {
3823     return SSC_full_test;       // Let caller generate the general case.
3824   }
3825 
3826   if (superk == env()->Object_klass()) {
3827     return SSC_always_true;     // (0) this test cannot fail
3828   }
3829 
3830   ciType* superelem = superk;
3831   if (superelem->is_array_klass())
3832     superelem = superelem->as_array_klass()->base_element_type();
3833 
3834   if (!subk->is_interface()) {  // cannot trust static interface types yet
3835     if (subk->is_subtype_of(superk)) {
3836       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3837     }
3838     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3839         !superk->is_subtype_of(subk)) {
3840       return SSC_always_false;
3841     }
3842   }
3843 
3844   // If casting to an instance klass, it must have no subtypes
3845   if (superk->is_interface()) {
3846     // Cannot trust interfaces yet.
3847     // %%% S.B. superk->nof_implementors() == 1
3848   } else if (superelem->is_instance_klass()) {
3849     ciInstanceKlass* ik = superelem->as_instance_klass();
3850     if (!ik->has_subklass() && !ik->is_interface()) {
3851       if (!ik->is_final()) {
3852         // Add a dependency if there is a chance of a later subclass.
3853         dependencies()->assert_leaf_type(ik);
3854       }
3855       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3856     }
3857   } else {
3858     // A primitive array type has no subtypes.
3859     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3860   }
3861 
3862   return SSC_full_test;
3863 }
3864 
3865 // The message about the current inlining is accumulated in
3866 // _print_inlining_stream and transfered into the _print_inlining_list
3867 // once we know whether inlining succeeds or not. For regular
3868 // inlining, messages are appended to the buffer pointed by
3869 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3870 // a new buffer is added after _print_inlining_idx in the list. This
3871 // way we can update the inlining message for late inlining call site
3872 // when the inlining is attempted again.
3873 void Compile::print_inlining_init() {
3874   if (print_inlining() || print_intrinsics()) {
3875     _print_inlining_stream = new stringStream();
3876     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3877   }
3878 }
3879 
3880 void Compile::print_inlining_reinit() {
3881   if (print_inlining() || print_intrinsics()) {
3882     // Re allocate buffer when we change ResourceMark
3883     _print_inlining_stream = new stringStream();
3884   }
3885 }
3886 
3887 void Compile::print_inlining_reset() {
3888   _print_inlining_stream->reset();
3889 }
3890 
3891 void Compile::print_inlining_commit() {
3892   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3893   // Transfer the message from _print_inlining_stream to the current
3894   // _print_inlining_list buffer and clear _print_inlining_stream.
3895   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3896   print_inlining_reset();
3897 }
3898 
3899 void Compile::print_inlining_push() {
3900   // Add new buffer to the _print_inlining_list at current position
3901   _print_inlining_idx++;
3902   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3903 }
3904 
3905 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3906   return _print_inlining_list->at(_print_inlining_idx);
3907 }
3908 
3909 void Compile::print_inlining_update(CallGenerator* cg) {
3910   if (print_inlining() || print_intrinsics()) {
3911     if (!cg->is_late_inline()) {
3912       if (print_inlining_current().cg() != NULL) {
3913         print_inlining_push();
3914       }
3915       print_inlining_commit();
3916     } else {
3917       if (print_inlining_current().cg() != cg &&
3918           (print_inlining_current().cg() != NULL ||
3919            print_inlining_current().ss()->size() != 0)) {
3920         print_inlining_push();
3921       }
3922       print_inlining_commit();
3923       print_inlining_current().set_cg(cg);
3924     }
3925   }
3926 }
3927 
3928 void Compile::print_inlining_move_to(CallGenerator* cg) {
3929   // We resume inlining at a late inlining call site. Locate the
3930   // corresponding inlining buffer so that we can update it.
3931   if (print_inlining()) {
3932     for (int i = 0; i < _print_inlining_list->length(); i++) {
3933       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3934         _print_inlining_idx = i;
3935         return;
3936       }
3937     }
3938     ShouldNotReachHere();
3939   }
3940 }
3941 
3942 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3943   if (print_inlining()) {
3944     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3945     assert(print_inlining_current().cg() == cg, "wrong entry");
3946     // replace message with new message
3947     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3948     print_inlining_commit();
3949     print_inlining_current().set_cg(cg);
3950   }
3951 }
3952 
3953 void Compile::print_inlining_assert_ready() {
3954   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3955 }
3956 
3957 void Compile::process_print_inlining() {
3958   bool do_print_inlining = print_inlining() || print_intrinsics();
3959   if (do_print_inlining || log() != NULL) {
3960     // Print inlining message for candidates that we couldn't inline
3961     // for lack of space
3962     for (int i = 0; i < _late_inlines.length(); i++) {
3963       CallGenerator* cg = _late_inlines.at(i);
3964       if (!cg->is_mh_late_inline()) {
3965         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3966         if (do_print_inlining) {
3967           cg->print_inlining_late(msg);
3968         }
3969         log_late_inline_failure(cg, msg);
3970       }
3971     }
3972   }
3973   if (do_print_inlining) {
3974     ResourceMark rm;
3975     stringStream ss;
3976     for (int i = 0; i < _print_inlining_list->length(); i++) {
3977       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3978     }
3979     size_t end = ss.size();
3980     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3981     strncpy(_print_inlining_output, ss.base(), end+1);
3982     _print_inlining_output[end] = 0;
3983   }
3984 }
3985 
3986 void Compile::dump_print_inlining() {
3987   if (_print_inlining_output != NULL) {
3988     tty->print_raw(_print_inlining_output);
3989   }
3990 }
3991 
3992 void Compile::log_late_inline(CallGenerator* cg) {
3993   if (log() != NULL) {
3994     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3995                 cg->unique_id());
3996     JVMState* p = cg->call_node()->jvms();
3997     while (p != NULL) {
3998       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3999       p = p->caller();
4000     }
4001     log()->tail("late_inline");
4002   }
4003 }
4004 
4005 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4006   log_late_inline(cg);
4007   if (log() != NULL) {
4008     log()->inline_fail(msg);
4009   }
4010 }
4011 
4012 void Compile::log_inline_id(CallGenerator* cg) {
4013   if (log() != NULL) {
4014     // The LogCompilation tool needs a unique way to identify late
4015     // inline call sites. This id must be unique for this call site in
4016     // this compilation. Try to have it unique across compilations as
4017     // well because it can be convenient when grepping through the log
4018     // file.
4019     // Distinguish OSR compilations from others in case CICountOSR is
4020     // on.
4021     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4022     cg->set_unique_id(id);
4023     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4024   }
4025 }
4026 
4027 void Compile::log_inline_failure(const char* msg) {
4028   if (C->log() != NULL) {
4029     C->log()->inline_fail(msg);
4030   }
4031 }
4032 
4033 
4034 // Dump inlining replay data to the stream.
4035 // Don't change thread state and acquire any locks.
4036 void Compile::dump_inline_data(outputStream* out) {
4037   InlineTree* inl_tree = ilt();
4038   if (inl_tree != NULL) {
4039     out->print(" inline %d", inl_tree->count());
4040     inl_tree->dump_replay_data(out);
4041   }
4042 }
4043 
4044 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4045   if (n1->Opcode() < n2->Opcode())      return -1;
4046   else if (n1->Opcode() > n2->Opcode()) return 1;
4047 
4048   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4049   for (uint i = 1; i < n1->req(); i++) {
4050     if (n1->in(i) < n2->in(i))      return -1;
4051     else if (n1->in(i) > n2->in(i)) return 1;
4052   }
4053 
4054   return 0;
4055 }
4056 
4057 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4058   Node* n1 = *n1p;
4059   Node* n2 = *n2p;
4060 
4061   return cmp_expensive_nodes(n1, n2);
4062 }
4063 
4064 void Compile::sort_expensive_nodes() {
4065   if (!expensive_nodes_sorted()) {
4066     _expensive_nodes->sort(cmp_expensive_nodes);
4067   }
4068 }
4069 
4070 bool Compile::expensive_nodes_sorted() const {
4071   for (int i = 1; i < _expensive_nodes->length(); i++) {
4072     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4073       return false;
4074     }
4075   }
4076   return true;
4077 }
4078 
4079 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4080   if (_expensive_nodes->length() == 0) {
4081     return false;
4082   }
4083 
4084   assert(OptimizeExpensiveOps, "optimization off?");
4085 
4086   // Take this opportunity to remove dead nodes from the list
4087   int j = 0;
4088   for (int i = 0; i < _expensive_nodes->length(); i++) {
4089     Node* n = _expensive_nodes->at(i);
4090     if (!n->is_unreachable(igvn)) {
4091       assert(n->is_expensive(), "should be expensive");
4092       _expensive_nodes->at_put(j, n);
4093       j++;
4094     }
4095   }
4096   _expensive_nodes->trunc_to(j);
4097 
4098   // Then sort the list so that similar nodes are next to each other
4099   // and check for at least two nodes of identical kind with same data
4100   // inputs.
4101   sort_expensive_nodes();
4102 
4103   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4104     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4105       return true;
4106     }
4107   }
4108 
4109   return false;
4110 }
4111 
4112 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4113   if (_expensive_nodes->length() == 0) {
4114     return;
4115   }
4116 
4117   assert(OptimizeExpensiveOps, "optimization off?");
4118 
4119   // Sort to bring similar nodes next to each other and clear the
4120   // control input of nodes for which there's only a single copy.
4121   sort_expensive_nodes();
4122 
4123   int j = 0;
4124   int identical = 0;
4125   int i = 0;
4126   bool modified = false;
4127   for (; i < _expensive_nodes->length()-1; i++) {
4128     assert(j <= i, "can't write beyond current index");
4129     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4130       identical++;
4131       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4132       continue;
4133     }
4134     if (identical > 0) {
4135       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4136       identical = 0;
4137     } else {
4138       Node* n = _expensive_nodes->at(i);
4139       igvn.replace_input_of(n, 0, NULL);
4140       igvn.hash_insert(n);
4141       modified = true;
4142     }
4143   }
4144   if (identical > 0) {
4145     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4146   } else if (_expensive_nodes->length() >= 1) {
4147     Node* n = _expensive_nodes->at(i);
4148     igvn.replace_input_of(n, 0, NULL);
4149     igvn.hash_insert(n);
4150     modified = true;
4151   }
4152   _expensive_nodes->trunc_to(j);
4153   if (modified) {
4154     igvn.optimize();
4155   }
4156 }
4157 
4158 void Compile::add_expensive_node(Node * n) {
4159   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4160   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4161   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4162   if (OptimizeExpensiveOps) {
4163     _expensive_nodes->append(n);
4164   } else {
4165     // Clear control input and let IGVN optimize expensive nodes if
4166     // OptimizeExpensiveOps is off.
4167     n->set_req(0, NULL);
4168   }
4169 }
4170 
4171 /**
4172  * Remove the speculative part of types and clean up the graph
4173  */
4174 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4175   if (UseTypeSpeculation) {
4176     Unique_Node_List worklist;
4177     worklist.push(root());
4178     int modified = 0;
4179     // Go over all type nodes that carry a speculative type, drop the
4180     // speculative part of the type and enqueue the node for an igvn
4181     // which may optimize it out.
4182     for (uint next = 0; next < worklist.size(); ++next) {
4183       Node *n  = worklist.at(next);
4184       if (n->is_Type()) {
4185         TypeNode* tn = n->as_Type();
4186         const Type* t = tn->type();
4187         const Type* t_no_spec = t->remove_speculative();
4188         if (t_no_spec != t) {
4189           bool in_hash = igvn.hash_delete(n);
4190           assert(in_hash, "node should be in igvn hash table");
4191           tn->set_type(t_no_spec);
4192           igvn.hash_insert(n);
4193           igvn._worklist.push(n); // give it a chance to go away
4194           modified++;
4195         }
4196       }
4197       uint max = n->len();
4198       for( uint i = 0; i < max; ++i ) {
4199         Node *m = n->in(i);
4200         if (not_a_node(m))  continue;
4201         worklist.push(m);
4202       }
4203     }
4204     // Drop the speculative part of all types in the igvn's type table
4205     igvn.remove_speculative_types();
4206     if (modified > 0) {
4207       igvn.optimize();
4208     }
4209 #ifdef ASSERT
4210     // Verify that after the IGVN is over no speculative type has resurfaced
4211     worklist.clear();
4212     worklist.push(root());
4213     for (uint next = 0; next < worklist.size(); ++next) {
4214       Node *n  = worklist.at(next);
4215       const Type* t = igvn.type_or_null(n);
4216       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4217       if (n->is_Type()) {
4218         t = n->as_Type()->type();
4219         assert(t == t->remove_speculative(), "no more speculative types");
4220       }
4221       uint max = n->len();
4222       for( uint i = 0; i < max; ++i ) {
4223         Node *m = n->in(i);
4224         if (not_a_node(m))  continue;
4225         worklist.push(m);
4226       }
4227     }
4228     igvn.check_no_speculative_types();
4229 #endif
4230   }
4231 }
4232 
4233 // Auxiliary method to support randomized stressing/fuzzing.
4234 //
4235 // This method can be called the arbitrary number of times, with current count
4236 // as the argument. The logic allows selecting a single candidate from the
4237 // running list of candidates as follows:
4238 //    int count = 0;
4239 //    Cand* selected = null;
4240 //    while(cand = cand->next()) {
4241 //      if (randomized_select(++count)) {
4242 //        selected = cand;
4243 //      }
4244 //    }
4245 //
4246 // Including count equalizes the chances any candidate is "selected".
4247 // This is useful when we don't have the complete list of candidates to choose
4248 // from uniformly. In this case, we need to adjust the randomicity of the
4249 // selection, or else we will end up biasing the selection towards the latter
4250 // candidates.
4251 //
4252 // Quick back-envelope calculation shows that for the list of n candidates
4253 // the equal probability for the candidate to persist as "best" can be
4254 // achieved by replacing it with "next" k-th candidate with the probability
4255 // of 1/k. It can be easily shown that by the end of the run, the
4256 // probability for any candidate is converged to 1/n, thus giving the
4257 // uniform distribution among all the candidates.
4258 //
4259 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4260 #define RANDOMIZED_DOMAIN_POW 29
4261 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4262 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4263 bool Compile::randomized_select(int count) {
4264   assert(count > 0, "only positive");
4265   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4266 }