1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/countbitsnode.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/mathexactnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/parse.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subnode.hpp"
  48 #include "prims/nativeLookup.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "trace/traceMacros.hpp"
  51 
  52 class LibraryIntrinsic : public InlineCallGenerator {
  53   // Extend the set of intrinsics known to the runtime:
  54  public:
  55  private:
  56   bool             _is_virtual;
  57   bool             _does_virtual_dispatch;
  58   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  59   int8_t           _last_predicate; // Last generated predicate
  60   vmIntrinsics::ID _intrinsic_id;
  61 
  62  public:
  63   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  64     : InlineCallGenerator(m),
  65       _is_virtual(is_virtual),
  66       _does_virtual_dispatch(does_virtual_dispatch),
  67       _predicates_count((int8_t)predicates_count),
  68       _last_predicate((int8_t)-1),
  69       _intrinsic_id(id)
  70   {
  71   }
  72   virtual bool is_intrinsic() const { return true; }
  73   virtual bool is_virtual()   const { return _is_virtual; }
  74   virtual bool is_predicated() const { return _predicates_count > 0; }
  75   virtual int  predicates_count() const { return _predicates_count; }
  76   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  77   virtual JVMState* generate(JVMState* jvms);
  78   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  79   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  80 };
  81 
  82 
  83 // Local helper class for LibraryIntrinsic:
  84 class LibraryCallKit : public GraphKit {
  85  private:
  86   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  87   Node*             _result;        // the result node, if any
  88   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  89 
  90   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  91 
  92  public:
  93   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  94     : GraphKit(jvms),
  95       _intrinsic(intrinsic),
  96       _result(NULL)
  97   {
  98     // Check if this is a root compile.  In that case we don't have a caller.
  99     if (!jvms->has_method()) {
 100       _reexecute_sp = sp();
 101     } else {
 102       // Find out how many arguments the interpreter needs when deoptimizing
 103       // and save the stack pointer value so it can used by uncommon_trap.
 104       // We find the argument count by looking at the declared signature.
 105       bool ignored_will_link;
 106       ciSignature* declared_signature = NULL;
 107       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 108       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 109       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 110     }
 111   }
 112 
 113   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 114 
 115   ciMethod*         caller()    const    { return jvms()->method(); }
 116   int               bci()       const    { return jvms()->bci(); }
 117   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 118   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 119   ciMethod*         callee()    const    { return _intrinsic->method(); }
 120 
 121   bool  try_to_inline(int predicate);
 122   Node* try_to_predicate(int predicate);
 123 
 124   void push_result() {
 125     // Push the result onto the stack.
 126     if (!stopped() && result() != NULL) {
 127       BasicType bt = result()->bottom_type()->basic_type();
 128       push_node(bt, result());
 129     }
 130   }
 131 
 132  private:
 133   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 134     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 135   }
 136 
 137   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 138   void  set_result(RegionNode* region, PhiNode* value);
 139   Node*     result() { return _result; }
 140 
 141   virtual int reexecute_sp() { return _reexecute_sp; }
 142 
 143   // Helper functions to inline natives
 144   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 145   Node* generate_slow_guard(Node* test, RegionNode* region);
 146   Node* generate_fair_guard(Node* test, RegionNode* region);
 147   Node* generate_negative_guard(Node* index, RegionNode* region,
 148                                 // resulting CastII of index:
 149                                 Node* *pos_index = NULL);
 150   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 151                              Node* array_length,
 152                              RegionNode* region);
 153   Node* generate_current_thread(Node* &tls_output);
 154   Node* load_mirror_from_klass(Node* klass);
 155   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 156                                       RegionNode* region, int null_path,
 157                                       int offset);
 158   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 159                                RegionNode* region, int null_path) {
 160     int offset = java_lang_Class::klass_offset_in_bytes();
 161     return load_klass_from_mirror_common(mirror, never_see_null,
 162                                          region, null_path,
 163                                          offset);
 164   }
 165   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                      RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::array_klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* generate_access_flags_guard(Node* kls,
 173                                     int modifier_mask, int modifier_bits,
 174                                     RegionNode* region);
 175   Node* generate_interface_guard(Node* kls, RegionNode* region);
 176   Node* generate_array_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, false, false);
 178   }
 179   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, false, true);
 181   }
 182   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, true, false);
 184   }
 185   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, true, true);
 187   }
 188   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 189                                     bool obj_array, bool not_array);
 190   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 191   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 192                                      bool is_virtual = false, bool is_static = false);
 193   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 194     return generate_method_call(method_id, false, true);
 195   }
 196   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 197     return generate_method_call(method_id, true, false);
 198   }
 199   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 200 
 201   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 202   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 203   bool inline_string_compareTo();
 204   bool inline_string_indexOf();
 205   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 206   bool inline_string_equals();
 207   Node* round_double_node(Node* n);
 208   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 209   bool inline_math_native(vmIntrinsics::ID id);
 210   bool inline_trig(vmIntrinsics::ID id);
 211   bool inline_math(vmIntrinsics::ID id);
 212   template <typename OverflowOp>
 213   bool inline_math_overflow(Node* arg1, Node* arg2);
 214   void inline_math_mathExact(Node* math, Node* test);
 215   bool inline_math_addExactI(bool is_increment);
 216   bool inline_math_addExactL(bool is_increment);
 217   bool inline_math_multiplyExactI();
 218   bool inline_math_multiplyExactL();
 219   bool inline_math_negateExactI();
 220   bool inline_math_negateExactL();
 221   bool inline_math_subtractExactI(bool is_decrement);
 222   bool inline_math_subtractExactL(bool is_decrement);
 223   bool inline_exp();
 224   bool inline_pow();
 225   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_min_max(vmIntrinsics::ID id);
 227   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 228   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 229   int classify_unsafe_addr(Node* &base, Node* &offset);
 230   Node* make_unsafe_address(Node* base, Node* offset);
 231   // Helper for inline_unsafe_access.
 232   // Generates the guards that check whether the result of
 233   // Unsafe.getObject should be recorded in an SATB log buffer.
 234   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 235   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 236   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 264                                                 RegionNode* slow_region);
 265   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 266   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 267   bool inline_unsafe_ordered_store(BasicType type);
 268   bool inline_unsafe_fence(vmIntrinsics::ID id);
 269   bool inline_fp_conversions(vmIntrinsics::ID id);
 270   bool inline_number_methods(vmIntrinsics::ID id);
 271   bool inline_reference_get();
 272   bool inline_Class_cast();
 273   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 274   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 275   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 276   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 277   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 278   bool inline_sha_implCompress(vmIntrinsics::ID id);
 279   bool inline_digestBase_implCompressMB(int predicate);
 280   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 281                                  bool long_state, address stubAddr, const char *stubName,
 282                                  Node* src_start, Node* ofs, Node* limit);
 283   Node* get_state_from_sha_object(Node *sha_object);
 284   Node* get_state_from_sha5_object(Node *sha_object);
 285   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 286   bool inline_encodeISOArray();
 287   bool inline_updateCRC32();
 288   bool inline_updateBytesCRC32();
 289   bool inline_updateByteBufferCRC32();
 290   bool inline_multiplyToLen();
 291 
 292   bool inline_profileBranch();
 293 };
 294 
 295 
 296 //---------------------------make_vm_intrinsic----------------------------
 297 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 298   vmIntrinsics::ID id = m->intrinsic_id();
 299   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 300 
 301   ccstr disable_intr = NULL;
 302 
 303   if ((DisableIntrinsic[0] != '\0'
 304        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 305       (method_has_option_value("DisableIntrinsic", disable_intr)
 306        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 307     // disabled by a user request on the command line:
 308     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 309     return NULL;
 310   }
 311 
 312   if (!m->is_loaded()) {
 313     // do not attempt to inline unloaded methods
 314     return NULL;
 315   }
 316 
 317   // Only a few intrinsics implement a virtual dispatch.
 318   // They are expensive calls which are also frequently overridden.
 319   if (is_virtual) {
 320     switch (id) {
 321     case vmIntrinsics::_hashCode:
 322     case vmIntrinsics::_clone:
 323       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 324       break;
 325     default:
 326       return NULL;
 327     }
 328   }
 329 
 330   // -XX:-InlineNatives disables nearly all intrinsics:
 331   if (!InlineNatives) {
 332     switch (id) {
 333     case vmIntrinsics::_indexOf:
 334     case vmIntrinsics::_compareTo:
 335     case vmIntrinsics::_equals:
 336     case vmIntrinsics::_equalsC:
 337     case vmIntrinsics::_getAndAddInt:
 338     case vmIntrinsics::_getAndAddLong:
 339     case vmIntrinsics::_getAndSetInt:
 340     case vmIntrinsics::_getAndSetLong:
 341     case vmIntrinsics::_getAndSetObject:
 342     case vmIntrinsics::_loadFence:
 343     case vmIntrinsics::_storeFence:
 344     case vmIntrinsics::_fullFence:
 345       break;  // InlineNatives does not control String.compareTo
 346     case vmIntrinsics::_Reference_get:
 347       break;  // InlineNatives does not control Reference.get
 348     default:
 349       return NULL;
 350     }
 351   }
 352 
 353   int predicates = 0;
 354   bool does_virtual_dispatch = false;
 355 
 356   switch (id) {
 357   case vmIntrinsics::_compareTo:
 358     if (!SpecialStringCompareTo)  return NULL;
 359     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 360     break;
 361   case vmIntrinsics::_indexOf:
 362     if (!SpecialStringIndexOf)  return NULL;
 363     break;
 364   case vmIntrinsics::_equals:
 365     if (!SpecialStringEquals)  return NULL;
 366     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 367     break;
 368   case vmIntrinsics::_equalsC:
 369     if (!SpecialArraysEquals)  return NULL;
 370     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 371     break;
 372   case vmIntrinsics::_arraycopy:
 373     if (!InlineArrayCopy)  return NULL;
 374     break;
 375   case vmIntrinsics::_copyMemory:
 376     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 377     if (!InlineArrayCopy)  return NULL;
 378     break;
 379   case vmIntrinsics::_hashCode:
 380     if (!InlineObjectHash)  return NULL;
 381     does_virtual_dispatch = true;
 382     break;
 383   case vmIntrinsics::_clone:
 384     does_virtual_dispatch = true;
 385   case vmIntrinsics::_copyOf:
 386   case vmIntrinsics::_copyOfRange:
 387     if (!InlineObjectCopy)  return NULL;
 388     // These also use the arraycopy intrinsic mechanism:
 389     if (!InlineArrayCopy)  return NULL;
 390     break;
 391   case vmIntrinsics::_encodeISOArray:
 392     if (!SpecialEncodeISOArray)  return NULL;
 393     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 394     break;
 395   case vmIntrinsics::_checkIndex:
 396     // We do not intrinsify this.  The optimizer does fine with it.
 397     return NULL;
 398 
 399   case vmIntrinsics::_getCallerClass:
 400     if (!InlineReflectionGetCallerClass)  return NULL;
 401     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 402     break;
 403 
 404   case vmIntrinsics::_bitCount_i:
 405     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 406     break;
 407 
 408   case vmIntrinsics::_bitCount_l:
 409     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 410     break;
 411 
 412   case vmIntrinsics::_numberOfLeadingZeros_i:
 413     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 414     break;
 415 
 416   case vmIntrinsics::_numberOfLeadingZeros_l:
 417     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 418     break;
 419 
 420   case vmIntrinsics::_numberOfTrailingZeros_i:
 421     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 422     break;
 423 
 424   case vmIntrinsics::_numberOfTrailingZeros_l:
 425     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_reverseBytes_c:
 429     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 430     break;
 431   case vmIntrinsics::_reverseBytes_s:
 432     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 433     break;
 434   case vmIntrinsics::_reverseBytes_i:
 435     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 436     break;
 437   case vmIntrinsics::_reverseBytes_l:
 438     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 439     break;
 440 
 441   case vmIntrinsics::_Reference_get:
 442     // Use the intrinsic version of Reference.get() so that the value in
 443     // the referent field can be registered by the G1 pre-barrier code.
 444     // Also add memory barrier to prevent commoning reads from this field
 445     // across safepoint since GC can change it value.
 446     break;
 447 
 448   case vmIntrinsics::_compareAndSwapObject:
 449 #ifdef _LP64
 450     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 451 #endif
 452     break;
 453 
 454   case vmIntrinsics::_compareAndSwapLong:
 455     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 456     break;
 457 
 458   case vmIntrinsics::_getAndAddInt:
 459     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 460     break;
 461 
 462   case vmIntrinsics::_getAndAddLong:
 463     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 464     break;
 465 
 466   case vmIntrinsics::_getAndSetInt:
 467     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 468     break;
 469 
 470   case vmIntrinsics::_getAndSetLong:
 471     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 472     break;
 473 
 474   case vmIntrinsics::_getAndSetObject:
 475 #ifdef _LP64
 476     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 477     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 478     break;
 479 #else
 480     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 481     break;
 482 #endif
 483 
 484   case vmIntrinsics::_aescrypt_encryptBlock:
 485   case vmIntrinsics::_aescrypt_decryptBlock:
 486     if (!UseAESIntrinsics) return NULL;
 487     break;
 488 
 489   case vmIntrinsics::_multiplyToLen:
 490     if (!UseMultiplyToLenIntrinsic) return NULL;
 491     break;
 492 
 493   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 494   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 495     if (!UseAESIntrinsics) return NULL;
 496     // these two require the predicated logic
 497     predicates = 1;
 498     break;
 499 
 500   case vmIntrinsics::_sha_implCompress:
 501     if (!UseSHA1Intrinsics) return NULL;
 502     break;
 503 
 504   case vmIntrinsics::_sha2_implCompress:
 505     if (!UseSHA256Intrinsics) return NULL;
 506     break;
 507 
 508   case vmIntrinsics::_sha5_implCompress:
 509     if (!UseSHA512Intrinsics) return NULL;
 510     break;
 511 
 512   case vmIntrinsics::_digestBase_implCompressMB:
 513     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 514     predicates = 3;
 515     break;
 516 
 517   case vmIntrinsics::_updateCRC32:
 518   case vmIntrinsics::_updateBytesCRC32:
 519   case vmIntrinsics::_updateByteBufferCRC32:
 520     if (!UseCRC32Intrinsics) return NULL;
 521     break;
 522 
 523   case vmIntrinsics::_incrementExactI:
 524   case vmIntrinsics::_addExactI:
 525     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 526     break;
 527   case vmIntrinsics::_incrementExactL:
 528   case vmIntrinsics::_addExactL:
 529     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 530     break;
 531   case vmIntrinsics::_decrementExactI:
 532   case vmIntrinsics::_subtractExactI:
 533     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 534     break;
 535   case vmIntrinsics::_decrementExactL:
 536   case vmIntrinsics::_subtractExactL:
 537     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 538     break;
 539   case vmIntrinsics::_negateExactI:
 540     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 541     break;
 542   case vmIntrinsics::_negateExactL:
 543     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 544     break;
 545   case vmIntrinsics::_multiplyExactI:
 546     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 547     break;
 548   case vmIntrinsics::_multiplyExactL:
 549     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 550     break;
 551 
 552  default:
 553     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 554     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 555     break;
 556   }
 557 
 558   // -XX:-InlineClassNatives disables natives from the Class class.
 559   // The flag applies to all reflective calls, notably Array.newArray
 560   // (visible to Java programmers as Array.newInstance).
 561   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 562       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 563     if (!InlineClassNatives)  return NULL;
 564   }
 565 
 566   // -XX:-InlineThreadNatives disables natives from the Thread class.
 567   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 568     if (!InlineThreadNatives)  return NULL;
 569   }
 570 
 571   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 572   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 573       m->holder()->name() == ciSymbol::java_lang_Float() ||
 574       m->holder()->name() == ciSymbol::java_lang_Double()) {
 575     if (!InlineMathNatives)  return NULL;
 576   }
 577 
 578   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 579   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 580     if (!InlineUnsafeOps)  return NULL;
 581   }
 582 
 583   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 584 }
 585 
 586 //----------------------register_library_intrinsics-----------------------
 587 // Initialize this file's data structures, for each Compile instance.
 588 void Compile::register_library_intrinsics() {
 589   // Nothing to do here.
 590 }
 591 
 592 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 593   LibraryCallKit kit(jvms, this);
 594   Compile* C = kit.C;
 595   int nodes = C->unique();
 596 #ifndef PRODUCT
 597   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 598     char buf[1000];
 599     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 600     tty->print_cr("Intrinsic %s", str);
 601   }
 602 #endif
 603   ciMethod* callee = kit.callee();
 604   const int bci    = kit.bci();
 605 
 606   // Try to inline the intrinsic.
 607   if (kit.try_to_inline(_last_predicate)) {
 608     if (C->print_intrinsics() || C->print_inlining()) {
 609       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 610     }
 611     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 612     if (C->log()) {
 613       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 614                      vmIntrinsics::name_at(intrinsic_id()),
 615                      (is_virtual() ? " virtual='1'" : ""),
 616                      C->unique() - nodes);
 617     }
 618     // Push the result from the inlined method onto the stack.
 619     kit.push_result();
 620     C->print_inlining_update(this);
 621     return kit.transfer_exceptions_into_jvms();
 622   }
 623 
 624   // The intrinsic bailed out
 625   if (C->print_intrinsics() || C->print_inlining()) {
 626     if (jvms->has_method()) {
 627       // Not a root compile.
 628       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 629       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 630     } else {
 631       // Root compile
 632       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 633                vmIntrinsics::name_at(intrinsic_id()),
 634                (is_virtual() ? " (virtual)" : ""), bci);
 635     }
 636   }
 637   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 638   C->print_inlining_update(this);
 639   return NULL;
 640 }
 641 
 642 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 643   LibraryCallKit kit(jvms, this);
 644   Compile* C = kit.C;
 645   int nodes = C->unique();
 646   _last_predicate = predicate;
 647 #ifndef PRODUCT
 648   assert(is_predicated() && predicate < predicates_count(), "sanity");
 649   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 650     char buf[1000];
 651     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 652     tty->print_cr("Predicate for intrinsic %s", str);
 653   }
 654 #endif
 655   ciMethod* callee = kit.callee();
 656   const int bci    = kit.bci();
 657 
 658   Node* slow_ctl = kit.try_to_predicate(predicate);
 659   if (!kit.failing()) {
 660     if (C->print_intrinsics() || C->print_inlining()) {
 661       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 662     }
 663     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 664     if (C->log()) {
 665       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 666                      vmIntrinsics::name_at(intrinsic_id()),
 667                      (is_virtual() ? " virtual='1'" : ""),
 668                      C->unique() - nodes);
 669     }
 670     return slow_ctl; // Could be NULL if the check folds.
 671   }
 672 
 673   // The intrinsic bailed out
 674   if (C->print_intrinsics() || C->print_inlining()) {
 675     if (jvms->has_method()) {
 676       // Not a root compile.
 677       const char* msg = "failed to generate predicate for intrinsic";
 678       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 679     } else {
 680       // Root compile
 681       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 682                                         vmIntrinsics::name_at(intrinsic_id()),
 683                                         (is_virtual() ? " (virtual)" : ""), bci);
 684     }
 685   }
 686   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 687   return NULL;
 688 }
 689 
 690 bool LibraryCallKit::try_to_inline(int predicate) {
 691   // Handle symbolic names for otherwise undistinguished boolean switches:
 692   const bool is_store       = true;
 693   const bool is_native_ptr  = true;
 694   const bool is_static      = true;
 695   const bool is_volatile    = true;
 696 
 697   if (!jvms()->has_method()) {
 698     // Root JVMState has a null method.
 699     assert(map()->memory()->Opcode() == Op_Parm, "");
 700     // Insert the memory aliasing node
 701     set_all_memory(reset_memory());
 702   }
 703   assert(merged_memory(), "");
 704 
 705 
 706   switch (intrinsic_id()) {
 707   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 708   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 709   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 710 
 711   case vmIntrinsics::_dsin:
 712   case vmIntrinsics::_dcos:
 713   case vmIntrinsics::_dtan:
 714   case vmIntrinsics::_dabs:
 715   case vmIntrinsics::_datan2:
 716   case vmIntrinsics::_dsqrt:
 717   case vmIntrinsics::_dexp:
 718   case vmIntrinsics::_dlog:
 719   case vmIntrinsics::_dlog10:
 720   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 721 
 722   case vmIntrinsics::_min:
 723   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 724 
 725   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 726   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 727   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 728   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 729   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 730   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 731   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 732   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 733   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 734   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 735   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 736   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 737 
 738   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 739 
 740   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 741   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 742   case vmIntrinsics::_equals:                   return inline_string_equals();
 743 
 744   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 745   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 746   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 747   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 748   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 749   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 750   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 751   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 752   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 753 
 754   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 755   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 756   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 757   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 758   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 759   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 760   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 761   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 762   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 763 
 764   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 765   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 766   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 767   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 768   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 769   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 770   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 771   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 772 
 773   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 774   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 775   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 776   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 777   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 778   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 779   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 780   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 781 
 782   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 783   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 784   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 785   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 786   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 787   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 788   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 789   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 790   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 791 
 792   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 793   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 794   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 795   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 796   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 797   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 798   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 799   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 800   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 801 
 802   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 803   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 804   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 805   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 806 
 807   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 808   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 809   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 810 
 811   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 812   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 813   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 814 
 815   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 816   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 817   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 818   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 819   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 820 
 821   case vmIntrinsics::_loadFence:
 822   case vmIntrinsics::_storeFence:
 823   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 824 
 825   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 826   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 827 
 828 #ifdef TRACE_HAVE_INTRINSICS
 829   case vmIntrinsics::_classID:                  return inline_native_classID();
 830   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 831   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 832 #endif
 833   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 834   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 835   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 836   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 837   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 838   case vmIntrinsics::_getLength:                return inline_native_getLength();
 839   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 840   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 841   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 842   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 843 
 844   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 845 
 846   case vmIntrinsics::_isInstance:
 847   case vmIntrinsics::_getModifiers:
 848   case vmIntrinsics::_isInterface:
 849   case vmIntrinsics::_isArray:
 850   case vmIntrinsics::_isPrimitive:
 851   case vmIntrinsics::_getSuperclass:
 852   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 853 
 854   case vmIntrinsics::_floatToRawIntBits:
 855   case vmIntrinsics::_floatToIntBits:
 856   case vmIntrinsics::_intBitsToFloat:
 857   case vmIntrinsics::_doubleToRawLongBits:
 858   case vmIntrinsics::_doubleToLongBits:
 859   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 860 
 861   case vmIntrinsics::_numberOfLeadingZeros_i:
 862   case vmIntrinsics::_numberOfLeadingZeros_l:
 863   case vmIntrinsics::_numberOfTrailingZeros_i:
 864   case vmIntrinsics::_numberOfTrailingZeros_l:
 865   case vmIntrinsics::_bitCount_i:
 866   case vmIntrinsics::_bitCount_l:
 867   case vmIntrinsics::_reverseBytes_i:
 868   case vmIntrinsics::_reverseBytes_l:
 869   case vmIntrinsics::_reverseBytes_s:
 870   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 871 
 872   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 873 
 874   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 875 
 876   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 877 
 878   case vmIntrinsics::_aescrypt_encryptBlock:
 879   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 880 
 881   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 882   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 883     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 884 
 885   case vmIntrinsics::_sha_implCompress:
 886   case vmIntrinsics::_sha2_implCompress:
 887   case vmIntrinsics::_sha5_implCompress:
 888     return inline_sha_implCompress(intrinsic_id());
 889 
 890   case vmIntrinsics::_digestBase_implCompressMB:
 891     return inline_digestBase_implCompressMB(predicate);
 892 
 893   case vmIntrinsics::_multiplyToLen:
 894     return inline_multiplyToLen();
 895 
 896   case vmIntrinsics::_encodeISOArray:
 897     return inline_encodeISOArray();
 898 
 899   case vmIntrinsics::_updateCRC32:
 900     return inline_updateCRC32();
 901   case vmIntrinsics::_updateBytesCRC32:
 902     return inline_updateBytesCRC32();
 903   case vmIntrinsics::_updateByteBufferCRC32:
 904     return inline_updateByteBufferCRC32();
 905 
 906   case vmIntrinsics::_profileBranch:
 907     return inline_profileBranch();
 908 
 909   default:
 910     // If you get here, it may be that someone has added a new intrinsic
 911     // to the list in vmSymbols.hpp without implementing it here.
 912 #ifndef PRODUCT
 913     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 914       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 915                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 916     }
 917 #endif
 918     return false;
 919   }
 920 }
 921 
 922 Node* LibraryCallKit::try_to_predicate(int predicate) {
 923   if (!jvms()->has_method()) {
 924     // Root JVMState has a null method.
 925     assert(map()->memory()->Opcode() == Op_Parm, "");
 926     // Insert the memory aliasing node
 927     set_all_memory(reset_memory());
 928   }
 929   assert(merged_memory(), "");
 930 
 931   switch (intrinsic_id()) {
 932   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 933     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 934   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 935     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 936   case vmIntrinsics::_digestBase_implCompressMB:
 937     return inline_digestBase_implCompressMB_predicate(predicate);
 938 
 939   default:
 940     // If you get here, it may be that someone has added a new intrinsic
 941     // to the list in vmSymbols.hpp without implementing it here.
 942 #ifndef PRODUCT
 943     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 944       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 945                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 946     }
 947 #endif
 948     Node* slow_ctl = control();
 949     set_control(top()); // No fast path instrinsic
 950     return slow_ctl;
 951   }
 952 }
 953 
 954 //------------------------------set_result-------------------------------
 955 // Helper function for finishing intrinsics.
 956 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 957   record_for_igvn(region);
 958   set_control(_gvn.transform(region));
 959   set_result( _gvn.transform(value));
 960   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 961 }
 962 
 963 //------------------------------generate_guard---------------------------
 964 // Helper function for generating guarded fast-slow graph structures.
 965 // The given 'test', if true, guards a slow path.  If the test fails
 966 // then a fast path can be taken.  (We generally hope it fails.)
 967 // In all cases, GraphKit::control() is updated to the fast path.
 968 // The returned value represents the control for the slow path.
 969 // The return value is never 'top'; it is either a valid control
 970 // or NULL if it is obvious that the slow path can never be taken.
 971 // Also, if region and the slow control are not NULL, the slow edge
 972 // is appended to the region.
 973 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 974   if (stopped()) {
 975     // Already short circuited.
 976     return NULL;
 977   }
 978 
 979   // Build an if node and its projections.
 980   // If test is true we take the slow path, which we assume is uncommon.
 981   if (_gvn.type(test) == TypeInt::ZERO) {
 982     // The slow branch is never taken.  No need to build this guard.
 983     return NULL;
 984   }
 985 
 986   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 987 
 988   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 989   if (if_slow == top()) {
 990     // The slow branch is never taken.  No need to build this guard.
 991     return NULL;
 992   }
 993 
 994   if (region != NULL)
 995     region->add_req(if_slow);
 996 
 997   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 998   set_control(if_fast);
 999 
1000   return if_slow;
1001 }
1002 
1003 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1004   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1005 }
1006 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1007   return generate_guard(test, region, PROB_FAIR);
1008 }
1009 
1010 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1011                                                      Node* *pos_index) {
1012   if (stopped())
1013     return NULL;                // already stopped
1014   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1015     return NULL;                // index is already adequately typed
1016   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1017   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1018   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1019   if (is_neg != NULL && pos_index != NULL) {
1020     // Emulate effect of Parse::adjust_map_after_if.
1021     Node* ccast = new CastIINode(index, TypeInt::POS);
1022     ccast->set_req(0, control());
1023     (*pos_index) = _gvn.transform(ccast);
1024   }
1025   return is_neg;
1026 }
1027 
1028 // Make sure that 'position' is a valid limit index, in [0..length].
1029 // There are two equivalent plans for checking this:
1030 //   A. (offset + copyLength)  unsigned<=  arrayLength
1031 //   B. offset  <=  (arrayLength - copyLength)
1032 // We require that all of the values above, except for the sum and
1033 // difference, are already known to be non-negative.
1034 // Plan A is robust in the face of overflow, if offset and copyLength
1035 // are both hugely positive.
1036 //
1037 // Plan B is less direct and intuitive, but it does not overflow at
1038 // all, since the difference of two non-negatives is always
1039 // representable.  Whenever Java methods must perform the equivalent
1040 // check they generally use Plan B instead of Plan A.
1041 // For the moment we use Plan A.
1042 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1043                                                   Node* subseq_length,
1044                                                   Node* array_length,
1045                                                   RegionNode* region) {
1046   if (stopped())
1047     return NULL;                // already stopped
1048   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1049   if (zero_offset && subseq_length->eqv_uncast(array_length))
1050     return NULL;                // common case of whole-array copy
1051   Node* last = subseq_length;
1052   if (!zero_offset)             // last += offset
1053     last = _gvn.transform(new AddINode(last, offset));
1054   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1055   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1056   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1057   return is_over;
1058 }
1059 
1060 
1061 //--------------------------generate_current_thread--------------------
1062 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1063   ciKlass*    thread_klass = env()->Thread_klass();
1064   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1065   Node* thread = _gvn.transform(new ThreadLocalNode());
1066   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1067   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1068   tls_output = thread;
1069   return threadObj;
1070 }
1071 
1072 
1073 //------------------------------make_string_method_node------------------------
1074 // Helper method for String intrinsic functions. This version is called
1075 // with str1 and str2 pointing to String object nodes.
1076 //
1077 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1078   Node* no_ctrl = NULL;
1079 
1080   // Get start addr of string
1081   Node* str1_value   = load_String_value(no_ctrl, str1);
1082   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1083   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1084 
1085   // Get length of string 1
1086   Node* str1_len  = load_String_length(no_ctrl, str1);
1087 
1088   Node* str2_value   = load_String_value(no_ctrl, str2);
1089   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1090   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1091 
1092   Node* str2_len = NULL;
1093   Node* result = NULL;
1094 
1095   switch (opcode) {
1096   case Op_StrIndexOf:
1097     // Get length of string 2
1098     str2_len = load_String_length(no_ctrl, str2);
1099 
1100     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1101                                 str1_start, str1_len, str2_start, str2_len);
1102     break;
1103   case Op_StrComp:
1104     // Get length of string 2
1105     str2_len = load_String_length(no_ctrl, str2);
1106 
1107     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1108                              str1_start, str1_len, str2_start, str2_len);
1109     break;
1110   case Op_StrEquals:
1111     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1112                                str1_start, str2_start, str1_len);
1113     break;
1114   default:
1115     ShouldNotReachHere();
1116     return NULL;
1117   }
1118 
1119   // All these intrinsics have checks.
1120   C->set_has_split_ifs(true); // Has chance for split-if optimization
1121 
1122   return _gvn.transform(result);
1123 }
1124 
1125 // Helper method for String intrinsic functions. This version is called
1126 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1127 // to Int nodes containing the lenghts of str1 and str2.
1128 //
1129 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1130   Node* result = NULL;
1131   switch (opcode) {
1132   case Op_StrIndexOf:
1133     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1134                                 str1_start, cnt1, str2_start, cnt2);
1135     break;
1136   case Op_StrComp:
1137     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1138                              str1_start, cnt1, str2_start, cnt2);
1139     break;
1140   case Op_StrEquals:
1141     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1142                                str1_start, str2_start, cnt1);
1143     break;
1144   default:
1145     ShouldNotReachHere();
1146     return NULL;
1147   }
1148 
1149   // All these intrinsics have checks.
1150   C->set_has_split_ifs(true); // Has chance for split-if optimization
1151 
1152   return _gvn.transform(result);
1153 }
1154 
1155 //------------------------------inline_string_compareTo------------------------
1156 // public int java.lang.String.compareTo(String anotherString);
1157 bool LibraryCallKit::inline_string_compareTo() {
1158   Node* receiver = null_check(argument(0));
1159   Node* arg      = null_check(argument(1));
1160   if (stopped()) {
1161     return true;
1162   }
1163   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1164   return true;
1165 }
1166 
1167 //------------------------------inline_string_equals------------------------
1168 bool LibraryCallKit::inline_string_equals() {
1169   Node* receiver = null_check_receiver();
1170   // NOTE: Do not null check argument for String.equals() because spec
1171   // allows to specify NULL as argument.
1172   Node* argument = this->argument(1);
1173   if (stopped()) {
1174     return true;
1175   }
1176 
1177   // paths (plus control) merge
1178   RegionNode* region = new RegionNode(5);
1179   Node* phi = new PhiNode(region, TypeInt::BOOL);
1180 
1181   // does source == target string?
1182   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1183   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1184 
1185   Node* if_eq = generate_slow_guard(bol, NULL);
1186   if (if_eq != NULL) {
1187     // receiver == argument
1188     phi->init_req(2, intcon(1));
1189     region->init_req(2, if_eq);
1190   }
1191 
1192   // get String klass for instanceOf
1193   ciInstanceKlass* klass = env()->String_klass();
1194 
1195   if (!stopped()) {
1196     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1197     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1198     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1199 
1200     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1201     //instanceOf == true, fallthrough
1202 
1203     if (inst_false != NULL) {
1204       phi->init_req(3, intcon(0));
1205       region->init_req(3, inst_false);
1206     }
1207   }
1208 
1209   if (!stopped()) {
1210     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1211 
1212     // Properly cast the argument to String
1213     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1214     // This path is taken only when argument's type is String:NotNull.
1215     argument = cast_not_null(argument, false);
1216 
1217     Node* no_ctrl = NULL;
1218 
1219     // Get start addr of receiver
1220     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1221     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1222     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1223 
1224     // Get length of receiver
1225     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1226 
1227     // Get start addr of argument
1228     Node* argument_val    = load_String_value(no_ctrl, argument);
1229     Node* argument_offset = load_String_offset(no_ctrl, argument);
1230     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1231 
1232     // Get length of argument
1233     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1234 
1235     // Check for receiver count != argument count
1236     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1237     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1238     Node* if_ne = generate_slow_guard(bol, NULL);
1239     if (if_ne != NULL) {
1240       phi->init_req(4, intcon(0));
1241       region->init_req(4, if_ne);
1242     }
1243 
1244     // Check for count == 0 is done by assembler code for StrEquals.
1245 
1246     if (!stopped()) {
1247       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1248       phi->init_req(1, equals);
1249       region->init_req(1, control());
1250     }
1251   }
1252 
1253   // post merge
1254   set_control(_gvn.transform(region));
1255   record_for_igvn(region);
1256 
1257   set_result(_gvn.transform(phi));
1258   return true;
1259 }
1260 
1261 //------------------------------inline_array_equals----------------------------
1262 bool LibraryCallKit::inline_array_equals() {
1263   Node* arg1 = argument(0);
1264   Node* arg2 = argument(1);
1265   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1266   return true;
1267 }
1268 
1269 // Java version of String.indexOf(constant string)
1270 // class StringDecl {
1271 //   StringDecl(char[] ca) {
1272 //     offset = 0;
1273 //     count = ca.length;
1274 //     value = ca;
1275 //   }
1276 //   int offset;
1277 //   int count;
1278 //   char[] value;
1279 // }
1280 //
1281 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1282 //                             int targetOffset, int cache_i, int md2) {
1283 //   int cache = cache_i;
1284 //   int sourceOffset = string_object.offset;
1285 //   int sourceCount = string_object.count;
1286 //   int targetCount = target_object.length;
1287 //
1288 //   int targetCountLess1 = targetCount - 1;
1289 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1290 //
1291 //   char[] source = string_object.value;
1292 //   char[] target = target_object;
1293 //   int lastChar = target[targetCountLess1];
1294 //
1295 //  outer_loop:
1296 //   for (int i = sourceOffset; i < sourceEnd; ) {
1297 //     int src = source[i + targetCountLess1];
1298 //     if (src == lastChar) {
1299 //       // With random strings and a 4-character alphabet,
1300 //       // reverse matching at this point sets up 0.8% fewer
1301 //       // frames, but (paradoxically) makes 0.3% more probes.
1302 //       // Since those probes are nearer the lastChar probe,
1303 //       // there is may be a net D$ win with reverse matching.
1304 //       // But, reversing loop inhibits unroll of inner loop
1305 //       // for unknown reason.  So, does running outer loop from
1306 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1307 //       for (int j = 0; j < targetCountLess1; j++) {
1308 //         if (target[targetOffset + j] != source[i+j]) {
1309 //           if ((cache & (1 << source[i+j])) == 0) {
1310 //             if (md2 < j+1) {
1311 //               i += j+1;
1312 //               continue outer_loop;
1313 //             }
1314 //           }
1315 //           i += md2;
1316 //           continue outer_loop;
1317 //         }
1318 //       }
1319 //       return i - sourceOffset;
1320 //     }
1321 //     if ((cache & (1 << src)) == 0) {
1322 //       i += targetCountLess1;
1323 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1324 //     i++;
1325 //   }
1326 //   return -1;
1327 // }
1328 
1329 //------------------------------string_indexOf------------------------
1330 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1331                                      jint cache_i, jint md2_i) {
1332 
1333   Node* no_ctrl  = NULL;
1334   float likely   = PROB_LIKELY(0.9);
1335   float unlikely = PROB_UNLIKELY(0.9);
1336 
1337   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1338 
1339   Node* source        = load_String_value(no_ctrl, string_object);
1340   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1341   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1342 
1343   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1344   jint target_length = target_array->length();
1345   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1346   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1347 
1348   // String.value field is known to be @Stable.
1349   if (UseImplicitStableValues) {
1350     target = cast_array_to_stable(target, target_type);
1351   }
1352 
1353   IdealKit kit(this, false, true);
1354 #define __ kit.
1355   Node* zero             = __ ConI(0);
1356   Node* one              = __ ConI(1);
1357   Node* cache            = __ ConI(cache_i);
1358   Node* md2              = __ ConI(md2_i);
1359   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1360   Node* targetCount      = __ ConI(target_length);
1361   Node* targetCountLess1 = __ ConI(target_length - 1);
1362   Node* targetOffset     = __ ConI(targetOffset_i);
1363   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1364 
1365   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1366   Node* outer_loop = __ make_label(2 /* goto */);
1367   Node* return_    = __ make_label(1);
1368 
1369   __ set(rtn,__ ConI(-1));
1370   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1371        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1372        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1373        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1374        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1375          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1376               Node* tpj = __ AddI(targetOffset, __ value(j));
1377               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1378               Node* ipj  = __ AddI(__ value(i), __ value(j));
1379               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1380               __ if_then(targ, BoolTest::ne, src2); {
1381                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1382                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1383                     __ increment(i, __ AddI(__ value(j), one));
1384                     __ goto_(outer_loop);
1385                   } __ end_if(); __ dead(j);
1386                 }__ end_if(); __ dead(j);
1387                 __ increment(i, md2);
1388                 __ goto_(outer_loop);
1389               }__ end_if();
1390               __ increment(j, one);
1391          }__ end_loop(); __ dead(j);
1392          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1393          __ goto_(return_);
1394        }__ end_if();
1395        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1396          __ increment(i, targetCountLess1);
1397        }__ end_if();
1398        __ increment(i, one);
1399        __ bind(outer_loop);
1400   }__ end_loop(); __ dead(i);
1401   __ bind(return_);
1402 
1403   // Final sync IdealKit and GraphKit.
1404   final_sync(kit);
1405   Node* result = __ value(rtn);
1406 #undef __
1407   C->set_has_loops(true);
1408   return result;
1409 }
1410 
1411 //------------------------------inline_string_indexOf------------------------
1412 bool LibraryCallKit::inline_string_indexOf() {
1413   Node* receiver = argument(0);
1414   Node* arg      = argument(1);
1415 
1416   Node* result;
1417   // Disable the use of pcmpestri until it can be guaranteed that
1418   // the load doesn't cross into the uncommited space.
1419   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1420       UseSSE42Intrinsics) {
1421     // Generate SSE4.2 version of indexOf
1422     // We currently only have match rules that use SSE4.2
1423 
1424     receiver = null_check(receiver);
1425     arg      = null_check(arg);
1426     if (stopped()) {
1427       return true;
1428     }
1429 
1430     ciInstanceKlass* str_klass = env()->String_klass();
1431     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1432 
1433     // Make the merge point
1434     RegionNode* result_rgn = new RegionNode(4);
1435     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1436     Node* no_ctrl  = NULL;
1437 
1438     // Get start addr of source string
1439     Node* source = load_String_value(no_ctrl, receiver);
1440     Node* source_offset = load_String_offset(no_ctrl, receiver);
1441     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1442 
1443     // Get length of source string
1444     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1445 
1446     // Get start addr of substring
1447     Node* substr = load_String_value(no_ctrl, arg);
1448     Node* substr_offset = load_String_offset(no_ctrl, arg);
1449     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1450 
1451     // Get length of source string
1452     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1453 
1454     // Check for substr count > string count
1455     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1456     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1457     Node* if_gt = generate_slow_guard(bol, NULL);
1458     if (if_gt != NULL) {
1459       result_phi->init_req(2, intcon(-1));
1460       result_rgn->init_req(2, if_gt);
1461     }
1462 
1463     if (!stopped()) {
1464       // Check for substr count == 0
1465       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1466       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1467       Node* if_zero = generate_slow_guard(bol, NULL);
1468       if (if_zero != NULL) {
1469         result_phi->init_req(3, intcon(0));
1470         result_rgn->init_req(3, if_zero);
1471       }
1472     }
1473 
1474     if (!stopped()) {
1475       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1476       result_phi->init_req(1, result);
1477       result_rgn->init_req(1, control());
1478     }
1479     set_control(_gvn.transform(result_rgn));
1480     record_for_igvn(result_rgn);
1481     result = _gvn.transform(result_phi);
1482 
1483   } else { // Use LibraryCallKit::string_indexOf
1484     // don't intrinsify if argument isn't a constant string.
1485     if (!arg->is_Con()) {
1486      return false;
1487     }
1488     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1489     if (str_type == NULL) {
1490       return false;
1491     }
1492     ciInstanceKlass* klass = env()->String_klass();
1493     ciObject* str_const = str_type->const_oop();
1494     if (str_const == NULL || str_const->klass() != klass) {
1495       return false;
1496     }
1497     ciInstance* str = str_const->as_instance();
1498     assert(str != NULL, "must be instance");
1499 
1500     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1501     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1502 
1503     int o;
1504     int c;
1505     if (java_lang_String::has_offset_field()) {
1506       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1507       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1508     } else {
1509       o = 0;
1510       c = pat->length();
1511     }
1512 
1513     // constant strings have no offset and count == length which
1514     // simplifies the resulting code somewhat so lets optimize for that.
1515     if (o != 0 || c != pat->length()) {
1516      return false;
1517     }
1518 
1519     receiver = null_check(receiver, T_OBJECT);
1520     // NOTE: No null check on the argument is needed since it's a constant String oop.
1521     if (stopped()) {
1522       return true;
1523     }
1524 
1525     // The null string as a pattern always returns 0 (match at beginning of string)
1526     if (c == 0) {
1527       set_result(intcon(0));
1528       return true;
1529     }
1530 
1531     // Generate default indexOf
1532     jchar lastChar = pat->char_at(o + (c - 1));
1533     int cache = 0;
1534     int i;
1535     for (i = 0; i < c - 1; i++) {
1536       assert(i < pat->length(), "out of range");
1537       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1538     }
1539 
1540     int md2 = c;
1541     for (i = 0; i < c - 1; i++) {
1542       assert(i < pat->length(), "out of range");
1543       if (pat->char_at(o + i) == lastChar) {
1544         md2 = (c - 1) - i;
1545       }
1546     }
1547 
1548     result = string_indexOf(receiver, pat, o, cache, md2);
1549   }
1550   set_result(result);
1551   return true;
1552 }
1553 
1554 //--------------------------round_double_node--------------------------------
1555 // Round a double node if necessary.
1556 Node* LibraryCallKit::round_double_node(Node* n) {
1557   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1558     n = _gvn.transform(new RoundDoubleNode(0, n));
1559   return n;
1560 }
1561 
1562 //------------------------------inline_math-----------------------------------
1563 // public static double Math.abs(double)
1564 // public static double Math.sqrt(double)
1565 // public static double Math.log(double)
1566 // public static double Math.log10(double)
1567 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1568   Node* arg = round_double_node(argument(0));
1569   Node* n;
1570   switch (id) {
1571   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1572   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1573   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1574   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1575   default:  fatal_unexpected_iid(id);  break;
1576   }
1577   set_result(_gvn.transform(n));
1578   return true;
1579 }
1580 
1581 //------------------------------inline_trig----------------------------------
1582 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1583 // argument reduction which will turn into a fast/slow diamond.
1584 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1585   Node* arg = round_double_node(argument(0));
1586   Node* n = NULL;
1587 
1588   switch (id) {
1589   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1590   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1591   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1592   default:  fatal_unexpected_iid(id);  break;
1593   }
1594   n = _gvn.transform(n);
1595 
1596   // Rounding required?  Check for argument reduction!
1597   if (Matcher::strict_fp_requires_explicit_rounding) {
1598     static const double     pi_4 =  0.7853981633974483;
1599     static const double neg_pi_4 = -0.7853981633974483;
1600     // pi/2 in 80-bit extended precision
1601     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1602     // -pi/2 in 80-bit extended precision
1603     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1604     // Cutoff value for using this argument reduction technique
1605     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1606     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1607 
1608     // Pseudocode for sin:
1609     // if (x <= Math.PI / 4.0) {
1610     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1611     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1612     // } else {
1613     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1614     // }
1615     // return StrictMath.sin(x);
1616 
1617     // Pseudocode for cos:
1618     // if (x <= Math.PI / 4.0) {
1619     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1620     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1621     // } else {
1622     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1623     // }
1624     // return StrictMath.cos(x);
1625 
1626     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1627     // requires a special machine instruction to load it.  Instead we'll try
1628     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1629     // probably do the math inside the SIN encoding.
1630 
1631     // Make the merge point
1632     RegionNode* r = new RegionNode(3);
1633     Node* phi = new PhiNode(r, Type::DOUBLE);
1634 
1635     // Flatten arg so we need only 1 test
1636     Node *abs = _gvn.transform(new AbsDNode(arg));
1637     // Node for PI/4 constant
1638     Node *pi4 = makecon(TypeD::make(pi_4));
1639     // Check PI/4 : abs(arg)
1640     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1641     // Check: If PI/4 < abs(arg) then go slow
1642     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1643     // Branch either way
1644     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1645     set_control(opt_iff(r,iff));
1646 
1647     // Set fast path result
1648     phi->init_req(2, n);
1649 
1650     // Slow path - non-blocking leaf call
1651     Node* call = NULL;
1652     switch (id) {
1653     case vmIntrinsics::_dsin:
1654       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1655                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1656                                "Sin", NULL, arg, top());
1657       break;
1658     case vmIntrinsics::_dcos:
1659       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1660                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1661                                "Cos", NULL, arg, top());
1662       break;
1663     case vmIntrinsics::_dtan:
1664       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1665                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1666                                "Tan", NULL, arg, top());
1667       break;
1668     }
1669     assert(control()->in(0) == call, "");
1670     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1671     r->init_req(1, control());
1672     phi->init_req(1, slow_result);
1673 
1674     // Post-merge
1675     set_control(_gvn.transform(r));
1676     record_for_igvn(r);
1677     n = _gvn.transform(phi);
1678 
1679     C->set_has_split_ifs(true); // Has chance for split-if optimization
1680   }
1681   set_result(n);
1682   return true;
1683 }
1684 
1685 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1686   //-------------------
1687   //result=(result.isNaN())? funcAddr():result;
1688   // Check: If isNaN() by checking result!=result? then either trap
1689   // or go to runtime
1690   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1691   // Build the boolean node
1692   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1693 
1694   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1695     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1696       // The pow or exp intrinsic returned a NaN, which requires a call
1697       // to the runtime.  Recompile with the runtime call.
1698       uncommon_trap(Deoptimization::Reason_intrinsic,
1699                     Deoptimization::Action_make_not_entrant);
1700     }
1701     return result;
1702   } else {
1703     // If this inlining ever returned NaN in the past, we compile a call
1704     // to the runtime to properly handle corner cases
1705 
1706     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1707     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1708     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1709 
1710     if (!if_slow->is_top()) {
1711       RegionNode* result_region = new RegionNode(3);
1712       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1713 
1714       result_region->init_req(1, if_fast);
1715       result_val->init_req(1, result);
1716 
1717       set_control(if_slow);
1718 
1719       const TypePtr* no_memory_effects = NULL;
1720       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1721                                    no_memory_effects,
1722                                    x, top(), y, y ? top() : NULL);
1723       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1724 #ifdef ASSERT
1725       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1726       assert(value_top == top(), "second value must be top");
1727 #endif
1728 
1729       result_region->init_req(2, control());
1730       result_val->init_req(2, value);
1731       set_control(_gvn.transform(result_region));
1732       return _gvn.transform(result_val);
1733     } else {
1734       return result;
1735     }
1736   }
1737 }
1738 
1739 //------------------------------inline_exp-------------------------------------
1740 // Inline exp instructions, if possible.  The Intel hardware only misses
1741 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1742 bool LibraryCallKit::inline_exp() {
1743   Node* arg = round_double_node(argument(0));
1744   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1745 
1746   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1747   set_result(n);
1748 
1749   C->set_has_split_ifs(true); // Has chance for split-if optimization
1750   return true;
1751 }
1752 
1753 //------------------------------inline_pow-------------------------------------
1754 // Inline power instructions, if possible.
1755 bool LibraryCallKit::inline_pow() {
1756   // Pseudocode for pow
1757   // if (y == 2) {
1758   //   return x * x;
1759   // } else {
1760   //   if (x <= 0.0) {
1761   //     long longy = (long)y;
1762   //     if ((double)longy == y) { // if y is long
1763   //       if (y + 1 == y) longy = 0; // huge number: even
1764   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1765   //     } else {
1766   //       result = NaN;
1767   //     }
1768   //   } else {
1769   //     result = DPow(x,y);
1770   //   }
1771   //   if (result != result)?  {
1772   //     result = uncommon_trap() or runtime_call();
1773   //   }
1774   //   return result;
1775   // }
1776 
1777   Node* x = round_double_node(argument(0));
1778   Node* y = round_double_node(argument(2));
1779 
1780   Node* result = NULL;
1781 
1782   Node*   const_two_node = makecon(TypeD::make(2.0));
1783   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1784   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1785   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1786   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1787   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1788 
1789   RegionNode* region_node = new RegionNode(3);
1790   region_node->init_req(1, if_true);
1791 
1792   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1793   // special case for x^y where y == 2, we can convert it to x * x
1794   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1795 
1796   // set control to if_false since we will now process the false branch
1797   set_control(if_false);
1798 
1799   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1800     // Short form: skip the fancy tests and just check for NaN result.
1801     result = _gvn.transform(new PowDNode(C, control(), x, y));
1802   } else {
1803     // If this inlining ever returned NaN in the past, include all
1804     // checks + call to the runtime.
1805 
1806     // Set the merge point for If node with condition of (x <= 0.0)
1807     // There are four possible paths to region node and phi node
1808     RegionNode *r = new RegionNode(4);
1809     Node *phi = new PhiNode(r, Type::DOUBLE);
1810 
1811     // Build the first if node: if (x <= 0.0)
1812     // Node for 0 constant
1813     Node *zeronode = makecon(TypeD::ZERO);
1814     // Check x:0
1815     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1816     // Check: If (x<=0) then go complex path
1817     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1818     // Branch either way
1819     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1820     // Fast path taken; set region slot 3
1821     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1822     r->init_req(3,fast_taken); // Capture fast-control
1823 
1824     // Fast path not-taken, i.e. slow path
1825     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1826 
1827     // Set fast path result
1828     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1829     phi->init_req(3, fast_result);
1830 
1831     // Complex path
1832     // Build the second if node (if y is long)
1833     // Node for (long)y
1834     Node *longy = _gvn.transform(new ConvD2LNode(y));
1835     // Node for (double)((long) y)
1836     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1837     // Check (double)((long) y) : y
1838     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1839     // Check if (y isn't long) then go to slow path
1840 
1841     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1842     // Branch either way
1843     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1844     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1845 
1846     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1847 
1848     // Calculate DPow(abs(x), y)*(1 & (long)y)
1849     // Node for constant 1
1850     Node *conone = longcon(1);
1851     // 1& (long)y
1852     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1853 
1854     // A huge number is always even. Detect a huge number by checking
1855     // if y + 1 == y and set integer to be tested for parity to 0.
1856     // Required for corner case:
1857     // (long)9.223372036854776E18 = max_jlong
1858     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1859     // max_jlong is odd but 9.223372036854776E18 is even
1860     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1861     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1862     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1863     Node* correctedsign = NULL;
1864     if (ConditionalMoveLimit != 0) {
1865       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1866     } else {
1867       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1868       RegionNode *r = new RegionNode(3);
1869       Node *phi = new PhiNode(r, TypeLong::LONG);
1870       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1871       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1872       phi->init_req(1, signnode);
1873       phi->init_req(2, longcon(0));
1874       correctedsign = _gvn.transform(phi);
1875       ylong_path = _gvn.transform(r);
1876       record_for_igvn(r);
1877     }
1878 
1879     // zero node
1880     Node *conzero = longcon(0);
1881     // Check (1&(long)y)==0?
1882     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1883     // Check if (1&(long)y)!=0?, if so the result is negative
1884     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1885     // abs(x)
1886     Node *absx=_gvn.transform(new AbsDNode(x));
1887     // abs(x)^y
1888     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1889     // -abs(x)^y
1890     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1891     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1892     Node *signresult = NULL;
1893     if (ConditionalMoveLimit != 0) {
1894       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1895     } else {
1896       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1897       RegionNode *r = new RegionNode(3);
1898       Node *phi = new PhiNode(r, Type::DOUBLE);
1899       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1900       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1901       phi->init_req(1, absxpowy);
1902       phi->init_req(2, negabsxpowy);
1903       signresult = _gvn.transform(phi);
1904       ylong_path = _gvn.transform(r);
1905       record_for_igvn(r);
1906     }
1907     // Set complex path fast result
1908     r->init_req(2, ylong_path);
1909     phi->init_req(2, signresult);
1910 
1911     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1912     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1913     r->init_req(1,slow_path);
1914     phi->init_req(1,slow_result);
1915 
1916     // Post merge
1917     set_control(_gvn.transform(r));
1918     record_for_igvn(r);
1919     result = _gvn.transform(phi);
1920   }
1921 
1922   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1923 
1924   // control from finish_pow_exp is now input to the region node
1925   region_node->set_req(2, control());
1926   // the result from finish_pow_exp is now input to the phi node
1927   phi_node->init_req(2, result);
1928   set_control(_gvn.transform(region_node));
1929   record_for_igvn(region_node);
1930   set_result(_gvn.transform(phi_node));
1931 
1932   C->set_has_split_ifs(true); // Has chance for split-if optimization
1933   return true;
1934 }
1935 
1936 //------------------------------runtime_math-----------------------------
1937 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1938   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1939          "must be (DD)D or (D)D type");
1940 
1941   // Inputs
1942   Node* a = round_double_node(argument(0));
1943   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1944 
1945   const TypePtr* no_memory_effects = NULL;
1946   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1947                                  no_memory_effects,
1948                                  a, top(), b, b ? top() : NULL);
1949   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1950 #ifdef ASSERT
1951   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1952   assert(value_top == top(), "second value must be top");
1953 #endif
1954 
1955   set_result(value);
1956   return true;
1957 }
1958 
1959 //------------------------------inline_math_native-----------------------------
1960 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1961 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1962   switch (id) {
1963     // These intrinsics are not properly supported on all hardware
1964   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1965     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1966   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1967     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1968   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1969     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1970 
1971   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1972     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1973   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1974     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1975 
1976     // These intrinsics are supported on all hardware
1977   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1978   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1979 
1980   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1981     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1982   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1983     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1984 #undef FN_PTR
1985 
1986    // These intrinsics are not yet correctly implemented
1987   case vmIntrinsics::_datan2:
1988     return false;
1989 
1990   default:
1991     fatal_unexpected_iid(id);
1992     return false;
1993   }
1994 }
1995 
1996 static bool is_simple_name(Node* n) {
1997   return (n->req() == 1         // constant
1998           || (n->is_Type() && n->as_Type()->type()->singleton())
1999           || n->is_Proj()       // parameter or return value
2000           || n->is_Phi()        // local of some sort
2001           );
2002 }
2003 
2004 //----------------------------inline_min_max-----------------------------------
2005 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2006   set_result(generate_min_max(id, argument(0), argument(1)));
2007   return true;
2008 }
2009 
2010 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2011   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2012   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2013   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2014   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2015 
2016   {
2017     PreserveJVMState pjvms(this);
2018     PreserveReexecuteState preexecs(this);
2019     jvms()->set_should_reexecute(true);
2020 
2021     set_control(slow_path);
2022     set_i_o(i_o());
2023 
2024     uncommon_trap(Deoptimization::Reason_intrinsic,
2025                   Deoptimization::Action_none);
2026   }
2027 
2028   set_control(fast_path);
2029   set_result(math);
2030 }
2031 
2032 template <typename OverflowOp>
2033 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2034   typedef typename OverflowOp::MathOp MathOp;
2035 
2036   MathOp* mathOp = new MathOp(arg1, arg2);
2037   Node* operation = _gvn.transform( mathOp );
2038   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2039   inline_math_mathExact(operation, ofcheck);
2040   return true;
2041 }
2042 
2043 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2044   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2045 }
2046 
2047 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2048   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2049 }
2050 
2051 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2052   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2053 }
2054 
2055 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2056   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2057 }
2058 
2059 bool LibraryCallKit::inline_math_negateExactI() {
2060   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2061 }
2062 
2063 bool LibraryCallKit::inline_math_negateExactL() {
2064   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2065 }
2066 
2067 bool LibraryCallKit::inline_math_multiplyExactI() {
2068   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2069 }
2070 
2071 bool LibraryCallKit::inline_math_multiplyExactL() {
2072   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2073 }
2074 
2075 Node*
2076 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2077   // These are the candidate return value:
2078   Node* xvalue = x0;
2079   Node* yvalue = y0;
2080 
2081   if (xvalue == yvalue) {
2082     return xvalue;
2083   }
2084 
2085   bool want_max = (id == vmIntrinsics::_max);
2086 
2087   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2088   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2089   if (txvalue == NULL || tyvalue == NULL)  return top();
2090   // This is not really necessary, but it is consistent with a
2091   // hypothetical MaxINode::Value method:
2092   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2093 
2094   // %%% This folding logic should (ideally) be in a different place.
2095   // Some should be inside IfNode, and there to be a more reliable
2096   // transformation of ?: style patterns into cmoves.  We also want
2097   // more powerful optimizations around cmove and min/max.
2098 
2099   // Try to find a dominating comparison of these guys.
2100   // It can simplify the index computation for Arrays.copyOf
2101   // and similar uses of System.arraycopy.
2102   // First, compute the normalized version of CmpI(x, y).
2103   int   cmp_op = Op_CmpI;
2104   Node* xkey = xvalue;
2105   Node* ykey = yvalue;
2106   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2107   if (ideal_cmpxy->is_Cmp()) {
2108     // E.g., if we have CmpI(length - offset, count),
2109     // it might idealize to CmpI(length, count + offset)
2110     cmp_op = ideal_cmpxy->Opcode();
2111     xkey = ideal_cmpxy->in(1);
2112     ykey = ideal_cmpxy->in(2);
2113   }
2114 
2115   // Start by locating any relevant comparisons.
2116   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2117   Node* cmpxy = NULL;
2118   Node* cmpyx = NULL;
2119   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2120     Node* cmp = start_from->fast_out(k);
2121     if (cmp->outcnt() > 0 &&            // must have prior uses
2122         cmp->in(0) == NULL &&           // must be context-independent
2123         cmp->Opcode() == cmp_op) {      // right kind of compare
2124       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2125       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2126     }
2127   }
2128 
2129   const int NCMPS = 2;
2130   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2131   int cmpn;
2132   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2133     if (cmps[cmpn] != NULL)  break;     // find a result
2134   }
2135   if (cmpn < NCMPS) {
2136     // Look for a dominating test that tells us the min and max.
2137     int depth = 0;                // Limit search depth for speed
2138     Node* dom = control();
2139     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2140       if (++depth >= 100)  break;
2141       Node* ifproj = dom;
2142       if (!ifproj->is_Proj())  continue;
2143       Node* iff = ifproj->in(0);
2144       if (!iff->is_If())  continue;
2145       Node* bol = iff->in(1);
2146       if (!bol->is_Bool())  continue;
2147       Node* cmp = bol->in(1);
2148       if (cmp == NULL)  continue;
2149       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2150         if (cmps[cmpn] == cmp)  break;
2151       if (cmpn == NCMPS)  continue;
2152       BoolTest::mask btest = bol->as_Bool()->_test._test;
2153       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2154       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2155       // At this point, we know that 'x btest y' is true.
2156       switch (btest) {
2157       case BoolTest::eq:
2158         // They are proven equal, so we can collapse the min/max.
2159         // Either value is the answer.  Choose the simpler.
2160         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2161           return yvalue;
2162         return xvalue;
2163       case BoolTest::lt:          // x < y
2164       case BoolTest::le:          // x <= y
2165         return (want_max ? yvalue : xvalue);
2166       case BoolTest::gt:          // x > y
2167       case BoolTest::ge:          // x >= y
2168         return (want_max ? xvalue : yvalue);
2169       }
2170     }
2171   }
2172 
2173   // We failed to find a dominating test.
2174   // Let's pick a test that might GVN with prior tests.
2175   Node*          best_bol   = NULL;
2176   BoolTest::mask best_btest = BoolTest::illegal;
2177   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2178     Node* cmp = cmps[cmpn];
2179     if (cmp == NULL)  continue;
2180     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2181       Node* bol = cmp->fast_out(j);
2182       if (!bol->is_Bool())  continue;
2183       BoolTest::mask btest = bol->as_Bool()->_test._test;
2184       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2185       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2186       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2187         best_bol   = bol->as_Bool();
2188         best_btest = btest;
2189       }
2190     }
2191   }
2192 
2193   Node* answer_if_true  = NULL;
2194   Node* answer_if_false = NULL;
2195   switch (best_btest) {
2196   default:
2197     if (cmpxy == NULL)
2198       cmpxy = ideal_cmpxy;
2199     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2200     // and fall through:
2201   case BoolTest::lt:          // x < y
2202   case BoolTest::le:          // x <= y
2203     answer_if_true  = (want_max ? yvalue : xvalue);
2204     answer_if_false = (want_max ? xvalue : yvalue);
2205     break;
2206   case BoolTest::gt:          // x > y
2207   case BoolTest::ge:          // x >= y
2208     answer_if_true  = (want_max ? xvalue : yvalue);
2209     answer_if_false = (want_max ? yvalue : xvalue);
2210     break;
2211   }
2212 
2213   jint hi, lo;
2214   if (want_max) {
2215     // We can sharpen the minimum.
2216     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2217     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2218   } else {
2219     // We can sharpen the maximum.
2220     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2221     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2222   }
2223 
2224   // Use a flow-free graph structure, to avoid creating excess control edges
2225   // which could hinder other optimizations.
2226   // Since Math.min/max is often used with arraycopy, we want
2227   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2228   Node* cmov = CMoveNode::make(NULL, best_bol,
2229                                answer_if_false, answer_if_true,
2230                                TypeInt::make(lo, hi, widen));
2231 
2232   return _gvn.transform(cmov);
2233 
2234   /*
2235   // This is not as desirable as it may seem, since Min and Max
2236   // nodes do not have a full set of optimizations.
2237   // And they would interfere, anyway, with 'if' optimizations
2238   // and with CMoveI canonical forms.
2239   switch (id) {
2240   case vmIntrinsics::_min:
2241     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2242   case vmIntrinsics::_max:
2243     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2244   default:
2245     ShouldNotReachHere();
2246   }
2247   */
2248 }
2249 
2250 inline int
2251 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2252   const TypePtr* base_type = TypePtr::NULL_PTR;
2253   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2254   if (base_type == NULL) {
2255     // Unknown type.
2256     return Type::AnyPtr;
2257   } else if (base_type == TypePtr::NULL_PTR) {
2258     // Since this is a NULL+long form, we have to switch to a rawptr.
2259     base   = _gvn.transform(new CastX2PNode(offset));
2260     offset = MakeConX(0);
2261     return Type::RawPtr;
2262   } else if (base_type->base() == Type::RawPtr) {
2263     return Type::RawPtr;
2264   } else if (base_type->isa_oopptr()) {
2265     // Base is never null => always a heap address.
2266     if (base_type->ptr() == TypePtr::NotNull) {
2267       return Type::OopPtr;
2268     }
2269     // Offset is small => always a heap address.
2270     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2271     if (offset_type != NULL &&
2272         base_type->offset() == 0 &&     // (should always be?)
2273         offset_type->_lo >= 0 &&
2274         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2275       return Type::OopPtr;
2276     }
2277     // Otherwise, it might either be oop+off or NULL+addr.
2278     return Type::AnyPtr;
2279   } else {
2280     // No information:
2281     return Type::AnyPtr;
2282   }
2283 }
2284 
2285 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2286   int kind = classify_unsafe_addr(base, offset);
2287   if (kind == Type::RawPtr) {
2288     return basic_plus_adr(top(), base, offset);
2289   } else {
2290     return basic_plus_adr(base, offset);
2291   }
2292 }
2293 
2294 //--------------------------inline_number_methods-----------------------------
2295 // inline int     Integer.numberOfLeadingZeros(int)
2296 // inline int        Long.numberOfLeadingZeros(long)
2297 //
2298 // inline int     Integer.numberOfTrailingZeros(int)
2299 // inline int        Long.numberOfTrailingZeros(long)
2300 //
2301 // inline int     Integer.bitCount(int)
2302 // inline int        Long.bitCount(long)
2303 //
2304 // inline char  Character.reverseBytes(char)
2305 // inline short     Short.reverseBytes(short)
2306 // inline int     Integer.reverseBytes(int)
2307 // inline long       Long.reverseBytes(long)
2308 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2309   Node* arg = argument(0);
2310   Node* n;
2311   switch (id) {
2312   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2313   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2314   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2315   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2316   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2317   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2318   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2319   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2320   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2321   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2322   default:  fatal_unexpected_iid(id);  break;
2323   }
2324   set_result(_gvn.transform(n));
2325   return true;
2326 }
2327 
2328 //----------------------------inline_unsafe_access----------------------------
2329 
2330 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2331 
2332 // Helper that guards and inserts a pre-barrier.
2333 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2334                                         Node* pre_val, bool need_mem_bar) {
2335   // We could be accessing the referent field of a reference object. If so, when G1
2336   // is enabled, we need to log the value in the referent field in an SATB buffer.
2337   // This routine performs some compile time filters and generates suitable
2338   // runtime filters that guard the pre-barrier code.
2339   // Also add memory barrier for non volatile load from the referent field
2340   // to prevent commoning of loads across safepoint.
2341   if (!UseG1GC && !need_mem_bar)
2342     return;
2343 
2344   // Some compile time checks.
2345 
2346   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2347   const TypeX* otype = offset->find_intptr_t_type();
2348   if (otype != NULL && otype->is_con() &&
2349       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2350     // Constant offset but not the reference_offset so just return
2351     return;
2352   }
2353 
2354   // We only need to generate the runtime guards for instances.
2355   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2356   if (btype != NULL) {
2357     if (btype->isa_aryptr()) {
2358       // Array type so nothing to do
2359       return;
2360     }
2361 
2362     const TypeInstPtr* itype = btype->isa_instptr();
2363     if (itype != NULL) {
2364       // Can the klass of base_oop be statically determined to be
2365       // _not_ a sub-class of Reference and _not_ Object?
2366       ciKlass* klass = itype->klass();
2367       if ( klass->is_loaded() &&
2368           !klass->is_subtype_of(env()->Reference_klass()) &&
2369           !env()->Object_klass()->is_subtype_of(klass)) {
2370         return;
2371       }
2372     }
2373   }
2374 
2375   // The compile time filters did not reject base_oop/offset so
2376   // we need to generate the following runtime filters
2377   //
2378   // if (offset == java_lang_ref_Reference::_reference_offset) {
2379   //   if (instance_of(base, java.lang.ref.Reference)) {
2380   //     pre_barrier(_, pre_val, ...);
2381   //   }
2382   // }
2383 
2384   float likely   = PROB_LIKELY(  0.999);
2385   float unlikely = PROB_UNLIKELY(0.999);
2386 
2387   IdealKit ideal(this);
2388 #define __ ideal.
2389 
2390   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2391 
2392   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2393       // Update graphKit memory and control from IdealKit.
2394       sync_kit(ideal);
2395 
2396       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2397       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2398 
2399       // Update IdealKit memory and control from graphKit.
2400       __ sync_kit(this);
2401 
2402       Node* one = __ ConI(1);
2403       // is_instof == 0 if base_oop == NULL
2404       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2405 
2406         // Update graphKit from IdeakKit.
2407         sync_kit(ideal);
2408 
2409         // Use the pre-barrier to record the value in the referent field
2410         pre_barrier(false /* do_load */,
2411                     __ ctrl(),
2412                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2413                     pre_val /* pre_val */,
2414                     T_OBJECT);
2415         if (need_mem_bar) {
2416           // Add memory barrier to prevent commoning reads from this field
2417           // across safepoint since GC can change its value.
2418           insert_mem_bar(Op_MemBarCPUOrder);
2419         }
2420         // Update IdealKit from graphKit.
2421         __ sync_kit(this);
2422 
2423       } __ end_if(); // _ref_type != ref_none
2424   } __ end_if(); // offset == referent_offset
2425 
2426   // Final sync IdealKit and GraphKit.
2427   final_sync(ideal);
2428 #undef __
2429 }
2430 
2431 
2432 // Interpret Unsafe.fieldOffset cookies correctly:
2433 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2434 
2435 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2436   // Attempt to infer a sharper value type from the offset and base type.
2437   ciKlass* sharpened_klass = NULL;
2438 
2439   // See if it is an instance field, with an object type.
2440   if (alias_type->field() != NULL) {
2441     assert(!is_native_ptr, "native pointer op cannot use a java address");
2442     if (alias_type->field()->type()->is_klass()) {
2443       sharpened_klass = alias_type->field()->type()->as_klass();
2444     }
2445   }
2446 
2447   // See if it is a narrow oop array.
2448   if (adr_type->isa_aryptr()) {
2449     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2450       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2451       if (elem_type != NULL) {
2452         sharpened_klass = elem_type->klass();
2453       }
2454     }
2455   }
2456 
2457   // The sharpened class might be unloaded if there is no class loader
2458   // contraint in place.
2459   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2460     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2461 
2462 #ifndef PRODUCT
2463     if (C->print_intrinsics() || C->print_inlining()) {
2464       tty->print("  from base type: ");  adr_type->dump();
2465       tty->print("  sharpened value: ");  tjp->dump();
2466     }
2467 #endif
2468     // Sharpen the value type.
2469     return tjp;
2470   }
2471   return NULL;
2472 }
2473 
2474 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2475   if (callee()->is_static())  return false;  // caller must have the capability!
2476 
2477 #ifndef PRODUCT
2478   {
2479     ResourceMark rm;
2480     // Check the signatures.
2481     ciSignature* sig = callee()->signature();
2482 #ifdef ASSERT
2483     if (!is_store) {
2484       // Object getObject(Object base, int/long offset), etc.
2485       BasicType rtype = sig->return_type()->basic_type();
2486       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2487           rtype = T_ADDRESS;  // it is really a C void*
2488       assert(rtype == type, "getter must return the expected value");
2489       if (!is_native_ptr) {
2490         assert(sig->count() == 2, "oop getter has 2 arguments");
2491         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2492         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2493       } else {
2494         assert(sig->count() == 1, "native getter has 1 argument");
2495         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2496       }
2497     } else {
2498       // void putObject(Object base, int/long offset, Object x), etc.
2499       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2500       if (!is_native_ptr) {
2501         assert(sig->count() == 3, "oop putter has 3 arguments");
2502         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2503         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2504       } else {
2505         assert(sig->count() == 2, "native putter has 2 arguments");
2506         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2507       }
2508       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2509       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2510         vtype = T_ADDRESS;  // it is really a C void*
2511       assert(vtype == type, "putter must accept the expected value");
2512     }
2513 #endif // ASSERT
2514  }
2515 #endif //PRODUCT
2516 
2517   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2518 
2519   Node* receiver = argument(0);  // type: oop
2520 
2521   // Build address expression.  See the code in inline_unsafe_prefetch.
2522   Node* adr;
2523   Node* heap_base_oop = top();
2524   Node* offset = top();
2525   Node* val;
2526 
2527   if (!is_native_ptr) {
2528     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2529     Node* base = argument(1);  // type: oop
2530     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2531     offset = argument(2);  // type: long
2532     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2533     // to be plain byte offsets, which are also the same as those accepted
2534     // by oopDesc::field_base.
2535     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2536            "fieldOffset must be byte-scaled");
2537     // 32-bit machines ignore the high half!
2538     offset = ConvL2X(offset);
2539     adr = make_unsafe_address(base, offset);
2540     heap_base_oop = base;
2541     val = is_store ? argument(4) : NULL;
2542   } else {
2543     Node* ptr = argument(1);  // type: long
2544     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2545     adr = make_unsafe_address(NULL, ptr);
2546     val = is_store ? argument(3) : NULL;
2547   }
2548 
2549   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2550 
2551   // First guess at the value type.
2552   const Type *value_type = Type::get_const_basic_type(type);
2553 
2554   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2555   // there was not enough information to nail it down.
2556   Compile::AliasType* alias_type = C->alias_type(adr_type);
2557   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2558 
2559   // We will need memory barriers unless we can determine a unique
2560   // alias category for this reference.  (Note:  If for some reason
2561   // the barriers get omitted and the unsafe reference begins to "pollute"
2562   // the alias analysis of the rest of the graph, either Compile::can_alias
2563   // or Compile::must_alias will throw a diagnostic assert.)
2564   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2565 
2566   // If we are reading the value of the referent field of a Reference
2567   // object (either by using Unsafe directly or through reflection)
2568   // then, if G1 is enabled, we need to record the referent in an
2569   // SATB log buffer using the pre-barrier mechanism.
2570   // Also we need to add memory barrier to prevent commoning reads
2571   // from this field across safepoint since GC can change its value.
2572   bool need_read_barrier = !is_native_ptr && !is_store &&
2573                            offset != top() && heap_base_oop != top();
2574 
2575   if (!is_store && type == T_OBJECT) {
2576     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2577     if (tjp != NULL) {
2578       value_type = tjp;
2579     }
2580   }
2581 
2582   receiver = null_check(receiver);
2583   if (stopped()) {
2584     return true;
2585   }
2586   // Heap pointers get a null-check from the interpreter,
2587   // as a courtesy.  However, this is not guaranteed by Unsafe,
2588   // and it is not possible to fully distinguish unintended nulls
2589   // from intended ones in this API.
2590 
2591   if (is_volatile) {
2592     // We need to emit leading and trailing CPU membars (see below) in
2593     // addition to memory membars when is_volatile. This is a little
2594     // too strong, but avoids the need to insert per-alias-type
2595     // volatile membars (for stores; compare Parse::do_put_xxx), which
2596     // we cannot do effectively here because we probably only have a
2597     // rough approximation of type.
2598     need_mem_bar = true;
2599     // For Stores, place a memory ordering barrier now.
2600     if (is_store) {
2601       insert_mem_bar(Op_MemBarRelease);
2602     } else {
2603       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2604         insert_mem_bar(Op_MemBarVolatile);
2605       }
2606     }
2607   }
2608 
2609   // Memory barrier to prevent normal and 'unsafe' accesses from
2610   // bypassing each other.  Happens after null checks, so the
2611   // exception paths do not take memory state from the memory barrier,
2612   // so there's no problems making a strong assert about mixing users
2613   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2614   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2615   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2616 
2617   if (!is_store) {
2618     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2619     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2620     // load value
2621     switch (type) {
2622     case T_BOOLEAN:
2623     case T_CHAR:
2624     case T_BYTE:
2625     case T_SHORT:
2626     case T_INT:
2627     case T_LONG:
2628     case T_FLOAT:
2629     case T_DOUBLE:
2630       break;
2631     case T_OBJECT:
2632       if (need_read_barrier) {
2633         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2634       }
2635       break;
2636     case T_ADDRESS:
2637       // Cast to an int type.
2638       p = _gvn.transform(new CastP2XNode(NULL, p));
2639       p = ConvX2UL(p);
2640       break;
2641     default:
2642       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2643       break;
2644     }
2645     // The load node has the control of the preceding MemBarCPUOrder.  All
2646     // following nodes will have the control of the MemBarCPUOrder inserted at
2647     // the end of this method.  So, pushing the load onto the stack at a later
2648     // point is fine.
2649     set_result(p);
2650   } else {
2651     // place effect of store into memory
2652     switch (type) {
2653     case T_DOUBLE:
2654       val = dstore_rounding(val);
2655       break;
2656     case T_ADDRESS:
2657       // Repackage the long as a pointer.
2658       val = ConvL2X(val);
2659       val = _gvn.transform(new CastX2PNode(val));
2660       break;
2661     }
2662 
2663     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2664     if (type != T_OBJECT ) {
2665       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2666     } else {
2667       // Possibly an oop being stored to Java heap or native memory
2668       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2669         // oop to Java heap.
2670         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2671       } else {
2672         // We can't tell at compile time if we are storing in the Java heap or outside
2673         // of it. So we need to emit code to conditionally do the proper type of
2674         // store.
2675 
2676         IdealKit ideal(this);
2677 #define __ ideal.
2678         // QQQ who knows what probability is here??
2679         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2680           // Sync IdealKit and graphKit.
2681           sync_kit(ideal);
2682           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2683           // Update IdealKit memory.
2684           __ sync_kit(this);
2685         } __ else_(); {
2686           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2687         } __ end_if();
2688         // Final sync IdealKit and GraphKit.
2689         final_sync(ideal);
2690 #undef __
2691       }
2692     }
2693   }
2694 
2695   if (is_volatile) {
2696     if (!is_store) {
2697       insert_mem_bar(Op_MemBarAcquire);
2698     } else {
2699       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2700         insert_mem_bar(Op_MemBarVolatile);
2701       }
2702     }
2703   }
2704 
2705   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2706 
2707   return true;
2708 }
2709 
2710 //----------------------------inline_unsafe_prefetch----------------------------
2711 
2712 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2713 #ifndef PRODUCT
2714   {
2715     ResourceMark rm;
2716     // Check the signatures.
2717     ciSignature* sig = callee()->signature();
2718 #ifdef ASSERT
2719     // Object getObject(Object base, int/long offset), etc.
2720     BasicType rtype = sig->return_type()->basic_type();
2721     if (!is_native_ptr) {
2722       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2723       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2724       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2725     } else {
2726       assert(sig->count() == 1, "native prefetch has 1 argument");
2727       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2728     }
2729 #endif // ASSERT
2730   }
2731 #endif // !PRODUCT
2732 
2733   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2734 
2735   const int idx = is_static ? 0 : 1;
2736   if (!is_static) {
2737     null_check_receiver();
2738     if (stopped()) {
2739       return true;
2740     }
2741   }
2742 
2743   // Build address expression.  See the code in inline_unsafe_access.
2744   Node *adr;
2745   if (!is_native_ptr) {
2746     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2747     Node* base   = argument(idx + 0);  // type: oop
2748     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2749     Node* offset = argument(idx + 1);  // type: long
2750     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2751     // to be plain byte offsets, which are also the same as those accepted
2752     // by oopDesc::field_base.
2753     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2754            "fieldOffset must be byte-scaled");
2755     // 32-bit machines ignore the high half!
2756     offset = ConvL2X(offset);
2757     adr = make_unsafe_address(base, offset);
2758   } else {
2759     Node* ptr = argument(idx + 0);  // type: long
2760     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2761     adr = make_unsafe_address(NULL, ptr);
2762   }
2763 
2764   // Generate the read or write prefetch
2765   Node *prefetch;
2766   if (is_store) {
2767     prefetch = new PrefetchWriteNode(i_o(), adr);
2768   } else {
2769     prefetch = new PrefetchReadNode(i_o(), adr);
2770   }
2771   prefetch->init_req(0, control());
2772   set_i_o(_gvn.transform(prefetch));
2773 
2774   return true;
2775 }
2776 
2777 //----------------------------inline_unsafe_load_store----------------------------
2778 // This method serves a couple of different customers (depending on LoadStoreKind):
2779 //
2780 // LS_cmpxchg:
2781 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2782 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2783 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2784 //
2785 // LS_xadd:
2786 //   public int  getAndAddInt( Object o, long offset, int  delta)
2787 //   public long getAndAddLong(Object o, long offset, long delta)
2788 //
2789 // LS_xchg:
2790 //   int    getAndSet(Object o, long offset, int    newValue)
2791 //   long   getAndSet(Object o, long offset, long   newValue)
2792 //   Object getAndSet(Object o, long offset, Object newValue)
2793 //
2794 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2795   // This basic scheme here is the same as inline_unsafe_access, but
2796   // differs in enough details that combining them would make the code
2797   // overly confusing.  (This is a true fact! I originally combined
2798   // them, but even I was confused by it!) As much code/comments as
2799   // possible are retained from inline_unsafe_access though to make
2800   // the correspondences clearer. - dl
2801 
2802   if (callee()->is_static())  return false;  // caller must have the capability!
2803 
2804 #ifndef PRODUCT
2805   BasicType rtype;
2806   {
2807     ResourceMark rm;
2808     // Check the signatures.
2809     ciSignature* sig = callee()->signature();
2810     rtype = sig->return_type()->basic_type();
2811     if (kind == LS_xadd || kind == LS_xchg) {
2812       // Check the signatures.
2813 #ifdef ASSERT
2814       assert(rtype == type, "get and set must return the expected type");
2815       assert(sig->count() == 3, "get and set has 3 arguments");
2816       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2817       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2818       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2819 #endif // ASSERT
2820     } else if (kind == LS_cmpxchg) {
2821       // Check the signatures.
2822 #ifdef ASSERT
2823       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2824       assert(sig->count() == 4, "CAS has 4 arguments");
2825       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2826       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2827 #endif // ASSERT
2828     } else {
2829       ShouldNotReachHere();
2830     }
2831   }
2832 #endif //PRODUCT
2833 
2834   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2835 
2836   // Get arguments:
2837   Node* receiver = NULL;
2838   Node* base     = NULL;
2839   Node* offset   = NULL;
2840   Node* oldval   = NULL;
2841   Node* newval   = NULL;
2842   if (kind == LS_cmpxchg) {
2843     const bool two_slot_type = type2size[type] == 2;
2844     receiver = argument(0);  // type: oop
2845     base     = argument(1);  // type: oop
2846     offset   = argument(2);  // type: long
2847     oldval   = argument(4);  // type: oop, int, or long
2848     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2849   } else if (kind == LS_xadd || kind == LS_xchg){
2850     receiver = argument(0);  // type: oop
2851     base     = argument(1);  // type: oop
2852     offset   = argument(2);  // type: long
2853     oldval   = NULL;
2854     newval   = argument(4);  // type: oop, int, or long
2855   }
2856 
2857   // Null check receiver.
2858   receiver = null_check(receiver);
2859   if (stopped()) {
2860     return true;
2861   }
2862 
2863   // Build field offset expression.
2864   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2865   // to be plain byte offsets, which are also the same as those accepted
2866   // by oopDesc::field_base.
2867   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2868   // 32-bit machines ignore the high half of long offsets
2869   offset = ConvL2X(offset);
2870   Node* adr = make_unsafe_address(base, offset);
2871   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2872 
2873   // For CAS, unlike inline_unsafe_access, there seems no point in
2874   // trying to refine types. Just use the coarse types here.
2875   const Type *value_type = Type::get_const_basic_type(type);
2876   Compile::AliasType* alias_type = C->alias_type(adr_type);
2877   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2878 
2879   if (kind == LS_xchg && type == T_OBJECT) {
2880     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2881     if (tjp != NULL) {
2882       value_type = tjp;
2883     }
2884   }
2885 
2886   int alias_idx = C->get_alias_index(adr_type);
2887 
2888   // Memory-model-wise, a LoadStore acts like a little synchronized
2889   // block, so needs barriers on each side.  These don't translate
2890   // into actual barriers on most machines, but we still need rest of
2891   // compiler to respect ordering.
2892 
2893   insert_mem_bar(Op_MemBarRelease);
2894   insert_mem_bar(Op_MemBarCPUOrder);
2895 
2896   // 4984716: MemBars must be inserted before this
2897   //          memory node in order to avoid a false
2898   //          dependency which will confuse the scheduler.
2899   Node *mem = memory(alias_idx);
2900 
2901   // For now, we handle only those cases that actually exist: ints,
2902   // longs, and Object. Adding others should be straightforward.
2903   Node* load_store;
2904   switch(type) {
2905   case T_INT:
2906     if (kind == LS_xadd) {
2907       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2908     } else if (kind == LS_xchg) {
2909       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2910     } else if (kind == LS_cmpxchg) {
2911       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2912     } else {
2913       ShouldNotReachHere();
2914     }
2915     break;
2916   case T_LONG:
2917     if (kind == LS_xadd) {
2918       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2919     } else if (kind == LS_xchg) {
2920       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2921     } else if (kind == LS_cmpxchg) {
2922       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2923     } else {
2924       ShouldNotReachHere();
2925     }
2926     break;
2927   case T_OBJECT:
2928     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2929     // could be delayed during Parse (for example, in adjust_map_after_if()).
2930     // Execute transformation here to avoid barrier generation in such case.
2931     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2932       newval = _gvn.makecon(TypePtr::NULL_PTR);
2933 
2934     // Reference stores need a store barrier.
2935     if (kind == LS_xchg) {
2936       // If pre-barrier must execute before the oop store, old value will require do_load here.
2937       if (!can_move_pre_barrier()) {
2938         pre_barrier(true /* do_load*/,
2939                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2940                     NULL /* pre_val*/,
2941                     T_OBJECT);
2942       } // Else move pre_barrier to use load_store value, see below.
2943     } else if (kind == LS_cmpxchg) {
2944       // Same as for newval above:
2945       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2946         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2947       }
2948       // The only known value which might get overwritten is oldval.
2949       pre_barrier(false /* do_load */,
2950                   control(), NULL, NULL, max_juint, NULL, NULL,
2951                   oldval /* pre_val */,
2952                   T_OBJECT);
2953     } else {
2954       ShouldNotReachHere();
2955     }
2956 
2957 #ifdef _LP64
2958     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2959       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2960       if (kind == LS_xchg) {
2961         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2962                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2963       } else {
2964         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2965         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2966         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2967                                                                 newval_enc, oldval_enc));
2968       }
2969     } else
2970 #endif
2971     {
2972       if (kind == LS_xchg) {
2973         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2974       } else {
2975         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2976         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2977       }
2978     }
2979     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2980     break;
2981   default:
2982     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2983     break;
2984   }
2985 
2986   // SCMemProjNodes represent the memory state of a LoadStore. Their
2987   // main role is to prevent LoadStore nodes from being optimized away
2988   // when their results aren't used.
2989   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2990   set_memory(proj, alias_idx);
2991 
2992   if (type == T_OBJECT && kind == LS_xchg) {
2993 #ifdef _LP64
2994     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2995       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2996     }
2997 #endif
2998     if (can_move_pre_barrier()) {
2999       // Don't need to load pre_val. The old value is returned by load_store.
3000       // The pre_barrier can execute after the xchg as long as no safepoint
3001       // gets inserted between them.
3002       pre_barrier(false /* do_load */,
3003                   control(), NULL, NULL, max_juint, NULL, NULL,
3004                   load_store /* pre_val */,
3005                   T_OBJECT);
3006     }
3007   }
3008 
3009   // Add the trailing membar surrounding the access
3010   insert_mem_bar(Op_MemBarCPUOrder);
3011   insert_mem_bar(Op_MemBarAcquire);
3012 
3013   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3014   set_result(load_store);
3015   return true;
3016 }
3017 
3018 //----------------------------inline_unsafe_ordered_store----------------------
3019 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3020 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3021 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3022 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3023   // This is another variant of inline_unsafe_access, differing in
3024   // that it always issues store-store ("release") barrier and ensures
3025   // store-atomicity (which only matters for "long").
3026 
3027   if (callee()->is_static())  return false;  // caller must have the capability!
3028 
3029 #ifndef PRODUCT
3030   {
3031     ResourceMark rm;
3032     // Check the signatures.
3033     ciSignature* sig = callee()->signature();
3034 #ifdef ASSERT
3035     BasicType rtype = sig->return_type()->basic_type();
3036     assert(rtype == T_VOID, "must return void");
3037     assert(sig->count() == 3, "has 3 arguments");
3038     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3039     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3040 #endif // ASSERT
3041   }
3042 #endif //PRODUCT
3043 
3044   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3045 
3046   // Get arguments:
3047   Node* receiver = argument(0);  // type: oop
3048   Node* base     = argument(1);  // type: oop
3049   Node* offset   = argument(2);  // type: long
3050   Node* val      = argument(4);  // type: oop, int, or long
3051 
3052   // Null check receiver.
3053   receiver = null_check(receiver);
3054   if (stopped()) {
3055     return true;
3056   }
3057 
3058   // Build field offset expression.
3059   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3060   // 32-bit machines ignore the high half of long offsets
3061   offset = ConvL2X(offset);
3062   Node* adr = make_unsafe_address(base, offset);
3063   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3064   const Type *value_type = Type::get_const_basic_type(type);
3065   Compile::AliasType* alias_type = C->alias_type(adr_type);
3066 
3067   insert_mem_bar(Op_MemBarRelease);
3068   insert_mem_bar(Op_MemBarCPUOrder);
3069   // Ensure that the store is atomic for longs:
3070   const bool require_atomic_access = true;
3071   Node* store;
3072   if (type == T_OBJECT) // reference stores need a store barrier.
3073     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3074   else {
3075     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3076   }
3077   insert_mem_bar(Op_MemBarCPUOrder);
3078   return true;
3079 }
3080 
3081 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3082   // Regardless of form, don't allow previous ld/st to move down,
3083   // then issue acquire, release, or volatile mem_bar.
3084   insert_mem_bar(Op_MemBarCPUOrder);
3085   switch(id) {
3086     case vmIntrinsics::_loadFence:
3087       insert_mem_bar(Op_LoadFence);
3088       return true;
3089     case vmIntrinsics::_storeFence:
3090       insert_mem_bar(Op_StoreFence);
3091       return true;
3092     case vmIntrinsics::_fullFence:
3093       insert_mem_bar(Op_MemBarVolatile);
3094       return true;
3095     default:
3096       fatal_unexpected_iid(id);
3097       return false;
3098   }
3099 }
3100 
3101 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3102   if (!kls->is_Con()) {
3103     return true;
3104   }
3105   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3106   if (klsptr == NULL) {
3107     return true;
3108   }
3109   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3110   // don't need a guard for a klass that is already initialized
3111   return !ik->is_initialized();
3112 }
3113 
3114 //----------------------------inline_unsafe_allocate---------------------------
3115 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3116 bool LibraryCallKit::inline_unsafe_allocate() {
3117   if (callee()->is_static())  return false;  // caller must have the capability!
3118 
3119   null_check_receiver();  // null-check, then ignore
3120   Node* cls = null_check(argument(1));
3121   if (stopped())  return true;
3122 
3123   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3124   kls = null_check(kls);
3125   if (stopped())  return true;  // argument was like int.class
3126 
3127   Node* test = NULL;
3128   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3129     // Note:  The argument might still be an illegal value like
3130     // Serializable.class or Object[].class.   The runtime will handle it.
3131     // But we must make an explicit check for initialization.
3132     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3133     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3134     // can generate code to load it as unsigned byte.
3135     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3136     Node* bits = intcon(InstanceKlass::fully_initialized);
3137     test = _gvn.transform(new SubINode(inst, bits));
3138     // The 'test' is non-zero if we need to take a slow path.
3139   }
3140 
3141   Node* obj = new_instance(kls, test);
3142   set_result(obj);
3143   return true;
3144 }
3145 
3146 #ifdef TRACE_HAVE_INTRINSICS
3147 /*
3148  * oop -> myklass
3149  * myklass->trace_id |= USED
3150  * return myklass->trace_id & ~0x3
3151  */
3152 bool LibraryCallKit::inline_native_classID() {
3153   null_check_receiver();  // null-check, then ignore
3154   Node* cls = null_check(argument(1), T_OBJECT);
3155   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3156   kls = null_check(kls, T_OBJECT);
3157   ByteSize offset = TRACE_ID_OFFSET;
3158   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3159   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3160   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3161   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3162   Node* clsused = longcon(0x01l); // set the class bit
3163   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3164 
3165   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3166   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3167   set_result(andl);
3168   return true;
3169 }
3170 
3171 bool LibraryCallKit::inline_native_threadID() {
3172   Node* tls_ptr = NULL;
3173   Node* cur_thr = generate_current_thread(tls_ptr);
3174   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3175   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3176   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3177 
3178   Node* threadid = NULL;
3179   size_t thread_id_size = OSThread::thread_id_size();
3180   if (thread_id_size == (size_t) BytesPerLong) {
3181     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3182   } else if (thread_id_size == (size_t) BytesPerInt) {
3183     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3184   } else {
3185     ShouldNotReachHere();
3186   }
3187   set_result(threadid);
3188   return true;
3189 }
3190 #endif
3191 
3192 //------------------------inline_native_time_funcs--------------
3193 // inline code for System.currentTimeMillis() and System.nanoTime()
3194 // these have the same type and signature
3195 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3196   const TypeFunc* tf = OptoRuntime::void_long_Type();
3197   const TypePtr* no_memory_effects = NULL;
3198   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3199   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3200 #ifdef ASSERT
3201   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3202   assert(value_top == top(), "second value must be top");
3203 #endif
3204   set_result(value);
3205   return true;
3206 }
3207 
3208 //------------------------inline_native_currentThread------------------
3209 bool LibraryCallKit::inline_native_currentThread() {
3210   Node* junk = NULL;
3211   set_result(generate_current_thread(junk));
3212   return true;
3213 }
3214 
3215 //------------------------inline_native_isInterrupted------------------
3216 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3217 bool LibraryCallKit::inline_native_isInterrupted() {
3218   // Add a fast path to t.isInterrupted(clear_int):
3219   //   (t == Thread.current() &&
3220   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3221   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3222   // So, in the common case that the interrupt bit is false,
3223   // we avoid making a call into the VM.  Even if the interrupt bit
3224   // is true, if the clear_int argument is false, we avoid the VM call.
3225   // However, if the receiver is not currentThread, we must call the VM,
3226   // because there must be some locking done around the operation.
3227 
3228   // We only go to the fast case code if we pass two guards.
3229   // Paths which do not pass are accumulated in the slow_region.
3230 
3231   enum {
3232     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3233     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3234     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3235     PATH_LIMIT
3236   };
3237 
3238   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3239   // out of the function.
3240   insert_mem_bar(Op_MemBarCPUOrder);
3241 
3242   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3243   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3244 
3245   RegionNode* slow_region = new RegionNode(1);
3246   record_for_igvn(slow_region);
3247 
3248   // (a) Receiving thread must be the current thread.
3249   Node* rec_thr = argument(0);
3250   Node* tls_ptr = NULL;
3251   Node* cur_thr = generate_current_thread(tls_ptr);
3252   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3253   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3254 
3255   generate_slow_guard(bol_thr, slow_region);
3256 
3257   // (b) Interrupt bit on TLS must be false.
3258   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3259   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3260   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3261 
3262   // Set the control input on the field _interrupted read to prevent it floating up.
3263   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3264   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3265   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3266 
3267   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3268 
3269   // First fast path:  if (!TLS._interrupted) return false;
3270   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3271   result_rgn->init_req(no_int_result_path, false_bit);
3272   result_val->init_req(no_int_result_path, intcon(0));
3273 
3274   // drop through to next case
3275   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3276 
3277 #ifndef TARGET_OS_FAMILY_windows
3278   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3279   Node* clr_arg = argument(1);
3280   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3281   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3282   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3283 
3284   // Second fast path:  ... else if (!clear_int) return true;
3285   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3286   result_rgn->init_req(no_clear_result_path, false_arg);
3287   result_val->init_req(no_clear_result_path, intcon(1));
3288 
3289   // drop through to next case
3290   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3291 #else
3292   // To return true on Windows you must read the _interrupted field
3293   // and check the the event state i.e. take the slow path.
3294 #endif // TARGET_OS_FAMILY_windows
3295 
3296   // (d) Otherwise, go to the slow path.
3297   slow_region->add_req(control());
3298   set_control( _gvn.transform(slow_region));
3299 
3300   if (stopped()) {
3301     // There is no slow path.
3302     result_rgn->init_req(slow_result_path, top());
3303     result_val->init_req(slow_result_path, top());
3304   } else {
3305     // non-virtual because it is a private non-static
3306     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3307 
3308     Node* slow_val = set_results_for_java_call(slow_call);
3309     // this->control() comes from set_results_for_java_call
3310 
3311     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3312     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3313 
3314     // These two phis are pre-filled with copies of of the fast IO and Memory
3315     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3316     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3317 
3318     result_rgn->init_req(slow_result_path, control());
3319     result_io ->init_req(slow_result_path, i_o());
3320     result_mem->init_req(slow_result_path, reset_memory());
3321     result_val->init_req(slow_result_path, slow_val);
3322 
3323     set_all_memory(_gvn.transform(result_mem));
3324     set_i_o(       _gvn.transform(result_io));
3325   }
3326 
3327   C->set_has_split_ifs(true); // Has chance for split-if optimization
3328   set_result(result_rgn, result_val);
3329   return true;
3330 }
3331 
3332 //---------------------------load_mirror_from_klass----------------------------
3333 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3334 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3335   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3336   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3337 }
3338 
3339 //-----------------------load_klass_from_mirror_common-------------------------
3340 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3341 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3342 // and branch to the given path on the region.
3343 // If never_see_null, take an uncommon trap on null, so we can optimistically
3344 // compile for the non-null case.
3345 // If the region is NULL, force never_see_null = true.
3346 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3347                                                     bool never_see_null,
3348                                                     RegionNode* region,
3349                                                     int null_path,
3350                                                     int offset) {
3351   if (region == NULL)  never_see_null = true;
3352   Node* p = basic_plus_adr(mirror, offset);
3353   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3354   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3355   Node* null_ctl = top();
3356   kls = null_check_oop(kls, &null_ctl, never_see_null);
3357   if (region != NULL) {
3358     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3359     region->init_req(null_path, null_ctl);
3360   } else {
3361     assert(null_ctl == top(), "no loose ends");
3362   }
3363   return kls;
3364 }
3365 
3366 //--------------------(inline_native_Class_query helpers)---------------------
3367 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3368 // Fall through if (mods & mask) == bits, take the guard otherwise.
3369 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3370   // Branch around if the given klass has the given modifier bit set.
3371   // Like generate_guard, adds a new path onto the region.
3372   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3373   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3374   Node* mask = intcon(modifier_mask);
3375   Node* bits = intcon(modifier_bits);
3376   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3377   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3378   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3379   return generate_fair_guard(bol, region);
3380 }
3381 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3382   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3383 }
3384 
3385 //-------------------------inline_native_Class_query-------------------
3386 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3387   const Type* return_type = TypeInt::BOOL;
3388   Node* prim_return_value = top();  // what happens if it's a primitive class?
3389   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3390   bool expect_prim = false;     // most of these guys expect to work on refs
3391 
3392   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3393 
3394   Node* mirror = argument(0);
3395   Node* obj    = top();
3396 
3397   switch (id) {
3398   case vmIntrinsics::_isInstance:
3399     // nothing is an instance of a primitive type
3400     prim_return_value = intcon(0);
3401     obj = argument(1);
3402     break;
3403   case vmIntrinsics::_getModifiers:
3404     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3405     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3406     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3407     break;
3408   case vmIntrinsics::_isInterface:
3409     prim_return_value = intcon(0);
3410     break;
3411   case vmIntrinsics::_isArray:
3412     prim_return_value = intcon(0);
3413     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3414     break;
3415   case vmIntrinsics::_isPrimitive:
3416     prim_return_value = intcon(1);
3417     expect_prim = true;  // obviously
3418     break;
3419   case vmIntrinsics::_getSuperclass:
3420     prim_return_value = null();
3421     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3422     break;
3423   case vmIntrinsics::_getClassAccessFlags:
3424     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3425     return_type = TypeInt::INT;  // not bool!  6297094
3426     break;
3427   default:
3428     fatal_unexpected_iid(id);
3429     break;
3430   }
3431 
3432   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3433   if (mirror_con == NULL)  return false;  // cannot happen?
3434 
3435 #ifndef PRODUCT
3436   if (C->print_intrinsics() || C->print_inlining()) {
3437     ciType* k = mirror_con->java_mirror_type();
3438     if (k) {
3439       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3440       k->print_name();
3441       tty->cr();
3442     }
3443   }
3444 #endif
3445 
3446   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3447   RegionNode* region = new RegionNode(PATH_LIMIT);
3448   record_for_igvn(region);
3449   PhiNode* phi = new PhiNode(region, return_type);
3450 
3451   // The mirror will never be null of Reflection.getClassAccessFlags, however
3452   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3453   // if it is. See bug 4774291.
3454 
3455   // For Reflection.getClassAccessFlags(), the null check occurs in
3456   // the wrong place; see inline_unsafe_access(), above, for a similar
3457   // situation.
3458   mirror = null_check(mirror);
3459   // If mirror or obj is dead, only null-path is taken.
3460   if (stopped())  return true;
3461 
3462   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3463 
3464   // Now load the mirror's klass metaobject, and null-check it.
3465   // Side-effects region with the control path if the klass is null.
3466   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3467   // If kls is null, we have a primitive mirror.
3468   phi->init_req(_prim_path, prim_return_value);
3469   if (stopped()) { set_result(region, phi); return true; }
3470   bool safe_for_replace = (region->in(_prim_path) == top());
3471 
3472   Node* p;  // handy temp
3473   Node* null_ctl;
3474 
3475   // Now that we have the non-null klass, we can perform the real query.
3476   // For constant classes, the query will constant-fold in LoadNode::Value.
3477   Node* query_value = top();
3478   switch (id) {
3479   case vmIntrinsics::_isInstance:
3480     // nothing is an instance of a primitive type
3481     query_value = gen_instanceof(obj, kls, safe_for_replace);
3482     break;
3483 
3484   case vmIntrinsics::_getModifiers:
3485     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3486     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3487     break;
3488 
3489   case vmIntrinsics::_isInterface:
3490     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3491     if (generate_interface_guard(kls, region) != NULL)
3492       // A guard was added.  If the guard is taken, it was an interface.
3493       phi->add_req(intcon(1));
3494     // If we fall through, it's a plain class.
3495     query_value = intcon(0);
3496     break;
3497 
3498   case vmIntrinsics::_isArray:
3499     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3500     if (generate_array_guard(kls, region) != NULL)
3501       // A guard was added.  If the guard is taken, it was an array.
3502       phi->add_req(intcon(1));
3503     // If we fall through, it's a plain class.
3504     query_value = intcon(0);
3505     break;
3506 
3507   case vmIntrinsics::_isPrimitive:
3508     query_value = intcon(0); // "normal" path produces false
3509     break;
3510 
3511   case vmIntrinsics::_getSuperclass:
3512     // The rules here are somewhat unfortunate, but we can still do better
3513     // with random logic than with a JNI call.
3514     // Interfaces store null or Object as _super, but must report null.
3515     // Arrays store an intermediate super as _super, but must report Object.
3516     // Other types can report the actual _super.
3517     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3518     if (generate_interface_guard(kls, region) != NULL)
3519       // A guard was added.  If the guard is taken, it was an interface.
3520       phi->add_req(null());
3521     if (generate_array_guard(kls, region) != NULL)
3522       // A guard was added.  If the guard is taken, it was an array.
3523       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3524     // If we fall through, it's a plain class.  Get its _super.
3525     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3526     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3527     null_ctl = top();
3528     kls = null_check_oop(kls, &null_ctl);
3529     if (null_ctl != top()) {
3530       // If the guard is taken, Object.superClass is null (both klass and mirror).
3531       region->add_req(null_ctl);
3532       phi   ->add_req(null());
3533     }
3534     if (!stopped()) {
3535       query_value = load_mirror_from_klass(kls);
3536     }
3537     break;
3538 
3539   case vmIntrinsics::_getClassAccessFlags:
3540     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3541     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3542     break;
3543 
3544   default:
3545     fatal_unexpected_iid(id);
3546     break;
3547   }
3548 
3549   // Fall-through is the normal case of a query to a real class.
3550   phi->init_req(1, query_value);
3551   region->init_req(1, control());
3552 
3553   C->set_has_split_ifs(true); // Has chance for split-if optimization
3554   set_result(region, phi);
3555   return true;
3556 }
3557 
3558 //-------------------------inline_Class_cast-------------------
3559 bool LibraryCallKit::inline_Class_cast() {
3560   Node* mirror = argument(0); // Class
3561   Node* obj    = argument(1);
3562   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3563   if (mirror_con == NULL) {
3564     return false;  // dead path (mirror->is_top()).
3565   }
3566   if (obj == NULL || obj->is_top()) {
3567     return false;  // dead path
3568   }
3569   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3570 
3571   // First, see if Class.cast() can be folded statically.
3572   // java_mirror_type() returns non-null for compile-time Class constants.
3573   ciType* tm = mirror_con->java_mirror_type();
3574   if (tm != NULL && tm->is_klass() &&
3575       tp != NULL && tp->klass() != NULL) {
3576     if (!tp->klass()->is_loaded()) {
3577       // Don't use intrinsic when class is not loaded.
3578       return false;
3579     } else {
3580       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3581       if (static_res == Compile::SSC_always_true) {
3582         // isInstance() is true - fold the code.
3583         set_result(obj);
3584         return true;
3585       } else if (static_res == Compile::SSC_always_false) {
3586         // Don't use intrinsic, have to throw ClassCastException.
3587         // If the reference is null, the non-intrinsic bytecode will
3588         // be optimized appropriately.
3589         return false;
3590       }
3591     }
3592   }
3593 
3594   // Bailout intrinsic and do normal inlining if exception path is frequent.
3595   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3596     return false;
3597   }
3598 
3599   // Generate dynamic checks.
3600   // Class.cast() is java implementation of _checkcast bytecode.
3601   // Do checkcast (Parse::do_checkcast()) optimizations here.
3602 
3603   mirror = null_check(mirror);
3604   // If mirror is dead, only null-path is taken.
3605   if (stopped()) {
3606     return true;
3607   }
3608 
3609   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3610   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3611   RegionNode* region = new RegionNode(PATH_LIMIT);
3612   record_for_igvn(region);
3613 
3614   // Now load the mirror's klass metaobject, and null-check it.
3615   // If kls is null, we have a primitive mirror and
3616   // nothing is an instance of a primitive type.
3617   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3618 
3619   Node* res = top();
3620   if (!stopped()) {
3621     Node* bad_type_ctrl = top();
3622     // Do checkcast optimizations.
3623     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3624     region->init_req(_bad_type_path, bad_type_ctrl);
3625   }
3626   if (region->in(_prim_path) != top() ||
3627       region->in(_bad_type_path) != top()) {
3628     // Let Interpreter throw ClassCastException.
3629     PreserveJVMState pjvms(this);
3630     set_control(_gvn.transform(region));
3631     uncommon_trap(Deoptimization::Reason_intrinsic,
3632                   Deoptimization::Action_maybe_recompile);
3633   }
3634   if (!stopped()) {
3635     set_result(res);
3636   }
3637   return true;
3638 }
3639 
3640 
3641 //--------------------------inline_native_subtype_check------------------------
3642 // This intrinsic takes the JNI calls out of the heart of
3643 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3644 bool LibraryCallKit::inline_native_subtype_check() {
3645   // Pull both arguments off the stack.
3646   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3647   args[0] = argument(0);
3648   args[1] = argument(1);
3649   Node* klasses[2];             // corresponding Klasses: superk, subk
3650   klasses[0] = klasses[1] = top();
3651 
3652   enum {
3653     // A full decision tree on {superc is prim, subc is prim}:
3654     _prim_0_path = 1,           // {P,N} => false
3655                                 // {P,P} & superc!=subc => false
3656     _prim_same_path,            // {P,P} & superc==subc => true
3657     _prim_1_path,               // {N,P} => false
3658     _ref_subtype_path,          // {N,N} & subtype check wins => true
3659     _both_ref_path,             // {N,N} & subtype check loses => false
3660     PATH_LIMIT
3661   };
3662 
3663   RegionNode* region = new RegionNode(PATH_LIMIT);
3664   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3665   record_for_igvn(region);
3666 
3667   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3668   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3669   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3670 
3671   // First null-check both mirrors and load each mirror's klass metaobject.
3672   int which_arg;
3673   for (which_arg = 0; which_arg <= 1; which_arg++) {
3674     Node* arg = args[which_arg];
3675     arg = null_check(arg);
3676     if (stopped())  break;
3677     args[which_arg] = arg;
3678 
3679     Node* p = basic_plus_adr(arg, class_klass_offset);
3680     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3681     klasses[which_arg] = _gvn.transform(kls);
3682   }
3683 
3684   // Having loaded both klasses, test each for null.
3685   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3686   for (which_arg = 0; which_arg <= 1; which_arg++) {
3687     Node* kls = klasses[which_arg];
3688     Node* null_ctl = top();
3689     kls = null_check_oop(kls, &null_ctl, never_see_null);
3690     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3691     region->init_req(prim_path, null_ctl);
3692     if (stopped())  break;
3693     klasses[which_arg] = kls;
3694   }
3695 
3696   if (!stopped()) {
3697     // now we have two reference types, in klasses[0..1]
3698     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3699     Node* superk = klasses[0];  // the receiver
3700     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3701     // now we have a successful reference subtype check
3702     region->set_req(_ref_subtype_path, control());
3703   }
3704 
3705   // If both operands are primitive (both klasses null), then
3706   // we must return true when they are identical primitives.
3707   // It is convenient to test this after the first null klass check.
3708   set_control(region->in(_prim_0_path)); // go back to first null check
3709   if (!stopped()) {
3710     // Since superc is primitive, make a guard for the superc==subc case.
3711     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3712     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3713     generate_guard(bol_eq, region, PROB_FAIR);
3714     if (region->req() == PATH_LIMIT+1) {
3715       // A guard was added.  If the added guard is taken, superc==subc.
3716       region->swap_edges(PATH_LIMIT, _prim_same_path);
3717       region->del_req(PATH_LIMIT);
3718     }
3719     region->set_req(_prim_0_path, control()); // Not equal after all.
3720   }
3721 
3722   // these are the only paths that produce 'true':
3723   phi->set_req(_prim_same_path,   intcon(1));
3724   phi->set_req(_ref_subtype_path, intcon(1));
3725 
3726   // pull together the cases:
3727   assert(region->req() == PATH_LIMIT, "sane region");
3728   for (uint i = 1; i < region->req(); i++) {
3729     Node* ctl = region->in(i);
3730     if (ctl == NULL || ctl == top()) {
3731       region->set_req(i, top());
3732       phi   ->set_req(i, top());
3733     } else if (phi->in(i) == NULL) {
3734       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3735     }
3736   }
3737 
3738   set_control(_gvn.transform(region));
3739   set_result(_gvn.transform(phi));
3740   return true;
3741 }
3742 
3743 //---------------------generate_array_guard_common------------------------
3744 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3745                                                   bool obj_array, bool not_array) {
3746   // If obj_array/non_array==false/false:
3747   // Branch around if the given klass is in fact an array (either obj or prim).
3748   // If obj_array/non_array==false/true:
3749   // Branch around if the given klass is not an array klass of any kind.
3750   // If obj_array/non_array==true/true:
3751   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3752   // If obj_array/non_array==true/false:
3753   // Branch around if the kls is an oop array (Object[] or subtype)
3754   //
3755   // Like generate_guard, adds a new path onto the region.
3756   jint  layout_con = 0;
3757   Node* layout_val = get_layout_helper(kls, layout_con);
3758   if (layout_val == NULL) {
3759     bool query = (obj_array
3760                   ? Klass::layout_helper_is_objArray(layout_con)
3761                   : Klass::layout_helper_is_array(layout_con));
3762     if (query == not_array) {
3763       return NULL;                       // never a branch
3764     } else {                             // always a branch
3765       Node* always_branch = control();
3766       if (region != NULL)
3767         region->add_req(always_branch);
3768       set_control(top());
3769       return always_branch;
3770     }
3771   }
3772   // Now test the correct condition.
3773   jint  nval = (obj_array
3774                 ? ((jint)Klass::_lh_array_tag_type_value
3775                    <<    Klass::_lh_array_tag_shift)
3776                 : Klass::_lh_neutral_value);
3777   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3778   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3779   // invert the test if we are looking for a non-array
3780   if (not_array)  btest = BoolTest(btest).negate();
3781   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3782   return generate_fair_guard(bol, region);
3783 }
3784 
3785 
3786 //-----------------------inline_native_newArray--------------------------
3787 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3788 bool LibraryCallKit::inline_native_newArray() {
3789   Node* mirror    = argument(0);
3790   Node* count_val = argument(1);
3791 
3792   mirror = null_check(mirror);
3793   // If mirror or obj is dead, only null-path is taken.
3794   if (stopped())  return true;
3795 
3796   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3797   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3798   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3799   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3800   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3801 
3802   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3803   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3804                                                   result_reg, _slow_path);
3805   Node* normal_ctl   = control();
3806   Node* no_array_ctl = result_reg->in(_slow_path);
3807 
3808   // Generate code for the slow case.  We make a call to newArray().
3809   set_control(no_array_ctl);
3810   if (!stopped()) {
3811     // Either the input type is void.class, or else the
3812     // array klass has not yet been cached.  Either the
3813     // ensuing call will throw an exception, or else it
3814     // will cache the array klass for next time.
3815     PreserveJVMState pjvms(this);
3816     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3817     Node* slow_result = set_results_for_java_call(slow_call);
3818     // this->control() comes from set_results_for_java_call
3819     result_reg->set_req(_slow_path, control());
3820     result_val->set_req(_slow_path, slow_result);
3821     result_io ->set_req(_slow_path, i_o());
3822     result_mem->set_req(_slow_path, reset_memory());
3823   }
3824 
3825   set_control(normal_ctl);
3826   if (!stopped()) {
3827     // Normal case:  The array type has been cached in the java.lang.Class.
3828     // The following call works fine even if the array type is polymorphic.
3829     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3830     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3831     result_reg->init_req(_normal_path, control());
3832     result_val->init_req(_normal_path, obj);
3833     result_io ->init_req(_normal_path, i_o());
3834     result_mem->init_req(_normal_path, reset_memory());
3835   }
3836 
3837   // Return the combined state.
3838   set_i_o(        _gvn.transform(result_io)  );
3839   set_all_memory( _gvn.transform(result_mem));
3840 
3841   C->set_has_split_ifs(true); // Has chance for split-if optimization
3842   set_result(result_reg, result_val);
3843   return true;
3844 }
3845 
3846 //----------------------inline_native_getLength--------------------------
3847 // public static native int java.lang.reflect.Array.getLength(Object array);
3848 bool LibraryCallKit::inline_native_getLength() {
3849   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3850 
3851   Node* array = null_check(argument(0));
3852   // If array is dead, only null-path is taken.
3853   if (stopped())  return true;
3854 
3855   // Deoptimize if it is a non-array.
3856   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3857 
3858   if (non_array != NULL) {
3859     PreserveJVMState pjvms(this);
3860     set_control(non_array);
3861     uncommon_trap(Deoptimization::Reason_intrinsic,
3862                   Deoptimization::Action_maybe_recompile);
3863   }
3864 
3865   // If control is dead, only non-array-path is taken.
3866   if (stopped())  return true;
3867 
3868   // The works fine even if the array type is polymorphic.
3869   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3870   Node* result = load_array_length(array);
3871 
3872   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3873   set_result(result);
3874   return true;
3875 }
3876 
3877 //------------------------inline_array_copyOf----------------------------
3878 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3879 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3880 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3881   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3882 
3883   // Get the arguments.
3884   Node* original          = argument(0);
3885   Node* start             = is_copyOfRange? argument(1): intcon(0);
3886   Node* end               = is_copyOfRange? argument(2): argument(1);
3887   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3888 
3889   Node* newcopy;
3890 
3891   // Set the original stack and the reexecute bit for the interpreter to reexecute
3892   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3893   { PreserveReexecuteState preexecs(this);
3894     jvms()->set_should_reexecute(true);
3895 
3896     array_type_mirror = null_check(array_type_mirror);
3897     original          = null_check(original);
3898 
3899     // Check if a null path was taken unconditionally.
3900     if (stopped())  return true;
3901 
3902     Node* orig_length = load_array_length(original);
3903 
3904     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3905     klass_node = null_check(klass_node);
3906 
3907     RegionNode* bailout = new RegionNode(1);
3908     record_for_igvn(bailout);
3909 
3910     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3911     // Bail out if that is so.
3912     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3913     if (not_objArray != NULL) {
3914       // Improve the klass node's type from the new optimistic assumption:
3915       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3916       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3917       Node* cast = new CastPPNode(klass_node, akls);
3918       cast->init_req(0, control());
3919       klass_node = _gvn.transform(cast);
3920     }
3921 
3922     // Bail out if either start or end is negative.
3923     generate_negative_guard(start, bailout, &start);
3924     generate_negative_guard(end,   bailout, &end);
3925 
3926     Node* length = end;
3927     if (_gvn.type(start) != TypeInt::ZERO) {
3928       length = _gvn.transform(new SubINode(end, start));
3929     }
3930 
3931     // Bail out if length is negative.
3932     // Without this the new_array would throw
3933     // NegativeArraySizeException but IllegalArgumentException is what
3934     // should be thrown
3935     generate_negative_guard(length, bailout, &length);
3936 
3937     if (bailout->req() > 1) {
3938       PreserveJVMState pjvms(this);
3939       set_control(_gvn.transform(bailout));
3940       uncommon_trap(Deoptimization::Reason_intrinsic,
3941                     Deoptimization::Action_maybe_recompile);
3942     }
3943 
3944     if (!stopped()) {
3945       // How many elements will we copy from the original?
3946       // The answer is MinI(orig_length - start, length).
3947       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3948       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3949 
3950       newcopy = new_array(klass_node, length, 0);  // no arguments to push
3951 
3952       // Generate a direct call to the right arraycopy function(s).
3953       // We know the copy is disjoint but we might not know if the
3954       // oop stores need checking.
3955       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3956       // This will fail a store-check if x contains any non-nulls.
3957 
3958       Node* alloc = tightly_coupled_allocation(newcopy, NULL);
3959 
3960       ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, alloc != NULL,
3961                                               load_object_klass(original), klass_node);
3962       if (!is_copyOfRange) {
3963         ac->set_copyof();
3964       } else {
3965         ac->set_copyofrange();
3966       }
3967       Node* n = _gvn.transform(ac);
3968       assert(n == ac, "cannot disappear");
3969       ac->connect_outputs(this);
3970     }
3971   } // original reexecute is set back here
3972 
3973   C->set_has_split_ifs(true); // Has chance for split-if optimization
3974   if (!stopped()) {
3975     set_result(newcopy);
3976   }
3977   return true;
3978 }
3979 
3980 
3981 //----------------------generate_virtual_guard---------------------------
3982 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3983 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3984                                              RegionNode* slow_region) {
3985   ciMethod* method = callee();
3986   int vtable_index = method->vtable_index();
3987   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3988          err_msg_res("bad index %d", vtable_index));
3989   // Get the Method* out of the appropriate vtable entry.
3990   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3991                      vtable_index*vtableEntry::size()) * wordSize +
3992                      vtableEntry::method_offset_in_bytes();
3993   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3994   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3995 
3996   // Compare the target method with the expected method (e.g., Object.hashCode).
3997   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3998 
3999   Node* native_call = makecon(native_call_addr);
4000   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4001   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4002 
4003   return generate_slow_guard(test_native, slow_region);
4004 }
4005 
4006 //-----------------------generate_method_call----------------------------
4007 // Use generate_method_call to make a slow-call to the real
4008 // method if the fast path fails.  An alternative would be to
4009 // use a stub like OptoRuntime::slow_arraycopy_Java.
4010 // This only works for expanding the current library call,
4011 // not another intrinsic.  (E.g., don't use this for making an
4012 // arraycopy call inside of the copyOf intrinsic.)
4013 CallJavaNode*
4014 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4015   // When compiling the intrinsic method itself, do not use this technique.
4016   guarantee(callee() != C->method(), "cannot make slow-call to self");
4017 
4018   ciMethod* method = callee();
4019   // ensure the JVMS we have will be correct for this call
4020   guarantee(method_id == method->intrinsic_id(), "must match");
4021 
4022   const TypeFunc* tf = TypeFunc::make(method);
4023   CallJavaNode* slow_call;
4024   if (is_static) {
4025     assert(!is_virtual, "");
4026     slow_call = new CallStaticJavaNode(C, tf,
4027                            SharedRuntime::get_resolve_static_call_stub(),
4028                            method, bci());
4029   } else if (is_virtual) {
4030     null_check_receiver();
4031     int vtable_index = Method::invalid_vtable_index;
4032     if (UseInlineCaches) {
4033       // Suppress the vtable call
4034     } else {
4035       // hashCode and clone are not a miranda methods,
4036       // so the vtable index is fixed.
4037       // No need to use the linkResolver to get it.
4038        vtable_index = method->vtable_index();
4039        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4040               err_msg_res("bad index %d", vtable_index));
4041     }
4042     slow_call = new CallDynamicJavaNode(tf,
4043                           SharedRuntime::get_resolve_virtual_call_stub(),
4044                           method, vtable_index, bci());
4045   } else {  // neither virtual nor static:  opt_virtual
4046     null_check_receiver();
4047     slow_call = new CallStaticJavaNode(C, tf,
4048                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4049                                 method, bci());
4050     slow_call->set_optimized_virtual(true);
4051   }
4052   set_arguments_for_java_call(slow_call);
4053   set_edges_for_java_call(slow_call);
4054   return slow_call;
4055 }
4056 
4057 
4058 /**
4059  * Build special case code for calls to hashCode on an object. This call may
4060  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4061  * slightly different code.
4062  */
4063 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4064   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4065   assert(!(is_virtual && is_static), "either virtual, special, or static");
4066 
4067   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4068 
4069   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4070   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4071   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4072   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4073   Node* obj = NULL;
4074   if (!is_static) {
4075     // Check for hashing null object
4076     obj = null_check_receiver();
4077     if (stopped())  return true;        // unconditionally null
4078     result_reg->init_req(_null_path, top());
4079     result_val->init_req(_null_path, top());
4080   } else {
4081     // Do a null check, and return zero if null.
4082     // System.identityHashCode(null) == 0
4083     obj = argument(0);
4084     Node* null_ctl = top();
4085     obj = null_check_oop(obj, &null_ctl);
4086     result_reg->init_req(_null_path, null_ctl);
4087     result_val->init_req(_null_path, _gvn.intcon(0));
4088   }
4089 
4090   // Unconditionally null?  Then return right away.
4091   if (stopped()) {
4092     set_control( result_reg->in(_null_path));
4093     if (!stopped())
4094       set_result(result_val->in(_null_path));
4095     return true;
4096   }
4097 
4098   // We only go to the fast case code if we pass a number of guards.  The
4099   // paths which do not pass are accumulated in the slow_region.
4100   RegionNode* slow_region = new RegionNode(1);
4101   record_for_igvn(slow_region);
4102 
4103   // If this is a virtual call, we generate a funny guard.  We pull out
4104   // the vtable entry corresponding to hashCode() from the target object.
4105   // If the target method which we are calling happens to be the native
4106   // Object hashCode() method, we pass the guard.  We do not need this
4107   // guard for non-virtual calls -- the caller is known to be the native
4108   // Object hashCode().
4109   if (is_virtual) {
4110     // After null check, get the object's klass.
4111     Node* obj_klass = load_object_klass(obj);
4112     generate_virtual_guard(obj_klass, slow_region);
4113   }
4114 
4115   // Get the header out of the object, use LoadMarkNode when available
4116   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4117   // The control of the load must be NULL. Otherwise, the load can move before
4118   // the null check after castPP removal.
4119   Node* no_ctrl = NULL;
4120   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4121 
4122   // Test the header to see if it is unlocked.
4123   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4124   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4125   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4126   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4127   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4128 
4129   generate_slow_guard(test_unlocked, slow_region);
4130 
4131   // Get the hash value and check to see that it has been properly assigned.
4132   // We depend on hash_mask being at most 32 bits and avoid the use of
4133   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4134   // vm: see markOop.hpp.
4135   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4136   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4137   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4138   // This hack lets the hash bits live anywhere in the mark object now, as long
4139   // as the shift drops the relevant bits into the low 32 bits.  Note that
4140   // Java spec says that HashCode is an int so there's no point in capturing
4141   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4142   hshifted_header      = ConvX2I(hshifted_header);
4143   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4144 
4145   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4146   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4147   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4148 
4149   generate_slow_guard(test_assigned, slow_region);
4150 
4151   Node* init_mem = reset_memory();
4152   // fill in the rest of the null path:
4153   result_io ->init_req(_null_path, i_o());
4154   result_mem->init_req(_null_path, init_mem);
4155 
4156   result_val->init_req(_fast_path, hash_val);
4157   result_reg->init_req(_fast_path, control());
4158   result_io ->init_req(_fast_path, i_o());
4159   result_mem->init_req(_fast_path, init_mem);
4160 
4161   // Generate code for the slow case.  We make a call to hashCode().
4162   set_control(_gvn.transform(slow_region));
4163   if (!stopped()) {
4164     // No need for PreserveJVMState, because we're using up the present state.
4165     set_all_memory(init_mem);
4166     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4167     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4168     Node* slow_result = set_results_for_java_call(slow_call);
4169     // this->control() comes from set_results_for_java_call
4170     result_reg->init_req(_slow_path, control());
4171     result_val->init_req(_slow_path, slow_result);
4172     result_io  ->set_req(_slow_path, i_o());
4173     result_mem ->set_req(_slow_path, reset_memory());
4174   }
4175 
4176   // Return the combined state.
4177   set_i_o(        _gvn.transform(result_io)  );
4178   set_all_memory( _gvn.transform(result_mem));
4179 
4180   set_result(result_reg, result_val);
4181   return true;
4182 }
4183 
4184 //---------------------------inline_native_getClass----------------------------
4185 // public final native Class<?> java.lang.Object.getClass();
4186 //
4187 // Build special case code for calls to getClass on an object.
4188 bool LibraryCallKit::inline_native_getClass() {
4189   Node* obj = null_check_receiver();
4190   if (stopped())  return true;
4191   set_result(load_mirror_from_klass(load_object_klass(obj)));
4192   return true;
4193 }
4194 
4195 //-----------------inline_native_Reflection_getCallerClass---------------------
4196 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4197 //
4198 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4199 //
4200 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4201 // in that it must skip particular security frames and checks for
4202 // caller sensitive methods.
4203 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4204 #ifndef PRODUCT
4205   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4206     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4207   }
4208 #endif
4209 
4210   if (!jvms()->has_method()) {
4211 #ifndef PRODUCT
4212     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4213       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4214     }
4215 #endif
4216     return false;
4217   }
4218 
4219   // Walk back up the JVM state to find the caller at the required
4220   // depth.
4221   JVMState* caller_jvms = jvms();
4222 
4223   // Cf. JVM_GetCallerClass
4224   // NOTE: Start the loop at depth 1 because the current JVM state does
4225   // not include the Reflection.getCallerClass() frame.
4226   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4227     ciMethod* m = caller_jvms->method();
4228     switch (n) {
4229     case 0:
4230       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4231       break;
4232     case 1:
4233       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4234       if (!m->caller_sensitive()) {
4235 #ifndef PRODUCT
4236         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4237           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4238         }
4239 #endif
4240         return false;  // bail-out; let JVM_GetCallerClass do the work
4241       }
4242       break;
4243     default:
4244       if (!m->is_ignored_by_security_stack_walk()) {
4245         // We have reached the desired frame; return the holder class.
4246         // Acquire method holder as java.lang.Class and push as constant.
4247         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4248         ciInstance* caller_mirror = caller_klass->java_mirror();
4249         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4250 
4251 #ifndef PRODUCT
4252         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4253           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4254           tty->print_cr("  JVM state at this point:");
4255           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4256             ciMethod* m = jvms()->of_depth(i)->method();
4257             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4258           }
4259         }
4260 #endif
4261         return true;
4262       }
4263       break;
4264     }
4265   }
4266 
4267 #ifndef PRODUCT
4268   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4269     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4270     tty->print_cr("  JVM state at this point:");
4271     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4272       ciMethod* m = jvms()->of_depth(i)->method();
4273       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4274     }
4275   }
4276 #endif
4277 
4278   return false;  // bail-out; let JVM_GetCallerClass do the work
4279 }
4280 
4281 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4282   Node* arg = argument(0);
4283   Node* result;
4284 
4285   switch (id) {
4286   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4287   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4288   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4289   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4290 
4291   case vmIntrinsics::_doubleToLongBits: {
4292     // two paths (plus control) merge in a wood
4293     RegionNode *r = new RegionNode(3);
4294     Node *phi = new PhiNode(r, TypeLong::LONG);
4295 
4296     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4297     // Build the boolean node
4298     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4299 
4300     // Branch either way.
4301     // NaN case is less traveled, which makes all the difference.
4302     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4303     Node *opt_isnan = _gvn.transform(ifisnan);
4304     assert( opt_isnan->is_If(), "Expect an IfNode");
4305     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4306     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4307 
4308     set_control(iftrue);
4309 
4310     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4311     Node *slow_result = longcon(nan_bits); // return NaN
4312     phi->init_req(1, _gvn.transform( slow_result ));
4313     r->init_req(1, iftrue);
4314 
4315     // Else fall through
4316     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4317     set_control(iffalse);
4318 
4319     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4320     r->init_req(2, iffalse);
4321 
4322     // Post merge
4323     set_control(_gvn.transform(r));
4324     record_for_igvn(r);
4325 
4326     C->set_has_split_ifs(true); // Has chance for split-if optimization
4327     result = phi;
4328     assert(result->bottom_type()->isa_long(), "must be");
4329     break;
4330   }
4331 
4332   case vmIntrinsics::_floatToIntBits: {
4333     // two paths (plus control) merge in a wood
4334     RegionNode *r = new RegionNode(3);
4335     Node *phi = new PhiNode(r, TypeInt::INT);
4336 
4337     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4338     // Build the boolean node
4339     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4340 
4341     // Branch either way.
4342     // NaN case is less traveled, which makes all the difference.
4343     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4344     Node *opt_isnan = _gvn.transform(ifisnan);
4345     assert( opt_isnan->is_If(), "Expect an IfNode");
4346     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4347     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4348 
4349     set_control(iftrue);
4350 
4351     static const jint nan_bits = 0x7fc00000;
4352     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4353     phi->init_req(1, _gvn.transform( slow_result ));
4354     r->init_req(1, iftrue);
4355 
4356     // Else fall through
4357     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4358     set_control(iffalse);
4359 
4360     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4361     r->init_req(2, iffalse);
4362 
4363     // Post merge
4364     set_control(_gvn.transform(r));
4365     record_for_igvn(r);
4366 
4367     C->set_has_split_ifs(true); // Has chance for split-if optimization
4368     result = phi;
4369     assert(result->bottom_type()->isa_int(), "must be");
4370     break;
4371   }
4372 
4373   default:
4374     fatal_unexpected_iid(id);
4375     break;
4376   }
4377   set_result(_gvn.transform(result));
4378   return true;
4379 }
4380 
4381 #ifdef _LP64
4382 #define XTOP ,top() /*additional argument*/
4383 #else  //_LP64
4384 #define XTOP        /*no additional argument*/
4385 #endif //_LP64
4386 
4387 //----------------------inline_unsafe_copyMemory-------------------------
4388 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4389 bool LibraryCallKit::inline_unsafe_copyMemory() {
4390   if (callee()->is_static())  return false;  // caller must have the capability!
4391   null_check_receiver();  // null-check receiver
4392   if (stopped())  return true;
4393 
4394   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4395 
4396   Node* src_ptr =         argument(1);   // type: oop
4397   Node* src_off = ConvL2X(argument(2));  // type: long
4398   Node* dst_ptr =         argument(4);   // type: oop
4399   Node* dst_off = ConvL2X(argument(5));  // type: long
4400   Node* size    = ConvL2X(argument(7));  // type: long
4401 
4402   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4403          "fieldOffset must be byte-scaled");
4404 
4405   Node* src = make_unsafe_address(src_ptr, src_off);
4406   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4407 
4408   // Conservatively insert a memory barrier on all memory slices.
4409   // Do not let writes of the copy source or destination float below the copy.
4410   insert_mem_bar(Op_MemBarCPUOrder);
4411 
4412   // Call it.  Note that the length argument is not scaled.
4413   make_runtime_call(RC_LEAF|RC_NO_FP,
4414                     OptoRuntime::fast_arraycopy_Type(),
4415                     StubRoutines::unsafe_arraycopy(),
4416                     "unsafe_arraycopy",
4417                     TypeRawPtr::BOTTOM,
4418                     src, dst, size XTOP);
4419 
4420   // Do not let reads of the copy destination float above the copy.
4421   insert_mem_bar(Op_MemBarCPUOrder);
4422 
4423   return true;
4424 }
4425 
4426 //------------------------clone_coping-----------------------------------
4427 // Helper function for inline_native_clone.
4428 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4429   assert(obj_size != NULL, "");
4430   Node* raw_obj = alloc_obj->in(1);
4431   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4432 
4433   AllocateNode* alloc = NULL;
4434   if (ReduceBulkZeroing) {
4435     // We will be completely responsible for initializing this object -
4436     // mark Initialize node as complete.
4437     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4438     // The object was just allocated - there should be no any stores!
4439     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4440     // Mark as complete_with_arraycopy so that on AllocateNode
4441     // expansion, we know this AllocateNode is initialized by an array
4442     // copy and a StoreStore barrier exists after the array copy.
4443     alloc->initialization()->set_complete_with_arraycopy();
4444   }
4445 
4446   // Copy the fastest available way.
4447   // TODO: generate fields copies for small objects instead.
4448   Node* src  = obj;
4449   Node* dest = alloc_obj;
4450   Node* size = _gvn.transform(obj_size);
4451 
4452   // Exclude the header but include array length to copy by 8 bytes words.
4453   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4454   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4455                             instanceOopDesc::base_offset_in_bytes();
4456   // base_off:
4457   // 8  - 32-bit VM
4458   // 12 - 64-bit VM, compressed klass
4459   // 16 - 64-bit VM, normal klass
4460   if (base_off % BytesPerLong != 0) {
4461     assert(UseCompressedClassPointers, "");
4462     if (is_array) {
4463       // Exclude length to copy by 8 bytes words.
4464       base_off += sizeof(int);
4465     } else {
4466       // Include klass to copy by 8 bytes words.
4467       base_off = instanceOopDesc::klass_offset_in_bytes();
4468     }
4469     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4470   }
4471   src  = basic_plus_adr(src,  base_off);
4472   dest = basic_plus_adr(dest, base_off);
4473 
4474   // Compute the length also, if needed:
4475   Node* countx = size;
4476   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4477   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4478 
4479   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4480 
4481   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4482   ac->set_clonebasic();
4483   Node* n = _gvn.transform(ac);
4484   if (n == ac) {
4485     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4486   } else {
4487     set_all_memory(n);
4488   }
4489 
4490   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4491   if (card_mark) {
4492     assert(!is_array, "");
4493     // Put in store barrier for any and all oops we are sticking
4494     // into this object.  (We could avoid this if we could prove
4495     // that the object type contains no oop fields at all.)
4496     Node* no_particular_value = NULL;
4497     Node* no_particular_field = NULL;
4498     int raw_adr_idx = Compile::AliasIdxRaw;
4499     post_barrier(control(),
4500                  memory(raw_adr_type),
4501                  alloc_obj,
4502                  no_particular_field,
4503                  raw_adr_idx,
4504                  no_particular_value,
4505                  T_OBJECT,
4506                  false);
4507   }
4508 
4509   // Do not let reads from the cloned object float above the arraycopy.
4510   if (alloc != NULL) {
4511     // Do not let stores that initialize this object be reordered with
4512     // a subsequent store that would make this object accessible by
4513     // other threads.
4514     // Record what AllocateNode this StoreStore protects so that
4515     // escape analysis can go from the MemBarStoreStoreNode to the
4516     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4517     // based on the escape status of the AllocateNode.
4518     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4519   } else {
4520     insert_mem_bar(Op_MemBarCPUOrder);
4521   }
4522 }
4523 
4524 //------------------------inline_native_clone----------------------------
4525 // protected native Object java.lang.Object.clone();
4526 //
4527 // Here are the simple edge cases:
4528 //  null receiver => normal trap
4529 //  virtual and clone was overridden => slow path to out-of-line clone
4530 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4531 //
4532 // The general case has two steps, allocation and copying.
4533 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4534 //
4535 // Copying also has two cases, oop arrays and everything else.
4536 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4537 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4538 //
4539 // These steps fold up nicely if and when the cloned object's klass
4540 // can be sharply typed as an object array, a type array, or an instance.
4541 //
4542 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4543   PhiNode* result_val;
4544 
4545   // Set the reexecute bit for the interpreter to reexecute
4546   // the bytecode that invokes Object.clone if deoptimization happens.
4547   { PreserveReexecuteState preexecs(this);
4548     jvms()->set_should_reexecute(true);
4549 
4550     Node* obj = null_check_receiver();
4551     if (stopped())  return true;
4552 
4553     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4554 
4555     // If we are going to clone an instance, we need its exact type to
4556     // know the number and types of fields to convert the clone to
4557     // loads/stores. Maybe a speculative type can help us.
4558     if (!obj_type->klass_is_exact() &&
4559         obj_type->speculative_type() != NULL &&
4560         obj_type->speculative_type()->is_instance_klass()) {
4561       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4562       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4563           !spec_ik->has_injected_fields()) {
4564         ciKlass* k = obj_type->klass();
4565         if (!k->is_instance_klass() ||
4566             k->as_instance_klass()->is_interface() ||
4567             k->as_instance_klass()->has_subklass()) {
4568           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4569         }
4570       }
4571     }
4572 
4573     Node* obj_klass = load_object_klass(obj);
4574     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4575     const TypeOopPtr*   toop   = ((tklass != NULL)
4576                                 ? tklass->as_instance_type()
4577                                 : TypeInstPtr::NOTNULL);
4578 
4579     // Conservatively insert a memory barrier on all memory slices.
4580     // Do not let writes into the original float below the clone.
4581     insert_mem_bar(Op_MemBarCPUOrder);
4582 
4583     // paths into result_reg:
4584     enum {
4585       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4586       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4587       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4588       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4589       PATH_LIMIT
4590     };
4591     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4592     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4593     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4594     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4595     record_for_igvn(result_reg);
4596 
4597     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4598     int raw_adr_idx = Compile::AliasIdxRaw;
4599 
4600     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4601     if (array_ctl != NULL) {
4602       // It's an array.
4603       PreserveJVMState pjvms(this);
4604       set_control(array_ctl);
4605       Node* obj_length = load_array_length(obj);
4606       Node* obj_size  = NULL;
4607       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4608 
4609       if (!use_ReduceInitialCardMarks()) {
4610         // If it is an oop array, it requires very special treatment,
4611         // because card marking is required on each card of the array.
4612         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4613         if (is_obja != NULL) {
4614           PreserveJVMState pjvms2(this);
4615           set_control(is_obja);
4616           // Generate a direct call to the right arraycopy function(s).
4617           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4618           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4619           ac->set_cloneoop();
4620           Node* n = _gvn.transform(ac);
4621           assert(n == ac, "cannot disappear");
4622           ac->connect_outputs(this);
4623 
4624           result_reg->init_req(_objArray_path, control());
4625           result_val->init_req(_objArray_path, alloc_obj);
4626           result_i_o ->set_req(_objArray_path, i_o());
4627           result_mem ->set_req(_objArray_path, reset_memory());
4628         }
4629       }
4630       // Otherwise, there are no card marks to worry about.
4631       // (We can dispense with card marks if we know the allocation
4632       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4633       //  causes the non-eden paths to take compensating steps to
4634       //  simulate a fresh allocation, so that no further
4635       //  card marks are required in compiled code to initialize
4636       //  the object.)
4637 
4638       if (!stopped()) {
4639         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4640 
4641         // Present the results of the copy.
4642         result_reg->init_req(_array_path, control());
4643         result_val->init_req(_array_path, alloc_obj);
4644         result_i_o ->set_req(_array_path, i_o());
4645         result_mem ->set_req(_array_path, reset_memory());
4646       }
4647     }
4648 
4649     // We only go to the instance fast case code if we pass a number of guards.
4650     // The paths which do not pass are accumulated in the slow_region.
4651     RegionNode* slow_region = new RegionNode(1);
4652     record_for_igvn(slow_region);
4653     if (!stopped()) {
4654       // It's an instance (we did array above).  Make the slow-path tests.
4655       // If this is a virtual call, we generate a funny guard.  We grab
4656       // the vtable entry corresponding to clone() from the target object.
4657       // If the target method which we are calling happens to be the
4658       // Object clone() method, we pass the guard.  We do not need this
4659       // guard for non-virtual calls; the caller is known to be the native
4660       // Object clone().
4661       if (is_virtual) {
4662         generate_virtual_guard(obj_klass, slow_region);
4663       }
4664 
4665       // The object must be cloneable and must not have a finalizer.
4666       // Both of these conditions may be checked in a single test.
4667       // We could optimize the cloneable test further, but we don't care.
4668       generate_access_flags_guard(obj_klass,
4669                                   // Test both conditions:
4670                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4671                                   // Must be cloneable but not finalizer:
4672                                   JVM_ACC_IS_CLONEABLE,
4673                                   slow_region);
4674     }
4675 
4676     if (!stopped()) {
4677       // It's an instance, and it passed the slow-path tests.
4678       PreserveJVMState pjvms(this);
4679       Node* obj_size  = NULL;
4680       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4681       // is reexecuted if deoptimization occurs and there could be problems when merging
4682       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4683       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4684 
4685       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4686 
4687       // Present the results of the slow call.
4688       result_reg->init_req(_instance_path, control());
4689       result_val->init_req(_instance_path, alloc_obj);
4690       result_i_o ->set_req(_instance_path, i_o());
4691       result_mem ->set_req(_instance_path, reset_memory());
4692     }
4693 
4694     // Generate code for the slow case.  We make a call to clone().
4695     set_control(_gvn.transform(slow_region));
4696     if (!stopped()) {
4697       PreserveJVMState pjvms(this);
4698       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4699       Node* slow_result = set_results_for_java_call(slow_call);
4700       // this->control() comes from set_results_for_java_call
4701       result_reg->init_req(_slow_path, control());
4702       result_val->init_req(_slow_path, slow_result);
4703       result_i_o ->set_req(_slow_path, i_o());
4704       result_mem ->set_req(_slow_path, reset_memory());
4705     }
4706 
4707     // Return the combined state.
4708     set_control(    _gvn.transform(result_reg));
4709     set_i_o(        _gvn.transform(result_i_o));
4710     set_all_memory( _gvn.transform(result_mem));
4711   } // original reexecute is set back here
4712 
4713   set_result(_gvn.transform(result_val));
4714   return true;
4715 }
4716 
4717 //------------------------------inline_arraycopy-----------------------
4718 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4719 //                                                      Object dest, int destPos,
4720 //                                                      int length);
4721 bool LibraryCallKit::inline_arraycopy() {
4722   // Get the arguments.
4723   Node* src         = argument(0);  // type: oop
4724   Node* src_offset  = argument(1);  // type: int
4725   Node* dest        = argument(2);  // type: oop
4726   Node* dest_offset = argument(3);  // type: int
4727   Node* length      = argument(4);  // type: int
4728 
4729   // The following tests must be performed
4730   // (1) src and dest are arrays.
4731   // (2) src and dest arrays must have elements of the same BasicType
4732   // (3) src and dest must not be null.
4733   // (4) src_offset must not be negative.
4734   // (5) dest_offset must not be negative.
4735   // (6) length must not be negative.
4736   // (7) src_offset + length must not exceed length of src.
4737   // (8) dest_offset + length must not exceed length of dest.
4738   // (9) each element of an oop array must be assignable
4739 
4740   // (3) src and dest must not be null.
4741   // always do this here because we need the JVM state for uncommon traps
4742   src  = null_check(src,  T_ARRAY);
4743   dest = null_check(dest, T_ARRAY);
4744 
4745   // Check for allocation before we add nodes that would confuse
4746   // tightly_coupled_allocation()
4747   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4748 
4749   SafePointNode* sfpt = NULL;
4750   if (alloc != NULL) {
4751     // The JVM state for uncommon traps between the allocation and
4752     // arraycopy is set to the state before the allocation: if the
4753     // initialization is performed by the array copy, we don't want to
4754     // go back to the interpreter with an unitialized array.
4755     JVMState* old_jvms = alloc->jvms();
4756     JVMState* jvms = old_jvms->clone_shallow(C);
4757     uint size = alloc->req();
4758     sfpt = new SafePointNode(size, jvms);
4759     jvms->set_map(sfpt);
4760     for (uint i = 0; i < size; i++) {
4761       sfpt->init_req(i, alloc->in(i));
4762     }
4763     // re-push array length for deoptimization
4764     sfpt->ins_req(jvms->stkoff() + jvms->sp(), alloc->in(AllocateNode::ALength));
4765     jvms->set_sp(jvms->sp()+1);
4766     jvms->set_monoff(jvms->monoff()+1);
4767     jvms->set_scloff(jvms->scloff()+1);
4768     jvms->set_endoff(jvms->endoff()+1);
4769     jvms->set_should_reexecute(true);
4770 
4771     sfpt->set_i_o(map()->i_o());
4772     sfpt->set_memory(map()->memory());
4773   }
4774 
4775   bool validated = false;
4776 
4777   const Type* src_type  = _gvn.type(src);
4778   const Type* dest_type = _gvn.type(dest);
4779   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4780   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4781 
4782   // Do we have the type of src?
4783   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4784   // Do we have the type of dest?
4785   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4786   // Is the type for src from speculation?
4787   bool src_spec = false;
4788   // Is the type for dest from speculation?
4789   bool dest_spec = false;
4790 
4791   if (!has_src || !has_dest) {
4792     // We don't have sufficient type information, let's see if
4793     // speculative types can help. We need to have types for both src
4794     // and dest so that it pays off.
4795 
4796     // Do we already have or could we have type information for src
4797     bool could_have_src = has_src;
4798     // Do we already have or could we have type information for dest
4799     bool could_have_dest = has_dest;
4800 
4801     ciKlass* src_k = NULL;
4802     if (!has_src) {
4803       src_k = src_type->speculative_type_not_null();
4804       if (src_k != NULL && src_k->is_array_klass()) {
4805         could_have_src = true;
4806       }
4807     }
4808 
4809     ciKlass* dest_k = NULL;
4810     if (!has_dest) {
4811       dest_k = dest_type->speculative_type_not_null();
4812       if (dest_k != NULL && dest_k->is_array_klass()) {
4813         could_have_dest = true;
4814       }
4815     }
4816 
4817     if (could_have_src && could_have_dest) {
4818       // This is going to pay off so emit the required guards
4819       if (!has_src) {
4820         src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4821         src_type  = _gvn.type(src);
4822         top_src  = src_type->isa_aryptr();
4823         has_src = (top_src != NULL && top_src->klass() != NULL);
4824         src_spec = true;
4825       }
4826       if (!has_dest) {
4827         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4828         dest_type  = _gvn.type(dest);
4829         top_dest  = dest_type->isa_aryptr();
4830         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4831         dest_spec = true;
4832       }
4833     }
4834   }
4835 
4836   if (has_src && has_dest) {
4837     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4838     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4839     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4840     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4841 
4842     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4843       // If both arrays are object arrays then having the exact types
4844       // for both will remove the need for a subtype check at runtime
4845       // before the call and may make it possible to pick a faster copy
4846       // routine (without a subtype check on every element)
4847       // Do we have the exact type of src?
4848       bool could_have_src = src_spec;
4849       // Do we have the exact type of dest?
4850       bool could_have_dest = dest_spec;
4851       ciKlass* src_k = top_src->klass();
4852       ciKlass* dest_k = top_dest->klass();
4853       if (!src_spec) {
4854         src_k = src_type->speculative_type_not_null();
4855         if (src_k != NULL && src_k->is_array_klass()) {
4856           could_have_src = true;
4857         }
4858       }
4859       if (!dest_spec) {
4860         dest_k = dest_type->speculative_type_not_null();
4861         if (dest_k != NULL && dest_k->is_array_klass()) {
4862           could_have_dest = true;
4863         }
4864       }
4865       if (could_have_src && could_have_dest) {
4866         // If we can have both exact types, emit the missing guards
4867         if (could_have_src && !src_spec) {
4868           src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4869         }
4870         if (could_have_dest && !dest_spec) {
4871           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4872         }
4873       }
4874     }
4875   }
4876 
4877   if (!too_many_traps(Deoptimization::Reason_intrinsic) && !src->is_top() && !dest->is_top()) {
4878     // validate arguments: enables transformation the ArrayCopyNode
4879     validated = true;
4880 
4881     RegionNode* slow_region = new RegionNode(1);
4882     record_for_igvn(slow_region);
4883 
4884     // (1) src and dest are arrays.
4885     generate_non_array_guard(load_object_klass(src), slow_region);
4886     generate_non_array_guard(load_object_klass(dest), slow_region);
4887 
4888     // (2) src and dest arrays must have elements of the same BasicType
4889     // done at macro expansion or at Ideal transformation time
4890 
4891     // (4) src_offset must not be negative.
4892     generate_negative_guard(src_offset, slow_region);
4893 
4894     // (5) dest_offset must not be negative.
4895     generate_negative_guard(dest_offset, slow_region);
4896 
4897     // (7) src_offset + length must not exceed length of src.
4898     generate_limit_guard(src_offset, length,
4899                          load_array_length(src),
4900                          slow_region);
4901 
4902     // (8) dest_offset + length must not exceed length of dest.
4903     generate_limit_guard(dest_offset, length,
4904                          load_array_length(dest),
4905                          slow_region);
4906 
4907     // (9) each element of an oop array must be assignable
4908     Node* src_klass  = load_object_klass(src);
4909     Node* dest_klass = load_object_klass(dest);
4910     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4911 
4912     if (not_subtype_ctrl != top()) {
4913       if (sfpt != NULL) {
4914         GraphKit kit(sfpt->jvms());
4915         PreserveJVMState pjvms(&kit);
4916         kit.set_control(not_subtype_ctrl);
4917         kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4918                           Deoptimization::Action_make_not_entrant);
4919         assert(kit.stopped(), "Should be stopped");
4920       } else {
4921         PreserveJVMState pjvms(this);
4922         set_control(not_subtype_ctrl);
4923         uncommon_trap(Deoptimization::Reason_intrinsic,
4924                       Deoptimization::Action_make_not_entrant);
4925         assert(stopped(), "Should be stopped");
4926       }
4927     }
4928     if (sfpt != NULL) {
4929       GraphKit kit(sfpt->jvms());
4930       kit.set_control(_gvn.transform(slow_region));
4931       kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4932                         Deoptimization::Action_make_not_entrant);
4933       assert(kit.stopped(), "Should be stopped");
4934     } else {
4935       PreserveJVMState pjvms(this);
4936       set_control(_gvn.transform(slow_region));
4937       uncommon_trap(Deoptimization::Reason_intrinsic,
4938                     Deoptimization::Action_make_not_entrant);
4939       assert(stopped(), "Should be stopped");
4940     }
4941   }
4942 
4943   if (stopped()) {
4944     return true;
4945   }
4946 
4947   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4948                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4949                                           // so the compiler has a chance to eliminate them: during macro expansion,
4950                                           // we have to set their control (CastPP nodes are eliminated).
4951                                           load_object_klass(src), load_object_klass(dest),
4952                                           load_array_length(src), load_array_length(dest));
4953 
4954   ac->set_arraycopy(validated);
4955 
4956   Node* n = _gvn.transform(ac);
4957   if (n == ac) {
4958     ac->connect_outputs(this);
4959   } else {
4960     assert(validated, "shouldn't transform if all arguments not validated");
4961     set_all_memory(n);
4962   }
4963 
4964   return true;
4965 }
4966 
4967 
4968 // Helper function which determines if an arraycopy immediately follows
4969 // an allocation, with no intervening tests or other escapes for the object.
4970 AllocateArrayNode*
4971 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4972                                            RegionNode* slow_region) {
4973   if (stopped())             return NULL;  // no fast path
4974   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4975 
4976   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4977   if (alloc == NULL)  return NULL;
4978 
4979   Node* rawmem = memory(Compile::AliasIdxRaw);
4980   // Is the allocation's memory state untouched?
4981   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4982     // Bail out if there have been raw-memory effects since the allocation.
4983     // (Example:  There might have been a call or safepoint.)
4984     return NULL;
4985   }
4986   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4987   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4988     return NULL;
4989   }
4990 
4991   // There must be no unexpected observers of this allocation.
4992   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4993     Node* obs = ptr->fast_out(i);
4994     if (obs != this->map()) {
4995       return NULL;
4996     }
4997   }
4998 
4999   // This arraycopy must unconditionally follow the allocation of the ptr.
5000   Node* alloc_ctl = ptr->in(0);
5001   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5002 
5003   Node* ctl = control();
5004   while (ctl != alloc_ctl) {
5005     // There may be guards which feed into the slow_region.
5006     // Any other control flow means that we might not get a chance
5007     // to finish initializing the allocated object.
5008     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5009       IfNode* iff = ctl->in(0)->as_If();
5010       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5011       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5012       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5013         ctl = iff->in(0);       // This test feeds the known slow_region.
5014         continue;
5015       }
5016       // One more try:  Various low-level checks bottom out in
5017       // uncommon traps.  If the debug-info of the trap omits
5018       // any reference to the allocation, as we've already
5019       // observed, then there can be no objection to the trap.
5020       bool found_trap = false;
5021       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5022         Node* obs = not_ctl->fast_out(j);
5023         if (obs->in(0) == not_ctl && obs->is_Call() &&
5024             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5025           found_trap = true; break;
5026         }
5027       }
5028       if (found_trap) {
5029         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5030         continue;
5031       }
5032     }
5033     return NULL;
5034   }
5035 
5036   // If we get this far, we have an allocation which immediately
5037   // precedes the arraycopy, and we can take over zeroing the new object.
5038   // The arraycopy will finish the initialization, and provide
5039   // a new control state to which we will anchor the destination pointer.
5040 
5041   return alloc;
5042 }
5043 
5044 //-------------inline_encodeISOArray-----------------------------------
5045 // encode char[] to byte[] in ISO_8859_1
5046 bool LibraryCallKit::inline_encodeISOArray() {
5047   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5048   // no receiver since it is static method
5049   Node *src         = argument(0);
5050   Node *src_offset  = argument(1);
5051   Node *dst         = argument(2);
5052   Node *dst_offset  = argument(3);
5053   Node *length      = argument(4);
5054 
5055   const Type* src_type = src->Value(&_gvn);
5056   const Type* dst_type = dst->Value(&_gvn);
5057   const TypeAryPtr* top_src = src_type->isa_aryptr();
5058   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5059   if (top_src  == NULL || top_src->klass()  == NULL ||
5060       top_dest == NULL || top_dest->klass() == NULL) {
5061     // failed array check
5062     return false;
5063   }
5064 
5065   // Figure out the size and type of the elements we will be copying.
5066   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5067   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5068   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5069     return false;
5070   }
5071   Node* src_start = array_element_address(src, src_offset, src_elem);
5072   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5073   // 'src_start' points to src array + scaled offset
5074   // 'dst_start' points to dst array + scaled offset
5075 
5076   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5077   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5078   enc = _gvn.transform(enc);
5079   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5080   set_memory(res_mem, mtype);
5081   set_result(enc);
5082   return true;
5083 }
5084 
5085 //-------------inline_multiplyToLen-----------------------------------
5086 bool LibraryCallKit::inline_multiplyToLen() {
5087   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5088 
5089   address stubAddr = StubRoutines::multiplyToLen();
5090   if (stubAddr == NULL) {
5091     return false; // Intrinsic's stub is not implemented on this platform
5092   }
5093   const char* stubName = "multiplyToLen";
5094 
5095   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5096 
5097   Node* x    = argument(1);
5098   Node* xlen = argument(2);
5099   Node* y    = argument(3);
5100   Node* ylen = argument(4);
5101   Node* z    = argument(5);
5102 
5103   const Type* x_type = x->Value(&_gvn);
5104   const Type* y_type = y->Value(&_gvn);
5105   const TypeAryPtr* top_x = x_type->isa_aryptr();
5106   const TypeAryPtr* top_y = y_type->isa_aryptr();
5107   if (top_x  == NULL || top_x->klass()  == NULL ||
5108       top_y == NULL || top_y->klass() == NULL) {
5109     // failed array check
5110     return false;
5111   }
5112 
5113   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5114   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5115   if (x_elem != T_INT || y_elem != T_INT) {
5116     return false;
5117   }
5118 
5119   // Set the original stack and the reexecute bit for the interpreter to reexecute
5120   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5121   // on the return from z array allocation in runtime.
5122   { PreserveReexecuteState preexecs(this);
5123     jvms()->set_should_reexecute(true);
5124 
5125     Node* x_start = array_element_address(x, intcon(0), x_elem);
5126     Node* y_start = array_element_address(y, intcon(0), y_elem);
5127     // 'x_start' points to x array + scaled xlen
5128     // 'y_start' points to y array + scaled ylen
5129 
5130     // Allocate the result array
5131     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5132     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5133     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5134 
5135     IdealKit ideal(this);
5136 
5137 #define __ ideal.
5138      Node* one = __ ConI(1);
5139      Node* zero = __ ConI(0);
5140      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5141      __ set(need_alloc, zero);
5142      __ set(z_alloc, z);
5143      __ if_then(z, BoolTest::eq, null()); {
5144        __ increment (need_alloc, one);
5145      } __ else_(); {
5146        // Update graphKit memory and control from IdealKit.
5147        sync_kit(ideal);
5148        Node* zlen_arg = load_array_length(z);
5149        // Update IdealKit memory and control from graphKit.
5150        __ sync_kit(this);
5151        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5152          __ increment (need_alloc, one);
5153        } __ end_if();
5154      } __ end_if();
5155 
5156      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5157        // Update graphKit memory and control from IdealKit.
5158        sync_kit(ideal);
5159        Node * narr = new_array(klass_node, zlen, 1);
5160        // Update IdealKit memory and control from graphKit.
5161        __ sync_kit(this);
5162        __ set(z_alloc, narr);
5163      } __ end_if();
5164 
5165      sync_kit(ideal);
5166      z = __ value(z_alloc);
5167      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5168      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5169      // Final sync IdealKit and GraphKit.
5170      final_sync(ideal);
5171 #undef __
5172 
5173     Node* z_start = array_element_address(z, intcon(0), T_INT);
5174 
5175     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5176                                    OptoRuntime::multiplyToLen_Type(),
5177                                    stubAddr, stubName, TypePtr::BOTTOM,
5178                                    x_start, xlen, y_start, ylen, z_start, zlen);
5179   } // original reexecute is set back here
5180 
5181   C->set_has_split_ifs(true); // Has chance for split-if optimization
5182   set_result(z);
5183   return true;
5184 }
5185 
5186 
5187 /**
5188  * Calculate CRC32 for byte.
5189  * int java.util.zip.CRC32.update(int crc, int b)
5190  */
5191 bool LibraryCallKit::inline_updateCRC32() {
5192   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5193   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5194   // no receiver since it is static method
5195   Node* crc  = argument(0); // type: int
5196   Node* b    = argument(1); // type: int
5197 
5198   /*
5199    *    int c = ~ crc;
5200    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5201    *    b = b ^ (c >>> 8);
5202    *    crc = ~b;
5203    */
5204 
5205   Node* M1 = intcon(-1);
5206   crc = _gvn.transform(new XorINode(crc, M1));
5207   Node* result = _gvn.transform(new XorINode(crc, b));
5208   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5209 
5210   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5211   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5212   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5213   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5214 
5215   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5216   result = _gvn.transform(new XorINode(crc, result));
5217   result = _gvn.transform(new XorINode(result, M1));
5218   set_result(result);
5219   return true;
5220 }
5221 
5222 /**
5223  * Calculate CRC32 for byte[] array.
5224  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5225  */
5226 bool LibraryCallKit::inline_updateBytesCRC32() {
5227   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5228   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5229   // no receiver since it is static method
5230   Node* crc     = argument(0); // type: int
5231   Node* src     = argument(1); // type: oop
5232   Node* offset  = argument(2); // type: int
5233   Node* length  = argument(3); // type: int
5234 
5235   const Type* src_type = src->Value(&_gvn);
5236   const TypeAryPtr* top_src = src_type->isa_aryptr();
5237   if (top_src  == NULL || top_src->klass()  == NULL) {
5238     // failed array check
5239     return false;
5240   }
5241 
5242   // Figure out the size and type of the elements we will be copying.
5243   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5244   if (src_elem != T_BYTE) {
5245     return false;
5246   }
5247 
5248   // 'src_start' points to src array + scaled offset
5249   Node* src_start = array_element_address(src, offset, src_elem);
5250 
5251   // We assume that range check is done by caller.
5252   // TODO: generate range check (offset+length < src.length) in debug VM.
5253 
5254   // Call the stub.
5255   address stubAddr = StubRoutines::updateBytesCRC32();
5256   const char *stubName = "updateBytesCRC32";
5257 
5258   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5259                                  stubAddr, stubName, TypePtr::BOTTOM,
5260                                  crc, src_start, length);
5261   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5262   set_result(result);
5263   return true;
5264 }
5265 
5266 /**
5267  * Calculate CRC32 for ByteBuffer.
5268  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5269  */
5270 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5271   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5272   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5273   // no receiver since it is static method
5274   Node* crc     = argument(0); // type: int
5275   Node* src     = argument(1); // type: long
5276   Node* offset  = argument(3); // type: int
5277   Node* length  = argument(4); // type: int
5278 
5279   src = ConvL2X(src);  // adjust Java long to machine word
5280   Node* base = _gvn.transform(new CastX2PNode(src));
5281   offset = ConvI2X(offset);
5282 
5283   // 'src_start' points to src array + scaled offset
5284   Node* src_start = basic_plus_adr(top(), base, offset);
5285 
5286   // Call the stub.
5287   address stubAddr = StubRoutines::updateBytesCRC32();
5288   const char *stubName = "updateBytesCRC32";
5289 
5290   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5291                                  stubAddr, stubName, TypePtr::BOTTOM,
5292                                  crc, src_start, length);
5293   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5294   set_result(result);
5295   return true;
5296 }
5297 
5298 //----------------------------inline_reference_get----------------------------
5299 // public T java.lang.ref.Reference.get();
5300 bool LibraryCallKit::inline_reference_get() {
5301   const int referent_offset = java_lang_ref_Reference::referent_offset;
5302   guarantee(referent_offset > 0, "should have already been set");
5303 
5304   // Get the argument:
5305   Node* reference_obj = null_check_receiver();
5306   if (stopped()) return true;
5307 
5308   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5309 
5310   ciInstanceKlass* klass = env()->Object_klass();
5311   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5312 
5313   Node* no_ctrl = NULL;
5314   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5315 
5316   // Use the pre-barrier to record the value in the referent field
5317   pre_barrier(false /* do_load */,
5318               control(),
5319               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5320               result /* pre_val */,
5321               T_OBJECT);
5322 
5323   // Add memory barrier to prevent commoning reads from this field
5324   // across safepoint since GC can change its value.
5325   insert_mem_bar(Op_MemBarCPUOrder);
5326 
5327   set_result(result);
5328   return true;
5329 }
5330 
5331 
5332 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5333                                               bool is_exact=true, bool is_static=false) {
5334 
5335   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5336   assert(tinst != NULL, "obj is null");
5337   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5338   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5339 
5340   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5341                                                                           ciSymbol::make(fieldTypeString),
5342                                                                           is_static);
5343   if (field == NULL) return (Node *) NULL;
5344   assert (field != NULL, "undefined field");
5345 
5346   // Next code  copied from Parse::do_get_xxx():
5347 
5348   // Compute address and memory type.
5349   int offset  = field->offset_in_bytes();
5350   bool is_vol = field->is_volatile();
5351   ciType* field_klass = field->type();
5352   assert(field_klass->is_loaded(), "should be loaded");
5353   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5354   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5355   BasicType bt = field->layout_type();
5356 
5357   // Build the resultant type of the load
5358   const Type *type;
5359   if (bt == T_OBJECT) {
5360     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5361   } else {
5362     type = Type::get_const_basic_type(bt);
5363   }
5364 
5365   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5366     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5367   }
5368   // Build the load.
5369   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5370   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
5371   // If reference is volatile, prevent following memory ops from
5372   // floating up past the volatile read.  Also prevents commoning
5373   // another volatile read.
5374   if (is_vol) {
5375     // Memory barrier includes bogus read of value to force load BEFORE membar
5376     insert_mem_bar(Op_MemBarAcquire, loadedField);
5377   }
5378   return loadedField;
5379 }
5380 
5381 
5382 //------------------------------inline_aescrypt_Block-----------------------
5383 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5384   address stubAddr;
5385   const char *stubName;
5386   assert(UseAES, "need AES instruction support");
5387 
5388   switch(id) {
5389   case vmIntrinsics::_aescrypt_encryptBlock:
5390     stubAddr = StubRoutines::aescrypt_encryptBlock();
5391     stubName = "aescrypt_encryptBlock";
5392     break;
5393   case vmIntrinsics::_aescrypt_decryptBlock:
5394     stubAddr = StubRoutines::aescrypt_decryptBlock();
5395     stubName = "aescrypt_decryptBlock";
5396     break;
5397   }
5398   if (stubAddr == NULL) return false;
5399 
5400   Node* aescrypt_object = argument(0);
5401   Node* src             = argument(1);
5402   Node* src_offset      = argument(2);
5403   Node* dest            = argument(3);
5404   Node* dest_offset     = argument(4);
5405 
5406   // (1) src and dest are arrays.
5407   const Type* src_type = src->Value(&_gvn);
5408   const Type* dest_type = dest->Value(&_gvn);
5409   const TypeAryPtr* top_src = src_type->isa_aryptr();
5410   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5411   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5412 
5413   // for the quick and dirty code we will skip all the checks.
5414   // we are just trying to get the call to be generated.
5415   Node* src_start  = src;
5416   Node* dest_start = dest;
5417   if (src_offset != NULL || dest_offset != NULL) {
5418     assert(src_offset != NULL && dest_offset != NULL, "");
5419     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5420     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5421   }
5422 
5423   // now need to get the start of its expanded key array
5424   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5425   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5426   if (k_start == NULL) return false;
5427 
5428   if (Matcher::pass_original_key_for_aes()) {
5429     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5430     // compatibility issues between Java key expansion and SPARC crypto instructions
5431     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5432     if (original_k_start == NULL) return false;
5433 
5434     // Call the stub.
5435     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5436                       stubAddr, stubName, TypePtr::BOTTOM,
5437                       src_start, dest_start, k_start, original_k_start);
5438   } else {
5439     // Call the stub.
5440     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5441                       stubAddr, stubName, TypePtr::BOTTOM,
5442                       src_start, dest_start, k_start);
5443   }
5444 
5445   return true;
5446 }
5447 
5448 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5449 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5450   address stubAddr;
5451   const char *stubName;
5452 
5453   assert(UseAES, "need AES instruction support");
5454 
5455   switch(id) {
5456   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5457     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5458     stubName = "cipherBlockChaining_encryptAESCrypt";
5459     break;
5460   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5461     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5462     stubName = "cipherBlockChaining_decryptAESCrypt";
5463     break;
5464   }
5465   if (stubAddr == NULL) return false;
5466 
5467   Node* cipherBlockChaining_object = argument(0);
5468   Node* src                        = argument(1);
5469   Node* src_offset                 = argument(2);
5470   Node* len                        = argument(3);
5471   Node* dest                       = argument(4);
5472   Node* dest_offset                = argument(5);
5473 
5474   // (1) src and dest are arrays.
5475   const Type* src_type = src->Value(&_gvn);
5476   const Type* dest_type = dest->Value(&_gvn);
5477   const TypeAryPtr* top_src = src_type->isa_aryptr();
5478   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5479   assert (top_src  != NULL && top_src->klass()  != NULL
5480           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5481 
5482   // checks are the responsibility of the caller
5483   Node* src_start  = src;
5484   Node* dest_start = dest;
5485   if (src_offset != NULL || dest_offset != NULL) {
5486     assert(src_offset != NULL && dest_offset != NULL, "");
5487     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5488     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5489   }
5490 
5491   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5492   // (because of the predicated logic executed earlier).
5493   // so we cast it here safely.
5494   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5495 
5496   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5497   if (embeddedCipherObj == NULL) return false;
5498 
5499   // cast it to what we know it will be at runtime
5500   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5501   assert(tinst != NULL, "CBC obj is null");
5502   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5503   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5504   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5505 
5506   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5507   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5508   const TypeOopPtr* xtype = aklass->as_instance_type();
5509   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5510   aescrypt_object = _gvn.transform(aescrypt_object);
5511 
5512   // we need to get the start of the aescrypt_object's expanded key array
5513   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5514   if (k_start == NULL) return false;
5515 
5516   // similarly, get the start address of the r vector
5517   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5518   if (objRvec == NULL) return false;
5519   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5520 
5521   Node* cbcCrypt;
5522   if (Matcher::pass_original_key_for_aes()) {
5523     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5524     // compatibility issues between Java key expansion and SPARC crypto instructions
5525     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5526     if (original_k_start == NULL) return false;
5527 
5528     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5529     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5530                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5531                                  stubAddr, stubName, TypePtr::BOTTOM,
5532                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5533   } else {
5534     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5535     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5536                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5537                                  stubAddr, stubName, TypePtr::BOTTOM,
5538                                  src_start, dest_start, k_start, r_start, len);
5539   }
5540 
5541   // return cipher length (int)
5542   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5543   set_result(retvalue);
5544   return true;
5545 }
5546 
5547 //------------------------------get_key_start_from_aescrypt_object-----------------------
5548 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5549   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5550   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5551   if (objAESCryptKey == NULL) return (Node *) NULL;
5552 
5553   // now have the array, need to get the start address of the K array
5554   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5555   return k_start;
5556 }
5557 
5558 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5559 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5560   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5561   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5562   if (objAESCryptKey == NULL) return (Node *) NULL;
5563 
5564   // now have the array, need to get the start address of the lastKey array
5565   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5566   return original_k_start;
5567 }
5568 
5569 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5570 // Return node representing slow path of predicate check.
5571 // the pseudo code we want to emulate with this predicate is:
5572 // for encryption:
5573 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5574 // for decryption:
5575 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5576 //    note cipher==plain is more conservative than the original java code but that's OK
5577 //
5578 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5579   // The receiver was checked for NULL already.
5580   Node* objCBC = argument(0);
5581 
5582   // Load embeddedCipher field of CipherBlockChaining object.
5583   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5584 
5585   // get AESCrypt klass for instanceOf check
5586   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5587   // will have same classloader as CipherBlockChaining object
5588   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5589   assert(tinst != NULL, "CBCobj is null");
5590   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5591 
5592   // we want to do an instanceof comparison against the AESCrypt class
5593   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5594   if (!klass_AESCrypt->is_loaded()) {
5595     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5596     Node* ctrl = control();
5597     set_control(top()); // no regular fast path
5598     return ctrl;
5599   }
5600   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5601 
5602   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5603   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5604   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5605 
5606   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5607 
5608   // for encryption, we are done
5609   if (!decrypting)
5610     return instof_false;  // even if it is NULL
5611 
5612   // for decryption, we need to add a further check to avoid
5613   // taking the intrinsic path when cipher and plain are the same
5614   // see the original java code for why.
5615   RegionNode* region = new RegionNode(3);
5616   region->init_req(1, instof_false);
5617   Node* src = argument(1);
5618   Node* dest = argument(4);
5619   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5620   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5621   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5622   region->init_req(2, src_dest_conjoint);
5623 
5624   record_for_igvn(region);
5625   return _gvn.transform(region);
5626 }
5627 
5628 //------------------------------inline_sha_implCompress-----------------------
5629 //
5630 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5631 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5632 //
5633 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5634 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5635 //
5636 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5637 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5638 //
5639 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5640   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5641 
5642   Node* sha_obj = argument(0);
5643   Node* src     = argument(1); // type oop
5644   Node* ofs     = argument(2); // type int
5645 
5646   const Type* src_type = src->Value(&_gvn);
5647   const TypeAryPtr* top_src = src_type->isa_aryptr();
5648   if (top_src  == NULL || top_src->klass()  == NULL) {
5649     // failed array check
5650     return false;
5651   }
5652   // Figure out the size and type of the elements we will be copying.
5653   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5654   if (src_elem != T_BYTE) {
5655     return false;
5656   }
5657   // 'src_start' points to src array + offset
5658   Node* src_start = array_element_address(src, ofs, src_elem);
5659   Node* state = NULL;
5660   address stubAddr;
5661   const char *stubName;
5662 
5663   switch(id) {
5664   case vmIntrinsics::_sha_implCompress:
5665     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5666     state = get_state_from_sha_object(sha_obj);
5667     stubAddr = StubRoutines::sha1_implCompress();
5668     stubName = "sha1_implCompress";
5669     break;
5670   case vmIntrinsics::_sha2_implCompress:
5671     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5672     state = get_state_from_sha_object(sha_obj);
5673     stubAddr = StubRoutines::sha256_implCompress();
5674     stubName = "sha256_implCompress";
5675     break;
5676   case vmIntrinsics::_sha5_implCompress:
5677     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5678     state = get_state_from_sha5_object(sha_obj);
5679     stubAddr = StubRoutines::sha512_implCompress();
5680     stubName = "sha512_implCompress";
5681     break;
5682   default:
5683     fatal_unexpected_iid(id);
5684     return false;
5685   }
5686   if (state == NULL) return false;
5687 
5688   // Call the stub.
5689   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5690                                  stubAddr, stubName, TypePtr::BOTTOM,
5691                                  src_start, state);
5692 
5693   return true;
5694 }
5695 
5696 //------------------------------inline_digestBase_implCompressMB-----------------------
5697 //
5698 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5699 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5700 //
5701 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5702   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5703          "need SHA1/SHA256/SHA512 instruction support");
5704   assert((uint)predicate < 3, "sanity");
5705   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5706 
5707   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5708   Node* src            = argument(1); // byte[] array
5709   Node* ofs            = argument(2); // type int
5710   Node* limit          = argument(3); // type int
5711 
5712   const Type* src_type = src->Value(&_gvn);
5713   const TypeAryPtr* top_src = src_type->isa_aryptr();
5714   if (top_src  == NULL || top_src->klass()  == NULL) {
5715     // failed array check
5716     return false;
5717   }
5718   // Figure out the size and type of the elements we will be copying.
5719   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5720   if (src_elem != T_BYTE) {
5721     return false;
5722   }
5723   // 'src_start' points to src array + offset
5724   Node* src_start = array_element_address(src, ofs, src_elem);
5725 
5726   const char* klass_SHA_name = NULL;
5727   const char* stub_name = NULL;
5728   address     stub_addr = NULL;
5729   bool        long_state = false;
5730 
5731   switch (predicate) {
5732   case 0:
5733     if (UseSHA1Intrinsics) {
5734       klass_SHA_name = "sun/security/provider/SHA";
5735       stub_name = "sha1_implCompressMB";
5736       stub_addr = StubRoutines::sha1_implCompressMB();
5737     }
5738     break;
5739   case 1:
5740     if (UseSHA256Intrinsics) {
5741       klass_SHA_name = "sun/security/provider/SHA2";
5742       stub_name = "sha256_implCompressMB";
5743       stub_addr = StubRoutines::sha256_implCompressMB();
5744     }
5745     break;
5746   case 2:
5747     if (UseSHA512Intrinsics) {
5748       klass_SHA_name = "sun/security/provider/SHA5";
5749       stub_name = "sha512_implCompressMB";
5750       stub_addr = StubRoutines::sha512_implCompressMB();
5751       long_state = true;
5752     }
5753     break;
5754   default:
5755     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5756   }
5757   if (klass_SHA_name != NULL) {
5758     // get DigestBase klass to lookup for SHA klass
5759     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5760     assert(tinst != NULL, "digestBase_obj is not instance???");
5761     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5762 
5763     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5764     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5765     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5766     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5767   }
5768   return false;
5769 }
5770 //------------------------------inline_sha_implCompressMB-----------------------
5771 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5772                                                bool long_state, address stubAddr, const char *stubName,
5773                                                Node* src_start, Node* ofs, Node* limit) {
5774   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5775   const TypeOopPtr* xtype = aklass->as_instance_type();
5776   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5777   sha_obj = _gvn.transform(sha_obj);
5778 
5779   Node* state;
5780   if (long_state) {
5781     state = get_state_from_sha5_object(sha_obj);
5782   } else {
5783     state = get_state_from_sha_object(sha_obj);
5784   }
5785   if (state == NULL) return false;
5786 
5787   // Call the stub.
5788   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5789                                  OptoRuntime::digestBase_implCompressMB_Type(),
5790                                  stubAddr, stubName, TypePtr::BOTTOM,
5791                                  src_start, state, ofs, limit);
5792   // return ofs (int)
5793   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5794   set_result(result);
5795 
5796   return true;
5797 }
5798 
5799 //------------------------------get_state_from_sha_object-----------------------
5800 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5801   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5802   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5803   if (sha_state == NULL) return (Node *) NULL;
5804 
5805   // now have the array, need to get the start address of the state array
5806   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5807   return state;
5808 }
5809 
5810 //------------------------------get_state_from_sha5_object-----------------------
5811 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5812   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5813   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5814   if (sha_state == NULL) return (Node *) NULL;
5815 
5816   // now have the array, need to get the start address of the state array
5817   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5818   return state;
5819 }
5820 
5821 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5822 // Return node representing slow path of predicate check.
5823 // the pseudo code we want to emulate with this predicate is:
5824 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5825 //
5826 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5827   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5828          "need SHA1/SHA256/SHA512 instruction support");
5829   assert((uint)predicate < 3, "sanity");
5830 
5831   // The receiver was checked for NULL already.
5832   Node* digestBaseObj = argument(0);
5833 
5834   // get DigestBase klass for instanceOf check
5835   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5836   assert(tinst != NULL, "digestBaseObj is null");
5837   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5838 
5839   const char* klass_SHA_name = NULL;
5840   switch (predicate) {
5841   case 0:
5842     if (UseSHA1Intrinsics) {
5843       // we want to do an instanceof comparison against the SHA class
5844       klass_SHA_name = "sun/security/provider/SHA";
5845     }
5846     break;
5847   case 1:
5848     if (UseSHA256Intrinsics) {
5849       // we want to do an instanceof comparison against the SHA2 class
5850       klass_SHA_name = "sun/security/provider/SHA2";
5851     }
5852     break;
5853   case 2:
5854     if (UseSHA512Intrinsics) {
5855       // we want to do an instanceof comparison against the SHA5 class
5856       klass_SHA_name = "sun/security/provider/SHA5";
5857     }
5858     break;
5859   default:
5860     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5861   }
5862 
5863   ciKlass* klass_SHA = NULL;
5864   if (klass_SHA_name != NULL) {
5865     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5866   }
5867   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
5868     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
5869     Node* ctrl = control();
5870     set_control(top()); // no intrinsic path
5871     return ctrl;
5872   }
5873   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5874 
5875   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
5876   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
5877   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5878   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5879 
5880   return instof_false;  // even if it is NULL
5881 }
5882 
5883 bool LibraryCallKit::inline_profileBranch() {
5884   Node* counts = argument(1);
5885   const TypeAryPtr* ary = NULL;
5886   ciArray* aobj = NULL;
5887   if (counts->is_Con()
5888       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
5889       && (aobj = ary->const_oop()->as_array()) != NULL
5890       && (aobj->length() == 2)) {
5891     jint     taken = aobj->element_value(1).as_int();
5892     jint not_taken = aobj->element_value(0).as_int();
5893 
5894     if (C->log() != NULL) {
5895       C->log()->elem("observe source='profileBranch' taken='%d' not_taken='%d'",
5896                      taken, not_taken);
5897     }
5898 
5899     if (taken + not_taken == 0) {
5900       // According to profile, never executed.
5901       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
5902                           Deoptimization::Action_reinterpret);
5903       return true;
5904     }
5905     // Stop profiling.
5906     // MethodHandleImpl::profileBranch() has profiling logic in it's bytecode.
5907     // By replacing method's body with profile data (represented as ProfileBranchNode
5908     // on IR level) we effectively disable profiling.
5909     // It enables full speed execution once optimized code is generated.
5910     Node* profile = _gvn.transform(new ProfileBranchNode(argument(0), taken, not_taken));
5911     C->record_for_igvn(profile);
5912     set_result(profile);
5913     return true;
5914   } else {
5915     // Continue profiling.
5916     // Profile data isn't available at the moment. So, execute method's bytecode version.
5917     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
5918     // is compiled and counters aren't available since corresponding MethodHandle
5919     // isn't a compile-time constant.
5920     return false;
5921   }
5922 }