1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_CODE_RELOCINFO_HPP
  26 #define SHARE_VM_CODE_RELOCINFO_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "utilities/top.hpp"
  30 
  31 class NativeMovConstReg;
  32 
  33 // Types in this file:
  34 //    relocInfo
  35 //      One element of an array of halfwords encoding compressed relocations.
  36 //      Also, the source of relocation types (relocInfo::oop_type, ...).
  37 //    Relocation
  38 //      A flyweight object representing a single relocation.
  39 //      It is fully unpacked from the compressed relocation array.
  40 //    metadata_Relocation, ... (subclasses of Relocation)
  41 //      The location of some type-specific operations (metadata_addr, ...).
  42 //      Also, the source of relocation specs (metadata_Relocation::spec, ...).
  43 //    oop_Relocation, ... (subclasses of Relocation)
  44 //      oops in the code stream (strings, class loaders)
  45 //      Also, the source of relocation specs (oop_Relocation::spec, ...).
  46 //    RelocationHolder
  47 //      A ValueObj type which acts as a union holding a Relocation object.
  48 //      Represents a relocation spec passed into a CodeBuffer during assembly.
  49 //    RelocIterator
  50 //      A StackObj which iterates over the relocations associated with
  51 //      a range of code addresses.  Can be used to operate a copy of code.
  52 //    BoundRelocation
  53 //      An _internal_ type shared by packers and unpackers of relocations.
  54 //      It pastes together a RelocationHolder with some pointers into
  55 //      code and relocInfo streams.
  56 
  57 
  58 // Notes on relocType:
  59 //
  60 // These hold enough information to read or write a value embedded in
  61 // the instructions of an CodeBlob.  They're used to update:
  62 //
  63 //   1) embedded oops     (isOop()          == true)
  64 //   2) inline caches     (isIC()           == true)
  65 //   3) runtime calls     (isRuntimeCall()  == true)
  66 //   4) internal word ref (isInternalWord() == true)
  67 //   5) external word ref (isExternalWord() == true)
  68 //
  69 // when objects move (GC) or if code moves (compacting the code heap).
  70 // They are also used to patch the code (if a call site must change)
  71 //
  72 // A relocInfo is represented in 16 bits:
  73 //   4 bits indicating the relocation type
  74 //  12 bits indicating the offset from the previous relocInfo address
  75 //
  76 // The offsets accumulate along the relocInfo stream to encode the
  77 // address within the CodeBlob, which is named RelocIterator::addr().
  78 // The address of a particular relocInfo always points to the first
  79 // byte of the relevant instruction (and not to any of its subfields
  80 // or embedded immediate constants).
  81 //
  82 // The offset value is scaled appropriately for the target machine.
  83 // (See relocInfo_<arch>.hpp for the offset scaling.)
  84 //
  85 // On some machines, there may also be a "format" field which may provide
  86 // additional information about the format of the instruction stream
  87 // at the corresponding code address.  The format value is usually zero.
  88 // Any machine (such as Intel) whose instructions can sometimes contain
  89 // more than one relocatable constant needs format codes to distinguish
  90 // which operand goes with a given relocation.
  91 //
  92 // If the target machine needs N format bits, the offset has 12-N bits,
  93 // the format is encoded between the offset and the type, and the
  94 // relocInfo_<arch>.hpp file has manifest constants for the format codes.
  95 //
  96 // If the type is "data_prefix_tag" then the offset bits are further encoded,
  97 // and in fact represent not a code-stream offset but some inline data.
  98 // The data takes the form of a counted sequence of halfwords, which
  99 // precedes the actual relocation record.  (Clients never see it directly.)
 100 // The interpetation of this extra data depends on the relocation type.
 101 //
 102 // On machines that have 32-bit immediate fields, there is usually
 103 // little need for relocation "prefix" data, because the instruction stream
 104 // is a perfectly reasonable place to store the value.  On machines in
 105 // which 32-bit values must be "split" across instructions, the relocation
 106 // data is the "true" specification of the value, which is then applied
 107 // to some field of the instruction (22 or 13 bits, on SPARC).
 108 //
 109 // Whenever the location of the CodeBlob changes, any PC-relative
 110 // relocations, and any internal_word_type relocations, must be reapplied.
 111 // After the GC runs, oop_type relocations must be reapplied.
 112 //
 113 //
 114 // Here are meanings of the types:
 115 //
 116 // relocInfo::none -- a filler record
 117 //   Value:  none
 118 //   Instruction: The corresponding code address is ignored
 119 //   Data:  Any data prefix and format code are ignored
 120 //   (This means that any relocInfo can be disabled by setting
 121 //   its type to none.  See relocInfo::remove.)
 122 //
 123 // relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
 124 //   Value:  an oop, or else the address (handle) of an oop
 125 //   Instruction types: memory (load), set (load address)
 126 //   Data:  []       an oop stored in 4 bytes of instruction
 127 //          [n]      n is the index of an oop in the CodeBlob's oop pool
 128 //          [[N]n l] and l is a byte offset to be applied to the oop
 129 //          [Nn Ll]  both index and offset may be 32 bits if necessary
 130 //   Here is a special hack, used only by the old compiler:
 131 //          [[N]n 00] the value is the __address__ of the nth oop in the pool
 132 //   (Note that the offset allows optimal references to class variables.)
 133 //
 134 // relocInfo::internal_word_type -- an address within the same CodeBlob
 135 // relocInfo::section_word_type -- same, but can refer to another section
 136 //   Value:  an address in the CodeBlob's code or constants section
 137 //   Instruction types: memory (load), set (load address)
 138 //   Data:  []     stored in 4 bytes of instruction
 139 //          [[L]l] a relative offset (see [About Offsets] below)
 140 //   In the case of section_word_type, the offset is relative to a section
 141 //   base address, and the section number (e.g., SECT_INSTS) is encoded
 142 //   into the low two bits of the offset L.
 143 //
 144 // relocInfo::external_word_type -- a fixed address in the runtime system
 145 //   Value:  an address
 146 //   Instruction types: memory (load), set (load address)
 147 //   Data:  []   stored in 4 bytes of instruction
 148 //          [n]  the index of a "well-known" stub (usual case on RISC)
 149 //          [Ll] a 32-bit address
 150 //
 151 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
 152 //   Value:  an address
 153 //   Instruction types: PC-relative call (or a PC-relative branch)
 154 //   Data:  []   stored in 4 bytes of instruction
 155 //
 156 // relocInfo::static_call_type -- a static call
 157 //   Value:  an CodeBlob, a stub, or a fixup routine
 158 //   Instruction types: a call
 159 //   Data:  []
 160 //   The identity of the callee is extracted from debugging information.
 161 //   //%note reloc_3
 162 //
 163 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline
 164 //                                 cache)
 165 //   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
 166 //   Instruction types: a call, plus some associated set-oop instructions
 167 //   Data:  []       the associated set-oops are adjacent to the call
 168 //          [n]      n is a relative offset to the first set-oop
 169 //          [[N]n l] and l is a limit within which the set-oops occur
 170 //          [Nn Ll]  both n and l may be 32 bits if necessary
 171 //   The identity of the callee is extracted from debugging information.
 172 //
 173 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
 174 //
 175 //    Same info as a static_call_type. We use a special type, so the handling of
 176 //    virtuals and statics are separated.
 177 //
 178 //
 179 //   The offset n points to the first set-oop.  (See [About Offsets] below.)
 180 //   In turn, the set-oop instruction specifies or contains an oop cell devoted
 181 //   exclusively to the IC call, which can be patched along with the call.
 182 //
 183 //   The locations of any other set-oops are found by searching the relocation
 184 //   information starting at the first set-oop, and continuing until all
 185 //   relocations up through l have been inspected.  The value l is another
 186 //   relative offset.  (Both n and l are relative to the call's first byte.)
 187 //
 188 //   The limit l of the search is exclusive.  However, if it points within
 189 //   the call (e.g., offset zero), it is adjusted to point after the call and
 190 //   any associated machine-specific delay slot.
 191 //
 192 //   Since the offsets could be as wide as 32-bits, these conventions
 193 //   put no restrictions whatever upon code reorganization.
 194 //
 195 //   The compiler is responsible for ensuring that transition from a clean
 196 //   state to a monomorphic compiled state is MP-safe.  This implies that
 197 //   the system must respond well to intermediate states where a random
 198 //   subset of the set-oops has been correctly from the clean state
 199 //   upon entry to the VEP of the compiled method.  In the case of a
 200 //   machine (Intel) with a single set-oop instruction, the 32-bit
 201 //   immediate field must not straddle a unit of memory coherence.
 202 //   //%note reloc_3
 203 //
 204 // relocInfo::static_stub_type -- an extra stub for each static_call_type
 205 //   Value:  none
 206 //   Instruction types: a virtual call:  { set_oop; jump; }
 207 //   Data:  [[N]n]  the offset of the associated static_call reloc
 208 //   This stub becomes the target of a static call which must be upgraded
 209 //   to a virtual call (because the callee is interpreted).
 210 //   See [About Offsets] below.
 211 //   //%note reloc_2
 212 //
 213 // relocInfo::poll_[return_]type -- a safepoint poll
 214 //   Value:  none
 215 //   Instruction types: memory load or test
 216 //   Data:  none
 217 //
 218 // For example:
 219 //
 220 //   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
 221 //   ------------                               ----    -----------
 222 // sethi      %hi(myObject),  R               oop_type [n(myObject)]
 223 // ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
 224 // add R2, 1, R2
 225 // st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
 226 //%note reloc_1
 227 //
 228 // This uses 4 instruction words, 8 relocation halfwords,
 229 // and an entry (which is sharable) in the CodeBlob's oop pool,
 230 // for a total of 36 bytes.
 231 //
 232 // Note that the compiler is responsible for ensuring the "fldOffset" when
 233 // added to "%lo(myObject)" does not overflow the immediate fields of the
 234 // memory instructions.
 235 //
 236 //
 237 // [About Offsets] Relative offsets are supplied to this module as
 238 // positive byte offsets, but they may be internally stored scaled
 239 // and/or negated, depending on what is most compact for the target
 240 // system.  Since the object pointed to by the offset typically
 241 // precedes the relocation address, it is profitable to store
 242 // these negative offsets as positive numbers, but this decision
 243 // is internal to the relocation information abstractions.
 244 //
 245 
 246 class Relocation;
 247 class CodeBuffer;
 248 class CodeSection;
 249 class RelocIterator;
 250 
 251 class relocInfo VALUE_OBJ_CLASS_SPEC {
 252   friend class RelocIterator;
 253  public:
 254   enum relocType {
 255     none                    =  0, // Used when no relocation should be generated
 256     oop_type                =  1, // embedded oop
 257     virtual_call_type       =  2, // a standard inline cache call for a virtual send
 258     opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
 259     static_call_type        =  4, // a static send
 260     static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
 261     runtime_call_type       =  6, // call to fixed external routine
 262     external_word_type      =  7, // reference to fixed external address
 263     internal_word_type      =  8, // reference within the current code blob
 264     section_word_type       =  9, // internal, but a cross-section reference
 265     poll_type               = 10, // polling instruction for safepoints
 266     poll_return_type        = 11, // polling instruction for safepoints at return
 267     metadata_type           = 12, // metadata that used to be oops
 268     trampoline_stub_type    = 13, // stub-entry for trampoline
 269     yet_unused_type_1       = 14, // Still unused
 270     data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
 271     type_mask               = 15  // A mask which selects only the above values
 272   };
 273 
 274  protected:
 275   unsigned short _value;
 276 
 277   enum RawBitsToken { RAW_BITS };
 278   relocInfo(relocType type, RawBitsToken ignore, int bits)
 279     : _value((type << nontype_width) + bits) { }
 280 
 281   relocInfo(relocType type, RawBitsToken ignore, int off, int f)
 282     : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
 283 
 284  public:
 285   // constructor
 286   relocInfo(relocType type, int offset, int format = 0)
 287 #ifndef ASSERT
 288   {
 289     (*this) = relocInfo(type, RAW_BITS, offset, format);
 290   }
 291 #else
 292   // Put a bunch of assertions out-of-line.
 293   ;
 294 #endif
 295 
 296   #define APPLY_TO_RELOCATIONS(visitor) \
 297     visitor(oop) \
 298     visitor(metadata) \
 299     visitor(virtual_call) \
 300     visitor(opt_virtual_call) \
 301     visitor(static_call) \
 302     visitor(static_stub) \
 303     visitor(runtime_call) \
 304     visitor(external_word) \
 305     visitor(internal_word) \
 306     visitor(poll) \
 307     visitor(poll_return) \
 308     visitor(section_word) \
 309     visitor(trampoline_stub) \
 310 
 311 
 312  public:
 313   enum {
 314     value_width             = sizeof(unsigned short) * BitsPerByte,
 315     type_width              = 4,   // == log2(type_mask+1)
 316     nontype_width           = value_width - type_width,
 317     datalen_width           = nontype_width-1,
 318     datalen_tag             = 1 << datalen_width,  // or-ed into _value
 319     datalen_limit           = 1 << datalen_width,
 320     datalen_mask            = (1 << datalen_width)-1
 321   };
 322 
 323   // accessors
 324  public:
 325   relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
 326   int  format()           const { return format_mask==0? 0: format_mask &
 327                                          ((unsigned)_value >> offset_width); }
 328   int  addr_offset()      const { assert(!is_prefix(), "must have offset");
 329                                   return (_value & offset_mask)*offset_unit; }
 330 
 331  protected:
 332   const short* data()     const { assert(is_datalen(), "must have data");
 333                                   return (const short*)(this + 1); }
 334   int          datalen()  const { assert(is_datalen(), "must have data");
 335                                   return (_value & datalen_mask); }
 336   int         immediate() const { assert(is_immediate(), "must have immed");
 337                                   return (_value & datalen_mask); }
 338  public:
 339   static int addr_unit()        { return offset_unit; }
 340   static int offset_limit()     { return (1 << offset_width) * offset_unit; }
 341 
 342   void set_type(relocType type);
 343   void set_format(int format);
 344 
 345   void remove() { set_type(none); }
 346 
 347  protected:
 348   bool is_none()                const { return type() == none; }
 349   bool is_prefix()              const { return type() == data_prefix_tag; }
 350   bool is_datalen()             const { assert(is_prefix(), "must be prefix");
 351                                         return (_value & datalen_tag) != 0; }
 352   bool is_immediate()           const { assert(is_prefix(), "must be prefix");
 353                                         return (_value & datalen_tag) == 0; }
 354 
 355  public:
 356   // Occasionally records of type relocInfo::none will appear in the stream.
 357   // We do not bother to filter these out, but clients should ignore them.
 358   // These records serve as "filler" in three ways:
 359   //  - to skip large spans of unrelocated code (this is rare)
 360   //  - to pad out the relocInfo array to the required oop alignment
 361   //  - to disable old relocation information which is no longer applicable
 362 
 363   inline friend relocInfo filler_relocInfo();
 364 
 365   // Every non-prefix relocation may be preceded by at most one prefix,
 366   // which supplies 1 or more halfwords of associated data.  Conventionally,
 367   // an int is represented by 0, 1, or 2 halfwords, depending on how
 368   // many bits are required to represent the value.  (In addition,
 369   // if the sole halfword is a 10-bit unsigned number, it is made
 370   // "immediate" in the prefix header word itself.  This optimization
 371   // is invisible outside this module.)
 372 
 373   inline friend relocInfo prefix_relocInfo(int datalen);
 374 
 375  protected:
 376   // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
 377   static relocInfo immediate_relocInfo(int data0) {
 378     assert(fits_into_immediate(data0), "data0 in limits");
 379     return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
 380   }
 381   static bool fits_into_immediate(int data0) {
 382     return (data0 >= 0 && data0 < datalen_limit);
 383   }
 384 
 385  public:
 386   // Support routines for compilers.
 387 
 388   // This routine takes an infant relocInfo (unprefixed) and
 389   // edits in its prefix, if any.  It also updates dest.locs_end.
 390   void initialize(CodeSection* dest, Relocation* reloc);
 391 
 392   // This routine updates a prefix and returns the limit pointer.
 393   // It tries to compress the prefix from 32 to 16 bits, and if
 394   // successful returns a reduced "prefix_limit" pointer.
 395   relocInfo* finish_prefix(short* prefix_limit);
 396 
 397   // bit-packers for the data array:
 398 
 399   // As it happens, the bytes within the shorts are ordered natively,
 400   // but the shorts within the word are ordered big-endian.
 401   // This is an arbitrary choice, made this way mainly to ease debugging.
 402   static int data0_from_int(jint x)         { return x >> value_width; }
 403   static int data1_from_int(jint x)         { return (short)x; }
 404   static jint jint_from_data(short* data) {
 405     return (data[0] << value_width) + (unsigned short)data[1];
 406   }
 407 
 408   static jint short_data_at(int n, short* data, int datalen) {
 409     return datalen > n ? data[n] : 0;
 410   }
 411 
 412   static jint jint_data_at(int n, short* data, int datalen) {
 413     return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
 414   }
 415 
 416   // Update methods for relocation information
 417   // (since code is dynamically patched, we also need to dynamically update the relocation info)
 418   // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
 419   static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
 420   static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
 421 
 422   // Machine dependent stuff
 423 #ifdef TARGET_ARCH_x86
 424 # include "relocInfo_x86.hpp"
 425 #endif
 426 #ifdef TARGET_ARCH_sparc
 427 # include "relocInfo_sparc.hpp"
 428 #endif
 429 #ifdef TARGET_ARCH_zero
 430 # include "relocInfo_zero.hpp"
 431 #endif
 432 #ifdef TARGET_ARCH_arm
 433 # include "relocInfo_arm.hpp"
 434 #endif
 435 #ifdef TARGET_ARCH_ppc
 436 # include "relocInfo_ppc.hpp"
 437 #endif
 438 #ifdef TARGET_ARCH_aarch64
 439 # include "relocInfo_aarch64.hpp"
 440 #endif
 441 
 442  protected:
 443   // Derived constant, based on format_width which is PD:
 444   enum {
 445     offset_width       = nontype_width - format_width,
 446     offset_mask        = (1<<offset_width) - 1,
 447     format_mask        = (1<<format_width) - 1
 448   };
 449  public:
 450   enum {
 451 #ifdef _LP64
 452     // for use in format
 453     // format_width must be at least 1 on _LP64
 454     narrow_oop_in_const = 1,
 455 #endif
 456     // Conservatively large estimate of maximum length (in shorts)
 457     // of any relocation record.
 458     // Extended format is length prefix, data words, and tag/offset suffix.
 459     length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
 460     have_format        = format_width > 0
 461   };
 462 };
 463 
 464 #define FORWARD_DECLARE_EACH_CLASS(name)              \
 465 class name##_Relocation;
 466 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
 467 #undef FORWARD_DECLARE_EACH_CLASS
 468 
 469 
 470 
 471 inline relocInfo filler_relocInfo() {
 472   return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
 473 }
 474 
 475 inline relocInfo prefix_relocInfo(int datalen = 0) {
 476   assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
 477   return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
 478 }
 479 
 480 
 481 // Holder for flyweight relocation objects.
 482 // Although the flyweight subclasses are of varying sizes,
 483 // the holder is "one size fits all".
 484 class RelocationHolder VALUE_OBJ_CLASS_SPEC {
 485   friend class Relocation;
 486   friend class CodeSection;
 487 
 488  private:
 489   // this preallocated memory must accommodate all subclasses of Relocation
 490   // (this number is assertion-checked in Relocation::operator new)
 491   enum { _relocbuf_size = 5 };
 492   void* _relocbuf[ _relocbuf_size ];
 493 
 494  public:
 495   Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
 496   inline relocInfo::relocType type() const;
 497 
 498   // Add a constant offset to a relocation.  Helper for class Address.
 499   RelocationHolder plus(int offset) const;
 500 
 501   inline RelocationHolder();                // initializes type to none
 502 
 503   inline RelocationHolder(Relocation* r);   // make a copy
 504 
 505   static const RelocationHolder none;
 506 };
 507 
 508 // A RelocIterator iterates through the relocation information of a CodeBlob.
 509 // It is a variable BoundRelocation which is able to take on successive
 510 // values as it is advanced through a code stream.
 511 // Usage:
 512 //   RelocIterator iter(nm);
 513 //   while (iter.next()) {
 514 //     iter.reloc()->some_operation();
 515 //   }
 516 // or:
 517 //   RelocIterator iter(nm);
 518 //   while (iter.next()) {
 519 //     switch (iter.type()) {
 520 //      case relocInfo::oop_type          :
 521 //      case relocInfo::ic_type           :
 522 //      case relocInfo::prim_type         :
 523 //      case relocInfo::uncommon_type     :
 524 //      case relocInfo::runtime_call_type :
 525 //      case relocInfo::internal_word_type:
 526 //      case relocInfo::external_word_type:
 527 //      ...
 528 //     }
 529 //   }
 530 
 531 class RelocIterator : public StackObj {
 532   enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
 533   friend class Relocation;
 534   friend class relocInfo;       // for change_reloc_info_for_address only
 535   typedef relocInfo::relocType relocType;
 536 
 537  private:
 538   address         _limit;   // stop producing relocations after this _addr
 539   relocInfo*      _current; // the current relocation information
 540   relocInfo*      _end;     // end marker; we're done iterating when _current == _end
 541   nmethod*        _code;    // compiled method containing _addr
 542   address         _addr;    // instruction to which the relocation applies
 543   short           _databuf; // spare buffer for compressed data
 544   short*          _data;    // pointer to the relocation's data
 545   short           _datalen; // number of halfwords in _data
 546   char            _format;  // position within the instruction
 547 
 548   // Base addresses needed to compute targets of section_word_type relocs.
 549   address _section_start[SECT_LIMIT];
 550   address _section_end  [SECT_LIMIT];
 551 
 552   void set_has_current(bool b) {
 553     _datalen = !b ? -1 : 0;
 554     debug_only(_data = NULL);
 555   }
 556   void set_current(relocInfo& ri) {
 557     _current = &ri;
 558     set_has_current(true);
 559   }
 560 
 561   RelocationHolder _rh; // where the current relocation is allocated
 562 
 563   relocInfo* current() const { assert(has_current(), "must have current");
 564                                return _current; }
 565 
 566   void set_limits(address begin, address limit);
 567 
 568   void advance_over_prefix();    // helper method
 569 
 570   void initialize_misc();
 571 
 572   void initialize(nmethod* nm, address begin, address limit);
 573 
 574   RelocIterator() { initialize_misc(); }
 575 
 576  public:
 577   // constructor
 578   RelocIterator(nmethod* nm, address begin = NULL, address limit = NULL);
 579   RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
 580 
 581   // get next reloc info, return !eos
 582   bool next() {
 583     _current++;
 584     assert(_current <= _end, "must not overrun relocInfo");
 585     if (_current == _end) {
 586       set_has_current(false);
 587       return false;
 588     }
 589     set_has_current(true);
 590 
 591     if (_current->is_prefix()) {
 592       advance_over_prefix();
 593       assert(!current()->is_prefix(), "only one prefix at a time");
 594     }
 595 
 596     _addr += _current->addr_offset();
 597 
 598     if (_limit != NULL && _addr >= _limit) {
 599       set_has_current(false);
 600       return false;
 601     }
 602 
 603     if (relocInfo::have_format)  _format = current()->format();
 604     return true;
 605   }
 606 
 607   // accessors
 608   address      limit()        const { return _limit; }
 609   void     set_limit(address x);
 610   relocType    type()         const { return current()->type(); }
 611   int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
 612   address      addr()         const { return _addr; }
 613   nmethod*     code()         const { return _code; }
 614   short*       data()         const { return _data; }
 615   int          datalen()      const { return _datalen; }
 616   bool     has_current()      const { return _datalen >= 0; }
 617 
 618   void       set_addr(address addr) { _addr = addr; }
 619   bool   addr_in_const()      const;
 620 
 621   address section_start(int n) const {
 622     assert(_section_start[n], "must be initialized");
 623     return _section_start[n];
 624   }
 625   address section_end(int n) const {
 626     assert(_section_end[n], "must be initialized");
 627     return _section_end[n];
 628   }
 629 
 630   // The address points to the affected displacement part of the instruction.
 631   // For RISC, this is just the whole instruction.
 632   // For Intel, this is an unaligned 32-bit word.
 633 
 634   // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
 635   #define EACH_TYPE(name)                               \
 636   inline name##_Relocation* name##_reloc();
 637   APPLY_TO_RELOCATIONS(EACH_TYPE)
 638   #undef EACH_TYPE
 639   // generic relocation accessor; switches on type to call the above
 640   Relocation* reloc();
 641 
 642   // CodeBlob's have relocation indexes for faster random access:
 643   static int locs_and_index_size(int code_size, int locs_size);
 644   // Store an index into [dest_start+dest_count..dest_end).
 645   // At dest_start[0..dest_count] is the actual relocation information.
 646   // Everything else up to dest_end is free space for the index.
 647   static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
 648 
 649 #ifndef PRODUCT
 650  public:
 651   void print();
 652   void print_current();
 653 #endif
 654 };
 655 
 656 
 657 // A Relocation is a flyweight object allocated within a RelocationHolder.
 658 // It represents the relocation data of relocation record.
 659 // So, the RelocIterator unpacks relocInfos into Relocations.
 660 
 661 class Relocation VALUE_OBJ_CLASS_SPEC {
 662   friend class RelocationHolder;
 663   friend class RelocIterator;
 664 
 665  private:
 666   static void guarantee_size();
 667 
 668   // When a relocation has been created by a RelocIterator,
 669   // this field is non-null.  It allows the relocation to know
 670   // its context, such as the address to which it applies.
 671   RelocIterator* _binding;
 672 
 673  protected:
 674   RelocIterator* binding() const {
 675     assert(_binding != NULL, "must be bound");
 676     return _binding;
 677   }
 678   void set_binding(RelocIterator* b) {
 679     assert(_binding == NULL, "must be unbound");
 680     _binding = b;
 681     assert(_binding != NULL, "must now be bound");
 682   }
 683 
 684   Relocation() {
 685     _binding = NULL;
 686   }
 687 
 688   static RelocationHolder newHolder() {
 689     return RelocationHolder();
 690   }
 691 
 692  public:
 693   void* operator new(size_t size, const RelocationHolder& holder) throw() {
 694     if (size > sizeof(holder._relocbuf)) guarantee_size();
 695     assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
 696     return holder.reloc();
 697   }
 698 
 699   // make a generic relocation for a given type (if possible)
 700   static RelocationHolder spec_simple(relocInfo::relocType rtype);
 701 
 702   // here is the type-specific hook which writes relocation data:
 703   virtual void pack_data_to(CodeSection* dest) { }
 704 
 705   // here is the type-specific hook which reads (unpacks) relocation data:
 706   virtual void unpack_data() {
 707     assert(datalen()==0 || type()==relocInfo::none, "no data here");
 708   }
 709 
 710   static bool is_reloc_index(intptr_t index) {
 711     return 0 < index && index < os::vm_page_size();
 712   }
 713 
 714  protected:
 715   // Helper functions for pack_data_to() and unpack_data().
 716 
 717   // Most of the compression logic is confined here.
 718   // (The "immediate data" mechanism of relocInfo works independently
 719   // of this stuff, and acts to further compress most 1-word data prefixes.)
 720 
 721   // A variable-width int is encoded as a short if it will fit in 16 bits.
 722   // The decoder looks at datalen to decide whether to unpack short or jint.
 723   // Most relocation records are quite simple, containing at most two ints.
 724 
 725   static bool is_short(jint x) { return x == (short)x; }
 726   static short* add_short(short* p, int x)  { *p++ = x; return p; }
 727   static short* add_jint (short* p, jint x) {
 728     *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
 729     return p;
 730   }
 731   static short* add_var_int(short* p, jint x) {   // add a variable-width int
 732     if (is_short(x))  p = add_short(p, x);
 733     else              p = add_jint (p, x);
 734     return p;
 735   }
 736 
 737   static short* pack_1_int_to(short* p, jint x0) {
 738     // Format is one of:  [] [x] [Xx]
 739     if (x0 != 0)  p = add_var_int(p, x0);
 740     return p;
 741   }
 742   int unpack_1_int() {
 743     assert(datalen() <= 2, "too much data");
 744     return relocInfo::jint_data_at(0, data(), datalen());
 745   }
 746 
 747   // With two ints, the short form is used only if both ints are short.
 748   short* pack_2_ints_to(short* p, jint x0, jint x1) {
 749     // Format is one of:  [] [x y?] [Xx Y?y]
 750     if (x0 == 0 && x1 == 0) {
 751       // no halfwords needed to store zeroes
 752     } else if (is_short(x0) && is_short(x1)) {
 753       // 1-2 halfwords needed to store shorts
 754       p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
 755     } else {
 756       // 3-4 halfwords needed to store jints
 757       p = add_jint(p, x0);             p = add_var_int(p, x1);
 758     }
 759     return p;
 760   }
 761   void unpack_2_ints(jint& x0, jint& x1) {
 762     int    dlen = datalen();
 763     short* dp  = data();
 764     if (dlen <= 2) {
 765       x0 = relocInfo::short_data_at(0, dp, dlen);
 766       x1 = relocInfo::short_data_at(1, dp, dlen);
 767     } else {
 768       assert(dlen <= 4, "too much data");
 769       x0 = relocInfo::jint_data_at(0, dp, dlen);
 770       x1 = relocInfo::jint_data_at(2, dp, dlen);
 771     }
 772   }
 773 
 774  protected:
 775   // platform-independent utility for patching constant section
 776   void       const_set_data_value    (address x);
 777   void       const_verify_data_value (address x);
 778   // platform-dependent utilities for decoding and patching instructions
 779   void       pd_set_data_value       (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
 780   void       pd_verify_data_value    (address x, intptr_t off) { pd_set_data_value(x, off, true); }
 781   address    pd_call_destination     (address orig_addr = NULL);
 782   void       pd_set_call_destination (address x);
 783 
 784   // this extracts the address of an address in the code stream instead of the reloc data
 785   address* pd_address_in_code       ();
 786 
 787   // this extracts an address from the code stream instead of the reloc data
 788   address  pd_get_address_from_code ();
 789 
 790   // these convert from byte offsets, to scaled offsets, to addresses
 791   static jint scaled_offset(address x, address base) {
 792     int byte_offset = x - base;
 793     int offset = -byte_offset / relocInfo::addr_unit();
 794     assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
 795     return offset;
 796   }
 797   static jint scaled_offset_null_special(address x, address base) {
 798     // Some relocations treat offset=0 as meaning NULL.
 799     // Handle this extra convention carefully.
 800     if (x == NULL)  return 0;
 801     assert(x != base, "offset must not be zero");
 802     return scaled_offset(x, base);
 803   }
 804   static address address_from_scaled_offset(jint offset, address base) {
 805     int byte_offset = -( offset * relocInfo::addr_unit() );
 806     return base + byte_offset;
 807   }
 808 
 809   // these convert between indexes and addresses in the runtime system
 810   static int32_t runtime_address_to_index(address runtime_address);
 811   static address index_to_runtime_address(int32_t index);
 812 
 813   // helpers for mapping between old and new addresses after a move or resize
 814   address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
 815   address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
 816   void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
 817 
 818  public:
 819   // accessors which only make sense for a bound Relocation
 820   address  addr()         const { return binding()->addr(); }
 821   nmethod* code()         const { return binding()->code(); }
 822   bool     addr_in_const() const { return binding()->addr_in_const(); }
 823  protected:
 824   short*   data()         const { return binding()->data(); }
 825   int      datalen()      const { return binding()->datalen(); }
 826   int      format()       const { return binding()->format(); }
 827 
 828  public:
 829   virtual relocInfo::relocType type()            { return relocInfo::none; }
 830 
 831   // is it a call instruction?
 832   virtual bool is_call()                         { return false; }
 833 
 834   // is it a data movement instruction?
 835   virtual bool is_data()                         { return false; }
 836 
 837   // some relocations can compute their own values
 838   virtual address  value();
 839 
 840   // all relocations are able to reassert their values
 841   virtual void set_value(address x);
 842 
 843   virtual void clear_inline_cache()              { }
 844 
 845   // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
 846   // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
 847   // probably a reasonable assumption, since empty caches simplifies code reloacation.
 848   virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
 849 
 850   void print();
 851 };
 852 
 853 
 854 // certain inlines must be deferred until class Relocation is defined:
 855 
 856 inline RelocationHolder::RelocationHolder() {
 857   // initialize the vtbl, just to keep things type-safe
 858   new(*this) Relocation();
 859 }
 860 
 861 
 862 inline RelocationHolder::RelocationHolder(Relocation* r) {
 863   // wordwise copy from r (ok if it copies garbage after r)
 864   for (int i = 0; i < _relocbuf_size; i++) {
 865     _relocbuf[i] = ((void**)r)[i];
 866   }
 867 }
 868 
 869 
 870 relocInfo::relocType RelocationHolder::type() const {
 871   return reloc()->type();
 872 }
 873 
 874 // A DataRelocation always points at a memory or load-constant instruction..
 875 // It is absolute on most machines, and the constant is split on RISCs.
 876 // The specific subtypes are oop, external_word, and internal_word.
 877 // By convention, the "value" does not include a separately reckoned "offset".
 878 class DataRelocation : public Relocation {
 879  public:
 880   bool          is_data()                      { return true; }
 881 
 882   // both target and offset must be computed somehow from relocation data
 883   virtual int    offset()                      { return 0; }
 884   address         value()                      = 0;
 885   void        set_value(address x)             { set_value(x, offset()); }
 886   void        set_value(address x, intptr_t o) {
 887     if (addr_in_const())
 888       const_set_data_value(x);
 889     else
 890       pd_set_data_value(x, o);
 891   }
 892   void        verify_value(address x) {
 893     if (addr_in_const())
 894       const_verify_data_value(x);
 895     else
 896       pd_verify_data_value(x, offset());
 897   }
 898 
 899   // The "o" (displacement) argument is relevant only to split relocations
 900   // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
 901   // can encode more than 32 bits between them.  This allows compilers to
 902   // share set-hi instructions between addresses that differ by a small
 903   // offset (e.g., different static variables in the same class).
 904   // On such machines, the "x" argument to set_value on all set-lo
 905   // instructions must be the same as the "x" argument for the
 906   // corresponding set-hi instructions.  The "o" arguments for the
 907   // set-hi instructions are ignored, and must not affect the high-half
 908   // immediate constant.  The "o" arguments for the set-lo instructions are
 909   // added into the low-half immediate constant, and must not overflow it.
 910 };
 911 
 912 // A CallRelocation always points at a call instruction.
 913 // It is PC-relative on most machines.
 914 class CallRelocation : public Relocation {
 915  public:
 916   bool is_call() { return true; }
 917 
 918   address  destination()                    { return pd_call_destination(); }
 919   void     set_destination(address x); // pd_set_call_destination
 920 
 921   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
 922   address  value()                          { return destination();  }
 923   void     set_value(address x)             { set_destination(x); }
 924 };
 925 
 926 class oop_Relocation : public DataRelocation {
 927   relocInfo::relocType type() { return relocInfo::oop_type; }
 928 
 929  public:
 930   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
 931   // an oop in the CodeBlob's oop pool
 932   static RelocationHolder spec(int oop_index, int offset = 0) {
 933     assert(oop_index > 0, "must be a pool-resident oop");
 934     RelocationHolder rh = newHolder();
 935     new(rh) oop_Relocation(oop_index, offset);
 936     return rh;
 937   }
 938   // an oop in the instruction stream
 939   static RelocationHolder spec_for_immediate() {
 940     const int oop_index = 0;
 941     const int offset    = 0;    // if you want an offset, use the oop pool
 942     RelocationHolder rh = newHolder();
 943     new(rh) oop_Relocation(oop_index, offset);
 944     return rh;
 945   }
 946 
 947  private:
 948   jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
 949   jint _offset;                     // byte offset to apply to the oop itself
 950 
 951   oop_Relocation(int oop_index, int offset) {
 952     _oop_index = oop_index; _offset = offset;
 953   }
 954 
 955   friend class RelocIterator;
 956   oop_Relocation() { }
 957 
 958  public:
 959   int oop_index() { return _oop_index; }
 960   int offset()    { return _offset; }
 961 
 962   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
 963   void pack_data_to(CodeSection* dest);
 964   void unpack_data();
 965 
 966   void fix_oop_relocation();        // reasserts oop value
 967 
 968   void verify_oop_relocation();
 969 
 970   address value()  { return (address) *oop_addr(); }
 971 
 972   bool oop_is_immediate()  { return oop_index() == 0; }
 973 
 974   oop* oop_addr();                  // addr or &pool[jint_data]
 975   oop  oop_value();                 // *oop_addr
 976   // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
 977 };
 978 
 979 
 980 // copy of oop_Relocation for now but may delete stuff in both/either
 981 class metadata_Relocation : public DataRelocation {
 982   relocInfo::relocType type() { return relocInfo::metadata_type; }
 983 
 984  public:
 985   // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
 986   // an metadata in the CodeBlob's metadata pool
 987   static RelocationHolder spec(int metadata_index, int offset = 0) {
 988     assert(metadata_index > 0, "must be a pool-resident metadata");
 989     RelocationHolder rh = newHolder();
 990     new(rh) metadata_Relocation(metadata_index, offset);
 991     return rh;
 992   }
 993   // an metadata in the instruction stream
 994   static RelocationHolder spec_for_immediate() {
 995     const int metadata_index = 0;
 996     const int offset    = 0;    // if you want an offset, use the metadata pool
 997     RelocationHolder rh = newHolder();
 998     new(rh) metadata_Relocation(metadata_index, offset);
 999     return rh;
1000   }
1001 
1002  private:
1003   jint _metadata_index;            // if > 0, index into nmethod::metadata_at
1004   jint _offset;                     // byte offset to apply to the metadata itself
1005 
1006   metadata_Relocation(int metadata_index, int offset) {
1007     _metadata_index = metadata_index; _offset = offset;
1008   }
1009 
1010   friend class RelocIterator;
1011   metadata_Relocation() { }
1012 
1013   // Fixes a Metadata pointer in the code. Most platforms embeds the
1014   // Metadata pointer in the code at compile time so this is empty
1015   // for them.
1016   void pd_fix_value(address x);
1017 
1018  public:
1019   int metadata_index() { return _metadata_index; }
1020   int offset()    { return _offset; }
1021 
1022   // data is packed in "2_ints" format:  [i o] or [Ii Oo]
1023   void pack_data_to(CodeSection* dest);
1024   void unpack_data();
1025 
1026   void fix_metadata_relocation();        // reasserts metadata value
1027 
1028   void verify_metadata_relocation();
1029 
1030   address value()  { return (address) *metadata_addr(); }
1031 
1032   bool metadata_is_immediate()  { return metadata_index() == 0; }
1033 
1034   Metadata**   metadata_addr();                  // addr or &pool[jint_data]
1035   Metadata*    metadata_value();                 // *metadata_addr
1036   // Note:  metadata_value transparently converts Universe::non_metadata_word to NULL.
1037 };
1038 
1039 
1040 class virtual_call_Relocation : public CallRelocation {
1041   relocInfo::relocType type() { return relocInfo::virtual_call_type; }
1042 
1043  public:
1044   // "cached_value" points to the first associated set-oop.
1045   // The oop_limit helps find the last associated set-oop.
1046   // (See comments at the top of this file.)
1047   static RelocationHolder spec(address cached_value, jint method_index = 0) {
1048     RelocationHolder rh = newHolder();
1049     new(rh) virtual_call_Relocation(cached_value, method_index);
1050     return rh;
1051   }
1052 
1053  private:
1054   address _cached_value; // location of set-value instruction
1055   jint    _method_index; // resolved method for a Java call
1056 
1057   virtual_call_Relocation(address cached_value, int method_index) {
1058     _cached_value = cached_value;
1059     _method_index = method_index;
1060     assert(cached_value != NULL, "first oop address must be specified");
1061   }
1062 
1063   friend class RelocIterator;
1064   virtual_call_Relocation() { }
1065 
1066  public:
1067   address cached_value();
1068 
1069   int     method_index() { return _method_index; }
1070   Method* method_value();
1071 
1072   // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
1073   // oop_limit is set to 0 if the limit falls somewhere within the call.
1074   // When unpacking, a zero oop_limit is taken to refer to the end of the call.
1075   // (This has the effect of bringing in the call's delay slot on SPARC.)
1076   void pack_data_to(CodeSection* dest);
1077   void unpack_data();
1078 
1079   void clear_inline_cache();
1080 };
1081 
1082 
1083 class opt_virtual_call_Relocation : public CallRelocation {
1084   relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
1085 
1086  public:
1087   static RelocationHolder spec(int method_index = 0) {
1088     RelocationHolder rh = newHolder();
1089     new(rh) opt_virtual_call_Relocation(method_index);
1090     return rh;
1091   }
1092 
1093  private:
1094   jint _method_index; // resolved method for a Java call
1095 
1096   opt_virtual_call_Relocation(int method_index) {
1097     _method_index = method_index;
1098   }
1099 
1100   friend class RelocIterator;
1101   opt_virtual_call_Relocation() {}
1102 
1103  public:
1104   int     method_index() { return _method_index; }
1105   Method* method_value();
1106 
1107   void pack_data_to(CodeSection* dest);
1108   void unpack_data();
1109 
1110   void clear_inline_cache();
1111 
1112   // find the matching static_stub
1113   address static_stub();
1114 };
1115 
1116 
1117 class static_call_Relocation : public CallRelocation {
1118   relocInfo::relocType type() { return relocInfo::static_call_type; }
1119 
1120  public:
1121   static RelocationHolder spec(int method_index = 0) {
1122     RelocationHolder rh = newHolder();
1123     new(rh) static_call_Relocation(method_index);
1124     return rh;
1125   }
1126 
1127  private:
1128   jint _method_index; // resolved method for a Java call
1129 
1130   static_call_Relocation(int method_index) {
1131     _method_index = method_index;
1132   }
1133 
1134   friend class RelocIterator;
1135   static_call_Relocation() {}
1136 
1137  public:
1138   int     method_index() { return _method_index; }
1139   Method* method_value();
1140 
1141   void pack_data_to(CodeSection* dest);
1142   void unpack_data();
1143 
1144   void clear_inline_cache();
1145 
1146   // find the matching static_stub
1147   address static_stub();
1148 };
1149 
1150 class static_stub_Relocation : public Relocation {
1151   relocInfo::relocType type() { return relocInfo::static_stub_type; }
1152 
1153  public:
1154   static RelocationHolder spec(address static_call) {
1155     RelocationHolder rh = newHolder();
1156     new(rh) static_stub_Relocation(static_call);
1157     return rh;
1158   }
1159 
1160  private:
1161   address _static_call;  // location of corresponding static_call
1162 
1163   static_stub_Relocation(address static_call) {
1164     _static_call = static_call;
1165   }
1166 
1167   friend class RelocIterator;
1168   static_stub_Relocation() { }
1169 
1170  public:
1171   void clear_inline_cache();
1172 
1173   address static_call() { return _static_call; }
1174 
1175   // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
1176   void pack_data_to(CodeSection* dest);
1177   void unpack_data();
1178 };
1179 
1180 class runtime_call_Relocation : public CallRelocation {
1181   relocInfo::relocType type() { return relocInfo::runtime_call_type; }
1182 
1183  public:
1184   static RelocationHolder spec() {
1185     RelocationHolder rh = newHolder();
1186     new(rh) runtime_call_Relocation();
1187     return rh;
1188   }
1189 
1190  private:
1191   friend class RelocIterator;
1192   runtime_call_Relocation() { }
1193 
1194  public:
1195 };
1196 
1197 // Trampoline Relocations.
1198 // A trampoline allows to encode a small branch in the code, even if there
1199 // is the chance that this branch can not reach all possible code locations.
1200 // If the relocation finds that a branch is too far for the instruction
1201 // in the code, it can patch it to jump to the trampoline where is
1202 // sufficient space for a far branch. Needed on PPC.
1203 class trampoline_stub_Relocation : public Relocation {
1204   relocInfo::relocType type() { return relocInfo::trampoline_stub_type; }
1205 
1206  public:
1207   static RelocationHolder spec(address static_call) {
1208     RelocationHolder rh = newHolder();
1209     return (new (rh) trampoline_stub_Relocation(static_call));
1210   }
1211 
1212  private:
1213   address _owner;    // Address of the NativeCall that owns the trampoline.
1214 
1215   trampoline_stub_Relocation(address owner) {
1216     _owner = owner;
1217   }
1218 
1219   friend class RelocIterator;
1220   trampoline_stub_Relocation() { }
1221 
1222  public:
1223 
1224   // Return the address of the NativeCall that owns the trampoline.
1225   address owner() { return _owner; }
1226 
1227   void pack_data_to(CodeSection * dest);
1228   void unpack_data();
1229 
1230   // Find the trampoline stub for a call.
1231   static address get_trampoline_for(address call, nmethod* code);
1232 };
1233 
1234 class external_word_Relocation : public DataRelocation {
1235   relocInfo::relocType type() { return relocInfo::external_word_type; }
1236 
1237  public:
1238   static RelocationHolder spec(address target) {
1239     assert(target != NULL, "must not be null");
1240     RelocationHolder rh = newHolder();
1241     new(rh) external_word_Relocation(target);
1242     return rh;
1243   }
1244 
1245   // Use this one where all 32/64 bits of the target live in the code stream.
1246   // The target must be an intptr_t, and must be absolute (not relative).
1247   static RelocationHolder spec_for_immediate() {
1248     RelocationHolder rh = newHolder();
1249     new(rh) external_word_Relocation(NULL);
1250     return rh;
1251   }
1252 
1253   // Some address looking values aren't safe to treat as relocations
1254   // and should just be treated as constants.
1255   static bool can_be_relocated(address target) {
1256     return target != NULL && !is_reloc_index((intptr_t)target);
1257   }
1258 
1259  private:
1260   address _target;                  // address in runtime
1261 
1262   external_word_Relocation(address target) {
1263     _target = target;
1264   }
1265 
1266   friend class RelocIterator;
1267   external_word_Relocation() { }
1268 
1269  public:
1270   // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
1271   // The function runtime_address_to_index is used to turn full addresses
1272   // to short indexes, if they are pre-registered by the stub mechanism.
1273   // If the "a" value is 0 (i.e., _target is NULL), the address is stored
1274   // in the code stream.  See external_word_Relocation::target().
1275   void pack_data_to(CodeSection* dest);
1276   void unpack_data();
1277 
1278   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1279   address  target();        // if _target==NULL, fetch addr from code stream
1280   address  value()          { return target(); }
1281 };
1282 
1283 class internal_word_Relocation : public DataRelocation {
1284   relocInfo::relocType type() { return relocInfo::internal_word_type; }
1285 
1286  public:
1287   static RelocationHolder spec(address target) {
1288     assert(target != NULL, "must not be null");
1289     RelocationHolder rh = newHolder();
1290     new(rh) internal_word_Relocation(target);
1291     return rh;
1292   }
1293 
1294   // use this one where all the bits of the target can fit in the code stream:
1295   static RelocationHolder spec_for_immediate() {
1296     RelocationHolder rh = newHolder();
1297     new(rh) internal_word_Relocation(NULL);
1298     return rh;
1299   }
1300 
1301   internal_word_Relocation(address target) {
1302     _target  = target;
1303     _section = -1;  // self-relative
1304   }
1305 
1306  protected:
1307   address _target;                  // address in CodeBlob
1308   int     _section;                 // section providing base address, if any
1309 
1310   friend class RelocIterator;
1311   internal_word_Relocation() { }
1312 
1313   // bit-width of LSB field in packed offset, if section >= 0
1314   enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
1315 
1316  public:
1317   // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
1318   // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
1319   // in the code stream.  See internal_word_Relocation::target().
1320   // If _section is not -1, it is appended to the low bits of the offset.
1321   void pack_data_to(CodeSection* dest);
1322   void unpack_data();
1323 
1324   void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1325   address  target();        // if _target==NULL, fetch addr from code stream
1326   int      section()        { return _section;   }
1327   address  value()          { return target();   }
1328 };
1329 
1330 class section_word_Relocation : public internal_word_Relocation {
1331   relocInfo::relocType type() { return relocInfo::section_word_type; }
1332 
1333  public:
1334   static RelocationHolder spec(address target, int section) {
1335     RelocationHolder rh = newHolder();
1336     new(rh) section_word_Relocation(target, section);
1337     return rh;
1338   }
1339 
1340   section_word_Relocation(address target, int section) {
1341     assert(target != NULL, "must not be null");
1342     assert(section >= 0, "must be a valid section");
1343     _target  = target;
1344     _section = section;
1345   }
1346 
1347   //void pack_data_to -- inherited
1348   void unpack_data();
1349 
1350  private:
1351   friend class RelocIterator;
1352   section_word_Relocation() { }
1353 };
1354 
1355 
1356 class poll_Relocation : public Relocation {
1357   bool          is_data()                      { return true; }
1358   relocInfo::relocType type() { return relocInfo::poll_type; }
1359   void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1360 };
1361 
1362 class poll_return_Relocation : public poll_Relocation {
1363   relocInfo::relocType type() { return relocInfo::poll_return_type; }
1364 };
1365 
1366 // We know all the xxx_Relocation classes, so now we can define these:
1367 #define EACH_CASE(name)                                         \
1368 inline name##_Relocation* RelocIterator::name##_reloc() {       \
1369   assert(type() == relocInfo::name##_type, "type must agree");  \
1370   /* The purpose of the placed "new" is to re-use the same */   \
1371   /* stack storage for each new iteration. */                   \
1372   name##_Relocation* r = new(_rh) name##_Relocation();          \
1373   r->set_binding(this);                                         \
1374   r->name##_Relocation::unpack_data();                          \
1375   return r;                                                     \
1376 }
1377 APPLY_TO_RELOCATIONS(EACH_CASE);
1378 #undef EACH_CASE
1379 
1380 inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
1381   initialize(nm, begin, limit);
1382 }
1383 
1384 #endif // SHARE_VM_CODE_RELOCINFO_HPP