1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/codeCacheExtensions.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "logging/log.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vframeArray.hpp"
  61 #include "runtime/vm_version.hpp"
  62 #include "utilities/copy.hpp"
  63 #include "utilities/events.hpp"
  64 
  65 
  66 // Implementation of StubAssembler
  67 
  68 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  69   _name = name;
  70   _must_gc_arguments = false;
  71   _frame_size = no_frame_size;
  72   _num_rt_args = 0;
  73   _stub_id = stub_id;
  74 }
  75 
  76 
  77 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  78   _name = name;
  79   _must_gc_arguments = must_gc_arguments;
  80 }
  81 
  82 
  83 void StubAssembler::set_frame_size(int size) {
  84   if (_frame_size == no_frame_size) {
  85     _frame_size = size;
  86   }
  87   assert(_frame_size == size, "can't change the frame size");
  88 }
  89 
  90 
  91 void StubAssembler::set_num_rt_args(int args) {
  92   if (_num_rt_args == 0) {
  93     _num_rt_args = args;
  94   }
  95   assert(_num_rt_args == args, "can't change the number of args");
  96 }
  97 
  98 // Implementation of Runtime1
  99 
 100 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 101 const char *Runtime1::_blob_names[] = {
 102   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 103 };
 104 
 105 #ifndef PRODUCT
 106 // statistics
 107 int Runtime1::_generic_arraycopy_cnt = 0;
 108 int Runtime1::_primitive_arraycopy_cnt = 0;
 109 int Runtime1::_oop_arraycopy_cnt = 0;
 110 int Runtime1::_generic_arraycopystub_cnt = 0;
 111 int Runtime1::_arraycopy_slowcase_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_cnt = 0;
 113 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 114 int Runtime1::_new_type_array_slowcase_cnt = 0;
 115 int Runtime1::_new_object_array_slowcase_cnt = 0;
 116 int Runtime1::_new_instance_slowcase_cnt = 0;
 117 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 118 int Runtime1::_monitorenter_slowcase_cnt = 0;
 119 int Runtime1::_monitorexit_slowcase_cnt = 0;
 120 int Runtime1::_patch_code_slowcase_cnt = 0;
 121 int Runtime1::_throw_range_check_exception_count = 0;
 122 int Runtime1::_throw_index_exception_count = 0;
 123 int Runtime1::_throw_div0_exception_count = 0;
 124 int Runtime1::_throw_null_pointer_exception_count = 0;
 125 int Runtime1::_throw_class_cast_exception_count = 0;
 126 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 127 int Runtime1::_throw_array_store_exception_count = 0;
 128 int Runtime1::_throw_count = 0;
 129 
 130 static int _byte_arraycopy_stub_cnt = 0;
 131 static int _short_arraycopy_stub_cnt = 0;
 132 static int _int_arraycopy_stub_cnt = 0;
 133 static int _long_arraycopy_stub_cnt = 0;
 134 static int _oop_arraycopy_stub_cnt = 0;
 135 
 136 address Runtime1::arraycopy_count_address(BasicType type) {
 137   switch (type) {
 138   case T_BOOLEAN:
 139   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 140   case T_CHAR:
 141   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 142   case T_FLOAT:
 143   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 144   case T_DOUBLE:
 145   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 146   case T_ARRAY:
 147   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 148   default:
 149     ShouldNotReachHere();
 150     return NULL;
 151   }
 152 }
 153 
 154 
 155 #endif
 156 
 157 // Simple helper to see if the caller of a runtime stub which
 158 // entered the VM has been deoptimized
 159 
 160 static bool caller_is_deopted() {
 161   JavaThread* thread = JavaThread::current();
 162   RegisterMap reg_map(thread, false);
 163   frame runtime_frame = thread->last_frame();
 164   frame caller_frame = runtime_frame.sender(&reg_map);
 165   assert(caller_frame.is_compiled_frame(), "must be compiled");
 166   return caller_frame.is_deoptimized_frame();
 167 }
 168 
 169 // Stress deoptimization
 170 static void deopt_caller() {
 171   if ( !caller_is_deopted()) {
 172     JavaThread* thread = JavaThread::current();
 173     RegisterMap reg_map(thread, false);
 174     frame runtime_frame = thread->last_frame();
 175     frame caller_frame = runtime_frame.sender(&reg_map);
 176     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 177     assert(caller_is_deopted(), "Must be deoptimized");
 178   }
 179 }
 180 
 181 
 182 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 183   assert(0 <= id && id < number_of_ids, "illegal stub id");
 184   ResourceMark rm;
 185   // create code buffer for code storage
 186   CodeBuffer code(buffer_blob);
 187 
 188   OopMapSet* oop_maps;
 189   int frame_size;
 190   bool must_gc_arguments;
 191 
 192   if (!CodeCacheExtensions::skip_compiler_support()) {
 193     // bypass useless code generation
 194     Compilation::setup_code_buffer(&code, 0);
 195 
 196     // create assembler for code generation
 197     StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 198     // generate code for runtime stub
 199     oop_maps = generate_code_for(id, sasm);
 200     assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 201            "if stub has an oop map it must have a valid frame size");
 202 
 203 #ifdef ASSERT
 204     // Make sure that stubs that need oopmaps have them
 205     switch (id) {
 206       // These stubs don't need to have an oopmap
 207     case dtrace_object_alloc_id:
 208     case g1_pre_barrier_slow_id:
 209     case g1_post_barrier_slow_id:
 210     case slow_subtype_check_id:
 211     case fpu2long_stub_id:
 212     case unwind_exception_id:
 213     case counter_overflow_id:
 214 #if defined(SPARC) || defined(PPC32)
 215     case handle_exception_nofpu_id:  // Unused on sparc
 216 #endif
 217       break;
 218 
 219       // All other stubs should have oopmaps
 220     default:
 221       assert(oop_maps != NULL, "must have an oopmap");
 222     }
 223 #endif
 224 
 225     // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 226     sasm->align(BytesPerWord);
 227     // make sure all code is in code buffer
 228     sasm->flush();
 229 
 230     frame_size = sasm->frame_size();
 231     must_gc_arguments = sasm->must_gc_arguments();
 232   } else {
 233     /* ignored values */
 234     oop_maps = NULL;
 235     frame_size = 0;
 236     must_gc_arguments = false;
 237   }
 238   // create blob - distinguish a few special cases
 239   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 240                                                  &code,
 241                                                  CodeOffsets::frame_never_safe,
 242                                                  frame_size,
 243                                                  oop_maps,
 244                                                  must_gc_arguments);
 245   // install blob
 246   assert(blob != NULL, "blob must exist");
 247   _blobs[id] = blob;
 248 }
 249 
 250 
 251 void Runtime1::initialize(BufferBlob* blob) {
 252   // platform-dependent initialization
 253   initialize_pd();
 254   // generate stubs
 255   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 256   // printing
 257 #ifndef PRODUCT
 258   if (PrintSimpleStubs) {
 259     ResourceMark rm;
 260     for (int id = 0; id < number_of_ids; id++) {
 261       _blobs[id]->print();
 262       if (_blobs[id]->oop_maps() != NULL) {
 263         _blobs[id]->oop_maps()->print();
 264       }
 265     }
 266   }
 267 #endif
 268 }
 269 
 270 
 271 CodeBlob* Runtime1::blob_for(StubID id) {
 272   assert(0 <= id && id < number_of_ids, "illegal stub id");
 273   return _blobs[id];
 274 }
 275 
 276 
 277 const char* Runtime1::name_for(StubID id) {
 278   assert(0 <= id && id < number_of_ids, "illegal stub id");
 279   return _blob_names[id];
 280 }
 281 
 282 const char* Runtime1::name_for_address(address entry) {
 283   for (int id = 0; id < number_of_ids; id++) {
 284     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 285   }
 286 
 287 #define FUNCTION_CASE(a, f) \
 288   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 289 
 290   FUNCTION_CASE(entry, os::javaTimeMillis);
 291   FUNCTION_CASE(entry, os::javaTimeNanos);
 292   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 293   FUNCTION_CASE(entry, SharedRuntime::d2f);
 294   FUNCTION_CASE(entry, SharedRuntime::d2i);
 295   FUNCTION_CASE(entry, SharedRuntime::d2l);
 296   FUNCTION_CASE(entry, SharedRuntime::dcos);
 297   FUNCTION_CASE(entry, SharedRuntime::dexp);
 298   FUNCTION_CASE(entry, SharedRuntime::dlog);
 299   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 300   FUNCTION_CASE(entry, SharedRuntime::dpow);
 301   FUNCTION_CASE(entry, SharedRuntime::drem);
 302   FUNCTION_CASE(entry, SharedRuntime::dsin);
 303   FUNCTION_CASE(entry, SharedRuntime::dtan);
 304   FUNCTION_CASE(entry, SharedRuntime::f2i);
 305   FUNCTION_CASE(entry, SharedRuntime::f2l);
 306   FUNCTION_CASE(entry, SharedRuntime::frem);
 307   FUNCTION_CASE(entry, SharedRuntime::l2d);
 308   FUNCTION_CASE(entry, SharedRuntime::l2f);
 309   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 310   FUNCTION_CASE(entry, SharedRuntime::lmul);
 311   FUNCTION_CASE(entry, SharedRuntime::lrem);
 312   FUNCTION_CASE(entry, SharedRuntime::lrem);
 313   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 314   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 315   FUNCTION_CASE(entry, is_instance_of);
 316   FUNCTION_CASE(entry, trace_block_entry);
 317 #ifdef TRACE_HAVE_INTRINSICS
 318   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 319 #endif
 320   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 321   FUNCTION_CASE(entry, StubRoutines::dexp());
 322   FUNCTION_CASE(entry, StubRoutines::dlog());
 323   FUNCTION_CASE(entry, StubRoutines::dpow());
 324   FUNCTION_CASE(entry, StubRoutines::dsin());
 325   FUNCTION_CASE(entry, StubRoutines::dcos());
 326 
 327 #undef FUNCTION_CASE
 328 
 329   // Soft float adds more runtime names.
 330   return pd_name_for_address(entry);
 331 }
 332 
 333 
 334 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 335   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 336 
 337   assert(klass->is_klass(), "not a class");
 338   instanceKlassHandle h(thread, klass);
 339   h->check_valid_for_instantiation(true, CHECK);
 340   // make sure klass is initialized
 341   h->initialize(CHECK);
 342   // allocate instance and return via TLS
 343   oop obj = h->allocate_instance(CHECK);
 344   thread->set_vm_result(obj);
 345 JRT_END
 346 
 347 
 348 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 349   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 350   // Note: no handle for klass needed since they are not used
 351   //       anymore after new_typeArray() and no GC can happen before.
 352   //       (This may have to change if this code changes!)
 353   assert(klass->is_klass(), "not a class");
 354   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 355   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 356   thread->set_vm_result(obj);
 357   // This is pretty rare but this runtime patch is stressful to deoptimization
 358   // if we deoptimize here so force a deopt to stress the path.
 359   if (DeoptimizeALot) {
 360     deopt_caller();
 361   }
 362 
 363 JRT_END
 364 
 365 
 366 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 367   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 368 
 369   // Note: no handle for klass needed since they are not used
 370   //       anymore after new_objArray() and no GC can happen before.
 371   //       (This may have to change if this code changes!)
 372   assert(array_klass->is_klass(), "not a class");
 373   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 374   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 375   thread->set_vm_result(obj);
 376   // This is pretty rare but this runtime patch is stressful to deoptimization
 377   // if we deoptimize here so force a deopt to stress the path.
 378   if (DeoptimizeALot) {
 379     deopt_caller();
 380   }
 381 JRT_END
 382 
 383 
 384 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 385   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 386 
 387   assert(klass->is_klass(), "not a class");
 388   assert(rank >= 1, "rank must be nonzero");
 389   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 390   thread->set_vm_result(obj);
 391 JRT_END
 392 
 393 
 394 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 395   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 396 JRT_END
 397 
 398 
 399 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 400   ResourceMark rm(thread);
 401   const char* klass_name = obj->klass()->external_name();
 402   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 403 JRT_END
 404 
 405 
 406 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 407 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 408 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 409 // a constant.
 410 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 411   nmethod* osr_nm = NULL;
 412   methodHandle method(THREAD, m);
 413 
 414   RegisterMap map(THREAD, false);
 415   frame fr =  THREAD->last_frame().sender(&map);
 416   nmethod* nm = (nmethod*) fr.cb();
 417   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 418   methodHandle enclosing_method(THREAD, nm->method());
 419 
 420   CompLevel level = (CompLevel)nm->comp_level();
 421   int bci = InvocationEntryBci;
 422   if (branch_bci != InvocationEntryBci) {
 423     // Compute destination bci
 424     address pc = method()->code_base() + branch_bci;
 425     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 426     int offset = 0;
 427     switch (branch) {
 428       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 429       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 430       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 431       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 432       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 433       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 434       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 435         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 436         break;
 437       case Bytecodes::_goto_w:
 438         offset = Bytes::get_Java_u4(pc + 1);
 439         break;
 440       default: ;
 441     }
 442     bci = branch_bci + offset;
 443   }
 444   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 445   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 446   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 447   return osr_nm;
 448 }
 449 
 450 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 451   nmethod* osr_nm;
 452   JRT_BLOCK
 453     osr_nm = counter_overflow_helper(thread, bci, method);
 454     if (osr_nm != NULL) {
 455       RegisterMap map(thread, false);
 456       frame fr =  thread->last_frame().sender(&map);
 457       Deoptimization::deoptimize_frame(thread, fr.id());
 458     }
 459   JRT_BLOCK_END
 460   return NULL;
 461 JRT_END
 462 
 463 extern void vm_exit(int code);
 464 
 465 // Enter this method from compiled code handler below. This is where we transition
 466 // to VM mode. This is done as a helper routine so that the method called directly
 467 // from compiled code does not have to transition to VM. This allows the entry
 468 // method to see if the nmethod that we have just looked up a handler for has
 469 // been deoptimized while we were in the vm. This simplifies the assembly code
 470 // cpu directories.
 471 //
 472 // We are entering here from exception stub (via the entry method below)
 473 // If there is a compiled exception handler in this method, we will continue there;
 474 // otherwise we will unwind the stack and continue at the caller of top frame method
 475 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 476 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 477 // check to see if the handler we are going to return is now in a nmethod that has
 478 // been deoptimized. If that is the case we return the deopt blob
 479 // unpack_with_exception entry instead. This makes life for the exception blob easier
 480 // because making that same check and diverting is painful from assembly language.
 481 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 482   // Reset method handle flag.
 483   thread->set_is_method_handle_return(false);
 484 
 485   Handle exception(thread, ex);
 486   nm = CodeCache::find_nmethod(pc);
 487   assert(nm != NULL, "this is not an nmethod");
 488   // Adjust the pc as needed/
 489   if (nm->is_deopt_pc(pc)) {
 490     RegisterMap map(thread, false);
 491     frame exception_frame = thread->last_frame().sender(&map);
 492     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 493     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 494     pc = exception_frame.pc();
 495   }
 496 #ifdef ASSERT
 497   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 498   assert(exception->is_oop(), "just checking");
 499   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 500   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 501     if (ExitVMOnVerifyError) vm_exit(-1);
 502     ShouldNotReachHere();
 503   }
 504 #endif
 505 
 506   // Check the stack guard pages and reenable them if necessary and there is
 507   // enough space on the stack to do so.  Use fast exceptions only if the guard
 508   // pages are enabled.
 509   bool guard_pages_enabled = thread->stack_guards_enabled();
 510   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 511 
 512   if (JvmtiExport::can_post_on_exceptions()) {
 513     // To ensure correct notification of exception catches and throws
 514     // we have to deoptimize here.  If we attempted to notify the
 515     // catches and throws during this exception lookup it's possible
 516     // we could deoptimize on the way out of the VM and end back in
 517     // the interpreter at the throw site.  This would result in double
 518     // notifications since the interpreter would also notify about
 519     // these same catches and throws as it unwound the frame.
 520 
 521     RegisterMap reg_map(thread);
 522     frame stub_frame = thread->last_frame();
 523     frame caller_frame = stub_frame.sender(&reg_map);
 524 
 525     // We don't really want to deoptimize the nmethod itself since we
 526     // can actually continue in the exception handler ourselves but I
 527     // don't see an easy way to have the desired effect.
 528     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 529     assert(caller_is_deopted(), "Must be deoptimized");
 530 
 531     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 532   }
 533 
 534   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 535   if (guard_pages_enabled) {
 536     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 537     if (fast_continuation != NULL) {
 538       // Set flag if return address is a method handle call site.
 539       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 540       return fast_continuation;
 541     }
 542   }
 543 
 544   // If the stack guard pages are enabled, check whether there is a handler in
 545   // the current method.  Otherwise (guard pages disabled), force an unwind and
 546   // skip the exception cache update (i.e., just leave continuation==NULL).
 547   address continuation = NULL;
 548   if (guard_pages_enabled) {
 549 
 550     // New exception handling mechanism can support inlined methods
 551     // with exception handlers since the mappings are from PC to PC
 552 
 553     // debugging support
 554     // tracing
 555     if (log_is_enabled(Info, exceptions)) {
 556       ResourceMark rm;
 557       stringStream tempst;
 558       tempst.print("compiled method <%s>\n"
 559                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 560                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 561       Exceptions::log_exception(exception, tempst);
 562     }
 563     // for AbortVMOnException flag
 564     Exceptions::debug_check_abort(exception);
 565 
 566     // Clear out the exception oop and pc since looking up an
 567     // exception handler can cause class loading, which might throw an
 568     // exception and those fields are expected to be clear during
 569     // normal bytecode execution.
 570     thread->clear_exception_oop_and_pc();
 571 
 572     Handle original_exception(thread, exception());
 573 
 574     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 575     // If an exception was thrown during exception dispatch, the exception oop may have changed
 576     thread->set_exception_oop(exception());
 577     thread->set_exception_pc(pc);
 578 
 579     // the exception cache is used only by non-implicit exceptions
 580     // Update the exception cache only when there didn't happen
 581     // another exception during the computation of the compiled
 582     // exception handler.
 583     if (continuation != NULL && original_exception() == exception()) {
 584       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 585     }
 586   }
 587 
 588   thread->set_vm_result(exception());
 589   // Set flag if return address is a method handle call site.
 590   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 591 
 592   if (log_is_enabled(Info, exceptions)) {
 593     ResourceMark rm;
 594     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 595                          " for exception thrown at PC " PTR_FORMAT,
 596                          p2i(thread), p2i(continuation), p2i(pc));
 597   }
 598 
 599   return continuation;
 600 JRT_END
 601 
 602 // Enter this method from compiled code only if there is a Java exception handler
 603 // in the method handling the exception.
 604 // We are entering here from exception stub. We don't do a normal VM transition here.
 605 // We do it in a helper. This is so we can check to see if the nmethod we have just
 606 // searched for an exception handler has been deoptimized in the meantime.
 607 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 608   oop exception = thread->exception_oop();
 609   address pc = thread->exception_pc();
 610   // Still in Java mode
 611   DEBUG_ONLY(ResetNoHandleMark rnhm);
 612   nmethod* nm = NULL;
 613   address continuation = NULL;
 614   {
 615     // Enter VM mode by calling the helper
 616     ResetNoHandleMark rnhm;
 617     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 618   }
 619   // Back in JAVA, use no oops DON'T safepoint
 620 
 621   // Now check to see if the nmethod we were called from is now deoptimized.
 622   // If so we must return to the deopt blob and deoptimize the nmethod
 623   if (nm != NULL && caller_is_deopted()) {
 624     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 625   }
 626 
 627   assert(continuation != NULL, "no handler found");
 628   return continuation;
 629 }
 630 
 631 
 632 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 633   NOT_PRODUCT(_throw_range_check_exception_count++;)
 634   char message[jintAsStringSize];
 635   sprintf(message, "%d", index);
 636   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 637 JRT_END
 638 
 639 
 640 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 641   NOT_PRODUCT(_throw_index_exception_count++;)
 642   char message[16];
 643   sprintf(message, "%d", index);
 644   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 645 JRT_END
 646 
 647 
 648 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 649   NOT_PRODUCT(_throw_div0_exception_count++;)
 650   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 651 JRT_END
 652 
 653 
 654 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 655   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 656   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 657 JRT_END
 658 
 659 
 660 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 661   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 662   ResourceMark rm(thread);
 663   char* message = SharedRuntime::generate_class_cast_message(
 664     thread, object->klass()->external_name());
 665   SharedRuntime::throw_and_post_jvmti_exception(
 666     thread, vmSymbols::java_lang_ClassCastException(), message);
 667 JRT_END
 668 
 669 
 670 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 671   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 672   ResourceMark rm(thread);
 673   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 674 JRT_END
 675 
 676 
 677 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 678   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 679   if (PrintBiasedLockingStatistics) {
 680     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 681   }
 682   Handle h_obj(thread, obj);
 683   assert(h_obj()->is_oop(), "must be NULL or an object");
 684   if (UseBiasedLocking) {
 685     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 686     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 687   } else {
 688     if (UseFastLocking) {
 689       // When using fast locking, the compiled code has already tried the fast case
 690       assert(obj == lock->obj(), "must match");
 691       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 692     } else {
 693       lock->set_obj(obj);
 694       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 695     }
 696   }
 697 JRT_END
 698 
 699 
 700 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 701   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 702   assert(thread == JavaThread::current(), "threads must correspond");
 703   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 704   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 705   EXCEPTION_MARK;
 706 
 707   oop obj = lock->obj();
 708   assert(obj->is_oop(), "must be NULL or an object");
 709   if (UseFastLocking) {
 710     // When using fast locking, the compiled code has already tried the fast case
 711     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 712   } else {
 713     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 714   }
 715 JRT_END
 716 
 717 // Cf. OptoRuntime::deoptimize_caller_frame
 718 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 719   // Called from within the owner thread, so no need for safepoint
 720   RegisterMap reg_map(thread, false);
 721   frame stub_frame = thread->last_frame();
 722   assert(stub_frame.is_runtime_frame(), "Sanity check");
 723   frame caller_frame = stub_frame.sender(&reg_map);
 724   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 725   assert(nm != NULL, "Sanity check");
 726   methodHandle method(thread, nm->method());
 727   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 728   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 729   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 730 
 731   if (action == Deoptimization::Action_make_not_entrant) {
 732     if (nm->make_not_entrant()) {
 733       if (reason == Deoptimization::Reason_tenured) {
 734         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 735         if (trap_mdo != NULL) {
 736           trap_mdo->inc_tenure_traps();
 737         }
 738       }
 739     }
 740   }
 741 
 742   // Deoptimize the caller frame.
 743   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 744   // Return to the now deoptimized frame.
 745 JRT_END
 746 
 747 
 748 #ifndef DEOPTIMIZE_WHEN_PATCHING
 749 
 750 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 751   Bytecode_field field_access(caller, bci);
 752   // This can be static or non-static field access
 753   Bytecodes::Code code       = field_access.code();
 754 
 755   // We must load class, initialize class and resolvethe field
 756   fieldDescriptor result; // initialize class if needed
 757   constantPoolHandle constants(THREAD, caller->constants());
 758   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 759   return result.field_holder();
 760 }
 761 
 762 
 763 //
 764 // This routine patches sites where a class wasn't loaded or
 765 // initialized at the time the code was generated.  It handles
 766 // references to classes, fields and forcing of initialization.  Most
 767 // of the cases are straightforward and involving simply forcing
 768 // resolution of a class, rewriting the instruction stream with the
 769 // needed constant and replacing the call in this function with the
 770 // patched code.  The case for static field is more complicated since
 771 // the thread which is in the process of initializing a class can
 772 // access it's static fields but other threads can't so the code
 773 // either has to deoptimize when this case is detected or execute a
 774 // check that the current thread is the initializing thread.  The
 775 // current
 776 //
 777 // Patches basically look like this:
 778 //
 779 //
 780 // patch_site: jmp patch stub     ;; will be patched
 781 // continue:   ...
 782 //             ...
 783 //             ...
 784 //             ...
 785 //
 786 // They have a stub which looks like this:
 787 //
 788 //             ;; patch body
 789 //             movl <const>, reg           (for class constants)
 790 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 791 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 792 //             <being_init offset> <bytes to copy> <bytes to skip>
 793 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 794 //             jmp patch_site
 795 //
 796 //
 797 // A normal patch is done by rewriting the patch body, usually a move,
 798 // and then copying it into place over top of the jmp instruction
 799 // being careful to flush caches and doing it in an MP-safe way.  The
 800 // constants following the patch body are used to find various pieces
 801 // of the patch relative to the call site for Runtime1::patch_code.
 802 // The case for getstatic and putstatic is more complicated because
 803 // getstatic and putstatic have special semantics when executing while
 804 // the class is being initialized.  getstatic/putstatic on a class
 805 // which is being_initialized may be executed by the initializing
 806 // thread but other threads have to block when they execute it.  This
 807 // is accomplished in compiled code by executing a test of the current
 808 // thread against the initializing thread of the class.  It's emitted
 809 // as boilerplate in their stub which allows the patched code to be
 810 // executed before it's copied back into the main body of the nmethod.
 811 //
 812 // being_init: get_thread(<tmp reg>
 813 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 814 //             jne patch_stub
 815 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 816 //             movl reg, [reg1 + <const>]  (for field offsets)
 817 //             jmp continue
 818 //             <being_init offset> <bytes to copy> <bytes to skip>
 819 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 820 //             jmp patch_site
 821 //
 822 // If the class is being initialized the patch body is rewritten and
 823 // the patch site is rewritten to jump to being_init, instead of
 824 // patch_stub.  Whenever this code is executed it checks the current
 825 // thread against the intializing thread so other threads will enter
 826 // the runtime and end up blocked waiting the class to finish
 827 // initializing inside the calls to resolve_field below.  The
 828 // initializing class will continue on it's way.  Once the class is
 829 // fully_initialized, the intializing_thread of the class becomes
 830 // NULL, so the next thread to execute this code will fail the test,
 831 // call into patch_code and complete the patching process by copying
 832 // the patch body back into the main part of the nmethod and resume
 833 // executing.
 834 //
 835 //
 836 
 837 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 838   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 839 
 840   ResourceMark rm(thread);
 841   RegisterMap reg_map(thread, false);
 842   frame runtime_frame = thread->last_frame();
 843   frame caller_frame = runtime_frame.sender(&reg_map);
 844 
 845   // last java frame on stack
 846   vframeStream vfst(thread, true);
 847   assert(!vfst.at_end(), "Java frame must exist");
 848 
 849   methodHandle caller_method(THREAD, vfst.method());
 850   // Note that caller_method->code() may not be same as caller_code because of OSR's
 851   // Note also that in the presence of inlining it is not guaranteed
 852   // that caller_method() == caller_code->method()
 853 
 854   int bci = vfst.bci();
 855   Bytecodes::Code code = caller_method()->java_code_at(bci);
 856 
 857   // this is used by assertions in the access_field_patching_id
 858   BasicType patch_field_type = T_ILLEGAL;
 859   bool deoptimize_for_volatile = false;
 860   bool deoptimize_for_atomic = false;
 861   int patch_field_offset = -1;
 862   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 863   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 864   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 865   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 866   bool load_klass_or_mirror_patch_id =
 867     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 868 
 869   if (stub_id == Runtime1::access_field_patching_id) {
 870 
 871     Bytecode_field field_access(caller_method, bci);
 872     fieldDescriptor result; // initialize class if needed
 873     Bytecodes::Code code = field_access.code();
 874     constantPoolHandle constants(THREAD, caller_method->constants());
 875     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 876     patch_field_offset = result.offset();
 877 
 878     // If we're patching a field which is volatile then at compile it
 879     // must not have been know to be volatile, so the generated code
 880     // isn't correct for a volatile reference.  The nmethod has to be
 881     // deoptimized so that the code can be regenerated correctly.
 882     // This check is only needed for access_field_patching since this
 883     // is the path for patching field offsets.  load_klass is only
 884     // used for patching references to oops which don't need special
 885     // handling in the volatile case.
 886 
 887     deoptimize_for_volatile = result.access_flags().is_volatile();
 888 
 889     // If we are patching a field which should be atomic, then
 890     // the generated code is not correct either, force deoptimizing.
 891     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 892     // break access atomicity only for them.
 893 
 894     // Strictly speaking, the deoptimizaation on 64-bit platforms
 895     // is unnecessary, and T_LONG stores on 32-bit platforms need
 896     // to be handled by special patching code when AlwaysAtomicAccesses
 897     // becomes product feature. At this point, we are still going
 898     // for the deoptimization for consistency against volatile
 899     // accesses.
 900 
 901     patch_field_type = result.field_type();
 902     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 903 
 904   } else if (load_klass_or_mirror_patch_id) {
 905     Klass* k = NULL;
 906     switch (code) {
 907       case Bytecodes::_putstatic:
 908       case Bytecodes::_getstatic:
 909         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 910           init_klass = KlassHandle(THREAD, klass);
 911           mirror = Handle(THREAD, klass->java_mirror());
 912         }
 913         break;
 914       case Bytecodes::_new:
 915         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 916           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 917         }
 918         break;
 919       case Bytecodes::_multianewarray:
 920         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 921           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 922         }
 923         break;
 924       case Bytecodes::_instanceof:
 925         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 926           k = caller_method->constants()->klass_at(io.index(), CHECK);
 927         }
 928         break;
 929       case Bytecodes::_checkcast:
 930         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 931           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 932         }
 933         break;
 934       case Bytecodes::_anewarray:
 935         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 936           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 937           k = ek->array_klass(CHECK);
 938         }
 939         break;
 940       case Bytecodes::_ldc:
 941       case Bytecodes::_ldc_w:
 942         {
 943           Bytecode_loadconstant cc(caller_method, bci);
 944           oop m = cc.resolve_constant(CHECK);
 945           mirror = Handle(THREAD, m);
 946         }
 947         break;
 948       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 949     }
 950     // convert to handle
 951     load_klass = KlassHandle(THREAD, k);
 952   } else if (stub_id == load_appendix_patching_id) {
 953     Bytecode_invoke bytecode(caller_method, bci);
 954     Bytecodes::Code bc = bytecode.invoke_code();
 955 
 956     CallInfo info;
 957     constantPoolHandle pool(thread, caller_method->constants());
 958     int index = bytecode.index();
 959     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 960     switch (bc) {
 961       case Bytecodes::_invokehandle: {
 962         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 963         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 964         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 965         cpce->set_method_handle(pool, info);
 966         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 967         break;
 968       }
 969       case Bytecodes::_invokedynamic: {
 970         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 971         cpce->set_dynamic_call(pool, info);
 972         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 973         break;
 974       }
 975       default: fatal("unexpected bytecode for load_appendix_patching_id");
 976     }
 977   } else {
 978     ShouldNotReachHere();
 979   }
 980 
 981   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 982     // At compile time we assumed the field wasn't volatile/atomic but after
 983     // loading it turns out it was volatile/atomic so we have to throw the
 984     // compiled code out and let it be regenerated.
 985     if (TracePatching) {
 986       if (deoptimize_for_volatile) {
 987         tty->print_cr("Deoptimizing for patching volatile field reference");
 988       }
 989       if (deoptimize_for_atomic) {
 990         tty->print_cr("Deoptimizing for patching atomic field reference");
 991       }
 992     }
 993 
 994     // It's possible the nmethod was invalidated in the last
 995     // safepoint, but if it's still alive then make it not_entrant.
 996     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 997     if (nm != NULL) {
 998       nm->make_not_entrant();
 999     }
1000 
1001     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1002 
1003     // Return to the now deoptimized frame.
1004   }
1005 
1006   // Now copy code back
1007 
1008   {
1009     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1010     //
1011     // Deoptimization may have happened while we waited for the lock.
1012     // In that case we don't bother to do any patching we just return
1013     // and let the deopt happen
1014     if (!caller_is_deopted()) {
1015       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1016       address instr_pc = jump->jump_destination();
1017       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1018       if (ni->is_jump() ) {
1019         // the jump has not been patched yet
1020         // The jump destination is slow case and therefore not part of the stubs
1021         // (stubs are only for StaticCalls)
1022 
1023         // format of buffer
1024         //    ....
1025         //    instr byte 0     <-- copy_buff
1026         //    instr byte 1
1027         //    ..
1028         //    instr byte n-1
1029         //      n
1030         //    ....             <-- call destination
1031 
1032         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1033         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1034         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1035         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1036         address copy_buff = stub_location - *byte_skip - *byte_count;
1037         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1038         if (TracePatching) {
1039           ttyLocker ttyl;
1040           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1041                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1042           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1043           assert(caller_code != NULL, "nmethod not found");
1044 
1045           // NOTE we use pc() not original_pc() because we already know they are
1046           // identical otherwise we'd have never entered this block of code
1047 
1048           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1049           assert(map != NULL, "null check");
1050           map->print();
1051           tty->cr();
1052 
1053           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1054         }
1055         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1056         bool do_patch = true;
1057         if (stub_id == Runtime1::access_field_patching_id) {
1058           // The offset may not be correct if the class was not loaded at code generation time.
1059           // Set it now.
1060           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1061           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1062           assert(patch_field_offset >= 0, "illegal offset");
1063           n_move->add_offset_in_bytes(patch_field_offset);
1064         } else if (load_klass_or_mirror_patch_id) {
1065           // If a getstatic or putstatic is referencing a klass which
1066           // isn't fully initialized, the patch body isn't copied into
1067           // place until initialization is complete.  In this case the
1068           // patch site is setup so that any threads besides the
1069           // initializing thread are forced to come into the VM and
1070           // block.
1071           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1072                      InstanceKlass::cast(init_klass())->is_initialized();
1073           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1074           if (jump->jump_destination() == being_initialized_entry) {
1075             assert(do_patch == true, "initialization must be complete at this point");
1076           } else {
1077             // patch the instruction <move reg, klass>
1078             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1079 
1080             assert(n_copy->data() == 0 ||
1081                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1082                    "illegal init value");
1083             if (stub_id == Runtime1::load_klass_patching_id) {
1084               assert(load_klass() != NULL, "klass not set");
1085               n_copy->set_data((intx) (load_klass()));
1086             } else {
1087               assert(mirror() != NULL, "klass not set");
1088               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1089               n_copy->set_data(cast_from_oop<intx>(mirror()));
1090             }
1091 
1092             if (TracePatching) {
1093               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1094             }
1095           }
1096         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1097           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1098           assert(n_copy->data() == 0 ||
1099                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1100                  "illegal init value");
1101           n_copy->set_data(cast_from_oop<intx>(appendix()));
1102 
1103           if (TracePatching) {
1104             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1105           }
1106         } else {
1107           ShouldNotReachHere();
1108         }
1109 
1110 #if defined(SPARC) || defined(PPC32)
1111         if (load_klass_or_mirror_patch_id ||
1112             stub_id == Runtime1::load_appendix_patching_id) {
1113           // Update the location in the nmethod with the proper
1114           // metadata.  When the code was generated, a NULL was stuffed
1115           // in the metadata table and that table needs to be update to
1116           // have the right value.  On intel the value is kept
1117           // directly in the instruction instead of in the metadata
1118           // table, so set_data above effectively updated the value.
1119           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1120           assert(nm != NULL, "invalid nmethod_pc");
1121           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1122           bool found = false;
1123           while (mds.next() && !found) {
1124             if (mds.type() == relocInfo::oop_type) {
1125               assert(stub_id == Runtime1::load_mirror_patching_id ||
1126                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1127               oop_Relocation* r = mds.oop_reloc();
1128               oop* oop_adr = r->oop_addr();
1129               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1130               r->fix_oop_relocation();
1131               found = true;
1132             } else if (mds.type() == relocInfo::metadata_type) {
1133               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1134               metadata_Relocation* r = mds.metadata_reloc();
1135               Metadata** metadata_adr = r->metadata_addr();
1136               *metadata_adr = load_klass();
1137               r->fix_metadata_relocation();
1138               found = true;
1139             }
1140           }
1141           assert(found, "the metadata must exist!");
1142         }
1143 #endif
1144         if (do_patch) {
1145           // replace instructions
1146           // first replace the tail, then the call
1147 #ifdef ARM
1148           if((load_klass_or_mirror_patch_id ||
1149               stub_id == Runtime1::load_appendix_patching_id) &&
1150               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1151             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1152             address addr = NULL;
1153             assert(nm != NULL, "invalid nmethod_pc");
1154             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1155             while (mds.next()) {
1156               if (mds.type() == relocInfo::oop_type) {
1157                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1158                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1159                 oop_Relocation* r = mds.oop_reloc();
1160                 addr = (address)r->oop_addr();
1161                 break;
1162               } else if (mds.type() == relocInfo::metadata_type) {
1163                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1164                 metadata_Relocation* r = mds.metadata_reloc();
1165                 addr = (address)r->metadata_addr();
1166                 break;
1167               }
1168             }
1169             assert(addr != NULL, "metadata relocation must exist");
1170             copy_buff -= *byte_count;
1171             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1172             n_copy2->set_pc_relative_offset(addr, instr_pc);
1173           }
1174 #endif
1175 
1176           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1177             address ptr = copy_buff + i;
1178             int a_byte = (*ptr) & 0xFF;
1179             address dst = instr_pc + i;
1180             *(unsigned char*)dst = (unsigned char) a_byte;
1181           }
1182           ICache::invalidate_range(instr_pc, *byte_count);
1183           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1184 
1185           if (load_klass_or_mirror_patch_id ||
1186               stub_id == Runtime1::load_appendix_patching_id) {
1187             relocInfo::relocType rtype =
1188               (stub_id == Runtime1::load_klass_patching_id) ?
1189                                    relocInfo::metadata_type :
1190                                    relocInfo::oop_type;
1191             // update relocInfo to metadata
1192             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1193             assert(nm != NULL, "invalid nmethod_pc");
1194 
1195             // The old patch site is now a move instruction so update
1196             // the reloc info so that it will get updated during
1197             // future GCs.
1198             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1199             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1200                                                      relocInfo::none, rtype);
1201 #ifdef SPARC
1202             // Sparc takes two relocations for an metadata so update the second one.
1203             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1204             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1205             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1206                                                      relocInfo::none, rtype);
1207 #endif
1208 #ifdef PPC32
1209           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1210             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1211             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1212                                                      relocInfo::none, rtype);
1213           }
1214 #endif
1215           }
1216 
1217         } else {
1218           ICache::invalidate_range(copy_buff, *byte_count);
1219           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1220         }
1221       }
1222     }
1223   }
1224 
1225   // If we are patching in a non-perm oop, make sure the nmethod
1226   // is on the right list.
1227   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1228                               (appendix.not_null() && appendix->is_scavengable()))) {
1229     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1230     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1231     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1232     if (!nm->on_scavenge_root_list()) {
1233       CodeCache::add_scavenge_root_nmethod(nm);
1234     }
1235 
1236     // Since we've patched some oops in the nmethod,
1237     // (re)register it with the heap.
1238     Universe::heap()->register_nmethod(nm);
1239   }
1240 JRT_END
1241 
1242 #else // DEOPTIMIZE_WHEN_PATCHING
1243 
1244 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1245   RegisterMap reg_map(thread, false);
1246 
1247   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1248   if (TracePatching) {
1249     tty->print_cr("Deoptimizing because patch is needed");
1250   }
1251 
1252   frame runtime_frame = thread->last_frame();
1253   frame caller_frame = runtime_frame.sender(&reg_map);
1254 
1255   // It's possible the nmethod was invalidated in the last
1256   // safepoint, but if it's still alive then make it not_entrant.
1257   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1258   if (nm != NULL) {
1259     nm->make_not_entrant();
1260   }
1261 
1262   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1263 
1264   // Return to the now deoptimized frame.
1265 JRT_END
1266 
1267 #endif // DEOPTIMIZE_WHEN_PATCHING
1268 
1269 //
1270 // Entry point for compiled code. We want to patch a nmethod.
1271 // We don't do a normal VM transition here because we want to
1272 // know after the patching is complete and any safepoint(s) are taken
1273 // if the calling nmethod was deoptimized. We do this by calling a
1274 // helper method which does the normal VM transition and when it
1275 // completes we can check for deoptimization. This simplifies the
1276 // assembly code in the cpu directories.
1277 //
1278 int Runtime1::move_klass_patching(JavaThread* thread) {
1279 //
1280 // NOTE: we are still in Java
1281 //
1282   Thread* THREAD = thread;
1283   debug_only(NoHandleMark nhm;)
1284   {
1285     // Enter VM mode
1286 
1287     ResetNoHandleMark rnhm;
1288     patch_code(thread, load_klass_patching_id);
1289   }
1290   // Back in JAVA, use no oops DON'T safepoint
1291 
1292   // Return true if calling code is deoptimized
1293 
1294   return caller_is_deopted();
1295 }
1296 
1297 int Runtime1::move_mirror_patching(JavaThread* thread) {
1298 //
1299 // NOTE: we are still in Java
1300 //
1301   Thread* THREAD = thread;
1302   debug_only(NoHandleMark nhm;)
1303   {
1304     // Enter VM mode
1305 
1306     ResetNoHandleMark rnhm;
1307     patch_code(thread, load_mirror_patching_id);
1308   }
1309   // Back in JAVA, use no oops DON'T safepoint
1310 
1311   // Return true if calling code is deoptimized
1312 
1313   return caller_is_deopted();
1314 }
1315 
1316 int Runtime1::move_appendix_patching(JavaThread* thread) {
1317 //
1318 // NOTE: we are still in Java
1319 //
1320   Thread* THREAD = thread;
1321   debug_only(NoHandleMark nhm;)
1322   {
1323     // Enter VM mode
1324 
1325     ResetNoHandleMark rnhm;
1326     patch_code(thread, load_appendix_patching_id);
1327   }
1328   // Back in JAVA, use no oops DON'T safepoint
1329 
1330   // Return true if calling code is deoptimized
1331 
1332   return caller_is_deopted();
1333 }
1334 //
1335 // Entry point for compiled code. We want to patch a nmethod.
1336 // We don't do a normal VM transition here because we want to
1337 // know after the patching is complete and any safepoint(s) are taken
1338 // if the calling nmethod was deoptimized. We do this by calling a
1339 // helper method which does the normal VM transition and when it
1340 // completes we can check for deoptimization. This simplifies the
1341 // assembly code in the cpu directories.
1342 //
1343 
1344 int Runtime1::access_field_patching(JavaThread* thread) {
1345 //
1346 // NOTE: we are still in Java
1347 //
1348   Thread* THREAD = thread;
1349   debug_only(NoHandleMark nhm;)
1350   {
1351     // Enter VM mode
1352 
1353     ResetNoHandleMark rnhm;
1354     patch_code(thread, access_field_patching_id);
1355   }
1356   // Back in JAVA, use no oops DON'T safepoint
1357 
1358   // Return true if calling code is deoptimized
1359 
1360   return caller_is_deopted();
1361 JRT_END
1362 
1363 
1364 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1365   // for now we just print out the block id
1366   tty->print("%d ", block_id);
1367 JRT_END
1368 
1369 
1370 // Array copy return codes.
1371 enum {
1372   ac_failed = -1, // arraycopy failed
1373   ac_ok = 0       // arraycopy succeeded
1374 };
1375 
1376 
1377 // Below length is the # elements copied.
1378 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1379                                           oopDesc* dst, T* dst_addr,
1380                                           int length) {
1381 
1382   // For performance reasons, we assume we are using a card marking write
1383   // barrier. The assert will fail if this is not the case.
1384   // Note that we use the non-virtual inlineable variant of write_ref_array.
1385   BarrierSet* bs = Universe::heap()->barrier_set();
1386   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1387   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1388   if (src == dst) {
1389     // same object, no check
1390     bs->write_ref_array_pre(dst_addr, length);
1391     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1392     bs->write_ref_array((HeapWord*)dst_addr, length);
1393     return ac_ok;
1394   } else {
1395     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1396     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1397     if (stype == bound || stype->is_subtype_of(bound)) {
1398       // Elements are guaranteed to be subtypes, so no check necessary
1399       bs->write_ref_array_pre(dst_addr, length);
1400       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1401       bs->write_ref_array((HeapWord*)dst_addr, length);
1402       return ac_ok;
1403     }
1404   }
1405   return ac_failed;
1406 }
1407 
1408 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1409 // and we did not copy anything
1410 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1411 #ifndef PRODUCT
1412   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1413 #endif
1414 
1415   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1416   if (!dst->is_array() || !src->is_array()) return ac_failed;
1417   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1418   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1419 
1420   if (length == 0) return ac_ok;
1421   if (src->is_typeArray()) {
1422     Klass* klass_oop = src->klass();
1423     if (klass_oop != dst->klass()) return ac_failed;
1424     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1425     const int l2es = klass->log2_element_size();
1426     const int ihs = klass->array_header_in_bytes() / wordSize;
1427     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1428     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1429     // Potential problem: memmove is not guaranteed to be word atomic
1430     // Revisit in Merlin
1431     memmove(dst_addr, src_addr, length << l2es);
1432     return ac_ok;
1433   } else if (src->is_objArray() && dst->is_objArray()) {
1434     if (UseCompressedOops) {
1435       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1436       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1437       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1438     } else {
1439       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1440       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1441       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1442     }
1443   }
1444   return ac_failed;
1445 JRT_END
1446 
1447 
1448 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1449 #ifndef PRODUCT
1450   _primitive_arraycopy_cnt++;
1451 #endif
1452 
1453   if (length == 0) return;
1454   // Not guaranteed to be word atomic, but that doesn't matter
1455   // for anything but an oop array, which is covered by oop_arraycopy.
1456   Copy::conjoint_jbytes(src, dst, length);
1457 JRT_END
1458 
1459 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1460 #ifndef PRODUCT
1461   _oop_arraycopy_cnt++;
1462 #endif
1463 
1464   if (num == 0) return;
1465   BarrierSet* bs = Universe::heap()->barrier_set();
1466   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1467   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1468   if (UseCompressedOops) {
1469     bs->write_ref_array_pre((narrowOop*)dst, num);
1470     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1471   } else {
1472     bs->write_ref_array_pre((oop*)dst, num);
1473     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1474   }
1475   bs->write_ref_array(dst, num);
1476 JRT_END
1477 
1478 
1479 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1480   // had to return int instead of bool, otherwise there may be a mismatch
1481   // between the C calling convention and the Java one.
1482   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1483   // JVM takes the whole %eax as the return value, which may misinterpret
1484   // the return value as a boolean true.
1485 
1486   assert(mirror != NULL, "should null-check on mirror before calling");
1487   Klass* k = java_lang_Class::as_Klass(mirror);
1488   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1489 JRT_END
1490 
1491 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1492   ResourceMark rm;
1493 
1494   assert(!TieredCompilation, "incompatible with tiered compilation");
1495 
1496   RegisterMap reg_map(thread, false);
1497   frame runtime_frame = thread->last_frame();
1498   frame caller_frame = runtime_frame.sender(&reg_map);
1499 
1500   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1501   assert (nm != NULL, "no more nmethod?");
1502   nm->make_not_entrant();
1503 
1504   methodHandle m(nm->method());
1505   if (ProfileInterpreter) {
1506     MethodData* mdo = m->method_data();
1507 
1508     if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1509       // Build an MDO.  Ignore errors like OutOfMemory;
1510       // that simply means we won't have an MDO to update.
1511       Method::build_interpreter_method_data(m, THREAD);
1512       if (HAS_PENDING_EXCEPTION) {
1513         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1514         CLEAR_PENDING_EXCEPTION;
1515       }
1516       mdo = m->method_data();
1517     }
1518 
1519     if (mdo != NULL) {
1520       mdo->inc_trap_count(Deoptimization::Reason_none);
1521     }
1522   }
1523 
1524   if (TracePredicateFailedTraps) {
1525     stringStream ss1, ss2;
1526     vframeStream vfst(thread);
1527     methodHandle inlinee = methodHandle(vfst.method());
1528     inlinee->print_short_name(&ss1);
1529     m->print_short_name(&ss2);
1530     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1531   }
1532 
1533 
1534   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1535 
1536 JRT_END
1537 
1538 #ifndef PRODUCT
1539 void Runtime1::print_statistics() {
1540   tty->print_cr("C1 Runtime statistics:");
1541   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1542   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1543   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1544   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1545   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1546   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1547   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1548   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1549   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1550   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1551   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1552   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1553   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1554   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1555   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1556   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1557   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1558 
1559   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1560   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1561   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1562   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1563   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1564   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1565   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1566 
1567   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1568   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1569   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1570   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1571   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1572   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1573   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1574   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1575 
1576   SharedRuntime::print_ic_miss_histogram();
1577   tty->cr();
1578 }
1579 #endif // PRODUCT