1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "trace/traceMacros.hpp"
  53 
  54 class LibraryIntrinsic : public InlineCallGenerator {
  55   // Extend the set of intrinsics known to the runtime:
  56  public:
  57  private:
  58   bool             _is_virtual;
  59   bool             _does_virtual_dispatch;
  60   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  61   int8_t           _last_predicate; // Last generated predicate
  62   vmIntrinsics::ID _intrinsic_id;
  63 
  64  public:
  65   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  66     : InlineCallGenerator(m),
  67       _is_virtual(is_virtual),
  68       _does_virtual_dispatch(does_virtual_dispatch),
  69       _predicates_count((int8_t)predicates_count),
  70       _last_predicate((int8_t)-1),
  71       _intrinsic_id(id)
  72   {
  73   }
  74   virtual bool is_intrinsic() const { return true; }
  75   virtual bool is_virtual()   const { return _is_virtual; }
  76   virtual bool is_predicated() const { return _predicates_count > 0; }
  77   virtual int  predicates_count() const { return _predicates_count; }
  78   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  79   virtual JVMState* generate(JVMState* jvms);
  80   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  81   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  82 };
  83 
  84 
  85 // Local helper class for LibraryIntrinsic:
  86 class LibraryCallKit : public GraphKit {
  87  private:
  88   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  89   Node*             _result;        // the result node, if any
  90   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  91 
  92   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  93 
  94  public:
  95   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  96     : GraphKit(jvms),
  97       _intrinsic(intrinsic),
  98       _result(NULL)
  99   {
 100     // Check if this is a root compile.  In that case we don't have a caller.
 101     if (!jvms->has_method()) {
 102       _reexecute_sp = sp();
 103     } else {
 104       // Find out how many arguments the interpreter needs when deoptimizing
 105       // and save the stack pointer value so it can used by uncommon_trap.
 106       // We find the argument count by looking at the declared signature.
 107       bool ignored_will_link;
 108       ciSignature* declared_signature = NULL;
 109       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 110       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 111       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 112     }
 113   }
 114 
 115   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 116 
 117   ciMethod*         caller()    const    { return jvms()->method(); }
 118   int               bci()       const    { return jvms()->bci(); }
 119   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 120   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 121   ciMethod*         callee()    const    { return _intrinsic->method(); }
 122 
 123   bool  try_to_inline(int predicate);
 124   Node* try_to_predicate(int predicate);
 125 
 126   void push_result() {
 127     // Push the result onto the stack.
 128     if (!stopped() && result() != NULL) {
 129       BasicType bt = result()->bottom_type()->basic_type();
 130       push_node(bt, result());
 131     }
 132   }
 133 
 134  private:
 135   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 136     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 137   }
 138 
 139   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 140   void  set_result(RegionNode* region, PhiNode* value);
 141   Node*     result() { return _result; }
 142 
 143   virtual int reexecute_sp() { return _reexecute_sp; }
 144 
 145   // Helper functions to inline natives
 146   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 147   Node* generate_slow_guard(Node* test, RegionNode* region);
 148   Node* generate_fair_guard(Node* test, RegionNode* region);
 149   Node* generate_negative_guard(Node* index, RegionNode* region,
 150                                 // resulting CastII of index:
 151                                 Node* *pos_index = NULL);
 152   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 153                              Node* array_length,
 154                              RegionNode* region);
 155   Node* generate_current_thread(Node* &tls_output);
 156   Node* load_mirror_from_klass(Node* klass);
 157   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 158                                       RegionNode* region, int null_path,
 159                                       int offset);
 160   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 161                                RegionNode* region, int null_path) {
 162     int offset = java_lang_Class::klass_offset_in_bytes();
 163     return load_klass_from_mirror_common(mirror, never_see_null,
 164                                          region, null_path,
 165                                          offset);
 166   }
 167   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 168                                      RegionNode* region, int null_path) {
 169     int offset = java_lang_Class::array_klass_offset_in_bytes();
 170     return load_klass_from_mirror_common(mirror, never_see_null,
 171                                          region, null_path,
 172                                          offset);
 173   }
 174   Node* generate_access_flags_guard(Node* kls,
 175                                     int modifier_mask, int modifier_bits,
 176                                     RegionNode* region);
 177   Node* generate_interface_guard(Node* kls, RegionNode* region);
 178   Node* generate_array_guard(Node* kls, RegionNode* region) {
 179     return generate_array_guard_common(kls, region, false, false);
 180   }
 181   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 182     return generate_array_guard_common(kls, region, false, true);
 183   }
 184   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, true, false);
 186   }
 187   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 188     return generate_array_guard_common(kls, region, true, true);
 189   }
 190   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 191                                     bool obj_array, bool not_array);
 192   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 193   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 194                                      bool is_virtual = false, bool is_static = false);
 195   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 196     return generate_method_call(method_id, false, true);
 197   }
 198   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 199     return generate_method_call(method_id, true, false);
 200   }
 201   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 202 
 203   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 204   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 205   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 206   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 207   bool inline_string_indexOfChar();
 208   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 209   bool inline_string_toBytesU();
 210   bool inline_string_getCharsU();
 211   bool inline_string_copy(bool compress);
 212   bool inline_string_char_access(bool is_store);
 213   Node* round_double_node(Node* n);
 214   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 215   bool inline_math_native(vmIntrinsics::ID id);
 216   bool inline_trig(vmIntrinsics::ID id);
 217   bool inline_math(vmIntrinsics::ID id);
 218   template <typename OverflowOp>
 219   bool inline_math_overflow(Node* arg1, Node* arg2);
 220   void inline_math_mathExact(Node* math, Node* test);
 221   bool inline_math_addExactI(bool is_increment);
 222   bool inline_math_addExactL(bool is_increment);
 223   bool inline_math_multiplyExactI();
 224   bool inline_math_multiplyExactL();
 225   bool inline_math_negateExactI();
 226   bool inline_math_negateExactL();
 227   bool inline_math_subtractExactI(bool is_decrement);
 228   bool inline_math_subtractExactL(bool is_decrement);
 229   bool inline_pow();
 230   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 231   bool inline_min_max(vmIntrinsics::ID id);
 232   bool inline_notify(vmIntrinsics::ID id);
 233   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 234   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 235   int classify_unsafe_addr(Node* &base, Node* &offset);
 236   Node* make_unsafe_address(Node* base, Node* offset);
 237   // Helper for inline_unsafe_access.
 238   // Generates the guards that check whether the result of
 239   // Unsafe.getObject should be recorded in an SATB log buffer.
 240   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 241   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool is_unaligned);
 242   static bool klass_needs_init_guard(Node* kls);
 243   bool inline_unsafe_allocate();
 244   bool inline_unsafe_copyMemory();
 245   bool inline_native_currentThread();
 246 #ifdef TRACE_HAVE_INTRINSICS
 247   bool inline_native_classID();
 248   bool inline_native_threadID();
 249 #endif
 250   bool inline_native_time_funcs(address method, const char* funcName);
 251   bool inline_native_isInterrupted();
 252   bool inline_native_Class_query(vmIntrinsics::ID id);
 253   bool inline_native_subtype_check();
 254 
 255   bool inline_native_newArray();
 256   bool inline_native_getLength();
 257   bool inline_array_copyOf(bool is_copyOfRange);
 258   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 259   bool inline_objects_checkIndex();
 260   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 261   bool inline_native_clone(bool is_virtual);
 262   bool inline_native_Reflection_getCallerClass();
 263   // Helper function for inlining native object hash method
 264   bool inline_native_hashcode(bool is_virtual, bool is_static);
 265   bool inline_native_getClass();
 266 
 267   // Helper functions for inlining arraycopy
 268   bool inline_arraycopy();
 269   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 270                                                 RegionNode* slow_region);
 271   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 272   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 273 
 274   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 275   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 276   bool inline_unsafe_ordered_store(BasicType type);
 277   bool inline_unsafe_fence(vmIntrinsics::ID id);
 278   bool inline_fp_conversions(vmIntrinsics::ID id);
 279   bool inline_number_methods(vmIntrinsics::ID id);
 280   bool inline_reference_get();
 281   bool inline_Class_cast();
 282   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 283   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 284   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 285   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 286   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 287   bool inline_ghash_processBlocks();
 288   bool inline_sha_implCompress(vmIntrinsics::ID id);
 289   bool inline_digestBase_implCompressMB(int predicate);
 290   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 291                                  bool long_state, address stubAddr, const char *stubName,
 292                                  Node* src_start, Node* ofs, Node* limit);
 293   Node* get_state_from_sha_object(Node *sha_object);
 294   Node* get_state_from_sha5_object(Node *sha_object);
 295   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 296   bool inline_encodeISOArray();
 297   bool inline_updateCRC32();
 298   bool inline_updateBytesCRC32();
 299   bool inline_updateByteBufferCRC32();
 300   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 301   bool inline_updateBytesCRC32C();
 302   bool inline_updateDirectByteBufferCRC32C();
 303   bool inline_updateBytesAdler32();
 304   bool inline_updateByteBufferAdler32();
 305   bool inline_multiplyToLen();
 306   bool inline_hasNegatives();
 307   bool inline_squareToLen();
 308   bool inline_mulAdd();
 309   bool inline_montgomeryMultiply();
 310   bool inline_montgomerySquare();
 311 
 312   bool inline_profileBoolean();
 313   bool inline_isCompileConstant();
 314 };
 315 
 316 //---------------------------make_vm_intrinsic----------------------------
 317 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 318   vmIntrinsics::ID id = m->intrinsic_id();
 319   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 320 
 321   if (!m->is_loaded()) {
 322     // Do not attempt to inline unloaded methods.
 323     return NULL;
 324   }
 325 
 326   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 327   bool is_available = false;
 328 
 329   {
 330     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 331     // the compiler must transition to '_thread_in_vm' state because both
 332     // methods access VM-internal data.
 333     VM_ENTRY_MARK;
 334     methodHandle mh(THREAD, m->get_Method());
 335     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 336                    !C->directive()->is_intrinsic_disabled(mh) &&
 337                    !vmIntrinsics::is_disabled_by_flags(mh);
 338 
 339   }
 340 
 341   if (is_available) {
 342     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 343     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 344     return new LibraryIntrinsic(m, is_virtual,
 345                                 vmIntrinsics::predicates_needed(id),
 346                                 vmIntrinsics::does_virtual_dispatch(id),
 347                                 (vmIntrinsics::ID) id);
 348   } else {
 349     return NULL;
 350   }
 351 }
 352 
 353 //----------------------register_library_intrinsics-----------------------
 354 // Initialize this file's data structures, for each Compile instance.
 355 void Compile::register_library_intrinsics() {
 356   // Nothing to do here.
 357 }
 358 
 359 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 360   LibraryCallKit kit(jvms, this);
 361   Compile* C = kit.C;
 362   int nodes = C->unique();
 363 #ifndef PRODUCT
 364   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 365     char buf[1000];
 366     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 367     tty->print_cr("Intrinsic %s", str);
 368   }
 369 #endif
 370   ciMethod* callee = kit.callee();
 371   const int bci    = kit.bci();
 372 
 373   // Try to inline the intrinsic.
 374   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 375       kit.try_to_inline(_last_predicate)) {
 376     if (C->print_intrinsics() || C->print_inlining()) {
 377       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 378     }
 379     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 380     if (C->log()) {
 381       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 382                      vmIntrinsics::name_at(intrinsic_id()),
 383                      (is_virtual() ? " virtual='1'" : ""),
 384                      C->unique() - nodes);
 385     }
 386     // Push the result from the inlined method onto the stack.
 387     kit.push_result();
 388     C->print_inlining_update(this);
 389     return kit.transfer_exceptions_into_jvms();
 390   }
 391 
 392   // The intrinsic bailed out
 393   if (C->print_intrinsics() || C->print_inlining()) {
 394     if (jvms->has_method()) {
 395       // Not a root compile.
 396       const char* msg;
 397       if (callee->intrinsic_candidate()) {
 398         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 399       } else {
 400         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 401                            : "failed to inline (intrinsic), method not annotated";
 402       }
 403       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 404     } else {
 405       // Root compile
 406       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 407                vmIntrinsics::name_at(intrinsic_id()),
 408                (is_virtual() ? " (virtual)" : ""), bci);
 409     }
 410   }
 411   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 412   C->print_inlining_update(this);
 413   return NULL;
 414 }
 415 
 416 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 417   LibraryCallKit kit(jvms, this);
 418   Compile* C = kit.C;
 419   int nodes = C->unique();
 420   _last_predicate = predicate;
 421 #ifndef PRODUCT
 422   assert(is_predicated() && predicate < predicates_count(), "sanity");
 423   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 424     char buf[1000];
 425     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 426     tty->print_cr("Predicate for intrinsic %s", str);
 427   }
 428 #endif
 429   ciMethod* callee = kit.callee();
 430   const int bci    = kit.bci();
 431 
 432   Node* slow_ctl = kit.try_to_predicate(predicate);
 433   if (!kit.failing()) {
 434     if (C->print_intrinsics() || C->print_inlining()) {
 435       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 436     }
 437     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 438     if (C->log()) {
 439       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 440                      vmIntrinsics::name_at(intrinsic_id()),
 441                      (is_virtual() ? " virtual='1'" : ""),
 442                      C->unique() - nodes);
 443     }
 444     return slow_ctl; // Could be NULL if the check folds.
 445   }
 446 
 447   // The intrinsic bailed out
 448   if (C->print_intrinsics() || C->print_inlining()) {
 449     if (jvms->has_method()) {
 450       // Not a root compile.
 451       const char* msg = "failed to generate predicate for intrinsic";
 452       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 453     } else {
 454       // Root compile
 455       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 456                                         vmIntrinsics::name_at(intrinsic_id()),
 457                                         (is_virtual() ? " (virtual)" : ""), bci);
 458     }
 459   }
 460   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 461   return NULL;
 462 }
 463 
 464 bool LibraryCallKit::try_to_inline(int predicate) {
 465   // Handle symbolic names for otherwise undistinguished boolean switches:
 466   const bool is_store       = true;
 467   const bool is_compress    = true;
 468   const bool is_native_ptr  = true;
 469   const bool is_static      = true;
 470   const bool is_volatile    = true;
 471 
 472   if (!jvms()->has_method()) {
 473     // Root JVMState has a null method.
 474     assert(map()->memory()->Opcode() == Op_Parm, "");
 475     // Insert the memory aliasing node
 476     set_all_memory(reset_memory());
 477   }
 478   assert(merged_memory(), "");
 479 
 480 
 481   switch (intrinsic_id()) {
 482   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 483   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 484   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 485 
 486   case vmIntrinsics::_dsin:
 487   case vmIntrinsics::_dcos:
 488   case vmIntrinsics::_dtan:
 489   case vmIntrinsics::_dabs:
 490   case vmIntrinsics::_datan2:
 491   case vmIntrinsics::_dsqrt:
 492   case vmIntrinsics::_dexp:
 493   case vmIntrinsics::_dlog:
 494   case vmIntrinsics::_dlog10:
 495   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 496 
 497   case vmIntrinsics::_min:
 498   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 499 
 500   case vmIntrinsics::_notify:
 501   case vmIntrinsics::_notifyAll:
 502     if (InlineNotify) {
 503       return inline_notify(intrinsic_id());
 504     }
 505     return false;
 506 
 507   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 508   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 509   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 510   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 511   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 512   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 513   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 514   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 515   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 516   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 517   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 518   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 519 
 520   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 521 
 522   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 523   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 524   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 525   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 526 
 527   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 528   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 529   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 530   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 531   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 532   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 533   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 534 
 535   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 536   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 537 
 538   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 539   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 540   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 541   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 542 
 543   case vmIntrinsics::_compressStringC:
 544   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 545   case vmIntrinsics::_inflateStringC:
 546   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 547 
 548   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile, false);
 549   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile, false);
 550   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 551   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 552   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 553   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 554   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 555   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 556   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 557   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile, false);
 558   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile, false);
 559   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 560   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 561   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 562   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 563   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 564   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 565   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 566 
 567   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile, false);
 568   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile, false);
 569   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile, false);
 570   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile, false);
 571   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile, false);
 572   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile, false);
 573   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile, false);
 574   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile, false);
 575 
 576   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile, false);
 577   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile, false);
 578   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile, false);
 579   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile, false);
 580   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile, false);
 581   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile, false);
 582   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile, false);
 583   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile, false);
 584 
 585   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile, false);
 586   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile, false);
 587   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile, false);
 588   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile, false);
 589   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile, false);
 590   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile, false);
 591   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile, false);
 592   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile, false);
 593   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile, false);
 594 
 595   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile, false);
 596   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile, false);
 597   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile, false);
 598   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile, false);
 599   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile, false);
 600   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile, false);
 601   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile, false);
 602   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile, false);
 603   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile, false);
 604 
 605   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile, true);
 606   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile, true);
 607   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile, true);
 608   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile, true);
 609 
 610   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile, true);
 611   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile, true);
 612   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile, true);
 613   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile, true);
 614 
 615   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 616   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 617   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 618 
 619   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 620   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 621   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 622 
 623   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 624   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 625   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 626   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 627   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 628 
 629   case vmIntrinsics::_loadFence:
 630   case vmIntrinsics::_storeFence:
 631   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 632 
 633   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 634   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 635 
 636 #ifdef TRACE_HAVE_INTRINSICS
 637   case vmIntrinsics::_classID:                  return inline_native_classID();
 638   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 639   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 640 #endif
 641   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 642   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 643   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 644   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 645   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 646   case vmIntrinsics::_getLength:                return inline_native_getLength();
 647   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 648   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 649   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 650   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 651   case vmIntrinsics::_Objects_checkIndex:       return inline_objects_checkIndex();
 652   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 653 
 654   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 655 
 656   case vmIntrinsics::_isInstance:
 657   case vmIntrinsics::_getModifiers:
 658   case vmIntrinsics::_isInterface:
 659   case vmIntrinsics::_isArray:
 660   case vmIntrinsics::_isPrimitive:
 661   case vmIntrinsics::_getSuperclass:
 662   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 663 
 664   case vmIntrinsics::_floatToRawIntBits:
 665   case vmIntrinsics::_floatToIntBits:
 666   case vmIntrinsics::_intBitsToFloat:
 667   case vmIntrinsics::_doubleToRawLongBits:
 668   case vmIntrinsics::_doubleToLongBits:
 669   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 670 
 671   case vmIntrinsics::_numberOfLeadingZeros_i:
 672   case vmIntrinsics::_numberOfLeadingZeros_l:
 673   case vmIntrinsics::_numberOfTrailingZeros_i:
 674   case vmIntrinsics::_numberOfTrailingZeros_l:
 675   case vmIntrinsics::_bitCount_i:
 676   case vmIntrinsics::_bitCount_l:
 677   case vmIntrinsics::_reverseBytes_i:
 678   case vmIntrinsics::_reverseBytes_l:
 679   case vmIntrinsics::_reverseBytes_s:
 680   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 681 
 682   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 683 
 684   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 685 
 686   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 687 
 688   case vmIntrinsics::_aescrypt_encryptBlock:
 689   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 690 
 691   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 692   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 693     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 694 
 695   case vmIntrinsics::_sha_implCompress:
 696   case vmIntrinsics::_sha2_implCompress:
 697   case vmIntrinsics::_sha5_implCompress:
 698     return inline_sha_implCompress(intrinsic_id());
 699 
 700   case vmIntrinsics::_digestBase_implCompressMB:
 701     return inline_digestBase_implCompressMB(predicate);
 702 
 703   case vmIntrinsics::_multiplyToLen:
 704     return inline_multiplyToLen();
 705 
 706   case vmIntrinsics::_squareToLen:
 707     return inline_squareToLen();
 708 
 709   case vmIntrinsics::_mulAdd:
 710     return inline_mulAdd();
 711 
 712   case vmIntrinsics::_montgomeryMultiply:
 713     return inline_montgomeryMultiply();
 714   case vmIntrinsics::_montgomerySquare:
 715     return inline_montgomerySquare();
 716 
 717   case vmIntrinsics::_ghash_processBlocks:
 718     return inline_ghash_processBlocks();
 719 
 720   case vmIntrinsics::_encodeISOArray:
 721   case vmIntrinsics::_encodeByteISOArray:
 722     return inline_encodeISOArray();
 723 
 724   case vmIntrinsics::_updateCRC32:
 725     return inline_updateCRC32();
 726   case vmIntrinsics::_updateBytesCRC32:
 727     return inline_updateBytesCRC32();
 728   case vmIntrinsics::_updateByteBufferCRC32:
 729     return inline_updateByteBufferCRC32();
 730 
 731   case vmIntrinsics::_updateBytesCRC32C:
 732     return inline_updateBytesCRC32C();
 733   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 734     return inline_updateDirectByteBufferCRC32C();
 735 
 736   case vmIntrinsics::_updateBytesAdler32:
 737     return inline_updateBytesAdler32();
 738   case vmIntrinsics::_updateByteBufferAdler32:
 739     return inline_updateByteBufferAdler32();
 740 
 741   case vmIntrinsics::_profileBoolean:
 742     return inline_profileBoolean();
 743   case vmIntrinsics::_isCompileConstant:
 744     return inline_isCompileConstant();
 745 
 746   case vmIntrinsics::_hasNegatives:
 747     return inline_hasNegatives();
 748 
 749   default:
 750     // If you get here, it may be that someone has added a new intrinsic
 751     // to the list in vmSymbols.hpp without implementing it here.
 752 #ifndef PRODUCT
 753     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 754       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 755                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 756     }
 757 #endif
 758     return false;
 759   }
 760 }
 761 
 762 Node* LibraryCallKit::try_to_predicate(int predicate) {
 763   if (!jvms()->has_method()) {
 764     // Root JVMState has a null method.
 765     assert(map()->memory()->Opcode() == Op_Parm, "");
 766     // Insert the memory aliasing node
 767     set_all_memory(reset_memory());
 768   }
 769   assert(merged_memory(), "");
 770 
 771   switch (intrinsic_id()) {
 772   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 773     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 774   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 775     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 776   case vmIntrinsics::_digestBase_implCompressMB:
 777     return inline_digestBase_implCompressMB_predicate(predicate);
 778 
 779   default:
 780     // If you get here, it may be that someone has added a new intrinsic
 781     // to the list in vmSymbols.hpp without implementing it here.
 782 #ifndef PRODUCT
 783     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 784       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 785                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 786     }
 787 #endif
 788     Node* slow_ctl = control();
 789     set_control(top()); // No fast path instrinsic
 790     return slow_ctl;
 791   }
 792 }
 793 
 794 //------------------------------set_result-------------------------------
 795 // Helper function for finishing intrinsics.
 796 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 797   record_for_igvn(region);
 798   set_control(_gvn.transform(region));
 799   set_result( _gvn.transform(value));
 800   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 801 }
 802 
 803 //------------------------------generate_guard---------------------------
 804 // Helper function for generating guarded fast-slow graph structures.
 805 // The given 'test', if true, guards a slow path.  If the test fails
 806 // then a fast path can be taken.  (We generally hope it fails.)
 807 // In all cases, GraphKit::control() is updated to the fast path.
 808 // The returned value represents the control for the slow path.
 809 // The return value is never 'top'; it is either a valid control
 810 // or NULL if it is obvious that the slow path can never be taken.
 811 // Also, if region and the slow control are not NULL, the slow edge
 812 // is appended to the region.
 813 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 814   if (stopped()) {
 815     // Already short circuited.
 816     return NULL;
 817   }
 818 
 819   // Build an if node and its projections.
 820   // If test is true we take the slow path, which we assume is uncommon.
 821   if (_gvn.type(test) == TypeInt::ZERO) {
 822     // The slow branch is never taken.  No need to build this guard.
 823     return NULL;
 824   }
 825 
 826   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 827 
 828   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 829   if (if_slow == top()) {
 830     // The slow branch is never taken.  No need to build this guard.
 831     return NULL;
 832   }
 833 
 834   if (region != NULL)
 835     region->add_req(if_slow);
 836 
 837   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 838   set_control(if_fast);
 839 
 840   return if_slow;
 841 }
 842 
 843 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 844   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 845 }
 846 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 847   return generate_guard(test, region, PROB_FAIR);
 848 }
 849 
 850 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 851                                                      Node* *pos_index) {
 852   if (stopped())
 853     return NULL;                // already stopped
 854   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 855     return NULL;                // index is already adequately typed
 856   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 857   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 858   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 859   if (is_neg != NULL && pos_index != NULL) {
 860     // Emulate effect of Parse::adjust_map_after_if.
 861     Node* ccast = new CastIINode(index, TypeInt::POS);
 862     ccast->set_req(0, control());
 863     (*pos_index) = _gvn.transform(ccast);
 864   }
 865   return is_neg;
 866 }
 867 
 868 // Make sure that 'position' is a valid limit index, in [0..length].
 869 // There are two equivalent plans for checking this:
 870 //   A. (offset + copyLength)  unsigned<=  arrayLength
 871 //   B. offset  <=  (arrayLength - copyLength)
 872 // We require that all of the values above, except for the sum and
 873 // difference, are already known to be non-negative.
 874 // Plan A is robust in the face of overflow, if offset and copyLength
 875 // are both hugely positive.
 876 //
 877 // Plan B is less direct and intuitive, but it does not overflow at
 878 // all, since the difference of two non-negatives is always
 879 // representable.  Whenever Java methods must perform the equivalent
 880 // check they generally use Plan B instead of Plan A.
 881 // For the moment we use Plan A.
 882 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 883                                                   Node* subseq_length,
 884                                                   Node* array_length,
 885                                                   RegionNode* region) {
 886   if (stopped())
 887     return NULL;                // already stopped
 888   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 889   if (zero_offset && subseq_length->eqv_uncast(array_length))
 890     return NULL;                // common case of whole-array copy
 891   Node* last = subseq_length;
 892   if (!zero_offset)             // last += offset
 893     last = _gvn.transform(new AddINode(last, offset));
 894   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 895   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 896   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 897   return is_over;
 898 }
 899 
 900 
 901 //--------------------------generate_current_thread--------------------
 902 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 903   ciKlass*    thread_klass = env()->Thread_klass();
 904   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 905   Node* thread = _gvn.transform(new ThreadLocalNode());
 906   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 907   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
 908   tls_output = thread;
 909   return threadObj;
 910 }
 911 
 912 
 913 //------------------------------make_string_method_node------------------------
 914 // Helper method for String intrinsic functions. This version is called with
 915 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 916 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 917 // containing the lengths of str1 and str2.
 918 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 919   Node* result = NULL;
 920   switch (opcode) {
 921   case Op_StrIndexOf:
 922     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 923                                 str1_start, cnt1, str2_start, cnt2, ae);
 924     break;
 925   case Op_StrComp:
 926     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 927                              str1_start, cnt1, str2_start, cnt2, ae);
 928     break;
 929   case Op_StrEquals:
 930     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
 931                                str1_start, str2_start, cnt1, ae);
 932     break;
 933   default:
 934     ShouldNotReachHere();
 935     return NULL;
 936   }
 937 
 938   // All these intrinsics have checks.
 939   C->set_has_split_ifs(true); // Has chance for split-if optimization
 940 
 941   return _gvn.transform(result);
 942 }
 943 
 944 //------------------------------inline_string_compareTo------------------------
 945 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
 946   Node* arg1 = argument(0);
 947   Node* arg2 = argument(1);
 948 
 949   // Get start addr and length of first argument
 950   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 951   Node* arg1_cnt    = load_array_length(arg1);
 952 
 953   // Get start addr and length of second argument
 954   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
 955   Node* arg2_cnt    = load_array_length(arg2);
 956 
 957   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
 958   set_result(result);
 959   return true;
 960 }
 961 
 962 //------------------------------inline_string_equals------------------------
 963 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
 964   Node* arg1 = argument(0);
 965   Node* arg2 = argument(1);
 966 
 967   // paths (plus control) merge
 968   RegionNode* region = new RegionNode(3);
 969   Node* phi = new PhiNode(region, TypeInt::BOOL);
 970 
 971   if (!stopped()) {
 972     // Get start addr and length of first argument
 973     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 974     Node* arg1_cnt    = load_array_length(arg1);
 975 
 976     // Get start addr and length of second argument
 977     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
 978     Node* arg2_cnt    = load_array_length(arg2);
 979 
 980     // Check for arg1_cnt != arg2_cnt
 981     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
 982     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
 983     Node* if_ne = generate_slow_guard(bol, NULL);
 984     if (if_ne != NULL) {
 985       phi->init_req(2, intcon(0));
 986       region->init_req(2, if_ne);
 987     }
 988 
 989     // Check for count == 0 is done by assembler code for StrEquals.
 990 
 991     if (!stopped()) {
 992       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
 993       phi->init_req(1, equals);
 994       region->init_req(1, control());
 995     }
 996   }
 997 
 998   // post merge
 999   set_control(_gvn.transform(region));
1000   record_for_igvn(region);
1001 
1002   set_result(_gvn.transform(phi));
1003   return true;
1004 }
1005 
1006 //------------------------------inline_array_equals----------------------------
1007 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1008   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1009   Node* arg1 = argument(0);
1010   Node* arg2 = argument(1);
1011 
1012   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1013   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1014   return true;
1015 }
1016 
1017 //------------------------------inline_hasNegatives------------------------------
1018 bool LibraryCallKit::inline_hasNegatives() {
1019   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1020 
1021   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1022   // no receiver since it is static method
1023   Node* ba         = argument(0);
1024   Node* offset     = argument(1);
1025   Node* len        = argument(2);
1026 
1027   RegionNode* bailout = new RegionNode(1);
1028   record_for_igvn(bailout);
1029 
1030   // offset must not be negative.
1031   generate_negative_guard(offset, bailout);
1032 
1033   // offset + length must not exceed length of ba.
1034   generate_limit_guard(offset, len, load_array_length(ba), bailout);
1035 
1036   if (bailout->req() > 1) {
1037     PreserveJVMState pjvms(this);
1038     set_control(_gvn.transform(bailout));
1039     uncommon_trap(Deoptimization::Reason_intrinsic,
1040                   Deoptimization::Action_maybe_recompile);
1041   }
1042   if (!stopped()) {
1043     Node* ba_start = array_element_address(ba, offset, T_BYTE);
1044     Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1045     set_result(_gvn.transform(result));
1046   }
1047   return true;
1048 }
1049 
1050 bool LibraryCallKit::inline_objects_checkIndex() {
1051   Node* index = argument(0);
1052   Node* length = argument(1);
1053   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1054     return false;
1055   }
1056 
1057   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1058   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1059 
1060   {
1061     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1062     uncommon_trap(Deoptimization::Reason_intrinsic,
1063                   Deoptimization::Action_make_not_entrant);
1064   }
1065 
1066   if (stopped()) {
1067     return false;
1068   }
1069 
1070   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1071   BoolTest::mask btest = BoolTest::lt;
1072   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1073   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1074   _gvn.set_type(rc, rc->Value(&_gvn));
1075   if (!rc_bool->is_Con()) {
1076     record_for_igvn(rc);
1077   }
1078   set_control(_gvn.transform(new IfTrueNode(rc)));
1079   {
1080     PreserveJVMState pjvms(this);
1081     set_control(_gvn.transform(new IfFalseNode(rc)));
1082     uncommon_trap(Deoptimization::Reason_range_check,
1083                   Deoptimization::Action_make_not_entrant);
1084   }
1085 
1086   if (stopped()) {
1087     return false;
1088   }
1089 
1090   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1091   result->set_req(0, control());
1092   result = _gvn.transform(result);
1093   set_result(result);
1094   replace_in_map(index, result);
1095   return true;
1096 }
1097 
1098 //------------------------------inline_string_indexOf------------------------
1099 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1100   if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1101     return false;
1102   }
1103   Node* src = argument(0);
1104   Node* tgt = argument(1);
1105 
1106   // Make the merge point
1107   RegionNode* result_rgn = new RegionNode(4);
1108   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1109 
1110   // Get start addr and length of source string
1111   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1112   Node* src_count = load_array_length(src);
1113 
1114   // Get start addr and length of substring
1115   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1116   Node* tgt_count = load_array_length(tgt);
1117 
1118   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1119     // Divide src size by 2 if String is UTF16 encoded
1120     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1121   }
1122   if (ae == StrIntrinsicNode::UU) {
1123     // Divide substring size by 2 if String is UTF16 encoded
1124     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1125   }
1126 
1127   // Check for substr count > string count
1128   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1129   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1130   Node* if_gt = generate_slow_guard(bol, NULL);
1131   if (if_gt != NULL) {
1132     result_phi->init_req(2, intcon(-1));
1133     result_rgn->init_req(2, if_gt);
1134   }
1135 
1136   if (!stopped()) {
1137     // Check for substr count == 0
1138     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1139     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1140     Node* if_zero = generate_slow_guard(bol, NULL);
1141     if (if_zero != NULL) {
1142       result_phi->init_req(3, intcon(0));
1143       result_rgn->init_req(3, if_zero);
1144     }
1145   }
1146 
1147   if (!stopped()) {
1148     Node* result = make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1149     result_phi->init_req(1, result);
1150     result_rgn->init_req(1, control());
1151   }
1152   set_control(_gvn.transform(result_rgn));
1153   record_for_igvn(result_rgn);
1154   set_result(_gvn.transform(result_phi));
1155 
1156   return true;
1157 }
1158 
1159 //-----------------------------inline_string_indexOf-----------------------
1160 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1161   if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1162     return false;
1163   }
1164   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1165   Node* src         = argument(0); // byte[]
1166   Node* src_count   = argument(1);
1167   Node* tgt         = argument(2); // byte[]
1168   Node* tgt_count   = argument(3);
1169   Node* from_index  = argument(4);
1170 
1171   // Java code which calls this method has range checks for from_index value.
1172   src_count = _gvn.transform(new SubINode(src_count, from_index));
1173 
1174   // Multiply byte array index by 2 if String is UTF16 encoded
1175   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1176   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1177   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1178 
1179   Node* result = make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1180 
1181   // The result is index relative to from_index if substring was found, -1 otherwise.
1182   // Generate code which will fold into cmove.
1183   RegionNode* region = new RegionNode(3);
1184   Node* phi = new PhiNode(region, TypeInt::INT);
1185 
1186   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1187   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1188 
1189   Node* if_lt = generate_slow_guard(bol, NULL);
1190   if (if_lt != NULL) {
1191     // result == -1
1192     phi->init_req(2, result);
1193     region->init_req(2, if_lt);
1194   }
1195   if (!stopped()) {
1196     result = _gvn.transform(new AddINode(result, from_index));
1197     phi->init_req(1, result);
1198     region->init_req(1, control());
1199   }
1200 
1201   set_control(_gvn.transform(region));
1202   record_for_igvn(region);
1203   set_result(_gvn.transform(phi));
1204 
1205   return true;
1206 }
1207 
1208 //-----------------------------inline_string_indexOfChar-----------------------
1209 bool LibraryCallKit::inline_string_indexOfChar() {
1210   if (!Matcher::has_match_rule(Op_StrIndexOfChar) || !(UseSSE > 4)) {
1211     return false;
1212   }
1213   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1214   Node* src         = argument(0); // byte[]
1215   Node* tgt         = argument(1); // tgt is int ch
1216   Node* from_index  = argument(2);
1217   Node* max         = argument(3);
1218 
1219   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1220   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1221 
1222   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1223 
1224   RegionNode* region = new RegionNode(3);
1225   Node* phi = new PhiNode(region, TypeInt::INT);
1226 
1227   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1228   C->set_has_split_ifs(true); // Has chance for split-if optimization
1229   _gvn.transform(result);
1230 
1231   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1232   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1233 
1234   Node* if_lt = generate_slow_guard(bol, NULL);
1235   if (if_lt != NULL) {
1236     // result == -1
1237     phi->init_req(2, result);
1238     region->init_req(2, if_lt);
1239   }
1240   if (!stopped()) {
1241     result = _gvn.transform(new AddINode(result, from_index));
1242     phi->init_req(1, result);
1243     region->init_req(1, control());
1244   }
1245   set_control(_gvn.transform(region));
1246   record_for_igvn(region);
1247   set_result(_gvn.transform(phi));
1248 
1249   return true;
1250 }
1251 //---------------------------inline_string_copy---------------------
1252 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1253 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1254 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1255 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1256 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1257 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1258 bool LibraryCallKit::inline_string_copy(bool compress) {
1259   int nargs = 5;  // 2 oops, 3 ints
1260   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1261 
1262   Node* src         = argument(0);
1263   Node* src_offset  = argument(1);
1264   Node* dst         = argument(2);
1265   Node* dst_offset  = argument(3);
1266   Node* length      = argument(4);
1267 
1268   // Check for allocation before we add nodes that would confuse
1269   // tightly_coupled_allocation()
1270   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1271 
1272   // Figure out the size and type of the elements we will be copying.
1273   const Type* src_type = src->Value(&_gvn);
1274   const Type* dst_type = dst->Value(&_gvn);
1275   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1276   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1277   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1278          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1279          "Unsupported array types for inline_string_copy");
1280 
1281   // Convert char[] offsets to byte[] offsets
1282   if (compress && src_elem == T_BYTE) {
1283     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1284   } else if (!compress && dst_elem == T_BYTE) {
1285     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1286   }
1287 
1288   Node* src_start = array_element_address(src, src_offset, src_elem);
1289   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1290   // 'src_start' points to src array + scaled offset
1291   // 'dst_start' points to dst array + scaled offset
1292   Node* count = NULL;
1293   if (compress) {
1294     count = compress_string(src_start, dst_start, length);
1295   } else {
1296     inflate_string(src_start, dst_start, length);
1297   }
1298 
1299   if (alloc != NULL) {
1300     if (alloc->maybe_set_complete(&_gvn)) {
1301       // "You break it, you buy it."
1302       InitializeNode* init = alloc->initialization();
1303       assert(init->is_complete(), "we just did this");
1304       init->set_complete_with_arraycopy();
1305       assert(dst->is_CheckCastPP(), "sanity");
1306       assert(dst->in(0)->in(0) == init, "dest pinned");
1307     }
1308     // Do not let stores that initialize this object be reordered with
1309     // a subsequent store that would make this object accessible by
1310     // other threads.
1311     // Record what AllocateNode this StoreStore protects so that
1312     // escape analysis can go from the MemBarStoreStoreNode to the
1313     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1314     // based on the escape status of the AllocateNode.
1315     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1316   }
1317   if (compress) {
1318     set_result(_gvn.transform(count));
1319   }
1320   return true;
1321 }
1322 
1323 #ifdef _LP64
1324 #define XTOP ,top() /*additional argument*/
1325 #else  //_LP64
1326 #define XTOP        /*no additional argument*/
1327 #endif //_LP64
1328 
1329 //------------------------inline_string_toBytesU--------------------------
1330 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1331 bool LibraryCallKit::inline_string_toBytesU() {
1332   // Get the arguments.
1333   Node* value     = argument(0);
1334   Node* offset    = argument(1);
1335   Node* length    = argument(2);
1336 
1337   Node* newcopy = NULL;
1338 
1339   // Set the original stack and the reexecute bit for the interpreter to reexecute
1340   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1341   { PreserveReexecuteState preexecs(this);
1342     jvms()->set_should_reexecute(true);
1343 
1344     // Check if a null path was taken unconditionally.
1345     value = null_check(value);
1346 
1347     RegionNode* bailout = new RegionNode(1);
1348     record_for_igvn(bailout);
1349 
1350     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1351     generate_negative_guard(length, bailout);
1352     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1353 
1354     if (bailout->req() > 1) {
1355       PreserveJVMState pjvms(this);
1356       set_control(_gvn.transform(bailout));
1357       uncommon_trap(Deoptimization::Reason_intrinsic,
1358                     Deoptimization::Action_maybe_recompile);
1359     }
1360     if (stopped()) return true;
1361 
1362     // Range checks are done by caller.
1363 
1364     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1365     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1366     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1367     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1368 
1369     // Calculate starting addresses.
1370     Node* src_start = array_element_address(value, offset, T_CHAR);
1371     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1372 
1373     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1374     const TypeInt* toffset = gvn().type(offset)->is_int();
1375     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1376 
1377     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1378     const char* copyfunc_name = "arraycopy";
1379     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1380     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1381                       OptoRuntime::fast_arraycopy_Type(),
1382                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1383                       src_start, dst_start, ConvI2X(length) XTOP);
1384     // Do not let reads from the cloned object float above the arraycopy.
1385     if (alloc != NULL) {
1386       if (alloc->maybe_set_complete(&_gvn)) {
1387         // "You break it, you buy it."
1388         InitializeNode* init = alloc->initialization();
1389         assert(init->is_complete(), "we just did this");
1390         init->set_complete_with_arraycopy();
1391         assert(newcopy->is_CheckCastPP(), "sanity");
1392         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1393       }
1394       // Do not let stores that initialize this object be reordered with
1395       // a subsequent store that would make this object accessible by
1396       // other threads.
1397       // Record what AllocateNode this StoreStore protects so that
1398       // escape analysis can go from the MemBarStoreStoreNode to the
1399       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1400       // based on the escape status of the AllocateNode.
1401       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1402     } else {
1403       insert_mem_bar(Op_MemBarCPUOrder);
1404     }
1405   } // original reexecute is set back here
1406 
1407   C->set_has_split_ifs(true); // Has chance for split-if optimization
1408   if (!stopped()) {
1409     set_result(newcopy);
1410   }
1411   return true;
1412 }
1413 
1414 //------------------------inline_string_getCharsU--------------------------
1415 // public void StringUTF16.getChars(byte[] value, int srcBegin, int srcEnd, char dst[], int dstBegin)
1416 bool LibraryCallKit::inline_string_getCharsU() {
1417   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1418 
1419   // Get the arguments.
1420   Node* value     = argument(0);
1421   Node* src_begin = argument(1);
1422   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1423   Node* dst       = argument(3);
1424   Node* dst_begin = argument(4);
1425 
1426   // Check for allocation before we add nodes that would confuse
1427   // tightly_coupled_allocation()
1428   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1429 
1430   // Check if a null path was taken unconditionally.
1431   value = null_check(value);
1432   dst = null_check(dst);
1433   if (stopped()) {
1434     return true;
1435   }
1436 
1437   // Range checks are done by caller.
1438 
1439   // Get length and convert char[] offset to byte[] offset
1440   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1441   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1442 
1443   if (!stopped()) {
1444     // Calculate starting addresses.
1445     Node* src_start = array_element_address(value, src_begin, T_BYTE);
1446     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1447 
1448     // Check if array addresses are aligned to HeapWordSize
1449     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1450     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1451     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1452                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1453 
1454     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1455     const char* copyfunc_name = "arraycopy";
1456     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1457     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1458                       OptoRuntime::fast_arraycopy_Type(),
1459                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1460                       src_start, dst_start, ConvI2X(length) XTOP);
1461     // Do not let reads from the cloned object float above the arraycopy.
1462     if (alloc != NULL) {
1463       if (alloc->maybe_set_complete(&_gvn)) {
1464         // "You break it, you buy it."
1465         InitializeNode* init = alloc->initialization();
1466         assert(init->is_complete(), "we just did this");
1467         init->set_complete_with_arraycopy();
1468         assert(dst->is_CheckCastPP(), "sanity");
1469         assert(dst->in(0)->in(0) == init, "dest pinned");
1470       }
1471       // Do not let stores that initialize this object be reordered with
1472       // a subsequent store that would make this object accessible by
1473       // other threads.
1474       // Record what AllocateNode this StoreStore protects so that
1475       // escape analysis can go from the MemBarStoreStoreNode to the
1476       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1477       // based on the escape status of the AllocateNode.
1478       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1479     } else {
1480       insert_mem_bar(Op_MemBarCPUOrder);
1481     }
1482   }
1483 
1484   C->set_has_split_ifs(true); // Has chance for split-if optimization
1485   return true;
1486 }
1487 
1488 //----------------------inline_string_char_access----------------------------
1489 // Store/Load char to/from byte[] array.
1490 // static void StringUTF16.putChar(byte[] val, int index, int c)
1491 // static char StringUTF16.getChar(byte[] val, int index)
1492 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1493   Node* value  = argument(0);
1494   Node* index  = argument(1);
1495   Node* ch = is_store ? argument(2) : NULL;
1496 
1497   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1498   // correctly requires matched array shapes.
1499   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1500           "sanity: byte[] and char[] bases agree");
1501   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1502           "sanity: byte[] and char[] scales agree");
1503 
1504   Node* adr = array_element_address(value, index, T_CHAR);
1505   if (is_store) {
1506     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered);
1507   } else {
1508     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, MemNode::unordered);
1509     set_result(ch);
1510   }
1511   return true;
1512 }
1513 
1514 //--------------------------round_double_node--------------------------------
1515 // Round a double node if necessary.
1516 Node* LibraryCallKit::round_double_node(Node* n) {
1517   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1518     n = _gvn.transform(new RoundDoubleNode(0, n));
1519   return n;
1520 }
1521 
1522 //------------------------------inline_math-----------------------------------
1523 // public static double Math.abs(double)
1524 // public static double Math.sqrt(double)
1525 // public static double Math.log(double)
1526 // public static double Math.log10(double)
1527 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1528   Node* arg = round_double_node(argument(0));
1529   Node* n = NULL;
1530   switch (id) {
1531   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1532   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1533   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1534   default:  fatal_unexpected_iid(id);  break;
1535   }
1536   set_result(_gvn.transform(n));
1537   return true;
1538 }
1539 
1540 //------------------------------inline_trig----------------------------------
1541 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1542 // argument reduction which will turn into a fast/slow diamond.
1543 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1544   Node* arg = round_double_node(argument(0));
1545   Node* n = NULL;
1546 
1547   switch (id) {
1548   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1549   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1550   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1551   default:  fatal_unexpected_iid(id);  break;
1552   }
1553   n = _gvn.transform(n);
1554 
1555   // Rounding required?  Check for argument reduction!
1556   if (Matcher::strict_fp_requires_explicit_rounding) {
1557     static const double     pi_4 =  0.7853981633974483;
1558     static const double neg_pi_4 = -0.7853981633974483;
1559     // pi/2 in 80-bit extended precision
1560     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1561     // -pi/2 in 80-bit extended precision
1562     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1563     // Cutoff value for using this argument reduction technique
1564     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1565     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1566 
1567     // Pseudocode for sin:
1568     // if (x <= Math.PI / 4.0) {
1569     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1570     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1571     // } else {
1572     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1573     // }
1574     // return StrictMath.sin(x);
1575 
1576     // Pseudocode for cos:
1577     // if (x <= Math.PI / 4.0) {
1578     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1579     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1580     // } else {
1581     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1582     // }
1583     // return StrictMath.cos(x);
1584 
1585     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1586     // requires a special machine instruction to load it.  Instead we'll try
1587     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1588     // probably do the math inside the SIN encoding.
1589 
1590     // Make the merge point
1591     RegionNode* r = new RegionNode(3);
1592     Node* phi = new PhiNode(r, Type::DOUBLE);
1593 
1594     // Flatten arg so we need only 1 test
1595     Node *abs = _gvn.transform(new AbsDNode(arg));
1596     // Node for PI/4 constant
1597     Node *pi4 = makecon(TypeD::make(pi_4));
1598     // Check PI/4 : abs(arg)
1599     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1600     // Check: If PI/4 < abs(arg) then go slow
1601     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1602     // Branch either way
1603     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1604     set_control(opt_iff(r,iff));
1605 
1606     // Set fast path result
1607     phi->init_req(2, n);
1608 
1609     // Slow path - non-blocking leaf call
1610     Node* call = NULL;
1611     switch (id) {
1612     case vmIntrinsics::_dsin:
1613       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1614                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1615                                "Sin", NULL, arg, top());
1616       break;
1617     case vmIntrinsics::_dcos:
1618       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1619                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1620                                "Cos", NULL, arg, top());
1621       break;
1622     case vmIntrinsics::_dtan:
1623       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1624                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1625                                "Tan", NULL, arg, top());
1626       break;
1627     }
1628     assert(control()->in(0) == call, "");
1629     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1630     r->init_req(1, control());
1631     phi->init_req(1, slow_result);
1632 
1633     // Post-merge
1634     set_control(_gvn.transform(r));
1635     record_for_igvn(r);
1636     n = _gvn.transform(phi);
1637 
1638     C->set_has_split_ifs(true); // Has chance for split-if optimization
1639   }
1640   set_result(n);
1641   return true;
1642 }
1643 
1644 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1645   //-------------------
1646   //result=(result.isNaN())? funcAddr():result;
1647   // Check: If isNaN() by checking result!=result? then either trap
1648   // or go to runtime
1649   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1650   // Build the boolean node
1651   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1652 
1653   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1654     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1655       // The pow or exp intrinsic returned a NaN, which requires a call
1656       // to the runtime.  Recompile with the runtime call.
1657       uncommon_trap(Deoptimization::Reason_intrinsic,
1658                     Deoptimization::Action_make_not_entrant);
1659     }
1660     return result;
1661   } else {
1662     // If this inlining ever returned NaN in the past, we compile a call
1663     // to the runtime to properly handle corner cases
1664 
1665     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1666     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1667     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1668 
1669     if (!if_slow->is_top()) {
1670       RegionNode* result_region = new RegionNode(3);
1671       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1672 
1673       result_region->init_req(1, if_fast);
1674       result_val->init_req(1, result);
1675 
1676       set_control(if_slow);
1677 
1678       const TypePtr* no_memory_effects = NULL;
1679       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1680                                    no_memory_effects,
1681                                    x, top(), y, y ? top() : NULL);
1682       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1683 #ifdef ASSERT
1684       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1685       assert(value_top == top(), "second value must be top");
1686 #endif
1687 
1688       result_region->init_req(2, control());
1689       result_val->init_req(2, value);
1690       set_control(_gvn.transform(result_region));
1691       return _gvn.transform(result_val);
1692     } else {
1693       return result;
1694     }
1695   }
1696 }
1697 
1698 //------------------------------inline_pow-------------------------------------
1699 // Inline power instructions, if possible.
1700 bool LibraryCallKit::inline_pow() {
1701   // Pseudocode for pow
1702   // if (y == 2) {
1703   //   return x * x;
1704   // } else {
1705   //   if (x <= 0.0) {
1706   //     long longy = (long)y;
1707   //     if ((double)longy == y) { // if y is long
1708   //       if (y + 1 == y) longy = 0; // huge number: even
1709   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1710   //     } else {
1711   //       result = NaN;
1712   //     }
1713   //   } else {
1714   //     result = DPow(x,y);
1715   //   }
1716   //   if (result != result)?  {
1717   //     result = uncommon_trap() or runtime_call();
1718   //   }
1719   //   return result;
1720   // }
1721 
1722   Node* x = round_double_node(argument(0));
1723   Node* y = round_double_node(argument(2));
1724 
1725   Node* result = NULL;
1726 
1727   Node*   const_two_node = makecon(TypeD::make(2.0));
1728   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1729   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1730   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1731   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1732   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1733 
1734   RegionNode* region_node = new RegionNode(3);
1735   region_node->init_req(1, if_true);
1736 
1737   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1738   // special case for x^y where y == 2, we can convert it to x * x
1739   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1740 
1741   // set control to if_false since we will now process the false branch
1742   set_control(if_false);
1743 
1744   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1745     // Short form: skip the fancy tests and just check for NaN result.
1746     result = _gvn.transform(new PowDNode(C, control(), x, y));
1747   } else {
1748     // If this inlining ever returned NaN in the past, include all
1749     // checks + call to the runtime.
1750 
1751     // Set the merge point for If node with condition of (x <= 0.0)
1752     // There are four possible paths to region node and phi node
1753     RegionNode *r = new RegionNode(4);
1754     Node *phi = new PhiNode(r, Type::DOUBLE);
1755 
1756     // Build the first if node: if (x <= 0.0)
1757     // Node for 0 constant
1758     Node *zeronode = makecon(TypeD::ZERO);
1759     // Check x:0
1760     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1761     // Check: If (x<=0) then go complex path
1762     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1763     // Branch either way
1764     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1765     // Fast path taken; set region slot 3
1766     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1767     r->init_req(3,fast_taken); // Capture fast-control
1768 
1769     // Fast path not-taken, i.e. slow path
1770     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1771 
1772     // Set fast path result
1773     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1774     phi->init_req(3, fast_result);
1775 
1776     // Complex path
1777     // Build the second if node (if y is long)
1778     // Node for (long)y
1779     Node *longy = _gvn.transform(new ConvD2LNode(y));
1780     // Node for (double)((long) y)
1781     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1782     // Check (double)((long) y) : y
1783     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1784     // Check if (y isn't long) then go to slow path
1785 
1786     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1787     // Branch either way
1788     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1789     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1790 
1791     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1792 
1793     // Calculate DPow(abs(x), y)*(1 & (long)y)
1794     // Node for constant 1
1795     Node *conone = longcon(1);
1796     // 1& (long)y
1797     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1798 
1799     // A huge number is always even. Detect a huge number by checking
1800     // if y + 1 == y and set integer to be tested for parity to 0.
1801     // Required for corner case:
1802     // (long)9.223372036854776E18 = max_jlong
1803     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1804     // max_jlong is odd but 9.223372036854776E18 is even
1805     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1806     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1807     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1808     Node* correctedsign = NULL;
1809     if (ConditionalMoveLimit != 0) {
1810       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1811     } else {
1812       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1813       RegionNode *r = new RegionNode(3);
1814       Node *phi = new PhiNode(r, TypeLong::LONG);
1815       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1816       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1817       phi->init_req(1, signnode);
1818       phi->init_req(2, longcon(0));
1819       correctedsign = _gvn.transform(phi);
1820       ylong_path = _gvn.transform(r);
1821       record_for_igvn(r);
1822     }
1823 
1824     // zero node
1825     Node *conzero = longcon(0);
1826     // Check (1&(long)y)==0?
1827     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1828     // Check if (1&(long)y)!=0?, if so the result is negative
1829     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1830     // abs(x)
1831     Node *absx=_gvn.transform(new AbsDNode(x));
1832     // abs(x)^y
1833     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1834     // -abs(x)^y
1835     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1836     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1837     Node *signresult = NULL;
1838     if (ConditionalMoveLimit != 0) {
1839       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1840     } else {
1841       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1842       RegionNode *r = new RegionNode(3);
1843       Node *phi = new PhiNode(r, Type::DOUBLE);
1844       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1845       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1846       phi->init_req(1, absxpowy);
1847       phi->init_req(2, negabsxpowy);
1848       signresult = _gvn.transform(phi);
1849       ylong_path = _gvn.transform(r);
1850       record_for_igvn(r);
1851     }
1852     // Set complex path fast result
1853     r->init_req(2, ylong_path);
1854     phi->init_req(2, signresult);
1855 
1856     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1857     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1858     r->init_req(1,slow_path);
1859     phi->init_req(1,slow_result);
1860 
1861     // Post merge
1862     set_control(_gvn.transform(r));
1863     record_for_igvn(r);
1864     result = _gvn.transform(phi);
1865   }
1866 
1867   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1868 
1869   // control from finish_pow_exp is now input to the region node
1870   region_node->set_req(2, control());
1871   // the result from finish_pow_exp is now input to the phi node
1872   phi_node->init_req(2, result);
1873   set_control(_gvn.transform(region_node));
1874   record_for_igvn(region_node);
1875   set_result(_gvn.transform(phi_node));
1876 
1877   C->set_has_split_ifs(true); // Has chance for split-if optimization
1878   return true;
1879 }
1880 
1881 //------------------------------runtime_math-----------------------------
1882 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1883   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1884          "must be (DD)D or (D)D type");
1885 
1886   // Inputs
1887   Node* a = round_double_node(argument(0));
1888   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1889 
1890   const TypePtr* no_memory_effects = NULL;
1891   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1892                                  no_memory_effects,
1893                                  a, top(), b, b ? top() : NULL);
1894   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1895 #ifdef ASSERT
1896   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1897   assert(value_top == top(), "second value must be top");
1898 #endif
1899 
1900   set_result(value);
1901   return true;
1902 }
1903 
1904 //------------------------------inline_math_native-----------------------------
1905 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1906 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1907   switch (id) {
1908     // These intrinsics are not properly supported on all hardware
1909   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1910     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1911   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1912     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1913   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1914     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1915 
1916   case vmIntrinsics::_dlog:
1917     return StubRoutines::dlog() != NULL ?
1918     runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1919     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1920   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1921     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1922 
1923     // These intrinsics are supported on all hardware
1924   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1925   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1926 
1927   case vmIntrinsics::_dexp:
1928     return StubRoutines::dexp() != NULL ?
1929       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1930       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1931   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1932     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1933 #undef FN_PTR
1934 
1935    // These intrinsics are not yet correctly implemented
1936   case vmIntrinsics::_datan2:
1937     return false;
1938 
1939   default:
1940     fatal_unexpected_iid(id);
1941     return false;
1942   }
1943 }
1944 
1945 static bool is_simple_name(Node* n) {
1946   return (n->req() == 1         // constant
1947           || (n->is_Type() && n->as_Type()->type()->singleton())
1948           || n->is_Proj()       // parameter or return value
1949           || n->is_Phi()        // local of some sort
1950           );
1951 }
1952 
1953 //----------------------------inline_notify-----------------------------------*
1954 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1955   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1956   address func;
1957   if (id == vmIntrinsics::_notify) {
1958     func = OptoRuntime::monitor_notify_Java();
1959   } else {
1960     func = OptoRuntime::monitor_notifyAll_Java();
1961   }
1962   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1963   make_slow_call_ex(call, env()->Throwable_klass(), false);
1964   return true;
1965 }
1966 
1967 
1968 //----------------------------inline_min_max-----------------------------------
1969 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1970   set_result(generate_min_max(id, argument(0), argument(1)));
1971   return true;
1972 }
1973 
1974 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1975   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1976   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1977   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1978   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1979 
1980   {
1981     PreserveJVMState pjvms(this);
1982     PreserveReexecuteState preexecs(this);
1983     jvms()->set_should_reexecute(true);
1984 
1985     set_control(slow_path);
1986     set_i_o(i_o());
1987 
1988     uncommon_trap(Deoptimization::Reason_intrinsic,
1989                   Deoptimization::Action_none);
1990   }
1991 
1992   set_control(fast_path);
1993   set_result(math);
1994 }
1995 
1996 template <typename OverflowOp>
1997 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1998   typedef typename OverflowOp::MathOp MathOp;
1999 
2000   MathOp* mathOp = new MathOp(arg1, arg2);
2001   Node* operation = _gvn.transform( mathOp );
2002   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2003   inline_math_mathExact(operation, ofcheck);
2004   return true;
2005 }
2006 
2007 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2008   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2009 }
2010 
2011 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2012   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2013 }
2014 
2015 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2016   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2017 }
2018 
2019 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2020   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2021 }
2022 
2023 bool LibraryCallKit::inline_math_negateExactI() {
2024   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2025 }
2026 
2027 bool LibraryCallKit::inline_math_negateExactL() {
2028   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2029 }
2030 
2031 bool LibraryCallKit::inline_math_multiplyExactI() {
2032   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2033 }
2034 
2035 bool LibraryCallKit::inline_math_multiplyExactL() {
2036   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2037 }
2038 
2039 Node*
2040 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2041   // These are the candidate return value:
2042   Node* xvalue = x0;
2043   Node* yvalue = y0;
2044 
2045   if (xvalue == yvalue) {
2046     return xvalue;
2047   }
2048 
2049   bool want_max = (id == vmIntrinsics::_max);
2050 
2051   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2052   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2053   if (txvalue == NULL || tyvalue == NULL)  return top();
2054   // This is not really necessary, but it is consistent with a
2055   // hypothetical MaxINode::Value method:
2056   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2057 
2058   // %%% This folding logic should (ideally) be in a different place.
2059   // Some should be inside IfNode, and there to be a more reliable
2060   // transformation of ?: style patterns into cmoves.  We also want
2061   // more powerful optimizations around cmove and min/max.
2062 
2063   // Try to find a dominating comparison of these guys.
2064   // It can simplify the index computation for Arrays.copyOf
2065   // and similar uses of System.arraycopy.
2066   // First, compute the normalized version of CmpI(x, y).
2067   int   cmp_op = Op_CmpI;
2068   Node* xkey = xvalue;
2069   Node* ykey = yvalue;
2070   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2071   if (ideal_cmpxy->is_Cmp()) {
2072     // E.g., if we have CmpI(length - offset, count),
2073     // it might idealize to CmpI(length, count + offset)
2074     cmp_op = ideal_cmpxy->Opcode();
2075     xkey = ideal_cmpxy->in(1);
2076     ykey = ideal_cmpxy->in(2);
2077   }
2078 
2079   // Start by locating any relevant comparisons.
2080   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2081   Node* cmpxy = NULL;
2082   Node* cmpyx = NULL;
2083   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2084     Node* cmp = start_from->fast_out(k);
2085     if (cmp->outcnt() > 0 &&            // must have prior uses
2086         cmp->in(0) == NULL &&           // must be context-independent
2087         cmp->Opcode() == cmp_op) {      // right kind of compare
2088       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2089       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2090     }
2091   }
2092 
2093   const int NCMPS = 2;
2094   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2095   int cmpn;
2096   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2097     if (cmps[cmpn] != NULL)  break;     // find a result
2098   }
2099   if (cmpn < NCMPS) {
2100     // Look for a dominating test that tells us the min and max.
2101     int depth = 0;                // Limit search depth for speed
2102     Node* dom = control();
2103     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2104       if (++depth >= 100)  break;
2105       Node* ifproj = dom;
2106       if (!ifproj->is_Proj())  continue;
2107       Node* iff = ifproj->in(0);
2108       if (!iff->is_If())  continue;
2109       Node* bol = iff->in(1);
2110       if (!bol->is_Bool())  continue;
2111       Node* cmp = bol->in(1);
2112       if (cmp == NULL)  continue;
2113       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2114         if (cmps[cmpn] == cmp)  break;
2115       if (cmpn == NCMPS)  continue;
2116       BoolTest::mask btest = bol->as_Bool()->_test._test;
2117       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2118       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2119       // At this point, we know that 'x btest y' is true.
2120       switch (btest) {
2121       case BoolTest::eq:
2122         // They are proven equal, so we can collapse the min/max.
2123         // Either value is the answer.  Choose the simpler.
2124         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2125           return yvalue;
2126         return xvalue;
2127       case BoolTest::lt:          // x < y
2128       case BoolTest::le:          // x <= y
2129         return (want_max ? yvalue : xvalue);
2130       case BoolTest::gt:          // x > y
2131       case BoolTest::ge:          // x >= y
2132         return (want_max ? xvalue : yvalue);
2133       }
2134     }
2135   }
2136 
2137   // We failed to find a dominating test.
2138   // Let's pick a test that might GVN with prior tests.
2139   Node*          best_bol   = NULL;
2140   BoolTest::mask best_btest = BoolTest::illegal;
2141   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2142     Node* cmp = cmps[cmpn];
2143     if (cmp == NULL)  continue;
2144     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2145       Node* bol = cmp->fast_out(j);
2146       if (!bol->is_Bool())  continue;
2147       BoolTest::mask btest = bol->as_Bool()->_test._test;
2148       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2149       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2150       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2151         best_bol   = bol->as_Bool();
2152         best_btest = btest;
2153       }
2154     }
2155   }
2156 
2157   Node* answer_if_true  = NULL;
2158   Node* answer_if_false = NULL;
2159   switch (best_btest) {
2160   default:
2161     if (cmpxy == NULL)
2162       cmpxy = ideal_cmpxy;
2163     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2164     // and fall through:
2165   case BoolTest::lt:          // x < y
2166   case BoolTest::le:          // x <= y
2167     answer_if_true  = (want_max ? yvalue : xvalue);
2168     answer_if_false = (want_max ? xvalue : yvalue);
2169     break;
2170   case BoolTest::gt:          // x > y
2171   case BoolTest::ge:          // x >= y
2172     answer_if_true  = (want_max ? xvalue : yvalue);
2173     answer_if_false = (want_max ? yvalue : xvalue);
2174     break;
2175   }
2176 
2177   jint hi, lo;
2178   if (want_max) {
2179     // We can sharpen the minimum.
2180     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2181     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2182   } else {
2183     // We can sharpen the maximum.
2184     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2185     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2186   }
2187 
2188   // Use a flow-free graph structure, to avoid creating excess control edges
2189   // which could hinder other optimizations.
2190   // Since Math.min/max is often used with arraycopy, we want
2191   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2192   Node* cmov = CMoveNode::make(NULL, best_bol,
2193                                answer_if_false, answer_if_true,
2194                                TypeInt::make(lo, hi, widen));
2195 
2196   return _gvn.transform(cmov);
2197 
2198   /*
2199   // This is not as desirable as it may seem, since Min and Max
2200   // nodes do not have a full set of optimizations.
2201   // And they would interfere, anyway, with 'if' optimizations
2202   // and with CMoveI canonical forms.
2203   switch (id) {
2204   case vmIntrinsics::_min:
2205     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2206   case vmIntrinsics::_max:
2207     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2208   default:
2209     ShouldNotReachHere();
2210   }
2211   */
2212 }
2213 
2214 inline int
2215 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2216   const TypePtr* base_type = TypePtr::NULL_PTR;
2217   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2218   if (base_type == NULL) {
2219     // Unknown type.
2220     return Type::AnyPtr;
2221   } else if (base_type == TypePtr::NULL_PTR) {
2222     // Since this is a NULL+long form, we have to switch to a rawptr.
2223     base   = _gvn.transform(new CastX2PNode(offset));
2224     offset = MakeConX(0);
2225     return Type::RawPtr;
2226   } else if (base_type->base() == Type::RawPtr) {
2227     return Type::RawPtr;
2228   } else if (base_type->isa_oopptr()) {
2229     // Base is never null => always a heap address.
2230     if (base_type->ptr() == TypePtr::NotNull) {
2231       return Type::OopPtr;
2232     }
2233     // Offset is small => always a heap address.
2234     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2235     if (offset_type != NULL &&
2236         base_type->offset() == 0 &&     // (should always be?)
2237         offset_type->_lo >= 0 &&
2238         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2239       return Type::OopPtr;
2240     }
2241     // Otherwise, it might either be oop+off or NULL+addr.
2242     return Type::AnyPtr;
2243   } else {
2244     // No information:
2245     return Type::AnyPtr;
2246   }
2247 }
2248 
2249 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2250   int kind = classify_unsafe_addr(base, offset);
2251   if (kind == Type::RawPtr) {
2252     return basic_plus_adr(top(), base, offset);
2253   } else {
2254     return basic_plus_adr(base, offset);
2255   }
2256 }
2257 
2258 //--------------------------inline_number_methods-----------------------------
2259 // inline int     Integer.numberOfLeadingZeros(int)
2260 // inline int        Long.numberOfLeadingZeros(long)
2261 //
2262 // inline int     Integer.numberOfTrailingZeros(int)
2263 // inline int        Long.numberOfTrailingZeros(long)
2264 //
2265 // inline int     Integer.bitCount(int)
2266 // inline int        Long.bitCount(long)
2267 //
2268 // inline char  Character.reverseBytes(char)
2269 // inline short     Short.reverseBytes(short)
2270 // inline int     Integer.reverseBytes(int)
2271 // inline long       Long.reverseBytes(long)
2272 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2273   Node* arg = argument(0);
2274   Node* n = NULL;
2275   switch (id) {
2276   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2277   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2278   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2279   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2280   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2281   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2282   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2283   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2284   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2285   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2286   default:  fatal_unexpected_iid(id);  break;
2287   }
2288   set_result(_gvn.transform(n));
2289   return true;
2290 }
2291 
2292 //----------------------------inline_unsafe_access----------------------------
2293 
2294 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2295 
2296 // Helper that guards and inserts a pre-barrier.
2297 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2298                                         Node* pre_val, bool need_mem_bar) {
2299   // We could be accessing the referent field of a reference object. If so, when G1
2300   // is enabled, we need to log the value in the referent field in an SATB buffer.
2301   // This routine performs some compile time filters and generates suitable
2302   // runtime filters that guard the pre-barrier code.
2303   // Also add memory barrier for non volatile load from the referent field
2304   // to prevent commoning of loads across safepoint.
2305   if (!UseG1GC && !need_mem_bar)
2306     return;
2307 
2308   // Some compile time checks.
2309 
2310   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2311   const TypeX* otype = offset->find_intptr_t_type();
2312   if (otype != NULL && otype->is_con() &&
2313       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2314     // Constant offset but not the reference_offset so just return
2315     return;
2316   }
2317 
2318   // We only need to generate the runtime guards for instances.
2319   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2320   if (btype != NULL) {
2321     if (btype->isa_aryptr()) {
2322       // Array type so nothing to do
2323       return;
2324     }
2325 
2326     const TypeInstPtr* itype = btype->isa_instptr();
2327     if (itype != NULL) {
2328       // Can the klass of base_oop be statically determined to be
2329       // _not_ a sub-class of Reference and _not_ Object?
2330       ciKlass* klass = itype->klass();
2331       if ( klass->is_loaded() &&
2332           !klass->is_subtype_of(env()->Reference_klass()) &&
2333           !env()->Object_klass()->is_subtype_of(klass)) {
2334         return;
2335       }
2336     }
2337   }
2338 
2339   // The compile time filters did not reject base_oop/offset so
2340   // we need to generate the following runtime filters
2341   //
2342   // if (offset == java_lang_ref_Reference::_reference_offset) {
2343   //   if (instance_of(base, java.lang.ref.Reference)) {
2344   //     pre_barrier(_, pre_val, ...);
2345   //   }
2346   // }
2347 
2348   float likely   = PROB_LIKELY(  0.999);
2349   float unlikely = PROB_UNLIKELY(0.999);
2350 
2351   IdealKit ideal(this);
2352 #define __ ideal.
2353 
2354   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2355 
2356   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2357       // Update graphKit memory and control from IdealKit.
2358       sync_kit(ideal);
2359 
2360       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2361       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2362 
2363       // Update IdealKit memory and control from graphKit.
2364       __ sync_kit(this);
2365 
2366       Node* one = __ ConI(1);
2367       // is_instof == 0 if base_oop == NULL
2368       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2369 
2370         // Update graphKit from IdeakKit.
2371         sync_kit(ideal);
2372 
2373         // Use the pre-barrier to record the value in the referent field
2374         pre_barrier(false /* do_load */,
2375                     __ ctrl(),
2376                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2377                     pre_val /* pre_val */,
2378                     T_OBJECT);
2379         if (need_mem_bar) {
2380           // Add memory barrier to prevent commoning reads from this field
2381           // across safepoint since GC can change its value.
2382           insert_mem_bar(Op_MemBarCPUOrder);
2383         }
2384         // Update IdealKit from graphKit.
2385         __ sync_kit(this);
2386 
2387       } __ end_if(); // _ref_type != ref_none
2388   } __ end_if(); // offset == referent_offset
2389 
2390   // Final sync IdealKit and GraphKit.
2391   final_sync(ideal);
2392 #undef __
2393 }
2394 
2395 
2396 // Interpret Unsafe.fieldOffset cookies correctly:
2397 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2398 
2399 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2400   // Attempt to infer a sharper value type from the offset and base type.
2401   ciKlass* sharpened_klass = NULL;
2402 
2403   // See if it is an instance field, with an object type.
2404   if (alias_type->field() != NULL) {
2405     assert(!is_native_ptr, "native pointer op cannot use a java address");
2406     if (alias_type->field()->type()->is_klass()) {
2407       sharpened_klass = alias_type->field()->type()->as_klass();
2408     }
2409   }
2410 
2411   // See if it is a narrow oop array.
2412   if (adr_type->isa_aryptr()) {
2413     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2414       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2415       if (elem_type != NULL) {
2416         sharpened_klass = elem_type->klass();
2417       }
2418     }
2419   }
2420 
2421   // The sharpened class might be unloaded if there is no class loader
2422   // contraint in place.
2423   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2424     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2425 
2426 #ifndef PRODUCT
2427     if (C->print_intrinsics() || C->print_inlining()) {
2428       tty->print("  from base type: ");  adr_type->dump();
2429       tty->print("  sharpened value: ");  tjp->dump();
2430     }
2431 #endif
2432     // Sharpen the value type.
2433     return tjp;
2434   }
2435   return NULL;
2436 }
2437 
2438 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile, bool unaligned) {
2439   if (callee()->is_static())  return false;  // caller must have the capability!
2440 
2441 #ifndef PRODUCT
2442   {
2443     ResourceMark rm;
2444     // Check the signatures.
2445     ciSignature* sig = callee()->signature();
2446 #ifdef ASSERT
2447     if (!is_store) {
2448       // Object getObject(Object base, int/long offset), etc.
2449       BasicType rtype = sig->return_type()->basic_type();
2450       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2451           rtype = T_ADDRESS;  // it is really a C void*
2452       assert(rtype == type, "getter must return the expected value");
2453       if (!is_native_ptr) {
2454         assert(sig->count() == 2, "oop getter has 2 arguments");
2455         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2456         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2457       } else {
2458         assert(sig->count() == 1, "native getter has 1 argument");
2459         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2460       }
2461     } else {
2462       // void putObject(Object base, int/long offset, Object x), etc.
2463       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2464       if (!is_native_ptr) {
2465         assert(sig->count() == 3, "oop putter has 3 arguments");
2466         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2467         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2468       } else {
2469         assert(sig->count() == 2, "native putter has 2 arguments");
2470         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2471       }
2472       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2473       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2474         vtype = T_ADDRESS;  // it is really a C void*
2475       assert(vtype == type, "putter must accept the expected value");
2476     }
2477 #endif // ASSERT
2478  }
2479 #endif //PRODUCT
2480 
2481   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2482 
2483   Node* receiver = argument(0);  // type: oop
2484 
2485   // Build address expression.
2486   Node* adr;
2487   Node* heap_base_oop = top();
2488   Node* offset = top();
2489   Node* val;
2490 
2491   if (!is_native_ptr) {
2492     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2493     Node* base = argument(1);  // type: oop
2494     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2495     offset = argument(2);  // type: long
2496     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2497     // to be plain byte offsets, which are also the same as those accepted
2498     // by oopDesc::field_base.
2499     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2500            "fieldOffset must be byte-scaled");
2501     // 32-bit machines ignore the high half!
2502     offset = ConvL2X(offset);
2503     adr = make_unsafe_address(base, offset);
2504     heap_base_oop = base;
2505     val = is_store ? argument(4) : NULL;
2506   } else {
2507     Node* ptr = argument(1);  // type: long
2508     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2509     adr = make_unsafe_address(NULL, ptr);
2510     val = is_store ? argument(3) : NULL;
2511   }
2512 
2513   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2514 
2515   // First guess at the value type.
2516   const Type *value_type = Type::get_const_basic_type(type);
2517 
2518   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2519   // there was not enough information to nail it down.
2520   Compile::AliasType* alias_type = C->alias_type(adr_type);
2521   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2522 
2523   // We will need memory barriers unless we can determine a unique
2524   // alias category for this reference.  (Note:  If for some reason
2525   // the barriers get omitted and the unsafe reference begins to "pollute"
2526   // the alias analysis of the rest of the graph, either Compile::can_alias
2527   // or Compile::must_alias will throw a diagnostic assert.)
2528   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2529 
2530   // If we are reading the value of the referent field of a Reference
2531   // object (either by using Unsafe directly or through reflection)
2532   // then, if G1 is enabled, we need to record the referent in an
2533   // SATB log buffer using the pre-barrier mechanism.
2534   // Also we need to add memory barrier to prevent commoning reads
2535   // from this field across safepoint since GC can change its value.
2536   bool need_read_barrier = !is_native_ptr && !is_store &&
2537                            offset != top() && heap_base_oop != top();
2538 
2539   if (!is_store && type == T_OBJECT) {
2540     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2541     if (tjp != NULL) {
2542       value_type = tjp;
2543     }
2544   }
2545 
2546   receiver = null_check(receiver);
2547   if (stopped()) {
2548     return true;
2549   }
2550   // Heap pointers get a null-check from the interpreter,
2551   // as a courtesy.  However, this is not guaranteed by Unsafe,
2552   // and it is not possible to fully distinguish unintended nulls
2553   // from intended ones in this API.
2554 
2555   if (is_volatile) {
2556     // We need to emit leading and trailing CPU membars (see below) in
2557     // addition to memory membars when is_volatile. This is a little
2558     // too strong, but avoids the need to insert per-alias-type
2559     // volatile membars (for stores; compare Parse::do_put_xxx), which
2560     // we cannot do effectively here because we probably only have a
2561     // rough approximation of type.
2562     need_mem_bar = true;
2563     // For Stores, place a memory ordering barrier now.
2564     if (is_store) {
2565       insert_mem_bar(Op_MemBarRelease);
2566     } else {
2567       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2568         insert_mem_bar(Op_MemBarVolatile);
2569       }
2570     }
2571   }
2572 
2573   // Memory barrier to prevent normal and 'unsafe' accesses from
2574   // bypassing each other.  Happens after null checks, so the
2575   // exception paths do not take memory state from the memory barrier,
2576   // so there's no problems making a strong assert about mixing users
2577   // of safe & unsafe memory.
2578   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2579 
2580   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2581          alias_type->field() != NULL || alias_type->element() != NULL, "field, array element or unknown");
2582   bool mismatched = false;
2583   if (alias_type->element() != NULL || alias_type->field() != NULL) {
2584     BasicType bt;
2585     if (alias_type->element() != NULL) {
2586       const Type* element = alias_type->element();
2587       bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
2588     } else {
2589       bt = alias_type->field()->type()->basic_type();
2590     }
2591     if (bt == T_ARRAY) {
2592       // accessing an array field with getObject is not a mismatch
2593       bt = T_OBJECT;
2594     }
2595     if (bt != type) {
2596       mismatched = true;
2597     }
2598   }
2599   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2600 
2601   if (!is_store) {
2602     Node* p = NULL;
2603     // Try to constant fold a load from a constant field
2604     ciField* field = alias_type->field();
2605     if (heap_base_oop != top() &&
2606         field != NULL && field->is_constant() && field->layout_type() == type) {
2607       // final or stable field
2608       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2609       if (con_type != NULL) {
2610         p = makecon(con_type);
2611       }
2612     }
2613     if (p == NULL) {
2614       MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2615       // To be valid, unsafe loads may depend on other conditions than
2616       // the one that guards them: pin the Load node
2617       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile, unaligned, mismatched);
2618       // load value
2619       switch (type) {
2620       case T_BOOLEAN:
2621       case T_CHAR:
2622       case T_BYTE:
2623       case T_SHORT:
2624       case T_INT:
2625       case T_LONG:
2626       case T_FLOAT:
2627       case T_DOUBLE:
2628         break;
2629       case T_OBJECT:
2630         if (need_read_barrier) {
2631           insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2632         }
2633         break;
2634       case T_ADDRESS:
2635         // Cast to an int type.
2636         p = _gvn.transform(new CastP2XNode(NULL, p));
2637         p = ConvX2UL(p);
2638         break;
2639       default:
2640         fatal("unexpected type %d: %s", type, type2name(type));
2641         break;
2642       }
2643     }
2644     // The load node has the control of the preceding MemBarCPUOrder.  All
2645     // following nodes will have the control of the MemBarCPUOrder inserted at
2646     // the end of this method.  So, pushing the load onto the stack at a later
2647     // point is fine.
2648     set_result(p);
2649   } else {
2650     // place effect of store into memory
2651     switch (type) {
2652     case T_DOUBLE:
2653       val = dstore_rounding(val);
2654       break;
2655     case T_ADDRESS:
2656       // Repackage the long as a pointer.
2657       val = ConvL2X(val);
2658       val = _gvn.transform(new CastX2PNode(val));
2659       break;
2660     }
2661 
2662     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2663     if (type != T_OBJECT ) {
2664       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile, unaligned, mismatched);
2665     } else {
2666       // Possibly an oop being stored to Java heap or native memory
2667       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2668         // oop to Java heap.
2669         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2670       } else {
2671         // We can't tell at compile time if we are storing in the Java heap or outside
2672         // of it. So we need to emit code to conditionally do the proper type of
2673         // store.
2674 
2675         IdealKit ideal(this);
2676 #define __ ideal.
2677         // QQQ who knows what probability is here??
2678         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2679           // Sync IdealKit and graphKit.
2680           sync_kit(ideal);
2681           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2682           // Update IdealKit memory.
2683           __ sync_kit(this);
2684         } __ else_(); {
2685           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile, mismatched);
2686         } __ end_if();
2687         // Final sync IdealKit and GraphKit.
2688         final_sync(ideal);
2689 #undef __
2690       }
2691     }
2692   }
2693 
2694   if (is_volatile) {
2695     if (!is_store) {
2696       insert_mem_bar(Op_MemBarAcquire);
2697     } else {
2698       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2699         insert_mem_bar(Op_MemBarVolatile);
2700       }
2701     }
2702   }
2703 
2704   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2705 
2706   return true;
2707 }
2708 
2709 //----------------------------inline_unsafe_load_store----------------------------
2710 // This method serves a couple of different customers (depending on LoadStoreKind):
2711 //
2712 // LS_cmpxchg:
2713 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2714 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2715 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2716 //
2717 // LS_xadd:
2718 //   public int  getAndAddInt( Object o, long offset, int  delta)
2719 //   public long getAndAddLong(Object o, long offset, long delta)
2720 //
2721 // LS_xchg:
2722 //   int    getAndSet(Object o, long offset, int    newValue)
2723 //   long   getAndSet(Object o, long offset, long   newValue)
2724 //   Object getAndSet(Object o, long offset, Object newValue)
2725 //
2726 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2727   // This basic scheme here is the same as inline_unsafe_access, but
2728   // differs in enough details that combining them would make the code
2729   // overly confusing.  (This is a true fact! I originally combined
2730   // them, but even I was confused by it!) As much code/comments as
2731   // possible are retained from inline_unsafe_access though to make
2732   // the correspondences clearer. - dl
2733 
2734   if (callee()->is_static())  return false;  // caller must have the capability!
2735 
2736 #ifndef PRODUCT
2737   BasicType rtype;
2738   {
2739     ResourceMark rm;
2740     // Check the signatures.
2741     ciSignature* sig = callee()->signature();
2742     rtype = sig->return_type()->basic_type();
2743     if (kind == LS_xadd || kind == LS_xchg) {
2744       // Check the signatures.
2745 #ifdef ASSERT
2746       assert(rtype == type, "get and set must return the expected type");
2747       assert(sig->count() == 3, "get and set has 3 arguments");
2748       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2749       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2750       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2751 #endif // ASSERT
2752     } else if (kind == LS_cmpxchg) {
2753       // Check the signatures.
2754 #ifdef ASSERT
2755       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2756       assert(sig->count() == 4, "CAS has 4 arguments");
2757       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2758       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2759 #endif // ASSERT
2760     } else {
2761       ShouldNotReachHere();
2762     }
2763   }
2764 #endif //PRODUCT
2765 
2766   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2767 
2768   // Get arguments:
2769   Node* receiver = NULL;
2770   Node* base     = NULL;
2771   Node* offset   = NULL;
2772   Node* oldval   = NULL;
2773   Node* newval   = NULL;
2774   if (kind == LS_cmpxchg) {
2775     const bool two_slot_type = type2size[type] == 2;
2776     receiver = argument(0);  // type: oop
2777     base     = argument(1);  // type: oop
2778     offset   = argument(2);  // type: long
2779     oldval   = argument(4);  // type: oop, int, or long
2780     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2781   } else if (kind == LS_xadd || kind == LS_xchg){
2782     receiver = argument(0);  // type: oop
2783     base     = argument(1);  // type: oop
2784     offset   = argument(2);  // type: long
2785     oldval   = NULL;
2786     newval   = argument(4);  // type: oop, int, or long
2787   }
2788 
2789   // Null check receiver.
2790   receiver = null_check(receiver);
2791   if (stopped()) {
2792     return true;
2793   }
2794 
2795   // Build field offset expression.
2796   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2797   // to be plain byte offsets, which are also the same as those accepted
2798   // by oopDesc::field_base.
2799   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2800   // 32-bit machines ignore the high half of long offsets
2801   offset = ConvL2X(offset);
2802   Node* adr = make_unsafe_address(base, offset);
2803   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2804 
2805   // For CAS, unlike inline_unsafe_access, there seems no point in
2806   // trying to refine types. Just use the coarse types here.
2807   const Type *value_type = Type::get_const_basic_type(type);
2808   Compile::AliasType* alias_type = C->alias_type(adr_type);
2809   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2810 
2811   if (kind == LS_xchg && type == T_OBJECT) {
2812     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2813     if (tjp != NULL) {
2814       value_type = tjp;
2815     }
2816   }
2817 
2818   int alias_idx = C->get_alias_index(adr_type);
2819 
2820   // Memory-model-wise, a LoadStore acts like a little synchronized
2821   // block, so needs barriers on each side.  These don't translate
2822   // into actual barriers on most machines, but we still need rest of
2823   // compiler to respect ordering.
2824 
2825   insert_mem_bar(Op_MemBarRelease);
2826   insert_mem_bar(Op_MemBarCPUOrder);
2827 
2828   // 4984716: MemBars must be inserted before this
2829   //          memory node in order to avoid a false
2830   //          dependency which will confuse the scheduler.
2831   Node *mem = memory(alias_idx);
2832 
2833   // For now, we handle only those cases that actually exist: ints,
2834   // longs, and Object. Adding others should be straightforward.
2835   Node* load_store = NULL;
2836   switch(type) {
2837   case T_INT:
2838     if (kind == LS_xadd) {
2839       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2840     } else if (kind == LS_xchg) {
2841       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2842     } else if (kind == LS_cmpxchg) {
2843       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2844     } else {
2845       ShouldNotReachHere();
2846     }
2847     break;
2848   case T_LONG:
2849     if (kind == LS_xadd) {
2850       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2851     } else if (kind == LS_xchg) {
2852       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2853     } else if (kind == LS_cmpxchg) {
2854       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2855     } else {
2856       ShouldNotReachHere();
2857     }
2858     break;
2859   case T_OBJECT:
2860     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2861     // could be delayed during Parse (for example, in adjust_map_after_if()).
2862     // Execute transformation here to avoid barrier generation in such case.
2863     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2864       newval = _gvn.makecon(TypePtr::NULL_PTR);
2865 
2866     // Reference stores need a store barrier.
2867     if (kind == LS_xchg) {
2868       // If pre-barrier must execute before the oop store, old value will require do_load here.
2869       if (!can_move_pre_barrier()) {
2870         pre_barrier(true /* do_load*/,
2871                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2872                     NULL /* pre_val*/,
2873                     T_OBJECT);
2874       } // Else move pre_barrier to use load_store value, see below.
2875     } else if (kind == LS_cmpxchg) {
2876       // Same as for newval above:
2877       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2878         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2879       }
2880       // The only known value which might get overwritten is oldval.
2881       pre_barrier(false /* do_load */,
2882                   control(), NULL, NULL, max_juint, NULL, NULL,
2883                   oldval /* pre_val */,
2884                   T_OBJECT);
2885     } else {
2886       ShouldNotReachHere();
2887     }
2888 
2889 #ifdef _LP64
2890     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2891       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2892       if (kind == LS_xchg) {
2893         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2894                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2895       } else {
2896         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2897         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2898         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2899                                                                 newval_enc, oldval_enc));
2900       }
2901     } else
2902 #endif
2903     {
2904       if (kind == LS_xchg) {
2905         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2906       } else {
2907         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2908         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2909       }
2910     }
2911     if (kind == LS_cmpxchg) {
2912       // Emit the post barrier only when the actual store happened.
2913       // This makes sense to check only for compareAndSet that can fail to set the value.
2914       // CAS success path is marked more likely since we anticipate this is a performance
2915       // critical path, while CAS failure path can use the penalty for going through unlikely
2916       // path as backoff. Which is still better than doing a store barrier there.
2917       IdealKit ideal(this);
2918       ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2919         sync_kit(ideal);
2920         post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2921         ideal.sync_kit(this);
2922       } ideal.end_if();
2923       final_sync(ideal);
2924     } else {
2925       post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2926     }
2927     break;
2928   default:
2929     fatal("unexpected type %d: %s", type, type2name(type));
2930     break;
2931   }
2932 
2933   // SCMemProjNodes represent the memory state of a LoadStore. Their
2934   // main role is to prevent LoadStore nodes from being optimized away
2935   // when their results aren't used.
2936   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2937   set_memory(proj, alias_idx);
2938 
2939   if (type == T_OBJECT && kind == LS_xchg) {
2940 #ifdef _LP64
2941     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2942       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2943     }
2944 #endif
2945     if (can_move_pre_barrier()) {
2946       // Don't need to load pre_val. The old value is returned by load_store.
2947       // The pre_barrier can execute after the xchg as long as no safepoint
2948       // gets inserted between them.
2949       pre_barrier(false /* do_load */,
2950                   control(), NULL, NULL, max_juint, NULL, NULL,
2951                   load_store /* pre_val */,
2952                   T_OBJECT);
2953     }
2954   }
2955 
2956   // Add the trailing membar surrounding the access
2957   insert_mem_bar(Op_MemBarCPUOrder);
2958   insert_mem_bar(Op_MemBarAcquire);
2959 
2960   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2961   set_result(load_store);
2962   return true;
2963 }
2964 
2965 //----------------------------inline_unsafe_ordered_store----------------------
2966 // public native void Unsafe.putOrderedObject(Object o, long offset, Object x);
2967 // public native void Unsafe.putOrderedInt(Object o, long offset, int x);
2968 // public native void Unsafe.putOrderedLong(Object o, long offset, long x);
2969 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2970   // This is another variant of inline_unsafe_access, differing in
2971   // that it always issues store-store ("release") barrier and ensures
2972   // store-atomicity (which only matters for "long").
2973 
2974   if (callee()->is_static())  return false;  // caller must have the capability!
2975 
2976 #ifndef PRODUCT
2977   {
2978     ResourceMark rm;
2979     // Check the signatures.
2980     ciSignature* sig = callee()->signature();
2981 #ifdef ASSERT
2982     BasicType rtype = sig->return_type()->basic_type();
2983     assert(rtype == T_VOID, "must return void");
2984     assert(sig->count() == 3, "has 3 arguments");
2985     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2986     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2987 #endif // ASSERT
2988   }
2989 #endif //PRODUCT
2990 
2991   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2992 
2993   // Get arguments:
2994   Node* receiver = argument(0);  // type: oop
2995   Node* base     = argument(1);  // type: oop
2996   Node* offset   = argument(2);  // type: long
2997   Node* val      = argument(4);  // type: oop, int, or long
2998 
2999   // Null check receiver.
3000   receiver = null_check(receiver);
3001   if (stopped()) {
3002     return true;
3003   }
3004 
3005   // Build field offset expression.
3006   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3007   // 32-bit machines ignore the high half of long offsets
3008   offset = ConvL2X(offset);
3009   Node* adr = make_unsafe_address(base, offset);
3010   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3011   const Type *value_type = Type::get_const_basic_type(type);
3012   Compile::AliasType* alias_type = C->alias_type(adr_type);
3013 
3014   insert_mem_bar(Op_MemBarRelease);
3015   insert_mem_bar(Op_MemBarCPUOrder);
3016   // Ensure that the store is atomic for longs:
3017   const bool require_atomic_access = true;
3018   Node* store;
3019   if (type == T_OBJECT) // reference stores need a store barrier.
3020     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3021   else {
3022     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3023   }
3024   insert_mem_bar(Op_MemBarCPUOrder);
3025   return true;
3026 }
3027 
3028 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3029   // Regardless of form, don't allow previous ld/st to move down,
3030   // then issue acquire, release, or volatile mem_bar.
3031   insert_mem_bar(Op_MemBarCPUOrder);
3032   switch(id) {
3033     case vmIntrinsics::_loadFence:
3034       insert_mem_bar(Op_LoadFence);
3035       return true;
3036     case vmIntrinsics::_storeFence:
3037       insert_mem_bar(Op_StoreFence);
3038       return true;
3039     case vmIntrinsics::_fullFence:
3040       insert_mem_bar(Op_MemBarVolatile);
3041       return true;
3042     default:
3043       fatal_unexpected_iid(id);
3044       return false;
3045   }
3046 }
3047 
3048 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3049   if (!kls->is_Con()) {
3050     return true;
3051   }
3052   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3053   if (klsptr == NULL) {
3054     return true;
3055   }
3056   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3057   // don't need a guard for a klass that is already initialized
3058   return !ik->is_initialized();
3059 }
3060 
3061 //----------------------------inline_unsafe_allocate---------------------------
3062 // public native Object Unsafe.allocateInstance(Class<?> cls);
3063 bool LibraryCallKit::inline_unsafe_allocate() {
3064   if (callee()->is_static())  return false;  // caller must have the capability!
3065 
3066   null_check_receiver();  // null-check, then ignore
3067   Node* cls = null_check(argument(1));
3068   if (stopped())  return true;
3069 
3070   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3071   kls = null_check(kls);
3072   if (stopped())  return true;  // argument was like int.class
3073 
3074   Node* test = NULL;
3075   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3076     // Note:  The argument might still be an illegal value like
3077     // Serializable.class or Object[].class.   The runtime will handle it.
3078     // But we must make an explicit check for initialization.
3079     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3080     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3081     // can generate code to load it as unsigned byte.
3082     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3083     Node* bits = intcon(InstanceKlass::fully_initialized);
3084     test = _gvn.transform(new SubINode(inst, bits));
3085     // The 'test' is non-zero if we need to take a slow path.
3086   }
3087 
3088   Node* obj = new_instance(kls, test);
3089   set_result(obj);
3090   return true;
3091 }
3092 
3093 #ifdef TRACE_HAVE_INTRINSICS
3094 /*
3095  * oop -> myklass
3096  * myklass->trace_id |= USED
3097  * return myklass->trace_id & ~0x3
3098  */
3099 bool LibraryCallKit::inline_native_classID() {
3100   null_check_receiver();  // null-check, then ignore
3101   Node* cls = null_check(argument(1), T_OBJECT);
3102   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3103   kls = null_check(kls, T_OBJECT);
3104   ByteSize offset = TRACE_ID_OFFSET;
3105   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3106   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3107   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3108   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3109   Node* clsused = longcon(0x01l); // set the class bit
3110   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3111 
3112   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3113   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3114   set_result(andl);
3115   return true;
3116 }
3117 
3118 bool LibraryCallKit::inline_native_threadID() {
3119   Node* tls_ptr = NULL;
3120   Node* cur_thr = generate_current_thread(tls_ptr);
3121   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3122   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3123   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3124 
3125   Node* threadid = NULL;
3126   size_t thread_id_size = OSThread::thread_id_size();
3127   if (thread_id_size == (size_t) BytesPerLong) {
3128     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3129   } else if (thread_id_size == (size_t) BytesPerInt) {
3130     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3131   } else {
3132     ShouldNotReachHere();
3133   }
3134   set_result(threadid);
3135   return true;
3136 }
3137 #endif
3138 
3139 //------------------------inline_native_time_funcs--------------
3140 // inline code for System.currentTimeMillis() and System.nanoTime()
3141 // these have the same type and signature
3142 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3143   const TypeFunc* tf = OptoRuntime::void_long_Type();
3144   const TypePtr* no_memory_effects = NULL;
3145   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3146   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3147 #ifdef ASSERT
3148   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3149   assert(value_top == top(), "second value must be top");
3150 #endif
3151   set_result(value);
3152   return true;
3153 }
3154 
3155 //------------------------inline_native_currentThread------------------
3156 bool LibraryCallKit::inline_native_currentThread() {
3157   Node* junk = NULL;
3158   set_result(generate_current_thread(junk));
3159   return true;
3160 }
3161 
3162 //------------------------inline_native_isInterrupted------------------
3163 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3164 bool LibraryCallKit::inline_native_isInterrupted() {
3165   // Add a fast path to t.isInterrupted(clear_int):
3166   //   (t == Thread.current() &&
3167   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3168   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3169   // So, in the common case that the interrupt bit is false,
3170   // we avoid making a call into the VM.  Even if the interrupt bit
3171   // is true, if the clear_int argument is false, we avoid the VM call.
3172   // However, if the receiver is not currentThread, we must call the VM,
3173   // because there must be some locking done around the operation.
3174 
3175   // We only go to the fast case code if we pass two guards.
3176   // Paths which do not pass are accumulated in the slow_region.
3177 
3178   enum {
3179     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3180     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3181     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3182     PATH_LIMIT
3183   };
3184 
3185   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3186   // out of the function.
3187   insert_mem_bar(Op_MemBarCPUOrder);
3188 
3189   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3190   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3191 
3192   RegionNode* slow_region = new RegionNode(1);
3193   record_for_igvn(slow_region);
3194 
3195   // (a) Receiving thread must be the current thread.
3196   Node* rec_thr = argument(0);
3197   Node* tls_ptr = NULL;
3198   Node* cur_thr = generate_current_thread(tls_ptr);
3199   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3200   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3201 
3202   generate_slow_guard(bol_thr, slow_region);
3203 
3204   // (b) Interrupt bit on TLS must be false.
3205   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3206   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3207   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3208 
3209   // Set the control input on the field _interrupted read to prevent it floating up.
3210   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3211   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3212   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3213 
3214   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3215 
3216   // First fast path:  if (!TLS._interrupted) return false;
3217   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3218   result_rgn->init_req(no_int_result_path, false_bit);
3219   result_val->init_req(no_int_result_path, intcon(0));
3220 
3221   // drop through to next case
3222   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3223 
3224 #ifndef TARGET_OS_FAMILY_windows
3225   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3226   Node* clr_arg = argument(1);
3227   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3228   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3229   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3230 
3231   // Second fast path:  ... else if (!clear_int) return true;
3232   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3233   result_rgn->init_req(no_clear_result_path, false_arg);
3234   result_val->init_req(no_clear_result_path, intcon(1));
3235 
3236   // drop through to next case
3237   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3238 #else
3239   // To return true on Windows you must read the _interrupted field
3240   // and check the the event state i.e. take the slow path.
3241 #endif // TARGET_OS_FAMILY_windows
3242 
3243   // (d) Otherwise, go to the slow path.
3244   slow_region->add_req(control());
3245   set_control( _gvn.transform(slow_region));
3246 
3247   if (stopped()) {
3248     // There is no slow path.
3249     result_rgn->init_req(slow_result_path, top());
3250     result_val->init_req(slow_result_path, top());
3251   } else {
3252     // non-virtual because it is a private non-static
3253     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3254 
3255     Node* slow_val = set_results_for_java_call(slow_call);
3256     // this->control() comes from set_results_for_java_call
3257 
3258     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3259     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3260 
3261     // These two phis are pre-filled with copies of of the fast IO and Memory
3262     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3263     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3264 
3265     result_rgn->init_req(slow_result_path, control());
3266     result_io ->init_req(slow_result_path, i_o());
3267     result_mem->init_req(slow_result_path, reset_memory());
3268     result_val->init_req(slow_result_path, slow_val);
3269 
3270     set_all_memory(_gvn.transform(result_mem));
3271     set_i_o(       _gvn.transform(result_io));
3272   }
3273 
3274   C->set_has_split_ifs(true); // Has chance for split-if optimization
3275   set_result(result_rgn, result_val);
3276   return true;
3277 }
3278 
3279 //---------------------------load_mirror_from_klass----------------------------
3280 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3281 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3282   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3283   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3284 }
3285 
3286 //-----------------------load_klass_from_mirror_common-------------------------
3287 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3288 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3289 // and branch to the given path on the region.
3290 // If never_see_null, take an uncommon trap on null, so we can optimistically
3291 // compile for the non-null case.
3292 // If the region is NULL, force never_see_null = true.
3293 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3294                                                     bool never_see_null,
3295                                                     RegionNode* region,
3296                                                     int null_path,
3297                                                     int offset) {
3298   if (region == NULL)  never_see_null = true;
3299   Node* p = basic_plus_adr(mirror, offset);
3300   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3301   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3302   Node* null_ctl = top();
3303   kls = null_check_oop(kls, &null_ctl, never_see_null);
3304   if (region != NULL) {
3305     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3306     region->init_req(null_path, null_ctl);
3307   } else {
3308     assert(null_ctl == top(), "no loose ends");
3309   }
3310   return kls;
3311 }
3312 
3313 //--------------------(inline_native_Class_query helpers)---------------------
3314 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3315 // Fall through if (mods & mask) == bits, take the guard otherwise.
3316 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3317   // Branch around if the given klass has the given modifier bit set.
3318   // Like generate_guard, adds a new path onto the region.
3319   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3320   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3321   Node* mask = intcon(modifier_mask);
3322   Node* bits = intcon(modifier_bits);
3323   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3324   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3325   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3326   return generate_fair_guard(bol, region);
3327 }
3328 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3329   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3330 }
3331 
3332 //-------------------------inline_native_Class_query-------------------
3333 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3334   const Type* return_type = TypeInt::BOOL;
3335   Node* prim_return_value = top();  // what happens if it's a primitive class?
3336   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3337   bool expect_prim = false;     // most of these guys expect to work on refs
3338 
3339   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3340 
3341   Node* mirror = argument(0);
3342   Node* obj    = top();
3343 
3344   switch (id) {
3345   case vmIntrinsics::_isInstance:
3346     // nothing is an instance of a primitive type
3347     prim_return_value = intcon(0);
3348     obj = argument(1);
3349     break;
3350   case vmIntrinsics::_getModifiers:
3351     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3352     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3353     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3354     break;
3355   case vmIntrinsics::_isInterface:
3356     prim_return_value = intcon(0);
3357     break;
3358   case vmIntrinsics::_isArray:
3359     prim_return_value = intcon(0);
3360     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3361     break;
3362   case vmIntrinsics::_isPrimitive:
3363     prim_return_value = intcon(1);
3364     expect_prim = true;  // obviously
3365     break;
3366   case vmIntrinsics::_getSuperclass:
3367     prim_return_value = null();
3368     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3369     break;
3370   case vmIntrinsics::_getClassAccessFlags:
3371     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3372     return_type = TypeInt::INT;  // not bool!  6297094
3373     break;
3374   default:
3375     fatal_unexpected_iid(id);
3376     break;
3377   }
3378 
3379   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3380   if (mirror_con == NULL)  return false;  // cannot happen?
3381 
3382 #ifndef PRODUCT
3383   if (C->print_intrinsics() || C->print_inlining()) {
3384     ciType* k = mirror_con->java_mirror_type();
3385     if (k) {
3386       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3387       k->print_name();
3388       tty->cr();
3389     }
3390   }
3391 #endif
3392 
3393   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3394   RegionNode* region = new RegionNode(PATH_LIMIT);
3395   record_for_igvn(region);
3396   PhiNode* phi = new PhiNode(region, return_type);
3397 
3398   // The mirror will never be null of Reflection.getClassAccessFlags, however
3399   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3400   // if it is. See bug 4774291.
3401 
3402   // For Reflection.getClassAccessFlags(), the null check occurs in
3403   // the wrong place; see inline_unsafe_access(), above, for a similar
3404   // situation.
3405   mirror = null_check(mirror);
3406   // If mirror or obj is dead, only null-path is taken.
3407   if (stopped())  return true;
3408 
3409   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3410 
3411   // Now load the mirror's klass metaobject, and null-check it.
3412   // Side-effects region with the control path if the klass is null.
3413   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3414   // If kls is null, we have a primitive mirror.
3415   phi->init_req(_prim_path, prim_return_value);
3416   if (stopped()) { set_result(region, phi); return true; }
3417   bool safe_for_replace = (region->in(_prim_path) == top());
3418 
3419   Node* p;  // handy temp
3420   Node* null_ctl;
3421 
3422   // Now that we have the non-null klass, we can perform the real query.
3423   // For constant classes, the query will constant-fold in LoadNode::Value.
3424   Node* query_value = top();
3425   switch (id) {
3426   case vmIntrinsics::_isInstance:
3427     // nothing is an instance of a primitive type
3428     query_value = gen_instanceof(obj, kls, safe_for_replace);
3429     break;
3430 
3431   case vmIntrinsics::_getModifiers:
3432     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3433     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3434     break;
3435 
3436   case vmIntrinsics::_isInterface:
3437     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3438     if (generate_interface_guard(kls, region) != NULL)
3439       // A guard was added.  If the guard is taken, it was an interface.
3440       phi->add_req(intcon(1));
3441     // If we fall through, it's a plain class.
3442     query_value = intcon(0);
3443     break;
3444 
3445   case vmIntrinsics::_isArray:
3446     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3447     if (generate_array_guard(kls, region) != NULL)
3448       // A guard was added.  If the guard is taken, it was an array.
3449       phi->add_req(intcon(1));
3450     // If we fall through, it's a plain class.
3451     query_value = intcon(0);
3452     break;
3453 
3454   case vmIntrinsics::_isPrimitive:
3455     query_value = intcon(0); // "normal" path produces false
3456     break;
3457 
3458   case vmIntrinsics::_getSuperclass:
3459     // The rules here are somewhat unfortunate, but we can still do better
3460     // with random logic than with a JNI call.
3461     // Interfaces store null or Object as _super, but must report null.
3462     // Arrays store an intermediate super as _super, but must report Object.
3463     // Other types can report the actual _super.
3464     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3465     if (generate_interface_guard(kls, region) != NULL)
3466       // A guard was added.  If the guard is taken, it was an interface.
3467       phi->add_req(null());
3468     if (generate_array_guard(kls, region) != NULL)
3469       // A guard was added.  If the guard is taken, it was an array.
3470       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3471     // If we fall through, it's a plain class.  Get its _super.
3472     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3473     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3474     null_ctl = top();
3475     kls = null_check_oop(kls, &null_ctl);
3476     if (null_ctl != top()) {
3477       // If the guard is taken, Object.superClass is null (both klass and mirror).
3478       region->add_req(null_ctl);
3479       phi   ->add_req(null());
3480     }
3481     if (!stopped()) {
3482       query_value = load_mirror_from_klass(kls);
3483     }
3484     break;
3485 
3486   case vmIntrinsics::_getClassAccessFlags:
3487     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3488     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3489     break;
3490 
3491   default:
3492     fatal_unexpected_iid(id);
3493     break;
3494   }
3495 
3496   // Fall-through is the normal case of a query to a real class.
3497   phi->init_req(1, query_value);
3498   region->init_req(1, control());
3499 
3500   C->set_has_split_ifs(true); // Has chance for split-if optimization
3501   set_result(region, phi);
3502   return true;
3503 }
3504 
3505 //-------------------------inline_Class_cast-------------------
3506 bool LibraryCallKit::inline_Class_cast() {
3507   Node* mirror = argument(0); // Class
3508   Node* obj    = argument(1);
3509   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3510   if (mirror_con == NULL) {
3511     return false;  // dead path (mirror->is_top()).
3512   }
3513   if (obj == NULL || obj->is_top()) {
3514     return false;  // dead path
3515   }
3516   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3517 
3518   // First, see if Class.cast() can be folded statically.
3519   // java_mirror_type() returns non-null for compile-time Class constants.
3520   ciType* tm = mirror_con->java_mirror_type();
3521   if (tm != NULL && tm->is_klass() &&
3522       tp != NULL && tp->klass() != NULL) {
3523     if (!tp->klass()->is_loaded()) {
3524       // Don't use intrinsic when class is not loaded.
3525       return false;
3526     } else {
3527       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3528       if (static_res == Compile::SSC_always_true) {
3529         // isInstance() is true - fold the code.
3530         set_result(obj);
3531         return true;
3532       } else if (static_res == Compile::SSC_always_false) {
3533         // Don't use intrinsic, have to throw ClassCastException.
3534         // If the reference is null, the non-intrinsic bytecode will
3535         // be optimized appropriately.
3536         return false;
3537       }
3538     }
3539   }
3540 
3541   // Bailout intrinsic and do normal inlining if exception path is frequent.
3542   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3543     return false;
3544   }
3545 
3546   // Generate dynamic checks.
3547   // Class.cast() is java implementation of _checkcast bytecode.
3548   // Do checkcast (Parse::do_checkcast()) optimizations here.
3549 
3550   mirror = null_check(mirror);
3551   // If mirror is dead, only null-path is taken.
3552   if (stopped()) {
3553     return true;
3554   }
3555 
3556   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3557   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3558   RegionNode* region = new RegionNode(PATH_LIMIT);
3559   record_for_igvn(region);
3560 
3561   // Now load the mirror's klass metaobject, and null-check it.
3562   // If kls is null, we have a primitive mirror and
3563   // nothing is an instance of a primitive type.
3564   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3565 
3566   Node* res = top();
3567   if (!stopped()) {
3568     Node* bad_type_ctrl = top();
3569     // Do checkcast optimizations.
3570     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3571     region->init_req(_bad_type_path, bad_type_ctrl);
3572   }
3573   if (region->in(_prim_path) != top() ||
3574       region->in(_bad_type_path) != top()) {
3575     // Let Interpreter throw ClassCastException.
3576     PreserveJVMState pjvms(this);
3577     set_control(_gvn.transform(region));
3578     uncommon_trap(Deoptimization::Reason_intrinsic,
3579                   Deoptimization::Action_maybe_recompile);
3580   }
3581   if (!stopped()) {
3582     set_result(res);
3583   }
3584   return true;
3585 }
3586 
3587 
3588 //--------------------------inline_native_subtype_check------------------------
3589 // This intrinsic takes the JNI calls out of the heart of
3590 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3591 bool LibraryCallKit::inline_native_subtype_check() {
3592   // Pull both arguments off the stack.
3593   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3594   args[0] = argument(0);
3595   args[1] = argument(1);
3596   Node* klasses[2];             // corresponding Klasses: superk, subk
3597   klasses[0] = klasses[1] = top();
3598 
3599   enum {
3600     // A full decision tree on {superc is prim, subc is prim}:
3601     _prim_0_path = 1,           // {P,N} => false
3602                                 // {P,P} & superc!=subc => false
3603     _prim_same_path,            // {P,P} & superc==subc => true
3604     _prim_1_path,               // {N,P} => false
3605     _ref_subtype_path,          // {N,N} & subtype check wins => true
3606     _both_ref_path,             // {N,N} & subtype check loses => false
3607     PATH_LIMIT
3608   };
3609 
3610   RegionNode* region = new RegionNode(PATH_LIMIT);
3611   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3612   record_for_igvn(region);
3613 
3614   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3615   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3616   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3617 
3618   // First null-check both mirrors and load each mirror's klass metaobject.
3619   int which_arg;
3620   for (which_arg = 0; which_arg <= 1; which_arg++) {
3621     Node* arg = args[which_arg];
3622     arg = null_check(arg);
3623     if (stopped())  break;
3624     args[which_arg] = arg;
3625 
3626     Node* p = basic_plus_adr(arg, class_klass_offset);
3627     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3628     klasses[which_arg] = _gvn.transform(kls);
3629   }
3630 
3631   // Having loaded both klasses, test each for null.
3632   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3633   for (which_arg = 0; which_arg <= 1; which_arg++) {
3634     Node* kls = klasses[which_arg];
3635     Node* null_ctl = top();
3636     kls = null_check_oop(kls, &null_ctl, never_see_null);
3637     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3638     region->init_req(prim_path, null_ctl);
3639     if (stopped())  break;
3640     klasses[which_arg] = kls;
3641   }
3642 
3643   if (!stopped()) {
3644     // now we have two reference types, in klasses[0..1]
3645     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3646     Node* superk = klasses[0];  // the receiver
3647     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3648     // now we have a successful reference subtype check
3649     region->set_req(_ref_subtype_path, control());
3650   }
3651 
3652   // If both operands are primitive (both klasses null), then
3653   // we must return true when they are identical primitives.
3654   // It is convenient to test this after the first null klass check.
3655   set_control(region->in(_prim_0_path)); // go back to first null check
3656   if (!stopped()) {
3657     // Since superc is primitive, make a guard for the superc==subc case.
3658     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3659     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3660     generate_guard(bol_eq, region, PROB_FAIR);
3661     if (region->req() == PATH_LIMIT+1) {
3662       // A guard was added.  If the added guard is taken, superc==subc.
3663       region->swap_edges(PATH_LIMIT, _prim_same_path);
3664       region->del_req(PATH_LIMIT);
3665     }
3666     region->set_req(_prim_0_path, control()); // Not equal after all.
3667   }
3668 
3669   // these are the only paths that produce 'true':
3670   phi->set_req(_prim_same_path,   intcon(1));
3671   phi->set_req(_ref_subtype_path, intcon(1));
3672 
3673   // pull together the cases:
3674   assert(region->req() == PATH_LIMIT, "sane region");
3675   for (uint i = 1; i < region->req(); i++) {
3676     Node* ctl = region->in(i);
3677     if (ctl == NULL || ctl == top()) {
3678       region->set_req(i, top());
3679       phi   ->set_req(i, top());
3680     } else if (phi->in(i) == NULL) {
3681       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3682     }
3683   }
3684 
3685   set_control(_gvn.transform(region));
3686   set_result(_gvn.transform(phi));
3687   return true;
3688 }
3689 
3690 //---------------------generate_array_guard_common------------------------
3691 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3692                                                   bool obj_array, bool not_array) {
3693 
3694   if (stopped()) {
3695     return NULL;
3696   }
3697 
3698   // If obj_array/non_array==false/false:
3699   // Branch around if the given klass is in fact an array (either obj or prim).
3700   // If obj_array/non_array==false/true:
3701   // Branch around if the given klass is not an array klass of any kind.
3702   // If obj_array/non_array==true/true:
3703   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3704   // If obj_array/non_array==true/false:
3705   // Branch around if the kls is an oop array (Object[] or subtype)
3706   //
3707   // Like generate_guard, adds a new path onto the region.
3708   jint  layout_con = 0;
3709   Node* layout_val = get_layout_helper(kls, layout_con);
3710   if (layout_val == NULL) {
3711     bool query = (obj_array
3712                   ? Klass::layout_helper_is_objArray(layout_con)
3713                   : Klass::layout_helper_is_array(layout_con));
3714     if (query == not_array) {
3715       return NULL;                       // never a branch
3716     } else {                             // always a branch
3717       Node* always_branch = control();
3718       if (region != NULL)
3719         region->add_req(always_branch);
3720       set_control(top());
3721       return always_branch;
3722     }
3723   }
3724   // Now test the correct condition.
3725   jint  nval = (obj_array
3726                 ? ((jint)Klass::_lh_array_tag_type_value
3727                    <<    Klass::_lh_array_tag_shift)
3728                 : Klass::_lh_neutral_value);
3729   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3730   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3731   // invert the test if we are looking for a non-array
3732   if (not_array)  btest = BoolTest(btest).negate();
3733   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3734   return generate_fair_guard(bol, region);
3735 }
3736 
3737 
3738 //-----------------------inline_native_newArray--------------------------
3739 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3740 bool LibraryCallKit::inline_native_newArray() {
3741   Node* mirror    = argument(0);
3742   Node* count_val = argument(1);
3743 
3744   mirror = null_check(mirror);
3745   // If mirror or obj is dead, only null-path is taken.
3746   if (stopped())  return true;
3747 
3748   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3749   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3750   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3751   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3752   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3753 
3754   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3755   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3756                                                   result_reg, _slow_path);
3757   Node* normal_ctl   = control();
3758   Node* no_array_ctl = result_reg->in(_slow_path);
3759 
3760   // Generate code for the slow case.  We make a call to newArray().
3761   set_control(no_array_ctl);
3762   if (!stopped()) {
3763     // Either the input type is void.class, or else the
3764     // array klass has not yet been cached.  Either the
3765     // ensuing call will throw an exception, or else it
3766     // will cache the array klass for next time.
3767     PreserveJVMState pjvms(this);
3768     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3769     Node* slow_result = set_results_for_java_call(slow_call);
3770     // this->control() comes from set_results_for_java_call
3771     result_reg->set_req(_slow_path, control());
3772     result_val->set_req(_slow_path, slow_result);
3773     result_io ->set_req(_slow_path, i_o());
3774     result_mem->set_req(_slow_path, reset_memory());
3775   }
3776 
3777   set_control(normal_ctl);
3778   if (!stopped()) {
3779     // Normal case:  The array type has been cached in the java.lang.Class.
3780     // The following call works fine even if the array type is polymorphic.
3781     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3782     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3783     result_reg->init_req(_normal_path, control());
3784     result_val->init_req(_normal_path, obj);
3785     result_io ->init_req(_normal_path, i_o());
3786     result_mem->init_req(_normal_path, reset_memory());
3787   }
3788 
3789   // Return the combined state.
3790   set_i_o(        _gvn.transform(result_io)  );
3791   set_all_memory( _gvn.transform(result_mem));
3792 
3793   C->set_has_split_ifs(true); // Has chance for split-if optimization
3794   set_result(result_reg, result_val);
3795   return true;
3796 }
3797 
3798 //----------------------inline_native_getLength--------------------------
3799 // public static native int java.lang.reflect.Array.getLength(Object array);
3800 bool LibraryCallKit::inline_native_getLength() {
3801   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3802 
3803   Node* array = null_check(argument(0));
3804   // If array is dead, only null-path is taken.
3805   if (stopped())  return true;
3806 
3807   // Deoptimize if it is a non-array.
3808   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3809 
3810   if (non_array != NULL) {
3811     PreserveJVMState pjvms(this);
3812     set_control(non_array);
3813     uncommon_trap(Deoptimization::Reason_intrinsic,
3814                   Deoptimization::Action_maybe_recompile);
3815   }
3816 
3817   // If control is dead, only non-array-path is taken.
3818   if (stopped())  return true;
3819 
3820   // The works fine even if the array type is polymorphic.
3821   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3822   Node* result = load_array_length(array);
3823 
3824   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3825   set_result(result);
3826   return true;
3827 }
3828 
3829 //------------------------inline_array_copyOf----------------------------
3830 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3831 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3832 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3833   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3834 
3835   // Get the arguments.
3836   Node* original          = argument(0);
3837   Node* start             = is_copyOfRange? argument(1): intcon(0);
3838   Node* end               = is_copyOfRange? argument(2): argument(1);
3839   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3840 
3841   Node* newcopy = NULL;
3842 
3843   // Set the original stack and the reexecute bit for the interpreter to reexecute
3844   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3845   { PreserveReexecuteState preexecs(this);
3846     jvms()->set_should_reexecute(true);
3847 
3848     array_type_mirror = null_check(array_type_mirror);
3849     original          = null_check(original);
3850 
3851     // Check if a null path was taken unconditionally.
3852     if (stopped())  return true;
3853 
3854     Node* orig_length = load_array_length(original);
3855 
3856     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3857     klass_node = null_check(klass_node);
3858 
3859     RegionNode* bailout = new RegionNode(1);
3860     record_for_igvn(bailout);
3861 
3862     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3863     // Bail out if that is so.
3864     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3865     if (not_objArray != NULL) {
3866       // Improve the klass node's type from the new optimistic assumption:
3867       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3868       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3869       Node* cast = new CastPPNode(klass_node, akls);
3870       cast->init_req(0, control());
3871       klass_node = _gvn.transform(cast);
3872     }
3873 
3874     // Bail out if either start or end is negative.
3875     generate_negative_guard(start, bailout, &start);
3876     generate_negative_guard(end,   bailout, &end);
3877 
3878     Node* length = end;
3879     if (_gvn.type(start) != TypeInt::ZERO) {
3880       length = _gvn.transform(new SubINode(end, start));
3881     }
3882 
3883     // Bail out if length is negative.
3884     // Without this the new_array would throw
3885     // NegativeArraySizeException but IllegalArgumentException is what
3886     // should be thrown
3887     generate_negative_guard(length, bailout, &length);
3888 
3889     if (bailout->req() > 1) {
3890       PreserveJVMState pjvms(this);
3891       set_control(_gvn.transform(bailout));
3892       uncommon_trap(Deoptimization::Reason_intrinsic,
3893                     Deoptimization::Action_maybe_recompile);
3894     }
3895 
3896     if (!stopped()) {
3897       // How many elements will we copy from the original?
3898       // The answer is MinI(orig_length - start, length).
3899       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3900       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3901 
3902       // Generate a direct call to the right arraycopy function(s).
3903       // We know the copy is disjoint but we might not know if the
3904       // oop stores need checking.
3905       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3906       // This will fail a store-check if x contains any non-nulls.
3907 
3908       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3909       // loads/stores but it is legal only if we're sure the
3910       // Arrays.copyOf would succeed. So we need all input arguments
3911       // to the copyOf to be validated, including that the copy to the
3912       // new array won't trigger an ArrayStoreException. That subtype
3913       // check can be optimized if we know something on the type of
3914       // the input array from type speculation.
3915       if (_gvn.type(klass_node)->singleton()) {
3916         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3917         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3918 
3919         int test = C->static_subtype_check(superk, subk);
3920         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3921           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3922           if (t_original->speculative_type() != NULL) {
3923             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3924           }
3925         }
3926       }
3927 
3928       bool validated = false;
3929       // Reason_class_check rather than Reason_intrinsic because we
3930       // want to intrinsify even if this traps.
3931       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3932         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3933                                                    klass_node);
3934 
3935         if (not_subtype_ctrl != top()) {
3936           PreserveJVMState pjvms(this);
3937           set_control(not_subtype_ctrl);
3938           uncommon_trap(Deoptimization::Reason_class_check,
3939                         Deoptimization::Action_make_not_entrant);
3940           assert(stopped(), "Should be stopped");
3941         }
3942         validated = true;
3943       }
3944 
3945       if (!stopped()) {
3946         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3947 
3948         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3949                                                 load_object_klass(original), klass_node);
3950         if (!is_copyOfRange) {
3951           ac->set_copyof(validated);
3952         } else {
3953           ac->set_copyofrange(validated);
3954         }
3955         Node* n = _gvn.transform(ac);
3956         if (n == ac) {
3957           ac->connect_outputs(this);
3958         } else {
3959           assert(validated, "shouldn't transform if all arguments not validated");
3960           set_all_memory(n);
3961         }
3962       }
3963     }
3964   } // original reexecute is set back here
3965 
3966   C->set_has_split_ifs(true); // Has chance for split-if optimization
3967   if (!stopped()) {
3968     set_result(newcopy);
3969   }
3970   return true;
3971 }
3972 
3973 
3974 //----------------------generate_virtual_guard---------------------------
3975 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3976 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3977                                              RegionNode* slow_region) {
3978   ciMethod* method = callee();
3979   int vtable_index = method->vtable_index();
3980   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3981          "bad index %d", vtable_index);
3982   // Get the Method* out of the appropriate vtable entry.
3983   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3984                      vtable_index*vtableEntry::size()) * wordSize +
3985                      vtableEntry::method_offset_in_bytes();
3986   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3987   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3988 
3989   // Compare the target method with the expected method (e.g., Object.hashCode).
3990   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3991 
3992   Node* native_call = makecon(native_call_addr);
3993   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3994   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3995 
3996   return generate_slow_guard(test_native, slow_region);
3997 }
3998 
3999 //-----------------------generate_method_call----------------------------
4000 // Use generate_method_call to make a slow-call to the real
4001 // method if the fast path fails.  An alternative would be to
4002 // use a stub like OptoRuntime::slow_arraycopy_Java.
4003 // This only works for expanding the current library call,
4004 // not another intrinsic.  (E.g., don't use this for making an
4005 // arraycopy call inside of the copyOf intrinsic.)
4006 CallJavaNode*
4007 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4008   // When compiling the intrinsic method itself, do not use this technique.
4009   guarantee(callee() != C->method(), "cannot make slow-call to self");
4010 
4011   ciMethod* method = callee();
4012   // ensure the JVMS we have will be correct for this call
4013   guarantee(method_id == method->intrinsic_id(), "must match");
4014 
4015   const TypeFunc* tf = TypeFunc::make(method);
4016   CallJavaNode* slow_call;
4017   if (is_static) {
4018     assert(!is_virtual, "");
4019     slow_call = new CallStaticJavaNode(C, tf,
4020                            SharedRuntime::get_resolve_static_call_stub(),
4021                            method, bci());
4022   } else if (is_virtual) {
4023     null_check_receiver();
4024     int vtable_index = Method::invalid_vtable_index;
4025     if (UseInlineCaches) {
4026       // Suppress the vtable call
4027     } else {
4028       // hashCode and clone are not a miranda methods,
4029       // so the vtable index is fixed.
4030       // No need to use the linkResolver to get it.
4031        vtable_index = method->vtable_index();
4032        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4033               "bad index %d", vtable_index);
4034     }
4035     slow_call = new CallDynamicJavaNode(tf,
4036                           SharedRuntime::get_resolve_virtual_call_stub(),
4037                           method, vtable_index, bci());
4038   } else {  // neither virtual nor static:  opt_virtual
4039     null_check_receiver();
4040     slow_call = new CallStaticJavaNode(C, tf,
4041                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4042                                 method, bci());
4043     slow_call->set_optimized_virtual(true);
4044   }
4045   set_arguments_for_java_call(slow_call);
4046   set_edges_for_java_call(slow_call);
4047   return slow_call;
4048 }
4049 
4050 
4051 /**
4052  * Build special case code for calls to hashCode on an object. This call may
4053  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4054  * slightly different code.
4055  */
4056 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4057   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4058   assert(!(is_virtual && is_static), "either virtual, special, or static");
4059 
4060   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4061 
4062   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4063   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4064   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4065   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4066   Node* obj = NULL;
4067   if (!is_static) {
4068     // Check for hashing null object
4069     obj = null_check_receiver();
4070     if (stopped())  return true;        // unconditionally null
4071     result_reg->init_req(_null_path, top());
4072     result_val->init_req(_null_path, top());
4073   } else {
4074     // Do a null check, and return zero if null.
4075     // System.identityHashCode(null) == 0
4076     obj = argument(0);
4077     Node* null_ctl = top();
4078     obj = null_check_oop(obj, &null_ctl);
4079     result_reg->init_req(_null_path, null_ctl);
4080     result_val->init_req(_null_path, _gvn.intcon(0));
4081   }
4082 
4083   // Unconditionally null?  Then return right away.
4084   if (stopped()) {
4085     set_control( result_reg->in(_null_path));
4086     if (!stopped())
4087       set_result(result_val->in(_null_path));
4088     return true;
4089   }
4090 
4091   // We only go to the fast case code if we pass a number of guards.  The
4092   // paths which do not pass are accumulated in the slow_region.
4093   RegionNode* slow_region = new RegionNode(1);
4094   record_for_igvn(slow_region);
4095 
4096   // If this is a virtual call, we generate a funny guard.  We pull out
4097   // the vtable entry corresponding to hashCode() from the target object.
4098   // If the target method which we are calling happens to be the native
4099   // Object hashCode() method, we pass the guard.  We do not need this
4100   // guard for non-virtual calls -- the caller is known to be the native
4101   // Object hashCode().
4102   if (is_virtual) {
4103     // After null check, get the object's klass.
4104     Node* obj_klass = load_object_klass(obj);
4105     generate_virtual_guard(obj_klass, slow_region);
4106   }
4107 
4108   // Get the header out of the object, use LoadMarkNode when available
4109   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4110   // The control of the load must be NULL. Otherwise, the load can move before
4111   // the null check after castPP removal.
4112   Node* no_ctrl = NULL;
4113   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4114 
4115   // Test the header to see if it is unlocked.
4116   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4117   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4118   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4119   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4120   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4121 
4122   generate_slow_guard(test_unlocked, slow_region);
4123 
4124   // Get the hash value and check to see that it has been properly assigned.
4125   // We depend on hash_mask being at most 32 bits and avoid the use of
4126   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4127   // vm: see markOop.hpp.
4128   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4129   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4130   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4131   // This hack lets the hash bits live anywhere in the mark object now, as long
4132   // as the shift drops the relevant bits into the low 32 bits.  Note that
4133   // Java spec says that HashCode is an int so there's no point in capturing
4134   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4135   hshifted_header      = ConvX2I(hshifted_header);
4136   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4137 
4138   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4139   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4140   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4141 
4142   generate_slow_guard(test_assigned, slow_region);
4143 
4144   Node* init_mem = reset_memory();
4145   // fill in the rest of the null path:
4146   result_io ->init_req(_null_path, i_o());
4147   result_mem->init_req(_null_path, init_mem);
4148 
4149   result_val->init_req(_fast_path, hash_val);
4150   result_reg->init_req(_fast_path, control());
4151   result_io ->init_req(_fast_path, i_o());
4152   result_mem->init_req(_fast_path, init_mem);
4153 
4154   // Generate code for the slow case.  We make a call to hashCode().
4155   set_control(_gvn.transform(slow_region));
4156   if (!stopped()) {
4157     // No need for PreserveJVMState, because we're using up the present state.
4158     set_all_memory(init_mem);
4159     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4160     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4161     Node* slow_result = set_results_for_java_call(slow_call);
4162     // this->control() comes from set_results_for_java_call
4163     result_reg->init_req(_slow_path, control());
4164     result_val->init_req(_slow_path, slow_result);
4165     result_io  ->set_req(_slow_path, i_o());
4166     result_mem ->set_req(_slow_path, reset_memory());
4167   }
4168 
4169   // Return the combined state.
4170   set_i_o(        _gvn.transform(result_io)  );
4171   set_all_memory( _gvn.transform(result_mem));
4172 
4173   set_result(result_reg, result_val);
4174   return true;
4175 }
4176 
4177 //---------------------------inline_native_getClass----------------------------
4178 // public final native Class<?> java.lang.Object.getClass();
4179 //
4180 // Build special case code for calls to getClass on an object.
4181 bool LibraryCallKit::inline_native_getClass() {
4182   Node* obj = null_check_receiver();
4183   if (stopped())  return true;
4184   set_result(load_mirror_from_klass(load_object_klass(obj)));
4185   return true;
4186 }
4187 
4188 //-----------------inline_native_Reflection_getCallerClass---------------------
4189 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4190 //
4191 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4192 //
4193 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4194 // in that it must skip particular security frames and checks for
4195 // caller sensitive methods.
4196 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4197 #ifndef PRODUCT
4198   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4199     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4200   }
4201 #endif
4202 
4203   if (!jvms()->has_method()) {
4204 #ifndef PRODUCT
4205     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4206       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4207     }
4208 #endif
4209     return false;
4210   }
4211 
4212   // Walk back up the JVM state to find the caller at the required
4213   // depth.
4214   JVMState* caller_jvms = jvms();
4215 
4216   // Cf. JVM_GetCallerClass
4217   // NOTE: Start the loop at depth 1 because the current JVM state does
4218   // not include the Reflection.getCallerClass() frame.
4219   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4220     ciMethod* m = caller_jvms->method();
4221     switch (n) {
4222     case 0:
4223       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4224       break;
4225     case 1:
4226       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4227       if (!m->caller_sensitive()) {
4228 #ifndef PRODUCT
4229         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4230           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4231         }
4232 #endif
4233         return false;  // bail-out; let JVM_GetCallerClass do the work
4234       }
4235       break;
4236     default:
4237       if (!m->is_ignored_by_security_stack_walk()) {
4238         // We have reached the desired frame; return the holder class.
4239         // Acquire method holder as java.lang.Class and push as constant.
4240         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4241         ciInstance* caller_mirror = caller_klass->java_mirror();
4242         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4243 
4244 #ifndef PRODUCT
4245         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4246           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4247           tty->print_cr("  JVM state at this point:");
4248           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4249             ciMethod* m = jvms()->of_depth(i)->method();
4250             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4251           }
4252         }
4253 #endif
4254         return true;
4255       }
4256       break;
4257     }
4258   }
4259 
4260 #ifndef PRODUCT
4261   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4262     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4263     tty->print_cr("  JVM state at this point:");
4264     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4265       ciMethod* m = jvms()->of_depth(i)->method();
4266       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4267     }
4268   }
4269 #endif
4270 
4271   return false;  // bail-out; let JVM_GetCallerClass do the work
4272 }
4273 
4274 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4275   Node* arg = argument(0);
4276   Node* result = NULL;
4277 
4278   switch (id) {
4279   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4280   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4281   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4282   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4283 
4284   case vmIntrinsics::_doubleToLongBits: {
4285     // two paths (plus control) merge in a wood
4286     RegionNode *r = new RegionNode(3);
4287     Node *phi = new PhiNode(r, TypeLong::LONG);
4288 
4289     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4290     // Build the boolean node
4291     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4292 
4293     // Branch either way.
4294     // NaN case is less traveled, which makes all the difference.
4295     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4296     Node *opt_isnan = _gvn.transform(ifisnan);
4297     assert( opt_isnan->is_If(), "Expect an IfNode");
4298     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4299     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4300 
4301     set_control(iftrue);
4302 
4303     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4304     Node *slow_result = longcon(nan_bits); // return NaN
4305     phi->init_req(1, _gvn.transform( slow_result ));
4306     r->init_req(1, iftrue);
4307 
4308     // Else fall through
4309     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4310     set_control(iffalse);
4311 
4312     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4313     r->init_req(2, iffalse);
4314 
4315     // Post merge
4316     set_control(_gvn.transform(r));
4317     record_for_igvn(r);
4318 
4319     C->set_has_split_ifs(true); // Has chance for split-if optimization
4320     result = phi;
4321     assert(result->bottom_type()->isa_long(), "must be");
4322     break;
4323   }
4324 
4325   case vmIntrinsics::_floatToIntBits: {
4326     // two paths (plus control) merge in a wood
4327     RegionNode *r = new RegionNode(3);
4328     Node *phi = new PhiNode(r, TypeInt::INT);
4329 
4330     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4331     // Build the boolean node
4332     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4333 
4334     // Branch either way.
4335     // NaN case is less traveled, which makes all the difference.
4336     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4337     Node *opt_isnan = _gvn.transform(ifisnan);
4338     assert( opt_isnan->is_If(), "Expect an IfNode");
4339     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4340     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4341 
4342     set_control(iftrue);
4343 
4344     static const jint nan_bits = 0x7fc00000;
4345     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4346     phi->init_req(1, _gvn.transform( slow_result ));
4347     r->init_req(1, iftrue);
4348 
4349     // Else fall through
4350     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4351     set_control(iffalse);
4352 
4353     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4354     r->init_req(2, iffalse);
4355 
4356     // Post merge
4357     set_control(_gvn.transform(r));
4358     record_for_igvn(r);
4359 
4360     C->set_has_split_ifs(true); // Has chance for split-if optimization
4361     result = phi;
4362     assert(result->bottom_type()->isa_int(), "must be");
4363     break;
4364   }
4365 
4366   default:
4367     fatal_unexpected_iid(id);
4368     break;
4369   }
4370   set_result(_gvn.transform(result));
4371   return true;
4372 }
4373 
4374 //----------------------inline_unsafe_copyMemory-------------------------
4375 // public native void Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4376 bool LibraryCallKit::inline_unsafe_copyMemory() {
4377   if (callee()->is_static())  return false;  // caller must have the capability!
4378   null_check_receiver();  // null-check receiver
4379   if (stopped())  return true;
4380 
4381   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4382 
4383   Node* src_ptr =         argument(1);   // type: oop
4384   Node* src_off = ConvL2X(argument(2));  // type: long
4385   Node* dst_ptr =         argument(4);   // type: oop
4386   Node* dst_off = ConvL2X(argument(5));  // type: long
4387   Node* size    = ConvL2X(argument(7));  // type: long
4388 
4389   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4390          "fieldOffset must be byte-scaled");
4391 
4392   Node* src = make_unsafe_address(src_ptr, src_off);
4393   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4394 
4395   // Conservatively insert a memory barrier on all memory slices.
4396   // Do not let writes of the copy source or destination float below the copy.
4397   insert_mem_bar(Op_MemBarCPUOrder);
4398 
4399   // Call it.  Note that the length argument is not scaled.
4400   make_runtime_call(RC_LEAF|RC_NO_FP,
4401                     OptoRuntime::fast_arraycopy_Type(),
4402                     StubRoutines::unsafe_arraycopy(),
4403                     "unsafe_arraycopy",
4404                     TypeRawPtr::BOTTOM,
4405                     src, dst, size XTOP);
4406 
4407   // Do not let reads of the copy destination float above the copy.
4408   insert_mem_bar(Op_MemBarCPUOrder);
4409 
4410   return true;
4411 }
4412 
4413 //------------------------clone_coping-----------------------------------
4414 // Helper function for inline_native_clone.
4415 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4416   assert(obj_size != NULL, "");
4417   Node* raw_obj = alloc_obj->in(1);
4418   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4419 
4420   AllocateNode* alloc = NULL;
4421   if (ReduceBulkZeroing) {
4422     // We will be completely responsible for initializing this object -
4423     // mark Initialize node as complete.
4424     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4425     // The object was just allocated - there should be no any stores!
4426     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4427     // Mark as complete_with_arraycopy so that on AllocateNode
4428     // expansion, we know this AllocateNode is initialized by an array
4429     // copy and a StoreStore barrier exists after the array copy.
4430     alloc->initialization()->set_complete_with_arraycopy();
4431   }
4432 
4433   // Copy the fastest available way.
4434   // TODO: generate fields copies for small objects instead.
4435   Node* src  = obj;
4436   Node* dest = alloc_obj;
4437   Node* size = _gvn.transform(obj_size);
4438 
4439   // Exclude the header but include array length to copy by 8 bytes words.
4440   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4441   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4442                             instanceOopDesc::base_offset_in_bytes();
4443   // base_off:
4444   // 8  - 32-bit VM
4445   // 12 - 64-bit VM, compressed klass
4446   // 16 - 64-bit VM, normal klass
4447   if (base_off % BytesPerLong != 0) {
4448     assert(UseCompressedClassPointers, "");
4449     if (is_array) {
4450       // Exclude length to copy by 8 bytes words.
4451       base_off += sizeof(int);
4452     } else {
4453       // Include klass to copy by 8 bytes words.
4454       base_off = instanceOopDesc::klass_offset_in_bytes();
4455     }
4456     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4457   }
4458   src  = basic_plus_adr(src,  base_off);
4459   dest = basic_plus_adr(dest, base_off);
4460 
4461   // Compute the length also, if needed:
4462   Node* countx = size;
4463   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4464   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4465 
4466   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4467 
4468   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4469   ac->set_clonebasic();
4470   Node* n = _gvn.transform(ac);
4471   if (n == ac) {
4472     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4473   } else {
4474     set_all_memory(n);
4475   }
4476 
4477   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4478   if (card_mark) {
4479     assert(!is_array, "");
4480     // Put in store barrier for any and all oops we are sticking
4481     // into this object.  (We could avoid this if we could prove
4482     // that the object type contains no oop fields at all.)
4483     Node* no_particular_value = NULL;
4484     Node* no_particular_field = NULL;
4485     int raw_adr_idx = Compile::AliasIdxRaw;
4486     post_barrier(control(),
4487                  memory(raw_adr_type),
4488                  alloc_obj,
4489                  no_particular_field,
4490                  raw_adr_idx,
4491                  no_particular_value,
4492                  T_OBJECT,
4493                  false);
4494   }
4495 
4496   // Do not let reads from the cloned object float above the arraycopy.
4497   if (alloc != NULL) {
4498     // Do not let stores that initialize this object be reordered with
4499     // a subsequent store that would make this object accessible by
4500     // other threads.
4501     // Record what AllocateNode this StoreStore protects so that
4502     // escape analysis can go from the MemBarStoreStoreNode to the
4503     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4504     // based on the escape status of the AllocateNode.
4505     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4506   } else {
4507     insert_mem_bar(Op_MemBarCPUOrder);
4508   }
4509 }
4510 
4511 //------------------------inline_native_clone----------------------------
4512 // protected native Object java.lang.Object.clone();
4513 //
4514 // Here are the simple edge cases:
4515 //  null receiver => normal trap
4516 //  virtual and clone was overridden => slow path to out-of-line clone
4517 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4518 //
4519 // The general case has two steps, allocation and copying.
4520 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4521 //
4522 // Copying also has two cases, oop arrays and everything else.
4523 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4524 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4525 //
4526 // These steps fold up nicely if and when the cloned object's klass
4527 // can be sharply typed as an object array, a type array, or an instance.
4528 //
4529 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4530   PhiNode* result_val;
4531 
4532   // Set the reexecute bit for the interpreter to reexecute
4533   // the bytecode that invokes Object.clone if deoptimization happens.
4534   { PreserveReexecuteState preexecs(this);
4535     jvms()->set_should_reexecute(true);
4536 
4537     Node* obj = null_check_receiver();
4538     if (stopped())  return true;
4539 
4540     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4541 
4542     // If we are going to clone an instance, we need its exact type to
4543     // know the number and types of fields to convert the clone to
4544     // loads/stores. Maybe a speculative type can help us.
4545     if (!obj_type->klass_is_exact() &&
4546         obj_type->speculative_type() != NULL &&
4547         obj_type->speculative_type()->is_instance_klass()) {
4548       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4549       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4550           !spec_ik->has_injected_fields()) {
4551         ciKlass* k = obj_type->klass();
4552         if (!k->is_instance_klass() ||
4553             k->as_instance_klass()->is_interface() ||
4554             k->as_instance_klass()->has_subklass()) {
4555           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4556         }
4557       }
4558     }
4559 
4560     Node* obj_klass = load_object_klass(obj);
4561     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4562     const TypeOopPtr*   toop   = ((tklass != NULL)
4563                                 ? tklass->as_instance_type()
4564                                 : TypeInstPtr::NOTNULL);
4565 
4566     // Conservatively insert a memory barrier on all memory slices.
4567     // Do not let writes into the original float below the clone.
4568     insert_mem_bar(Op_MemBarCPUOrder);
4569 
4570     // paths into result_reg:
4571     enum {
4572       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4573       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4574       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4575       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4576       PATH_LIMIT
4577     };
4578     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4579     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4580     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4581     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4582     record_for_igvn(result_reg);
4583 
4584     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4585     int raw_adr_idx = Compile::AliasIdxRaw;
4586 
4587     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4588     if (array_ctl != NULL) {
4589       // It's an array.
4590       PreserveJVMState pjvms(this);
4591       set_control(array_ctl);
4592       Node* obj_length = load_array_length(obj);
4593       Node* obj_size  = NULL;
4594       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4595 
4596       if (!use_ReduceInitialCardMarks()) {
4597         // If it is an oop array, it requires very special treatment,
4598         // because card marking is required on each card of the array.
4599         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4600         if (is_obja != NULL) {
4601           PreserveJVMState pjvms2(this);
4602           set_control(is_obja);
4603           // Generate a direct call to the right arraycopy function(s).
4604           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4605           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4606           ac->set_cloneoop();
4607           Node* n = _gvn.transform(ac);
4608           assert(n == ac, "cannot disappear");
4609           ac->connect_outputs(this);
4610 
4611           result_reg->init_req(_objArray_path, control());
4612           result_val->init_req(_objArray_path, alloc_obj);
4613           result_i_o ->set_req(_objArray_path, i_o());
4614           result_mem ->set_req(_objArray_path, reset_memory());
4615         }
4616       }
4617       // Otherwise, there are no card marks to worry about.
4618       // (We can dispense with card marks if we know the allocation
4619       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4620       //  causes the non-eden paths to take compensating steps to
4621       //  simulate a fresh allocation, so that no further
4622       //  card marks are required in compiled code to initialize
4623       //  the object.)
4624 
4625       if (!stopped()) {
4626         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4627 
4628         // Present the results of the copy.
4629         result_reg->init_req(_array_path, control());
4630         result_val->init_req(_array_path, alloc_obj);
4631         result_i_o ->set_req(_array_path, i_o());
4632         result_mem ->set_req(_array_path, reset_memory());
4633       }
4634     }
4635 
4636     // We only go to the instance fast case code if we pass a number of guards.
4637     // The paths which do not pass are accumulated in the slow_region.
4638     RegionNode* slow_region = new RegionNode(1);
4639     record_for_igvn(slow_region);
4640     if (!stopped()) {
4641       // It's an instance (we did array above).  Make the slow-path tests.
4642       // If this is a virtual call, we generate a funny guard.  We grab
4643       // the vtable entry corresponding to clone() from the target object.
4644       // If the target method which we are calling happens to be the
4645       // Object clone() method, we pass the guard.  We do not need this
4646       // guard for non-virtual calls; the caller is known to be the native
4647       // Object clone().
4648       if (is_virtual) {
4649         generate_virtual_guard(obj_klass, slow_region);
4650       }
4651 
4652       // The object must be cloneable and must not have a finalizer.
4653       // Both of these conditions may be checked in a single test.
4654       // We could optimize the cloneable test further, but we don't care.
4655       generate_access_flags_guard(obj_klass,
4656                                   // Test both conditions:
4657                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4658                                   // Must be cloneable but not finalizer:
4659                                   JVM_ACC_IS_CLONEABLE,
4660                                   slow_region);
4661     }
4662 
4663     if (!stopped()) {
4664       // It's an instance, and it passed the slow-path tests.
4665       PreserveJVMState pjvms(this);
4666       Node* obj_size  = NULL;
4667       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4668       // is reexecuted if deoptimization occurs and there could be problems when merging
4669       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4670       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4671 
4672       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4673 
4674       // Present the results of the slow call.
4675       result_reg->init_req(_instance_path, control());
4676       result_val->init_req(_instance_path, alloc_obj);
4677       result_i_o ->set_req(_instance_path, i_o());
4678       result_mem ->set_req(_instance_path, reset_memory());
4679     }
4680 
4681     // Generate code for the slow case.  We make a call to clone().
4682     set_control(_gvn.transform(slow_region));
4683     if (!stopped()) {
4684       PreserveJVMState pjvms(this);
4685       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4686       Node* slow_result = set_results_for_java_call(slow_call);
4687       // this->control() comes from set_results_for_java_call
4688       result_reg->init_req(_slow_path, control());
4689       result_val->init_req(_slow_path, slow_result);
4690       result_i_o ->set_req(_slow_path, i_o());
4691       result_mem ->set_req(_slow_path, reset_memory());
4692     }
4693 
4694     // Return the combined state.
4695     set_control(    _gvn.transform(result_reg));
4696     set_i_o(        _gvn.transform(result_i_o));
4697     set_all_memory( _gvn.transform(result_mem));
4698   } // original reexecute is set back here
4699 
4700   set_result(_gvn.transform(result_val));
4701   return true;
4702 }
4703 
4704 // If we have a tighly coupled allocation, the arraycopy may take care
4705 // of the array initialization. If one of the guards we insert between
4706 // the allocation and the arraycopy causes a deoptimization, an
4707 // unitialized array will escape the compiled method. To prevent that
4708 // we set the JVM state for uncommon traps between the allocation and
4709 // the arraycopy to the state before the allocation so, in case of
4710 // deoptimization, we'll reexecute the allocation and the
4711 // initialization.
4712 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4713   if (alloc != NULL) {
4714     ciMethod* trap_method = alloc->jvms()->method();
4715     int trap_bci = alloc->jvms()->bci();
4716 
4717     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4718           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4719       // Make sure there's no store between the allocation and the
4720       // arraycopy otherwise visible side effects could be rexecuted
4721       // in case of deoptimization and cause incorrect execution.
4722       bool no_interfering_store = true;
4723       Node* mem = alloc->in(TypeFunc::Memory);
4724       if (mem->is_MergeMem()) {
4725         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4726           Node* n = mms.memory();
4727           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4728             assert(n->is_Store(), "what else?");
4729             no_interfering_store = false;
4730             break;
4731           }
4732         }
4733       } else {
4734         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4735           Node* n = mms.memory();
4736           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4737             assert(n->is_Store(), "what else?");
4738             no_interfering_store = false;
4739             break;
4740           }
4741         }
4742       }
4743 
4744       if (no_interfering_store) {
4745         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4746         uint size = alloc->req();
4747         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4748         old_jvms->set_map(sfpt);
4749         for (uint i = 0; i < size; i++) {
4750           sfpt->init_req(i, alloc->in(i));
4751         }
4752         // re-push array length for deoptimization
4753         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4754         old_jvms->set_sp(old_jvms->sp()+1);
4755         old_jvms->set_monoff(old_jvms->monoff()+1);
4756         old_jvms->set_scloff(old_jvms->scloff()+1);
4757         old_jvms->set_endoff(old_jvms->endoff()+1);
4758         old_jvms->set_should_reexecute(true);
4759 
4760         sfpt->set_i_o(map()->i_o());
4761         sfpt->set_memory(map()->memory());
4762         sfpt->set_control(map()->control());
4763 
4764         JVMState* saved_jvms = jvms();
4765         saved_reexecute_sp = _reexecute_sp;
4766 
4767         set_jvms(sfpt->jvms());
4768         _reexecute_sp = jvms()->sp();
4769 
4770         return saved_jvms;
4771       }
4772     }
4773   }
4774   return NULL;
4775 }
4776 
4777 // In case of a deoptimization, we restart execution at the
4778 // allocation, allocating a new array. We would leave an uninitialized
4779 // array in the heap that GCs wouldn't expect. Move the allocation
4780 // after the traps so we don't allocate the array if we
4781 // deoptimize. This is possible because tightly_coupled_allocation()
4782 // guarantees there's no observer of the allocated array at this point
4783 // and the control flow is simple enough.
4784 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4785   if (saved_jvms != NULL && !stopped()) {
4786     assert(alloc != NULL, "only with a tightly coupled allocation");
4787     // restore JVM state to the state at the arraycopy
4788     saved_jvms->map()->set_control(map()->control());
4789     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4790     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4791     // If we've improved the types of some nodes (null check) while
4792     // emitting the guards, propagate them to the current state
4793     map()->replaced_nodes().apply(saved_jvms->map());
4794     set_jvms(saved_jvms);
4795     _reexecute_sp = saved_reexecute_sp;
4796 
4797     // Remove the allocation from above the guards
4798     CallProjections callprojs;
4799     alloc->extract_projections(&callprojs, true);
4800     InitializeNode* init = alloc->initialization();
4801     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4802     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4803     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4804     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4805 
4806     // move the allocation here (after the guards)
4807     _gvn.hash_delete(alloc);
4808     alloc->set_req(TypeFunc::Control, control());
4809     alloc->set_req(TypeFunc::I_O, i_o());
4810     Node *mem = reset_memory();
4811     set_all_memory(mem);
4812     alloc->set_req(TypeFunc::Memory, mem);
4813     set_control(init->proj_out(TypeFunc::Control));
4814     set_i_o(callprojs.fallthrough_ioproj);
4815 
4816     // Update memory as done in GraphKit::set_output_for_allocation()
4817     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4818     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4819     if (ary_type->isa_aryptr() && length_type != NULL) {
4820       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4821     }
4822     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4823     int            elemidx  = C->get_alias_index(telemref);
4824     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4825     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4826 
4827     Node* allocx = _gvn.transform(alloc);
4828     assert(allocx == alloc, "where has the allocation gone?");
4829     assert(dest->is_CheckCastPP(), "not an allocation result?");
4830 
4831     _gvn.hash_delete(dest);
4832     dest->set_req(0, control());
4833     Node* destx = _gvn.transform(dest);
4834     assert(destx == dest, "where has the allocation result gone?");
4835   }
4836 }
4837 
4838 
4839 //------------------------------inline_arraycopy-----------------------
4840 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4841 //                                                      Object dest, int destPos,
4842 //                                                      int length);
4843 bool LibraryCallKit::inline_arraycopy() {
4844   // Get the arguments.
4845   Node* src         = argument(0);  // type: oop
4846   Node* src_offset  = argument(1);  // type: int
4847   Node* dest        = argument(2);  // type: oop
4848   Node* dest_offset = argument(3);  // type: int
4849   Node* length      = argument(4);  // type: int
4850 
4851 
4852   // Check for allocation before we add nodes that would confuse
4853   // tightly_coupled_allocation()
4854   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4855 
4856   int saved_reexecute_sp = -1;
4857   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4858   // See arraycopy_restore_alloc_state() comment
4859   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4860   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4861   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4862   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4863 
4864   // The following tests must be performed
4865   // (1) src and dest are arrays.
4866   // (2) src and dest arrays must have elements of the same BasicType
4867   // (3) src and dest must not be null.
4868   // (4) src_offset must not be negative.
4869   // (5) dest_offset must not be negative.
4870   // (6) length must not be negative.
4871   // (7) src_offset + length must not exceed length of src.
4872   // (8) dest_offset + length must not exceed length of dest.
4873   // (9) each element of an oop array must be assignable
4874 
4875   // (3) src and dest must not be null.
4876   // always do this here because we need the JVM state for uncommon traps
4877   Node* null_ctl = top();
4878   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4879   assert(null_ctl->is_top(), "no null control here");
4880   dest = null_check(dest, T_ARRAY);
4881 
4882   if (!can_emit_guards) {
4883     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4884     // guards but the arraycopy node could still take advantage of a
4885     // tightly allocated allocation. tightly_coupled_allocation() is
4886     // called again to make sure it takes the null check above into
4887     // account: the null check is mandatory and if it caused an
4888     // uncommon trap to be emitted then the allocation can't be
4889     // considered tightly coupled in this context.
4890     alloc = tightly_coupled_allocation(dest, NULL);
4891   }
4892 
4893   bool validated = false;
4894 
4895   const Type* src_type  = _gvn.type(src);
4896   const Type* dest_type = _gvn.type(dest);
4897   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4898   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4899 
4900   // Do we have the type of src?
4901   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4902   // Do we have the type of dest?
4903   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4904   // Is the type for src from speculation?
4905   bool src_spec = false;
4906   // Is the type for dest from speculation?
4907   bool dest_spec = false;
4908 
4909   if ((!has_src || !has_dest) && can_emit_guards) {
4910     // We don't have sufficient type information, let's see if
4911     // speculative types can help. We need to have types for both src
4912     // and dest so that it pays off.
4913 
4914     // Do we already have or could we have type information for src
4915     bool could_have_src = has_src;
4916     // Do we already have or could we have type information for dest
4917     bool could_have_dest = has_dest;
4918 
4919     ciKlass* src_k = NULL;
4920     if (!has_src) {
4921       src_k = src_type->speculative_type_not_null();
4922       if (src_k != NULL && src_k->is_array_klass()) {
4923         could_have_src = true;
4924       }
4925     }
4926 
4927     ciKlass* dest_k = NULL;
4928     if (!has_dest) {
4929       dest_k = dest_type->speculative_type_not_null();
4930       if (dest_k != NULL && dest_k->is_array_klass()) {
4931         could_have_dest = true;
4932       }
4933     }
4934 
4935     if (could_have_src && could_have_dest) {
4936       // This is going to pay off so emit the required guards
4937       if (!has_src) {
4938         src = maybe_cast_profiled_obj(src, src_k, true);
4939         src_type  = _gvn.type(src);
4940         top_src  = src_type->isa_aryptr();
4941         has_src = (top_src != NULL && top_src->klass() != NULL);
4942         src_spec = true;
4943       }
4944       if (!has_dest) {
4945         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4946         dest_type  = _gvn.type(dest);
4947         top_dest  = dest_type->isa_aryptr();
4948         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4949         dest_spec = true;
4950       }
4951     }
4952   }
4953 
4954   if (has_src && has_dest && can_emit_guards) {
4955     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4956     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4957     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4958     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4959 
4960     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4961       // If both arrays are object arrays then having the exact types
4962       // for both will remove the need for a subtype check at runtime
4963       // before the call and may make it possible to pick a faster copy
4964       // routine (without a subtype check on every element)
4965       // Do we have the exact type of src?
4966       bool could_have_src = src_spec;
4967       // Do we have the exact type of dest?
4968       bool could_have_dest = dest_spec;
4969       ciKlass* src_k = top_src->klass();
4970       ciKlass* dest_k = top_dest->klass();
4971       if (!src_spec) {
4972         src_k = src_type->speculative_type_not_null();
4973         if (src_k != NULL && src_k->is_array_klass()) {
4974           could_have_src = true;
4975         }
4976       }
4977       if (!dest_spec) {
4978         dest_k = dest_type->speculative_type_not_null();
4979         if (dest_k != NULL && dest_k->is_array_klass()) {
4980           could_have_dest = true;
4981         }
4982       }
4983       if (could_have_src && could_have_dest) {
4984         // If we can have both exact types, emit the missing guards
4985         if (could_have_src && !src_spec) {
4986           src = maybe_cast_profiled_obj(src, src_k, true);
4987         }
4988         if (could_have_dest && !dest_spec) {
4989           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4990         }
4991       }
4992     }
4993   }
4994 
4995   ciMethod* trap_method = method();
4996   int trap_bci = bci();
4997   if (saved_jvms != NULL) {
4998     trap_method = alloc->jvms()->method();
4999     trap_bci = alloc->jvms()->bci();
5000   }
5001 
5002   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5003       can_emit_guards &&
5004       !src->is_top() && !dest->is_top()) {
5005     // validate arguments: enables transformation the ArrayCopyNode
5006     validated = true;
5007 
5008     RegionNode* slow_region = new RegionNode(1);
5009     record_for_igvn(slow_region);
5010 
5011     // (1) src and dest are arrays.
5012     generate_non_array_guard(load_object_klass(src), slow_region);
5013     generate_non_array_guard(load_object_klass(dest), slow_region);
5014 
5015     // (2) src and dest arrays must have elements of the same BasicType
5016     // done at macro expansion or at Ideal transformation time
5017 
5018     // (4) src_offset must not be negative.
5019     generate_negative_guard(src_offset, slow_region);
5020 
5021     // (5) dest_offset must not be negative.
5022     generate_negative_guard(dest_offset, slow_region);
5023 
5024     // (7) src_offset + length must not exceed length of src.
5025     generate_limit_guard(src_offset, length,
5026                          load_array_length(src),
5027                          slow_region);
5028 
5029     // (8) dest_offset + length must not exceed length of dest.
5030     generate_limit_guard(dest_offset, length,
5031                          load_array_length(dest),
5032                          slow_region);
5033 
5034     // (9) each element of an oop array must be assignable
5035     Node* src_klass  = load_object_klass(src);
5036     Node* dest_klass = load_object_klass(dest);
5037     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5038 
5039     if (not_subtype_ctrl != top()) {
5040       PreserveJVMState pjvms(this);
5041       set_control(not_subtype_ctrl);
5042       uncommon_trap(Deoptimization::Reason_intrinsic,
5043                     Deoptimization::Action_make_not_entrant);
5044       assert(stopped(), "Should be stopped");
5045     }
5046     {
5047       PreserveJVMState pjvms(this);
5048       set_control(_gvn.transform(slow_region));
5049       uncommon_trap(Deoptimization::Reason_intrinsic,
5050                     Deoptimization::Action_make_not_entrant);
5051       assert(stopped(), "Should be stopped");
5052     }
5053   }
5054 
5055   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5056 
5057   if (stopped()) {
5058     return true;
5059   }
5060 
5061   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5062                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5063                                           // so the compiler has a chance to eliminate them: during macro expansion,
5064                                           // we have to set their control (CastPP nodes are eliminated).
5065                                           load_object_klass(src), load_object_klass(dest),
5066                                           load_array_length(src), load_array_length(dest));
5067 
5068   ac->set_arraycopy(validated);
5069 
5070   Node* n = _gvn.transform(ac);
5071   if (n == ac) {
5072     ac->connect_outputs(this);
5073   } else {
5074     assert(validated, "shouldn't transform if all arguments not validated");
5075     set_all_memory(n);
5076   }
5077 
5078   return true;
5079 }
5080 
5081 
5082 // Helper function which determines if an arraycopy immediately follows
5083 // an allocation, with no intervening tests or other escapes for the object.
5084 AllocateArrayNode*
5085 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5086                                            RegionNode* slow_region) {
5087   if (stopped())             return NULL;  // no fast path
5088   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5089 
5090   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5091   if (alloc == NULL)  return NULL;
5092 
5093   Node* rawmem = memory(Compile::AliasIdxRaw);
5094   // Is the allocation's memory state untouched?
5095   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5096     // Bail out if there have been raw-memory effects since the allocation.
5097     // (Example:  There might have been a call or safepoint.)
5098     return NULL;
5099   }
5100   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5101   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5102     return NULL;
5103   }
5104 
5105   // There must be no unexpected observers of this allocation.
5106   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5107     Node* obs = ptr->fast_out(i);
5108     if (obs != this->map()) {
5109       return NULL;
5110     }
5111   }
5112 
5113   // This arraycopy must unconditionally follow the allocation of the ptr.
5114   Node* alloc_ctl = ptr->in(0);
5115   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5116 
5117   Node* ctl = control();
5118   while (ctl != alloc_ctl) {
5119     // There may be guards which feed into the slow_region.
5120     // Any other control flow means that we might not get a chance
5121     // to finish initializing the allocated object.
5122     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5123       IfNode* iff = ctl->in(0)->as_If();
5124       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5125       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5126       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5127         ctl = iff->in(0);       // This test feeds the known slow_region.
5128         continue;
5129       }
5130       // One more try:  Various low-level checks bottom out in
5131       // uncommon traps.  If the debug-info of the trap omits
5132       // any reference to the allocation, as we've already
5133       // observed, then there can be no objection to the trap.
5134       bool found_trap = false;
5135       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5136         Node* obs = not_ctl->fast_out(j);
5137         if (obs->in(0) == not_ctl && obs->is_Call() &&
5138             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5139           found_trap = true; break;
5140         }
5141       }
5142       if (found_trap) {
5143         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5144         continue;
5145       }
5146     }
5147     return NULL;
5148   }
5149 
5150   // If we get this far, we have an allocation which immediately
5151   // precedes the arraycopy, and we can take over zeroing the new object.
5152   // The arraycopy will finish the initialization, and provide
5153   // a new control state to which we will anchor the destination pointer.
5154 
5155   return alloc;
5156 }
5157 
5158 //-------------inline_encodeISOArray-----------------------------------
5159 // encode char[] to byte[] in ISO_8859_1
5160 bool LibraryCallKit::inline_encodeISOArray() {
5161   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5162   // no receiver since it is static method
5163   Node *src         = argument(0);
5164   Node *src_offset  = argument(1);
5165   Node *dst         = argument(2);
5166   Node *dst_offset  = argument(3);
5167   Node *length      = argument(4);
5168 
5169   const Type* src_type = src->Value(&_gvn);
5170   const Type* dst_type = dst->Value(&_gvn);
5171   const TypeAryPtr* top_src = src_type->isa_aryptr();
5172   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5173   if (top_src  == NULL || top_src->klass()  == NULL ||
5174       top_dest == NULL || top_dest->klass() == NULL) {
5175     // failed array check
5176     return false;
5177   }
5178 
5179   // Figure out the size and type of the elements we will be copying.
5180   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5181   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5182   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5183     return false;
5184   }
5185 
5186   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5187   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5188   // 'src_start' points to src array + scaled offset
5189   // 'dst_start' points to dst array + scaled offset
5190 
5191   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5192   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5193   enc = _gvn.transform(enc);
5194   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5195   set_memory(res_mem, mtype);
5196   set_result(enc);
5197   return true;
5198 }
5199 
5200 //-------------inline_multiplyToLen-----------------------------------
5201 bool LibraryCallKit::inline_multiplyToLen() {
5202   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5203 
5204   address stubAddr = StubRoutines::multiplyToLen();
5205   if (stubAddr == NULL) {
5206     return false; // Intrinsic's stub is not implemented on this platform
5207   }
5208   const char* stubName = "multiplyToLen";
5209 
5210   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5211 
5212   // no receiver because it is a static method
5213   Node* x    = argument(0);
5214   Node* xlen = argument(1);
5215   Node* y    = argument(2);
5216   Node* ylen = argument(3);
5217   Node* z    = argument(4);
5218 
5219   const Type* x_type = x->Value(&_gvn);
5220   const Type* y_type = y->Value(&_gvn);
5221   const TypeAryPtr* top_x = x_type->isa_aryptr();
5222   const TypeAryPtr* top_y = y_type->isa_aryptr();
5223   if (top_x  == NULL || top_x->klass()  == NULL ||
5224       top_y == NULL || top_y->klass() == NULL) {
5225     // failed array check
5226     return false;
5227   }
5228 
5229   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5230   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5231   if (x_elem != T_INT || y_elem != T_INT) {
5232     return false;
5233   }
5234 
5235   // Set the original stack and the reexecute bit for the interpreter to reexecute
5236   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5237   // on the return from z array allocation in runtime.
5238   { PreserveReexecuteState preexecs(this);
5239     jvms()->set_should_reexecute(true);
5240 
5241     Node* x_start = array_element_address(x, intcon(0), x_elem);
5242     Node* y_start = array_element_address(y, intcon(0), y_elem);
5243     // 'x_start' points to x array + scaled xlen
5244     // 'y_start' points to y array + scaled ylen
5245 
5246     // Allocate the result array
5247     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5248     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5249     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5250 
5251     IdealKit ideal(this);
5252 
5253 #define __ ideal.
5254      Node* one = __ ConI(1);
5255      Node* zero = __ ConI(0);
5256      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5257      __ set(need_alloc, zero);
5258      __ set(z_alloc, z);
5259      __ if_then(z, BoolTest::eq, null()); {
5260        __ increment (need_alloc, one);
5261      } __ else_(); {
5262        // Update graphKit memory and control from IdealKit.
5263        sync_kit(ideal);
5264        Node* zlen_arg = load_array_length(z);
5265        // Update IdealKit memory and control from graphKit.
5266        __ sync_kit(this);
5267        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5268          __ increment (need_alloc, one);
5269        } __ end_if();
5270      } __ end_if();
5271 
5272      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5273        // Update graphKit memory and control from IdealKit.
5274        sync_kit(ideal);
5275        Node * narr = new_array(klass_node, zlen, 1);
5276        // Update IdealKit memory and control from graphKit.
5277        __ sync_kit(this);
5278        __ set(z_alloc, narr);
5279      } __ end_if();
5280 
5281      sync_kit(ideal);
5282      z = __ value(z_alloc);
5283      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5284      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5285      // Final sync IdealKit and GraphKit.
5286      final_sync(ideal);
5287 #undef __
5288 
5289     Node* z_start = array_element_address(z, intcon(0), T_INT);
5290 
5291     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5292                                    OptoRuntime::multiplyToLen_Type(),
5293                                    stubAddr, stubName, TypePtr::BOTTOM,
5294                                    x_start, xlen, y_start, ylen, z_start, zlen);
5295   } // original reexecute is set back here
5296 
5297   C->set_has_split_ifs(true); // Has chance for split-if optimization
5298   set_result(z);
5299   return true;
5300 }
5301 
5302 //-------------inline_squareToLen------------------------------------
5303 bool LibraryCallKit::inline_squareToLen() {
5304   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5305 
5306   address stubAddr = StubRoutines::squareToLen();
5307   if (stubAddr == NULL) {
5308     return false; // Intrinsic's stub is not implemented on this platform
5309   }
5310   const char* stubName = "squareToLen";
5311 
5312   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5313 
5314   Node* x    = argument(0);
5315   Node* len  = argument(1);
5316   Node* z    = argument(2);
5317   Node* zlen = argument(3);
5318 
5319   const Type* x_type = x->Value(&_gvn);
5320   const Type* z_type = z->Value(&_gvn);
5321   const TypeAryPtr* top_x = x_type->isa_aryptr();
5322   const TypeAryPtr* top_z = z_type->isa_aryptr();
5323   if (top_x  == NULL || top_x->klass()  == NULL ||
5324       top_z  == NULL || top_z->klass()  == NULL) {
5325     // failed array check
5326     return false;
5327   }
5328 
5329   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5330   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5331   if (x_elem != T_INT || z_elem != T_INT) {
5332     return false;
5333   }
5334 
5335 
5336   Node* x_start = array_element_address(x, intcon(0), x_elem);
5337   Node* z_start = array_element_address(z, intcon(0), z_elem);
5338 
5339   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5340                                   OptoRuntime::squareToLen_Type(),
5341                                   stubAddr, stubName, TypePtr::BOTTOM,
5342                                   x_start, len, z_start, zlen);
5343 
5344   set_result(z);
5345   return true;
5346 }
5347 
5348 //-------------inline_mulAdd------------------------------------------
5349 bool LibraryCallKit::inline_mulAdd() {
5350   assert(UseMulAddIntrinsic, "not implemented on this platform");
5351 
5352   address stubAddr = StubRoutines::mulAdd();
5353   if (stubAddr == NULL) {
5354     return false; // Intrinsic's stub is not implemented on this platform
5355   }
5356   const char* stubName = "mulAdd";
5357 
5358   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5359 
5360   Node* out      = argument(0);
5361   Node* in       = argument(1);
5362   Node* offset   = argument(2);
5363   Node* len      = argument(3);
5364   Node* k        = argument(4);
5365 
5366   const Type* out_type = out->Value(&_gvn);
5367   const Type* in_type = in->Value(&_gvn);
5368   const TypeAryPtr* top_out = out_type->isa_aryptr();
5369   const TypeAryPtr* top_in = in_type->isa_aryptr();
5370   if (top_out  == NULL || top_out->klass()  == NULL ||
5371       top_in == NULL || top_in->klass() == NULL) {
5372     // failed array check
5373     return false;
5374   }
5375 
5376   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5377   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5378   if (out_elem != T_INT || in_elem != T_INT) {
5379     return false;
5380   }
5381 
5382   Node* outlen = load_array_length(out);
5383   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5384   Node* out_start = array_element_address(out, intcon(0), out_elem);
5385   Node* in_start = array_element_address(in, intcon(0), in_elem);
5386 
5387   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5388                                   OptoRuntime::mulAdd_Type(),
5389                                   stubAddr, stubName, TypePtr::BOTTOM,
5390                                   out_start,in_start, new_offset, len, k);
5391   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5392   set_result(result);
5393   return true;
5394 }
5395 
5396 //-------------inline_montgomeryMultiply-----------------------------------
5397 bool LibraryCallKit::inline_montgomeryMultiply() {
5398   address stubAddr = StubRoutines::montgomeryMultiply();
5399   if (stubAddr == NULL) {
5400     return false; // Intrinsic's stub is not implemented on this platform
5401   }
5402 
5403   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5404   const char* stubName = "montgomery_square";
5405 
5406   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5407 
5408   Node* a    = argument(0);
5409   Node* b    = argument(1);
5410   Node* n    = argument(2);
5411   Node* len  = argument(3);
5412   Node* inv  = argument(4);
5413   Node* m    = argument(6);
5414 
5415   const Type* a_type = a->Value(&_gvn);
5416   const TypeAryPtr* top_a = a_type->isa_aryptr();
5417   const Type* b_type = b->Value(&_gvn);
5418   const TypeAryPtr* top_b = b_type->isa_aryptr();
5419   const Type* n_type = a->Value(&_gvn);
5420   const TypeAryPtr* top_n = n_type->isa_aryptr();
5421   const Type* m_type = a->Value(&_gvn);
5422   const TypeAryPtr* top_m = m_type->isa_aryptr();
5423   if (top_a  == NULL || top_a->klass()  == NULL ||
5424       top_b == NULL || top_b->klass()  == NULL ||
5425       top_n == NULL || top_n->klass()  == NULL ||
5426       top_m == NULL || top_m->klass()  == NULL) {
5427     // failed array check
5428     return false;
5429   }
5430 
5431   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5432   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5433   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5434   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5435   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5436     return false;
5437   }
5438 
5439   // Make the call
5440   {
5441     Node* a_start = array_element_address(a, intcon(0), a_elem);
5442     Node* b_start = array_element_address(b, intcon(0), b_elem);
5443     Node* n_start = array_element_address(n, intcon(0), n_elem);
5444     Node* m_start = array_element_address(m, intcon(0), m_elem);
5445 
5446     Node* call = make_runtime_call(RC_LEAF,
5447                                    OptoRuntime::montgomeryMultiply_Type(),
5448                                    stubAddr, stubName, TypePtr::BOTTOM,
5449                                    a_start, b_start, n_start, len, inv, top(),
5450                                    m_start);
5451     set_result(m);
5452   }
5453 
5454   return true;
5455 }
5456 
5457 bool LibraryCallKit::inline_montgomerySquare() {
5458   address stubAddr = StubRoutines::montgomerySquare();
5459   if (stubAddr == NULL) {
5460     return false; // Intrinsic's stub is not implemented on this platform
5461   }
5462 
5463   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5464   const char* stubName = "montgomery_square";
5465 
5466   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5467 
5468   Node* a    = argument(0);
5469   Node* n    = argument(1);
5470   Node* len  = argument(2);
5471   Node* inv  = argument(3);
5472   Node* m    = argument(5);
5473 
5474   const Type* a_type = a->Value(&_gvn);
5475   const TypeAryPtr* top_a = a_type->isa_aryptr();
5476   const Type* n_type = a->Value(&_gvn);
5477   const TypeAryPtr* top_n = n_type->isa_aryptr();
5478   const Type* m_type = a->Value(&_gvn);
5479   const TypeAryPtr* top_m = m_type->isa_aryptr();
5480   if (top_a  == NULL || top_a->klass()  == NULL ||
5481       top_n == NULL || top_n->klass()  == NULL ||
5482       top_m == NULL || top_m->klass()  == NULL) {
5483     // failed array check
5484     return false;
5485   }
5486 
5487   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5488   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5489   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5490   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5491     return false;
5492   }
5493 
5494   // Make the call
5495   {
5496     Node* a_start = array_element_address(a, intcon(0), a_elem);
5497     Node* n_start = array_element_address(n, intcon(0), n_elem);
5498     Node* m_start = array_element_address(m, intcon(0), m_elem);
5499 
5500     Node* call = make_runtime_call(RC_LEAF,
5501                                    OptoRuntime::montgomerySquare_Type(),
5502                                    stubAddr, stubName, TypePtr::BOTTOM,
5503                                    a_start, n_start, len, inv, top(),
5504                                    m_start);
5505     set_result(m);
5506   }
5507 
5508   return true;
5509 }
5510 
5511 
5512 /**
5513  * Calculate CRC32 for byte.
5514  * int java.util.zip.CRC32.update(int crc, int b)
5515  */
5516 bool LibraryCallKit::inline_updateCRC32() {
5517   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5518   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5519   // no receiver since it is static method
5520   Node* crc  = argument(0); // type: int
5521   Node* b    = argument(1); // type: int
5522 
5523   /*
5524    *    int c = ~ crc;
5525    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5526    *    b = b ^ (c >>> 8);
5527    *    crc = ~b;
5528    */
5529 
5530   Node* M1 = intcon(-1);
5531   crc = _gvn.transform(new XorINode(crc, M1));
5532   Node* result = _gvn.transform(new XorINode(crc, b));
5533   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5534 
5535   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5536   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5537   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5538   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5539 
5540   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5541   result = _gvn.transform(new XorINode(crc, result));
5542   result = _gvn.transform(new XorINode(result, M1));
5543   set_result(result);
5544   return true;
5545 }
5546 
5547 /**
5548  * Calculate CRC32 for byte[] array.
5549  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5550  */
5551 bool LibraryCallKit::inline_updateBytesCRC32() {
5552   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5553   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5554   // no receiver since it is static method
5555   Node* crc     = argument(0); // type: int
5556   Node* src     = argument(1); // type: oop
5557   Node* offset  = argument(2); // type: int
5558   Node* length  = argument(3); // type: int
5559 
5560   const Type* src_type = src->Value(&_gvn);
5561   const TypeAryPtr* top_src = src_type->isa_aryptr();
5562   if (top_src  == NULL || top_src->klass()  == NULL) {
5563     // failed array check
5564     return false;
5565   }
5566 
5567   // Figure out the size and type of the elements we will be copying.
5568   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5569   if (src_elem != T_BYTE) {
5570     return false;
5571   }
5572 
5573   // 'src_start' points to src array + scaled offset
5574   Node* src_start = array_element_address(src, offset, src_elem);
5575 
5576   // We assume that range check is done by caller.
5577   // TODO: generate range check (offset+length < src.length) in debug VM.
5578 
5579   // Call the stub.
5580   address stubAddr = StubRoutines::updateBytesCRC32();
5581   const char *stubName = "updateBytesCRC32";
5582 
5583   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5584                                  stubAddr, stubName, TypePtr::BOTTOM,
5585                                  crc, src_start, length);
5586   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5587   set_result(result);
5588   return true;
5589 }
5590 
5591 /**
5592  * Calculate CRC32 for ByteBuffer.
5593  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5594  */
5595 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5596   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5597   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5598   // no receiver since it is static method
5599   Node* crc     = argument(0); // type: int
5600   Node* src     = argument(1); // type: long
5601   Node* offset  = argument(3); // type: int
5602   Node* length  = argument(4); // type: int
5603 
5604   src = ConvL2X(src);  // adjust Java long to machine word
5605   Node* base = _gvn.transform(new CastX2PNode(src));
5606   offset = ConvI2X(offset);
5607 
5608   // 'src_start' points to src array + scaled offset
5609   Node* src_start = basic_plus_adr(top(), base, offset);
5610 
5611   // Call the stub.
5612   address stubAddr = StubRoutines::updateBytesCRC32();
5613   const char *stubName = "updateBytesCRC32";
5614 
5615   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5616                                  stubAddr, stubName, TypePtr::BOTTOM,
5617                                  crc, src_start, length);
5618   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5619   set_result(result);
5620   return true;
5621 }
5622 
5623 //------------------------------get_table_from_crc32c_class-----------------------
5624 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5625   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5626   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5627 
5628   return table;
5629 }
5630 
5631 //------------------------------inline_updateBytesCRC32C-----------------------
5632 //
5633 // Calculate CRC32C for byte[] array.
5634 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5635 //
5636 bool LibraryCallKit::inline_updateBytesCRC32C() {
5637   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5638   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5639   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5640   // no receiver since it is a static method
5641   Node* crc     = argument(0); // type: int
5642   Node* src     = argument(1); // type: oop
5643   Node* offset  = argument(2); // type: int
5644   Node* end     = argument(3); // type: int
5645 
5646   Node* length = _gvn.transform(new SubINode(end, offset));
5647 
5648   const Type* src_type = src->Value(&_gvn);
5649   const TypeAryPtr* top_src = src_type->isa_aryptr();
5650   if (top_src  == NULL || top_src->klass()  == NULL) {
5651     // failed array check
5652     return false;
5653   }
5654 
5655   // Figure out the size and type of the elements we will be copying.
5656   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5657   if (src_elem != T_BYTE) {
5658     return false;
5659   }
5660 
5661   // 'src_start' points to src array + scaled offset
5662   Node* src_start = array_element_address(src, offset, src_elem);
5663 
5664   // static final int[] byteTable in class CRC32C
5665   Node* table = get_table_from_crc32c_class(callee()->holder());
5666   Node* table_start = array_element_address(table, intcon(0), T_INT);
5667 
5668   // We assume that range check is done by caller.
5669   // TODO: generate range check (offset+length < src.length) in debug VM.
5670 
5671   // Call the stub.
5672   address stubAddr = StubRoutines::updateBytesCRC32C();
5673   const char *stubName = "updateBytesCRC32C";
5674 
5675   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5676                                  stubAddr, stubName, TypePtr::BOTTOM,
5677                                  crc, src_start, length, table_start);
5678   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5679   set_result(result);
5680   return true;
5681 }
5682 
5683 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5684 //
5685 // Calculate CRC32C for DirectByteBuffer.
5686 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5687 //
5688 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5689   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5690   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5691   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5692   // no receiver since it is a static method
5693   Node* crc     = argument(0); // type: int
5694   Node* src     = argument(1); // type: long
5695   Node* offset  = argument(3); // type: int
5696   Node* end     = argument(4); // type: int
5697 
5698   Node* length = _gvn.transform(new SubINode(end, offset));
5699 
5700   src = ConvL2X(src);  // adjust Java long to machine word
5701   Node* base = _gvn.transform(new CastX2PNode(src));
5702   offset = ConvI2X(offset);
5703 
5704   // 'src_start' points to src array + scaled offset
5705   Node* src_start = basic_plus_adr(top(), base, offset);
5706 
5707   // static final int[] byteTable in class CRC32C
5708   Node* table = get_table_from_crc32c_class(callee()->holder());
5709   Node* table_start = array_element_address(table, intcon(0), T_INT);
5710 
5711   // Call the stub.
5712   address stubAddr = StubRoutines::updateBytesCRC32C();
5713   const char *stubName = "updateBytesCRC32C";
5714 
5715   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5716                                  stubAddr, stubName, TypePtr::BOTTOM,
5717                                  crc, src_start, length, table_start);
5718   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5719   set_result(result);
5720   return true;
5721 }
5722 
5723 //------------------------------inline_updateBytesAdler32----------------------
5724 //
5725 // Calculate Adler32 checksum for byte[] array.
5726 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5727 //
5728 bool LibraryCallKit::inline_updateBytesAdler32() {
5729   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5730   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5731   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5732   // no receiver since it is static method
5733   Node* crc     = argument(0); // type: int
5734   Node* src     = argument(1); // type: oop
5735   Node* offset  = argument(2); // type: int
5736   Node* length  = argument(3); // type: int
5737 
5738   const Type* src_type = src->Value(&_gvn);
5739   const TypeAryPtr* top_src = src_type->isa_aryptr();
5740   if (top_src  == NULL || top_src->klass()  == NULL) {
5741     // failed array check
5742     return false;
5743   }
5744 
5745   // Figure out the size and type of the elements we will be copying.
5746   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5747   if (src_elem != T_BYTE) {
5748     return false;
5749   }
5750 
5751   // 'src_start' points to src array + scaled offset
5752   Node* src_start = array_element_address(src, offset, src_elem);
5753 
5754   // We assume that range check is done by caller.
5755   // TODO: generate range check (offset+length < src.length) in debug VM.
5756 
5757   // Call the stub.
5758   address stubAddr = StubRoutines::updateBytesAdler32();
5759   const char *stubName = "updateBytesAdler32";
5760 
5761   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5762                                  stubAddr, stubName, TypePtr::BOTTOM,
5763                                  crc, src_start, length);
5764   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5765   set_result(result);
5766   return true;
5767 }
5768 
5769 //------------------------------inline_updateByteBufferAdler32---------------
5770 //
5771 // Calculate Adler32 checksum for DirectByteBuffer.
5772 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5773 //
5774 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5775   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5776   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5777   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5778   // no receiver since it is static method
5779   Node* crc     = argument(0); // type: int
5780   Node* src     = argument(1); // type: long
5781   Node* offset  = argument(3); // type: int
5782   Node* length  = argument(4); // type: int
5783 
5784   src = ConvL2X(src);  // adjust Java long to machine word
5785   Node* base = _gvn.transform(new CastX2PNode(src));
5786   offset = ConvI2X(offset);
5787 
5788   // 'src_start' points to src array + scaled offset
5789   Node* src_start = basic_plus_adr(top(), base, offset);
5790 
5791   // Call the stub.
5792   address stubAddr = StubRoutines::updateBytesAdler32();
5793   const char *stubName = "updateBytesAdler32";
5794 
5795   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5796                                  stubAddr, stubName, TypePtr::BOTTOM,
5797                                  crc, src_start, length);
5798 
5799   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5800   set_result(result);
5801   return true;
5802 }
5803 
5804 //----------------------------inline_reference_get----------------------------
5805 // public T java.lang.ref.Reference.get();
5806 bool LibraryCallKit::inline_reference_get() {
5807   const int referent_offset = java_lang_ref_Reference::referent_offset;
5808   guarantee(referent_offset > 0, "should have already been set");
5809 
5810   // Get the argument:
5811   Node* reference_obj = null_check_receiver();
5812   if (stopped()) return true;
5813 
5814   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5815 
5816   ciInstanceKlass* klass = env()->Object_klass();
5817   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5818 
5819   Node* no_ctrl = NULL;
5820   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5821 
5822   // Use the pre-barrier to record the value in the referent field
5823   pre_barrier(false /* do_load */,
5824               control(),
5825               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5826               result /* pre_val */,
5827               T_OBJECT);
5828 
5829   // Add memory barrier to prevent commoning reads from this field
5830   // across safepoint since GC can change its value.
5831   insert_mem_bar(Op_MemBarCPUOrder);
5832 
5833   set_result(result);
5834   return true;
5835 }
5836 
5837 
5838 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5839                                               bool is_exact=true, bool is_static=false,
5840                                               ciInstanceKlass * fromKls=NULL) {
5841   if (fromKls == NULL) {
5842     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5843     assert(tinst != NULL, "obj is null");
5844     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5845     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5846     fromKls = tinst->klass()->as_instance_klass();
5847   } else {
5848     assert(is_static, "only for static field access");
5849   }
5850   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5851                                               ciSymbol::make(fieldTypeString),
5852                                               is_static);
5853 
5854   assert (field != NULL, "undefined field");
5855   if (field == NULL) return (Node *) NULL;
5856 
5857   if (is_static) {
5858     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5859     fromObj = makecon(tip);
5860   }
5861 
5862   // Next code  copied from Parse::do_get_xxx():
5863 
5864   // Compute address and memory type.
5865   int offset  = field->offset_in_bytes();
5866   bool is_vol = field->is_volatile();
5867   ciType* field_klass = field->type();
5868   assert(field_klass->is_loaded(), "should be loaded");
5869   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5870   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5871   BasicType bt = field->layout_type();
5872 
5873   // Build the resultant type of the load
5874   const Type *type;
5875   if (bt == T_OBJECT) {
5876     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5877   } else {
5878     type = Type::get_const_basic_type(bt);
5879   }
5880 
5881   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5882     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5883   }
5884   // Build the load.
5885   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5886   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5887   // If reference is volatile, prevent following memory ops from
5888   // floating up past the volatile read.  Also prevents commoning
5889   // another volatile read.
5890   if (is_vol) {
5891     // Memory barrier includes bogus read of value to force load BEFORE membar
5892     insert_mem_bar(Op_MemBarAcquire, loadedField);
5893   }
5894   return loadedField;
5895 }
5896 
5897 
5898 //------------------------------inline_aescrypt_Block-----------------------
5899 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5900   address stubAddr = NULL;
5901   const char *stubName;
5902   assert(UseAES, "need AES instruction support");
5903 
5904   switch(id) {
5905   case vmIntrinsics::_aescrypt_encryptBlock:
5906     stubAddr = StubRoutines::aescrypt_encryptBlock();
5907     stubName = "aescrypt_encryptBlock";
5908     break;
5909   case vmIntrinsics::_aescrypt_decryptBlock:
5910     stubAddr = StubRoutines::aescrypt_decryptBlock();
5911     stubName = "aescrypt_decryptBlock";
5912     break;
5913   }
5914   if (stubAddr == NULL) return false;
5915 
5916   Node* aescrypt_object = argument(0);
5917   Node* src             = argument(1);
5918   Node* src_offset      = argument(2);
5919   Node* dest            = argument(3);
5920   Node* dest_offset     = argument(4);
5921 
5922   // (1) src and dest are arrays.
5923   const Type* src_type = src->Value(&_gvn);
5924   const Type* dest_type = dest->Value(&_gvn);
5925   const TypeAryPtr* top_src = src_type->isa_aryptr();
5926   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5927   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5928 
5929   // for the quick and dirty code we will skip all the checks.
5930   // we are just trying to get the call to be generated.
5931   Node* src_start  = src;
5932   Node* dest_start = dest;
5933   if (src_offset != NULL || dest_offset != NULL) {
5934     assert(src_offset != NULL && dest_offset != NULL, "");
5935     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5936     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5937   }
5938 
5939   // now need to get the start of its expanded key array
5940   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5941   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5942   if (k_start == NULL) return false;
5943 
5944   if (Matcher::pass_original_key_for_aes()) {
5945     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5946     // compatibility issues between Java key expansion and SPARC crypto instructions
5947     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5948     if (original_k_start == NULL) return false;
5949 
5950     // Call the stub.
5951     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5952                       stubAddr, stubName, TypePtr::BOTTOM,
5953                       src_start, dest_start, k_start, original_k_start);
5954   } else {
5955     // Call the stub.
5956     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5957                       stubAddr, stubName, TypePtr::BOTTOM,
5958                       src_start, dest_start, k_start);
5959   }
5960 
5961   return true;
5962 }
5963 
5964 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5965 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5966   address stubAddr = NULL;
5967   const char *stubName = NULL;
5968 
5969   assert(UseAES, "need AES instruction support");
5970 
5971   switch(id) {
5972   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5973     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5974     stubName = "cipherBlockChaining_encryptAESCrypt";
5975     break;
5976   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5977     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5978     stubName = "cipherBlockChaining_decryptAESCrypt";
5979     break;
5980   }
5981   if (stubAddr == NULL) return false;
5982 
5983   Node* cipherBlockChaining_object = argument(0);
5984   Node* src                        = argument(1);
5985   Node* src_offset                 = argument(2);
5986   Node* len                        = argument(3);
5987   Node* dest                       = argument(4);
5988   Node* dest_offset                = argument(5);
5989 
5990   // (1) src and dest are arrays.
5991   const Type* src_type = src->Value(&_gvn);
5992   const Type* dest_type = dest->Value(&_gvn);
5993   const TypeAryPtr* top_src = src_type->isa_aryptr();
5994   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5995   assert (top_src  != NULL && top_src->klass()  != NULL
5996           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5997 
5998   // checks are the responsibility of the caller
5999   Node* src_start  = src;
6000   Node* dest_start = dest;
6001   if (src_offset != NULL || dest_offset != NULL) {
6002     assert(src_offset != NULL && dest_offset != NULL, "");
6003     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6004     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6005   }
6006 
6007   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6008   // (because of the predicated logic executed earlier).
6009   // so we cast it here safely.
6010   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6011 
6012   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6013   if (embeddedCipherObj == NULL) return false;
6014 
6015   // cast it to what we know it will be at runtime
6016   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6017   assert(tinst != NULL, "CBC obj is null");
6018   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6019   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6020   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6021 
6022   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6023   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6024   const TypeOopPtr* xtype = aklass->as_instance_type();
6025   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6026   aescrypt_object = _gvn.transform(aescrypt_object);
6027 
6028   // we need to get the start of the aescrypt_object's expanded key array
6029   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6030   if (k_start == NULL) return false;
6031 
6032   // similarly, get the start address of the r vector
6033   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6034   if (objRvec == NULL) return false;
6035   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6036 
6037   Node* cbcCrypt;
6038   if (Matcher::pass_original_key_for_aes()) {
6039     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6040     // compatibility issues between Java key expansion and SPARC crypto instructions
6041     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6042     if (original_k_start == NULL) return false;
6043 
6044     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6045     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6046                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6047                                  stubAddr, stubName, TypePtr::BOTTOM,
6048                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6049   } else {
6050     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6051     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6052                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6053                                  stubAddr, stubName, TypePtr::BOTTOM,
6054                                  src_start, dest_start, k_start, r_start, len);
6055   }
6056 
6057   // return cipher length (int)
6058   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6059   set_result(retvalue);
6060   return true;
6061 }
6062 
6063 //------------------------------get_key_start_from_aescrypt_object-----------------------
6064 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6065   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6066   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6067   if (objAESCryptKey == NULL) return (Node *) NULL;
6068 
6069   // now have the array, need to get the start address of the K array
6070   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6071   return k_start;
6072 }
6073 
6074 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6075 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6076   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6077   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6078   if (objAESCryptKey == NULL) return (Node *) NULL;
6079 
6080   // now have the array, need to get the start address of the lastKey array
6081   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6082   return original_k_start;
6083 }
6084 
6085 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6086 // Return node representing slow path of predicate check.
6087 // the pseudo code we want to emulate with this predicate is:
6088 // for encryption:
6089 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6090 // for decryption:
6091 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6092 //    note cipher==plain is more conservative than the original java code but that's OK
6093 //
6094 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6095   // The receiver was checked for NULL already.
6096   Node* objCBC = argument(0);
6097 
6098   // Load embeddedCipher field of CipherBlockChaining object.
6099   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6100 
6101   // get AESCrypt klass for instanceOf check
6102   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6103   // will have same classloader as CipherBlockChaining object
6104   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6105   assert(tinst != NULL, "CBCobj is null");
6106   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6107 
6108   // we want to do an instanceof comparison against the AESCrypt class
6109   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6110   if (!klass_AESCrypt->is_loaded()) {
6111     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6112     Node* ctrl = control();
6113     set_control(top()); // no regular fast path
6114     return ctrl;
6115   }
6116   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6117 
6118   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6119   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6120   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6121 
6122   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6123 
6124   // for encryption, we are done
6125   if (!decrypting)
6126     return instof_false;  // even if it is NULL
6127 
6128   // for decryption, we need to add a further check to avoid
6129   // taking the intrinsic path when cipher and plain are the same
6130   // see the original java code for why.
6131   RegionNode* region = new RegionNode(3);
6132   region->init_req(1, instof_false);
6133   Node* src = argument(1);
6134   Node* dest = argument(4);
6135   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6136   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6137   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6138   region->init_req(2, src_dest_conjoint);
6139 
6140   record_for_igvn(region);
6141   return _gvn.transform(region);
6142 }
6143 
6144 //------------------------------inline_ghash_processBlocks
6145 bool LibraryCallKit::inline_ghash_processBlocks() {
6146   address stubAddr;
6147   const char *stubName;
6148   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6149 
6150   stubAddr = StubRoutines::ghash_processBlocks();
6151   stubName = "ghash_processBlocks";
6152 
6153   Node* data           = argument(0);
6154   Node* offset         = argument(1);
6155   Node* len            = argument(2);
6156   Node* state          = argument(3);
6157   Node* subkeyH        = argument(4);
6158 
6159   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6160   assert(state_start, "state is NULL");
6161   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6162   assert(subkeyH_start, "subkeyH is NULL");
6163   Node* data_start  = array_element_address(data, offset, T_BYTE);
6164   assert(data_start, "data is NULL");
6165 
6166   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6167                                   OptoRuntime::ghash_processBlocks_Type(),
6168                                   stubAddr, stubName, TypePtr::BOTTOM,
6169                                   state_start, subkeyH_start, data_start, len);
6170   return true;
6171 }
6172 
6173 //------------------------------inline_sha_implCompress-----------------------
6174 //
6175 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6176 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6177 //
6178 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6179 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6180 //
6181 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6182 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6183 //
6184 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6185   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6186 
6187   Node* sha_obj = argument(0);
6188   Node* src     = argument(1); // type oop
6189   Node* ofs     = argument(2); // type int
6190 
6191   const Type* src_type = src->Value(&_gvn);
6192   const TypeAryPtr* top_src = src_type->isa_aryptr();
6193   if (top_src  == NULL || top_src->klass()  == NULL) {
6194     // failed array check
6195     return false;
6196   }
6197   // Figure out the size and type of the elements we will be copying.
6198   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6199   if (src_elem != T_BYTE) {
6200     return false;
6201   }
6202   // 'src_start' points to src array + offset
6203   Node* src_start = array_element_address(src, ofs, src_elem);
6204   Node* state = NULL;
6205   address stubAddr;
6206   const char *stubName;
6207 
6208   switch(id) {
6209   case vmIntrinsics::_sha_implCompress:
6210     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6211     state = get_state_from_sha_object(sha_obj);
6212     stubAddr = StubRoutines::sha1_implCompress();
6213     stubName = "sha1_implCompress";
6214     break;
6215   case vmIntrinsics::_sha2_implCompress:
6216     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6217     state = get_state_from_sha_object(sha_obj);
6218     stubAddr = StubRoutines::sha256_implCompress();
6219     stubName = "sha256_implCompress";
6220     break;
6221   case vmIntrinsics::_sha5_implCompress:
6222     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6223     state = get_state_from_sha5_object(sha_obj);
6224     stubAddr = StubRoutines::sha512_implCompress();
6225     stubName = "sha512_implCompress";
6226     break;
6227   default:
6228     fatal_unexpected_iid(id);
6229     return false;
6230   }
6231   if (state == NULL) return false;
6232 
6233   // Call the stub.
6234   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6235                                  stubAddr, stubName, TypePtr::BOTTOM,
6236                                  src_start, state);
6237 
6238   return true;
6239 }
6240 
6241 //------------------------------inline_digestBase_implCompressMB-----------------------
6242 //
6243 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6244 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6245 //
6246 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6247   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6248          "need SHA1/SHA256/SHA512 instruction support");
6249   assert((uint)predicate < 3, "sanity");
6250   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6251 
6252   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6253   Node* src            = argument(1); // byte[] array
6254   Node* ofs            = argument(2); // type int
6255   Node* limit          = argument(3); // type int
6256 
6257   const Type* src_type = src->Value(&_gvn);
6258   const TypeAryPtr* top_src = src_type->isa_aryptr();
6259   if (top_src  == NULL || top_src->klass()  == NULL) {
6260     // failed array check
6261     return false;
6262   }
6263   // Figure out the size and type of the elements we will be copying.
6264   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6265   if (src_elem != T_BYTE) {
6266     return false;
6267   }
6268   // 'src_start' points to src array + offset
6269   Node* src_start = array_element_address(src, ofs, src_elem);
6270 
6271   const char* klass_SHA_name = NULL;
6272   const char* stub_name = NULL;
6273   address     stub_addr = NULL;
6274   bool        long_state = false;
6275 
6276   switch (predicate) {
6277   case 0:
6278     if (UseSHA1Intrinsics) {
6279       klass_SHA_name = "sun/security/provider/SHA";
6280       stub_name = "sha1_implCompressMB";
6281       stub_addr = StubRoutines::sha1_implCompressMB();
6282     }
6283     break;
6284   case 1:
6285     if (UseSHA256Intrinsics) {
6286       klass_SHA_name = "sun/security/provider/SHA2";
6287       stub_name = "sha256_implCompressMB";
6288       stub_addr = StubRoutines::sha256_implCompressMB();
6289     }
6290     break;
6291   case 2:
6292     if (UseSHA512Intrinsics) {
6293       klass_SHA_name = "sun/security/provider/SHA5";
6294       stub_name = "sha512_implCompressMB";
6295       stub_addr = StubRoutines::sha512_implCompressMB();
6296       long_state = true;
6297     }
6298     break;
6299   default:
6300     fatal("unknown SHA intrinsic predicate: %d", predicate);
6301   }
6302   if (klass_SHA_name != NULL) {
6303     // get DigestBase klass to lookup for SHA klass
6304     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6305     assert(tinst != NULL, "digestBase_obj is not instance???");
6306     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6307 
6308     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6309     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6310     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6311     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6312   }
6313   return false;
6314 }
6315 //------------------------------inline_sha_implCompressMB-----------------------
6316 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6317                                                bool long_state, address stubAddr, const char *stubName,
6318                                                Node* src_start, Node* ofs, Node* limit) {
6319   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6320   const TypeOopPtr* xtype = aklass->as_instance_type();
6321   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6322   sha_obj = _gvn.transform(sha_obj);
6323 
6324   Node* state;
6325   if (long_state) {
6326     state = get_state_from_sha5_object(sha_obj);
6327   } else {
6328     state = get_state_from_sha_object(sha_obj);
6329   }
6330   if (state == NULL) return false;
6331 
6332   // Call the stub.
6333   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6334                                  OptoRuntime::digestBase_implCompressMB_Type(),
6335                                  stubAddr, stubName, TypePtr::BOTTOM,
6336                                  src_start, state, ofs, limit);
6337   // return ofs (int)
6338   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6339   set_result(result);
6340 
6341   return true;
6342 }
6343 
6344 //------------------------------get_state_from_sha_object-----------------------
6345 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6346   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6347   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6348   if (sha_state == NULL) return (Node *) NULL;
6349 
6350   // now have the array, need to get the start address of the state array
6351   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6352   return state;
6353 }
6354 
6355 //------------------------------get_state_from_sha5_object-----------------------
6356 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6357   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6358   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6359   if (sha_state == NULL) return (Node *) NULL;
6360 
6361   // now have the array, need to get the start address of the state array
6362   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6363   return state;
6364 }
6365 
6366 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6367 // Return node representing slow path of predicate check.
6368 // the pseudo code we want to emulate with this predicate is:
6369 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6370 //
6371 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6372   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6373          "need SHA1/SHA256/SHA512 instruction support");
6374   assert((uint)predicate < 3, "sanity");
6375 
6376   // The receiver was checked for NULL already.
6377   Node* digestBaseObj = argument(0);
6378 
6379   // get DigestBase klass for instanceOf check
6380   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6381   assert(tinst != NULL, "digestBaseObj is null");
6382   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6383 
6384   const char* klass_SHA_name = NULL;
6385   switch (predicate) {
6386   case 0:
6387     if (UseSHA1Intrinsics) {
6388       // we want to do an instanceof comparison against the SHA class
6389       klass_SHA_name = "sun/security/provider/SHA";
6390     }
6391     break;
6392   case 1:
6393     if (UseSHA256Intrinsics) {
6394       // we want to do an instanceof comparison against the SHA2 class
6395       klass_SHA_name = "sun/security/provider/SHA2";
6396     }
6397     break;
6398   case 2:
6399     if (UseSHA512Intrinsics) {
6400       // we want to do an instanceof comparison against the SHA5 class
6401       klass_SHA_name = "sun/security/provider/SHA5";
6402     }
6403     break;
6404   default:
6405     fatal("unknown SHA intrinsic predicate: %d", predicate);
6406   }
6407 
6408   ciKlass* klass_SHA = NULL;
6409   if (klass_SHA_name != NULL) {
6410     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6411   }
6412   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6413     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6414     Node* ctrl = control();
6415     set_control(top()); // no intrinsic path
6416     return ctrl;
6417   }
6418   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6419 
6420   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6421   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6422   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6423   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6424 
6425   return instof_false;  // even if it is NULL
6426 }
6427 
6428 bool LibraryCallKit::inline_profileBoolean() {
6429   Node* counts = argument(1);
6430   const TypeAryPtr* ary = NULL;
6431   ciArray* aobj = NULL;
6432   if (counts->is_Con()
6433       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6434       && (aobj = ary->const_oop()->as_array()) != NULL
6435       && (aobj->length() == 2)) {
6436     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6437     jint false_cnt = aobj->element_value(0).as_int();
6438     jint  true_cnt = aobj->element_value(1).as_int();
6439 
6440     if (C->log() != NULL) {
6441       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6442                      false_cnt, true_cnt);
6443     }
6444 
6445     if (false_cnt + true_cnt == 0) {
6446       // According to profile, never executed.
6447       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6448                           Deoptimization::Action_reinterpret);
6449       return true;
6450     }
6451 
6452     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6453     // is a number of each value occurrences.
6454     Node* result = argument(0);
6455     if (false_cnt == 0 || true_cnt == 0) {
6456       // According to profile, one value has been never seen.
6457       int expected_val = (false_cnt == 0) ? 1 : 0;
6458 
6459       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6460       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6461 
6462       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6463       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6464       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6465 
6466       { // Slow path: uncommon trap for never seen value and then reexecute
6467         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6468         // the value has been seen at least once.
6469         PreserveJVMState pjvms(this);
6470         PreserveReexecuteState preexecs(this);
6471         jvms()->set_should_reexecute(true);
6472 
6473         set_control(slow_path);
6474         set_i_o(i_o());
6475 
6476         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6477                             Deoptimization::Action_reinterpret);
6478       }
6479       // The guard for never seen value enables sharpening of the result and
6480       // returning a constant. It allows to eliminate branches on the same value
6481       // later on.
6482       set_control(fast_path);
6483       result = intcon(expected_val);
6484     }
6485     // Stop profiling.
6486     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6487     // By replacing method body with profile data (represented as ProfileBooleanNode
6488     // on IR level) we effectively disable profiling.
6489     // It enables full speed execution once optimized code is generated.
6490     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6491     C->record_for_igvn(profile);
6492     set_result(profile);
6493     return true;
6494   } else {
6495     // Continue profiling.
6496     // Profile data isn't available at the moment. So, execute method's bytecode version.
6497     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6498     // is compiled and counters aren't available since corresponding MethodHandle
6499     // isn't a compile-time constant.
6500     return false;
6501   }
6502 }
6503 
6504 bool LibraryCallKit::inline_isCompileConstant() {
6505   Node* n = argument(0);
6506   set_result(n->is_Con() ? intcon(1) : intcon(0));
6507   return true;
6508 }