1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/codeCacheExtensions.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "logging/log.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/oopFactory.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "runtime/atomic.inline.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/interfaceSupport.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vframeArray.hpp"
  61 #include "runtime/vm_version.hpp"
  62 #include "utilities/copy.hpp"
  63 #include "utilities/events.hpp"
  64 
  65 
  66 // Implementation of StubAssembler
  67 
  68 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  69   _name = name;
  70   _must_gc_arguments = false;
  71   _frame_size = no_frame_size;
  72   _num_rt_args = 0;
  73   _stub_id = stub_id;
  74 }
  75 
  76 
  77 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  78   _name = name;
  79   _must_gc_arguments = must_gc_arguments;
  80 }
  81 
  82 
  83 void StubAssembler::set_frame_size(int size) {
  84   if (_frame_size == no_frame_size) {
  85     _frame_size = size;
  86   }
  87   assert(_frame_size == size, "can't change the frame size");
  88 }
  89 
  90 
  91 void StubAssembler::set_num_rt_args(int args) {
  92   if (_num_rt_args == 0) {
  93     _num_rt_args = args;
  94   }
  95   assert(_num_rt_args == args, "can't change the number of args");
  96 }
  97 
  98 // Implementation of Runtime1
  99 
 100 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 101 const char *Runtime1::_blob_names[] = {
 102   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 103 };
 104 
 105 #ifndef PRODUCT
 106 // statistics
 107 int Runtime1::_generic_arraycopy_cnt = 0;
 108 int Runtime1::_primitive_arraycopy_cnt = 0;
 109 int Runtime1::_oop_arraycopy_cnt = 0;
 110 int Runtime1::_generic_arraycopystub_cnt = 0;
 111 int Runtime1::_arraycopy_slowcase_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_cnt = 0;
 113 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 114 int Runtime1::_new_type_array_slowcase_cnt = 0;
 115 int Runtime1::_new_object_array_slowcase_cnt = 0;
 116 int Runtime1::_new_instance_slowcase_cnt = 0;
 117 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 118 int Runtime1::_monitorenter_slowcase_cnt = 0;
 119 int Runtime1::_monitorexit_slowcase_cnt = 0;
 120 int Runtime1::_patch_code_slowcase_cnt = 0;
 121 int Runtime1::_throw_range_check_exception_count = 0;
 122 int Runtime1::_throw_index_exception_count = 0;
 123 int Runtime1::_throw_div0_exception_count = 0;
 124 int Runtime1::_throw_null_pointer_exception_count = 0;
 125 int Runtime1::_throw_class_cast_exception_count = 0;
 126 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 127 int Runtime1::_throw_array_store_exception_count = 0;
 128 int Runtime1::_throw_count = 0;
 129 
 130 static int _byte_arraycopy_stub_cnt = 0;
 131 static int _short_arraycopy_stub_cnt = 0;
 132 static int _int_arraycopy_stub_cnt = 0;
 133 static int _long_arraycopy_stub_cnt = 0;
 134 static int _oop_arraycopy_stub_cnt = 0;
 135 
 136 address Runtime1::arraycopy_count_address(BasicType type) {
 137   switch (type) {
 138   case T_BOOLEAN:
 139   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 140   case T_CHAR:
 141   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 142   case T_FLOAT:
 143   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 144   case T_DOUBLE:
 145   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 146   case T_ARRAY:
 147   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 148   default:
 149     ShouldNotReachHere();
 150     return NULL;
 151   }
 152 }
 153 
 154 
 155 #endif
 156 
 157 // Simple helper to see if the caller of a runtime stub which
 158 // entered the VM has been deoptimized
 159 
 160 static bool caller_is_deopted() {
 161   JavaThread* thread = JavaThread::current();
 162   RegisterMap reg_map(thread, false);
 163   frame runtime_frame = thread->last_frame();
 164   frame caller_frame = runtime_frame.sender(&reg_map);
 165   assert(caller_frame.is_compiled_frame(), "must be compiled");
 166   return caller_frame.is_deoptimized_frame();
 167 }
 168 
 169 // Stress deoptimization
 170 static void deopt_caller() {
 171   if ( !caller_is_deopted()) {
 172     JavaThread* thread = JavaThread::current();
 173     RegisterMap reg_map(thread, false);
 174     frame runtime_frame = thread->last_frame();
 175     frame caller_frame = runtime_frame.sender(&reg_map);
 176     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 177     assert(caller_is_deopted(), "Must be deoptimized");
 178   }
 179 }
 180 
 181 
 182 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 183   assert(0 <= id && id < number_of_ids, "illegal stub id");
 184   ResourceMark rm;
 185   // create code buffer for code storage
 186   CodeBuffer code(buffer_blob);
 187 
 188   OopMapSet* oop_maps;
 189   int frame_size;
 190   bool must_gc_arguments;
 191 
 192   if (!CodeCacheExtensions::skip_compiler_support()) {
 193     // bypass useless code generation
 194     Compilation::setup_code_buffer(&code, 0);
 195 
 196     // create assembler for code generation
 197     StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 198     // generate code for runtime stub
 199     oop_maps = generate_code_for(id, sasm);
 200     assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 201            "if stub has an oop map it must have a valid frame size");
 202 
 203 #ifdef ASSERT
 204     // Make sure that stubs that need oopmaps have them
 205     switch (id) {
 206       // These stubs don't need to have an oopmap
 207     case dtrace_object_alloc_id:
 208     case g1_pre_barrier_slow_id:
 209     case g1_post_barrier_slow_id:
 210     case slow_subtype_check_id:
 211     case fpu2long_stub_id:
 212     case unwind_exception_id:
 213     case counter_overflow_id:
 214 #if defined(SPARC) || defined(PPC32)
 215     case handle_exception_nofpu_id:  // Unused on sparc
 216 #endif
 217       break;
 218 
 219       // All other stubs should have oopmaps
 220     default:
 221       assert(oop_maps != NULL, "must have an oopmap");
 222     }
 223 #endif
 224 
 225     // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 226     sasm->align(BytesPerWord);
 227     // make sure all code is in code buffer
 228     sasm->flush();
 229 
 230     frame_size = sasm->frame_size();
 231     must_gc_arguments = sasm->must_gc_arguments();
 232   } else {
 233     /* ignored values */
 234     oop_maps = NULL;
 235     frame_size = 0;
 236     must_gc_arguments = false;
 237   }
 238   // create blob - distinguish a few special cases
 239   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 240                                                  &code,
 241                                                  CodeOffsets::frame_never_safe,
 242                                                  frame_size,
 243                                                  oop_maps,
 244                                                  must_gc_arguments);
 245   // install blob
 246   assert(blob != NULL, "blob must exist");
 247   _blobs[id] = blob;
 248 }
 249 
 250 
 251 void Runtime1::initialize(BufferBlob* blob) {
 252   // platform-dependent initialization
 253   initialize_pd();
 254   // generate stubs
 255   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 256   // printing
 257 #ifndef PRODUCT
 258   if (PrintSimpleStubs) {
 259     ResourceMark rm;
 260     for (int id = 0; id < number_of_ids; id++) {
 261       _blobs[id]->print();
 262       if (_blobs[id]->oop_maps() != NULL) {
 263         _blobs[id]->oop_maps()->print();
 264       }
 265     }
 266   }
 267 #endif
 268 }
 269 
 270 
 271 CodeBlob* Runtime1::blob_for(StubID id) {
 272   assert(0 <= id && id < number_of_ids, "illegal stub id");
 273   return _blobs[id];
 274 }
 275 
 276 
 277 const char* Runtime1::name_for(StubID id) {
 278   assert(0 <= id && id < number_of_ids, "illegal stub id");
 279   return _blob_names[id];
 280 }
 281 
 282 const char* Runtime1::name_for_address(address entry) {
 283   for (int id = 0; id < number_of_ids; id++) {
 284     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 285   }
 286 
 287 #define FUNCTION_CASE(a, f) \
 288   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 289 
 290   FUNCTION_CASE(entry, os::javaTimeMillis);
 291   FUNCTION_CASE(entry, os::javaTimeNanos);
 292   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 293   FUNCTION_CASE(entry, SharedRuntime::d2f);
 294   FUNCTION_CASE(entry, SharedRuntime::d2i);
 295   FUNCTION_CASE(entry, SharedRuntime::d2l);
 296   FUNCTION_CASE(entry, SharedRuntime::dcos);
 297   FUNCTION_CASE(entry, SharedRuntime::dexp);
 298   FUNCTION_CASE(entry, SharedRuntime::dlog);
 299   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 300   FUNCTION_CASE(entry, SharedRuntime::dpow);
 301   FUNCTION_CASE(entry, SharedRuntime::drem);
 302   FUNCTION_CASE(entry, SharedRuntime::dsin);
 303   FUNCTION_CASE(entry, SharedRuntime::dtan);
 304   FUNCTION_CASE(entry, SharedRuntime::f2i);
 305   FUNCTION_CASE(entry, SharedRuntime::f2l);
 306   FUNCTION_CASE(entry, SharedRuntime::frem);
 307   FUNCTION_CASE(entry, SharedRuntime::l2d);
 308   FUNCTION_CASE(entry, SharedRuntime::l2f);
 309   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 310   FUNCTION_CASE(entry, SharedRuntime::lmul);
 311   FUNCTION_CASE(entry, SharedRuntime::lrem);
 312   FUNCTION_CASE(entry, SharedRuntime::lrem);
 313   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 314   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 315   FUNCTION_CASE(entry, is_instance_of);
 316   FUNCTION_CASE(entry, trace_block_entry);
 317 #ifdef TRACE_HAVE_INTRINSICS
 318   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 319 #endif
 320   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 321   FUNCTION_CASE(entry, StubRoutines::dexp());
 322   FUNCTION_CASE(entry, StubRoutines::dlog());
 323   FUNCTION_CASE(entry, StubRoutines::dpow());
 324   FUNCTION_CASE(entry, StubRoutines::dsin());
 325   FUNCTION_CASE(entry, StubRoutines::dcos());
 326 
 327 #undef FUNCTION_CASE
 328 
 329   // Soft float adds more runtime names.
 330   return pd_name_for_address(entry);
 331 }
 332 
 333 
 334 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 335   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 336 
 337   assert(klass->is_klass(), "not a class");
 338   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 339   instanceKlassHandle h(thread, klass);
 340   h->check_valid_for_instantiation(true, CHECK);
 341   // make sure klass is initialized
 342   h->initialize(CHECK);
 343   // allocate instance and return via TLS
 344   oop obj = h->allocate_instance(CHECK);
 345   thread->set_vm_result(obj);
 346 JRT_END
 347 
 348 
 349 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 350   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 351   // Note: no handle for klass needed since they are not used
 352   //       anymore after new_typeArray() and no GC can happen before.
 353   //       (This may have to change if this code changes!)
 354   assert(klass->is_klass(), "not a class");
 355   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 356   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 357   thread->set_vm_result(obj);
 358   // This is pretty rare but this runtime patch is stressful to deoptimization
 359   // if we deoptimize here so force a deopt to stress the path.
 360   if (DeoptimizeALot) {
 361     deopt_caller();
 362   }
 363 
 364 JRT_END
 365 
 366 
 367 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 368   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 369 
 370   // Note: no handle for klass needed since they are not used
 371   //       anymore after new_objArray() and no GC can happen before.
 372   //       (This may have to change if this code changes!)
 373   assert(array_klass->is_klass(), "not a class");
 374   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 375   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 376   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 377   thread->set_vm_result(obj);
 378   // This is pretty rare but this runtime patch is stressful to deoptimization
 379   // if we deoptimize here so force a deopt to stress the path.
 380   if (DeoptimizeALot) {
 381     deopt_caller();
 382   }
 383 JRT_END
 384 
 385 
 386 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 387   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 388 
 389   assert(klass->is_klass(), "not a class");
 390   assert(rank >= 1, "rank must be nonzero");
 391   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 392   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 393   thread->set_vm_result(obj);
 394 JRT_END
 395 
 396 
 397 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 398   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 399 JRT_END
 400 
 401 
 402 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 403   ResourceMark rm(thread);
 404   const char* klass_name = obj->klass()->external_name();
 405   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 406 JRT_END
 407 
 408 
 409 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 410 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 411 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 412 // a constant.
 413 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 414   nmethod* osr_nm = NULL;
 415   methodHandle method(THREAD, m);
 416 
 417   RegisterMap map(THREAD, false);
 418   frame fr =  THREAD->last_frame().sender(&map);
 419   nmethod* nm = (nmethod*) fr.cb();
 420   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 421   methodHandle enclosing_method(THREAD, nm->method());
 422 
 423   CompLevel level = (CompLevel)nm->comp_level();
 424   int bci = InvocationEntryBci;
 425   if (branch_bci != InvocationEntryBci) {
 426     // Compute destination bci
 427     address pc = method()->code_base() + branch_bci;
 428     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 429     int offset = 0;
 430     switch (branch) {
 431       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 432       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 433       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 434       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 435       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 436       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 437       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 438         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 439         break;
 440       case Bytecodes::_goto_w:
 441         offset = Bytes::get_Java_u4(pc + 1);
 442         break;
 443       default: ;
 444     }
 445     bci = branch_bci + offset;
 446   }
 447   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 448   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 449   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 450   return osr_nm;
 451 }
 452 
 453 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 454   nmethod* osr_nm;
 455   JRT_BLOCK
 456     osr_nm = counter_overflow_helper(thread, bci, method);
 457     if (osr_nm != NULL) {
 458       RegisterMap map(thread, false);
 459       frame fr =  thread->last_frame().sender(&map);
 460       Deoptimization::deoptimize_frame(thread, fr.id());
 461     }
 462   JRT_BLOCK_END
 463   return NULL;
 464 JRT_END
 465 
 466 extern void vm_exit(int code);
 467 
 468 // Enter this method from compiled code handler below. This is where we transition
 469 // to VM mode. This is done as a helper routine so that the method called directly
 470 // from compiled code does not have to transition to VM. This allows the entry
 471 // method to see if the nmethod that we have just looked up a handler for has
 472 // been deoptimized while we were in the vm. This simplifies the assembly code
 473 // cpu directories.
 474 //
 475 // We are entering here from exception stub (via the entry method below)
 476 // If there is a compiled exception handler in this method, we will continue there;
 477 // otherwise we will unwind the stack and continue at the caller of top frame method
 478 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 479 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 480 // check to see if the handler we are going to return is now in a nmethod that has
 481 // been deoptimized. If that is the case we return the deopt blob
 482 // unpack_with_exception entry instead. This makes life for the exception blob easier
 483 // because making that same check and diverting is painful from assembly language.
 484 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 485   // Reset method handle flag.
 486   thread->set_is_method_handle_return(false);
 487 
 488   Handle exception(thread, ex);
 489   nm = CodeCache::find_nmethod(pc);
 490   assert(nm != NULL, "this is not an nmethod");
 491   // Adjust the pc as needed/
 492   if (nm->is_deopt_pc(pc)) {
 493     RegisterMap map(thread, false);
 494     frame exception_frame = thread->last_frame().sender(&map);
 495     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 496     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 497     pc = exception_frame.pc();
 498   }
 499 #ifdef ASSERT
 500   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 501   assert(exception->is_oop(), "just checking");
 502   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 503   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 504     if (ExitVMOnVerifyError) vm_exit(-1);
 505     ShouldNotReachHere();
 506   }
 507 #endif
 508 
 509   // Check the stack guard pages and reenable them if necessary and there is
 510   // enough space on the stack to do so.  Use fast exceptions only if the guard
 511   // pages are enabled.
 512   bool guard_pages_enabled = thread->stack_guards_enabled();
 513   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 514 
 515   if (JvmtiExport::can_post_on_exceptions()) {
 516     // To ensure correct notification of exception catches and throws
 517     // we have to deoptimize here.  If we attempted to notify the
 518     // catches and throws during this exception lookup it's possible
 519     // we could deoptimize on the way out of the VM and end back in
 520     // the interpreter at the throw site.  This would result in double
 521     // notifications since the interpreter would also notify about
 522     // these same catches and throws as it unwound the frame.
 523 
 524     RegisterMap reg_map(thread);
 525     frame stub_frame = thread->last_frame();
 526     frame caller_frame = stub_frame.sender(&reg_map);
 527 
 528     // We don't really want to deoptimize the nmethod itself since we
 529     // can actually continue in the exception handler ourselves but I
 530     // don't see an easy way to have the desired effect.
 531     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 532     assert(caller_is_deopted(), "Must be deoptimized");
 533 
 534     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 535   }
 536 
 537   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 538   if (guard_pages_enabled) {
 539     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 540     if (fast_continuation != NULL) {
 541       // Set flag if return address is a method handle call site.
 542       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 543       return fast_continuation;
 544     }
 545   }
 546 
 547   // If the stack guard pages are enabled, check whether there is a handler in
 548   // the current method.  Otherwise (guard pages disabled), force an unwind and
 549   // skip the exception cache update (i.e., just leave continuation==NULL).
 550   address continuation = NULL;
 551   if (guard_pages_enabled) {
 552 
 553     // New exception handling mechanism can support inlined methods
 554     // with exception handlers since the mappings are from PC to PC
 555 
 556     // debugging support
 557     // tracing
 558     if (log_is_enabled(Info, exceptions)) {
 559       ResourceMark rm;
 560       stringStream tempst;
 561       tempst.print("compiled method <%s>\n"
 562                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 563                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 564       Exceptions::log_exception(exception, tempst);
 565     }
 566     // for AbortVMOnException flag
 567     Exceptions::debug_check_abort(exception);
 568 
 569     // Clear out the exception oop and pc since looking up an
 570     // exception handler can cause class loading, which might throw an
 571     // exception and those fields are expected to be clear during
 572     // normal bytecode execution.
 573     thread->clear_exception_oop_and_pc();
 574 
 575     Handle original_exception(thread, exception());
 576 
 577     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 578     // If an exception was thrown during exception dispatch, the exception oop may have changed
 579     thread->set_exception_oop(exception());
 580     thread->set_exception_pc(pc);
 581 
 582     // the exception cache is used only by non-implicit exceptions
 583     // Update the exception cache only when there didn't happen
 584     // another exception during the computation of the compiled
 585     // exception handler.
 586     if (continuation != NULL && original_exception() == exception()) {
 587       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 588     }
 589   }
 590 
 591   thread->set_vm_result(exception());
 592   // Set flag if return address is a method handle call site.
 593   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 594 
 595   if (log_is_enabled(Info, exceptions)) {
 596     ResourceMark rm;
 597     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 598                          " for exception thrown at PC " PTR_FORMAT,
 599                          p2i(thread), p2i(continuation), p2i(pc));
 600   }
 601 
 602   return continuation;
 603 JRT_END
 604 
 605 // Enter this method from compiled code only if there is a Java exception handler
 606 // in the method handling the exception.
 607 // We are entering here from exception stub. We don't do a normal VM transition here.
 608 // We do it in a helper. This is so we can check to see if the nmethod we have just
 609 // searched for an exception handler has been deoptimized in the meantime.
 610 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 611   oop exception = thread->exception_oop();
 612   address pc = thread->exception_pc();
 613   // Still in Java mode
 614   DEBUG_ONLY(ResetNoHandleMark rnhm);
 615   nmethod* nm = NULL;
 616   address continuation = NULL;
 617   {
 618     // Enter VM mode by calling the helper
 619     ResetNoHandleMark rnhm;
 620     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 621   }
 622   // Back in JAVA, use no oops DON'T safepoint
 623 
 624   // Now check to see if the nmethod we were called from is now deoptimized.
 625   // If so we must return to the deopt blob and deoptimize the nmethod
 626   if (nm != NULL && caller_is_deopted()) {
 627     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 628   }
 629 
 630   assert(continuation != NULL, "no handler found");
 631   return continuation;
 632 }
 633 
 634 
 635 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 636   NOT_PRODUCT(_throw_range_check_exception_count++;)
 637   char message[jintAsStringSize];
 638   sprintf(message, "%d", index);
 639   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 640 JRT_END
 641 
 642 
 643 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 644   NOT_PRODUCT(_throw_index_exception_count++;)
 645   char message[16];
 646   sprintf(message, "%d", index);
 647   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 648 JRT_END
 649 
 650 
 651 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 652   NOT_PRODUCT(_throw_div0_exception_count++;)
 653   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 654 JRT_END
 655 
 656 
 657 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 658   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 659   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 660 JRT_END
 661 
 662 
 663 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 664   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 665   ResourceMark rm(thread);
 666   char* message = SharedRuntime::generate_class_cast_message(
 667     thread, object->klass()->external_name());
 668   SharedRuntime::throw_and_post_jvmti_exception(
 669     thread, vmSymbols::java_lang_ClassCastException(), message);
 670 JRT_END
 671 
 672 
 673 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 674   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 675   ResourceMark rm(thread);
 676   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 677 JRT_END
 678 
 679 
 680 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 681   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 682   if (PrintBiasedLockingStatistics) {
 683     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 684   }
 685   Handle h_obj(thread, obj);
 686   assert(h_obj()->is_oop(), "must be NULL or an object");
 687   if (UseBiasedLocking) {
 688     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 689     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 690   } else {
 691     if (UseFastLocking) {
 692       // When using fast locking, the compiled code has already tried the fast case
 693       assert(obj == lock->obj(), "must match");
 694       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 695     } else {
 696       lock->set_obj(obj);
 697       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 698     }
 699   }
 700 JRT_END
 701 
 702 
 703 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 704   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 705   assert(thread == JavaThread::current(), "threads must correspond");
 706   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 707   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 708   EXCEPTION_MARK;
 709 
 710   oop obj = lock->obj();
 711   assert(obj->is_oop(), "must be NULL or an object");
 712   if (UseFastLocking) {
 713     // When using fast locking, the compiled code has already tried the fast case
 714     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 715   } else {
 716     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 717   }
 718 JRT_END
 719 
 720 // Cf. OptoRuntime::deoptimize_caller_frame
 721 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 722   // Called from within the owner thread, so no need for safepoint
 723   RegisterMap reg_map(thread, false);
 724   frame stub_frame = thread->last_frame();
 725   assert(stub_frame.is_runtime_frame(), "Sanity check");
 726   frame caller_frame = stub_frame.sender(&reg_map);
 727   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 728   assert(nm != NULL, "Sanity check");
 729   methodHandle method(thread, nm->method());
 730   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 731   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 732   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 733 
 734   if (action == Deoptimization::Action_make_not_entrant) {
 735     if (nm->make_not_entrant()) {
 736       if (reason == Deoptimization::Reason_tenured) {
 737         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 738         if (trap_mdo != NULL) {
 739           trap_mdo->inc_tenure_traps();
 740         }
 741       }
 742     }
 743   }
 744 
 745   // Deoptimize the caller frame.
 746   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 747   // Return to the now deoptimized frame.
 748 JRT_END
 749 
 750 
 751 #ifndef DEOPTIMIZE_WHEN_PATCHING
 752 
 753 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 754   Bytecode_field field_access(caller, bci);
 755   // This can be static or non-static field access
 756   Bytecodes::Code code       = field_access.code();
 757 
 758   // We must load class, initialize class and resolvethe field
 759   fieldDescriptor result; // initialize class if needed
 760   constantPoolHandle constants(THREAD, caller->constants());
 761   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 762   return result.field_holder();
 763 }
 764 
 765 
 766 //
 767 // This routine patches sites where a class wasn't loaded or
 768 // initialized at the time the code was generated.  It handles
 769 // references to classes, fields and forcing of initialization.  Most
 770 // of the cases are straightforward and involving simply forcing
 771 // resolution of a class, rewriting the instruction stream with the
 772 // needed constant and replacing the call in this function with the
 773 // patched code.  The case for static field is more complicated since
 774 // the thread which is in the process of initializing a class can
 775 // access it's static fields but other threads can't so the code
 776 // either has to deoptimize when this case is detected or execute a
 777 // check that the current thread is the initializing thread.  The
 778 // current
 779 //
 780 // Patches basically look like this:
 781 //
 782 //
 783 // patch_site: jmp patch stub     ;; will be patched
 784 // continue:   ...
 785 //             ...
 786 //             ...
 787 //             ...
 788 //
 789 // They have a stub which looks like this:
 790 //
 791 //             ;; patch body
 792 //             movl <const>, reg           (for class constants)
 793 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 794 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 795 //             <being_init offset> <bytes to copy> <bytes to skip>
 796 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 797 //             jmp patch_site
 798 //
 799 //
 800 // A normal patch is done by rewriting the patch body, usually a move,
 801 // and then copying it into place over top of the jmp instruction
 802 // being careful to flush caches and doing it in an MP-safe way.  The
 803 // constants following the patch body are used to find various pieces
 804 // of the patch relative to the call site for Runtime1::patch_code.
 805 // The case for getstatic and putstatic is more complicated because
 806 // getstatic and putstatic have special semantics when executing while
 807 // the class is being initialized.  getstatic/putstatic on a class
 808 // which is being_initialized may be executed by the initializing
 809 // thread but other threads have to block when they execute it.  This
 810 // is accomplished in compiled code by executing a test of the current
 811 // thread against the initializing thread of the class.  It's emitted
 812 // as boilerplate in their stub which allows the patched code to be
 813 // executed before it's copied back into the main body of the nmethod.
 814 //
 815 // being_init: get_thread(<tmp reg>
 816 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 817 //             jne patch_stub
 818 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 819 //             movl reg, [reg1 + <const>]  (for field offsets)
 820 //             jmp continue
 821 //             <being_init offset> <bytes to copy> <bytes to skip>
 822 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 823 //             jmp patch_site
 824 //
 825 // If the class is being initialized the patch body is rewritten and
 826 // the patch site is rewritten to jump to being_init, instead of
 827 // patch_stub.  Whenever this code is executed it checks the current
 828 // thread against the intializing thread so other threads will enter
 829 // the runtime and end up blocked waiting the class to finish
 830 // initializing inside the calls to resolve_field below.  The
 831 // initializing class will continue on it's way.  Once the class is
 832 // fully_initialized, the intializing_thread of the class becomes
 833 // NULL, so the next thread to execute this code will fail the test,
 834 // call into patch_code and complete the patching process by copying
 835 // the patch body back into the main part of the nmethod and resume
 836 // executing.
 837 //
 838 //
 839 
 840 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 841   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 842 
 843   ResourceMark rm(thread);
 844   RegisterMap reg_map(thread, false);
 845   frame runtime_frame = thread->last_frame();
 846   frame caller_frame = runtime_frame.sender(&reg_map);
 847 
 848   // last java frame on stack
 849   vframeStream vfst(thread, true);
 850   assert(!vfst.at_end(), "Java frame must exist");
 851 
 852   methodHandle caller_method(THREAD, vfst.method());
 853   // Note that caller_method->code() may not be same as caller_code because of OSR's
 854   // Note also that in the presence of inlining it is not guaranteed
 855   // that caller_method() == caller_code->method()
 856 
 857   int bci = vfst.bci();
 858   Bytecodes::Code code = caller_method()->java_code_at(bci);
 859 
 860   // this is used by assertions in the access_field_patching_id
 861   BasicType patch_field_type = T_ILLEGAL;
 862   bool deoptimize_for_volatile = false;
 863   bool deoptimize_for_atomic = false;
 864   int patch_field_offset = -1;
 865   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 866   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 867   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 868   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 869   bool load_klass_or_mirror_patch_id =
 870     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 871 
 872   if (stub_id == Runtime1::access_field_patching_id) {
 873 
 874     Bytecode_field field_access(caller_method, bci);
 875     fieldDescriptor result; // initialize class if needed
 876     Bytecodes::Code code = field_access.code();
 877     constantPoolHandle constants(THREAD, caller_method->constants());
 878     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 879     patch_field_offset = result.offset();
 880 
 881     // If we're patching a field which is volatile then at compile it
 882     // must not have been know to be volatile, so the generated code
 883     // isn't correct for a volatile reference.  The nmethod has to be
 884     // deoptimized so that the code can be regenerated correctly.
 885     // This check is only needed for access_field_patching since this
 886     // is the path for patching field offsets.  load_klass is only
 887     // used for patching references to oops which don't need special
 888     // handling in the volatile case.
 889 
 890     deoptimize_for_volatile = result.access_flags().is_volatile();
 891 
 892     // If we are patching a field which should be atomic, then
 893     // the generated code is not correct either, force deoptimizing.
 894     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 895     // break access atomicity only for them.
 896 
 897     // Strictly speaking, the deoptimizaation on 64-bit platforms
 898     // is unnecessary, and T_LONG stores on 32-bit platforms need
 899     // to be handled by special patching code when AlwaysAtomicAccesses
 900     // becomes product feature. At this point, we are still going
 901     // for the deoptimization for consistency against volatile
 902     // accesses.
 903 
 904     patch_field_type = result.field_type();
 905     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 906 
 907   } else if (load_klass_or_mirror_patch_id) {
 908     Klass* k = NULL;
 909     switch (code) {
 910       case Bytecodes::_putstatic:
 911       case Bytecodes::_getstatic:
 912         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 913           init_klass = KlassHandle(THREAD, klass);
 914           mirror = Handle(THREAD, klass->java_mirror());
 915         }
 916         break;
 917       case Bytecodes::_new:
 918         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 919           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 920         }
 921         break;
 922       case Bytecodes::_multianewarray:
 923         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 924           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 925         }
 926         break;
 927       case Bytecodes::_instanceof:
 928         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 929           k = caller_method->constants()->klass_at(io.index(), CHECK);
 930         }
 931         break;
 932       case Bytecodes::_checkcast:
 933         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 934           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 935         }
 936         break;
 937       case Bytecodes::_anewarray:
 938         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 939           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 940           k = ek->array_klass(CHECK);
 941         }
 942         break;
 943       case Bytecodes::_ldc:
 944       case Bytecodes::_ldc_w:
 945         {
 946           Bytecode_loadconstant cc(caller_method, bci);
 947           oop m = cc.resolve_constant(CHECK);
 948           mirror = Handle(THREAD, m);
 949         }
 950         break;
 951       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 952     }
 953     // convert to handle
 954     load_klass = KlassHandle(THREAD, k);
 955   } else if (stub_id == load_appendix_patching_id) {
 956     Bytecode_invoke bytecode(caller_method, bci);
 957     Bytecodes::Code bc = bytecode.invoke_code();
 958 
 959     CallInfo info;
 960     constantPoolHandle pool(thread, caller_method->constants());
 961     int index = bytecode.index();
 962     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 963     switch (bc) {
 964       case Bytecodes::_invokehandle: {
 965         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 966         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 967         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 968         cpce->set_method_handle(pool, info);
 969         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 970         break;
 971       }
 972       case Bytecodes::_invokedynamic: {
 973         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 974         cpce->set_dynamic_call(pool, info);
 975         appendix = cpce->appendix_if_resolved(pool); // just in case somebody already resolved the entry
 976         break;
 977       }
 978       default: fatal("unexpected bytecode for load_appendix_patching_id");
 979     }
 980   } else {
 981     ShouldNotReachHere();
 982   }
 983 
 984   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 985     // At compile time we assumed the field wasn't volatile/atomic but after
 986     // loading it turns out it was volatile/atomic so we have to throw the
 987     // compiled code out and let it be regenerated.
 988     if (TracePatching) {
 989       if (deoptimize_for_volatile) {
 990         tty->print_cr("Deoptimizing for patching volatile field reference");
 991       }
 992       if (deoptimize_for_atomic) {
 993         tty->print_cr("Deoptimizing for patching atomic field reference");
 994       }
 995     }
 996 
 997     // It's possible the nmethod was invalidated in the last
 998     // safepoint, but if it's still alive then make it not_entrant.
 999     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1000     if (nm != NULL) {
1001       nm->make_not_entrant();
1002     }
1003 
1004     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1005 
1006     // Return to the now deoptimized frame.
1007   }
1008 
1009   // Now copy code back
1010 
1011   {
1012     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1013     //
1014     // Deoptimization may have happened while we waited for the lock.
1015     // In that case we don't bother to do any patching we just return
1016     // and let the deopt happen
1017     if (!caller_is_deopted()) {
1018       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1019       address instr_pc = jump->jump_destination();
1020       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1021       if (ni->is_jump() ) {
1022         // the jump has not been patched yet
1023         // The jump destination is slow case and therefore not part of the stubs
1024         // (stubs are only for StaticCalls)
1025 
1026         // format of buffer
1027         //    ....
1028         //    instr byte 0     <-- copy_buff
1029         //    instr byte 1
1030         //    ..
1031         //    instr byte n-1
1032         //      n
1033         //    ....             <-- call destination
1034 
1035         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1036         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1037         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1038         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1039         address copy_buff = stub_location - *byte_skip - *byte_count;
1040         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1041         if (TracePatching) {
1042           ttyLocker ttyl;
1043           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1044                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1045           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1046           assert(caller_code != NULL, "nmethod not found");
1047 
1048           // NOTE we use pc() not original_pc() because we already know they are
1049           // identical otherwise we'd have never entered this block of code
1050 
1051           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1052           assert(map != NULL, "null check");
1053           map->print();
1054           tty->cr();
1055 
1056           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1057         }
1058         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1059         bool do_patch = true;
1060         if (stub_id == Runtime1::access_field_patching_id) {
1061           // The offset may not be correct if the class was not loaded at code generation time.
1062           // Set it now.
1063           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1064           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1065           assert(patch_field_offset >= 0, "illegal offset");
1066           n_move->add_offset_in_bytes(patch_field_offset);
1067         } else if (load_klass_or_mirror_patch_id) {
1068           // If a getstatic or putstatic is referencing a klass which
1069           // isn't fully initialized, the patch body isn't copied into
1070           // place until initialization is complete.  In this case the
1071           // patch site is setup so that any threads besides the
1072           // initializing thread are forced to come into the VM and
1073           // block.
1074           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1075                      InstanceKlass::cast(init_klass())->is_initialized();
1076           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1077           if (jump->jump_destination() == being_initialized_entry) {
1078             assert(do_patch == true, "initialization must be complete at this point");
1079           } else {
1080             // patch the instruction <move reg, klass>
1081             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1082 
1083             assert(n_copy->data() == 0 ||
1084                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1085                    "illegal init value");
1086             if (stub_id == Runtime1::load_klass_patching_id) {
1087               assert(load_klass() != NULL, "klass not set");
1088               n_copy->set_data((intx) (load_klass()));
1089             } else {
1090               assert(mirror() != NULL, "klass not set");
1091               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1092               n_copy->set_data(cast_from_oop<intx>(mirror()));
1093             }
1094 
1095             if (TracePatching) {
1096               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1097             }
1098           }
1099         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1100           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1101           assert(n_copy->data() == 0 ||
1102                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1103                  "illegal init value");
1104           n_copy->set_data(cast_from_oop<intx>(appendix()));
1105 
1106           if (TracePatching) {
1107             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1108           }
1109         } else {
1110           ShouldNotReachHere();
1111         }
1112 
1113 #if defined(SPARC) || defined(PPC32)
1114         if (load_klass_or_mirror_patch_id ||
1115             stub_id == Runtime1::load_appendix_patching_id) {
1116           // Update the location in the nmethod with the proper
1117           // metadata.  When the code was generated, a NULL was stuffed
1118           // in the metadata table and that table needs to be update to
1119           // have the right value.  On intel the value is kept
1120           // directly in the instruction instead of in the metadata
1121           // table, so set_data above effectively updated the value.
1122           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1123           assert(nm != NULL, "invalid nmethod_pc");
1124           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1125           bool found = false;
1126           while (mds.next() && !found) {
1127             if (mds.type() == relocInfo::oop_type) {
1128               assert(stub_id == Runtime1::load_mirror_patching_id ||
1129                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1130               oop_Relocation* r = mds.oop_reloc();
1131               oop* oop_adr = r->oop_addr();
1132               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1133               r->fix_oop_relocation();
1134               found = true;
1135             } else if (mds.type() == relocInfo::metadata_type) {
1136               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1137               metadata_Relocation* r = mds.metadata_reloc();
1138               Metadata** metadata_adr = r->metadata_addr();
1139               *metadata_adr = load_klass();
1140               r->fix_metadata_relocation();
1141               found = true;
1142             }
1143           }
1144           assert(found, "the metadata must exist!");
1145         }
1146 #endif
1147         if (do_patch) {
1148           // replace instructions
1149           // first replace the tail, then the call
1150 #ifdef ARM
1151           if((load_klass_or_mirror_patch_id ||
1152               stub_id == Runtime1::load_appendix_patching_id) &&
1153               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1154             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1155             address addr = NULL;
1156             assert(nm != NULL, "invalid nmethod_pc");
1157             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1158             while (mds.next()) {
1159               if (mds.type() == relocInfo::oop_type) {
1160                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1161                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1162                 oop_Relocation* r = mds.oop_reloc();
1163                 addr = (address)r->oop_addr();
1164                 break;
1165               } else if (mds.type() == relocInfo::metadata_type) {
1166                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1167                 metadata_Relocation* r = mds.metadata_reloc();
1168                 addr = (address)r->metadata_addr();
1169                 break;
1170               }
1171             }
1172             assert(addr != NULL, "metadata relocation must exist");
1173             copy_buff -= *byte_count;
1174             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1175             n_copy2->set_pc_relative_offset(addr, instr_pc);
1176           }
1177 #endif
1178 
1179           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1180             address ptr = copy_buff + i;
1181             int a_byte = (*ptr) & 0xFF;
1182             address dst = instr_pc + i;
1183             *(unsigned char*)dst = (unsigned char) a_byte;
1184           }
1185           ICache::invalidate_range(instr_pc, *byte_count);
1186           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1187 
1188           if (load_klass_or_mirror_patch_id ||
1189               stub_id == Runtime1::load_appendix_patching_id) {
1190             relocInfo::relocType rtype =
1191               (stub_id == Runtime1::load_klass_patching_id) ?
1192                                    relocInfo::metadata_type :
1193                                    relocInfo::oop_type;
1194             // update relocInfo to metadata
1195             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1196             assert(nm != NULL, "invalid nmethod_pc");
1197 
1198             // The old patch site is now a move instruction so update
1199             // the reloc info so that it will get updated during
1200             // future GCs.
1201             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1202             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1203                                                      relocInfo::none, rtype);
1204 #ifdef SPARC
1205             // Sparc takes two relocations for an metadata so update the second one.
1206             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1207             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1208             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1209                                                      relocInfo::none, rtype);
1210 #endif
1211 #ifdef PPC32
1212           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1213             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1214             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1215                                                      relocInfo::none, rtype);
1216           }
1217 #endif
1218           }
1219 
1220         } else {
1221           ICache::invalidate_range(copy_buff, *byte_count);
1222           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1223         }
1224       }
1225     }
1226   }
1227 
1228   // If we are patching in a non-perm oop, make sure the nmethod
1229   // is on the right list.
1230   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1231                               (appendix.not_null() && appendix->is_scavengable()))) {
1232     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1233     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1234     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1235     if (!nm->on_scavenge_root_list()) {
1236       CodeCache::add_scavenge_root_nmethod(nm);
1237     }
1238 
1239     // Since we've patched some oops in the nmethod,
1240     // (re)register it with the heap.
1241     Universe::heap()->register_nmethod(nm);
1242   }
1243 JRT_END
1244 
1245 #else // DEOPTIMIZE_WHEN_PATCHING
1246 
1247 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1248   RegisterMap reg_map(thread, false);
1249 
1250   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1251   if (TracePatching) {
1252     tty->print_cr("Deoptimizing because patch is needed");
1253   }
1254 
1255   frame runtime_frame = thread->last_frame();
1256   frame caller_frame = runtime_frame.sender(&reg_map);
1257 
1258   // It's possible the nmethod was invalidated in the last
1259   // safepoint, but if it's still alive then make it not_entrant.
1260   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1261   if (nm != NULL) {
1262     nm->make_not_entrant();
1263   }
1264 
1265   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1266 
1267   // Return to the now deoptimized frame.
1268 JRT_END
1269 
1270 #endif // DEOPTIMIZE_WHEN_PATCHING
1271 
1272 //
1273 // Entry point for compiled code. We want to patch a nmethod.
1274 // We don't do a normal VM transition here because we want to
1275 // know after the patching is complete and any safepoint(s) are taken
1276 // if the calling nmethod was deoptimized. We do this by calling a
1277 // helper method which does the normal VM transition and when it
1278 // completes we can check for deoptimization. This simplifies the
1279 // assembly code in the cpu directories.
1280 //
1281 int Runtime1::move_klass_patching(JavaThread* thread) {
1282 //
1283 // NOTE: we are still in Java
1284 //
1285   Thread* THREAD = thread;
1286   debug_only(NoHandleMark nhm;)
1287   {
1288     // Enter VM mode
1289 
1290     ResetNoHandleMark rnhm;
1291     patch_code(thread, load_klass_patching_id);
1292   }
1293   // Back in JAVA, use no oops DON'T safepoint
1294 
1295   // Return true if calling code is deoptimized
1296 
1297   return caller_is_deopted();
1298 }
1299 
1300 int Runtime1::move_mirror_patching(JavaThread* thread) {
1301 //
1302 // NOTE: we are still in Java
1303 //
1304   Thread* THREAD = thread;
1305   debug_only(NoHandleMark nhm;)
1306   {
1307     // Enter VM mode
1308 
1309     ResetNoHandleMark rnhm;
1310     patch_code(thread, load_mirror_patching_id);
1311   }
1312   // Back in JAVA, use no oops DON'T safepoint
1313 
1314   // Return true if calling code is deoptimized
1315 
1316   return caller_is_deopted();
1317 }
1318 
1319 int Runtime1::move_appendix_patching(JavaThread* thread) {
1320 //
1321 // NOTE: we are still in Java
1322 //
1323   Thread* THREAD = thread;
1324   debug_only(NoHandleMark nhm;)
1325   {
1326     // Enter VM mode
1327 
1328     ResetNoHandleMark rnhm;
1329     patch_code(thread, load_appendix_patching_id);
1330   }
1331   // Back in JAVA, use no oops DON'T safepoint
1332 
1333   // Return true if calling code is deoptimized
1334 
1335   return caller_is_deopted();
1336 }
1337 //
1338 // Entry point for compiled code. We want to patch a nmethod.
1339 // We don't do a normal VM transition here because we want to
1340 // know after the patching is complete and any safepoint(s) are taken
1341 // if the calling nmethod was deoptimized. We do this by calling a
1342 // helper method which does the normal VM transition and when it
1343 // completes we can check for deoptimization. This simplifies the
1344 // assembly code in the cpu directories.
1345 //
1346 
1347 int Runtime1::access_field_patching(JavaThread* thread) {
1348 //
1349 // NOTE: we are still in Java
1350 //
1351   Thread* THREAD = thread;
1352   debug_only(NoHandleMark nhm;)
1353   {
1354     // Enter VM mode
1355 
1356     ResetNoHandleMark rnhm;
1357     patch_code(thread, access_field_patching_id);
1358   }
1359   // Back in JAVA, use no oops DON'T safepoint
1360 
1361   // Return true if calling code is deoptimized
1362 
1363   return caller_is_deopted();
1364 JRT_END
1365 
1366 
1367 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1368   // for now we just print out the block id
1369   tty->print("%d ", block_id);
1370 JRT_END
1371 
1372 
1373 // Array copy return codes.
1374 enum {
1375   ac_failed = -1, // arraycopy failed
1376   ac_ok = 0       // arraycopy succeeded
1377 };
1378 
1379 
1380 // Below length is the # elements copied.
1381 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1382                                           oopDesc* dst, T* dst_addr,
1383                                           int length) {
1384 
1385   // For performance reasons, we assume we are using a card marking write
1386   // barrier. The assert will fail if this is not the case.
1387   // Note that we use the non-virtual inlineable variant of write_ref_array.
1388   BarrierSet* bs = Universe::heap()->barrier_set();
1389   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1390   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1391   if (src == dst) {
1392     // same object, no check
1393     bs->write_ref_array_pre(dst_addr, length);
1394     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1395     bs->write_ref_array((HeapWord*)dst_addr, length);
1396     return ac_ok;
1397   } else {
1398     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1399     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1400     if (stype == bound || stype->is_subtype_of(bound)) {
1401       // Elements are guaranteed to be subtypes, so no check necessary
1402       bs->write_ref_array_pre(dst_addr, length);
1403       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1404       bs->write_ref_array((HeapWord*)dst_addr, length);
1405       return ac_ok;
1406     }
1407   }
1408   return ac_failed;
1409 }
1410 
1411 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1412 // and we did not copy anything
1413 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1414 #ifndef PRODUCT
1415   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1416 #endif
1417 
1418   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1419   if (!dst->is_array() || !src->is_array()) return ac_failed;
1420   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1421   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1422 
1423   if (length == 0) return ac_ok;
1424   if (src->is_typeArray()) {
1425     Klass* klass_oop = src->klass();
1426     if (klass_oop != dst->klass()) return ac_failed;
1427     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1428     const int l2es = klass->log2_element_size();
1429     const int ihs = klass->array_header_in_bytes() / wordSize;
1430     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1431     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1432     // Potential problem: memmove is not guaranteed to be word atomic
1433     // Revisit in Merlin
1434     memmove(dst_addr, src_addr, length << l2es);
1435     return ac_ok;
1436   } else if (src->is_objArray() && dst->is_objArray()) {
1437     if (UseCompressedOops) {
1438       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1439       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1440       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1441     } else {
1442       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1443       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1444       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1445     }
1446   }
1447   return ac_failed;
1448 JRT_END
1449 
1450 
1451 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1452 #ifndef PRODUCT
1453   _primitive_arraycopy_cnt++;
1454 #endif
1455 
1456   if (length == 0) return;
1457   // Not guaranteed to be word atomic, but that doesn't matter
1458   // for anything but an oop array, which is covered by oop_arraycopy.
1459   Copy::conjoint_jbytes(src, dst, length);
1460 JRT_END
1461 
1462 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1463 #ifndef PRODUCT
1464   _oop_arraycopy_cnt++;
1465 #endif
1466 
1467   if (num == 0) return;
1468   BarrierSet* bs = Universe::heap()->barrier_set();
1469   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1470   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1471   if (UseCompressedOops) {
1472     bs->write_ref_array_pre((narrowOop*)dst, num);
1473     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1474   } else {
1475     bs->write_ref_array_pre((oop*)dst, num);
1476     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1477   }
1478   bs->write_ref_array(dst, num);
1479 JRT_END
1480 
1481 
1482 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1483   // had to return int instead of bool, otherwise there may be a mismatch
1484   // between the C calling convention and the Java one.
1485   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1486   // JVM takes the whole %eax as the return value, which may misinterpret
1487   // the return value as a boolean true.
1488 
1489   assert(mirror != NULL, "should null-check on mirror before calling");
1490   Klass* k = java_lang_Class::as_Klass(mirror);
1491   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1492 JRT_END
1493 
1494 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1495   ResourceMark rm;
1496 
1497   assert(!TieredCompilation, "incompatible with tiered compilation");
1498 
1499   RegisterMap reg_map(thread, false);
1500   frame runtime_frame = thread->last_frame();
1501   frame caller_frame = runtime_frame.sender(&reg_map);
1502 
1503   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1504   assert (nm != NULL, "no more nmethod?");
1505   nm->make_not_entrant();
1506 
1507   methodHandle m(nm->method());
1508   if (ProfileInterpreter) {
1509     MethodData* mdo = m->method_data();
1510 
1511     if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1512       // Build an MDO.  Ignore errors like OutOfMemory;
1513       // that simply means we won't have an MDO to update.
1514       Method::build_interpreter_method_data(m, THREAD);
1515       if (HAS_PENDING_EXCEPTION) {
1516         assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1517         CLEAR_PENDING_EXCEPTION;
1518       }
1519       mdo = m->method_data();
1520     }
1521 
1522     if (mdo != NULL) {
1523       mdo->inc_trap_count(Deoptimization::Reason_none);
1524     }
1525   }
1526 
1527   if (TracePredicateFailedTraps) {
1528     stringStream ss1, ss2;
1529     vframeStream vfst(thread);
1530     methodHandle inlinee = methodHandle(vfst.method());
1531     inlinee->print_short_name(&ss1);
1532     m->print_short_name(&ss2);
1533     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1534   }
1535 
1536 
1537   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1538 
1539 JRT_END
1540 
1541 #ifndef PRODUCT
1542 void Runtime1::print_statistics() {
1543   tty->print_cr("C1 Runtime statistics:");
1544   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1545   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1546   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1547   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1548   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1549   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1550   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1551   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1552   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1553   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1554   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1555   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1556   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1557   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1558   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1559   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1560   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1561 
1562   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1563   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1564   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1565   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1566   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1567   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1568   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1569 
1570   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1571   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1572   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1573   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1574   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1575   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1576   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1577   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1578 
1579   SharedRuntime::print_ic_miss_histogram();
1580   tty->cr();
1581 }
1582 #endif // PRODUCT