1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "prims/forte.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiRedefineClassesTrace.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/compilationPolicy.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/vframe.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "utilities/copy.hpp"
  60 #include "utilities/dtrace.hpp"
  61 #include "utilities/events.hpp"
  62 #include "utilities/hashtable.inline.hpp"
  63 #include "utilities/macros.hpp"
  64 #include "utilities/xmlstream.hpp"
  65 #ifdef COMPILER1
  66 #include "c1/c1_Runtime1.hpp"
  67 #endif
  68 
  69 // Shared stub locations
  70 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  71 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  72 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  73 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  74 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  76 
  77 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  78 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  79 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  81 
  82 #ifdef COMPILER2
  83 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  84 #endif // COMPILER2
  85 
  86 
  87 //----------------------------generate_stubs-----------------------------------
  88 void SharedRuntime::generate_stubs() {
  89   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  90   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  91   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  92   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  93   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  94   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  95 
  96 #if defined(COMPILER2) || INCLUDE_JVMCI
  97   // Vectors are generated only by C2 and JVMCI.
  98   bool support_wide = is_wide_vector(MaxVectorSize);
  99   if (support_wide) {
 100     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 101   }
 102 #endif // COMPILER2 || INCLUDE_JVMCI
 103   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 104   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 105 
 106   generate_deopt_blob();
 107 
 108 #ifdef COMPILER2
 109   generate_uncommon_trap_blob();
 110 #endif // COMPILER2
 111 }
 112 
 113 #include <math.h>
 114 
 115 // Implementation of SharedRuntime
 116 
 117 #ifndef PRODUCT
 118 // For statistics
 119 int SharedRuntime::_ic_miss_ctr = 0;
 120 int SharedRuntime::_wrong_method_ctr = 0;
 121 int SharedRuntime::_resolve_static_ctr = 0;
 122 int SharedRuntime::_resolve_virtual_ctr = 0;
 123 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 124 int SharedRuntime::_implicit_null_throws = 0;
 125 int SharedRuntime::_implicit_div0_throws = 0;
 126 int SharedRuntime::_throw_null_ctr = 0;
 127 
 128 int SharedRuntime::_nof_normal_calls = 0;
 129 int SharedRuntime::_nof_optimized_calls = 0;
 130 int SharedRuntime::_nof_inlined_calls = 0;
 131 int SharedRuntime::_nof_megamorphic_calls = 0;
 132 int SharedRuntime::_nof_static_calls = 0;
 133 int SharedRuntime::_nof_inlined_static_calls = 0;
 134 int SharedRuntime::_nof_interface_calls = 0;
 135 int SharedRuntime::_nof_optimized_interface_calls = 0;
 136 int SharedRuntime::_nof_inlined_interface_calls = 0;
 137 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 138 int SharedRuntime::_nof_removable_exceptions = 0;
 139 
 140 int SharedRuntime::_new_instance_ctr=0;
 141 int SharedRuntime::_new_array_ctr=0;
 142 int SharedRuntime::_multi1_ctr=0;
 143 int SharedRuntime::_multi2_ctr=0;
 144 int SharedRuntime::_multi3_ctr=0;
 145 int SharedRuntime::_multi4_ctr=0;
 146 int SharedRuntime::_multi5_ctr=0;
 147 int SharedRuntime::_mon_enter_stub_ctr=0;
 148 int SharedRuntime::_mon_exit_stub_ctr=0;
 149 int SharedRuntime::_mon_enter_ctr=0;
 150 int SharedRuntime::_mon_exit_ctr=0;
 151 int SharedRuntime::_partial_subtype_ctr=0;
 152 int SharedRuntime::_jbyte_array_copy_ctr=0;
 153 int SharedRuntime::_jshort_array_copy_ctr=0;
 154 int SharedRuntime::_jint_array_copy_ctr=0;
 155 int SharedRuntime::_jlong_array_copy_ctr=0;
 156 int SharedRuntime::_oop_array_copy_ctr=0;
 157 int SharedRuntime::_checkcast_array_copy_ctr=0;
 158 int SharedRuntime::_unsafe_array_copy_ctr=0;
 159 int SharedRuntime::_generic_array_copy_ctr=0;
 160 int SharedRuntime::_slow_array_copy_ctr=0;
 161 int SharedRuntime::_find_handler_ctr=0;
 162 int SharedRuntime::_rethrow_ctr=0;
 163 
 164 int     SharedRuntime::_ICmiss_index                    = 0;
 165 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 166 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 167 
 168 
 169 void SharedRuntime::trace_ic_miss(address at) {
 170   for (int i = 0; i < _ICmiss_index; i++) {
 171     if (_ICmiss_at[i] == at) {
 172       _ICmiss_count[i]++;
 173       return;
 174     }
 175   }
 176   int index = _ICmiss_index++;
 177   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 178   _ICmiss_at[index] = at;
 179   _ICmiss_count[index] = 1;
 180 }
 181 
 182 void SharedRuntime::print_ic_miss_histogram() {
 183   if (ICMissHistogram) {
 184     tty->print_cr("IC Miss Histogram:");
 185     int tot_misses = 0;
 186     for (int i = 0; i < _ICmiss_index; i++) {
 187       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 188       tot_misses += _ICmiss_count[i];
 189     }
 190     tty->print_cr("Total IC misses: %7d", tot_misses);
 191   }
 192 }
 193 #endif // PRODUCT
 194 
 195 #if INCLUDE_ALL_GCS
 196 
 197 // G1 write-barrier pre: executed before a pointer store.
 198 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 199   if (orig == NULL) {
 200     assert(false, "should be optimized out");
 201     return;
 202   }
 203   assert(orig->is_oop(true /* ignore mark word */), "Error");
 204   // store the original value that was in the field reference
 205   thread->satb_mark_queue().enqueue(orig);
 206 JRT_END
 207 
 208 // G1 write-barrier post: executed after a pointer store.
 209 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 210   thread->dirty_card_queue().enqueue(card_addr);
 211 JRT_END
 212 
 213 #endif // INCLUDE_ALL_GCS
 214 
 215 
 216 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 217   return x * y;
 218 JRT_END
 219 
 220 
 221 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 222   if (x == min_jlong && y == CONST64(-1)) {
 223     return x;
 224   } else {
 225     return x / y;
 226   }
 227 JRT_END
 228 
 229 
 230 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 231   if (x == min_jlong && y == CONST64(-1)) {
 232     return 0;
 233   } else {
 234     return x % y;
 235   }
 236 JRT_END
 237 
 238 
 239 const juint  float_sign_mask  = 0x7FFFFFFF;
 240 const juint  float_infinity   = 0x7F800000;
 241 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 242 const julong double_infinity  = CONST64(0x7FF0000000000000);
 243 
 244 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 245 #ifdef _WIN64
 246   // 64-bit Windows on amd64 returns the wrong values for
 247   // infinity operands.
 248   union { jfloat f; juint i; } xbits, ybits;
 249   xbits.f = x;
 250   ybits.f = y;
 251   // x Mod Infinity == x unless x is infinity
 252   if (((xbits.i & float_sign_mask) != float_infinity) &&
 253        ((ybits.i & float_sign_mask) == float_infinity) ) {
 254     return x;
 255   }
 256 #endif
 257   return ((jfloat)fmod((double)x,(double)y));
 258 JRT_END
 259 
 260 
 261 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 262 #ifdef _WIN64
 263   union { jdouble d; julong l; } xbits, ybits;
 264   xbits.d = x;
 265   ybits.d = y;
 266   // x Mod Infinity == x unless x is infinity
 267   if (((xbits.l & double_sign_mask) != double_infinity) &&
 268        ((ybits.l & double_sign_mask) == double_infinity) ) {
 269     return x;
 270   }
 271 #endif
 272   return ((jdouble)fmod((double)x,(double)y));
 273 JRT_END
 274 
 275 #ifdef __SOFTFP__
 276 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 277   return x + y;
 278 JRT_END
 279 
 280 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 281   return x - y;
 282 JRT_END
 283 
 284 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 285   return x * y;
 286 JRT_END
 287 
 288 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 289   return x / y;
 290 JRT_END
 291 
 292 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 293   return x + y;
 294 JRT_END
 295 
 296 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 297   return x - y;
 298 JRT_END
 299 
 300 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 301   return x * y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 305   return x / y;
 306 JRT_END
 307 
 308 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 309   return (jfloat)x;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 313   return (jdouble)x;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 317   return (jdouble)x;
 318 JRT_END
 319 
 320 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 321   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 322 JRT_END
 323 
 324 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 325   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 326 JRT_END
 327 
 328 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 329   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 333   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 334 JRT_END
 335 
 336 // Functions to return the opposite of the aeabi functions for nan.
 337 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 338   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 339 JRT_END
 340 
 341 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 342   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 343 JRT_END
 344 
 345 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 346   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 347 JRT_END
 348 
 349 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 350   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 354   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 358   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 362   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 366   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 // Intrinsics make gcc generate code for these.
 370 float  SharedRuntime::fneg(float f)   {
 371   return -f;
 372 }
 373 
 374 double SharedRuntime::dneg(double f)  {
 375   return -f;
 376 }
 377 
 378 #endif // __SOFTFP__
 379 
 380 #if defined(__SOFTFP__) || defined(E500V2)
 381 // Intrinsics make gcc generate code for these.
 382 double SharedRuntime::dabs(double f)  {
 383   return (f <= (double)0.0) ? (double)0.0 - f : f;
 384 }
 385 
 386 #endif
 387 
 388 #if defined(__SOFTFP__) || defined(PPC32)
 389 double SharedRuntime::dsqrt(double f) {
 390   return sqrt(f);
 391 }
 392 #endif
 393 
 394 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 395   if (g_isnan(x))
 396     return 0;
 397   if (x >= (jfloat) max_jint)
 398     return max_jint;
 399   if (x <= (jfloat) min_jint)
 400     return min_jint;
 401   return (jint) x;
 402 JRT_END
 403 
 404 
 405 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 406   if (g_isnan(x))
 407     return 0;
 408   if (x >= (jfloat) max_jlong)
 409     return max_jlong;
 410   if (x <= (jfloat) min_jlong)
 411     return min_jlong;
 412   return (jlong) x;
 413 JRT_END
 414 
 415 
 416 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 417   if (g_isnan(x))
 418     return 0;
 419   if (x >= (jdouble) max_jint)
 420     return max_jint;
 421   if (x <= (jdouble) min_jint)
 422     return min_jint;
 423   return (jint) x;
 424 JRT_END
 425 
 426 
 427 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 428   if (g_isnan(x))
 429     return 0;
 430   if (x >= (jdouble) max_jlong)
 431     return max_jlong;
 432   if (x <= (jdouble) min_jlong)
 433     return min_jlong;
 434   return (jlong) x;
 435 JRT_END
 436 
 437 
 438 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 439   return (jfloat)x;
 440 JRT_END
 441 
 442 
 443 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 444   return (jfloat)x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 449   return (jdouble)x;
 450 JRT_END
 451 
 452 // Exception handling across interpreter/compiler boundaries
 453 //
 454 // exception_handler_for_return_address(...) returns the continuation address.
 455 // The continuation address is the entry point of the exception handler of the
 456 // previous frame depending on the return address.
 457 
 458 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 459   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 460   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 461 
 462   // Reset method handle flag.
 463   thread->set_is_method_handle_return(false);
 464 
 465 #if INCLUDE_JVMCI
 466   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 467   // and other exception handler continuations do not read it
 468   thread->set_exception_pc(NULL);
 469 #endif
 470 
 471   // The fastest case first
 472   CodeBlob* blob = CodeCache::find_blob(return_address);
 473   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 474   if (nm != NULL) {
 475     // Set flag if return address is a method handle call site.
 476     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 477     // native nmethods don't have exception handlers
 478     assert(!nm->is_native_method(), "no exception handler");
 479     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 480     if (nm->is_deopt_pc(return_address)) {
 481       // If we come here because of a stack overflow, the stack may be
 482       // unguarded. Reguard the stack otherwise if we return to the
 483       // deopt blob and the stack bang causes a stack overflow we
 484       // crash.
 485       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 486       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 487       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 488       return SharedRuntime::deopt_blob()->unpack_with_exception();
 489     } else {
 490       return nm->exception_begin();
 491     }
 492   }
 493 
 494   // Entry code
 495   if (StubRoutines::returns_to_call_stub(return_address)) {
 496     return StubRoutines::catch_exception_entry();
 497   }
 498   // Interpreted code
 499   if (Interpreter::contains(return_address)) {
 500     return Interpreter::rethrow_exception_entry();
 501   }
 502 
 503   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 504   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 505 
 506 #ifndef PRODUCT
 507   { ResourceMark rm;
 508     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 509     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 510     tty->print_cr("b) other problem");
 511   }
 512 #endif // PRODUCT
 513 
 514   ShouldNotReachHere();
 515   return NULL;
 516 }
 517 
 518 
 519 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 520   return raw_exception_handler_for_return_address(thread, return_address);
 521 JRT_END
 522 
 523 
 524 address SharedRuntime::get_poll_stub(address pc) {
 525   address stub;
 526   // Look up the code blob
 527   CodeBlob *cb = CodeCache::find_blob(pc);
 528 
 529   // Should be an nmethod
 530   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 531 
 532   // Look up the relocation information
 533   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 534     "safepoint polling: type must be poll");
 535 
 536 #ifdef ASSERT
 537   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 538     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 539     Disassembler::decode(cb);
 540     fatal("Only polling locations are used for safepoint");
 541   }
 542 #endif
 543 
 544   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 545   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 546   if (at_poll_return) {
 547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 548            "polling page return stub not created yet");
 549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 550   } else if (has_wide_vectors) {
 551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 552            "polling page vectors safepoint stub not created yet");
 553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 554   } else {
 555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 556            "polling page safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 558   }
 559 #ifndef PRODUCT
 560   if (TraceSafepoint) {
 561     char buf[256];
 562     jio_snprintf(buf, sizeof(buf),
 563                  "... found polling page %s exception at pc = "
 564                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                  at_poll_return ? "return" : "loop",
 566                  (intptr_t)pc, (intptr_t)stub);
 567     tty->print_raw_cr(buf);
 568   }
 569 #endif // PRODUCT
 570   return stub;
 571 }
 572 
 573 
 574 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 575   assert(caller.is_interpreted_frame(), "");
 576   int args_size = ArgumentSizeComputer(sig).size() + 1;
 577   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 578   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 579   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 580   return result;
 581 }
 582 
 583 
 584 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 585   if (JvmtiExport::can_post_on_exceptions()) {
 586     vframeStream vfst(thread, true);
 587     methodHandle method = methodHandle(thread, vfst.method());
 588     address bcp = method()->bcp_from(vfst.bci());
 589     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 590   }
 591   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 592 }
 593 
 594 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 595   Handle h_exception = Exceptions::new_exception(thread, name, message);
 596   throw_and_post_jvmti_exception(thread, h_exception);
 597 }
 598 
 599 // The interpreter code to call this tracing function is only
 600 // called/generated when TraceRedefineClasses has the right bits
 601 // set. Since obsolete methods are never compiled, we don't have
 602 // to modify the compilers to generate calls to this function.
 603 //
 604 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 605     JavaThread* thread, Method* method))
 606   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 607 
 608   if (method->is_obsolete()) {
 609     // We are calling an obsolete method, but this is not necessarily
 610     // an error. Our method could have been redefined just after we
 611     // fetched the Method* from the constant pool.
 612 
 613     // RC_TRACE macro has an embedded ResourceMark
 614     RC_TRACE_WITH_THREAD(0x00001000, thread,
 615                          ("calling obsolete method '%s'",
 616                           method->name_and_sig_as_C_string()));
 617     if (RC_TRACE_ENABLED(0x00002000)) {
 618       // this option is provided to debug calls to obsolete methods
 619       guarantee(false, "faulting at call to an obsolete method.");
 620     }
 621   }
 622   return 0;
 623 JRT_END
 624 
 625 // ret_pc points into caller; we are returning caller's exception handler
 626 // for given exception
 627 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 628                                                     bool force_unwind, bool top_frame_only) {
 629   assert(nm != NULL, "must exist");
 630   ResourceMark rm;
 631 
 632 #if INCLUDE_JVMCI
 633   if (nm->is_compiled_by_jvmci()) {
 634     // lookup exception handler for this pc
 635     int catch_pco = ret_pc - nm->code_begin();
 636     ExceptionHandlerTable table(nm);
 637     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 638     if (t != NULL) {
 639       return nm->code_begin() + t->pco();
 640     } else {
 641       // there is no exception handler for this pc => deoptimize
 642       nm->make_not_entrant();
 643 
 644       // Use Deoptimization::deoptimize for all of its side-effects:
 645       // revoking biases of monitors, gathering traps statistics, logging...
 646       // it also patches the return pc but we do not care about that
 647       // since we return a continuation to the deopt_blob below.
 648       JavaThread* thread = JavaThread::current();
 649       RegisterMap reg_map(thread, UseBiasedLocking);
 650       frame runtime_frame = thread->last_frame();
 651       frame caller_frame = runtime_frame.sender(&reg_map);
 652       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 653 
 654       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 655     }
 656   }
 657 #endif // INCLUDE_JVMCI
 658 
 659   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 660   // determine handler bci, if any
 661   EXCEPTION_MARK;
 662 
 663   int handler_bci = -1;
 664   int scope_depth = 0;
 665   if (!force_unwind) {
 666     int bci = sd->bci();
 667     bool recursive_exception = false;
 668     do {
 669       bool skip_scope_increment = false;
 670       // exception handler lookup
 671       KlassHandle ek (THREAD, exception->klass());
 672       methodHandle mh(THREAD, sd->method());
 673       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 674       if (HAS_PENDING_EXCEPTION) {
 675         recursive_exception = true;
 676         // We threw an exception while trying to find the exception handler.
 677         // Transfer the new exception to the exception handle which will
 678         // be set into thread local storage, and do another lookup for an
 679         // exception handler for this exception, this time starting at the
 680         // BCI of the exception handler which caused the exception to be
 681         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 682         // argument to ensure that the correct exception is thrown (4870175).
 683         exception = Handle(THREAD, PENDING_EXCEPTION);
 684         CLEAR_PENDING_EXCEPTION;
 685         if (handler_bci >= 0) {
 686           bci = handler_bci;
 687           handler_bci = -1;
 688           skip_scope_increment = true;
 689         }
 690       }
 691       else {
 692         recursive_exception = false;
 693       }
 694       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 695         sd = sd->sender();
 696         if (sd != NULL) {
 697           bci = sd->bci();
 698         }
 699         ++scope_depth;
 700       }
 701     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 702   }
 703 
 704   // found handling method => lookup exception handler
 705   int catch_pco = ret_pc - nm->code_begin();
 706 
 707   ExceptionHandlerTable table(nm);
 708   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 709   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 710     // Allow abbreviated catch tables.  The idea is to allow a method
 711     // to materialize its exceptions without committing to the exact
 712     // routing of exceptions.  In particular this is needed for adding
 713     // a synthetic handler to unlock monitors when inlining
 714     // synchronized methods since the unlock path isn't represented in
 715     // the bytecodes.
 716     t = table.entry_for(catch_pco, -1, 0);
 717   }
 718 
 719 #ifdef COMPILER1
 720   if (t == NULL && nm->is_compiled_by_c1()) {
 721     assert(nm->unwind_handler_begin() != NULL, "");
 722     return nm->unwind_handler_begin();
 723   }
 724 #endif
 725 
 726   if (t == NULL) {
 727     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 728     tty->print_cr("   Exception:");
 729     exception->print();
 730     tty->cr();
 731     tty->print_cr(" Compiled exception table :");
 732     table.print();
 733     nm->print_code();
 734     guarantee(false, "missing exception handler");
 735     return NULL;
 736   }
 737 
 738   return nm->code_begin() + t->pco();
 739 }
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 742   // These errors occur only at call sites
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 747   // These errors occur only at call sites
 748   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 749 JRT_END
 750 
 751 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 760   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 761   // cache sites (when the callee activation is not yet set up) so we are at a call site
 762   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 763 JRT_END
 764 
 765 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 766   // We avoid using the normal exception construction in this case because
 767   // it performs an upcall to Java, and we're already out of stack space.
 768   Klass* k = SystemDictionary::StackOverflowError_klass();
 769   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 770   Handle exception (thread, exception_oop);
 771   if (StackTraceInThrowable) {
 772     java_lang_Throwable::fill_in_stack_trace(exception);
 773   }
 774   // Increment counter for hs_err file reporting
 775   Atomic::inc(&Exceptions::_stack_overflow_errors);
 776   throw_and_post_jvmti_exception(thread, exception);
 777 JRT_END
 778 
 779 #if INCLUDE_JVMCI
 780 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 781   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 782   thread->set_jvmci_implicit_exception_pc(pc);
 783   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 784   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 785 }
 786 #endif // INCLUDE_JVMCI
 787 
 788 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 789                                                            address pc,
 790                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 791 {
 792   address target_pc = NULL;
 793 
 794   if (Interpreter::contains(pc)) {
 795 #ifdef CC_INTERP
 796     // C++ interpreter doesn't throw implicit exceptions
 797     ShouldNotReachHere();
 798 #else
 799     switch (exception_kind) {
 800       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 801       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 802       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 803       default:                      ShouldNotReachHere();
 804     }
 805 #endif // !CC_INTERP
 806   } else {
 807     switch (exception_kind) {
 808       case STACK_OVERFLOW: {
 809         // Stack overflow only occurs upon frame setup; the callee is
 810         // going to be unwound. Dispatch to a shared runtime stub
 811         // which will cause the StackOverflowError to be fabricated
 812         // and processed.
 813         // Stack overflow should never occur during deoptimization:
 814         // the compiled method bangs the stack by as much as the
 815         // interpreter would need in case of a deoptimization. The
 816         // deoptimization blob and uncommon trap blob bang the stack
 817         // in a debug VM to verify the correctness of the compiled
 818         // method stack banging.
 819         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 820         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 821         return StubRoutines::throw_StackOverflowError_entry();
 822       }
 823 
 824       case IMPLICIT_NULL: {
 825         if (VtableStubs::contains(pc)) {
 826           // We haven't yet entered the callee frame. Fabricate an
 827           // exception and begin dispatching it in the caller. Since
 828           // the caller was at a call site, it's safe to destroy all
 829           // caller-saved registers, as these entry points do.
 830           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 831 
 832           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 833           if (vt_stub == NULL) return NULL;
 834 
 835           if (vt_stub->is_abstract_method_error(pc)) {
 836             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 837             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 838             return StubRoutines::throw_AbstractMethodError_entry();
 839           } else {
 840             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 841             return StubRoutines::throw_NullPointerException_at_call_entry();
 842           }
 843         } else {
 844           CodeBlob* cb = CodeCache::find_blob(pc);
 845 
 846           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 847           if (cb == NULL) return NULL;
 848 
 849           // Exception happened in CodeCache. Must be either:
 850           // 1. Inline-cache check in C2I handler blob,
 851           // 2. Inline-cache check in nmethod, or
 852           // 3. Implicit null exception in nmethod
 853 
 854           if (!cb->is_nmethod()) {
 855             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 856             if (!is_in_blob) {
 857               // Allow normal crash reporting to handle this
 858               return NULL;
 859             }
 860             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 861             // There is no handler here, so we will simply unwind.
 862             return StubRoutines::throw_NullPointerException_at_call_entry();
 863           }
 864 
 865           // Otherwise, it's an nmethod.  Consult its exception handlers.
 866           nmethod* nm = (nmethod*)cb;
 867           if (nm->inlinecache_check_contains(pc)) {
 868             // exception happened inside inline-cache check code
 869             // => the nmethod is not yet active (i.e., the frame
 870             // is not set up yet) => use return address pushed by
 871             // caller => don't push another return address
 872             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 873             return StubRoutines::throw_NullPointerException_at_call_entry();
 874           }
 875 
 876           if (nm->method()->is_method_handle_intrinsic()) {
 877             // exception happened inside MH dispatch code, similar to a vtable stub
 878             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 879             return StubRoutines::throw_NullPointerException_at_call_entry();
 880           }
 881 
 882 #ifndef PRODUCT
 883           _implicit_null_throws++;
 884 #endif
 885 #if INCLUDE_JVMCI
 886           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 887             // If there's no PcDesc then we'll die way down inside of
 888             // deopt instead of just getting normal error reporting,
 889             // so only go there if it will succeed.
 890             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 891           } else {
 892 #endif // INCLUDE_JVMCI
 893           assert (nm->is_nmethod(), "Expect nmethod");
 894           target_pc = nm->continuation_for_implicit_exception(pc);
 895 #if INCLUDE_JVMCI
 896           }
 897 #endif // INCLUDE_JVMCI
 898           // If there's an unexpected fault, target_pc might be NULL,
 899           // in which case we want to fall through into the normal
 900           // error handling code.
 901         }
 902 
 903         break; // fall through
 904       }
 905 
 906 
 907       case IMPLICIT_DIVIDE_BY_ZERO: {
 908         nmethod* nm = CodeCache::find_nmethod(pc);
 909         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 910 #ifndef PRODUCT
 911         _implicit_div0_throws++;
 912 #endif
 913 #if INCLUDE_JVMCI
 914         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 915           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 916         } else {
 917 #endif // INCLUDE_JVMCI
 918         target_pc = nm->continuation_for_implicit_exception(pc);
 919 #if INCLUDE_JVMCI
 920         }
 921 #endif // INCLUDE_JVMCI
 922         // If there's an unexpected fault, target_pc might be NULL,
 923         // in which case we want to fall through into the normal
 924         // error handling code.
 925         break; // fall through
 926       }
 927 
 928       default: ShouldNotReachHere();
 929     }
 930 
 931     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 932 
 933     if (exception_kind == IMPLICIT_NULL) {
 934 #ifndef PRODUCT
 935       // for AbortVMOnException flag
 936       Exceptions::debug_check_abort("java.lang.NullPointerException");
 937 #endif //PRODUCT
 938       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 939     } else {
 940 #ifndef PRODUCT
 941       // for AbortVMOnException flag
 942       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 943 #endif //PRODUCT
 944       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 945     }
 946     return target_pc;
 947   }
 948 
 949   ShouldNotReachHere();
 950   return NULL;
 951 }
 952 
 953 
 954 /**
 955  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 956  * installed in the native function entry of all native Java methods before
 957  * they get linked to their actual native methods.
 958  *
 959  * \note
 960  * This method actually never gets called!  The reason is because
 961  * the interpreter's native entries call NativeLookup::lookup() which
 962  * throws the exception when the lookup fails.  The exception is then
 963  * caught and forwarded on the return from NativeLookup::lookup() call
 964  * before the call to the native function.  This might change in the future.
 965  */
 966 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 967 {
 968   // We return a bad value here to make sure that the exception is
 969   // forwarded before we look at the return value.
 970   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 971 }
 972 JNI_END
 973 
 974 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 975   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 976 }
 977 
 978 
 979 #ifndef PRODUCT
 980 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 981   const frame f = thread->last_frame();
 982   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 983 #ifndef PRODUCT
 984   methodHandle mh(THREAD, f.interpreter_frame_method());
 985   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 986 #endif // !PRODUCT
 987   return preserve_this_value;
 988 JRT_END
 989 #endif // !PRODUCT
 990 
 991 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 992   assert(obj->is_oop(), "must be a valid oop");
 993 #if INCLUDE_JVMCI
 994   // This removes the requirement for JVMCI compilers to emit code
 995   // performing a dynamic check that obj has a finalizer before
 996   // calling this routine. There should be no performance impact
 997   // for C1 since it emits a dynamic check. C2 and the interpreter
 998   // uses other runtime routines for registering finalizers.
 999   if (!obj->klass()->has_finalizer()) {
1000     return;
1001   }
1002 #endif // INCLUDE_JVMCI
1003   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1004   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1005 JRT_END
1006 
1007 
1008 jlong SharedRuntime::get_java_tid(Thread* thread) {
1009   if (thread != NULL) {
1010     if (thread->is_Java_thread()) {
1011       oop obj = ((JavaThread*)thread)->threadObj();
1012       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1013     }
1014   }
1015   return 0;
1016 }
1017 
1018 /**
1019  * This function ought to be a void function, but cannot be because
1020  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1021  * 6254741.  Once that is fixed we can remove the dummy return value.
1022  */
1023 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1024   return dtrace_object_alloc_base(Thread::current(), o, size);
1025 }
1026 
1027 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1028   assert(DTraceAllocProbes, "wrong call");
1029   Klass* klass = o->klass();
1030   Symbol* name = klass->name();
1031   HOTSPOT_OBJECT_ALLOC(
1032                    get_java_tid(thread),
1033                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1034   return 0;
1035 }
1036 
1037 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1038     JavaThread* thread, Method* method))
1039   assert(DTraceMethodProbes, "wrong call");
1040   Symbol* kname = method->klass_name();
1041   Symbol* name = method->name();
1042   Symbol* sig = method->signature();
1043   HOTSPOT_METHOD_ENTRY(
1044       get_java_tid(thread),
1045       (char *) kname->bytes(), kname->utf8_length(),
1046       (char *) name->bytes(), name->utf8_length(),
1047       (char *) sig->bytes(), sig->utf8_length());
1048   return 0;
1049 JRT_END
1050 
1051 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1052     JavaThread* thread, Method* method))
1053   assert(DTraceMethodProbes, "wrong call");
1054   Symbol* kname = method->klass_name();
1055   Symbol* name = method->name();
1056   Symbol* sig = method->signature();
1057   HOTSPOT_METHOD_RETURN(
1058       get_java_tid(thread),
1059       (char *) kname->bytes(), kname->utf8_length(),
1060       (char *) name->bytes(), name->utf8_length(),
1061       (char *) sig->bytes(), sig->utf8_length());
1062   return 0;
1063 JRT_END
1064 
1065 
1066 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1067 // for a call current in progress, i.e., arguments has been pushed on stack
1068 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1069 // vtable updates, etc.  Caller frame must be compiled.
1070 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1071   ResourceMark rm(THREAD);
1072 
1073   // last java frame on stack (which includes native call frames)
1074   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1075 
1076   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1077 }
1078 
1079 
1080 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1081 // for a call current in progress, i.e., arguments has been pushed on stack
1082 // but callee has not been invoked yet.  Caller frame must be compiled.
1083 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1084                                               vframeStream& vfst,
1085                                               Bytecodes::Code& bc,
1086                                               CallInfo& callinfo, TRAPS) {
1087   Handle receiver;
1088   Handle nullHandle;  //create a handy null handle for exception returns
1089 
1090   assert(!vfst.at_end(), "Java frame must exist");
1091 
1092   // Find caller and bci from vframe
1093   methodHandle caller(THREAD, vfst.method());
1094   int          bci   = vfst.bci();
1095 
1096   // Find bytecode
1097   Bytecode_invoke bytecode(caller, bci);
1098   bc = bytecode.invoke_code();
1099   int bytecode_index = bytecode.index();
1100 
1101   // Find receiver for non-static call
1102   if (bc != Bytecodes::_invokestatic &&
1103       bc != Bytecodes::_invokedynamic &&
1104       bc != Bytecodes::_invokehandle) {
1105     // This register map must be update since we need to find the receiver for
1106     // compiled frames. The receiver might be in a register.
1107     RegisterMap reg_map2(thread);
1108     frame stubFrame   = thread->last_frame();
1109     // Caller-frame is a compiled frame
1110     frame callerFrame = stubFrame.sender(&reg_map2);
1111 
1112     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1113     if (callee.is_null()) {
1114       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1115     }
1116     // Retrieve from a compiled argument list
1117     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1118 
1119     if (receiver.is_null()) {
1120       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1121     }
1122   }
1123 
1124   // Resolve method. This is parameterized by bytecode.
1125   constantPoolHandle constants(THREAD, caller->constants());
1126   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1127   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1128 
1129 #ifdef ASSERT
1130   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1131   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1132     assert(receiver.not_null(), "should have thrown exception");
1133     KlassHandle receiver_klass(THREAD, receiver->klass());
1134     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1135                             // klass is already loaded
1136     KlassHandle static_receiver_klass(THREAD, rk);
1137     // Method handle invokes might have been optimized to a direct call
1138     // so don't check for the receiver class.
1139     // FIXME this weakens the assert too much
1140     methodHandle callee = callinfo.selected_method();
1141     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1142            callee->is_method_handle_intrinsic() ||
1143            callee->is_compiled_lambda_form(),
1144            "actual receiver must be subclass of static receiver klass");
1145     if (receiver_klass->oop_is_instance()) {
1146       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1147         tty->print_cr("ERROR: Klass not yet initialized!!");
1148         receiver_klass()->print();
1149       }
1150       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1151     }
1152   }
1153 #endif
1154 
1155   return receiver;
1156 }
1157 
1158 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1159   ResourceMark rm(THREAD);
1160   // We need first to check if any Java activations (compiled, interpreted)
1161   // exist on the stack since last JavaCall.  If not, we need
1162   // to get the target method from the JavaCall wrapper.
1163   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1164   methodHandle callee_method;
1165   if (vfst.at_end()) {
1166     // No Java frames were found on stack since we did the JavaCall.
1167     // Hence the stack can only contain an entry_frame.  We need to
1168     // find the target method from the stub frame.
1169     RegisterMap reg_map(thread, false);
1170     frame fr = thread->last_frame();
1171     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1172     fr = fr.sender(&reg_map);
1173     assert(fr.is_entry_frame(), "must be");
1174     // fr is now pointing to the entry frame.
1175     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1176     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1177   } else {
1178     Bytecodes::Code bc;
1179     CallInfo callinfo;
1180     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1181     callee_method = callinfo.selected_method();
1182   }
1183   assert(callee_method()->is_method(), "must be");
1184   return callee_method;
1185 }
1186 
1187 // Resolves a call.
1188 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1189                                            bool is_virtual,
1190                                            bool is_optimized, TRAPS) {
1191   methodHandle callee_method;
1192   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1193   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1194     int retry_count = 0;
1195     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1196            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1197       // If has a pending exception then there is no need to re-try to
1198       // resolve this method.
1199       // If the method has been redefined, we need to try again.
1200       // Hack: we have no way to update the vtables of arrays, so don't
1201       // require that java.lang.Object has been updated.
1202 
1203       // It is very unlikely that method is redefined more than 100 times
1204       // in the middle of resolve. If it is looping here more than 100 times
1205       // means then there could be a bug here.
1206       guarantee((retry_count++ < 100),
1207                 "Could not resolve to latest version of redefined method");
1208       // method is redefined in the middle of resolve so re-try.
1209       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1210     }
1211   }
1212   return callee_method;
1213 }
1214 
1215 // Resolves a call.  The compilers generate code for calls that go here
1216 // and are patched with the real destination of the call.
1217 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1218                                            bool is_virtual,
1219                                            bool is_optimized, TRAPS) {
1220 
1221   ResourceMark rm(thread);
1222   RegisterMap cbl_map(thread, false);
1223   frame caller_frame = thread->last_frame().sender(&cbl_map);
1224 
1225   CodeBlob* caller_cb = caller_frame.cb();
1226   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1227   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1228 
1229   // make sure caller is not getting deoptimized
1230   // and removed before we are done with it.
1231   // CLEANUP - with lazy deopt shouldn't need this lock
1232   nmethodLocker caller_lock(caller_nm);
1233 
1234   // determine call info & receiver
1235   // note: a) receiver is NULL for static calls
1236   //       b) an exception is thrown if receiver is NULL for non-static calls
1237   CallInfo call_info;
1238   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1239   Handle receiver = find_callee_info(thread, invoke_code,
1240                                      call_info, CHECK_(methodHandle()));
1241   methodHandle callee_method = call_info.selected_method();
1242 
1243   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1244          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1245          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1246          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1247          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1248 
1249   assert(caller_nm->is_alive(), "It should be alive");
1250 
1251 #ifndef PRODUCT
1252   // tracing/debugging/statistics
1253   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1254                 (is_virtual) ? (&_resolve_virtual_ctr) :
1255                                (&_resolve_static_ctr);
1256   Atomic::inc(addr);
1257 
1258   if (TraceCallFixup) {
1259     ResourceMark rm(thread);
1260     tty->print("resolving %s%s (%s) call to",
1261       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1262       Bytecodes::name(invoke_code));
1263     callee_method->print_short_name(tty);
1264     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1265                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1266   }
1267 #endif
1268 
1269   // JSR 292 key invariant:
1270   // If the resolved method is a MethodHandle invoke target, the call
1271   // site must be a MethodHandle call site, because the lambda form might tail-call
1272   // leaving the stack in a state unknown to either caller or callee
1273   // TODO detune for now but we might need it again
1274 //  assert(!callee_method->is_compiled_lambda_form() ||
1275 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1276 
1277   // Compute entry points. This might require generation of C2I converter
1278   // frames, so we cannot be holding any locks here. Furthermore, the
1279   // computation of the entry points is independent of patching the call.  We
1280   // always return the entry-point, but we only patch the stub if the call has
1281   // not been deoptimized.  Return values: For a virtual call this is an
1282   // (cached_oop, destination address) pair. For a static call/optimized
1283   // virtual this is just a destination address.
1284 
1285   StaticCallInfo static_call_info;
1286   CompiledICInfo virtual_call_info;
1287 
1288   // Make sure the callee nmethod does not get deoptimized and removed before
1289   // we are done patching the code.
1290   nmethod* callee_nm = callee_method->code();
1291   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1292     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1293     callee_nm = NULL;
1294   }
1295   nmethodLocker nl_callee(callee_nm);
1296 #ifdef ASSERT
1297   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1298 #endif
1299 
1300   if (is_virtual) {
1301     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1302     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1303     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1304     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1305                      is_optimized, static_bound, virtual_call_info,
1306                      CHECK_(methodHandle()));
1307   } else {
1308     // static call
1309     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1310   }
1311 
1312   // grab lock, check for deoptimization and potentially patch caller
1313   {
1314     MutexLocker ml_patch(CompiledIC_lock);
1315 
1316     // Lock blocks for safepoint during which both nmethods can change state.
1317 
1318     // Now that we are ready to patch if the Method* was redefined then
1319     // don't update call site and let the caller retry.
1320     // Don't update call site if callee nmethod was unloaded or deoptimized.
1321     // Don't update call site if callee nmethod was replaced by an other nmethod
1322     // which may happen when multiply alive nmethod (tiered compilation)
1323     // will be supported.
1324     if (!callee_method->is_old() &&
1325         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1326 #ifdef ASSERT
1327       // We must not try to patch to jump to an already unloaded method.
1328       if (dest_entry_point != 0) {
1329         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1330         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1331                "should not call unloaded nmethod");
1332       }
1333 #endif
1334       if (is_virtual) {
1335         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1336         if (inline_cache->is_clean()) {
1337           inline_cache->set_to_monomorphic(virtual_call_info);
1338         }
1339       } else {
1340         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1341         if (ssc->is_clean()) ssc->set(static_call_info);
1342       }
1343     }
1344 
1345   } // unlock CompiledIC_lock
1346 
1347   return callee_method;
1348 }
1349 
1350 
1351 // Inline caches exist only in compiled code
1352 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1353 #ifdef ASSERT
1354   RegisterMap reg_map(thread, false);
1355   frame stub_frame = thread->last_frame();
1356   assert(stub_frame.is_runtime_frame(), "sanity check");
1357   frame caller_frame = stub_frame.sender(&reg_map);
1358   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1359 #endif /* ASSERT */
1360 
1361   methodHandle callee_method;
1362   JRT_BLOCK
1363     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1364     // Return Method* through TLS
1365     thread->set_vm_result_2(callee_method());
1366   JRT_BLOCK_END
1367   // return compiled code entry point after potential safepoints
1368   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1369   return callee_method->verified_code_entry();
1370 JRT_END
1371 
1372 
1373 // Handle call site that has been made non-entrant
1374 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1375   // 6243940 We might end up in here if the callee is deoptimized
1376   // as we race to call it.  We don't want to take a safepoint if
1377   // the caller was interpreted because the caller frame will look
1378   // interpreted to the stack walkers and arguments are now
1379   // "compiled" so it is much better to make this transition
1380   // invisible to the stack walking code. The i2c path will
1381   // place the callee method in the callee_target. It is stashed
1382   // there because if we try and find the callee by normal means a
1383   // safepoint is possible and have trouble gc'ing the compiled args.
1384   RegisterMap reg_map(thread, false);
1385   frame stub_frame = thread->last_frame();
1386   assert(stub_frame.is_runtime_frame(), "sanity check");
1387   frame caller_frame = stub_frame.sender(&reg_map);
1388 
1389   if (caller_frame.is_interpreted_frame() ||
1390       caller_frame.is_entry_frame()) {
1391     Method* callee = thread->callee_target();
1392     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1393     thread->set_vm_result_2(callee);
1394     thread->set_callee_target(NULL);
1395     return callee->get_c2i_entry();
1396   }
1397 
1398   // Must be compiled to compiled path which is safe to stackwalk
1399   methodHandle callee_method;
1400   JRT_BLOCK
1401     // Force resolving of caller (if we called from compiled frame)
1402     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1403     thread->set_vm_result_2(callee_method());
1404   JRT_BLOCK_END
1405   // return compiled code entry point after potential safepoints
1406   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1407   return callee_method->verified_code_entry();
1408 JRT_END
1409 
1410 // Handle abstract method call
1411 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1412   return StubRoutines::throw_AbstractMethodError_entry();
1413 JRT_END
1414 
1415 
1416 // resolve a static call and patch code
1417 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1418   methodHandle callee_method;
1419   JRT_BLOCK
1420     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1421     thread->set_vm_result_2(callee_method());
1422   JRT_BLOCK_END
1423   // return compiled code entry point after potential safepoints
1424   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1425   return callee_method->verified_code_entry();
1426 JRT_END
1427 
1428 
1429 // resolve virtual call and update inline cache to monomorphic
1430 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1431   methodHandle callee_method;
1432   JRT_BLOCK
1433     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1434     thread->set_vm_result_2(callee_method());
1435   JRT_BLOCK_END
1436   // return compiled code entry point after potential safepoints
1437   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1438   return callee_method->verified_code_entry();
1439 JRT_END
1440 
1441 
1442 // Resolve a virtual call that can be statically bound (e.g., always
1443 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1444 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1445   methodHandle callee_method;
1446   JRT_BLOCK
1447     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1448     thread->set_vm_result_2(callee_method());
1449   JRT_BLOCK_END
1450   // return compiled code entry point after potential safepoints
1451   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1452   return callee_method->verified_code_entry();
1453 JRT_END
1454 
1455 
1456 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1457   ResourceMark rm(thread);
1458   CallInfo call_info;
1459   Bytecodes::Code bc;
1460 
1461   // receiver is NULL for static calls. An exception is thrown for NULL
1462   // receivers for non-static calls
1463   Handle receiver = find_callee_info(thread, bc, call_info,
1464                                      CHECK_(methodHandle()));
1465   // Compiler1 can produce virtual call sites that can actually be statically bound
1466   // If we fell thru to below we would think that the site was going megamorphic
1467   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1468   // we'd try and do a vtable dispatch however methods that can be statically bound
1469   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1470   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1471   // plain ic_miss) and the site will be converted to an optimized virtual call site
1472   // never to miss again. I don't believe C2 will produce code like this but if it
1473   // did this would still be the correct thing to do for it too, hence no ifdef.
1474   //
1475   if (call_info.resolved_method()->can_be_statically_bound()) {
1476     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1477     if (TraceCallFixup) {
1478       RegisterMap reg_map(thread, false);
1479       frame caller_frame = thread->last_frame().sender(&reg_map);
1480       ResourceMark rm(thread);
1481       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1482       callee_method->print_short_name(tty);
1483       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1484       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1485     }
1486     return callee_method;
1487   }
1488 
1489   methodHandle callee_method = call_info.selected_method();
1490 
1491   bool should_be_mono = false;
1492 
1493 #ifndef PRODUCT
1494   Atomic::inc(&_ic_miss_ctr);
1495 
1496   // Statistics & Tracing
1497   if (TraceCallFixup) {
1498     ResourceMark rm(thread);
1499     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1500     callee_method->print_short_name(tty);
1501     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1502   }
1503 
1504   if (ICMissHistogram) {
1505     MutexLocker m(VMStatistic_lock);
1506     RegisterMap reg_map(thread, false);
1507     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1508     // produce statistics under the lock
1509     trace_ic_miss(f.pc());
1510   }
1511 #endif
1512 
1513   // install an event collector so that when a vtable stub is created the
1514   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1515   // event can't be posted when the stub is created as locks are held
1516   // - instead the event will be deferred until the event collector goes
1517   // out of scope.
1518   JvmtiDynamicCodeEventCollector event_collector;
1519 
1520   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1521   { MutexLocker ml_patch (CompiledIC_lock);
1522     RegisterMap reg_map(thread, false);
1523     frame caller_frame = thread->last_frame().sender(&reg_map);
1524     CodeBlob* cb = caller_frame.cb();
1525     if (cb->is_nmethod()) {
1526       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1527       bool should_be_mono = false;
1528       if (inline_cache->is_optimized()) {
1529         if (TraceCallFixup) {
1530           ResourceMark rm(thread);
1531           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1532           callee_method->print_short_name(tty);
1533           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1534         }
1535         should_be_mono = true;
1536       } else if (inline_cache->is_icholder_call()) {
1537         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1538         if (ic_oop != NULL) {
1539 
1540           if (receiver()->klass() == ic_oop->holder_klass()) {
1541             // This isn't a real miss. We must have seen that compiled code
1542             // is now available and we want the call site converted to a
1543             // monomorphic compiled call site.
1544             // We can't assert for callee_method->code() != NULL because it
1545             // could have been deoptimized in the meantime
1546             if (TraceCallFixup) {
1547               ResourceMark rm(thread);
1548               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1549               callee_method->print_short_name(tty);
1550               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1551             }
1552             should_be_mono = true;
1553           }
1554         }
1555       }
1556 
1557       if (should_be_mono) {
1558 
1559         // We have a path that was monomorphic but was going interpreted
1560         // and now we have (or had) a compiled entry. We correct the IC
1561         // by using a new icBuffer.
1562         CompiledICInfo info;
1563         KlassHandle receiver_klass(THREAD, receiver()->klass());
1564         inline_cache->compute_monomorphic_entry(callee_method,
1565                                                 receiver_klass,
1566                                                 inline_cache->is_optimized(),
1567                                                 false,
1568                                                 info, CHECK_(methodHandle()));
1569         inline_cache->set_to_monomorphic(info);
1570       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1571         // Potential change to megamorphic
1572         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1573         if (!successful) {
1574           inline_cache->set_to_clean();
1575         }
1576       } else {
1577         // Either clean or megamorphic
1578       }
1579     } else {
1580       fatal("Unimplemented");
1581     }
1582   } // Release CompiledIC_lock
1583 
1584   return callee_method;
1585 }
1586 
1587 //
1588 // Resets a call-site in compiled code so it will get resolved again.
1589 // This routines handles both virtual call sites, optimized virtual call
1590 // sites, and static call sites. Typically used to change a call sites
1591 // destination from compiled to interpreted.
1592 //
1593 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1594   ResourceMark rm(thread);
1595   RegisterMap reg_map(thread, false);
1596   frame stub_frame = thread->last_frame();
1597   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1598   frame caller = stub_frame.sender(&reg_map);
1599 
1600   // Do nothing if the frame isn't a live compiled frame.
1601   // nmethod could be deoptimized by the time we get here
1602   // so no update to the caller is needed.
1603 
1604   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1605 
1606     address pc = caller.pc();
1607 
1608     // Check for static or virtual call
1609     bool is_static_call = false;
1610     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1611 
1612     // Default call_addr is the location of the "basic" call.
1613     // Determine the address of the call we a reresolving. With
1614     // Inline Caches we will always find a recognizable call.
1615     // With Inline Caches disabled we may or may not find a
1616     // recognizable call. We will always find a call for static
1617     // calls and for optimized virtual calls. For vanilla virtual
1618     // calls it depends on the state of the UseInlineCaches switch.
1619     //
1620     // With Inline Caches disabled we can get here for a virtual call
1621     // for two reasons:
1622     //   1 - calling an abstract method. The vtable for abstract methods
1623     //       will run us thru handle_wrong_method and we will eventually
1624     //       end up in the interpreter to throw the ame.
1625     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1626     //       call and between the time we fetch the entry address and
1627     //       we jump to it the target gets deoptimized. Similar to 1
1628     //       we will wind up in the interprter (thru a c2i with c2).
1629     //
1630     address call_addr = NULL;
1631     {
1632       // Get call instruction under lock because another thread may be
1633       // busy patching it.
1634       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1635       // Location of call instruction
1636       if (NativeCall::is_call_before(pc)) {
1637         NativeCall *ncall = nativeCall_before(pc);
1638         call_addr = ncall->instruction_address();
1639       }
1640     }
1641     // Make sure nmethod doesn't get deoptimized and removed until
1642     // this is done with it.
1643     // CLEANUP - with lazy deopt shouldn't need this lock
1644     nmethodLocker nmlock(caller_nm);
1645 
1646     if (call_addr != NULL) {
1647       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1648       int ret = iter.next(); // Get item
1649       if (ret) {
1650         assert(iter.addr() == call_addr, "must find call");
1651         if (iter.type() == relocInfo::static_call_type) {
1652           is_static_call = true;
1653         } else {
1654           assert(iter.type() == relocInfo::virtual_call_type ||
1655                  iter.type() == relocInfo::opt_virtual_call_type
1656                 , "unexpected relocInfo. type");
1657         }
1658       } else {
1659         assert(!UseInlineCaches, "relocation info. must exist for this address");
1660       }
1661 
1662       // Cleaning the inline cache will force a new resolve. This is more robust
1663       // than directly setting it to the new destination, since resolving of calls
1664       // is always done through the same code path. (experience shows that it
1665       // leads to very hard to track down bugs, if an inline cache gets updated
1666       // to a wrong method). It should not be performance critical, since the
1667       // resolve is only done once.
1668 
1669       MutexLocker ml(CompiledIC_lock);
1670       if (is_static_call) {
1671         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1672         ssc->set_to_clean();
1673       } else {
1674         // compiled, dispatched call (which used to call an interpreted method)
1675         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1676         inline_cache->set_to_clean();
1677       }
1678     }
1679 
1680   }
1681 
1682   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1683 
1684 
1685 #ifndef PRODUCT
1686   Atomic::inc(&_wrong_method_ctr);
1687 
1688   if (TraceCallFixup) {
1689     ResourceMark rm(thread);
1690     tty->print("handle_wrong_method reresolving call to");
1691     callee_method->print_short_name(tty);
1692     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1693   }
1694 #endif
1695 
1696   return callee_method;
1697 }
1698 
1699 #ifdef ASSERT
1700 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1701                                                                 const BasicType* sig_bt,
1702                                                                 const VMRegPair* regs) {
1703   ResourceMark rm;
1704   const int total_args_passed = method->size_of_parameters();
1705   const VMRegPair*    regs_with_member_name = regs;
1706         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1707 
1708   const int member_arg_pos = total_args_passed - 1;
1709   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1710   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1711 
1712   const bool is_outgoing = method->is_method_handle_intrinsic();
1713   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1714 
1715   for (int i = 0; i < member_arg_pos; i++) {
1716     VMReg a =    regs_with_member_name[i].first();
1717     VMReg b = regs_without_member_name[i].first();
1718     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1719   }
1720   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1721 }
1722 #endif
1723 
1724 // ---------------------------------------------------------------------------
1725 // We are calling the interpreter via a c2i. Normally this would mean that
1726 // we were called by a compiled method. However we could have lost a race
1727 // where we went int -> i2c -> c2i and so the caller could in fact be
1728 // interpreted. If the caller is compiled we attempt to patch the caller
1729 // so he no longer calls into the interpreter.
1730 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1731   Method* moop(method);
1732 
1733   address entry_point = moop->from_compiled_entry();
1734 
1735   // It's possible that deoptimization can occur at a call site which hasn't
1736   // been resolved yet, in which case this function will be called from
1737   // an nmethod that has been patched for deopt and we can ignore the
1738   // request for a fixup.
1739   // Also it is possible that we lost a race in that from_compiled_entry
1740   // is now back to the i2c in that case we don't need to patch and if
1741   // we did we'd leap into space because the callsite needs to use
1742   // "to interpreter" stub in order to load up the Method*. Don't
1743   // ask me how I know this...
1744 
1745   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1746   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1747     return;
1748   }
1749 
1750   // The check above makes sure this is a nmethod.
1751   nmethod* nm = cb->as_nmethod_or_null();
1752   assert(nm, "must be");
1753 
1754   // Get the return PC for the passed caller PC.
1755   address return_pc = caller_pc + frame::pc_return_offset;
1756 
1757   // There is a benign race here. We could be attempting to patch to a compiled
1758   // entry point at the same time the callee is being deoptimized. If that is
1759   // the case then entry_point may in fact point to a c2i and we'd patch the
1760   // call site with the same old data. clear_code will set code() to NULL
1761   // at the end of it. If we happen to see that NULL then we can skip trying
1762   // to patch. If we hit the window where the callee has a c2i in the
1763   // from_compiled_entry and the NULL isn't present yet then we lose the race
1764   // and patch the code with the same old data. Asi es la vida.
1765 
1766   if (moop->code() == NULL) return;
1767 
1768   if (nm->is_in_use()) {
1769 
1770     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1771     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1772     if (NativeCall::is_call_before(return_pc)) {
1773       NativeCall *call = nativeCall_before(return_pc);
1774       //
1775       // bug 6281185. We might get here after resolving a call site to a vanilla
1776       // virtual call. Because the resolvee uses the verified entry it may then
1777       // see compiled code and attempt to patch the site by calling us. This would
1778       // then incorrectly convert the call site to optimized and its downhill from
1779       // there. If you're lucky you'll get the assert in the bugid, if not you've
1780       // just made a call site that could be megamorphic into a monomorphic site
1781       // for the rest of its life! Just another racing bug in the life of
1782       // fixup_callers_callsite ...
1783       //
1784       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1785       iter.next();
1786       assert(iter.has_current(), "must have a reloc at java call site");
1787       relocInfo::relocType typ = iter.reloc()->type();
1788       if (typ != relocInfo::static_call_type &&
1789            typ != relocInfo::opt_virtual_call_type &&
1790            typ != relocInfo::static_stub_type) {
1791         return;
1792       }
1793       address destination = call->destination();
1794       if (destination != entry_point) {
1795         CodeBlob* callee = CodeCache::find_blob(destination);
1796         // callee == cb seems weird. It means calling interpreter thru stub.
1797         if (callee == cb || callee->is_adapter_blob()) {
1798           // static call or optimized virtual
1799           if (TraceCallFixup) {
1800             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1801             moop->print_short_name(tty);
1802             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1803           }
1804           call->set_destination_mt_safe(entry_point);
1805         } else {
1806           if (TraceCallFixup) {
1807             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1808             moop->print_short_name(tty);
1809             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1810           }
1811           // assert is too strong could also be resolve destinations.
1812           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1813         }
1814       } else {
1815           if (TraceCallFixup) {
1816             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1817             moop->print_short_name(tty);
1818             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1819           }
1820       }
1821     }
1822   }
1823 IRT_END
1824 
1825 
1826 // same as JVM_Arraycopy, but called directly from compiled code
1827 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1828                                                 oopDesc* dest, jint dest_pos,
1829                                                 jint length,
1830                                                 JavaThread* thread)) {
1831 #ifndef PRODUCT
1832   _slow_array_copy_ctr++;
1833 #endif
1834   // Check if we have null pointers
1835   if (src == NULL || dest == NULL) {
1836     THROW(vmSymbols::java_lang_NullPointerException());
1837   }
1838   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1839   // even though the copy_array API also performs dynamic checks to ensure
1840   // that src and dest are truly arrays (and are conformable).
1841   // The copy_array mechanism is awkward and could be removed, but
1842   // the compilers don't call this function except as a last resort,
1843   // so it probably doesn't matter.
1844   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1845                                         (arrayOopDesc*)dest, dest_pos,
1846                                         length, thread);
1847 }
1848 JRT_END
1849 
1850 char* SharedRuntime::generate_class_cast_message(
1851     JavaThread* thread, const char* objName) {
1852 
1853   // Get target class name from the checkcast instruction
1854   vframeStream vfst(thread, true);
1855   assert(!vfst.at_end(), "Java frame must exist");
1856   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1857   Klass* targetKlass = vfst.method()->constants()->klass_at(
1858     cc.index(), thread);
1859   return generate_class_cast_message(objName, targetKlass->external_name());
1860 }
1861 
1862 char* SharedRuntime::generate_class_cast_message(
1863     const char* objName, const char* targetKlassName, const char* desc) {
1864   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1865 
1866   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1867   if (NULL == message) {
1868     // Shouldn't happen, but don't cause even more problems if it does
1869     message = const_cast<char*>(objName);
1870   } else {
1871     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1872   }
1873   return message;
1874 }
1875 
1876 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1877   (void) JavaThread::current()->reguard_stack();
1878 JRT_END
1879 
1880 
1881 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1882 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1883   // Disable ObjectSynchronizer::quick_enter() in default config
1884   // until JDK-8077392 is resolved.
1885   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1886     // Only try quick_enter() if we're not trying to reach a safepoint
1887     // so that the calling thread reaches the safepoint more quickly.
1888     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1889   }
1890   // NO_ASYNC required because an async exception on the state transition destructor
1891   // would leave you with the lock held and it would never be released.
1892   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1893   // and the model is that an exception implies the method failed.
1894   JRT_BLOCK_NO_ASYNC
1895   oop obj(_obj);
1896   if (PrintBiasedLockingStatistics) {
1897     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1898   }
1899   Handle h_obj(THREAD, obj);
1900   if (UseBiasedLocking) {
1901     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1902     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1903   } else {
1904     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1905   }
1906   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1907   JRT_BLOCK_END
1908 JRT_END
1909 
1910 // Handles the uncommon cases of monitor unlocking in compiled code
1911 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1912    oop obj(_obj);
1913   assert(JavaThread::current() == THREAD, "invariant");
1914   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1915   // testing was unable to ever fire the assert that guarded it so I have removed it.
1916   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1917 #undef MIGHT_HAVE_PENDING
1918 #ifdef MIGHT_HAVE_PENDING
1919   // Save and restore any pending_exception around the exception mark.
1920   // While the slow_exit must not throw an exception, we could come into
1921   // this routine with one set.
1922   oop pending_excep = NULL;
1923   const char* pending_file;
1924   int pending_line;
1925   if (HAS_PENDING_EXCEPTION) {
1926     pending_excep = PENDING_EXCEPTION;
1927     pending_file  = THREAD->exception_file();
1928     pending_line  = THREAD->exception_line();
1929     CLEAR_PENDING_EXCEPTION;
1930   }
1931 #endif /* MIGHT_HAVE_PENDING */
1932 
1933   {
1934     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1935     EXCEPTION_MARK;
1936     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1937   }
1938 
1939 #ifdef MIGHT_HAVE_PENDING
1940   if (pending_excep != NULL) {
1941     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1942   }
1943 #endif /* MIGHT_HAVE_PENDING */
1944 JRT_END
1945 
1946 #ifndef PRODUCT
1947 
1948 void SharedRuntime::print_statistics() {
1949   ttyLocker ttyl;
1950   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1951 
1952   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1953 
1954   SharedRuntime::print_ic_miss_histogram();
1955 
1956   if (CountRemovableExceptions) {
1957     if (_nof_removable_exceptions > 0) {
1958       Unimplemented(); // this counter is not yet incremented
1959       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1960     }
1961   }
1962 
1963   // Dump the JRT_ENTRY counters
1964   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1965   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1966   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1967   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1968   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1969   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1970   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1971 
1972   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1973   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1974   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1975   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1976   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1977 
1978   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1979   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1980   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1981   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1982   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1983   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1984   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1985   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1986   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1987   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1988   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1989   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1990   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1991   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1992   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1993   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1994 
1995   AdapterHandlerLibrary::print_statistics();
1996 
1997   if (xtty != NULL)  xtty->tail("statistics");
1998 }
1999 
2000 inline double percent(int x, int y) {
2001   return 100.0 * x / MAX2(y, 1);
2002 }
2003 
2004 class MethodArityHistogram {
2005  public:
2006   enum { MAX_ARITY = 256 };
2007  private:
2008   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2009   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2010   static int _max_arity;                      // max. arity seen
2011   static int _max_size;                       // max. arg size seen
2012 
2013   static void add_method_to_histogram(nmethod* nm) {
2014     Method* m = nm->method();
2015     ArgumentCount args(m->signature());
2016     int arity   = args.size() + (m->is_static() ? 0 : 1);
2017     int argsize = m->size_of_parameters();
2018     arity   = MIN2(arity, MAX_ARITY-1);
2019     argsize = MIN2(argsize, MAX_ARITY-1);
2020     int count = nm->method()->compiled_invocation_count();
2021     _arity_histogram[arity]  += count;
2022     _size_histogram[argsize] += count;
2023     _max_arity = MAX2(_max_arity, arity);
2024     _max_size  = MAX2(_max_size, argsize);
2025   }
2026 
2027   void print_histogram_helper(int n, int* histo, const char* name) {
2028     const int N = MIN2(5, n);
2029     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2030     double sum = 0;
2031     double weighted_sum = 0;
2032     int i;
2033     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2034     double rest = sum;
2035     double percent = sum / 100;
2036     for (i = 0; i <= N; i++) {
2037       rest -= histo[i];
2038       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2039     }
2040     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2041     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2042   }
2043 
2044   void print_histogram() {
2045     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2046     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2047     tty->print_cr("\nSame for parameter size (in words):");
2048     print_histogram_helper(_max_size, _size_histogram, "size");
2049     tty->cr();
2050   }
2051 
2052  public:
2053   MethodArityHistogram() {
2054     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2055     _max_arity = _max_size = 0;
2056     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2057     CodeCache::nmethods_do(add_method_to_histogram);
2058     print_histogram();
2059   }
2060 };
2061 
2062 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2063 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2064 int MethodArityHistogram::_max_arity;
2065 int MethodArityHistogram::_max_size;
2066 
2067 void SharedRuntime::print_call_statistics(int comp_total) {
2068   tty->print_cr("Calls from compiled code:");
2069   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2070   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2071   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2072   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2073   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2074   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2075   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2076   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2077   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2078   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2079   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2080   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2081   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2082   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2083   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2084   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2085   tty->cr();
2086   tty->print_cr("Note 1: counter updates are not MT-safe.");
2087   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2088   tty->print_cr("        %% in nested categories are relative to their category");
2089   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2090   tty->cr();
2091 
2092   MethodArityHistogram h;
2093 }
2094 #endif
2095 
2096 
2097 // A simple wrapper class around the calling convention information
2098 // that allows sharing of adapters for the same calling convention.
2099 class AdapterFingerPrint : public CHeapObj<mtCode> {
2100  private:
2101   enum {
2102     _basic_type_bits = 4,
2103     _basic_type_mask = right_n_bits(_basic_type_bits),
2104     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2105     _compact_int_count = 3
2106   };
2107   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2108   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2109 
2110   union {
2111     int  _compact[_compact_int_count];
2112     int* _fingerprint;
2113   } _value;
2114   int _length; // A negative length indicates the fingerprint is in the compact form,
2115                // Otherwise _value._fingerprint is the array.
2116 
2117   // Remap BasicTypes that are handled equivalently by the adapters.
2118   // These are correct for the current system but someday it might be
2119   // necessary to make this mapping platform dependent.
2120   static int adapter_encoding(BasicType in) {
2121     switch (in) {
2122       case T_BOOLEAN:
2123       case T_BYTE:
2124       case T_SHORT:
2125       case T_CHAR:
2126         // There are all promoted to T_INT in the calling convention
2127         return T_INT;
2128 
2129       case T_OBJECT:
2130       case T_ARRAY:
2131         // In other words, we assume that any register good enough for
2132         // an int or long is good enough for a managed pointer.
2133 #ifdef _LP64
2134         return T_LONG;
2135 #else
2136         return T_INT;
2137 #endif
2138 
2139       case T_INT:
2140       case T_LONG:
2141       case T_FLOAT:
2142       case T_DOUBLE:
2143       case T_VOID:
2144         return in;
2145 
2146       default:
2147         ShouldNotReachHere();
2148         return T_CONFLICT;
2149     }
2150   }
2151 
2152  public:
2153   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2154     // The fingerprint is based on the BasicType signature encoded
2155     // into an array of ints with eight entries per int.
2156     int* ptr;
2157     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2158     if (len <= _compact_int_count) {
2159       assert(_compact_int_count == 3, "else change next line");
2160       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2161       // Storing the signature encoded as signed chars hits about 98%
2162       // of the time.
2163       _length = -len;
2164       ptr = _value._compact;
2165     } else {
2166       _length = len;
2167       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2168       ptr = _value._fingerprint;
2169     }
2170 
2171     // Now pack the BasicTypes with 8 per int
2172     int sig_index = 0;
2173     for (int index = 0; index < len; index++) {
2174       int value = 0;
2175       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2176         int bt = ((sig_index < total_args_passed)
2177                   ? adapter_encoding(sig_bt[sig_index++])
2178                   : 0);
2179         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2180         value = (value << _basic_type_bits) | bt;
2181       }
2182       ptr[index] = value;
2183     }
2184   }
2185 
2186   ~AdapterFingerPrint() {
2187     if (_length > 0) {
2188       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2189     }
2190   }
2191 
2192   int value(int index) {
2193     if (_length < 0) {
2194       return _value._compact[index];
2195     }
2196     return _value._fingerprint[index];
2197   }
2198   int length() {
2199     if (_length < 0) return -_length;
2200     return _length;
2201   }
2202 
2203   bool is_compact() {
2204     return _length <= 0;
2205   }
2206 
2207   unsigned int compute_hash() {
2208     int hash = 0;
2209     for (int i = 0; i < length(); i++) {
2210       int v = value(i);
2211       hash = (hash << 8) ^ v ^ (hash >> 5);
2212     }
2213     return (unsigned int)hash;
2214   }
2215 
2216   const char* as_string() {
2217     stringStream st;
2218     st.print("0x");
2219     for (int i = 0; i < length(); i++) {
2220       st.print("%08x", value(i));
2221     }
2222     return st.as_string();
2223   }
2224 
2225   bool equals(AdapterFingerPrint* other) {
2226     if (other->_length != _length) {
2227       return false;
2228     }
2229     if (_length < 0) {
2230       assert(_compact_int_count == 3, "else change next line");
2231       return _value._compact[0] == other->_value._compact[0] &&
2232              _value._compact[1] == other->_value._compact[1] &&
2233              _value._compact[2] == other->_value._compact[2];
2234     } else {
2235       for (int i = 0; i < _length; i++) {
2236         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2237           return false;
2238         }
2239       }
2240     }
2241     return true;
2242   }
2243 };
2244 
2245 
2246 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2247 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2248   friend class AdapterHandlerTableIterator;
2249 
2250  private:
2251 
2252 #ifndef PRODUCT
2253   static int _lookups; // number of calls to lookup
2254   static int _buckets; // number of buckets checked
2255   static int _equals;  // number of buckets checked with matching hash
2256   static int _hits;    // number of successful lookups
2257   static int _compact; // number of equals calls with compact signature
2258 #endif
2259 
2260   AdapterHandlerEntry* bucket(int i) {
2261     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2262   }
2263 
2264  public:
2265   AdapterHandlerTable()
2266     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2267 
2268   // Create a new entry suitable for insertion in the table
2269   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2270     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2271     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2272     return entry;
2273   }
2274 
2275   // Insert an entry into the table
2276   void add(AdapterHandlerEntry* entry) {
2277     int index = hash_to_index(entry->hash());
2278     add_entry(index, entry);
2279   }
2280 
2281   void free_entry(AdapterHandlerEntry* entry) {
2282     entry->deallocate();
2283     BasicHashtable<mtCode>::free_entry(entry);
2284   }
2285 
2286   // Find a entry with the same fingerprint if it exists
2287   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2288     NOT_PRODUCT(_lookups++);
2289     AdapterFingerPrint fp(total_args_passed, sig_bt);
2290     unsigned int hash = fp.compute_hash();
2291     int index = hash_to_index(hash);
2292     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2293       NOT_PRODUCT(_buckets++);
2294       if (e->hash() == hash) {
2295         NOT_PRODUCT(_equals++);
2296         if (fp.equals(e->fingerprint())) {
2297 #ifndef PRODUCT
2298           if (fp.is_compact()) _compact++;
2299           _hits++;
2300 #endif
2301           return e;
2302         }
2303       }
2304     }
2305     return NULL;
2306   }
2307 
2308 #ifndef PRODUCT
2309   void print_statistics() {
2310     ResourceMark rm;
2311     int longest = 0;
2312     int empty = 0;
2313     int total = 0;
2314     int nonempty = 0;
2315     for (int index = 0; index < table_size(); index++) {
2316       int count = 0;
2317       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2318         count++;
2319       }
2320       if (count != 0) nonempty++;
2321       if (count == 0) empty++;
2322       if (count > longest) longest = count;
2323       total += count;
2324     }
2325     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2326                   empty, longest, total, total / (double)nonempty);
2327     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2328                   _lookups, _buckets, _equals, _hits, _compact);
2329   }
2330 #endif
2331 };
2332 
2333 
2334 #ifndef PRODUCT
2335 
2336 int AdapterHandlerTable::_lookups;
2337 int AdapterHandlerTable::_buckets;
2338 int AdapterHandlerTable::_equals;
2339 int AdapterHandlerTable::_hits;
2340 int AdapterHandlerTable::_compact;
2341 
2342 #endif
2343 
2344 class AdapterHandlerTableIterator : public StackObj {
2345  private:
2346   AdapterHandlerTable* _table;
2347   int _index;
2348   AdapterHandlerEntry* _current;
2349 
2350   void scan() {
2351     while (_index < _table->table_size()) {
2352       AdapterHandlerEntry* a = _table->bucket(_index);
2353       _index++;
2354       if (a != NULL) {
2355         _current = a;
2356         return;
2357       }
2358     }
2359   }
2360 
2361  public:
2362   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2363     scan();
2364   }
2365   bool has_next() {
2366     return _current != NULL;
2367   }
2368   AdapterHandlerEntry* next() {
2369     if (_current != NULL) {
2370       AdapterHandlerEntry* result = _current;
2371       _current = _current->next();
2372       if (_current == NULL) scan();
2373       return result;
2374     } else {
2375       return NULL;
2376     }
2377   }
2378 };
2379 
2380 
2381 // ---------------------------------------------------------------------------
2382 // Implementation of AdapterHandlerLibrary
2383 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2384 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2385 const int AdapterHandlerLibrary_size = 16*K;
2386 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2387 
2388 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2389   // Should be called only when AdapterHandlerLibrary_lock is active.
2390   if (_buffer == NULL) // Initialize lazily
2391       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2392   return _buffer;
2393 }
2394 
2395 extern "C" void unexpected_adapter_call() {
2396   ShouldNotCallThis();
2397 }
2398 
2399 void AdapterHandlerLibrary::initialize() {
2400   if (_adapters != NULL) return;
2401   _adapters = new AdapterHandlerTable();
2402 
2403   if (!CodeCacheExtensions::skip_compiler_support()) {
2404     // Create a special handler for abstract methods.  Abstract methods
2405     // are never compiled so an i2c entry is somewhat meaningless, but
2406     // throw AbstractMethodError just in case.
2407     // Pass wrong_method_abstract for the c2i transitions to return
2408     // AbstractMethodError for invalid invocations.
2409     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2410     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2411                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2412                                                                 wrong_method_abstract, wrong_method_abstract);
2413   } else {
2414     // Adapters are not supposed to be used.
2415     // Generate a special one to cause an error if used (and store this
2416     // singleton in place of the useless _abstract_method_error adapter).
2417     address entry = (address) &unexpected_adapter_call;
2418     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2419                                                                 entry,
2420                                                                 entry,
2421                                                                 entry);
2422 
2423   }
2424 }
2425 
2426 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2427                                                       address i2c_entry,
2428                                                       address c2i_entry,
2429                                                       address c2i_unverified_entry) {
2430   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2431 }
2432 
2433 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2434   // Use customized signature handler.  Need to lock around updates to
2435   // the AdapterHandlerTable (it is not safe for concurrent readers
2436   // and a single writer: this could be fixed if it becomes a
2437   // problem).
2438 
2439   ResourceMark rm;
2440 
2441   NOT_PRODUCT(int insts_size);
2442   AdapterBlob* new_adapter = NULL;
2443   AdapterHandlerEntry* entry = NULL;
2444   AdapterFingerPrint* fingerprint = NULL;
2445   {
2446     MutexLocker mu(AdapterHandlerLibrary_lock);
2447     // make sure data structure is initialized
2448     initialize();
2449 
2450     if (CodeCacheExtensions::skip_compiler_support()) {
2451       // adapters are useless and should not be used, including the
2452       // abstract_method_handler. However, some callers check that
2453       // an adapter was installed.
2454       // Return the singleton adapter, stored into _abstract_method_handler
2455       // and modified to cause an error if we ever call it.
2456       return _abstract_method_handler;
2457     }
2458 
2459     if (method->is_abstract()) {
2460       return _abstract_method_handler;
2461     }
2462 
2463     // Fill in the signature array, for the calling-convention call.
2464     int total_args_passed = method->size_of_parameters(); // All args on stack
2465 
2466     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2467     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2468     int i = 0;
2469     if (!method->is_static())  // Pass in receiver first
2470       sig_bt[i++] = T_OBJECT;
2471     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2472       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2473       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2474         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2475     }
2476     assert(i == total_args_passed, "");
2477 
2478     // Lookup method signature's fingerprint
2479     entry = _adapters->lookup(total_args_passed, sig_bt);
2480 
2481 #ifdef ASSERT
2482     AdapterHandlerEntry* shared_entry = NULL;
2483     // Start adapter sharing verification only after the VM is booted.
2484     if (VerifyAdapterSharing && (entry != NULL)) {
2485       shared_entry = entry;
2486       entry = NULL;
2487     }
2488 #endif
2489 
2490     if (entry != NULL) {
2491       return entry;
2492     }
2493 
2494     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2495     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2496 
2497     // Make a C heap allocated version of the fingerprint to store in the adapter
2498     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2499 
2500     // StubRoutines::code2() is initialized after this function can be called. As a result,
2501     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2502     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2503     // stub that ensure that an I2C stub is called from an interpreter frame.
2504     bool contains_all_checks = StubRoutines::code2() != NULL;
2505 
2506     // Create I2C & C2I handlers
2507     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2508     if (buf != NULL) {
2509       CodeBuffer buffer(buf);
2510       short buffer_locs[20];
2511       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2512                                              sizeof(buffer_locs)/sizeof(relocInfo));
2513 
2514       MacroAssembler _masm(&buffer);
2515       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2516                                                      total_args_passed,
2517                                                      comp_args_on_stack,
2518                                                      sig_bt,
2519                                                      regs,
2520                                                      fingerprint);
2521 #ifdef ASSERT
2522       if (VerifyAdapterSharing) {
2523         if (shared_entry != NULL) {
2524           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2525           // Release the one just created and return the original
2526           _adapters->free_entry(entry);
2527           return shared_entry;
2528         } else  {
2529           entry->save_code(buf->code_begin(), buffer.insts_size());
2530         }
2531       }
2532 #endif
2533 
2534       new_adapter = AdapterBlob::create(&buffer);
2535       NOT_PRODUCT(insts_size = buffer.insts_size());
2536     }
2537     if (new_adapter == NULL) {
2538       // CodeCache is full, disable compilation
2539       // Ought to log this but compile log is only per compile thread
2540       // and we're some non descript Java thread.
2541       return NULL; // Out of CodeCache space
2542     }
2543     entry->relocate(new_adapter->content_begin());
2544 #ifndef PRODUCT
2545     // debugging suppport
2546     if (PrintAdapterHandlers || PrintStubCode) {
2547       ttyLocker ttyl;
2548       entry->print_adapter_on(tty);
2549       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2550                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2551                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2552       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2553       if (Verbose || PrintStubCode) {
2554         address first_pc = entry->base_address();
2555         if (first_pc != NULL) {
2556           Disassembler::decode(first_pc, first_pc + insts_size);
2557           tty->cr();
2558         }
2559       }
2560     }
2561 #endif
2562     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2563     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2564     if (contains_all_checks || !VerifyAdapterCalls) {
2565       _adapters->add(entry);
2566     }
2567   }
2568   // Outside of the lock
2569   if (new_adapter != NULL) {
2570     char blob_id[256];
2571     jio_snprintf(blob_id,
2572                  sizeof(blob_id),
2573                  "%s(%s)@" PTR_FORMAT,
2574                  new_adapter->name(),
2575                  fingerprint->as_string(),
2576                  new_adapter->content_begin());
2577     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2578 
2579     if (JvmtiExport::should_post_dynamic_code_generated()) {
2580       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2581     }
2582   }
2583   return entry;
2584 }
2585 
2586 address AdapterHandlerEntry::base_address() {
2587   address base = _i2c_entry;
2588   if (base == NULL)  base = _c2i_entry;
2589   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2590   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2591   return base;
2592 }
2593 
2594 void AdapterHandlerEntry::relocate(address new_base) {
2595   address old_base = base_address();
2596   assert(old_base != NULL, "");
2597   ptrdiff_t delta = new_base - old_base;
2598   if (_i2c_entry != NULL)
2599     _i2c_entry += delta;
2600   if (_c2i_entry != NULL)
2601     _c2i_entry += delta;
2602   if (_c2i_unverified_entry != NULL)
2603     _c2i_unverified_entry += delta;
2604   assert(base_address() == new_base, "");
2605 }
2606 
2607 
2608 void AdapterHandlerEntry::deallocate() {
2609   delete _fingerprint;
2610 #ifdef ASSERT
2611   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2612 #endif
2613 }
2614 
2615 
2616 #ifdef ASSERT
2617 // Capture the code before relocation so that it can be compared
2618 // against other versions.  If the code is captured after relocation
2619 // then relative instructions won't be equivalent.
2620 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2621   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2622   _saved_code_length = length;
2623   memcpy(_saved_code, buffer, length);
2624 }
2625 
2626 
2627 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2628   if (length != _saved_code_length) {
2629     return false;
2630   }
2631 
2632   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2633 }
2634 #endif
2635 
2636 
2637 /**
2638  * Create a native wrapper for this native method.  The wrapper converts the
2639  * Java-compiled calling convention to the native convention, handles
2640  * arguments, and transitions to native.  On return from the native we transition
2641  * back to java blocking if a safepoint is in progress.
2642  */
2643 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2644   ResourceMark rm;
2645   nmethod* nm = NULL;
2646 
2647   assert(method->is_native(), "must be native");
2648   assert(method->is_method_handle_intrinsic() ||
2649          method->has_native_function(), "must have something valid to call!");
2650 
2651   {
2652     // Perform the work while holding the lock, but perform any printing outside the lock
2653     MutexLocker mu(AdapterHandlerLibrary_lock);
2654     // See if somebody beat us to it
2655     if (method->code() != NULL) {
2656       return;
2657     }
2658 
2659     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2660     assert(compile_id > 0, "Must generate native wrapper");
2661 
2662 
2663     ResourceMark rm;
2664     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2665     if (buf != NULL) {
2666       CodeBuffer buffer(buf);
2667       double locs_buf[20];
2668       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2669       MacroAssembler _masm(&buffer);
2670 
2671       // Fill in the signature array, for the calling-convention call.
2672       const int total_args_passed = method->size_of_parameters();
2673 
2674       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2675       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2676       int i=0;
2677       if (!method->is_static())  // Pass in receiver first
2678         sig_bt[i++] = T_OBJECT;
2679       SignatureStream ss(method->signature());
2680       for (; !ss.at_return_type(); ss.next()) {
2681         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2682         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2683           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2684       }
2685       assert(i == total_args_passed, "");
2686       BasicType ret_type = ss.type();
2687 
2688       // Now get the compiled-Java layout as input (or output) arguments.
2689       // NOTE: Stubs for compiled entry points of method handle intrinsics
2690       // are just trampolines so the argument registers must be outgoing ones.
2691       const bool is_outgoing = method->is_method_handle_intrinsic();
2692       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2693 
2694       // Generate the compiled-to-native wrapper code
2695       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2696 
2697       if (nm != NULL) {
2698         method->set_code(method, nm);
2699 
2700         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2701         if (directive->PrintAssemblyOption) {
2702           Disassembler::decode(nm, tty);
2703         }
2704         DirectivesStack::release(directive);
2705       }
2706     }
2707   } // Unlock AdapterHandlerLibrary_lock
2708 
2709 
2710   // Install the generated code.
2711   if (nm != NULL) {
2712     if (PrintCompilation) {
2713       ttyLocker ttyl;
2714       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2715     }
2716     nm->post_compiled_method_load_event();
2717   }
2718 }
2719 
2720 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2721   assert(thread == JavaThread::current(), "must be");
2722   // The code is about to enter a JNI lazy critical native method and
2723   // _needs_gc is true, so if this thread is already in a critical
2724   // section then just return, otherwise this thread should block
2725   // until needs_gc has been cleared.
2726   if (thread->in_critical()) {
2727     return;
2728   }
2729   // Lock and unlock a critical section to give the system a chance to block
2730   GC_locker::lock_critical(thread);
2731   GC_locker::unlock_critical(thread);
2732 JRT_END
2733 
2734 // -------------------------------------------------------------------------
2735 // Java-Java calling convention
2736 // (what you use when Java calls Java)
2737 
2738 //------------------------------name_for_receiver----------------------------------
2739 // For a given signature, return the VMReg for parameter 0.
2740 VMReg SharedRuntime::name_for_receiver() {
2741   VMRegPair regs;
2742   BasicType sig_bt = T_OBJECT;
2743   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2744   // Return argument 0 register.  In the LP64 build pointers
2745   // take 2 registers, but the VM wants only the 'main' name.
2746   return regs.first();
2747 }
2748 
2749 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2750   // This method is returning a data structure allocating as a
2751   // ResourceObject, so do not put any ResourceMarks in here.
2752   char *s = sig->as_C_string();
2753   int len = (int)strlen(s);
2754   s++; len--;                   // Skip opening paren
2755   char *t = s+len;
2756   while (*(--t) != ')');      // Find close paren
2757 
2758   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2759   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2760   int cnt = 0;
2761   if (has_receiver) {
2762     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2763   }
2764 
2765   while (s < t) {
2766     switch (*s++) {            // Switch on signature character
2767     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2768     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2769     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2770     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2771     case 'I': sig_bt[cnt++] = T_INT;     break;
2772     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2773     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2774     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2775     case 'V': sig_bt[cnt++] = T_VOID;    break;
2776     case 'L':                   // Oop
2777       while (*s++ != ';');   // Skip signature
2778       sig_bt[cnt++] = T_OBJECT;
2779       break;
2780     case '[': {                 // Array
2781       do {                      // Skip optional size
2782         while (*s >= '0' && *s <= '9') s++;
2783       } while (*s++ == '[');   // Nested arrays?
2784       // Skip element type
2785       if (s[-1] == 'L')
2786         while (*s++ != ';'); // Skip signature
2787       sig_bt[cnt++] = T_ARRAY;
2788       break;
2789     }
2790     default : ShouldNotReachHere();
2791     }
2792   }
2793 
2794   if (has_appendix) {
2795     sig_bt[cnt++] = T_OBJECT;
2796   }
2797 
2798   assert(cnt < 256, "grow table size");
2799 
2800   int comp_args_on_stack;
2801   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2802 
2803   // the calling convention doesn't count out_preserve_stack_slots so
2804   // we must add that in to get "true" stack offsets.
2805 
2806   if (comp_args_on_stack) {
2807     for (int i = 0; i < cnt; i++) {
2808       VMReg reg1 = regs[i].first();
2809       if (reg1->is_stack()) {
2810         // Yuck
2811         reg1 = reg1->bias(out_preserve_stack_slots());
2812       }
2813       VMReg reg2 = regs[i].second();
2814       if (reg2->is_stack()) {
2815         // Yuck
2816         reg2 = reg2->bias(out_preserve_stack_slots());
2817       }
2818       regs[i].set_pair(reg2, reg1);
2819     }
2820   }
2821 
2822   // results
2823   *arg_size = cnt;
2824   return regs;
2825 }
2826 
2827 // OSR Migration Code
2828 //
2829 // This code is used convert interpreter frames into compiled frames.  It is
2830 // called from very start of a compiled OSR nmethod.  A temp array is
2831 // allocated to hold the interesting bits of the interpreter frame.  All
2832 // active locks are inflated to allow them to move.  The displaced headers and
2833 // active interpreter locals are copied into the temp buffer.  Then we return
2834 // back to the compiled code.  The compiled code then pops the current
2835 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2836 // copies the interpreter locals and displaced headers where it wants.
2837 // Finally it calls back to free the temp buffer.
2838 //
2839 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2840 
2841 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2842 
2843   //
2844   // This code is dependent on the memory layout of the interpreter local
2845   // array and the monitors. On all of our platforms the layout is identical
2846   // so this code is shared. If some platform lays the their arrays out
2847   // differently then this code could move to platform specific code or
2848   // the code here could be modified to copy items one at a time using
2849   // frame accessor methods and be platform independent.
2850 
2851   frame fr = thread->last_frame();
2852   assert(fr.is_interpreted_frame(), "");
2853   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2854 
2855   // Figure out how many monitors are active.
2856   int active_monitor_count = 0;
2857   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2858        kptr < fr.interpreter_frame_monitor_begin();
2859        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2860     if (kptr->obj() != NULL) active_monitor_count++;
2861   }
2862 
2863   // QQQ we could place number of active monitors in the array so that compiled code
2864   // could double check it.
2865 
2866   Method* moop = fr.interpreter_frame_method();
2867   int max_locals = moop->max_locals();
2868   // Allocate temp buffer, 1 word per local & 2 per active monitor
2869   int buf_size_words = max_locals + active_monitor_count*2;
2870   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2871 
2872   // Copy the locals.  Order is preserved so that loading of longs works.
2873   // Since there's no GC I can copy the oops blindly.
2874   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2875   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2876                        (HeapWord*)&buf[0],
2877                        max_locals);
2878 
2879   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2880   int i = max_locals;
2881   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2882        kptr2 < fr.interpreter_frame_monitor_begin();
2883        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2884     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2885       BasicLock *lock = kptr2->lock();
2886       // Inflate so the displaced header becomes position-independent
2887       if (lock->displaced_header()->is_unlocked())
2888         ObjectSynchronizer::inflate_helper(kptr2->obj());
2889       // Now the displaced header is free to move
2890       buf[i++] = (intptr_t)lock->displaced_header();
2891       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2892     }
2893   }
2894   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2895 
2896   return buf;
2897 JRT_END
2898 
2899 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2900   FREE_C_HEAP_ARRAY(intptr_t, buf);
2901 JRT_END
2902 
2903 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
2904   AdapterHandlerTableIterator iter(_adapters);
2905   while (iter.has_next()) {
2906     AdapterHandlerEntry* a = iter.next();
2907     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2908   }
2909   return false;
2910 }
2911 
2912 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
2913   AdapterHandlerTableIterator iter(_adapters);
2914   while (iter.has_next()) {
2915     AdapterHandlerEntry* a = iter.next();
2916     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2917       st->print("Adapter for signature: ");
2918       a->print_adapter_on(tty);
2919       return;
2920     }
2921   }
2922   assert(false, "Should have found handler");
2923 }
2924 
2925 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2926   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2927                p2i(this), fingerprint()->as_string(),
2928                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
2929 
2930 }
2931 
2932 #ifndef PRODUCT
2933 
2934 void AdapterHandlerLibrary::print_statistics() {
2935   _adapters->print_statistics();
2936 }
2937 
2938 #endif /* PRODUCT */