1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by frequently used macros.
  32 //
  33 // Instructions for which a 'better' code sequence exists depending
  34 // on arguments should also go in here.
  35 
  36 class MacroAssembler: public Assembler {
  37   friend class LIR_Assembler;
  38 
  39  public:
  40   using Assembler::mov;
  41   using Assembler::movi;
  42 
  43  protected:
  44 
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 #ifdef CC_INTERP
  51   // c++ interpreter never wants to use interp_masm version of call_VM
  52   #define VIRTUAL
  53 #else
  54   #define VIRTUAL virtual
  55 #endif
  56 
  57   VIRTUAL void call_VM_leaf_base(
  58     address entry_point,               // the entry point
  59     int     number_of_arguments,        // the number of arguments to pop after the call
  60     Label *retaddr = NULL
  61   );
  62 
  63   VIRTUAL void call_VM_leaf_base(
  64     address entry_point,               // the entry point
  65     int     number_of_arguments,        // the number of arguments to pop after the call
  66     Label &retaddr) {
  67     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  68   }
  69 
  70   // This is the base routine called by the different versions of call_VM. The interpreter
  71   // may customize this version by overriding it for its purposes (e.g., to save/restore
  72   // additional registers when doing a VM call).
  73   //
  74   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  75   // returns the register which contains the thread upon return. If a thread register has been
  76   // specified, the return value will correspond to that register. If no last_java_sp is specified
  77   // (noreg) than rsp will be used instead.
  78   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  79     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  80     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  81     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  82     address  entry_point,              // the entry point
  83     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  84     bool     check_exceptions          // whether to check for pending exceptions after return
  85   );
  86 
  87   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  88   // The implementation is only non-empty for the InterpreterMacroAssembler,
  89   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  90   virtual void check_and_handle_popframe(Register java_thread);
  91   virtual void check_and_handle_earlyret(Register java_thread);
  92 
  93   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  94 
  95   // Maximum size of class area in Metaspace when compressed
  96   uint64_t use_XOR_for_compressed_class_base;
  97 
  98  public:
  99   MacroAssembler(CodeBuffer* code) : Assembler(code) {
 100     use_XOR_for_compressed_class_base
 101       = (operand_valid_for_logical_immediate(false /*is32*/,
 102                                              (uint64_t)Universe::narrow_klass_base())
 103          && ((uint64_t)Universe::narrow_klass_base()
 104              > (1u << log2_intptr(CompressedClassSpaceSize))));
 105   }
 106 
 107   // Biased locking support
 108   // lock_reg and obj_reg must be loaded up with the appropriate values.
 109   // swap_reg is killed.
 110   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 111   // Optional slow case is for implementations (interpreter and C1) which branch to
 112   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 113   // Returns offset of first potentially-faulting instruction for null
 114   // check info (currently consumed only by C1). If
 115   // swap_reg_contains_mark is true then returns -1 as it is assumed
 116   // the calling code has already passed any potential faults.
 117   int biased_locking_enter(Register lock_reg, Register obj_reg,
 118                            Register swap_reg, Register tmp_reg,
 119                            bool swap_reg_contains_mark,
 120                            Label& done, Label* slow_case = NULL,
 121                            BiasedLockingCounters* counters = NULL);
 122   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 123 
 124 
 125   // Helper functions for statistics gathering.
 126   // Unconditional atomic increment.
 127   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 128   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 129     lea(tmp1, counter_addr);
 130     atomic_incw(tmp1, tmp2, tmp3);
 131   }
 132   // Load Effective Address
 133   void lea(Register r, const Address &a) {
 134     InstructionMark im(this);
 135     code_section()->relocate(inst_mark(), a.rspec());
 136     a.lea(this, r);
 137   }
 138 
 139   void addmw(Address a, Register incr, Register scratch) {
 140     ldrw(scratch, a);
 141     addw(scratch, scratch, incr);
 142     strw(scratch, a);
 143   }
 144 
 145   // Add constant to memory word
 146   void addmw(Address a, int imm, Register scratch) {
 147     ldrw(scratch, a);
 148     if (imm > 0)
 149       addw(scratch, scratch, (unsigned)imm);
 150     else
 151       subw(scratch, scratch, (unsigned)-imm);
 152     strw(scratch, a);
 153   }
 154 
 155   void bind(Label& L) {
 156     Assembler::bind(L);
 157     code()->clear_last_membar();
 158   }
 159 
 160   void membar(Membar_mask_bits order_constraint);
 161 
 162   // Frame creation and destruction shared between JITs.
 163   void build_frame(int framesize);
 164   void remove_frame(int framesize);
 165 
 166   virtual void _call_Unimplemented(address call_site) {
 167     mov(rscratch2, call_site);
 168     haltsim();
 169   }
 170 
 171 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 172 
 173   virtual void notify(int type);
 174 
 175   // aliases defined in AARCH64 spec
 176 
 177   template<class T>
 178   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 179   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 180 
 181   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 182   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 183 
 184   void cset(Register Rd, Assembler::Condition cond) {
 185     csinc(Rd, zr, zr, ~cond);
 186   }
 187   void csetw(Register Rd, Assembler::Condition cond) {
 188     csincw(Rd, zr, zr, ~cond);
 189   }
 190 
 191   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 192     csneg(Rd, Rn, Rn, ~cond);
 193   }
 194   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 195     csnegw(Rd, Rn, Rn, ~cond);
 196   }
 197 
 198   inline void movw(Register Rd, Register Rn) {
 199     if (Rd == sp || Rn == sp) {
 200       addw(Rd, Rn, 0U);
 201     } else {
 202       orrw(Rd, zr, Rn);
 203     }
 204   }
 205   inline void mov(Register Rd, Register Rn) {
 206     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 207     if (Rd == Rn) {
 208     } else if (Rd == sp || Rn == sp) {
 209       add(Rd, Rn, 0U);
 210     } else {
 211       orr(Rd, zr, Rn);
 212     }
 213   }
 214 
 215   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 216   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 217 
 218   inline void tstw(Register Rd, unsigned imm) { andsw(zr, Rd, imm); }
 219   inline void tst(Register Rd, unsigned imm) { ands(zr, Rd, imm); }
 220 
 221   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 222     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 223   }
 224   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 225     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 226   }
 227 
 228   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 229     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 230   }
 231   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 232     bfm(Rd, Rn, lsb , (lsb + width - 1));
 233   }
 234 
 235   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 236     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 237   }
 238   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 240   }
 241 
 242   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 243     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 244   }
 245   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 247   }
 248 
 249   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 250     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 251   }
 252   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 254   }
 255 
 256   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 257     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 258   }
 259   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 261   }
 262 
 263   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 264     sbfmw(Rd, Rn, imm, 31);
 265   }
 266 
 267   inline void asr(Register Rd, Register Rn, unsigned imm) {
 268     sbfm(Rd, Rn, imm, 63);
 269   }
 270 
 271   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 272     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 273   }
 274 
 275   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 276     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 277   }
 278 
 279   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 280     ubfmw(Rd, Rn, imm, 31);
 281   }
 282 
 283   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 284     ubfm(Rd, Rn, imm, 63);
 285   }
 286 
 287   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 288     extrw(Rd, Rn, Rn, imm);
 289   }
 290 
 291   inline void ror(Register Rd, Register Rn, unsigned imm) {
 292     extr(Rd, Rn, Rn, imm);
 293   }
 294 
 295   inline void sxtbw(Register Rd, Register Rn) {
 296     sbfmw(Rd, Rn, 0, 7);
 297   }
 298   inline void sxthw(Register Rd, Register Rn) {
 299     sbfmw(Rd, Rn, 0, 15);
 300   }
 301   inline void sxtb(Register Rd, Register Rn) {
 302     sbfm(Rd, Rn, 0, 7);
 303   }
 304   inline void sxth(Register Rd, Register Rn) {
 305     sbfm(Rd, Rn, 0, 15);
 306   }
 307   inline void sxtw(Register Rd, Register Rn) {
 308     sbfm(Rd, Rn, 0, 31);
 309   }
 310 
 311   inline void uxtbw(Register Rd, Register Rn) {
 312     ubfmw(Rd, Rn, 0, 7);
 313   }
 314   inline void uxthw(Register Rd, Register Rn) {
 315     ubfmw(Rd, Rn, 0, 15);
 316   }
 317   inline void uxtb(Register Rd, Register Rn) {
 318     ubfm(Rd, Rn, 0, 7);
 319   }
 320   inline void uxth(Register Rd, Register Rn) {
 321     ubfm(Rd, Rn, 0, 15);
 322   }
 323   inline void uxtw(Register Rd, Register Rn) {
 324     ubfm(Rd, Rn, 0, 31);
 325   }
 326 
 327   inline void cmnw(Register Rn, Register Rm) {
 328     addsw(zr, Rn, Rm);
 329   }
 330   inline void cmn(Register Rn, Register Rm) {
 331     adds(zr, Rn, Rm);
 332   }
 333 
 334   inline void cmpw(Register Rn, Register Rm) {
 335     subsw(zr, Rn, Rm);
 336   }
 337   inline void cmp(Register Rn, Register Rm) {
 338     subs(zr, Rn, Rm);
 339   }
 340 
 341   inline void negw(Register Rd, Register Rn) {
 342     subw(Rd, zr, Rn);
 343   }
 344 
 345   inline void neg(Register Rd, Register Rn) {
 346     sub(Rd, zr, Rn);
 347   }
 348 
 349   inline void negsw(Register Rd, Register Rn) {
 350     subsw(Rd, zr, Rn);
 351   }
 352 
 353   inline void negs(Register Rd, Register Rn) {
 354     subs(Rd, zr, Rn);
 355   }
 356 
 357   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 358     addsw(zr, Rn, Rm, kind, shift);
 359   }
 360   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 361     adds(zr, Rn, Rm, kind, shift);
 362   }
 363 
 364   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 365     subsw(zr, Rn, Rm, kind, shift);
 366   }
 367   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 368     subs(zr, Rn, Rm, kind, shift);
 369   }
 370 
 371   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 372     subw(Rd, zr, Rn, kind, shift);
 373   }
 374 
 375   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 376     sub(Rd, zr, Rn, kind, shift);
 377   }
 378 
 379   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 380     subsw(Rd, zr, Rn, kind, shift);
 381   }
 382 
 383   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 384     subs(Rd, zr, Rn, kind, shift);
 385   }
 386 
 387   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 388     msubw(Rd, Rn, Rm, zr);
 389   }
 390   inline void mneg(Register Rd, Register Rn, Register Rm) {
 391     msub(Rd, Rn, Rm, zr);
 392   }
 393 
 394   inline void mulw(Register Rd, Register Rn, Register Rm) {
 395     maddw(Rd, Rn, Rm, zr);
 396   }
 397   inline void mul(Register Rd, Register Rn, Register Rm) {
 398     madd(Rd, Rn, Rm, zr);
 399   }
 400 
 401   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 402     smsubl(Rd, Rn, Rm, zr);
 403   }
 404   inline void smull(Register Rd, Register Rn, Register Rm) {
 405     smaddl(Rd, Rn, Rm, zr);
 406   }
 407 
 408   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 409     umsubl(Rd, Rn, Rm, zr);
 410   }
 411   inline void umull(Register Rd, Register Rn, Register Rm) {
 412     umaddl(Rd, Rn, Rm, zr);
 413   }
 414 
 415 #define WRAP(INSN)                                                            \
 416   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 417     if ((VM_Version::cpu_cpuFeatures() & VM_Version::CPU_A53MAC) && Ra != zr) \
 418       nop();                                                                  \
 419     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 420   }
 421 
 422   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 423   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 424 #undef WRAP
 425 
 426 
 427   // macro assembly operations needed for aarch64
 428 
 429   // first two private routines for loading 32 bit or 64 bit constants
 430 private:
 431 
 432   void mov_immediate64(Register dst, u_int64_t imm64);
 433   void mov_immediate32(Register dst, u_int32_t imm32);
 434 
 435   int push(unsigned int bitset, Register stack);
 436   int pop(unsigned int bitset, Register stack);
 437 
 438   void mov(Register dst, Address a);
 439 
 440 public:
 441   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 442   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 443 
 444   // now mov instructions for loading absolute addresses and 32 or
 445   // 64 bit integers
 446 
 447   inline void mov(Register dst, address addr)
 448   {
 449     mov_immediate64(dst, (u_int64_t)addr);
 450   }
 451 
 452   inline void mov(Register dst, u_int64_t imm64)
 453   {
 454     mov_immediate64(dst, imm64);
 455   }
 456 
 457   inline void movw(Register dst, u_int32_t imm32)
 458   {
 459     mov_immediate32(dst, imm32);
 460   }
 461 
 462   inline void mov(Register dst, long l)
 463   {
 464     mov(dst, (u_int64_t)l);
 465   }
 466 
 467   inline void mov(Register dst, int i)
 468   {
 469     mov(dst, (long)i);
 470   }
 471 
 472   void mov(Register dst, RegisterOrConstant src) {
 473     if (src.is_register())
 474       mov(dst, src.as_register());
 475     else
 476       mov(dst, src.as_constant());
 477   }
 478 
 479   void movptr(Register r, uintptr_t imm64);
 480 
 481   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 482 
 483   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 484     orr(Vd, T, Vn, Vn);
 485   }
 486 
 487   // macro instructions for accessing and updating floating point
 488   // status register
 489   //
 490   // FPSR : op1 == 011
 491   //        CRn == 0100
 492   //        CRm == 0100
 493   //        op2 == 001
 494 
 495   inline void get_fpsr(Register reg)
 496   {
 497     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 498   }
 499 
 500   inline void set_fpsr(Register reg)
 501   {
 502     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 503   }
 504 
 505   inline void clear_fpsr()
 506   {
 507     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 508   }
 509 
 510   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 511   int corrected_idivl(Register result, Register ra, Register rb,
 512                       bool want_remainder, Register tmp = rscratch1);
 513   int corrected_idivq(Register result, Register ra, Register rb,
 514                       bool want_remainder, Register tmp = rscratch1);
 515 
 516   // Support for NULL-checks
 517   //
 518   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 519   // If the accessed location is M[reg + offset] and the offset is known, provide the
 520   // offset. No explicit code generation is needed if the offset is within a certain
 521   // range (0 <= offset <= page_size).
 522 
 523   virtual void null_check(Register reg, int offset = -1);
 524   static bool needs_explicit_null_check(intptr_t offset);
 525 
 526   static address target_addr_for_insn(address insn_addr, unsigned insn);
 527   static address target_addr_for_insn(address insn_addr) {
 528     unsigned insn = *(unsigned*)insn_addr;
 529     return target_addr_for_insn(insn_addr, insn);
 530   }
 531 
 532   // Required platform-specific helpers for Label::patch_instructions.
 533   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 534   static int pd_patch_instruction_size(address branch, address target);
 535   static void pd_patch_instruction(address branch, address target) {
 536     pd_patch_instruction_size(branch, target);
 537   }
 538   static address pd_call_destination(address branch) {
 539     return target_addr_for_insn(branch);
 540   }
 541 #ifndef PRODUCT
 542   static void pd_print_patched_instruction(address branch);
 543 #endif
 544 
 545   static int patch_oop(address insn_addr, address o);
 546 
 547   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 548 
 549   // The following 4 methods return the offset of the appropriate move instruction
 550 
 551   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 552   int load_unsigned_byte(Register dst, Address src);
 553   int load_unsigned_short(Register dst, Address src);
 554 
 555   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 556   int load_signed_byte(Register dst, Address src);
 557   int load_signed_short(Register dst, Address src);
 558 
 559   int load_signed_byte32(Register dst, Address src);
 560   int load_signed_short32(Register dst, Address src);
 561 
 562   // Support for sign-extension (hi:lo = extend_sign(lo))
 563   void extend_sign(Register hi, Register lo);
 564 
 565   // Load and store values by size and signed-ness
 566   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 567   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 568 
 569   // Support for inc/dec with optimal instruction selection depending on value
 570 
 571   // x86_64 aliases an unqualified register/address increment and
 572   // decrement to call incrementq and decrementq but also supports
 573   // explicitly sized calls to incrementq/decrementq or
 574   // incrementl/decrementl
 575 
 576   // for aarch64 the proper convention would be to use
 577   // increment/decrement for 64 bit operatons and
 578   // incrementw/decrementw for 32 bit operations. so when porting
 579   // x86_64 code we can leave calls to increment/decrement as is,
 580   // replace incrementq/decrementq with increment/decrement and
 581   // replace incrementl/decrementl with incrementw/decrementw.
 582 
 583   // n.b. increment/decrement calls with an Address destination will
 584   // need to use a scratch register to load the value to be
 585   // incremented. increment/decrement calls which add or subtract a
 586   // constant value greater than 2^12 will need to use a 2nd scratch
 587   // register to hold the constant. so, a register increment/decrement
 588   // may trash rscratch2 and an address increment/decrement trash
 589   // rscratch and rscratch2
 590 
 591   void decrementw(Address dst, int value = 1);
 592   void decrementw(Register reg, int value = 1);
 593 
 594   void decrement(Register reg, int value = 1);
 595   void decrement(Address dst, int value = 1);
 596 
 597   void incrementw(Address dst, int value = 1);
 598   void incrementw(Register reg, int value = 1);
 599 
 600   void increment(Register reg, int value = 1);
 601   void increment(Address dst, int value = 1);
 602 
 603 
 604   // Alignment
 605   void align(int modulus);
 606 
 607   // Stack frame creation/removal
 608   void enter()
 609   {
 610     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 611     mov(rfp, sp);
 612   }
 613   void leave()
 614   {
 615     mov(sp, rfp);
 616     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 617   }
 618 
 619   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 620   // The pointer will be loaded into the thread register.
 621   void get_thread(Register thread);
 622 
 623 
 624   // Support for VM calls
 625   //
 626   // It is imperative that all calls into the VM are handled via the call_VM macros.
 627   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 628   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 629 
 630 
 631   void call_VM(Register oop_result,
 632                address entry_point,
 633                bool check_exceptions = true);
 634   void call_VM(Register oop_result,
 635                address entry_point,
 636                Register arg_1,
 637                bool check_exceptions = true);
 638   void call_VM(Register oop_result,
 639                address entry_point,
 640                Register arg_1, Register arg_2,
 641                bool check_exceptions = true);
 642   void call_VM(Register oop_result,
 643                address entry_point,
 644                Register arg_1, Register arg_2, Register arg_3,
 645                bool check_exceptions = true);
 646 
 647   // Overloadings with last_Java_sp
 648   void call_VM(Register oop_result,
 649                Register last_java_sp,
 650                address entry_point,
 651                int number_of_arguments = 0,
 652                bool check_exceptions = true);
 653   void call_VM(Register oop_result,
 654                Register last_java_sp,
 655                address entry_point,
 656                Register arg_1, bool
 657                check_exceptions = true);
 658   void call_VM(Register oop_result,
 659                Register last_java_sp,
 660                address entry_point,
 661                Register arg_1, Register arg_2,
 662                bool check_exceptions = true);
 663   void call_VM(Register oop_result,
 664                Register last_java_sp,
 665                address entry_point,
 666                Register arg_1, Register arg_2, Register arg_3,
 667                bool check_exceptions = true);
 668 
 669   void get_vm_result  (Register oop_result, Register thread);
 670   void get_vm_result_2(Register metadata_result, Register thread);
 671 
 672   // These always tightly bind to MacroAssembler::call_VM_base
 673   // bypassing the virtual implementation
 674   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 675   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 676   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 677   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 678   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 679 
 680   void call_VM_leaf(address entry_point,
 681                     int number_of_arguments = 0);
 682   void call_VM_leaf(address entry_point,
 683                     Register arg_1);
 684   void call_VM_leaf(address entry_point,
 685                     Register arg_1, Register arg_2);
 686   void call_VM_leaf(address entry_point,
 687                     Register arg_1, Register arg_2, Register arg_3);
 688 
 689   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 690   // bypassing the virtual implementation
 691   void super_call_VM_leaf(address entry_point);
 692   void super_call_VM_leaf(address entry_point, Register arg_1);
 693   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 694   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 695   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 696 
 697   // last Java Frame (fills frame anchor)
 698   void set_last_Java_frame(Register last_java_sp,
 699                            Register last_java_fp,
 700                            address last_java_pc,
 701                            Register scratch);
 702 
 703   void set_last_Java_frame(Register last_java_sp,
 704                            Register last_java_fp,
 705                            Label &last_java_pc,
 706                            Register scratch);
 707 
 708   void set_last_Java_frame(Register last_java_sp,
 709                            Register last_java_fp,
 710                            Register last_java_pc,
 711                            Register scratch);
 712 
 713   void reset_last_Java_frame(Register thread, bool clearfp, bool clear_pc);
 714 
 715   // thread in the default location (r15_thread on 64bit)
 716   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 717 
 718   // Stores
 719   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 720   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 721 
 722 #if INCLUDE_ALL_GCS
 723 
 724   void g1_write_barrier_pre(Register obj,
 725                             Register pre_val,
 726                             Register thread,
 727                             Register tmp,
 728                             bool tosca_live,
 729                             bool expand_call);
 730 
 731   void g1_write_barrier_post(Register store_addr,
 732                              Register new_val,
 733                              Register thread,
 734                              Register tmp,
 735                              Register tmp2);
 736 
 737 #endif // INCLUDE_ALL_GCS
 738 
 739   // oop manipulations
 740   void load_klass(Register dst, Register src);
 741   void store_klass(Register dst, Register src);
 742   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 743 
 744   void load_heap_oop(Register dst, Address src);
 745 
 746   void load_heap_oop_not_null(Register dst, Address src);
 747   void store_heap_oop(Address dst, Register src);
 748 
 749   // currently unimplemented
 750   // Used for storing NULL. All other oop constants should be
 751   // stored using routines that take a jobject.
 752   void store_heap_oop_null(Address dst);
 753 
 754   void load_prototype_header(Register dst, Register src);
 755 
 756   void store_klass_gap(Register dst, Register src);
 757 
 758   // This dummy is to prevent a call to store_heap_oop from
 759   // converting a zero (like NULL) into a Register by giving
 760   // the compiler two choices it can't resolve
 761 
 762   void store_heap_oop(Address dst, void* dummy);
 763 
 764   void encode_heap_oop(Register d, Register s);
 765   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 766   void decode_heap_oop(Register d, Register s);
 767   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 768   void encode_heap_oop_not_null(Register r);
 769   void decode_heap_oop_not_null(Register r);
 770   void encode_heap_oop_not_null(Register dst, Register src);
 771   void decode_heap_oop_not_null(Register dst, Register src);
 772 
 773   void set_narrow_oop(Register dst, jobject obj);
 774 
 775   void encode_klass_not_null(Register r);
 776   void decode_klass_not_null(Register r);
 777   void encode_klass_not_null(Register dst, Register src);
 778   void decode_klass_not_null(Register dst, Register src);
 779 
 780   void set_narrow_klass(Register dst, Klass* k);
 781 
 782   // if heap base register is used - reinit it with the correct value
 783   void reinit_heapbase();
 784 
 785   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 786 
 787   void push_CPU_state(bool save_vectors = false);
 788   void pop_CPU_state(bool restore_vectors = false) ;
 789 
 790   // Round up to a power of two
 791   void round_to(Register reg, int modulus);
 792 
 793   // allocation
 794   void eden_allocate(
 795     Register obj,                      // result: pointer to object after successful allocation
 796     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 797     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 798     Register t1,                       // temp register
 799     Label&   slow_case                 // continuation point if fast allocation fails
 800   );
 801   void tlab_allocate(
 802     Register obj,                      // result: pointer to object after successful allocation
 803     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 804     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 805     Register t1,                       // temp register
 806     Register t2,                       // temp register
 807     Label&   slow_case                 // continuation point if fast allocation fails
 808   );
 809   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 810   void verify_tlab();
 811 
 812   void incr_allocated_bytes(Register thread,
 813                             Register var_size_in_bytes, int con_size_in_bytes,
 814                             Register t1 = noreg);
 815 
 816   // interface method calling
 817   void lookup_interface_method(Register recv_klass,
 818                                Register intf_klass,
 819                                RegisterOrConstant itable_index,
 820                                Register method_result,
 821                                Register scan_temp,
 822                                Label& no_such_interface);
 823 
 824   // virtual method calling
 825   // n.b. x86 allows RegisterOrConstant for vtable_index
 826   void lookup_virtual_method(Register recv_klass,
 827                              RegisterOrConstant vtable_index,
 828                              Register method_result);
 829 
 830   // Test sub_klass against super_klass, with fast and slow paths.
 831 
 832   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 833   // One of the three labels can be NULL, meaning take the fall-through.
 834   // If super_check_offset is -1, the value is loaded up from super_klass.
 835   // No registers are killed, except temp_reg.
 836   void check_klass_subtype_fast_path(Register sub_klass,
 837                                      Register super_klass,
 838                                      Register temp_reg,
 839                                      Label* L_success,
 840                                      Label* L_failure,
 841                                      Label* L_slow_path,
 842                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 843 
 844   // The rest of the type check; must be wired to a corresponding fast path.
 845   // It does not repeat the fast path logic, so don't use it standalone.
 846   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 847   // Updates the sub's secondary super cache as necessary.
 848   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 849   void check_klass_subtype_slow_path(Register sub_klass,
 850                                      Register super_klass,
 851                                      Register temp_reg,
 852                                      Register temp2_reg,
 853                                      Label* L_success,
 854                                      Label* L_failure,
 855                                      bool set_cond_codes = false);
 856 
 857   // Simplified, combined version, good for typical uses.
 858   // Falls through on failure.
 859   void check_klass_subtype(Register sub_klass,
 860                            Register super_klass,
 861                            Register temp_reg,
 862                            Label& L_success);
 863 
 864   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 865 
 866 
 867   // Debugging
 868 
 869   // only if +VerifyOops
 870   void verify_oop(Register reg, const char* s = "broken oop");
 871   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 872 
 873 // TODO: verify method and klass metadata (compare against vptr?)
 874   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 875   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 876 
 877 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 878 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 879 
 880   // only if +VerifyFPU
 881   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 882 
 883   // prints msg, dumps registers and stops execution
 884   void stop(const char* msg);
 885 
 886   // prints msg and continues
 887   void warn(const char* msg);
 888 
 889   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 890 
 891   void untested()                                { stop("untested"); }
 892 
 893   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 894 
 895   void should_not_reach_here()                   { stop("should not reach here"); }
 896 
 897   // Stack overflow checking
 898   void bang_stack_with_offset(int offset) {
 899     // stack grows down, caller passes positive offset
 900     assert(offset > 0, "must bang with negative offset");
 901     mov(rscratch2, -offset);
 902     str(zr, Address(sp, rscratch2));
 903   }
 904 
 905   // Writes to stack successive pages until offset reached to check for
 906   // stack overflow + shadow pages.  Also, clobbers tmp
 907   void bang_stack_size(Register size, Register tmp);
 908 
 909   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 910                                                 Register tmp,
 911                                                 int offset);
 912 
 913   // Support for serializing memory accesses between threads
 914   void serialize_memory(Register thread, Register tmp);
 915 
 916   // Arithmetics
 917 
 918   void addptr(const Address &dst, int32_t src);
 919   void cmpptr(Register src1, Address src2);
 920 
 921   // Various forms of CAS
 922 
 923   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 924                   Label &suceed, Label *fail);
 925 
 926   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 927                   Label &suceed, Label *fail);
 928 
 929   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 930   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 931 
 932   void atomic_xchg(Register prev, Register newv, Register addr);
 933   void atomic_xchgw(Register prev, Register newv, Register addr);
 934 
 935   void orptr(Address adr, RegisterOrConstant src) {
 936     ldr(rscratch2, adr);
 937     if (src.is_register())
 938       orr(rscratch2, rscratch2, src.as_register());
 939     else
 940       orr(rscratch2, rscratch2, src.as_constant());
 941     str(rscratch2, adr);
 942   }
 943 
 944   // A generic CAS; success or failure is in the EQ flag.
 945   template <typename T1, typename T2>
 946   void cmpxchg(Register addr, Register expected, Register new_val,
 947                T1 load_insn,
 948                void (MacroAssembler::*cmp_insn)(Register, Register),
 949                T2 store_insn,
 950                Register tmp = rscratch1) {
 951     Label retry_load, done;
 952     bind(retry_load);
 953     (this->*load_insn)(tmp, addr);
 954     (this->*cmp_insn)(tmp, expected);
 955     br(Assembler::NE, done);
 956     (this->*store_insn)(tmp, new_val, addr);
 957     cbnzw(tmp, retry_load);
 958     bind(done);
 959   }
 960 
 961   // Calls
 962 
 963   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
 964 
 965   static bool far_branches() {
 966     return ReservedCodeCacheSize > branch_range;
 967   }
 968 
 969   // Jumps that can reach anywhere in the code cache.
 970   // Trashes tmp.
 971   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
 972   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
 973 
 974   static int far_branch_size() {
 975     if (far_branches()) {
 976       return 3 * 4;  // adrp, add, br
 977     } else {
 978       return 4;
 979     }
 980   }
 981 
 982   // Emit the CompiledIC call idiom
 983   address ic_call(address entry, jint method_index = 0);
 984 
 985 public:
 986 
 987   // Data
 988 
 989   void mov_metadata(Register dst, Metadata* obj);
 990   Address allocate_metadata_address(Metadata* obj);
 991   Address constant_oop_address(jobject obj);
 992 
 993   void movoop(Register dst, jobject obj, bool immediate = false);
 994 
 995   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
 996   void kernel_crc32(Register crc, Register buf, Register len,
 997         Register table0, Register table1, Register table2, Register table3,
 998         Register tmp, Register tmp2, Register tmp3);
 999   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1000   void kernel_crc32c(Register crc, Register buf, Register len,
1001         Register table0, Register table1, Register table2, Register table3,
1002         Register tmp, Register tmp2, Register tmp3);
1003 
1004 #undef VIRTUAL
1005 
1006   // Stack push and pop individual 64 bit registers
1007   void push(Register src);
1008   void pop(Register dst);
1009 
1010   // push all registers onto the stack
1011   void pusha();
1012   void popa();
1013 
1014   void repne_scan(Register addr, Register value, Register count,
1015                   Register scratch);
1016   void repne_scanw(Register addr, Register value, Register count,
1017                    Register scratch);
1018 
1019   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1020   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1021 
1022   // If a constant does not fit in an immediate field, generate some
1023   // number of MOV instructions and then perform the operation
1024   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1025                              add_sub_imm_insn insn1,
1026                              add_sub_reg_insn insn2);
1027   // Seperate vsn which sets the flags
1028   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1029                              add_sub_imm_insn insn1,
1030                              add_sub_reg_insn insn2);
1031 
1032 #define WRAP(INSN)                                                      \
1033   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1034     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1035   }                                                                     \
1036                                                                         \
1037   void INSN(Register Rd, Register Rn, Register Rm,                      \
1038              enum shift_kind kind, unsigned shift = 0) {                \
1039     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1040   }                                                                     \
1041                                                                         \
1042   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1043     Assembler::INSN(Rd, Rn, Rm);                                        \
1044   }                                                                     \
1045                                                                         \
1046   void INSN(Register Rd, Register Rn, Register Rm,                      \
1047            ext::operation option, int amount = 0) {                     \
1048     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1049   }
1050 
1051   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1052 
1053 #undef WRAP
1054 #define WRAP(INSN)                                                      \
1055   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1056     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1057   }                                                                     \
1058                                                                         \
1059   void INSN(Register Rd, Register Rn, Register Rm,                      \
1060              enum shift_kind kind, unsigned shift = 0) {                \
1061     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1062   }                                                                     \
1063                                                                         \
1064   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1065     Assembler::INSN(Rd, Rn, Rm);                                        \
1066   }                                                                     \
1067                                                                         \
1068   void INSN(Register Rd, Register Rn, Register Rm,                      \
1069            ext::operation option, int amount = 0) {                     \
1070     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1071   }
1072 
1073   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1074 
1075   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1076   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1077   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1078   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1079 
1080   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1081 
1082   void tableswitch(Register index, jint lowbound, jint highbound,
1083                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1084     adr(rscratch1, jumptable);
1085     subsw(rscratch2, index, lowbound);
1086     subsw(zr, rscratch2, highbound - lowbound);
1087     br(Assembler::HS, jumptable_end);
1088     add(rscratch1, rscratch1, rscratch2,
1089         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1090     br(rscratch1);
1091   }
1092 
1093   // Form an address from base + offset in Rd.  Rd may or may not
1094   // actually be used: you must use the Address that is returned.  It
1095   // is up to you to ensure that the shift provided matches the size
1096   // of your data.
1097   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1098 
1099   // Prolog generator routines to support switch between x86 code and
1100   // generated ARM code
1101 
1102   // routine to generate an x86 prolog for a stub function which
1103   // bootstraps into the generated ARM code which directly follows the
1104   // stub
1105   //
1106 
1107   public:
1108   // enum used for aarch64--x86 linkage to define return type of x86 function
1109   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1110 
1111 #ifdef BUILTIN_SIM
1112   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1113 #else
1114   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1115 #endif
1116 
1117   // special version of call_VM_leaf_base needed for aarch64 simulator
1118   // where we need to specify both the gp and fp arg counts and the
1119   // return type so that the linkage routine from aarch64 to x86 and
1120   // back knows which aarch64 registers to copy to x86 registers and
1121   // which x86 result register to copy back to an aarch64 register
1122 
1123   void call_VM_leaf_base1(
1124     address  entry_point,             // the entry point
1125     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1126     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1127     ret_type type,                    // the return type for the call
1128     Label*   retaddr = NULL
1129   );
1130 
1131   void ldr_constant(Register dest, const Address &const_addr) {
1132     if (NearCpool) {
1133       ldr(dest, const_addr);
1134     } else {
1135       unsigned long offset;
1136       adrp(dest, InternalAddress(const_addr.target()), offset);
1137       ldr(dest, Address(dest, offset));
1138     }
1139   }
1140 
1141   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1142   address read_polling_page(Register r, relocInfo::relocType rtype);
1143 
1144   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1145   void update_byte_crc32(Register crc, Register val, Register table);
1146   void update_word_crc32(Register crc, Register v, Register tmp,
1147         Register table0, Register table1, Register table2, Register table3,
1148         bool upper = false);
1149 
1150   void string_compare(Register str1, Register str2,
1151                       Register cnt1, Register cnt2, Register result,
1152                       Register tmp1);
1153   void string_equals(Register str1, Register str2,
1154                      Register cnt, Register result,
1155                      Register tmp1);
1156   void char_arrays_equals(Register ary1, Register ary2,
1157                           Register result, Register tmp1);
1158   void encode_iso_array(Register src, Register dst,
1159                         Register len, Register result,
1160                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1161                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1162   void string_indexof(Register str1, Register str2,
1163                       Register cnt1, Register cnt2,
1164                       Register tmp1, Register tmp2,
1165                       Register tmp3, Register tmp4,
1166                       int int_cnt1, Register result);
1167 private:
1168   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1169                        Register src1, Register src2);
1170   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1171     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1172   }
1173   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1174                              Register y, Register y_idx, Register z,
1175                              Register carry, Register product,
1176                              Register idx, Register kdx);
1177   void multiply_128_x_128_loop(Register y, Register z,
1178                                Register carry, Register carry2,
1179                                Register idx, Register jdx,
1180                                Register yz_idx1, Register yz_idx2,
1181                                Register tmp, Register tmp3, Register tmp4,
1182                                Register tmp7, Register product_hi);
1183 public:
1184   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1185                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1186                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1187   // ISB may be needed because of a safepoint
1188   void maybe_isb() { isb(); }
1189 
1190 private:
1191   // Return the effective address r + (r1 << ext) + offset.
1192   // Uses rscratch2.
1193   Address offsetted_address(Register r, Register r1, Address::extend ext,
1194                             int offset, int size);
1195 
1196 private:
1197   // Returns an address on the stack which is reachable with a ldr/str of size
1198   // Uses rscratch2 if the address is not directly reachable
1199   Address spill_address(int size, int offset, Register tmp=rscratch2);
1200 
1201 public:
1202   void spill(Register Rx, bool is64, int offset) {
1203     if (is64) {
1204       str(Rx, spill_address(8, offset));
1205     } else {
1206       strw(Rx, spill_address(4, offset));
1207     }
1208   }
1209   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1210     str(Vx, T, spill_address(1 << (int)T, offset));
1211   }
1212   void unspill(Register Rx, bool is64, int offset) {
1213     if (is64) {
1214       ldr(Rx, spill_address(8, offset));
1215     } else {
1216       ldrw(Rx, spill_address(4, offset));
1217     }
1218   }
1219   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1220     ldr(Vx, T, spill_address(1 << (int)T, offset));
1221   }
1222   void spill_copy128(int src_offset, int dst_offset,
1223                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1224     if (src_offset < 512 && (src_offset & 7) == 0 &&
1225         dst_offset < 512 && (dst_offset & 7) == 0) {
1226       ldp(tmp1, tmp2, Address(sp, src_offset));
1227       stp(tmp1, tmp2, Address(sp, dst_offset));
1228     } else {
1229       unspill(tmp1, true, src_offset);
1230       spill(tmp1, true, dst_offset);
1231       unspill(tmp1, true, src_offset+8);
1232       spill(tmp1, true, dst_offset+8);
1233     }
1234   }
1235 };
1236 
1237 #ifdef ASSERT
1238 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1239 #endif
1240 
1241 /**
1242  * class SkipIfEqual:
1243  *
1244  * Instantiating this class will result in assembly code being output that will
1245  * jump around any code emitted between the creation of the instance and it's
1246  * automatic destruction at the end of a scope block, depending on the value of
1247  * the flag passed to the constructor, which will be checked at run-time.
1248  */
1249 class SkipIfEqual {
1250  private:
1251   MacroAssembler* _masm;
1252   Label _label;
1253 
1254  public:
1255    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1256    ~SkipIfEqual();
1257 };
1258 
1259 struct tableswitch {
1260   Register _reg;
1261   int _insn_index; jint _first_key; jint _last_key;
1262   Label _after;
1263   Label _branches;
1264 };
1265 
1266 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP