1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "prims/forte.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiRedefineClassesTrace.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/compilationPolicy.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/vframe.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "utilities/copy.hpp"
  60 #include "utilities/dtrace.hpp"
  61 #include "utilities/events.hpp"
  62 #include "utilities/hashtable.inline.hpp"
  63 #include "utilities/macros.hpp"
  64 #include "utilities/xmlstream.hpp"
  65 #ifdef COMPILER1
  66 #include "c1/c1_Runtime1.hpp"
  67 #endif
  68 
  69 // Shared stub locations
  70 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  71 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  72 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  73 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  74 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  76 
  77 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  78 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  79 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  81 
  82 #ifdef COMPILER2
  83 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  84 #endif // COMPILER2
  85 
  86 
  87 //----------------------------generate_stubs-----------------------------------
  88 void SharedRuntime::generate_stubs() {
  89   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  90   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  91   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  92   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  93   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  94   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  95 
  96 #if defined(COMPILER2) || INCLUDE_JVMCI
  97   // Vectors are generated only by C2 and JVMCI.
  98   bool support_wide = is_wide_vector(MaxVectorSize);
  99   if (support_wide) {
 100     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 101   }
 102 #endif // COMPILER2 || INCLUDE_JVMCI
 103   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 104   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 105 
 106   generate_deopt_blob();
 107 
 108 #ifdef COMPILER2
 109   generate_uncommon_trap_blob();
 110 #endif // COMPILER2
 111 }
 112 
 113 #include <math.h>
 114 
 115 // Implementation of SharedRuntime
 116 
 117 #ifndef PRODUCT
 118 // For statistics
 119 int SharedRuntime::_ic_miss_ctr = 0;
 120 int SharedRuntime::_wrong_method_ctr = 0;
 121 int SharedRuntime::_resolve_static_ctr = 0;
 122 int SharedRuntime::_resolve_virtual_ctr = 0;
 123 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 124 int SharedRuntime::_implicit_null_throws = 0;
 125 int SharedRuntime::_implicit_div0_throws = 0;
 126 int SharedRuntime::_throw_null_ctr = 0;
 127 
 128 int SharedRuntime::_nof_normal_calls = 0;
 129 int SharedRuntime::_nof_optimized_calls = 0;
 130 int SharedRuntime::_nof_inlined_calls = 0;
 131 int SharedRuntime::_nof_megamorphic_calls = 0;
 132 int SharedRuntime::_nof_static_calls = 0;
 133 int SharedRuntime::_nof_inlined_static_calls = 0;
 134 int SharedRuntime::_nof_interface_calls = 0;
 135 int SharedRuntime::_nof_optimized_interface_calls = 0;
 136 int SharedRuntime::_nof_inlined_interface_calls = 0;
 137 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 138 int SharedRuntime::_nof_removable_exceptions = 0;
 139 
 140 int SharedRuntime::_new_instance_ctr=0;
 141 int SharedRuntime::_new_array_ctr=0;
 142 int SharedRuntime::_multi1_ctr=0;
 143 int SharedRuntime::_multi2_ctr=0;
 144 int SharedRuntime::_multi3_ctr=0;
 145 int SharedRuntime::_multi4_ctr=0;
 146 int SharedRuntime::_multi5_ctr=0;
 147 int SharedRuntime::_mon_enter_stub_ctr=0;
 148 int SharedRuntime::_mon_exit_stub_ctr=0;
 149 int SharedRuntime::_mon_enter_ctr=0;
 150 int SharedRuntime::_mon_exit_ctr=0;
 151 int SharedRuntime::_partial_subtype_ctr=0;
 152 int SharedRuntime::_jbyte_array_copy_ctr=0;
 153 int SharedRuntime::_jshort_array_copy_ctr=0;
 154 int SharedRuntime::_jint_array_copy_ctr=0;
 155 int SharedRuntime::_jlong_array_copy_ctr=0;
 156 int SharedRuntime::_oop_array_copy_ctr=0;
 157 int SharedRuntime::_checkcast_array_copy_ctr=0;
 158 int SharedRuntime::_unsafe_array_copy_ctr=0;
 159 int SharedRuntime::_generic_array_copy_ctr=0;
 160 int SharedRuntime::_slow_array_copy_ctr=0;
 161 int SharedRuntime::_find_handler_ctr=0;
 162 int SharedRuntime::_rethrow_ctr=0;
 163 
 164 int     SharedRuntime::_ICmiss_index                    = 0;
 165 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 166 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 167 
 168 
 169 void SharedRuntime::trace_ic_miss(address at) {
 170   for (int i = 0; i < _ICmiss_index; i++) {
 171     if (_ICmiss_at[i] == at) {
 172       _ICmiss_count[i]++;
 173       return;
 174     }
 175   }
 176   int index = _ICmiss_index++;
 177   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 178   _ICmiss_at[index] = at;
 179   _ICmiss_count[index] = 1;
 180 }
 181 
 182 void SharedRuntime::print_ic_miss_histogram() {
 183   if (ICMissHistogram) {
 184     tty->print_cr("IC Miss Histogram:");
 185     int tot_misses = 0;
 186     for (int i = 0; i < _ICmiss_index; i++) {
 187       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 188       tot_misses += _ICmiss_count[i];
 189     }
 190     tty->print_cr("Total IC misses: %7d", tot_misses);
 191   }
 192 }
 193 #endif // PRODUCT
 194 
 195 #if INCLUDE_ALL_GCS
 196 
 197 // G1 write-barrier pre: executed before a pointer store.
 198 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 199   if (orig == NULL) {
 200     assert(false, "should be optimized out");
 201     return;
 202   }
 203   assert(orig->is_oop(true /* ignore mark word */), "Error");
 204   // store the original value that was in the field reference
 205   thread->satb_mark_queue().enqueue(orig);
 206 JRT_END
 207 
 208 // G1 write-barrier post: executed after a pointer store.
 209 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 210   thread->dirty_card_queue().enqueue(card_addr);
 211 JRT_END
 212 
 213 #endif // INCLUDE_ALL_GCS
 214 
 215 
 216 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 217   return x * y;
 218 JRT_END
 219 
 220 
 221 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 222   if (x == min_jlong && y == CONST64(-1)) {
 223     return x;
 224   } else {
 225     return x / y;
 226   }
 227 JRT_END
 228 
 229 
 230 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 231   if (x == min_jlong && y == CONST64(-1)) {
 232     return 0;
 233   } else {
 234     return x % y;
 235   }
 236 JRT_END
 237 
 238 
 239 const juint  float_sign_mask  = 0x7FFFFFFF;
 240 const juint  float_infinity   = 0x7F800000;
 241 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 242 const julong double_infinity  = CONST64(0x7FF0000000000000);
 243 
 244 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 245 #ifdef _WIN64
 246   // 64-bit Windows on amd64 returns the wrong values for
 247   // infinity operands.
 248   union { jfloat f; juint i; } xbits, ybits;
 249   xbits.f = x;
 250   ybits.f = y;
 251   // x Mod Infinity == x unless x is infinity
 252   if (((xbits.i & float_sign_mask) != float_infinity) &&
 253        ((ybits.i & float_sign_mask) == float_infinity) ) {
 254     return x;
 255   }
 256 #endif
 257   return ((jfloat)fmod((double)x,(double)y));
 258 JRT_END
 259 
 260 
 261 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 262 #ifdef _WIN64
 263   union { jdouble d; julong l; } xbits, ybits;
 264   xbits.d = x;
 265   ybits.d = y;
 266   // x Mod Infinity == x unless x is infinity
 267   if (((xbits.l & double_sign_mask) != double_infinity) &&
 268        ((ybits.l & double_sign_mask) == double_infinity) ) {
 269     return x;
 270   }
 271 #endif
 272   return ((jdouble)fmod((double)x,(double)y));
 273 JRT_END
 274 
 275 #ifdef __SOFTFP__
 276 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 277   return x + y;
 278 JRT_END
 279 
 280 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 281   return x - y;
 282 JRT_END
 283 
 284 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 285   return x * y;
 286 JRT_END
 287 
 288 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 289   return x / y;
 290 JRT_END
 291 
 292 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 293   return x + y;
 294 JRT_END
 295 
 296 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 297   return x - y;
 298 JRT_END
 299 
 300 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 301   return x * y;
 302 JRT_END
 303 
 304 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 305   return x / y;
 306 JRT_END
 307 
 308 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 309   return (jfloat)x;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 313   return (jdouble)x;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 317   return (jdouble)x;
 318 JRT_END
 319 
 320 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 321   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 322 JRT_END
 323 
 324 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 325   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 326 JRT_END
 327 
 328 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 329   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 330 JRT_END
 331 
 332 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 333   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 334 JRT_END
 335 
 336 // Functions to return the opposite of the aeabi functions for nan.
 337 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 338   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 339 JRT_END
 340 
 341 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 342   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 343 JRT_END
 344 
 345 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 346   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 347 JRT_END
 348 
 349 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 350   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 351 JRT_END
 352 
 353 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 354   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 355 JRT_END
 356 
 357 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 358   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 362   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 366   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 // Intrinsics make gcc generate code for these.
 370 float  SharedRuntime::fneg(float f)   {
 371   return -f;
 372 }
 373 
 374 double SharedRuntime::dneg(double f)  {
 375   return -f;
 376 }
 377 
 378 #endif // __SOFTFP__
 379 
 380 #if defined(__SOFTFP__) || defined(E500V2)
 381 // Intrinsics make gcc generate code for these.
 382 double SharedRuntime::dabs(double f)  {
 383   return (f <= (double)0.0) ? (double)0.0 - f : f;
 384 }
 385 
 386 #endif
 387 
 388 #if defined(__SOFTFP__) || defined(PPC32)
 389 double SharedRuntime::dsqrt(double f) {
 390   return sqrt(f);
 391 }
 392 #endif
 393 
 394 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 395   if (g_isnan(x))
 396     return 0;
 397   if (x >= (jfloat) max_jint)
 398     return max_jint;
 399   if (x <= (jfloat) min_jint)
 400     return min_jint;
 401   return (jint) x;
 402 JRT_END
 403 
 404 
 405 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 406   if (g_isnan(x))
 407     return 0;
 408   if (x >= (jfloat) max_jlong)
 409     return max_jlong;
 410   if (x <= (jfloat) min_jlong)
 411     return min_jlong;
 412   return (jlong) x;
 413 JRT_END
 414 
 415 
 416 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 417   if (g_isnan(x))
 418     return 0;
 419   if (x >= (jdouble) max_jint)
 420     return max_jint;
 421   if (x <= (jdouble) min_jint)
 422     return min_jint;
 423   return (jint) x;
 424 JRT_END
 425 
 426 
 427 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 428   if (g_isnan(x))
 429     return 0;
 430   if (x >= (jdouble) max_jlong)
 431     return max_jlong;
 432   if (x <= (jdouble) min_jlong)
 433     return min_jlong;
 434   return (jlong) x;
 435 JRT_END
 436 
 437 
 438 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 439   return (jfloat)x;
 440 JRT_END
 441 
 442 
 443 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 444   return (jfloat)x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 449   return (jdouble)x;
 450 JRT_END
 451 
 452 // Exception handling across interpreter/compiler boundaries
 453 //
 454 // exception_handler_for_return_address(...) returns the continuation address.
 455 // The continuation address is the entry point of the exception handler of the
 456 // previous frame depending on the return address.
 457 
 458 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 459   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 460   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 461 
 462   // Reset method handle flag.
 463   thread->set_is_method_handle_return(false);
 464 
 465 #if INCLUDE_JVMCI
 466   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 467   // and other exception handler continuations do not read it
 468   thread->set_exception_pc(NULL);
 469 #endif
 470 
 471   // The fastest case first
 472   CodeBlob* blob = CodeCache::find_blob(return_address);
 473   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 474   if (nm != NULL) {
 475     // Set flag if return address is a method handle call site.
 476     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 477     // native nmethods don't have exception handlers
 478     assert(!nm->is_native_method(), "no exception handler");
 479     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 480     if (nm->is_deopt_pc(return_address)) {
 481       // If we come here because of a stack overflow, the stack may be
 482       // unguarded. Reguard the stack otherwise if we return to the
 483       // deopt blob and the stack bang causes a stack overflow we
 484       // crash.
 485       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 486       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 487       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 488       return SharedRuntime::deopt_blob()->unpack_with_exception();
 489     } else {
 490       return nm->exception_begin();
 491     }
 492   }
 493 
 494   // Entry code
 495   if (StubRoutines::returns_to_call_stub(return_address)) {
 496     return StubRoutines::catch_exception_entry();
 497   }
 498   // Interpreted code
 499   if (Interpreter::contains(return_address)) {
 500     return Interpreter::rethrow_exception_entry();
 501   }
 502 
 503   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 504   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 505 
 506 #ifndef PRODUCT
 507   { ResourceMark rm;
 508     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 509     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 510     tty->print_cr("b) other problem");
 511   }
 512 #endif // PRODUCT
 513 
 514   ShouldNotReachHere();
 515   return NULL;
 516 }
 517 
 518 
 519 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 520   return raw_exception_handler_for_return_address(thread, return_address);
 521 JRT_END
 522 
 523 
 524 address SharedRuntime::get_poll_stub(address pc) {
 525   address stub;
 526   // Look up the code blob
 527   CodeBlob *cb = CodeCache::find_blob(pc);
 528 
 529   // Should be an nmethod
 530   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 531 
 532   // Look up the relocation information
 533   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 534     "safepoint polling: type must be poll");
 535 
 536 #ifdef ASSERT
 537   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 538     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 539     Disassembler::decode(cb);
 540     fatal("Only polling locations are used for safepoint");
 541   }
 542 #endif
 543 
 544   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 545   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 546   if (at_poll_return) {
 547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 548            "polling page return stub not created yet");
 549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 550   } else if (has_wide_vectors) {
 551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 552            "polling page vectors safepoint stub not created yet");
 553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 554   } else {
 555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 556            "polling page safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 558   }
 559 #ifndef PRODUCT
 560   if (TraceSafepoint) {
 561     char buf[256];
 562     jio_snprintf(buf, sizeof(buf),
 563                  "... found polling page %s exception at pc = "
 564                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                  at_poll_return ? "return" : "loop",
 566                  (intptr_t)pc, (intptr_t)stub);
 567     tty->print_raw_cr(buf);
 568   }
 569 #endif // PRODUCT
 570   return stub;
 571 }
 572 
 573 
 574 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 575   assert(caller.is_interpreted_frame(), "");
 576   int args_size = ArgumentSizeComputer(sig).size() + 1;
 577   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 578   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 579   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 580   return result;
 581 }
 582 
 583 
 584 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 585   if (JvmtiExport::can_post_on_exceptions()) {
 586     vframeStream vfst(thread, true);
 587     methodHandle method = methodHandle(thread, vfst.method());
 588     address bcp = method()->bcp_from(vfst.bci());
 589     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 590   }
 591   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 592 }
 593 
 594 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 595   Handle h_exception = Exceptions::new_exception(thread, name, message);
 596   throw_and_post_jvmti_exception(thread, h_exception);
 597 }
 598 
 599 // The interpreter code to call this tracing function is only
 600 // called/generated when TraceRedefineClasses has the right bits
 601 // set. Since obsolete methods are never compiled, we don't have
 602 // to modify the compilers to generate calls to this function.
 603 //
 604 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 605     JavaThread* thread, Method* method))
 606   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 607 
 608   if (method->is_obsolete()) {
 609     // We are calling an obsolete method, but this is not necessarily
 610     // an error. Our method could have been redefined just after we
 611     // fetched the Method* from the constant pool.
 612 
 613     // RC_TRACE macro has an embedded ResourceMark
 614     RC_TRACE_WITH_THREAD(0x00001000, thread,
 615                          ("calling obsolete method '%s'",
 616                           method->name_and_sig_as_C_string()));
 617     if (RC_TRACE_ENABLED(0x00002000)) {
 618       // this option is provided to debug calls to obsolete methods
 619       guarantee(false, "faulting at call to an obsolete method.");
 620     }
 621   }
 622   return 0;
 623 JRT_END
 624 
 625 // ret_pc points into caller; we are returning caller's exception handler
 626 // for given exception
 627 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 628                                                     bool force_unwind, bool top_frame_only) {
 629   assert(nm != NULL, "must exist");
 630   ResourceMark rm;
 631 
 632 #if INCLUDE_JVMCI
 633   if (nm->is_compiled_by_jvmci()) {
 634     // lookup exception handler for this pc
 635     int catch_pco = ret_pc - nm->code_begin();
 636     ExceptionHandlerTable table(nm);
 637     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 638     if (t != NULL) {
 639       return nm->code_begin() + t->pco();
 640     } else {
 641       // there is no exception handler for this pc => deoptimize
 642       nm->make_not_entrant();
 643 
 644       // Use Deoptimization::deoptimize for all of its side-effects:
 645       // revoking biases of monitors, gathering traps statistics, logging...
 646       // it also patches the return pc but we do not care about that
 647       // since we return a continuation to the deopt_blob below.
 648       JavaThread* thread = JavaThread::current();
 649       RegisterMap reg_map(thread, UseBiasedLocking);
 650       frame runtime_frame = thread->last_frame();
 651       frame caller_frame = runtime_frame.sender(&reg_map);
 652       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 653 
 654       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 655     }
 656   }
 657 #endif // INCLUDE_JVMCI
 658 
 659   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 660   // determine handler bci, if any
 661   EXCEPTION_MARK;
 662 
 663   int handler_bci = -1;
 664   int scope_depth = 0;
 665   if (!force_unwind) {
 666     int bci = sd->bci();
 667     bool recursive_exception = false;
 668     do {
 669       bool skip_scope_increment = false;
 670       // exception handler lookup
 671       KlassHandle ek (THREAD, exception->klass());
 672       methodHandle mh(THREAD, sd->method());
 673       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 674       if (HAS_PENDING_EXCEPTION) {
 675         recursive_exception = true;
 676         // We threw an exception while trying to find the exception handler.
 677         // Transfer the new exception to the exception handle which will
 678         // be set into thread local storage, and do another lookup for an
 679         // exception handler for this exception, this time starting at the
 680         // BCI of the exception handler which caused the exception to be
 681         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 682         // argument to ensure that the correct exception is thrown (4870175).
 683         exception = Handle(THREAD, PENDING_EXCEPTION);
 684         CLEAR_PENDING_EXCEPTION;
 685         if (handler_bci >= 0) {
 686           bci = handler_bci;
 687           handler_bci = -1;
 688           skip_scope_increment = true;
 689         }
 690       }
 691       else {
 692         recursive_exception = false;
 693       }
 694       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 695         sd = sd->sender();
 696         if (sd != NULL) {
 697           bci = sd->bci();
 698         }
 699         ++scope_depth;
 700       }
 701     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 702   }
 703 
 704   // found handling method => lookup exception handler
 705   int catch_pco = ret_pc - nm->code_begin();
 706 
 707   ExceptionHandlerTable table(nm);
 708   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 709   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 710     // Allow abbreviated catch tables.  The idea is to allow a method
 711     // to materialize its exceptions without committing to the exact
 712     // routing of exceptions.  In particular this is needed for adding
 713     // a synthetic handler to unlock monitors when inlining
 714     // synchronized methods since the unlock path isn't represented in
 715     // the bytecodes.
 716     t = table.entry_for(catch_pco, -1, 0);
 717   }
 718 
 719 #ifdef COMPILER1
 720   if (t == NULL && nm->is_compiled_by_c1()) {
 721     assert(nm->unwind_handler_begin() != NULL, "");
 722     return nm->unwind_handler_begin();
 723   }
 724 #endif
 725 
 726   if (t == NULL) {
 727     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 728     tty->print_cr("   Exception:");
 729     exception->print();
 730     tty->cr();
 731     tty->print_cr(" Compiled exception table :");
 732     table.print();
 733     nm->print_code();
 734     guarantee(false, "missing exception handler");
 735     return NULL;
 736   }
 737 
 738   return nm->code_begin() + t->pco();
 739 }
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 742   // These errors occur only at call sites
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 747   // These errors occur only at call sites
 748   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 749 JRT_END
 750 
 751 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 760   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 761   // cache sites (when the callee activation is not yet set up) so we are at a call site
 762   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 763 JRT_END
 764 
 765 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 766   // We avoid using the normal exception construction in this case because
 767   // it performs an upcall to Java, and we're already out of stack space.
 768   Klass* k = SystemDictionary::StackOverflowError_klass();
 769   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 770   Handle exception (thread, exception_oop);
 771   if (StackTraceInThrowable) {
 772     java_lang_Throwable::fill_in_stack_trace(exception);
 773   }
 774   // Increment counter for hs_err file reporting
 775   Atomic::inc(&Exceptions::_stack_overflow_errors);
 776   throw_and_post_jvmti_exception(thread, exception);
 777 JRT_END
 778 
 779 #if INCLUDE_JVMCI
 780 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 781   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 782   thread->set_jvmci_implicit_exception_pc(pc);
 783   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 784   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 785 }
 786 #endif // INCLUDE_JVMCI
 787 
 788 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 789                                                            address pc,
 790                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 791 {
 792   address target_pc = NULL;
 793 
 794   if (Interpreter::contains(pc)) {
 795 #ifdef CC_INTERP
 796     // C++ interpreter doesn't throw implicit exceptions
 797     ShouldNotReachHere();
 798 #else
 799     switch (exception_kind) {
 800       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 801       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 802       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 803       default:                      ShouldNotReachHere();
 804     }
 805 #endif // !CC_INTERP
 806   } else {
 807     switch (exception_kind) {
 808       case STACK_OVERFLOW: {
 809         // Stack overflow only occurs upon frame setup; the callee is
 810         // going to be unwound. Dispatch to a shared runtime stub
 811         // which will cause the StackOverflowError to be fabricated
 812         // and processed.
 813         // Stack overflow should never occur during deoptimization:
 814         // the compiled method bangs the stack by as much as the
 815         // interpreter would need in case of a deoptimization. The
 816         // deoptimization blob and uncommon trap blob bang the stack
 817         // in a debug VM to verify the correctness of the compiled
 818         // method stack banging.
 819         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 820         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 821         return StubRoutines::throw_StackOverflowError_entry();
 822       }
 823 
 824       case IMPLICIT_NULL: {
 825         if (VtableStubs::contains(pc)) {
 826           // We haven't yet entered the callee frame. Fabricate an
 827           // exception and begin dispatching it in the caller. Since
 828           // the caller was at a call site, it's safe to destroy all
 829           // caller-saved registers, as these entry points do.
 830           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 831 
 832           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 833           if (vt_stub == NULL) return NULL;
 834 
 835           if (vt_stub->is_abstract_method_error(pc)) {
 836             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 837             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 838             return StubRoutines::throw_AbstractMethodError_entry();
 839           } else {
 840             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 841             return StubRoutines::throw_NullPointerException_at_call_entry();
 842           }
 843         } else {
 844           CodeBlob* cb = CodeCache::find_blob(pc);
 845 
 846           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 847           if (cb == NULL) return NULL;
 848 
 849           // Exception happened in CodeCache. Must be either:
 850           // 1. Inline-cache check in C2I handler blob,
 851           // 2. Inline-cache check in nmethod, or
 852           // 3. Implicit null exception in nmethod
 853 
 854           if (!cb->is_nmethod()) {
 855             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 856             if (!is_in_blob) {
 857               // Allow normal crash reporting to handle this
 858               return NULL;
 859             }
 860             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 861             // There is no handler here, so we will simply unwind.
 862             return StubRoutines::throw_NullPointerException_at_call_entry();
 863           }
 864 
 865           // Otherwise, it's an nmethod.  Consult its exception handlers.
 866           nmethod* nm = (nmethod*)cb;
 867           if (nm->inlinecache_check_contains(pc)) {
 868             // exception happened inside inline-cache check code
 869             // => the nmethod is not yet active (i.e., the frame
 870             // is not set up yet) => use return address pushed by
 871             // caller => don't push another return address
 872             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 873             return StubRoutines::throw_NullPointerException_at_call_entry();
 874           }
 875 
 876           if (nm->method()->is_method_handle_intrinsic()) {
 877             // exception happened inside MH dispatch code, similar to a vtable stub
 878             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 879             return StubRoutines::throw_NullPointerException_at_call_entry();
 880           }
 881 
 882 #ifndef PRODUCT
 883           _implicit_null_throws++;
 884 #endif
 885 #if INCLUDE_JVMCI
 886           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 887             // If there's no PcDesc then we'll die way down inside of
 888             // deopt instead of just getting normal error reporting,
 889             // so only go there if it will succeed.
 890             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 891           } else {
 892 #endif // INCLUDE_JVMCI
 893           assert (nm->is_nmethod(), "Expect nmethod");
 894           target_pc = nm->continuation_for_implicit_exception(pc);
 895 #if INCLUDE_JVMCI
 896           }
 897 #endif // INCLUDE_JVMCI
 898           // If there's an unexpected fault, target_pc might be NULL,
 899           // in which case we want to fall through into the normal
 900           // error handling code.
 901         }
 902 
 903         break; // fall through
 904       }
 905 
 906 
 907       case IMPLICIT_DIVIDE_BY_ZERO: {
 908         nmethod* nm = CodeCache::find_nmethod(pc);
 909         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 910 #ifndef PRODUCT
 911         _implicit_div0_throws++;
 912 #endif
 913 #if INCLUDE_JVMCI
 914         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 915           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 916         } else {
 917 #endif // INCLUDE_JVMCI
 918         target_pc = nm->continuation_for_implicit_exception(pc);
 919 #if INCLUDE_JVMCI
 920         }
 921 #endif // INCLUDE_JVMCI
 922         // If there's an unexpected fault, target_pc might be NULL,
 923         // in which case we want to fall through into the normal
 924         // error handling code.
 925         break; // fall through
 926       }
 927 
 928       default: ShouldNotReachHere();
 929     }
 930 
 931     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 932 
 933     if (exception_kind == IMPLICIT_NULL) {
 934 #ifndef PRODUCT
 935       // for AbortVMOnException flag
 936       Exceptions::debug_check_abort("java.lang.NullPointerException");
 937 #endif //PRODUCT
 938       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 939     } else {
 940 #ifndef PRODUCT
 941       // for AbortVMOnException flag
 942       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 943 #endif //PRODUCT
 944       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 945     }
 946     return target_pc;
 947   }
 948 
 949   ShouldNotReachHere();
 950   return NULL;
 951 }
 952 
 953 
 954 /**
 955  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 956  * installed in the native function entry of all native Java methods before
 957  * they get linked to their actual native methods.
 958  *
 959  * \note
 960  * This method actually never gets called!  The reason is because
 961  * the interpreter's native entries call NativeLookup::lookup() which
 962  * throws the exception when the lookup fails.  The exception is then
 963  * caught and forwarded on the return from NativeLookup::lookup() call
 964  * before the call to the native function.  This might change in the future.
 965  */
 966 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 967 {
 968   // We return a bad value here to make sure that the exception is
 969   // forwarded before we look at the return value.
 970   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 971 }
 972 JNI_END
 973 
 974 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 975   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 976 }
 977 
 978 
 979 #ifndef PRODUCT
 980 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 981   const frame f = thread->last_frame();
 982   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 983 #ifndef PRODUCT
 984   methodHandle mh(THREAD, f.interpreter_frame_method());
 985   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 986 #endif // !PRODUCT
 987   return preserve_this_value;
 988 JRT_END
 989 #endif // !PRODUCT
 990 
 991 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 992   assert(obj->is_oop(), "must be a valid oop");
 993 #if INCLUDE_JVMCI
 994   // This removes the requirement for JVMCI compilers to emit code
 995   // performing a dynamic check that obj has a finalizer before
 996   // calling this routine. There should be no performance impact
 997   // for C1 since it emits a dynamic check. C2 and the interpreter
 998   // uses other runtime routines for registering finalizers.
 999   if (!obj->klass()->has_finalizer()) {
1000     return;
1001   }
1002 #endif // INCLUDE_JVMCI
1003   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1004   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1005 JRT_END
1006 
1007 
1008 jlong SharedRuntime::get_java_tid(Thread* thread) {
1009   if (thread != NULL) {
1010     if (thread->is_Java_thread()) {
1011       oop obj = ((JavaThread*)thread)->threadObj();
1012       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1013     }
1014   }
1015   return 0;
1016 }
1017 
1018 /**
1019  * This function ought to be a void function, but cannot be because
1020  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1021  * 6254741.  Once that is fixed we can remove the dummy return value.
1022  */
1023 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1024   return dtrace_object_alloc_base(Thread::current(), o, size);
1025 }
1026 
1027 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1028   assert(DTraceAllocProbes, "wrong call");
1029   Klass* klass = o->klass();
1030   Symbol* name = klass->name();
1031   HOTSPOT_OBJECT_ALLOC(
1032                    get_java_tid(thread),
1033                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1034   return 0;
1035 }
1036 
1037 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1038     JavaThread* thread, Method* method))
1039   assert(DTraceMethodProbes, "wrong call");
1040   Symbol* kname = method->klass_name();
1041   Symbol* name = method->name();
1042   Symbol* sig = method->signature();
1043   HOTSPOT_METHOD_ENTRY(
1044       get_java_tid(thread),
1045       (char *) kname->bytes(), kname->utf8_length(),
1046       (char *) name->bytes(), name->utf8_length(),
1047       (char *) sig->bytes(), sig->utf8_length());
1048   return 0;
1049 JRT_END
1050 
1051 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1052     JavaThread* thread, Method* method))
1053   assert(DTraceMethodProbes, "wrong call");
1054   Symbol* kname = method->klass_name();
1055   Symbol* name = method->name();
1056   Symbol* sig = method->signature();
1057   HOTSPOT_METHOD_RETURN(
1058       get_java_tid(thread),
1059       (char *) kname->bytes(), kname->utf8_length(),
1060       (char *) name->bytes(), name->utf8_length(),
1061       (char *) sig->bytes(), sig->utf8_length());
1062   return 0;
1063 JRT_END
1064 
1065 
1066 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1067 // for a call current in progress, i.e., arguments has been pushed on stack
1068 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1069 // vtable updates, etc.  Caller frame must be compiled.
1070 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1071   ResourceMark rm(THREAD);
1072 
1073   // last java frame on stack (which includes native call frames)
1074   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1075 
1076   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1077 }
1078 
1079 methodHandle SharedRuntime::extract_attached_call_info(JavaThread* thread) {
1080   ResourceMark rm(thread);
1081   RegisterMap cbl_map(thread, false);
1082   frame caller_frame = thread->last_frame().sender(&cbl_map);
1083   CodeBlob* caller_cb = caller_frame.cb();
1084   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1085   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1086 
1087   //assert(caller_nm is locked));
1088 
1089   NativeCall* call = nativeCall_before(caller_frame.pc());
1090   RelocIterator iter(caller_nm, call->instruction_address());
1091   while (iter.next()) {
1092     if (iter.addr() == call->instruction_address()) {
1093       switch(iter.type()) {
1094         case relocInfo::static_call_type:      return iter.static_call_reloc()->method_value();
1095         case relocInfo::opt_virtual_call_type: return iter.opt_virtual_call_reloc()->method_value();
1096         case relocInfo::virtual_call_type:     return iter.virtual_call_reloc()->method_value();
1097         default:
1098           fatal("unexpected reloc type: %d", iter.type());
1099       }
1100     }
1101   }
1102   return NULL;
1103 }
1104 
1105 static Bytecodes::Code compute_bc(vmIntrinsics::ID id) {
1106   switch(id) {
1107     case vmIntrinsics::_linkToVirtual:   return Bytecodes::_invokevirtual;
1108     case vmIntrinsics::_linkToInterface: return Bytecodes::_invokeinterface;
1109     case vmIntrinsics::_linkToStatic:    return Bytecodes::_invokestatic;
1110     case vmIntrinsics::_linkToSpecial:   return Bytecodes::_invokespecial;
1111     case vmIntrinsics::_invokeBasic:     return Bytecodes::_invokestatic;
1112     default:
1113       fatal("unexpected id: (%d) %s", (uint)id, vmIntrinsics::name_at(id));
1114       return Bytecodes::_illegal;
1115   }
1116 }
1117 
1118 static Handle extract_receiver(JavaThread* thread, TRAPS) {
1119   // This register map must be update since we need to find the receiver for
1120   // compiled frames. The receiver might be in a register.
1121   RegisterMap reg_map2(thread);
1122   frame stubFrame   = thread->last_frame();
1123   // Caller-frame is a compiled frame
1124   frame callerFrame = stubFrame.sender(&reg_map2);
1125   // Retrieve from a compiled argument list
1126   Handle receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1127   if (receiver.is_null()) {
1128     THROW_(vmSymbols::java_lang_NullPointerException(), Handle());
1129   }
1130   return receiver;
1131 }
1132 
1133 void SharedRuntime::resolve_attached_call_info(JavaThread* thread, methodHandle info, Bytecodes::Code bc,
1134                                                Handle& receiver, CallInfo& callinfo, TRAPS) {
1135   KlassHandle defc = info->method_holder();
1136   Symbol* name = info->name();
1137   Symbol* type = info->signature();
1138   LinkInfo link_info(defc, name, type, KlassHandle(), /*check_access=*/false);
1139   switch(bc) {
1140     case Bytecodes::_invokevirtual:
1141       LinkResolver::resolve_virtual_call(callinfo, receiver, receiver->klass(),
1142                                          link_info, /*check_null_and_abstract=*/true, THREAD);
1143       break;
1144     case Bytecodes::_invokeinterface:
1145       LinkResolver::resolve_interface_call(callinfo, receiver, receiver->klass(),
1146                                            link_info, /*check_null_and_abstract=*/true, THREAD);
1147       break;
1148     case Bytecodes::_invokestatic:
1149       LinkResolver::resolve_static_call(callinfo, link_info, /*initialize_class=*/false, THREAD);
1150       break;
1151     case Bytecodes::_invokespecial:
1152       LinkResolver::resolve_special_call(callinfo, link_info, THREAD);
1153       break;
1154     default:
1155       fatal("bad call");
1156   }
1157 }
1158 
1159 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1160 // for a call current in progress, i.e., arguments has been pushed on stack
1161 // but callee has not been invoked yet.  Caller frame must be compiled.
1162 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1163                                               vframeStream& vfst,
1164                                               Bytecodes::Code& bc,
1165                                               CallInfo& callinfo, TRAPS) {
1166   Handle receiver;
1167   Handle nullHandle;  //create a handy null handle for exception returns
1168 
1169   assert(!vfst.at_end(), "Java frame must exist");
1170 
1171   // Find caller and bci from vframe
1172   methodHandle caller(THREAD, vfst.method());
1173   int          bci   = vfst.bci();
1174 
1175   // Find bytecode
1176   Bytecode_invoke bytecode(caller, bci);
1177   bc = bytecode.invoke_code();
1178   int bytecode_index = bytecode.index();
1179 
1180   // Find receiver for non-static call
1181   if (bc != Bytecodes::_invokestatic &&
1182       bc != Bytecodes::_invokedynamic &&
1183       bc != Bytecodes::_invokehandle) {
1184     // This register map must be update since we need to find the receiver for
1185     // compiled frames. The receiver might be in a register.
1186     RegisterMap reg_map2(thread);
1187     frame stubFrame   = thread->last_frame();
1188     // Caller-frame is a compiled frame
1189     frame callerFrame = stubFrame.sender(&reg_map2);
1190 
1191     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1192     if (callee.is_null()) {
1193       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1194     }
1195     // Retrieve from a compiled argument list
1196     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1197 
1198     if (receiver.is_null()) {
1199       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1200     }
1201   }
1202 
1203   // Resolve method. This is parameterized by bytecode.
1204   constantPoolHandle constants(THREAD, caller->constants());
1205   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1206   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1207 
1208   // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1209   // it attaches statically resolved method to the call site.
1210   methodHandle call_info;
1211   vmIntrinsics::ID id = callinfo.resolved_method()->intrinsic_id();
1212   if (MethodHandles::is_signature_polymorphic(id) && id != vmIntrinsics::_invokeGeneric) {
1213     call_info = extract_attached_call_info(thread);
1214     if (!call_info.is_null()) {
1215       bc = compute_bc(id);
1216       // Find receiver for non-static call
1217       if (bc != Bytecodes::_invokestatic) {
1218         receiver = extract_receiver(thread, CHECK_(nullHandle));
1219       }
1220       resolve_attached_call_info(thread, call_info, bc, receiver, callinfo, CHECK_(nullHandle));
1221     }
1222   }
1223 #ifdef ASSERT
1224   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1225   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1226     assert(receiver.not_null(), "should have thrown exception");
1227     KlassHandle receiver_klass(THREAD, receiver->klass());
1228     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1229                             // klass is already loaded
1230     if (!call_info.is_null()) {
1231       // In case there's resolved method attached, use it's holder during the check.
1232       rk = call_info->method_holder();
1233     }
1234     KlassHandle static_receiver_klass(THREAD, rk);
1235     methodHandle callee = callinfo.selected_method();
1236     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1237            "actual receiver must be subclass of static receiver klass");
1238     if (receiver_klass->oop_is_instance()) {
1239       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1240         tty->print_cr("ERROR: Klass not yet initialized!!");
1241         receiver_klass()->print();
1242       }
1243       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1244     }
1245   }
1246 #endif
1247 
1248   return receiver;
1249 }
1250 
1251 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1252   ResourceMark rm(THREAD);
1253   // We need first to check if any Java activations (compiled, interpreted)
1254   // exist on the stack since last JavaCall.  If not, we need
1255   // to get the target method from the JavaCall wrapper.
1256   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1257   methodHandle callee_method;
1258   if (vfst.at_end()) {
1259     // No Java frames were found on stack since we did the JavaCall.
1260     // Hence the stack can only contain an entry_frame.  We need to
1261     // find the target method from the stub frame.
1262     RegisterMap reg_map(thread, false);
1263     frame fr = thread->last_frame();
1264     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1265     fr = fr.sender(&reg_map);
1266     assert(fr.is_entry_frame(), "must be");
1267     // fr is now pointing to the entry frame.
1268     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1269     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1270   } else {
1271     Bytecodes::Code bc;
1272     CallInfo callinfo;
1273     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1274     callee_method = callinfo.selected_method();
1275   }
1276   assert(callee_method()->is_method(), "must be");
1277   return callee_method;
1278 }
1279 
1280 // Resolves a call.
1281 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1282                                            bool is_virtual,
1283                                            bool is_optimized, TRAPS) {
1284   methodHandle callee_method;
1285   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1286   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1287     int retry_count = 0;
1288     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1289            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1290       // If has a pending exception then there is no need to re-try to
1291       // resolve this method.
1292       // If the method has been redefined, we need to try again.
1293       // Hack: we have no way to update the vtables of arrays, so don't
1294       // require that java.lang.Object has been updated.
1295 
1296       // It is very unlikely that method is redefined more than 100 times
1297       // in the middle of resolve. If it is looping here more than 100 times
1298       // means then there could be a bug here.
1299       guarantee((retry_count++ < 100),
1300                 "Could not resolve to latest version of redefined method");
1301       // method is redefined in the middle of resolve so re-try.
1302       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1303     }
1304   }
1305   return callee_method;
1306 }
1307 
1308 // Resolves a call.  The compilers generate code for calls that go here
1309 // and are patched with the real destination of the call.
1310 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1311                                            bool is_virtual,
1312                                            bool is_optimized, TRAPS) {
1313 
1314   ResourceMark rm(thread);
1315   RegisterMap cbl_map(thread, false);
1316   frame caller_frame = thread->last_frame().sender(&cbl_map);
1317 
1318   CodeBlob* caller_cb = caller_frame.cb();
1319   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1320   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1321 
1322   // make sure caller is not getting deoptimized
1323   // and removed before we are done with it.
1324   // CLEANUP - with lazy deopt shouldn't need this lock
1325   nmethodLocker caller_lock(caller_nm);
1326 
1327   // determine call info & receiver
1328   // note: a) receiver is NULL for static calls
1329   //       b) an exception is thrown if receiver is NULL for non-static calls
1330   CallInfo call_info;
1331   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1332   Handle receiver = find_callee_info(thread, invoke_code,
1333                                      call_info, CHECK_(methodHandle()));
1334   methodHandle callee_method = call_info.selected_method();
1335 
1336   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1337          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1338          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1339          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1340          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1341 
1342   assert(caller_nm->is_alive(), "It should be alive");
1343 
1344 #ifndef PRODUCT
1345   // tracing/debugging/statistics
1346   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1347                 (is_virtual) ? (&_resolve_virtual_ctr) :
1348                                (&_resolve_static_ctr);
1349   Atomic::inc(addr);
1350 
1351   if (TraceCallFixup) {
1352     ResourceMark rm(thread);
1353     tty->print("resolving %s%s (%s) call to",
1354       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1355       Bytecodes::name(invoke_code));
1356     callee_method->print_short_name(tty);
1357     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1358                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1359   }
1360 #endif
1361 
1362   // JSR 292 key invariant:
1363   // If the resolved method is a MethodHandle invoke target, the call
1364   // site must be a MethodHandle call site, because the lambda form might tail-call
1365   // leaving the stack in a state unknown to either caller or callee
1366   // TODO detune for now but we might need it again
1367 //  assert(!callee_method->is_compiled_lambda_form() ||
1368 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1369 
1370   // Compute entry points. This might require generation of C2I converter
1371   // frames, so we cannot be holding any locks here. Furthermore, the
1372   // computation of the entry points is independent of patching the call.  We
1373   // always return the entry-point, but we only patch the stub if the call has
1374   // not been deoptimized.  Return values: For a virtual call this is an
1375   // (cached_oop, destination address) pair. For a static call/optimized
1376   // virtual this is just a destination address.
1377 
1378   StaticCallInfo static_call_info;
1379   CompiledICInfo virtual_call_info;
1380 
1381   // Make sure the callee nmethod does not get deoptimized and removed before
1382   // we are done patching the code.
1383   nmethod* callee_nm = callee_method->code();
1384   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1385     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1386     callee_nm = NULL;
1387   }
1388   nmethodLocker nl_callee(callee_nm);
1389 #ifdef ASSERT
1390   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1391 #endif
1392 
1393   if (is_virtual) {
1394     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1395     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1396     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1397     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1398                      is_optimized, static_bound, virtual_call_info,
1399                      CHECK_(methodHandle()));
1400   } else {
1401     // static call
1402     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1403   }
1404 
1405   // grab lock, check for deoptimization and potentially patch caller
1406   {
1407     MutexLocker ml_patch(CompiledIC_lock);
1408 
1409     // Lock blocks for safepoint during which both nmethods can change state.
1410 
1411     // Now that we are ready to patch if the Method* was redefined then
1412     // don't update call site and let the caller retry.
1413     // Don't update call site if callee nmethod was unloaded or deoptimized.
1414     // Don't update call site if callee nmethod was replaced by an other nmethod
1415     // which may happen when multiply alive nmethod (tiered compilation)
1416     // will be supported.
1417     if (!callee_method->is_old() &&
1418         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1419 #ifdef ASSERT
1420       // We must not try to patch to jump to an already unloaded method.
1421       if (dest_entry_point != 0) {
1422         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1423         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1424                "should not call unloaded nmethod");
1425       }
1426 #endif
1427       if (is_virtual) {
1428         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1429         if (inline_cache->is_clean()) {
1430           inline_cache->set_to_monomorphic(virtual_call_info);
1431         }
1432       } else {
1433         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1434         if (ssc->is_clean()) ssc->set(static_call_info);
1435       }
1436     }
1437 
1438   } // unlock CompiledIC_lock
1439 
1440   return callee_method;
1441 }
1442 
1443 
1444 // Inline caches exist only in compiled code
1445 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1446 #ifdef ASSERT
1447   RegisterMap reg_map(thread, false);
1448   frame stub_frame = thread->last_frame();
1449   assert(stub_frame.is_runtime_frame(), "sanity check");
1450   frame caller_frame = stub_frame.sender(&reg_map);
1451   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1452 #endif /* ASSERT */
1453 
1454   methodHandle callee_method;
1455   JRT_BLOCK
1456     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1457     // Return Method* through TLS
1458     thread->set_vm_result_2(callee_method());
1459   JRT_BLOCK_END
1460   // return compiled code entry point after potential safepoints
1461   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1462   return callee_method->verified_code_entry();
1463 JRT_END
1464 
1465 
1466 // Handle call site that has been made non-entrant
1467 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1468   // 6243940 We might end up in here if the callee is deoptimized
1469   // as we race to call it.  We don't want to take a safepoint if
1470   // the caller was interpreted because the caller frame will look
1471   // interpreted to the stack walkers and arguments are now
1472   // "compiled" so it is much better to make this transition
1473   // invisible to the stack walking code. The i2c path will
1474   // place the callee method in the callee_target. It is stashed
1475   // there because if we try and find the callee by normal means a
1476   // safepoint is possible and have trouble gc'ing the compiled args.
1477   RegisterMap reg_map(thread, false);
1478   frame stub_frame = thread->last_frame();
1479   assert(stub_frame.is_runtime_frame(), "sanity check");
1480   frame caller_frame = stub_frame.sender(&reg_map);
1481 
1482   if (caller_frame.is_interpreted_frame() ||
1483       caller_frame.is_entry_frame()) {
1484     Method* callee = thread->callee_target();
1485     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1486     thread->set_vm_result_2(callee);
1487     thread->set_callee_target(NULL);
1488     return callee->get_c2i_entry();
1489   }
1490 
1491   // Must be compiled to compiled path which is safe to stackwalk
1492   methodHandle callee_method;
1493   JRT_BLOCK
1494     // Force resolving of caller (if we called from compiled frame)
1495     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1496     thread->set_vm_result_2(callee_method());
1497   JRT_BLOCK_END
1498   // return compiled code entry point after potential safepoints
1499   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1500   return callee_method->verified_code_entry();
1501 JRT_END
1502 
1503 // Handle abstract method call
1504 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1505   return StubRoutines::throw_AbstractMethodError_entry();
1506 JRT_END
1507 
1508 
1509 // resolve a static call and patch code
1510 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1511   methodHandle callee_method;
1512   JRT_BLOCK
1513     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1514     thread->set_vm_result_2(callee_method());
1515   JRT_BLOCK_END
1516   // return compiled code entry point after potential safepoints
1517   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1518   return callee_method->verified_code_entry();
1519 JRT_END
1520 
1521 
1522 // resolve virtual call and update inline cache to monomorphic
1523 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1524   methodHandle callee_method;
1525   JRT_BLOCK
1526     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1527     thread->set_vm_result_2(callee_method());
1528   JRT_BLOCK_END
1529   // return compiled code entry point after potential safepoints
1530   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1531   return callee_method->verified_code_entry();
1532 JRT_END
1533 
1534 
1535 // Resolve a virtual call that can be statically bound (e.g., always
1536 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1537 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1538   methodHandle callee_method;
1539   JRT_BLOCK
1540     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1541     thread->set_vm_result_2(callee_method());
1542   JRT_BLOCK_END
1543   // return compiled code entry point after potential safepoints
1544   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1545   return callee_method->verified_code_entry();
1546 JRT_END
1547 
1548 
1549 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1550   ResourceMark rm(thread);
1551   CallInfo call_info;
1552   Bytecodes::Code bc;
1553 
1554   // receiver is NULL for static calls. An exception is thrown for NULL
1555   // receivers for non-static calls
1556   Handle receiver = find_callee_info(thread, bc, call_info,
1557                                      CHECK_(methodHandle()));
1558   // Compiler1 can produce virtual call sites that can actually be statically bound
1559   // If we fell thru to below we would think that the site was going megamorphic
1560   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1561   // we'd try and do a vtable dispatch however methods that can be statically bound
1562   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1563   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1564   // plain ic_miss) and the site will be converted to an optimized virtual call site
1565   // never to miss again. I don't believe C2 will produce code like this but if it
1566   // did this would still be the correct thing to do for it too, hence no ifdef.
1567   //
1568   if (call_info.resolved_method()->can_be_statically_bound()) {
1569     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1570     if (TraceCallFixup) {
1571       RegisterMap reg_map(thread, false);
1572       frame caller_frame = thread->last_frame().sender(&reg_map);
1573       ResourceMark rm(thread);
1574       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1575       callee_method->print_short_name(tty);
1576       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1577       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1578     }
1579     return callee_method;
1580   }
1581 
1582   methodHandle callee_method = call_info.selected_method();
1583 
1584   bool should_be_mono = false;
1585 
1586 #ifndef PRODUCT
1587   Atomic::inc(&_ic_miss_ctr);
1588 
1589   // Statistics & Tracing
1590   if (TraceCallFixup) {
1591     ResourceMark rm(thread);
1592     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1593     callee_method->print_short_name(tty);
1594     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1595   }
1596 
1597   if (ICMissHistogram) {
1598     MutexLocker m(VMStatistic_lock);
1599     RegisterMap reg_map(thread, false);
1600     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1601     // produce statistics under the lock
1602     trace_ic_miss(f.pc());
1603   }
1604 #endif
1605 
1606   // install an event collector so that when a vtable stub is created the
1607   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1608   // event can't be posted when the stub is created as locks are held
1609   // - instead the event will be deferred until the event collector goes
1610   // out of scope.
1611   JvmtiDynamicCodeEventCollector event_collector;
1612 
1613   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1614   { MutexLocker ml_patch (CompiledIC_lock);
1615     RegisterMap reg_map(thread, false);
1616     frame caller_frame = thread->last_frame().sender(&reg_map);
1617     CodeBlob* cb = caller_frame.cb();
1618     if (cb->is_nmethod()) {
1619       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1620       bool should_be_mono = false;
1621       if (inline_cache->is_optimized()) {
1622         if (TraceCallFixup) {
1623           ResourceMark rm(thread);
1624           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1625           callee_method->print_short_name(tty);
1626           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1627         }
1628         should_be_mono = true;
1629       } else if (inline_cache->is_icholder_call()) {
1630         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1631         if (ic_oop != NULL) {
1632 
1633           if (receiver()->klass() == ic_oop->holder_klass()) {
1634             // This isn't a real miss. We must have seen that compiled code
1635             // is now available and we want the call site converted to a
1636             // monomorphic compiled call site.
1637             // We can't assert for callee_method->code() != NULL because it
1638             // could have been deoptimized in the meantime
1639             if (TraceCallFixup) {
1640               ResourceMark rm(thread);
1641               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1642               callee_method->print_short_name(tty);
1643               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1644             }
1645             should_be_mono = true;
1646           }
1647         }
1648       }
1649 
1650       if (should_be_mono) {
1651 
1652         // We have a path that was monomorphic but was going interpreted
1653         // and now we have (or had) a compiled entry. We correct the IC
1654         // by using a new icBuffer.
1655         CompiledICInfo info;
1656         KlassHandle receiver_klass(THREAD, receiver()->klass());
1657         inline_cache->compute_monomorphic_entry(callee_method,
1658                                                 receiver_klass,
1659                                                 inline_cache->is_optimized(),
1660                                                 false,
1661                                                 info, CHECK_(methodHandle()));
1662         inline_cache->set_to_monomorphic(info);
1663       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1664         // Potential change to megamorphic
1665         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1666         if (!successful) {
1667           inline_cache->set_to_clean();
1668         }
1669       } else {
1670         // Either clean or megamorphic
1671       }
1672     } else {
1673       fatal("Unimplemented");
1674     }
1675   } // Release CompiledIC_lock
1676 
1677   return callee_method;
1678 }
1679 
1680 //
1681 // Resets a call-site in compiled code so it will get resolved again.
1682 // This routines handles both virtual call sites, optimized virtual call
1683 // sites, and static call sites. Typically used to change a call sites
1684 // destination from compiled to interpreted.
1685 //
1686 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1687   ResourceMark rm(thread);
1688   RegisterMap reg_map(thread, false);
1689   frame stub_frame = thread->last_frame();
1690   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1691   frame caller = stub_frame.sender(&reg_map);
1692 
1693   // Do nothing if the frame isn't a live compiled frame.
1694   // nmethod could be deoptimized by the time we get here
1695   // so no update to the caller is needed.
1696 
1697   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1698 
1699     address pc = caller.pc();
1700 
1701     // Check for static or virtual call
1702     bool is_static_call = false;
1703     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1704 
1705     // Default call_addr is the location of the "basic" call.
1706     // Determine the address of the call we a reresolving. With
1707     // Inline Caches we will always find a recognizable call.
1708     // With Inline Caches disabled we may or may not find a
1709     // recognizable call. We will always find a call for static
1710     // calls and for optimized virtual calls. For vanilla virtual
1711     // calls it depends on the state of the UseInlineCaches switch.
1712     //
1713     // With Inline Caches disabled we can get here for a virtual call
1714     // for two reasons:
1715     //   1 - calling an abstract method. The vtable for abstract methods
1716     //       will run us thru handle_wrong_method and we will eventually
1717     //       end up in the interpreter to throw the ame.
1718     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1719     //       call and between the time we fetch the entry address and
1720     //       we jump to it the target gets deoptimized. Similar to 1
1721     //       we will wind up in the interprter (thru a c2i with c2).
1722     //
1723     address call_addr = NULL;
1724     {
1725       // Get call instruction under lock because another thread may be
1726       // busy patching it.
1727       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1728       // Location of call instruction
1729       if (NativeCall::is_call_before(pc)) {
1730         NativeCall *ncall = nativeCall_before(pc);
1731         call_addr = ncall->instruction_address();
1732       }
1733     }
1734     // Make sure nmethod doesn't get deoptimized and removed until
1735     // this is done with it.
1736     // CLEANUP - with lazy deopt shouldn't need this lock
1737     nmethodLocker nmlock(caller_nm);
1738 
1739     if (call_addr != NULL) {
1740       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1741       int ret = iter.next(); // Get item
1742       if (ret) {
1743         assert(iter.addr() == call_addr, "must find call");
1744         if (iter.type() == relocInfo::static_call_type) {
1745           is_static_call = true;
1746         } else {
1747           assert(iter.type() == relocInfo::virtual_call_type ||
1748                  iter.type() == relocInfo::opt_virtual_call_type
1749                 , "unexpected relocInfo. type");
1750         }
1751       } else {
1752         assert(!UseInlineCaches, "relocation info. must exist for this address");
1753       }
1754 
1755       // Cleaning the inline cache will force a new resolve. This is more robust
1756       // than directly setting it to the new destination, since resolving of calls
1757       // is always done through the same code path. (experience shows that it
1758       // leads to very hard to track down bugs, if an inline cache gets updated
1759       // to a wrong method). It should not be performance critical, since the
1760       // resolve is only done once.
1761 
1762       MutexLocker ml(CompiledIC_lock);
1763       if (is_static_call) {
1764         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1765         ssc->set_to_clean();
1766       } else {
1767         // compiled, dispatched call (which used to call an interpreted method)
1768         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1769         inline_cache->set_to_clean();
1770       }
1771     }
1772 
1773   }
1774 
1775   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1776 
1777 
1778 #ifndef PRODUCT
1779   Atomic::inc(&_wrong_method_ctr);
1780 
1781   if (TraceCallFixup) {
1782     ResourceMark rm(thread);
1783     tty->print("handle_wrong_method reresolving call to");
1784     callee_method->print_short_name(tty);
1785     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1786   }
1787 #endif
1788 
1789   return callee_method;
1790 }
1791 
1792 #ifdef ASSERT
1793 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1794                                                                 const BasicType* sig_bt,
1795                                                                 const VMRegPair* regs) {
1796   ResourceMark rm;
1797   const int total_args_passed = method->size_of_parameters();
1798   const VMRegPair*    regs_with_member_name = regs;
1799         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1800 
1801   const int member_arg_pos = total_args_passed - 1;
1802   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1803   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1804 
1805   const bool is_outgoing = method->is_method_handle_intrinsic();
1806   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1807 
1808   for (int i = 0; i < member_arg_pos; i++) {
1809     VMReg a =    regs_with_member_name[i].first();
1810     VMReg b = regs_without_member_name[i].first();
1811     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1812   }
1813   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1814 }
1815 #endif
1816 
1817 // ---------------------------------------------------------------------------
1818 // We are calling the interpreter via a c2i. Normally this would mean that
1819 // we were called by a compiled method. However we could have lost a race
1820 // where we went int -> i2c -> c2i and so the caller could in fact be
1821 // interpreted. If the caller is compiled we attempt to patch the caller
1822 // so he no longer calls into the interpreter.
1823 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1824   Method* moop(method);
1825 
1826   address entry_point = moop->from_compiled_entry();
1827 
1828   // It's possible that deoptimization can occur at a call site which hasn't
1829   // been resolved yet, in which case this function will be called from
1830   // an nmethod that has been patched for deopt and we can ignore the
1831   // request for a fixup.
1832   // Also it is possible that we lost a race in that from_compiled_entry
1833   // is now back to the i2c in that case we don't need to patch and if
1834   // we did we'd leap into space because the callsite needs to use
1835   // "to interpreter" stub in order to load up the Method*. Don't
1836   // ask me how I know this...
1837 
1838   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1839   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1840     return;
1841   }
1842 
1843   // The check above makes sure this is a nmethod.
1844   nmethod* nm = cb->as_nmethod_or_null();
1845   assert(nm, "must be");
1846 
1847   // Get the return PC for the passed caller PC.
1848   address return_pc = caller_pc + frame::pc_return_offset;
1849 
1850   // There is a benign race here. We could be attempting to patch to a compiled
1851   // entry point at the same time the callee is being deoptimized. If that is
1852   // the case then entry_point may in fact point to a c2i and we'd patch the
1853   // call site with the same old data. clear_code will set code() to NULL
1854   // at the end of it. If we happen to see that NULL then we can skip trying
1855   // to patch. If we hit the window where the callee has a c2i in the
1856   // from_compiled_entry and the NULL isn't present yet then we lose the race
1857   // and patch the code with the same old data. Asi es la vida.
1858 
1859   if (moop->code() == NULL) return;
1860 
1861   if (nm->is_in_use()) {
1862 
1863     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1864     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1865     if (NativeCall::is_call_before(return_pc)) {
1866       NativeCall *call = nativeCall_before(return_pc);
1867       //
1868       // bug 6281185. We might get here after resolving a call site to a vanilla
1869       // virtual call. Because the resolvee uses the verified entry it may then
1870       // see compiled code and attempt to patch the site by calling us. This would
1871       // then incorrectly convert the call site to optimized and its downhill from
1872       // there. If you're lucky you'll get the assert in the bugid, if not you've
1873       // just made a call site that could be megamorphic into a monomorphic site
1874       // for the rest of its life! Just another racing bug in the life of
1875       // fixup_callers_callsite ...
1876       //
1877       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1878       iter.next();
1879       assert(iter.has_current(), "must have a reloc at java call site");
1880       relocInfo::relocType typ = iter.reloc()->type();
1881       if (typ != relocInfo::static_call_type &&
1882            typ != relocInfo::opt_virtual_call_type &&
1883            typ != relocInfo::static_stub_type) {
1884         return;
1885       }
1886       address destination = call->destination();
1887       if (destination != entry_point) {
1888         CodeBlob* callee = CodeCache::find_blob(destination);
1889         // callee == cb seems weird. It means calling interpreter thru stub.
1890         if (callee == cb || callee->is_adapter_blob()) {
1891           // static call or optimized virtual
1892           if (TraceCallFixup) {
1893             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1894             moop->print_short_name(tty);
1895             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1896           }
1897           call->set_destination_mt_safe(entry_point);
1898         } else {
1899           if (TraceCallFixup) {
1900             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1901             moop->print_short_name(tty);
1902             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1903           }
1904           // assert is too strong could also be resolve destinations.
1905           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1906         }
1907       } else {
1908           if (TraceCallFixup) {
1909             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1910             moop->print_short_name(tty);
1911             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1912           }
1913       }
1914     }
1915   }
1916 IRT_END
1917 
1918 
1919 // same as JVM_Arraycopy, but called directly from compiled code
1920 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1921                                                 oopDesc* dest, jint dest_pos,
1922                                                 jint length,
1923                                                 JavaThread* thread)) {
1924 #ifndef PRODUCT
1925   _slow_array_copy_ctr++;
1926 #endif
1927   // Check if we have null pointers
1928   if (src == NULL || dest == NULL) {
1929     THROW(vmSymbols::java_lang_NullPointerException());
1930   }
1931   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1932   // even though the copy_array API also performs dynamic checks to ensure
1933   // that src and dest are truly arrays (and are conformable).
1934   // The copy_array mechanism is awkward and could be removed, but
1935   // the compilers don't call this function except as a last resort,
1936   // so it probably doesn't matter.
1937   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1938                                         (arrayOopDesc*)dest, dest_pos,
1939                                         length, thread);
1940 }
1941 JRT_END
1942 
1943 char* SharedRuntime::generate_class_cast_message(
1944     JavaThread* thread, const char* objName) {
1945 
1946   // Get target class name from the checkcast instruction
1947   vframeStream vfst(thread, true);
1948   assert(!vfst.at_end(), "Java frame must exist");
1949   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1950   Klass* targetKlass = vfst.method()->constants()->klass_at(
1951     cc.index(), thread);
1952   return generate_class_cast_message(objName, targetKlass->external_name());
1953 }
1954 
1955 char* SharedRuntime::generate_class_cast_message(
1956     const char* objName, const char* targetKlassName, const char* desc) {
1957   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1958 
1959   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1960   if (NULL == message) {
1961     // Shouldn't happen, but don't cause even more problems if it does
1962     message = const_cast<char*>(objName);
1963   } else {
1964     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1965   }
1966   return message;
1967 }
1968 
1969 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1970   (void) JavaThread::current()->reguard_stack();
1971 JRT_END
1972 
1973 
1974 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1975 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1976   // Disable ObjectSynchronizer::quick_enter() in default config
1977   // until JDK-8077392 is resolved.
1978   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1979     // Only try quick_enter() if we're not trying to reach a safepoint
1980     // so that the calling thread reaches the safepoint more quickly.
1981     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1982   }
1983   // NO_ASYNC required because an async exception on the state transition destructor
1984   // would leave you with the lock held and it would never be released.
1985   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1986   // and the model is that an exception implies the method failed.
1987   JRT_BLOCK_NO_ASYNC
1988   oop obj(_obj);
1989   if (PrintBiasedLockingStatistics) {
1990     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1991   }
1992   Handle h_obj(THREAD, obj);
1993   if (UseBiasedLocking) {
1994     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1995     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1996   } else {
1997     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1998   }
1999   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2000   JRT_BLOCK_END
2001 JRT_END
2002 
2003 // Handles the uncommon cases of monitor unlocking in compiled code
2004 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2005    oop obj(_obj);
2006   assert(JavaThread::current() == THREAD, "invariant");
2007   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2008   // testing was unable to ever fire the assert that guarded it so I have removed it.
2009   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2010 #undef MIGHT_HAVE_PENDING
2011 #ifdef MIGHT_HAVE_PENDING
2012   // Save and restore any pending_exception around the exception mark.
2013   // While the slow_exit must not throw an exception, we could come into
2014   // this routine with one set.
2015   oop pending_excep = NULL;
2016   const char* pending_file;
2017   int pending_line;
2018   if (HAS_PENDING_EXCEPTION) {
2019     pending_excep = PENDING_EXCEPTION;
2020     pending_file  = THREAD->exception_file();
2021     pending_line  = THREAD->exception_line();
2022     CLEAR_PENDING_EXCEPTION;
2023   }
2024 #endif /* MIGHT_HAVE_PENDING */
2025 
2026   {
2027     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2028     EXCEPTION_MARK;
2029     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2030   }
2031 
2032 #ifdef MIGHT_HAVE_PENDING
2033   if (pending_excep != NULL) {
2034     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2035   }
2036 #endif /* MIGHT_HAVE_PENDING */
2037 JRT_END
2038 
2039 #ifndef PRODUCT
2040 
2041 void SharedRuntime::print_statistics() {
2042   ttyLocker ttyl;
2043   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2044 
2045   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2046 
2047   SharedRuntime::print_ic_miss_histogram();
2048 
2049   if (CountRemovableExceptions) {
2050     if (_nof_removable_exceptions > 0) {
2051       Unimplemented(); // this counter is not yet incremented
2052       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2053     }
2054   }
2055 
2056   // Dump the JRT_ENTRY counters
2057   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2058   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2059   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2060   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2061   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2062   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2063   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2064 
2065   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2066   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2067   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2068   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2069   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2070 
2071   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2072   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2073   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2074   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2075   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2076   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2077   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2078   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2079   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2080   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2081   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2082   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2083   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2084   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2085   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2086   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2087 
2088   AdapterHandlerLibrary::print_statistics();
2089 
2090   if (xtty != NULL)  xtty->tail("statistics");
2091 }
2092 
2093 inline double percent(int x, int y) {
2094   return 100.0 * x / MAX2(y, 1);
2095 }
2096 
2097 class MethodArityHistogram {
2098  public:
2099   enum { MAX_ARITY = 256 };
2100  private:
2101   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2102   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2103   static int _max_arity;                      // max. arity seen
2104   static int _max_size;                       // max. arg size seen
2105 
2106   static void add_method_to_histogram(nmethod* nm) {
2107     Method* m = nm->method();
2108     ArgumentCount args(m->signature());
2109     int arity   = args.size() + (m->is_static() ? 0 : 1);
2110     int argsize = m->size_of_parameters();
2111     arity   = MIN2(arity, MAX_ARITY-1);
2112     argsize = MIN2(argsize, MAX_ARITY-1);
2113     int count = nm->method()->compiled_invocation_count();
2114     _arity_histogram[arity]  += count;
2115     _size_histogram[argsize] += count;
2116     _max_arity = MAX2(_max_arity, arity);
2117     _max_size  = MAX2(_max_size, argsize);
2118   }
2119 
2120   void print_histogram_helper(int n, int* histo, const char* name) {
2121     const int N = MIN2(5, n);
2122     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2123     double sum = 0;
2124     double weighted_sum = 0;
2125     int i;
2126     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2127     double rest = sum;
2128     double percent = sum / 100;
2129     for (i = 0; i <= N; i++) {
2130       rest -= histo[i];
2131       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2132     }
2133     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2134     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2135   }
2136 
2137   void print_histogram() {
2138     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2139     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2140     tty->print_cr("\nSame for parameter size (in words):");
2141     print_histogram_helper(_max_size, _size_histogram, "size");
2142     tty->cr();
2143   }
2144 
2145  public:
2146   MethodArityHistogram() {
2147     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2148     _max_arity = _max_size = 0;
2149     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2150     CodeCache::nmethods_do(add_method_to_histogram);
2151     print_histogram();
2152   }
2153 };
2154 
2155 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2156 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2157 int MethodArityHistogram::_max_arity;
2158 int MethodArityHistogram::_max_size;
2159 
2160 void SharedRuntime::print_call_statistics(int comp_total) {
2161   tty->print_cr("Calls from compiled code:");
2162   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2163   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2164   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2165   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2166   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2167   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2168   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2169   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2170   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2171   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2172   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2173   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2174   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2175   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2176   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2177   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2178   tty->cr();
2179   tty->print_cr("Note 1: counter updates are not MT-safe.");
2180   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2181   tty->print_cr("        %% in nested categories are relative to their category");
2182   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2183   tty->cr();
2184 
2185   MethodArityHistogram h;
2186 }
2187 #endif
2188 
2189 
2190 // A simple wrapper class around the calling convention information
2191 // that allows sharing of adapters for the same calling convention.
2192 class AdapterFingerPrint : public CHeapObj<mtCode> {
2193  private:
2194   enum {
2195     _basic_type_bits = 4,
2196     _basic_type_mask = right_n_bits(_basic_type_bits),
2197     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2198     _compact_int_count = 3
2199   };
2200   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2201   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2202 
2203   union {
2204     int  _compact[_compact_int_count];
2205     int* _fingerprint;
2206   } _value;
2207   int _length; // A negative length indicates the fingerprint is in the compact form,
2208                // Otherwise _value._fingerprint is the array.
2209 
2210   // Remap BasicTypes that are handled equivalently by the adapters.
2211   // These are correct for the current system but someday it might be
2212   // necessary to make this mapping platform dependent.
2213   static int adapter_encoding(BasicType in) {
2214     switch (in) {
2215       case T_BOOLEAN:
2216       case T_BYTE:
2217       case T_SHORT:
2218       case T_CHAR:
2219         // There are all promoted to T_INT in the calling convention
2220         return T_INT;
2221 
2222       case T_OBJECT:
2223       case T_ARRAY:
2224         // In other words, we assume that any register good enough for
2225         // an int or long is good enough for a managed pointer.
2226 #ifdef _LP64
2227         return T_LONG;
2228 #else
2229         return T_INT;
2230 #endif
2231 
2232       case T_INT:
2233       case T_LONG:
2234       case T_FLOAT:
2235       case T_DOUBLE:
2236       case T_VOID:
2237         return in;
2238 
2239       default:
2240         ShouldNotReachHere();
2241         return T_CONFLICT;
2242     }
2243   }
2244 
2245  public:
2246   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2247     // The fingerprint is based on the BasicType signature encoded
2248     // into an array of ints with eight entries per int.
2249     int* ptr;
2250     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2251     if (len <= _compact_int_count) {
2252       assert(_compact_int_count == 3, "else change next line");
2253       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2254       // Storing the signature encoded as signed chars hits about 98%
2255       // of the time.
2256       _length = -len;
2257       ptr = _value._compact;
2258     } else {
2259       _length = len;
2260       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2261       ptr = _value._fingerprint;
2262     }
2263 
2264     // Now pack the BasicTypes with 8 per int
2265     int sig_index = 0;
2266     for (int index = 0; index < len; index++) {
2267       int value = 0;
2268       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2269         int bt = ((sig_index < total_args_passed)
2270                   ? adapter_encoding(sig_bt[sig_index++])
2271                   : 0);
2272         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2273         value = (value << _basic_type_bits) | bt;
2274       }
2275       ptr[index] = value;
2276     }
2277   }
2278 
2279   ~AdapterFingerPrint() {
2280     if (_length > 0) {
2281       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2282     }
2283   }
2284 
2285   int value(int index) {
2286     if (_length < 0) {
2287       return _value._compact[index];
2288     }
2289     return _value._fingerprint[index];
2290   }
2291   int length() {
2292     if (_length < 0) return -_length;
2293     return _length;
2294   }
2295 
2296   bool is_compact() {
2297     return _length <= 0;
2298   }
2299 
2300   unsigned int compute_hash() {
2301     int hash = 0;
2302     for (int i = 0; i < length(); i++) {
2303       int v = value(i);
2304       hash = (hash << 8) ^ v ^ (hash >> 5);
2305     }
2306     return (unsigned int)hash;
2307   }
2308 
2309   const char* as_string() {
2310     stringStream st;
2311     st.print("0x");
2312     for (int i = 0; i < length(); i++) {
2313       st.print("%08x", value(i));
2314     }
2315     return st.as_string();
2316   }
2317 
2318   bool equals(AdapterFingerPrint* other) {
2319     if (other->_length != _length) {
2320       return false;
2321     }
2322     if (_length < 0) {
2323       assert(_compact_int_count == 3, "else change next line");
2324       return _value._compact[0] == other->_value._compact[0] &&
2325              _value._compact[1] == other->_value._compact[1] &&
2326              _value._compact[2] == other->_value._compact[2];
2327     } else {
2328       for (int i = 0; i < _length; i++) {
2329         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2330           return false;
2331         }
2332       }
2333     }
2334     return true;
2335   }
2336 };
2337 
2338 
2339 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2340 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2341   friend class AdapterHandlerTableIterator;
2342 
2343  private:
2344 
2345 #ifndef PRODUCT
2346   static int _lookups; // number of calls to lookup
2347   static int _buckets; // number of buckets checked
2348   static int _equals;  // number of buckets checked with matching hash
2349   static int _hits;    // number of successful lookups
2350   static int _compact; // number of equals calls with compact signature
2351 #endif
2352 
2353   AdapterHandlerEntry* bucket(int i) {
2354     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2355   }
2356 
2357  public:
2358   AdapterHandlerTable()
2359     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2360 
2361   // Create a new entry suitable for insertion in the table
2362   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2363     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2364     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2365     return entry;
2366   }
2367 
2368   // Insert an entry into the table
2369   void add(AdapterHandlerEntry* entry) {
2370     int index = hash_to_index(entry->hash());
2371     add_entry(index, entry);
2372   }
2373 
2374   void free_entry(AdapterHandlerEntry* entry) {
2375     entry->deallocate();
2376     BasicHashtable<mtCode>::free_entry(entry);
2377   }
2378 
2379   // Find a entry with the same fingerprint if it exists
2380   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2381     NOT_PRODUCT(_lookups++);
2382     AdapterFingerPrint fp(total_args_passed, sig_bt);
2383     unsigned int hash = fp.compute_hash();
2384     int index = hash_to_index(hash);
2385     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2386       NOT_PRODUCT(_buckets++);
2387       if (e->hash() == hash) {
2388         NOT_PRODUCT(_equals++);
2389         if (fp.equals(e->fingerprint())) {
2390 #ifndef PRODUCT
2391           if (fp.is_compact()) _compact++;
2392           _hits++;
2393 #endif
2394           return e;
2395         }
2396       }
2397     }
2398     return NULL;
2399   }
2400 
2401 #ifndef PRODUCT
2402   void print_statistics() {
2403     ResourceMark rm;
2404     int longest = 0;
2405     int empty = 0;
2406     int total = 0;
2407     int nonempty = 0;
2408     for (int index = 0; index < table_size(); index++) {
2409       int count = 0;
2410       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2411         count++;
2412       }
2413       if (count != 0) nonempty++;
2414       if (count == 0) empty++;
2415       if (count > longest) longest = count;
2416       total += count;
2417     }
2418     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2419                   empty, longest, total, total / (double)nonempty);
2420     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2421                   _lookups, _buckets, _equals, _hits, _compact);
2422   }
2423 #endif
2424 };
2425 
2426 
2427 #ifndef PRODUCT
2428 
2429 int AdapterHandlerTable::_lookups;
2430 int AdapterHandlerTable::_buckets;
2431 int AdapterHandlerTable::_equals;
2432 int AdapterHandlerTable::_hits;
2433 int AdapterHandlerTable::_compact;
2434 
2435 #endif
2436 
2437 class AdapterHandlerTableIterator : public StackObj {
2438  private:
2439   AdapterHandlerTable* _table;
2440   int _index;
2441   AdapterHandlerEntry* _current;
2442 
2443   void scan() {
2444     while (_index < _table->table_size()) {
2445       AdapterHandlerEntry* a = _table->bucket(_index);
2446       _index++;
2447       if (a != NULL) {
2448         _current = a;
2449         return;
2450       }
2451     }
2452   }
2453 
2454  public:
2455   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2456     scan();
2457   }
2458   bool has_next() {
2459     return _current != NULL;
2460   }
2461   AdapterHandlerEntry* next() {
2462     if (_current != NULL) {
2463       AdapterHandlerEntry* result = _current;
2464       _current = _current->next();
2465       if (_current == NULL) scan();
2466       return result;
2467     } else {
2468       return NULL;
2469     }
2470   }
2471 };
2472 
2473 
2474 // ---------------------------------------------------------------------------
2475 // Implementation of AdapterHandlerLibrary
2476 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2477 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2478 const int AdapterHandlerLibrary_size = 16*K;
2479 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2480 
2481 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2482   // Should be called only when AdapterHandlerLibrary_lock is active.
2483   if (_buffer == NULL) // Initialize lazily
2484       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2485   return _buffer;
2486 }
2487 
2488 extern "C" void unexpected_adapter_call() {
2489   ShouldNotCallThis();
2490 }
2491 
2492 void AdapterHandlerLibrary::initialize() {
2493   if (_adapters != NULL) return;
2494   _adapters = new AdapterHandlerTable();
2495 
2496   if (!CodeCacheExtensions::skip_compiler_support()) {
2497     // Create a special handler for abstract methods.  Abstract methods
2498     // are never compiled so an i2c entry is somewhat meaningless, but
2499     // throw AbstractMethodError just in case.
2500     // Pass wrong_method_abstract for the c2i transitions to return
2501     // AbstractMethodError for invalid invocations.
2502     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2503     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2504                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2505                                                                 wrong_method_abstract, wrong_method_abstract);
2506   } else {
2507     // Adapters are not supposed to be used.
2508     // Generate a special one to cause an error if used (and store this
2509     // singleton in place of the useless _abstract_method_error adapter).
2510     address entry = (address) &unexpected_adapter_call;
2511     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2512                                                                 entry,
2513                                                                 entry,
2514                                                                 entry);
2515 
2516   }
2517 }
2518 
2519 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2520                                                       address i2c_entry,
2521                                                       address c2i_entry,
2522                                                       address c2i_unverified_entry) {
2523   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2524 }
2525 
2526 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2527   // Use customized signature handler.  Need to lock around updates to
2528   // the AdapterHandlerTable (it is not safe for concurrent readers
2529   // and a single writer: this could be fixed if it becomes a
2530   // problem).
2531 
2532   ResourceMark rm;
2533 
2534   NOT_PRODUCT(int insts_size);
2535   AdapterBlob* new_adapter = NULL;
2536   AdapterHandlerEntry* entry = NULL;
2537   AdapterFingerPrint* fingerprint = NULL;
2538   {
2539     MutexLocker mu(AdapterHandlerLibrary_lock);
2540     // make sure data structure is initialized
2541     initialize();
2542 
2543     if (CodeCacheExtensions::skip_compiler_support()) {
2544       // adapters are useless and should not be used, including the
2545       // abstract_method_handler. However, some callers check that
2546       // an adapter was installed.
2547       // Return the singleton adapter, stored into _abstract_method_handler
2548       // and modified to cause an error if we ever call it.
2549       return _abstract_method_handler;
2550     }
2551 
2552     if (method->is_abstract()) {
2553       return _abstract_method_handler;
2554     }
2555 
2556     // Fill in the signature array, for the calling-convention call.
2557     int total_args_passed = method->size_of_parameters(); // All args on stack
2558 
2559     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2560     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2561     int i = 0;
2562     if (!method->is_static())  // Pass in receiver first
2563       sig_bt[i++] = T_OBJECT;
2564     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2565       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2566       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2567         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2568     }
2569     assert(i == total_args_passed, "");
2570 
2571     // Lookup method signature's fingerprint
2572     entry = _adapters->lookup(total_args_passed, sig_bt);
2573 
2574 #ifdef ASSERT
2575     AdapterHandlerEntry* shared_entry = NULL;
2576     // Start adapter sharing verification only after the VM is booted.
2577     if (VerifyAdapterSharing && (entry != NULL)) {
2578       shared_entry = entry;
2579       entry = NULL;
2580     }
2581 #endif
2582 
2583     if (entry != NULL) {
2584       return entry;
2585     }
2586 
2587     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2588     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2589 
2590     // Make a C heap allocated version of the fingerprint to store in the adapter
2591     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2592 
2593     // StubRoutines::code2() is initialized after this function can be called. As a result,
2594     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2595     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2596     // stub that ensure that an I2C stub is called from an interpreter frame.
2597     bool contains_all_checks = StubRoutines::code2() != NULL;
2598 
2599     // Create I2C & C2I handlers
2600     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2601     if (buf != NULL) {
2602       CodeBuffer buffer(buf);
2603       short buffer_locs[20];
2604       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2605                                              sizeof(buffer_locs)/sizeof(relocInfo));
2606 
2607       MacroAssembler _masm(&buffer);
2608       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2609                                                      total_args_passed,
2610                                                      comp_args_on_stack,
2611                                                      sig_bt,
2612                                                      regs,
2613                                                      fingerprint);
2614 #ifdef ASSERT
2615       if (VerifyAdapterSharing) {
2616         if (shared_entry != NULL) {
2617           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2618           // Release the one just created and return the original
2619           _adapters->free_entry(entry);
2620           return shared_entry;
2621         } else  {
2622           entry->save_code(buf->code_begin(), buffer.insts_size());
2623         }
2624       }
2625 #endif
2626 
2627       new_adapter = AdapterBlob::create(&buffer);
2628       NOT_PRODUCT(insts_size = buffer.insts_size());
2629     }
2630     if (new_adapter == NULL) {
2631       // CodeCache is full, disable compilation
2632       // Ought to log this but compile log is only per compile thread
2633       // and we're some non descript Java thread.
2634       return NULL; // Out of CodeCache space
2635     }
2636     entry->relocate(new_adapter->content_begin());
2637 #ifndef PRODUCT
2638     // debugging suppport
2639     if (PrintAdapterHandlers || PrintStubCode) {
2640       ttyLocker ttyl;
2641       entry->print_adapter_on(tty);
2642       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2643                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2644                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2645       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2646       if (Verbose || PrintStubCode) {
2647         address first_pc = entry->base_address();
2648         if (first_pc != NULL) {
2649           Disassembler::decode(first_pc, first_pc + insts_size);
2650           tty->cr();
2651         }
2652       }
2653     }
2654 #endif
2655     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2656     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2657     if (contains_all_checks || !VerifyAdapterCalls) {
2658       _adapters->add(entry);
2659     }
2660   }
2661   // Outside of the lock
2662   if (new_adapter != NULL) {
2663     char blob_id[256];
2664     jio_snprintf(blob_id,
2665                  sizeof(blob_id),
2666                  "%s(%s)@" PTR_FORMAT,
2667                  new_adapter->name(),
2668                  fingerprint->as_string(),
2669                  new_adapter->content_begin());
2670     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2671 
2672     if (JvmtiExport::should_post_dynamic_code_generated()) {
2673       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2674     }
2675   }
2676   return entry;
2677 }
2678 
2679 address AdapterHandlerEntry::base_address() {
2680   address base = _i2c_entry;
2681   if (base == NULL)  base = _c2i_entry;
2682   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2683   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2684   return base;
2685 }
2686 
2687 void AdapterHandlerEntry::relocate(address new_base) {
2688   address old_base = base_address();
2689   assert(old_base != NULL, "");
2690   ptrdiff_t delta = new_base - old_base;
2691   if (_i2c_entry != NULL)
2692     _i2c_entry += delta;
2693   if (_c2i_entry != NULL)
2694     _c2i_entry += delta;
2695   if (_c2i_unverified_entry != NULL)
2696     _c2i_unverified_entry += delta;
2697   assert(base_address() == new_base, "");
2698 }
2699 
2700 
2701 void AdapterHandlerEntry::deallocate() {
2702   delete _fingerprint;
2703 #ifdef ASSERT
2704   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2705 #endif
2706 }
2707 
2708 
2709 #ifdef ASSERT
2710 // Capture the code before relocation so that it can be compared
2711 // against other versions.  If the code is captured after relocation
2712 // then relative instructions won't be equivalent.
2713 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2714   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2715   _saved_code_length = length;
2716   memcpy(_saved_code, buffer, length);
2717 }
2718 
2719 
2720 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2721   if (length != _saved_code_length) {
2722     return false;
2723   }
2724 
2725   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2726 }
2727 #endif
2728 
2729 
2730 /**
2731  * Create a native wrapper for this native method.  The wrapper converts the
2732  * Java-compiled calling convention to the native convention, handles
2733  * arguments, and transitions to native.  On return from the native we transition
2734  * back to java blocking if a safepoint is in progress.
2735  */
2736 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2737   ResourceMark rm;
2738   nmethod* nm = NULL;
2739 
2740   assert(method->is_native(), "must be native");
2741   assert(method->is_method_handle_intrinsic() ||
2742          method->has_native_function(), "must have something valid to call!");
2743 
2744   {
2745     // Perform the work while holding the lock, but perform any printing outside the lock
2746     MutexLocker mu(AdapterHandlerLibrary_lock);
2747     // See if somebody beat us to it
2748     if (method->code() != NULL) {
2749       return;
2750     }
2751 
2752     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2753     assert(compile_id > 0, "Must generate native wrapper");
2754 
2755 
2756     ResourceMark rm;
2757     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2758     if (buf != NULL) {
2759       CodeBuffer buffer(buf);
2760       double locs_buf[20];
2761       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2762       MacroAssembler _masm(&buffer);
2763 
2764       // Fill in the signature array, for the calling-convention call.
2765       const int total_args_passed = method->size_of_parameters();
2766 
2767       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2768       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2769       int i=0;
2770       if (!method->is_static())  // Pass in receiver first
2771         sig_bt[i++] = T_OBJECT;
2772       SignatureStream ss(method->signature());
2773       for (; !ss.at_return_type(); ss.next()) {
2774         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2775         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2776           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2777       }
2778       assert(i == total_args_passed, "");
2779       BasicType ret_type = ss.type();
2780 
2781       // Now get the compiled-Java layout as input (or output) arguments.
2782       // NOTE: Stubs for compiled entry points of method handle intrinsics
2783       // are just trampolines so the argument registers must be outgoing ones.
2784       const bool is_outgoing = method->is_method_handle_intrinsic();
2785       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2786 
2787       // Generate the compiled-to-native wrapper code
2788       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2789 
2790       if (nm != NULL) {
2791         method->set_code(method, nm);
2792 
2793         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2794         if (directive->PrintAssemblyOption) {
2795           Disassembler::decode(nm, tty);
2796         }
2797         DirectivesStack::release(directive);
2798       }
2799     }
2800   } // Unlock AdapterHandlerLibrary_lock
2801 
2802 
2803   // Install the generated code.
2804   if (nm != NULL) {
2805     if (PrintCompilation) {
2806       ttyLocker ttyl;
2807       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2808     }
2809     nm->post_compiled_method_load_event();
2810   }
2811 }
2812 
2813 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2814   assert(thread == JavaThread::current(), "must be");
2815   // The code is about to enter a JNI lazy critical native method and
2816   // _needs_gc is true, so if this thread is already in a critical
2817   // section then just return, otherwise this thread should block
2818   // until needs_gc has been cleared.
2819   if (thread->in_critical()) {
2820     return;
2821   }
2822   // Lock and unlock a critical section to give the system a chance to block
2823   GC_locker::lock_critical(thread);
2824   GC_locker::unlock_critical(thread);
2825 JRT_END
2826 
2827 // -------------------------------------------------------------------------
2828 // Java-Java calling convention
2829 // (what you use when Java calls Java)
2830 
2831 //------------------------------name_for_receiver----------------------------------
2832 // For a given signature, return the VMReg for parameter 0.
2833 VMReg SharedRuntime::name_for_receiver() {
2834   VMRegPair regs;
2835   BasicType sig_bt = T_OBJECT;
2836   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2837   // Return argument 0 register.  In the LP64 build pointers
2838   // take 2 registers, but the VM wants only the 'main' name.
2839   return regs.first();
2840 }
2841 
2842 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2843   // This method is returning a data structure allocating as a
2844   // ResourceObject, so do not put any ResourceMarks in here.
2845   char *s = sig->as_C_string();
2846   int len = (int)strlen(s);
2847   s++; len--;                   // Skip opening paren
2848   char *t = s+len;
2849   while (*(--t) != ')');      // Find close paren
2850 
2851   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2852   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2853   int cnt = 0;
2854   if (has_receiver) {
2855     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2856   }
2857 
2858   while (s < t) {
2859     switch (*s++) {            // Switch on signature character
2860     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2861     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2862     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2863     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2864     case 'I': sig_bt[cnt++] = T_INT;     break;
2865     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2866     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2867     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2868     case 'V': sig_bt[cnt++] = T_VOID;    break;
2869     case 'L':                   // Oop
2870       while (*s++ != ';');   // Skip signature
2871       sig_bt[cnt++] = T_OBJECT;
2872       break;
2873     case '[': {                 // Array
2874       do {                      // Skip optional size
2875         while (*s >= '0' && *s <= '9') s++;
2876       } while (*s++ == '[');   // Nested arrays?
2877       // Skip element type
2878       if (s[-1] == 'L')
2879         while (*s++ != ';'); // Skip signature
2880       sig_bt[cnt++] = T_ARRAY;
2881       break;
2882     }
2883     default : ShouldNotReachHere();
2884     }
2885   }
2886 
2887   if (has_appendix) {
2888     sig_bt[cnt++] = T_OBJECT;
2889   }
2890 
2891   assert(cnt < 256, "grow table size");
2892 
2893   int comp_args_on_stack;
2894   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2895 
2896   // the calling convention doesn't count out_preserve_stack_slots so
2897   // we must add that in to get "true" stack offsets.
2898 
2899   if (comp_args_on_stack) {
2900     for (int i = 0; i < cnt; i++) {
2901       VMReg reg1 = regs[i].first();
2902       if (reg1->is_stack()) {
2903         // Yuck
2904         reg1 = reg1->bias(out_preserve_stack_slots());
2905       }
2906       VMReg reg2 = regs[i].second();
2907       if (reg2->is_stack()) {
2908         // Yuck
2909         reg2 = reg2->bias(out_preserve_stack_slots());
2910       }
2911       regs[i].set_pair(reg2, reg1);
2912     }
2913   }
2914 
2915   // results
2916   *arg_size = cnt;
2917   return regs;
2918 }
2919 
2920 // OSR Migration Code
2921 //
2922 // This code is used convert interpreter frames into compiled frames.  It is
2923 // called from very start of a compiled OSR nmethod.  A temp array is
2924 // allocated to hold the interesting bits of the interpreter frame.  All
2925 // active locks are inflated to allow them to move.  The displaced headers and
2926 // active interpreter locals are copied into the temp buffer.  Then we return
2927 // back to the compiled code.  The compiled code then pops the current
2928 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2929 // copies the interpreter locals and displaced headers where it wants.
2930 // Finally it calls back to free the temp buffer.
2931 //
2932 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2933 
2934 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2935 
2936   //
2937   // This code is dependent on the memory layout of the interpreter local
2938   // array and the monitors. On all of our platforms the layout is identical
2939   // so this code is shared. If some platform lays the their arrays out
2940   // differently then this code could move to platform specific code or
2941   // the code here could be modified to copy items one at a time using
2942   // frame accessor methods and be platform independent.
2943 
2944   frame fr = thread->last_frame();
2945   assert(fr.is_interpreted_frame(), "");
2946   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2947 
2948   // Figure out how many monitors are active.
2949   int active_monitor_count = 0;
2950   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2951        kptr < fr.interpreter_frame_monitor_begin();
2952        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2953     if (kptr->obj() != NULL) active_monitor_count++;
2954   }
2955 
2956   // QQQ we could place number of active monitors in the array so that compiled code
2957   // could double check it.
2958 
2959   Method* moop = fr.interpreter_frame_method();
2960   int max_locals = moop->max_locals();
2961   // Allocate temp buffer, 1 word per local & 2 per active monitor
2962   int buf_size_words = max_locals + active_monitor_count*2;
2963   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2964 
2965   // Copy the locals.  Order is preserved so that loading of longs works.
2966   // Since there's no GC I can copy the oops blindly.
2967   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2968   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2969                        (HeapWord*)&buf[0],
2970                        max_locals);
2971 
2972   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2973   int i = max_locals;
2974   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2975        kptr2 < fr.interpreter_frame_monitor_begin();
2976        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2977     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2978       BasicLock *lock = kptr2->lock();
2979       // Inflate so the displaced header becomes position-independent
2980       if (lock->displaced_header()->is_unlocked())
2981         ObjectSynchronizer::inflate_helper(kptr2->obj());
2982       // Now the displaced header is free to move
2983       buf[i++] = (intptr_t)lock->displaced_header();
2984       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2985     }
2986   }
2987   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2988 
2989   return buf;
2990 JRT_END
2991 
2992 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2993   FREE_C_HEAP_ARRAY(intptr_t, buf);
2994 JRT_END
2995 
2996 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
2997   AdapterHandlerTableIterator iter(_adapters);
2998   while (iter.has_next()) {
2999     AdapterHandlerEntry* a = iter.next();
3000     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3001   }
3002   return false;
3003 }
3004 
3005 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3006   AdapterHandlerTableIterator iter(_adapters);
3007   while (iter.has_next()) {
3008     AdapterHandlerEntry* a = iter.next();
3009     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3010       st->print("Adapter for signature: ");
3011       a->print_adapter_on(tty);
3012       return;
3013     }
3014   }
3015   assert(false, "Should have found handler");
3016 }
3017 
3018 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3019   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3020                p2i(this), fingerprint()->as_string(),
3021                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3022 
3023 }
3024 
3025 #ifndef PRODUCT
3026 
3027 void AdapterHandlerLibrary::print_statistics() {
3028   _adapters->print_statistics();
3029 }
3030 
3031 #endif /* PRODUCT */