1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/universe.inline.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/divnode.hpp"
  36 #include "opto/idealGraphPrinter.hpp"
  37 #include "opto/matcher.hpp"
  38 #include "opto/memnode.hpp"
  39 #include "opto/mulnode.hpp"
  40 #include "opto/opaquenode.hpp"
  41 #include "opto/parse.hpp"
  42 #include "opto/runtime.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 
  46 extern int explicit_null_checks_inserted,
  47            explicit_null_checks_elided;
  48 
  49 //---------------------------------array_load----------------------------------
  50 void Parse::array_load(BasicType elem_type) {
  51   const Type* elem = Type::TOP;
  52   Node* adr = array_addressing(elem_type, 0, &elem);
  53   if (stopped())  return;     // guaranteed null or range check
  54   dec_sp(2);                  // Pop array and index
  55   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  56   Node* ld = make_load(control(), adr, elem, elem_type, adr_type, MemNode::unordered);
  57   push(ld);
  58 }
  59 
  60 
  61 //--------------------------------array_store----------------------------------
  62 void Parse::array_store(BasicType elem_type) {
  63   Node* adr = array_addressing(elem_type, 1);
  64   if (stopped())  return;     // guaranteed null or range check
  65   Node* val = pop();
  66   dec_sp(2);                  // Pop array and index
  67   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  68   store_to_memory(control(), adr, val, elem_type, adr_type, StoreNode::release_if_reference(elem_type));
  69 }
  70 
  71 
  72 //------------------------------array_addressing-------------------------------
  73 // Pull array and index from the stack.  Compute pointer-to-element.
  74 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
  75   Node *idx   = peek(0+vals);   // Get from stack without popping
  76   Node *ary   = peek(1+vals);   // in case of exception
  77 
  78   // Null check the array base, with correct stack contents
  79   ary = null_check(ary, T_ARRAY);
  80   // Compile-time detect of null-exception?
  81   if (stopped())  return top();
  82 
  83   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
  84   const TypeInt*    sizetype = arytype->size();
  85   const Type*       elemtype = arytype->elem();
  86 
  87   if (UseUniqueSubclasses && result2 != NULL) {
  88     const Type* el = elemtype->make_ptr();
  89     if (el && el->isa_instptr()) {
  90       const TypeInstPtr* toop = el->is_instptr();
  91       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
  92         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
  93         const Type* subklass = Type::get_const_type(toop->klass());
  94         elemtype = subklass->join_speculative(el);
  95       }
  96     }
  97   }
  98 
  99   // Check for big class initializers with all constant offsets
 100   // feeding into a known-size array.
 101   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 102   // See if the highest idx value is less than the lowest array bound,
 103   // and if the idx value cannot be negative:
 104   bool need_range_check = true;
 105   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 106     need_range_check = false;
 107     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 108   }
 109 
 110   ciKlass * arytype_klass = arytype->klass();
 111   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
 112     // Only fails for some -Xcomp runs
 113     // The class is unloaded.  We have to run this bytecode in the interpreter.
 114     uncommon_trap(Deoptimization::Reason_unloaded,
 115                   Deoptimization::Action_reinterpret,
 116                   arytype->klass(), "!loaded array");
 117     return top();
 118   }
 119 
 120   // Do the range check
 121   if (GenerateRangeChecks && need_range_check) {
 122     Node* tst;
 123     if (sizetype->_hi <= 0) {
 124       // The greatest array bound is negative, so we can conclude that we're
 125       // compiling unreachable code, but the unsigned compare trick used below
 126       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 127       // the uncommon_trap path will always be taken.
 128       tst = _gvn.intcon(0);
 129     } else {
 130       // Range is constant in array-oop, so we can use the original state of mem
 131       Node* len = load_array_length(ary);
 132 
 133       // Test length vs index (standard trick using unsigned compare)
 134       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 135       BoolTest::mask btest = BoolTest::lt;
 136       tst = _gvn.transform( new BoolNode(chk, btest) );
 137     }
 138     // Branch to failure if out of bounds
 139     { BuildCutout unless(this, tst, PROB_MAX);
 140       if (C->allow_range_check_smearing()) {
 141         // Do not use builtin_throw, since range checks are sometimes
 142         // made more stringent by an optimistic transformation.
 143         // This creates "tentative" range checks at this point,
 144         // which are not guaranteed to throw exceptions.
 145         // See IfNode::Ideal, is_range_check, adjust_check.
 146         uncommon_trap(Deoptimization::Reason_range_check,
 147                       Deoptimization::Action_make_not_entrant,
 148                       NULL, "range_check");
 149       } else {
 150         // If we have already recompiled with the range-check-widening
 151         // heroic optimization turned off, then we must really be throwing
 152         // range check exceptions.
 153         builtin_throw(Deoptimization::Reason_range_check, idx);
 154       }
 155     }
 156   }
 157   // Check for always knowing you are throwing a range-check exception
 158   if (stopped())  return top();
 159 
 160   Node* ptr = array_element_address(ary, idx, type, sizetype);
 161 
 162   if (result2 != NULL)  *result2 = elemtype;
 163 
 164   assert(ptr != top(), "top should go hand-in-hand with stopped");
 165 
 166   return ptr;
 167 }
 168 
 169 
 170 // returns IfNode
 171 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
 172   Node   *cmp = _gvn.transform( new CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 173   Node   *tst = _gvn.transform( new BoolNode( cmp, mask));
 174   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
 175   return iff;
 176 }
 177 
 178 // return Region node
 179 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 180   Node *region  = new RegionNode(3); // 2 results
 181   record_for_igvn(region);
 182   region->init_req(1, iffalse);
 183   region->init_req(2, iftrue );
 184   _gvn.set_type(region, Type::CONTROL);
 185   region = _gvn.transform(region);
 186   set_control (region);
 187   return region;
 188 }
 189 
 190 
 191 //------------------------------helper for tableswitch-------------------------
 192 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 193   // True branch, use existing map info
 194   { PreserveJVMState pjvms(this);
 195     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 196     set_control( iftrue );
 197     profile_switch_case(prof_table_index);
 198     merge_new_path(dest_bci_if_true);
 199   }
 200 
 201   // False branch
 202   Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
 203   set_control( iffalse );
 204 }
 205 
 206 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 207   // True branch, use existing map info
 208   { PreserveJVMState pjvms(this);
 209     Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
 210     set_control( iffalse );
 211     profile_switch_case(prof_table_index);
 212     merge_new_path(dest_bci_if_true);
 213   }
 214 
 215   // False branch
 216   Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
 217   set_control( iftrue );
 218 }
 219 
 220 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
 221   // False branch, use existing map and control()
 222   profile_switch_case(prof_table_index);
 223   merge_new_path(dest_bci);
 224 }
 225 
 226 
 227 extern "C" {
 228   static int jint_cmp(const void *i, const void *j) {
 229     int a = *(jint *)i;
 230     int b = *(jint *)j;
 231     return a > b ? 1 : a < b ? -1 : 0;
 232   }
 233 }
 234 
 235 
 236 // Default value for methodData switch indexing. Must be a negative value to avoid
 237 // conflict with any legal switch index.
 238 #define NullTableIndex -1
 239 
 240 class SwitchRange : public StackObj {
 241   // a range of integers coupled with a bci destination
 242   jint _lo;                     // inclusive lower limit
 243   jint _hi;                     // inclusive upper limit
 244   int _dest;
 245   int _table_index;             // index into method data table
 246 
 247 public:
 248   jint lo() const              { return _lo;   }
 249   jint hi() const              { return _hi;   }
 250   int  dest() const            { return _dest; }
 251   int  table_index() const     { return _table_index; }
 252   bool is_singleton() const    { return _lo == _hi; }
 253 
 254   void setRange(jint lo, jint hi, int dest, int table_index) {
 255     assert(lo <= hi, "must be a non-empty range");
 256     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
 257   }
 258   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
 259     assert(lo <= hi, "must be a non-empty range");
 260     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
 261       _hi = hi;
 262       return true;
 263     }
 264     return false;
 265   }
 266 
 267   void set (jint value, int dest, int table_index) {
 268     setRange(value, value, dest, table_index);
 269   }
 270   bool adjoin(jint value, int dest, int table_index) {
 271     return adjoinRange(value, value, dest, table_index);
 272   }
 273 
 274   void print() {
 275     if (is_singleton())
 276       tty->print(" {%d}=>%d", lo(), dest());
 277     else if (lo() == min_jint)
 278       tty->print(" {..%d}=>%d", hi(), dest());
 279     else if (hi() == max_jint)
 280       tty->print(" {%d..}=>%d", lo(), dest());
 281     else
 282       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
 283   }
 284 };
 285 
 286 
 287 //-------------------------------do_tableswitch--------------------------------
 288 void Parse::do_tableswitch() {
 289   Node* lookup = pop();
 290 
 291   // Get information about tableswitch
 292   int default_dest = iter().get_dest_table(0);
 293   int lo_index     = iter().get_int_table(1);
 294   int hi_index     = iter().get_int_table(2);
 295   int len          = hi_index - lo_index + 1;
 296 
 297   if (len < 1) {
 298     // If this is a backward branch, add safepoint
 299     maybe_add_safepoint(default_dest);
 300     merge(default_dest);
 301     return;
 302   }
 303 
 304   // generate decision tree, using trichotomy when possible
 305   int rnum = len+2;
 306   bool makes_backward_branch = false;
 307   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 308   int rp = -1;
 309   if (lo_index != min_jint) {
 310     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
 311   }
 312   for (int j = 0; j < len; j++) {
 313     jint match_int = lo_index+j;
 314     int  dest      = iter().get_dest_table(j+3);
 315     makes_backward_branch |= (dest <= bci());
 316     int  table_index = method_data_update() ? j : NullTableIndex;
 317     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
 318       ranges[++rp].set(match_int, dest, table_index);
 319     }
 320   }
 321   jint highest = lo_index+(len-1);
 322   assert(ranges[rp].hi() == highest, "");
 323   if (highest != max_jint
 324       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
 325     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 326   }
 327   assert(rp < len+2, "not too many ranges");
 328 
 329   // Safepoint in case if backward branch observed
 330   if( makes_backward_branch && UseLoopSafepoints )
 331     add_safepoint();
 332 
 333   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 334 }
 335 
 336 
 337 //------------------------------do_lookupswitch--------------------------------
 338 void Parse::do_lookupswitch() {
 339   Node *lookup = pop();         // lookup value
 340   // Get information about lookupswitch
 341   int default_dest = iter().get_dest_table(0);
 342   int len          = iter().get_int_table(1);
 343 
 344   if (len < 1) {    // If this is a backward branch, add safepoint
 345     maybe_add_safepoint(default_dest);
 346     merge(default_dest);
 347     return;
 348   }
 349 
 350   // generate decision tree, using trichotomy when possible
 351   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
 352   {
 353     for( int j = 0; j < len; j++ ) {
 354       table[j+j+0] = iter().get_int_table(2+j+j);
 355       table[j+j+1] = iter().get_dest_table(2+j+j+1);
 356     }
 357     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
 358   }
 359 
 360   int rnum = len*2+1;
 361   bool makes_backward_branch = false;
 362   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 363   int rp = -1;
 364   for( int j = 0; j < len; j++ ) {
 365     jint match_int   = table[j+j+0];
 366     int  dest        = table[j+j+1];
 367     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 368     int  table_index = method_data_update() ? j : NullTableIndex;
 369     makes_backward_branch |= (dest <= bci());
 370     if( match_int != next_lo ) {
 371       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
 372     }
 373     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
 374       ranges[++rp].set(match_int, dest, table_index);
 375     }
 376   }
 377   jint highest = table[2*(len-1)];
 378   assert(ranges[rp].hi() == highest, "");
 379   if( highest != max_jint
 380       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
 381     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 382   }
 383   assert(rp < rnum, "not too many ranges");
 384 
 385   // Safepoint in case backward branch observed
 386   if( makes_backward_branch && UseLoopSafepoints )
 387     add_safepoint();
 388 
 389   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 390 }
 391 
 392 //----------------------------create_jump_tables-------------------------------
 393 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 394   // Are jumptables enabled
 395   if (!UseJumpTables)  return false;
 396 
 397   // Are jumptables supported
 398   if (!Matcher::has_match_rule(Op_Jump))  return false;
 399 
 400   // Don't make jump table if profiling
 401   if (method_data_update())  return false;
 402 
 403   // Decide if a guard is needed to lop off big ranges at either (or
 404   // both) end(s) of the input set. We'll call this the default target
 405   // even though we can't be sure that it is the true "default".
 406 
 407   bool needs_guard = false;
 408   int default_dest;
 409   int64_t total_outlier_size = 0;
 410   int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
 411   int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
 412 
 413   if (lo->dest() == hi->dest()) {
 414     total_outlier_size = hi_size + lo_size;
 415     default_dest = lo->dest();
 416   } else if (lo_size > hi_size) {
 417     total_outlier_size = lo_size;
 418     default_dest = lo->dest();
 419   } else {
 420     total_outlier_size = hi_size;
 421     default_dest = hi->dest();
 422   }
 423 
 424   // If a guard test will eliminate very sparse end ranges, then
 425   // it is worth the cost of an extra jump.
 426   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 427     needs_guard = true;
 428     if (default_dest == lo->dest()) lo++;
 429     if (default_dest == hi->dest()) hi--;
 430   }
 431 
 432   // Find the total number of cases and ranges
 433   int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
 434   int num_range = hi - lo + 1;
 435 
 436   // Don't create table if: too large, too small, or too sparse.
 437   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
 438     return false;
 439   if (num_cases > (MaxJumpTableSparseness * num_range))
 440     return false;
 441 
 442   // Normalize table lookups to zero
 443   int lowval = lo->lo();
 444   key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
 445 
 446   // Generate a guard to protect against input keyvals that aren't
 447   // in the switch domain.
 448   if (needs_guard) {
 449     Node*   size = _gvn.intcon(num_cases);
 450     Node*   cmp = _gvn.transform( new CmpUNode(key_val, size) );
 451     Node*   tst = _gvn.transform( new BoolNode(cmp, BoolTest::ge) );
 452     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
 453     jump_if_true_fork(iff, default_dest, NullTableIndex);
 454   }
 455 
 456   // Create an ideal node JumpTable that has projections
 457   // of all possible ranges for a switch statement
 458   // The key_val input must be converted to a pointer offset and scaled.
 459   // Compare Parse::array_addressing above.
 460 #ifdef _LP64
 461   // Clean the 32-bit int into a real 64-bit offset.
 462   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 463   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
 464   key_val       = _gvn.transform( new ConvI2LNode(key_val, lkeytype) );
 465 #endif
 466   // Shift the value by wordsize so we have an index into the table, rather
 467   // than a switch value
 468   Node *shiftWord = _gvn.MakeConX(wordSize);
 469   key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
 470 
 471   // Create the JumpNode
 472   Node* jtn = _gvn.transform( new JumpNode(control(), key_val, num_cases) );
 473 
 474   // These are the switch destinations hanging off the jumpnode
 475   int i = 0;
 476   for (SwitchRange* r = lo; r <= hi; r++) {
 477     for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 478       Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
 479       {
 480         PreserveJVMState pjvms(this);
 481         set_control(input);
 482         jump_if_always_fork(r->dest(), r->table_index());
 483       }
 484     }
 485   }
 486   assert(i == num_cases, "miscount of cases");
 487   stop_and_kill_map();  // no more uses for this JVMS
 488   return true;
 489 }
 490 
 491 //----------------------------jump_switch_ranges-------------------------------
 492 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 493   Block* switch_block = block();
 494 
 495   if (switch_depth == 0) {
 496     // Do special processing for the top-level call.
 497     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 498     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
 499 
 500     // Decrement pred-numbers for the unique set of nodes.
 501 #ifdef ASSERT
 502     // Ensure that the block's successors are a (duplicate-free) set.
 503     int successors_counted = 0;  // block occurrences in [hi..lo]
 504     int unique_successors = switch_block->num_successors();
 505     for (int i = 0; i < unique_successors; i++) {
 506       Block* target = switch_block->successor_at(i);
 507 
 508       // Check that the set of successors is the same in both places.
 509       int successors_found = 0;
 510       for (SwitchRange* p = lo; p <= hi; p++) {
 511         if (p->dest() == target->start())  successors_found++;
 512       }
 513       assert(successors_found > 0, "successor must be known");
 514       successors_counted += successors_found;
 515     }
 516     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
 517 #endif
 518 
 519     // Maybe prune the inputs, based on the type of key_val.
 520     jint min_val = min_jint;
 521     jint max_val = max_jint;
 522     const TypeInt* ti = key_val->bottom_type()->isa_int();
 523     if (ti != NULL) {
 524       min_val = ti->_lo;
 525       max_val = ti->_hi;
 526       assert(min_val <= max_val, "invalid int type");
 527     }
 528     while (lo->hi() < min_val)  lo++;
 529     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
 530     while (hi->lo() > max_val)  hi--;
 531     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
 532   }
 533 
 534 #ifndef PRODUCT
 535   if (switch_depth == 0) {
 536     _max_switch_depth = 0;
 537     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
 538   }
 539 #endif
 540 
 541   assert(lo <= hi, "must be a non-empty set of ranges");
 542   if (lo == hi) {
 543     jump_if_always_fork(lo->dest(), lo->table_index());
 544   } else {
 545     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
 546     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
 547 
 548     if (create_jump_tables(key_val, lo, hi)) return;
 549 
 550     int nr = hi - lo + 1;
 551 
 552     SwitchRange* mid = lo + nr/2;
 553     // if there is an easy choice, pivot at a singleton:
 554     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
 555 
 556     assert(lo < mid && mid <= hi, "good pivot choice");
 557     assert(nr != 2 || mid == hi,   "should pick higher of 2");
 558     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
 559 
 560     Node *test_val = _gvn.intcon(mid->lo());
 561 
 562     if (mid->is_singleton()) {
 563       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
 564       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
 565 
 566       // Special Case:  If there are exactly three ranges, and the high
 567       // and low range each go to the same place, omit the "gt" test,
 568       // since it will not discriminate anything.
 569       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
 570       if (eq_test_only) {
 571         assert(mid == hi-1, "");
 572       }
 573 
 574       // if there is a higher range, test for it and process it:
 575       if (mid < hi && !eq_test_only) {
 576         // two comparisons of same values--should enable 1 test for 2 branches
 577         // Use BoolTest::le instead of BoolTest::gt
 578         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
 579         Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
 580         Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
 581         { PreserveJVMState pjvms(this);
 582           set_control(iffalse);
 583           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
 584         }
 585         set_control(iftrue);
 586       }
 587 
 588     } else {
 589       // mid is a range, not a singleton, so treat mid..hi as a unit
 590       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
 591 
 592       // if there is a higher range, test for it and process it:
 593       if (mid == hi) {
 594         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
 595       } else {
 596         Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
 597         Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
 598         { PreserveJVMState pjvms(this);
 599           set_control(iftrue);
 600           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
 601         }
 602         set_control(iffalse);
 603       }
 604     }
 605 
 606     // in any case, process the lower range
 607     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
 608   }
 609 
 610   // Decrease pred_count for each successor after all is done.
 611   if (switch_depth == 0) {
 612     int unique_successors = switch_block->num_successors();
 613     for (int i = 0; i < unique_successors; i++) {
 614       Block* target = switch_block->successor_at(i);
 615       // Throw away the pre-allocated path for each unique successor.
 616       target->next_path_num();
 617     }
 618   }
 619 
 620 #ifndef PRODUCT
 621   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
 622   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
 623     SwitchRange* r;
 624     int nsing = 0;
 625     for( r = lo; r <= hi; r++ ) {
 626       if( r->is_singleton() )  nsing++;
 627     }
 628     tty->print(">>> ");
 629     _method->print_short_name();
 630     tty->print_cr(" switch decision tree");
 631     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
 632                   (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
 633     if (_max_switch_depth > _est_switch_depth) {
 634       tty->print_cr("******** BAD SWITCH DEPTH ********");
 635     }
 636     tty->print("   ");
 637     for( r = lo; r <= hi; r++ ) {
 638       r->print();
 639     }
 640     tty->cr();
 641   }
 642 #endif
 643 }
 644 
 645 void Parse::modf() {
 646   Node *f2 = pop();
 647   Node *f1 = pop();
 648   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
 649                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
 650                               "frem", NULL, //no memory effects
 651                               f1, f2);
 652   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 653 
 654   push(res);
 655 }
 656 
 657 void Parse::modd() {
 658   Node *d2 = pop_pair();
 659   Node *d1 = pop_pair();
 660   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
 661                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
 662                               "drem", NULL, //no memory effects
 663                               d1, top(), d2, top());
 664   Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 665 
 666 #ifdef ASSERT
 667   Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
 668   assert(res_top == top(), "second value must be top");
 669 #endif
 670 
 671   push_pair(res_d);
 672 }
 673 
 674 void Parse::l2f() {
 675   Node* f2 = pop();
 676   Node* f1 = pop();
 677   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
 678                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
 679                               "l2f", NULL, //no memory effects
 680                               f1, f2);
 681   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
 682 
 683   push(res);
 684 }
 685 
 686 void Parse::do_irem() {
 687   // Must keep both values on the expression-stack during null-check
 688   zero_check_int(peek());
 689   // Compile-time detect of null-exception?
 690   if (stopped())  return;
 691 
 692   Node* b = pop();
 693   Node* a = pop();
 694 
 695   const Type *t = _gvn.type(b);
 696   if (t != Type::TOP) {
 697     const TypeInt *ti = t->is_int();
 698     if (ti->is_con()) {
 699       int divisor = ti->get_con();
 700       // check for positive power of 2
 701       if (divisor > 0 &&
 702           (divisor & ~(divisor-1)) == divisor) {
 703         // yes !
 704         Node *mask = _gvn.intcon((divisor - 1));
 705         // Sigh, must handle negative dividends
 706         Node *zero = _gvn.intcon(0);
 707         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
 708         Node *iff = _gvn.transform( new IfFalseNode(ifff) );
 709         Node *ift = _gvn.transform( new IfTrueNode (ifff) );
 710         Node *reg = jump_if_join(ift, iff);
 711         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
 712         // Negative path; negate/and/negate
 713         Node *neg = _gvn.transform( new SubINode(zero, a) );
 714         Node *andn= _gvn.transform( new AndINode(neg, mask) );
 715         Node *negn= _gvn.transform( new SubINode(zero, andn) );
 716         phi->init_req(1, negn);
 717         // Fast positive case
 718         Node *andx = _gvn.transform( new AndINode(a, mask) );
 719         phi->init_req(2, andx);
 720         // Push the merge
 721         push( _gvn.transform(phi) );
 722         return;
 723       }
 724     }
 725   }
 726   // Default case
 727   push( _gvn.transform( new ModINode(control(),a,b) ) );
 728 }
 729 
 730 // Handle jsr and jsr_w bytecode
 731 void Parse::do_jsr() {
 732   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
 733 
 734   // Store information about current state, tagged with new _jsr_bci
 735   int return_bci = iter().next_bci();
 736   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
 737 
 738   // Update method data
 739   profile_taken_branch(jsr_bci);
 740 
 741   // The way we do things now, there is only one successor block
 742   // for the jsr, because the target code is cloned by ciTypeFlow.
 743   Block* target = successor_for_bci(jsr_bci);
 744 
 745   // What got pushed?
 746   const Type* ret_addr = target->peek();
 747   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
 748 
 749   // Effect on jsr on stack
 750   push(_gvn.makecon(ret_addr));
 751 
 752   // Flow to the jsr.
 753   merge(jsr_bci);
 754 }
 755 
 756 // Handle ret bytecode
 757 void Parse::do_ret() {
 758   // Find to whom we return.
 759   assert(block()->num_successors() == 1, "a ret can only go one place now");
 760   Block* target = block()->successor_at(0);
 761   assert(!target->is_ready(), "our arrival must be expected");
 762   profile_ret(target->flow()->start());
 763   int pnum = target->next_path_num();
 764   merge_common(target, pnum);
 765 }
 766 
 767 //--------------------------dynamic_branch_prediction--------------------------
 768 // Try to gather dynamic branch prediction behavior.  Return a probability
 769 // of the branch being taken and set the "cnt" field.  Returns a -1.0
 770 // if we need to use static prediction for some reason.
 771 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
 772   ResourceMark rm;
 773 
 774   cnt  = COUNT_UNKNOWN;
 775 
 776   int     taken = 0;
 777   int not_taken = 0;
 778 
 779   if (btest == BoolTest::eq && test->is_Cmp() && test->in(1)->Opcode() == Op_ProfileBranch) {
 780     ProfileBranchNode* opq = (ProfileBranchNode*)test->in(1);
 781     taken = opq->taken();
 782     not_taken = opq->not_taken();
 783     opq->consume();
 784   } else {
 785     // Use MethodData information if it is available
 786     // FIXME: free the ProfileData structure
 787     ciMethodData* methodData = method()->method_data();
 788     if (!methodData->is_mature())  return PROB_UNKNOWN;
 789     ciProfileData* data = methodData->bci_to_data(bci());
 790     if (!data->is_JumpData())  return PROB_UNKNOWN;
 791 
 792     // get taken and not taken values
 793     taken = data->as_JumpData()->taken();
 794     not_taken = 0;
 795     if (data->is_BranchData()) {
 796       not_taken = data->as_BranchData()->not_taken();
 797     }
 798 
 799     // scale the counts to be commensurate with invocation counts:
 800     taken = method()->scale_count(taken);
 801     not_taken = method()->scale_count(not_taken);
 802   }
 803 
 804   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
 805   // We also check that individual counters are positive first, overwise the sum can become positive.
 806   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
 807     if (C->log() != NULL) {
 808       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
 809     }
 810     return PROB_UNKNOWN;
 811   }
 812 
 813   // Compute frequency that we arrive here
 814   float sum = taken + not_taken;
 815   // Adjust, if this block is a cloned private block but the
 816   // Jump counts are shared.  Taken the private counts for
 817   // just this path instead of the shared counts.
 818   if( block()->count() > 0 )
 819     sum = block()->count();
 820   cnt = sum / FreqCountInvocations;
 821 
 822   // Pin probability to sane limits
 823   float prob;
 824   if( !taken )
 825     prob = (0+PROB_MIN) / 2;
 826   else if( !not_taken )
 827     prob = (1+PROB_MAX) / 2;
 828   else {                         // Compute probability of true path
 829     prob = (float)taken / (float)(taken + not_taken);
 830     if (prob > PROB_MAX)  prob = PROB_MAX;
 831     if (prob < PROB_MIN)   prob = PROB_MIN;
 832   }
 833 
 834   assert((cnt > 0.0f) && (prob > 0.0f),
 835          "Bad frequency assignment in if");
 836 
 837   if (C->log() != NULL) {
 838     const char* prob_str = NULL;
 839     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
 840     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
 841     char prob_str_buf[30];
 842     if (prob_str == NULL) {
 843       sprintf(prob_str_buf, "%g", prob);
 844       prob_str = prob_str_buf;
 845     }
 846     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
 847                    iter().get_dest(), taken, not_taken, cnt, prob_str);
 848   }
 849   return prob;
 850 }
 851 
 852 //-----------------------------branch_prediction-------------------------------
 853 float Parse::branch_prediction(float& cnt,
 854                                BoolTest::mask btest,
 855                                int target_bci,
 856                                Node* test) {
 857   float prob = dynamic_branch_prediction(cnt, btest, test);
 858   // If prob is unknown, switch to static prediction
 859   if (prob != PROB_UNKNOWN)  return prob;
 860 
 861   prob = PROB_FAIR;                   // Set default value
 862   if (btest == BoolTest::eq)          // Exactly equal test?
 863     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
 864   else if (btest == BoolTest::ne)
 865     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
 866 
 867   // If this is a conditional test guarding a backwards branch,
 868   // assume its a loop-back edge.  Make it a likely taken branch.
 869   if (target_bci < bci()) {
 870     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
 871       // Since it's an OSR, we probably have profile data, but since
 872       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
 873       // Let's make a special check here for completely zero counts.
 874       ciMethodData* methodData = method()->method_data();
 875       if (!methodData->is_empty()) {
 876         ciProfileData* data = methodData->bci_to_data(bci());
 877         // Only stop for truly zero counts, which mean an unknown part
 878         // of the OSR-ed method, and we want to deopt to gather more stats.
 879         // If you have ANY counts, then this loop is simply 'cold' relative
 880         // to the OSR loop.
 881         if (data->as_BranchData()->taken() +
 882             data->as_BranchData()->not_taken() == 0 ) {
 883           // This is the only way to return PROB_UNKNOWN:
 884           return PROB_UNKNOWN;
 885         }
 886       }
 887     }
 888     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
 889   }
 890 
 891   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
 892   return prob;
 893 }
 894 
 895 // The magic constants are chosen so as to match the output of
 896 // branch_prediction() when the profile reports a zero taken count.
 897 // It is important to distinguish zero counts unambiguously, because
 898 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
 899 // very small but nonzero probabilities, which if confused with zero
 900 // counts would keep the program recompiling indefinitely.
 901 bool Parse::seems_never_taken(float prob) const {
 902   return prob < PROB_MIN;
 903 }
 904 
 905 // True if the comparison seems to be the kind that will not change its
 906 // statistics from true to false.  See comments in adjust_map_after_if.
 907 // This question is only asked along paths which are already
 908 // classifed as untaken (by seems_never_taken), so really,
 909 // if a path is never taken, its controlling comparison is
 910 // already acting in a stable fashion.  If the comparison
 911 // seems stable, we will put an expensive uncommon trap
 912 // on the untaken path.
 913 bool Parse::seems_stable_comparison() const {
 914   if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
 915     return false;
 916   }
 917   return true;
 918 }
 919 
 920 //-------------------------------repush_if_args--------------------------------
 921 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
 922 inline int Parse::repush_if_args() {
 923 #ifndef PRODUCT
 924   if (PrintOpto && WizardMode) {
 925     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
 926                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
 927     method()->print_name(); tty->cr();
 928   }
 929 #endif
 930   int bc_depth = - Bytecodes::depth(iter().cur_bc());
 931   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
 932   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
 933   assert(argument(0) != NULL, "must exist");
 934   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
 935   inc_sp(bc_depth);
 936   return bc_depth;
 937 }
 938 
 939 //----------------------------------do_ifnull----------------------------------
 940 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
 941   int target_bci = iter().get_dest();
 942 
 943   Block* branch_block = successor_for_bci(target_bci);
 944   Block* next_block   = successor_for_bci(iter().next_bci());
 945 
 946   float cnt;
 947   float prob = branch_prediction(cnt, btest, target_bci, c);
 948   if (prob == PROB_UNKNOWN) {
 949     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
 950 #ifndef PRODUCT
 951     if (PrintOpto && Verbose)
 952       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
 953 #endif
 954     repush_if_args(); // to gather stats on loop
 955     // We need to mark this branch as taken so that if we recompile we will
 956     // see that it is possible. In the tiered system the interpreter doesn't
 957     // do profiling and by the time we get to the lower tier from the interpreter
 958     // the path may be cold again. Make sure it doesn't look untaken
 959     profile_taken_branch(target_bci, !ProfileInterpreter);
 960     uncommon_trap(Deoptimization::Reason_unreached,
 961                   Deoptimization::Action_reinterpret,
 962                   NULL, "cold");
 963     if (C->eliminate_boxing()) {
 964       // Mark the successor blocks as parsed
 965       branch_block->next_path_num();
 966       next_block->next_path_num();
 967     }
 968     return;
 969   }
 970 
 971   explicit_null_checks_inserted++;
 972 
 973   // Generate real control flow
 974   Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
 975 
 976   // Sanity check the probability value
 977   assert(prob > 0.0f,"Bad probability in Parser");
 978  // Need xform to put node in hash table
 979   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
 980   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
 981   // True branch
 982   { PreserveJVMState pjvms(this);
 983     Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
 984     set_control(iftrue);
 985 
 986     if (stopped()) {            // Path is dead?
 987       explicit_null_checks_elided++;
 988       if (C->eliminate_boxing()) {
 989         // Mark the successor block as parsed
 990         branch_block->next_path_num();
 991       }
 992     } else {                    // Path is live.
 993       // Update method data
 994       profile_taken_branch(target_bci);
 995       adjust_map_after_if(btest, c, prob, branch_block, next_block);
 996       if (!stopped()) {
 997         merge(target_bci);
 998       }
 999     }
1000   }
1001 
1002   // False branch
1003   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1004   set_control(iffalse);
1005 
1006   if (stopped()) {              // Path is dead?
1007     explicit_null_checks_elided++;
1008     if (C->eliminate_boxing()) {
1009       // Mark the successor block as parsed
1010       next_block->next_path_num();
1011     }
1012   } else  {                     // Path is live.
1013     // Update method data
1014     profile_not_taken_branch();
1015     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1016                         next_block, branch_block);
1017   }
1018 }
1019 
1020 //------------------------------------do_if------------------------------------
1021 void Parse::do_if(BoolTest::mask btest, Node* c) {
1022   int target_bci = iter().get_dest();
1023 
1024   Block* branch_block = successor_for_bci(target_bci);
1025   Block* next_block   = successor_for_bci(iter().next_bci());
1026 
1027   float cnt;
1028   float prob = branch_prediction(cnt, btest, target_bci, c);
1029   float untaken_prob = 1.0 - prob;
1030 
1031   if (prob == PROB_UNKNOWN) {
1032 #ifndef PRODUCT
1033     if (PrintOpto && Verbose)
1034       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
1035 #endif
1036     repush_if_args(); // to gather stats on loop
1037     // We need to mark this branch as taken so that if we recompile we will
1038     // see that it is possible. In the tiered system the interpreter doesn't
1039     // do profiling and by the time we get to the lower tier from the interpreter
1040     // the path may be cold again. Make sure it doesn't look untaken
1041     profile_taken_branch(target_bci, !ProfileInterpreter);
1042     uncommon_trap(Deoptimization::Reason_unreached,
1043                   Deoptimization::Action_reinterpret,
1044                   NULL, "cold");
1045     if (C->eliminate_boxing()) {
1046       // Mark the successor blocks as parsed
1047       branch_block->next_path_num();
1048       next_block->next_path_num();
1049     }
1050     return;
1051   }
1052 
1053   // Sanity check the probability value
1054   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1055 
1056   bool taken_if_true = true;
1057   // Convert BoolTest to canonical form:
1058   if (!BoolTest(btest).is_canonical()) {
1059     btest         = BoolTest(btest).negate();
1060     taken_if_true = false;
1061     // prob is NOT updated here; it remains the probability of the taken
1062     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1063   }
1064   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1065 
1066   Node* tst0 = new BoolNode(c, btest);
1067   Node* tst = _gvn.transform(tst0);
1068   BoolTest::mask taken_btest   = BoolTest::illegal;
1069   BoolTest::mask untaken_btest = BoolTest::illegal;
1070 
1071   if (tst->is_Bool()) {
1072     // Refresh c from the transformed bool node, since it may be
1073     // simpler than the original c.  Also re-canonicalize btest.
1074     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1075     // That can arise from statements like: if (x instanceof C) ...
1076     if (tst != tst0) {
1077       // Canonicalize one more time since transform can change it.
1078       btest = tst->as_Bool()->_test._test;
1079       if (!BoolTest(btest).is_canonical()) {
1080         // Reverse edges one more time...
1081         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1082         btest = tst->as_Bool()->_test._test;
1083         assert(BoolTest(btest).is_canonical(), "sanity");
1084         taken_if_true = !taken_if_true;
1085       }
1086       c = tst->in(1);
1087     }
1088     BoolTest::mask neg_btest = BoolTest(btest).negate();
1089     taken_btest   = taken_if_true ?     btest : neg_btest;
1090     untaken_btest = taken_if_true ? neg_btest :     btest;
1091   }
1092 
1093   // Generate real control flow
1094   float true_prob = (taken_if_true ? prob : untaken_prob);
1095   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1096   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1097   Node* taken_branch   = new IfTrueNode(iff);
1098   Node* untaken_branch = new IfFalseNode(iff);
1099   if (!taken_if_true) {  // Finish conversion to canonical form
1100     Node* tmp      = taken_branch;
1101     taken_branch   = untaken_branch;
1102     untaken_branch = tmp;
1103   }
1104 
1105   // Branch is taken:
1106   { PreserveJVMState pjvms(this);
1107     taken_branch = _gvn.transform(taken_branch);
1108     set_control(taken_branch);
1109 
1110     if (stopped()) {
1111       if (C->eliminate_boxing()) {
1112         // Mark the successor block as parsed
1113         branch_block->next_path_num();
1114       }
1115     } else {
1116       // Update method data
1117       profile_taken_branch(target_bci);
1118       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1119       if (!stopped()) {
1120         merge(target_bci);
1121       }
1122     }
1123   }
1124 
1125   untaken_branch = _gvn.transform(untaken_branch);
1126   set_control(untaken_branch);
1127 
1128   // Branch not taken.
1129   if (stopped()) {
1130     if (C->eliminate_boxing()) {
1131       // Mark the successor block as parsed
1132       next_block->next_path_num();
1133     }
1134   } else {
1135     // Update method data
1136     profile_not_taken_branch();
1137     adjust_map_after_if(untaken_btest, c, untaken_prob,
1138                         next_block, branch_block);
1139   }
1140 }
1141 
1142 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1143   // Don't want to speculate on uncommon traps when running with -Xcomp
1144   if (!UseInterpreter) {
1145     return false;
1146   }
1147   return (seems_never_taken(prob) && seems_stable_comparison());
1148 }
1149 
1150 //----------------------------adjust_map_after_if------------------------------
1151 // Adjust the JVM state to reflect the result of taking this path.
1152 // Basically, it means inspecting the CmpNode controlling this
1153 // branch, seeing how it constrains a tested value, and then
1154 // deciding if it's worth our while to encode this constraint
1155 // as graph nodes in the current abstract interpretation map.
1156 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1157                                 Block* path, Block* other_path) {
1158   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1159     return;                             // nothing to do
1160 
1161   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1162 
1163   if (path_is_suitable_for_uncommon_trap(prob)) {
1164     repush_if_args();
1165     uncommon_trap(Deoptimization::Reason_unstable_if,
1166                   Deoptimization::Action_reinterpret,
1167                   NULL,
1168                   (is_fallthrough ? "taken always" : "taken never"));
1169     return;
1170   }
1171 
1172   Node* val = c->in(1);
1173   Node* con = c->in(2);
1174   const Type* tcon = _gvn.type(con);
1175   const Type* tval = _gvn.type(val);
1176   bool have_con = tcon->singleton();
1177   if (tval->singleton()) {
1178     if (!have_con) {
1179       // Swap, so constant is in con.
1180       con  = val;
1181       tcon = tval;
1182       val  = c->in(2);
1183       tval = _gvn.type(val);
1184       btest = BoolTest(btest).commute();
1185       have_con = true;
1186     } else {
1187       // Do we have two constants?  Then leave well enough alone.
1188       have_con = false;
1189     }
1190   }
1191   if (!have_con)                        // remaining adjustments need a con
1192     return;
1193 
1194   sharpen_type_after_if(btest, con, tcon, val, tval);
1195 }
1196 
1197 
1198 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1199   Node* ldk;
1200   if (n->is_DecodeNKlass()) {
1201     if (n->in(1)->Opcode() != Op_LoadNKlass) {
1202       return NULL;
1203     } else {
1204       ldk = n->in(1);
1205     }
1206   } else if (n->Opcode() != Op_LoadKlass) {
1207     return NULL;
1208   } else {
1209     ldk = n;
1210   }
1211   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1212 
1213   Node* adr = ldk->in(MemNode::Address);
1214   intptr_t off = 0;
1215   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1216   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1217     return NULL;
1218   const TypePtr* tp = gvn->type(obj)->is_ptr();
1219   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1220     return NULL;
1221 
1222   return obj;
1223 }
1224 
1225 void Parse::sharpen_type_after_if(BoolTest::mask btest,
1226                                   Node* con, const Type* tcon,
1227                                   Node* val, const Type* tval) {
1228   // Look for opportunities to sharpen the type of a node
1229   // whose klass is compared with a constant klass.
1230   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1231     Node* obj = extract_obj_from_klass_load(&_gvn, val);
1232     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1233     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1234        // Found:
1235        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1236        // or the narrowOop equivalent.
1237        const Type* obj_type = _gvn.type(obj);
1238        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1239        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1240            tboth->higher_equal(obj_type)) {
1241           // obj has to be of the exact type Foo if the CmpP succeeds.
1242           int obj_in_map = map()->find_edge(obj);
1243           JVMState* jvms = this->jvms();
1244           if (obj_in_map >= 0 &&
1245               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1246             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1247             const Type* tcc = ccast->as_Type()->type();
1248             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1249             // Delay transform() call to allow recovery of pre-cast value
1250             // at the control merge.
1251             _gvn.set_type_bottom(ccast);
1252             record_for_igvn(ccast);
1253             // Here's the payoff.
1254             replace_in_map(obj, ccast);
1255           }
1256        }
1257     }
1258   }
1259 
1260   int val_in_map = map()->find_edge(val);
1261   if (val_in_map < 0)  return;          // replace_in_map would be useless
1262   {
1263     JVMState* jvms = this->jvms();
1264     if (!(jvms->is_loc(val_in_map) ||
1265           jvms->is_stk(val_in_map)))
1266       return;                           // again, it would be useless
1267   }
1268 
1269   // Check for a comparison to a constant, and "know" that the compared
1270   // value is constrained on this path.
1271   assert(tcon->singleton(), "");
1272   ConstraintCastNode* ccast = NULL;
1273   Node* cast = NULL;
1274 
1275   switch (btest) {
1276   case BoolTest::eq:                    // Constant test?
1277     {
1278       const Type* tboth = tcon->join_speculative(tval);
1279       if (tboth == tval)  break;        // Nothing to gain.
1280       if (tcon->isa_int()) {
1281         ccast = new CastIINode(val, tboth);
1282       } else if (tcon == TypePtr::NULL_PTR) {
1283         // Cast to null, but keep the pointer identity temporarily live.
1284         ccast = new CastPPNode(val, tboth);
1285       } else {
1286         const TypeF* tf = tcon->isa_float_constant();
1287         const TypeD* td = tcon->isa_double_constant();
1288         // Exclude tests vs float/double 0 as these could be
1289         // either +0 or -0.  Just because you are equal to +0
1290         // doesn't mean you ARE +0!
1291         // Note, following code also replaces Long and Oop values.
1292         if ((!tf || tf->_f != 0.0) &&
1293             (!td || td->_d != 0.0))
1294           cast = con;                   // Replace non-constant val by con.
1295       }
1296     }
1297     break;
1298 
1299   case BoolTest::ne:
1300     if (tcon == TypePtr::NULL_PTR) {
1301       cast = cast_not_null(val, false);
1302     }
1303     break;
1304 
1305   default:
1306     // (At this point we could record int range types with CastII.)
1307     break;
1308   }
1309 
1310   if (ccast != NULL) {
1311     const Type* tcc = ccast->as_Type()->type();
1312     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1313     // Delay transform() call to allow recovery of pre-cast value
1314     // at the control merge.
1315     ccast->set_req(0, control());
1316     _gvn.set_type_bottom(ccast);
1317     record_for_igvn(ccast);
1318     cast = ccast;
1319   }
1320 
1321   if (cast != NULL) {                   // Here's the payoff.
1322     replace_in_map(val, cast);
1323   }
1324 }
1325 
1326 /**
1327  * Use speculative type to optimize CmpP node: if comparison is
1328  * against the low level class, cast the object to the speculative
1329  * type if any. CmpP should then go away.
1330  *
1331  * @param c  expected CmpP node
1332  * @return   result of CmpP on object casted to speculative type
1333  *
1334  */
1335 Node* Parse::optimize_cmp_with_klass(Node* c) {
1336   // If this is transformed by the _gvn to a comparison with the low
1337   // level klass then we may be able to use speculation
1338   if (c->Opcode() == Op_CmpP &&
1339       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1340       c->in(2)->is_Con()) {
1341     Node* load_klass = NULL;
1342     Node* decode = NULL;
1343     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1344       decode = c->in(1);
1345       load_klass = c->in(1)->in(1);
1346     } else {
1347       load_klass = c->in(1);
1348     }
1349     if (load_klass->in(2)->is_AddP()) {
1350       Node* addp = load_klass->in(2);
1351       Node* obj = addp->in(AddPNode::Address);
1352       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1353       if (obj_type->speculative_type_not_null() != NULL) {
1354         ciKlass* k = obj_type->speculative_type();
1355         inc_sp(2);
1356         obj = maybe_cast_profiled_obj(obj, k);
1357         dec_sp(2);
1358         // Make the CmpP use the casted obj
1359         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1360         load_klass = load_klass->clone();
1361         load_klass->set_req(2, addp);
1362         load_klass = _gvn.transform(load_klass);
1363         if (decode != NULL) {
1364           decode = decode->clone();
1365           decode->set_req(1, load_klass);
1366           load_klass = _gvn.transform(decode);
1367         }
1368         c = c->clone();
1369         c->set_req(1, load_klass);
1370         c = _gvn.transform(c);
1371       }
1372     }
1373   }
1374   return c;
1375 }
1376 
1377 //------------------------------do_one_bytecode--------------------------------
1378 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1379 void Parse::do_one_bytecode() {
1380   Node *a, *b, *c, *d;          // Handy temps
1381   BoolTest::mask btest;
1382   int i;
1383 
1384   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1385 
1386   if (C->check_node_count(NodeLimitFudgeFactor * 5,
1387                           "out of nodes parsing method")) {
1388     return;
1389   }
1390 
1391 #ifdef ASSERT
1392   // for setting breakpoints
1393   if (TraceOptoParse) {
1394     tty->print(" @");
1395     dump_bci(bci());
1396     tty->cr();
1397   }
1398 #endif
1399 
1400   switch (bc()) {
1401   case Bytecodes::_nop:
1402     // do nothing
1403     break;
1404   case Bytecodes::_lconst_0:
1405     push_pair(longcon(0));
1406     break;
1407 
1408   case Bytecodes::_lconst_1:
1409     push_pair(longcon(1));
1410     break;
1411 
1412   case Bytecodes::_fconst_0:
1413     push(zerocon(T_FLOAT));
1414     break;
1415 
1416   case Bytecodes::_fconst_1:
1417     push(makecon(TypeF::ONE));
1418     break;
1419 
1420   case Bytecodes::_fconst_2:
1421     push(makecon(TypeF::make(2.0f)));
1422     break;
1423 
1424   case Bytecodes::_dconst_0:
1425     push_pair(zerocon(T_DOUBLE));
1426     break;
1427 
1428   case Bytecodes::_dconst_1:
1429     push_pair(makecon(TypeD::ONE));
1430     break;
1431 
1432   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1433   case Bytecodes::_iconst_0: push(intcon( 0)); break;
1434   case Bytecodes::_iconst_1: push(intcon( 1)); break;
1435   case Bytecodes::_iconst_2: push(intcon( 2)); break;
1436   case Bytecodes::_iconst_3: push(intcon( 3)); break;
1437   case Bytecodes::_iconst_4: push(intcon( 4)); break;
1438   case Bytecodes::_iconst_5: push(intcon( 5)); break;
1439   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1440   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1441   case Bytecodes::_aconst_null: push(null());  break;
1442   case Bytecodes::_ldc:
1443   case Bytecodes::_ldc_w:
1444   case Bytecodes::_ldc2_w:
1445     // If the constant is unresolved, run this BC once in the interpreter.
1446     {
1447       ciConstant constant = iter().get_constant();
1448       if (constant.basic_type() == T_OBJECT &&
1449           !constant.as_object()->is_loaded()) {
1450         int index = iter().get_constant_pool_index();
1451         constantTag tag = iter().get_constant_pool_tag(index);
1452         uncommon_trap(Deoptimization::make_trap_request
1453                       (Deoptimization::Reason_unloaded,
1454                        Deoptimization::Action_reinterpret,
1455                        index),
1456                       NULL, tag.internal_name());
1457         break;
1458       }
1459       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1460              "must be java_mirror of klass");
1461       bool pushed = push_constant(constant, true);
1462       guarantee(pushed, "must be possible to push this constant");
1463     }
1464 
1465     break;
1466 
1467   case Bytecodes::_aload_0:
1468     push( local(0) );
1469     break;
1470   case Bytecodes::_aload_1:
1471     push( local(1) );
1472     break;
1473   case Bytecodes::_aload_2:
1474     push( local(2) );
1475     break;
1476   case Bytecodes::_aload_3:
1477     push( local(3) );
1478     break;
1479   case Bytecodes::_aload:
1480     push( local(iter().get_index()) );
1481     break;
1482 
1483   case Bytecodes::_fload_0:
1484   case Bytecodes::_iload_0:
1485     push( local(0) );
1486     break;
1487   case Bytecodes::_fload_1:
1488   case Bytecodes::_iload_1:
1489     push( local(1) );
1490     break;
1491   case Bytecodes::_fload_2:
1492   case Bytecodes::_iload_2:
1493     push( local(2) );
1494     break;
1495   case Bytecodes::_fload_3:
1496   case Bytecodes::_iload_3:
1497     push( local(3) );
1498     break;
1499   case Bytecodes::_fload:
1500   case Bytecodes::_iload:
1501     push( local(iter().get_index()) );
1502     break;
1503   case Bytecodes::_lload_0:
1504     push_pair_local( 0 );
1505     break;
1506   case Bytecodes::_lload_1:
1507     push_pair_local( 1 );
1508     break;
1509   case Bytecodes::_lload_2:
1510     push_pair_local( 2 );
1511     break;
1512   case Bytecodes::_lload_3:
1513     push_pair_local( 3 );
1514     break;
1515   case Bytecodes::_lload:
1516     push_pair_local( iter().get_index() );
1517     break;
1518 
1519   case Bytecodes::_dload_0:
1520     push_pair_local(0);
1521     break;
1522   case Bytecodes::_dload_1:
1523     push_pair_local(1);
1524     break;
1525   case Bytecodes::_dload_2:
1526     push_pair_local(2);
1527     break;
1528   case Bytecodes::_dload_3:
1529     push_pair_local(3);
1530     break;
1531   case Bytecodes::_dload:
1532     push_pair_local(iter().get_index());
1533     break;
1534   case Bytecodes::_fstore_0:
1535   case Bytecodes::_istore_0:
1536   case Bytecodes::_astore_0:
1537     set_local( 0, pop() );
1538     break;
1539   case Bytecodes::_fstore_1:
1540   case Bytecodes::_istore_1:
1541   case Bytecodes::_astore_1:
1542     set_local( 1, pop() );
1543     break;
1544   case Bytecodes::_fstore_2:
1545   case Bytecodes::_istore_2:
1546   case Bytecodes::_astore_2:
1547     set_local( 2, pop() );
1548     break;
1549   case Bytecodes::_fstore_3:
1550   case Bytecodes::_istore_3:
1551   case Bytecodes::_astore_3:
1552     set_local( 3, pop() );
1553     break;
1554   case Bytecodes::_fstore:
1555   case Bytecodes::_istore:
1556   case Bytecodes::_astore:
1557     set_local( iter().get_index(), pop() );
1558     break;
1559   // long stores
1560   case Bytecodes::_lstore_0:
1561     set_pair_local( 0, pop_pair() );
1562     break;
1563   case Bytecodes::_lstore_1:
1564     set_pair_local( 1, pop_pair() );
1565     break;
1566   case Bytecodes::_lstore_2:
1567     set_pair_local( 2, pop_pair() );
1568     break;
1569   case Bytecodes::_lstore_3:
1570     set_pair_local( 3, pop_pair() );
1571     break;
1572   case Bytecodes::_lstore:
1573     set_pair_local( iter().get_index(), pop_pair() );
1574     break;
1575 
1576   // double stores
1577   case Bytecodes::_dstore_0:
1578     set_pair_local( 0, dstore_rounding(pop_pair()) );
1579     break;
1580   case Bytecodes::_dstore_1:
1581     set_pair_local( 1, dstore_rounding(pop_pair()) );
1582     break;
1583   case Bytecodes::_dstore_2:
1584     set_pair_local( 2, dstore_rounding(pop_pair()) );
1585     break;
1586   case Bytecodes::_dstore_3:
1587     set_pair_local( 3, dstore_rounding(pop_pair()) );
1588     break;
1589   case Bytecodes::_dstore:
1590     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1591     break;
1592 
1593   case Bytecodes::_pop:  dec_sp(1);   break;
1594   case Bytecodes::_pop2: dec_sp(2);   break;
1595   case Bytecodes::_swap:
1596     a = pop();
1597     b = pop();
1598     push(a);
1599     push(b);
1600     break;
1601   case Bytecodes::_dup:
1602     a = pop();
1603     push(a);
1604     push(a);
1605     break;
1606   case Bytecodes::_dup_x1:
1607     a = pop();
1608     b = pop();
1609     push( a );
1610     push( b );
1611     push( a );
1612     break;
1613   case Bytecodes::_dup_x2:
1614     a = pop();
1615     b = pop();
1616     c = pop();
1617     push( a );
1618     push( c );
1619     push( b );
1620     push( a );
1621     break;
1622   case Bytecodes::_dup2:
1623     a = pop();
1624     b = pop();
1625     push( b );
1626     push( a );
1627     push( b );
1628     push( a );
1629     break;
1630 
1631   case Bytecodes::_dup2_x1:
1632     // before: .. c, b, a
1633     // after:  .. b, a, c, b, a
1634     // not tested
1635     a = pop();
1636     b = pop();
1637     c = pop();
1638     push( b );
1639     push( a );
1640     push( c );
1641     push( b );
1642     push( a );
1643     break;
1644   case Bytecodes::_dup2_x2:
1645     // before: .. d, c, b, a
1646     // after:  .. b, a, d, c, b, a
1647     // not tested
1648     a = pop();
1649     b = pop();
1650     c = pop();
1651     d = pop();
1652     push( b );
1653     push( a );
1654     push( d );
1655     push( c );
1656     push( b );
1657     push( a );
1658     break;
1659 
1660   case Bytecodes::_arraylength: {
1661     // Must do null-check with value on expression stack
1662     Node *ary = null_check(peek(), T_ARRAY);
1663     // Compile-time detect of null-exception?
1664     if (stopped())  return;
1665     a = pop();
1666     push(load_array_length(a));
1667     break;
1668   }
1669 
1670   case Bytecodes::_baload: array_load(T_BYTE);   break;
1671   case Bytecodes::_caload: array_load(T_CHAR);   break;
1672   case Bytecodes::_iaload: array_load(T_INT);    break;
1673   case Bytecodes::_saload: array_load(T_SHORT);  break;
1674   case Bytecodes::_faload: array_load(T_FLOAT);  break;
1675   case Bytecodes::_aaload: array_load(T_OBJECT); break;
1676   case Bytecodes::_laload: {
1677     a = array_addressing(T_LONG, 0);
1678     if (stopped())  return;     // guaranteed null or range check
1679     dec_sp(2);                  // Pop array and index
1680     push_pair(make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS, MemNode::unordered));
1681     break;
1682   }
1683   case Bytecodes::_daload: {
1684     a = array_addressing(T_DOUBLE, 0);
1685     if (stopped())  return;     // guaranteed null or range check
1686     dec_sp(2);                  // Pop array and index
1687     push_pair(make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered));
1688     break;
1689   }
1690   case Bytecodes::_bastore: array_store(T_BYTE);  break;
1691   case Bytecodes::_castore: array_store(T_CHAR);  break;
1692   case Bytecodes::_iastore: array_store(T_INT);   break;
1693   case Bytecodes::_sastore: array_store(T_SHORT); break;
1694   case Bytecodes::_fastore: array_store(T_FLOAT); break;
1695   case Bytecodes::_aastore: {
1696     d = array_addressing(T_OBJECT, 1);
1697     if (stopped())  return;     // guaranteed null or range check
1698     array_store_check();
1699     c = pop();                  // Oop to store
1700     b = pop();                  // index (already used)
1701     a = pop();                  // the array itself
1702     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1703     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1704     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT, MemNode::release);
1705     break;
1706   }
1707   case Bytecodes::_lastore: {
1708     a = array_addressing(T_LONG, 2);
1709     if (stopped())  return;     // guaranteed null or range check
1710     c = pop_pair();
1711     dec_sp(2);                  // Pop array and index
1712     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS, MemNode::unordered);
1713     break;
1714   }
1715   case Bytecodes::_dastore: {
1716     a = array_addressing(T_DOUBLE, 2);
1717     if (stopped())  return;     // guaranteed null or range check
1718     c = pop_pair();
1719     dec_sp(2);                  // Pop array and index
1720     c = dstore_rounding(c);
1721     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES, MemNode::unordered);
1722     break;
1723   }
1724   case Bytecodes::_getfield:
1725     do_getfield();
1726     break;
1727 
1728   case Bytecodes::_getstatic:
1729     do_getstatic();
1730     break;
1731 
1732   case Bytecodes::_putfield:
1733     do_putfield();
1734     break;
1735 
1736   case Bytecodes::_putstatic:
1737     do_putstatic();
1738     break;
1739 
1740   case Bytecodes::_irem:
1741     do_irem();
1742     break;
1743   case Bytecodes::_idiv:
1744     // Must keep both values on the expression-stack during null-check
1745     zero_check_int(peek());
1746     // Compile-time detect of null-exception?
1747     if (stopped())  return;
1748     b = pop();
1749     a = pop();
1750     push( _gvn.transform( new DivINode(control(),a,b) ) );
1751     break;
1752   case Bytecodes::_imul:
1753     b = pop(); a = pop();
1754     push( _gvn.transform( new MulINode(a,b) ) );
1755     break;
1756   case Bytecodes::_iadd:
1757     b = pop(); a = pop();
1758     push( _gvn.transform( new AddINode(a,b) ) );
1759     break;
1760   case Bytecodes::_ineg:
1761     a = pop();
1762     push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
1763     break;
1764   case Bytecodes::_isub:
1765     b = pop(); a = pop();
1766     push( _gvn.transform( new SubINode(a,b) ) );
1767     break;
1768   case Bytecodes::_iand:
1769     b = pop(); a = pop();
1770     push( _gvn.transform( new AndINode(a,b) ) );
1771     break;
1772   case Bytecodes::_ior:
1773     b = pop(); a = pop();
1774     push( _gvn.transform( new OrINode(a,b) ) );
1775     break;
1776   case Bytecodes::_ixor:
1777     b = pop(); a = pop();
1778     push( _gvn.transform( new XorINode(a,b) ) );
1779     break;
1780   case Bytecodes::_ishl:
1781     b = pop(); a = pop();
1782     push( _gvn.transform( new LShiftINode(a,b) ) );
1783     break;
1784   case Bytecodes::_ishr:
1785     b = pop(); a = pop();
1786     push( _gvn.transform( new RShiftINode(a,b) ) );
1787     break;
1788   case Bytecodes::_iushr:
1789     b = pop(); a = pop();
1790     push( _gvn.transform( new URShiftINode(a,b) ) );
1791     break;
1792 
1793   case Bytecodes::_fneg:
1794     a = pop();
1795     b = _gvn.transform(new NegFNode (a));
1796     push(b);
1797     break;
1798 
1799   case Bytecodes::_fsub:
1800     b = pop();
1801     a = pop();
1802     c = _gvn.transform( new SubFNode(a,b) );
1803     d = precision_rounding(c);
1804     push( d );
1805     break;
1806 
1807   case Bytecodes::_fadd:
1808     b = pop();
1809     a = pop();
1810     c = _gvn.transform( new AddFNode(a,b) );
1811     d = precision_rounding(c);
1812     push( d );
1813     break;
1814 
1815   case Bytecodes::_fmul:
1816     b = pop();
1817     a = pop();
1818     c = _gvn.transform( new MulFNode(a,b) );
1819     d = precision_rounding(c);
1820     push( d );
1821     break;
1822 
1823   case Bytecodes::_fdiv:
1824     b = pop();
1825     a = pop();
1826     c = _gvn.transform( new DivFNode(0,a,b) );
1827     d = precision_rounding(c);
1828     push( d );
1829     break;
1830 
1831   case Bytecodes::_frem:
1832     if (Matcher::has_match_rule(Op_ModF)) {
1833       // Generate a ModF node.
1834       b = pop();
1835       a = pop();
1836       c = _gvn.transform( new ModFNode(0,a,b) );
1837       d = precision_rounding(c);
1838       push( d );
1839     }
1840     else {
1841       // Generate a call.
1842       modf();
1843     }
1844     break;
1845 
1846   case Bytecodes::_fcmpl:
1847     b = pop();
1848     a = pop();
1849     c = _gvn.transform( new CmpF3Node( a, b));
1850     push(c);
1851     break;
1852   case Bytecodes::_fcmpg:
1853     b = pop();
1854     a = pop();
1855 
1856     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1857     // which negates the result sign except for unordered.  Flip the unordered
1858     // as well by using CmpF3 which implements unordered-lesser instead of
1859     // unordered-greater semantics.  Finally, commute the result bits.  Result
1860     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1861     c = _gvn.transform( new CmpF3Node( b, a));
1862     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
1863     push(c);
1864     break;
1865 
1866   case Bytecodes::_f2i:
1867     a = pop();
1868     push(_gvn.transform(new ConvF2INode(a)));
1869     break;
1870 
1871   case Bytecodes::_d2i:
1872     a = pop_pair();
1873     b = _gvn.transform(new ConvD2INode(a));
1874     push( b );
1875     break;
1876 
1877   case Bytecodes::_f2d:
1878     a = pop();
1879     b = _gvn.transform( new ConvF2DNode(a));
1880     push_pair( b );
1881     break;
1882 
1883   case Bytecodes::_d2f:
1884     a = pop_pair();
1885     b = _gvn.transform( new ConvD2FNode(a));
1886     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1887     //b = _gvn.transform(new RoundFloatNode(0, b) );
1888     push( b );
1889     break;
1890 
1891   case Bytecodes::_l2f:
1892     if (Matcher::convL2FSupported()) {
1893       a = pop_pair();
1894       b = _gvn.transform( new ConvL2FNode(a));
1895       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1896       // Rather than storing the result into an FP register then pushing
1897       // out to memory to round, the machine instruction that implements
1898       // ConvL2D is responsible for rounding.
1899       // c = precision_rounding(b);
1900       c = _gvn.transform(b);
1901       push(c);
1902     } else {
1903       l2f();
1904     }
1905     break;
1906 
1907   case Bytecodes::_l2d:
1908     a = pop_pair();
1909     b = _gvn.transform( new ConvL2DNode(a));
1910     // For i486.ad, rounding is always necessary (see _l2f above).
1911     // c = dprecision_rounding(b);
1912     c = _gvn.transform(b);
1913     push_pair(c);
1914     break;
1915 
1916   case Bytecodes::_f2l:
1917     a = pop();
1918     b = _gvn.transform( new ConvF2LNode(a));
1919     push_pair(b);
1920     break;
1921 
1922   case Bytecodes::_d2l:
1923     a = pop_pair();
1924     b = _gvn.transform( new ConvD2LNode(a));
1925     push_pair(b);
1926     break;
1927 
1928   case Bytecodes::_dsub:
1929     b = pop_pair();
1930     a = pop_pair();
1931     c = _gvn.transform( new SubDNode(a,b) );
1932     d = dprecision_rounding(c);
1933     push_pair( d );
1934     break;
1935 
1936   case Bytecodes::_dadd:
1937     b = pop_pair();
1938     a = pop_pair();
1939     c = _gvn.transform( new AddDNode(a,b) );
1940     d = dprecision_rounding(c);
1941     push_pair( d );
1942     break;
1943 
1944   case Bytecodes::_dmul:
1945     b = pop_pair();
1946     a = pop_pair();
1947     c = _gvn.transform( new MulDNode(a,b) );
1948     d = dprecision_rounding(c);
1949     push_pair( d );
1950     break;
1951 
1952   case Bytecodes::_ddiv:
1953     b = pop_pair();
1954     a = pop_pair();
1955     c = _gvn.transform( new DivDNode(0,a,b) );
1956     d = dprecision_rounding(c);
1957     push_pair( d );
1958     break;
1959 
1960   case Bytecodes::_dneg:
1961     a = pop_pair();
1962     b = _gvn.transform(new NegDNode (a));
1963     push_pair(b);
1964     break;
1965 
1966   case Bytecodes::_drem:
1967     if (Matcher::has_match_rule(Op_ModD)) {
1968       // Generate a ModD node.
1969       b = pop_pair();
1970       a = pop_pair();
1971       // a % b
1972 
1973       c = _gvn.transform( new ModDNode(0,a,b) );
1974       d = dprecision_rounding(c);
1975       push_pair( d );
1976     }
1977     else {
1978       // Generate a call.
1979       modd();
1980     }
1981     break;
1982 
1983   case Bytecodes::_dcmpl:
1984     b = pop_pair();
1985     a = pop_pair();
1986     c = _gvn.transform( new CmpD3Node( a, b));
1987     push(c);
1988     break;
1989 
1990   case Bytecodes::_dcmpg:
1991     b = pop_pair();
1992     a = pop_pair();
1993     // Same as dcmpl but need to flip the unordered case.
1994     // Commute the inputs, which negates the result sign except for unordered.
1995     // Flip the unordered as well by using CmpD3 which implements
1996     // unordered-lesser instead of unordered-greater semantics.
1997     // Finally, negate the result bits.  Result is same as using a
1998     // CmpD3Greater except we did it with CmpD3 alone.
1999     c = _gvn.transform( new CmpD3Node( b, a));
2000     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2001     push(c);
2002     break;
2003 
2004 
2005     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2006   case Bytecodes::_land:
2007     b = pop_pair();
2008     a = pop_pair();
2009     c = _gvn.transform( new AndLNode(a,b) );
2010     push_pair(c);
2011     break;
2012   case Bytecodes::_lor:
2013     b = pop_pair();
2014     a = pop_pair();
2015     c = _gvn.transform( new OrLNode(a,b) );
2016     push_pair(c);
2017     break;
2018   case Bytecodes::_lxor:
2019     b = pop_pair();
2020     a = pop_pair();
2021     c = _gvn.transform( new XorLNode(a,b) );
2022     push_pair(c);
2023     break;
2024 
2025   case Bytecodes::_lshl:
2026     b = pop();                  // the shift count
2027     a = pop_pair();             // value to be shifted
2028     c = _gvn.transform( new LShiftLNode(a,b) );
2029     push_pair(c);
2030     break;
2031   case Bytecodes::_lshr:
2032     b = pop();                  // the shift count
2033     a = pop_pair();             // value to be shifted
2034     c = _gvn.transform( new RShiftLNode(a,b) );
2035     push_pair(c);
2036     break;
2037   case Bytecodes::_lushr:
2038     b = pop();                  // the shift count
2039     a = pop_pair();             // value to be shifted
2040     c = _gvn.transform( new URShiftLNode(a,b) );
2041     push_pair(c);
2042     break;
2043   case Bytecodes::_lmul:
2044     b = pop_pair();
2045     a = pop_pair();
2046     c = _gvn.transform( new MulLNode(a,b) );
2047     push_pair(c);
2048     break;
2049 
2050   case Bytecodes::_lrem:
2051     // Must keep both values on the expression-stack during null-check
2052     assert(peek(0) == top(), "long word order");
2053     zero_check_long(peek(1));
2054     // Compile-time detect of null-exception?
2055     if (stopped())  return;
2056     b = pop_pair();
2057     a = pop_pair();
2058     c = _gvn.transform( new ModLNode(control(),a,b) );
2059     push_pair(c);
2060     break;
2061 
2062   case Bytecodes::_ldiv:
2063     // Must keep both values on the expression-stack during null-check
2064     assert(peek(0) == top(), "long word order");
2065     zero_check_long(peek(1));
2066     // Compile-time detect of null-exception?
2067     if (stopped())  return;
2068     b = pop_pair();
2069     a = pop_pair();
2070     c = _gvn.transform( new DivLNode(control(),a,b) );
2071     push_pair(c);
2072     break;
2073 
2074   case Bytecodes::_ladd:
2075     b = pop_pair();
2076     a = pop_pair();
2077     c = _gvn.transform( new AddLNode(a,b) );
2078     push_pair(c);
2079     break;
2080   case Bytecodes::_lsub:
2081     b = pop_pair();
2082     a = pop_pair();
2083     c = _gvn.transform( new SubLNode(a,b) );
2084     push_pair(c);
2085     break;
2086   case Bytecodes::_lcmp:
2087     // Safepoints are now inserted _before_ branches.  The long-compare
2088     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2089     // slew of control flow.  These are usually followed by a CmpI vs zero and
2090     // a branch; this pattern then optimizes to the obvious long-compare and
2091     // branch.  However, if the branch is backwards there's a Safepoint
2092     // inserted.  The inserted Safepoint captures the JVM state at the
2093     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2094     // long-compare is used to control a loop the debug info will force
2095     // computation of the 3-way value, even though the generated code uses a
2096     // long-compare and branch.  We try to rectify the situation by inserting
2097     // a SafePoint here and have it dominate and kill the safepoint added at a
2098     // following backwards branch.  At this point the JVM state merely holds 2
2099     // longs but not the 3-way value.
2100     if( UseLoopSafepoints ) {
2101       switch( iter().next_bc() ) {
2102       case Bytecodes::_ifgt:
2103       case Bytecodes::_iflt:
2104       case Bytecodes::_ifge:
2105       case Bytecodes::_ifle:
2106       case Bytecodes::_ifne:
2107       case Bytecodes::_ifeq:
2108         // If this is a backwards branch in the bytecodes, add Safepoint
2109         maybe_add_safepoint(iter().next_get_dest());
2110       }
2111     }
2112     b = pop_pair();
2113     a = pop_pair();
2114     c = _gvn.transform( new CmpL3Node( a, b ));
2115     push(c);
2116     break;
2117 
2118   case Bytecodes::_lneg:
2119     a = pop_pair();
2120     b = _gvn.transform( new SubLNode(longcon(0),a));
2121     push_pair(b);
2122     break;
2123   case Bytecodes::_l2i:
2124     a = pop_pair();
2125     push( _gvn.transform( new ConvL2INode(a)));
2126     break;
2127   case Bytecodes::_i2l:
2128     a = pop();
2129     b = _gvn.transform( new ConvI2LNode(a));
2130     push_pair(b);
2131     break;
2132   case Bytecodes::_i2b:
2133     // Sign extend
2134     a = pop();
2135     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2136     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2137     push( a );
2138     break;
2139   case Bytecodes::_i2s:
2140     a = pop();
2141     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2142     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2143     push( a );
2144     break;
2145   case Bytecodes::_i2c:
2146     a = pop();
2147     push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2148     break;
2149 
2150   case Bytecodes::_i2f:
2151     a = pop();
2152     b = _gvn.transform( new ConvI2FNode(a) ) ;
2153     c = precision_rounding(b);
2154     push (b);
2155     break;
2156 
2157   case Bytecodes::_i2d:
2158     a = pop();
2159     b = _gvn.transform( new ConvI2DNode(a));
2160     push_pair(b);
2161     break;
2162 
2163   case Bytecodes::_iinc:        // Increment local
2164     i = iter().get_index();     // Get local index
2165     set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2166     break;
2167 
2168   // Exit points of synchronized methods must have an unlock node
2169   case Bytecodes::_return:
2170     return_current(NULL);
2171     break;
2172 
2173   case Bytecodes::_ireturn:
2174   case Bytecodes::_areturn:
2175   case Bytecodes::_freturn:
2176     return_current(pop());
2177     break;
2178   case Bytecodes::_lreturn:
2179     return_current(pop_pair());
2180     break;
2181   case Bytecodes::_dreturn:
2182     return_current(pop_pair());
2183     break;
2184 
2185   case Bytecodes::_athrow:
2186     // null exception oop throws NULL pointer exception
2187     null_check(peek());
2188     if (stopped())  return;
2189     // Hook the thrown exception directly to subsequent handlers.
2190     if (BailoutToInterpreterForThrows) {
2191       // Keep method interpreted from now on.
2192       uncommon_trap(Deoptimization::Reason_unhandled,
2193                     Deoptimization::Action_make_not_compilable);
2194       return;
2195     }
2196     if (env()->jvmti_can_post_on_exceptions()) {
2197       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2198       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2199     }
2200     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2201     add_exception_state(make_exception_state(peek()));
2202     break;
2203 
2204   case Bytecodes::_goto:   // fall through
2205   case Bytecodes::_goto_w: {
2206     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2207 
2208     // If this is a backwards branch in the bytecodes, add Safepoint
2209     maybe_add_safepoint(target_bci);
2210 
2211     // Update method data
2212     profile_taken_branch(target_bci);
2213 
2214     // Merge the current control into the target basic block
2215     merge(target_bci);
2216 
2217     // See if we can get some profile data and hand it off to the next block
2218     Block *target_block = block()->successor_for_bci(target_bci);
2219     if (target_block->pred_count() != 1)  break;
2220     ciMethodData* methodData = method()->method_data();
2221     if (!methodData->is_mature())  break;
2222     ciProfileData* data = methodData->bci_to_data(bci());
2223     assert( data->is_JumpData(), "" );
2224     int taken = ((ciJumpData*)data)->taken();
2225     taken = method()->scale_count(taken);
2226     target_block->set_count(taken);
2227     break;
2228   }
2229 
2230   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2231   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2232   handle_if_null:
2233     // If this is a backwards branch in the bytecodes, add Safepoint
2234     maybe_add_safepoint(iter().get_dest());
2235     a = null();
2236     b = pop();
2237     if (!_gvn.type(b)->speculative_maybe_null() &&
2238         !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2239       inc_sp(1);
2240       Node* null_ctl = top();
2241       b = null_check_oop(b, &null_ctl, true, true, true);
2242       assert(null_ctl->is_top(), "no null control here");
2243       dec_sp(1);
2244     }
2245     c = _gvn.transform( new CmpPNode(b, a) );
2246     do_ifnull(btest, c);
2247     break;
2248 
2249   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2250   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2251   handle_if_acmp:
2252     // If this is a backwards branch in the bytecodes, add Safepoint
2253     maybe_add_safepoint(iter().get_dest());
2254     a = pop();
2255     b = pop();
2256     c = _gvn.transform( new CmpPNode(b, a) );
2257     c = optimize_cmp_with_klass(c);
2258     do_if(btest, c);
2259     break;
2260 
2261   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2262   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2263   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2264   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2265   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2266   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2267   handle_ifxx:
2268     // If this is a backwards branch in the bytecodes, add Safepoint
2269     maybe_add_safepoint(iter().get_dest());
2270     a = _gvn.intcon(0);
2271     b = pop();
2272     c = _gvn.transform( new CmpINode(b, a) );
2273     do_if(btest, c);
2274     break;
2275 
2276   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2277   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2278   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2279   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2280   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2281   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2282   handle_if_icmp:
2283     // If this is a backwards branch in the bytecodes, add Safepoint
2284     maybe_add_safepoint(iter().get_dest());
2285     a = pop();
2286     b = pop();
2287     c = _gvn.transform( new CmpINode( b, a ) );
2288     do_if(btest, c);
2289     break;
2290 
2291   case Bytecodes::_tableswitch:
2292     do_tableswitch();
2293     break;
2294 
2295   case Bytecodes::_lookupswitch:
2296     do_lookupswitch();
2297     break;
2298 
2299   case Bytecodes::_invokestatic:
2300   case Bytecodes::_invokedynamic:
2301   case Bytecodes::_invokespecial:
2302   case Bytecodes::_invokevirtual:
2303   case Bytecodes::_invokeinterface:
2304     do_call();
2305     break;
2306   case Bytecodes::_checkcast:
2307     do_checkcast();
2308     break;
2309   case Bytecodes::_instanceof:
2310     do_instanceof();
2311     break;
2312   case Bytecodes::_anewarray:
2313     do_anewarray();
2314     break;
2315   case Bytecodes::_newarray:
2316     do_newarray((BasicType)iter().get_index());
2317     break;
2318   case Bytecodes::_multianewarray:
2319     do_multianewarray();
2320     break;
2321   case Bytecodes::_new:
2322     do_new();
2323     break;
2324 
2325   case Bytecodes::_jsr:
2326   case Bytecodes::_jsr_w:
2327     do_jsr();
2328     break;
2329 
2330   case Bytecodes::_ret:
2331     do_ret();
2332     break;
2333 
2334 
2335   case Bytecodes::_monitorenter:
2336     do_monitor_enter();
2337     break;
2338 
2339   case Bytecodes::_monitorexit:
2340     do_monitor_exit();
2341     break;
2342 
2343   case Bytecodes::_breakpoint:
2344     // Breakpoint set concurrently to compile
2345     // %%% use an uncommon trap?
2346     C->record_failure("breakpoint in method");
2347     return;
2348 
2349   default:
2350 #ifndef PRODUCT
2351     map()->dump(99);
2352 #endif
2353     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2354     ShouldNotReachHere();
2355   }
2356 
2357 #ifndef PRODUCT
2358   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2359   if (printer && printer->should_print(_method)) {
2360     char buffer[256];
2361     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2362     bool old = printer->traverse_outs();
2363     printer->set_traverse_outs(true);
2364     printer->print_method(C, buffer, 4);
2365     printer->set_traverse_outs(old);
2366   }
2367 #endif
2368 }