1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/typeArrayOop.inline.hpp"
  50 #include "opto/ad.hpp"
  51 #include "opto/addnode.hpp"
  52 #include "opto/callnode.hpp"
  53 #include "opto/cfgnode.hpp"
  54 #include "opto/graphKit.hpp"
  55 #include "opto/machnode.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/memnode.hpp"
  58 #include "opto/mulnode.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/subnode.hpp"
  61 #include "runtime/atomic.inline.hpp"
  62 #include "runtime/fprofiler.hpp"
  63 #include "runtime/handles.inline.hpp"
  64 #include "runtime/interfaceSupport.hpp"
  65 #include "runtime/javaCalls.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/vframe.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vframe_hp.hpp"
  72 #include "utilities/copy.hpp"
  73 #include "utilities/preserveException.hpp"
  74 
  75 
  76 // For debugging purposes:
  77 //  To force FullGCALot inside a runtime function, add the following two lines
  78 //
  79 //  Universe::release_fullgc_alot_dummy();
  80 //  MarkSweep::invoke(0, "Debugging");
  81 //
  82 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  83 
  84 
  85 
  86 
  87 // Compiled code entry points
  88 address OptoRuntime::_new_instance_Java                           = NULL;
  89 address OptoRuntime::_new_array_Java                              = NULL;
  90 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  91 address OptoRuntime::_multianewarray2_Java                        = NULL;
  92 address OptoRuntime::_multianewarray3_Java                        = NULL;
  93 address OptoRuntime::_multianewarray4_Java                        = NULL;
  94 address OptoRuntime::_multianewarray5_Java                        = NULL;
  95 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  96 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  97 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  98 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  99 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 100 address OptoRuntime::_monitor_notify_Java                         = NULL;
 101 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 102 address OptoRuntime::_rethrow_Java                                = NULL;
 103 
 104 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 105 address OptoRuntime::_register_finalizer_Java                     = NULL;
 106 
 107 ExceptionBlob* OptoRuntime::_exception_blob;
 108 
 109 // This should be called in an assertion at the start of OptoRuntime routines
 110 // which are entered from compiled code (all of them)
 111 #ifdef ASSERT
 112 static bool check_compiled_frame(JavaThread* thread) {
 113   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 114   RegisterMap map(thread, false);
 115   frame caller = thread->last_frame().sender(&map);
 116   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 117   return true;
 118 }
 119 #endif // ASSERT
 120 
 121 
 122 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 123   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 124   if (var == NULL) { return false; }
 125 
 126 bool OptoRuntime::generate(ciEnv* env) {
 127 
 128   generate_exception_blob();
 129 
 130   // Note: tls: Means fetching the return oop out of the thread-local storage
 131   //
 132   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 133   // -------------------------------------------------------------------------------------------------------------------------------
 134   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 135   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 136   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 137   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 138   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 139   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 141   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 142   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 143   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 144   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 145   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 146   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 147   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 148 
 149   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 150   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 151 
 152   return true;
 153 }
 154 
 155 #undef gen
 156 
 157 
 158 // Helper method to do generation of RunTimeStub's
 159 address OptoRuntime::generate_stub( ciEnv* env,
 160                                     TypeFunc_generator gen, address C_function,
 161                                     const char *name, int is_fancy_jump,
 162                                     bool pass_tls,
 163                                     bool save_argument_registers,
 164                                     bool return_pc) {
 165 
 166   // Matching the default directive, we currently have no method to match.
 167   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 168   ResourceMark rm;
 169   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 170   DirectivesStack::release(directive);
 171   return  C.stub_entry_point();
 172 }
 173 
 174 const char* OptoRuntime::stub_name(address entry) {
 175 #ifndef PRODUCT
 176   CodeBlob* cb = CodeCache::find_blob(entry);
 177   RuntimeStub* rs =(RuntimeStub *)cb;
 178   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 179   return rs->name();
 180 #else
 181   // Fast implementation for product mode (maybe it should be inlined too)
 182   return "runtime stub";
 183 #endif
 184 }
 185 
 186 
 187 //=============================================================================
 188 // Opto compiler runtime routines
 189 //=============================================================================
 190 
 191 
 192 //=============================allocation======================================
 193 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 194 // and try allocation again.
 195 
 196 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 197   // After any safepoint, just before going back to compiled code,
 198   // we inform the GC that we will be doing initializing writes to
 199   // this object in the future without emitting card-marks, so
 200   // GC may take any compensating steps.
 201   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 202 
 203   oop new_obj = thread->vm_result();
 204   if (new_obj == NULL)  return;
 205 
 206   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 207          "compiler must check this first");
 208   // GC may decide to give back a safer copy of new_obj.
 209   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 210   thread->set_vm_result(new_obj);
 211 }
 212 
 213 // object allocation
 214 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 215   JRT_BLOCK;
 216 #ifndef PRODUCT
 217   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 218 #endif
 219   assert(check_compiled_frame(thread), "incorrect caller");
 220 
 221   // These checks are cheap to make and support reflective allocation.
 222   int lh = klass->layout_helper();
 223   if (Klass::layout_helper_needs_slow_path(lh)
 224       || !InstanceKlass::cast(klass)->is_initialized()) {
 225     KlassHandle kh(THREAD, klass);
 226     kh->check_valid_for_instantiation(false, THREAD);
 227     if (!HAS_PENDING_EXCEPTION) {
 228       InstanceKlass::cast(kh())->initialize(THREAD);
 229     }
 230     if (!HAS_PENDING_EXCEPTION) {
 231       klass = kh();
 232     } else {
 233       klass = NULL;
 234     }
 235   }
 236 
 237   if (klass != NULL) {
 238     // Scavenge and allocate an instance.
 239     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 240     thread->set_vm_result(result);
 241 
 242     // Pass oops back through thread local storage.  Our apparent type to Java
 243     // is that we return an oop, but we can block on exit from this routine and
 244     // a GC can trash the oop in C's return register.  The generated stub will
 245     // fetch the oop from TLS after any possible GC.
 246   }
 247 
 248   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 249   JRT_BLOCK_END;
 250 
 251   if (GraphKit::use_ReduceInitialCardMarks()) {
 252     // inform GC that we won't do card marks for initializing writes.
 253     new_store_pre_barrier(thread);
 254   }
 255 JRT_END
 256 
 257 
 258 // array allocation
 259 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 260   JRT_BLOCK;
 261 #ifndef PRODUCT
 262   SharedRuntime::_new_array_ctr++;            // new array requires GC
 263 #endif
 264   assert(check_compiled_frame(thread), "incorrect caller");
 265 
 266   // Scavenge and allocate an instance.
 267   oop result;
 268 
 269   if (array_type->is_typeArray_klass()) {
 270     // The oopFactory likes to work with the element type.
 271     // (We could bypass the oopFactory, since it doesn't add much value.)
 272     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 273     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 274   } else {
 275     // Although the oopFactory likes to work with the elem_type,
 276     // the compiler prefers the array_type, since it must already have
 277     // that latter value in hand for the fast path.
 278     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 279     result = oopFactory::new_objArray(elem_type, len, THREAD);
 280   }
 281 
 282   // Pass oops back through thread local storage.  Our apparent type to Java
 283   // is that we return an oop, but we can block on exit from this routine and
 284   // a GC can trash the oop in C's return register.  The generated stub will
 285   // fetch the oop from TLS after any possible GC.
 286   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 287   thread->set_vm_result(result);
 288   JRT_BLOCK_END;
 289 
 290   if (GraphKit::use_ReduceInitialCardMarks()) {
 291     // inform GC that we won't do card marks for initializing writes.
 292     new_store_pre_barrier(thread);
 293   }
 294 JRT_END
 295 
 296 // array allocation without zeroing
 297 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 298   JRT_BLOCK;
 299 #ifndef PRODUCT
 300   SharedRuntime::_new_array_ctr++;            // new array requires GC
 301 #endif
 302   assert(check_compiled_frame(thread), "incorrect caller");
 303 
 304   // Scavenge and allocate an instance.
 305   oop result;
 306 
 307   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 308   // The oopFactory likes to work with the element type.
 309   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 310   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 311 
 312   // Pass oops back through thread local storage.  Our apparent type to Java
 313   // is that we return an oop, but we can block on exit from this routine and
 314   // a GC can trash the oop in C's return register.  The generated stub will
 315   // fetch the oop from TLS after any possible GC.
 316   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 317   thread->set_vm_result(result);
 318   JRT_BLOCK_END;
 319 
 320   if (GraphKit::use_ReduceInitialCardMarks()) {
 321     // inform GC that we won't do card marks for initializing writes.
 322     new_store_pre_barrier(thread);
 323   }
 324 
 325   oop result = thread->vm_result();
 326   if ((len > 0) && (result != NULL) &&
 327       is_deoptimized_caller_frame(thread)) {
 328     // Zero array here if the caller is deoptimized.
 329     int size = ((typeArrayOop)result)->object_size();
 330     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 331     const size_t hs = arrayOopDesc::header_size(elem_type);
 332     // Align to next 8 bytes to avoid trashing arrays's length.
 333     const size_t aligned_hs = align_object_offset(hs);
 334     HeapWord* obj = (HeapWord*)result;
 335     if (aligned_hs > hs) {
 336       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 337     }
 338     // Optimized zeroing.
 339     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 340   }
 341 
 342 JRT_END
 343 
 344 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 345 
 346 // multianewarray for 2 dimensions
 347 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 348 #ifndef PRODUCT
 349   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 350 #endif
 351   assert(check_compiled_frame(thread), "incorrect caller");
 352   assert(elem_type->is_klass(), "not a class");
 353   jint dims[2];
 354   dims[0] = len1;
 355   dims[1] = len2;
 356   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 357   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 358   thread->set_vm_result(obj);
 359 JRT_END
 360 
 361 // multianewarray for 3 dimensions
 362 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 363 #ifndef PRODUCT
 364   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 365 #endif
 366   assert(check_compiled_frame(thread), "incorrect caller");
 367   assert(elem_type->is_klass(), "not a class");
 368   jint dims[3];
 369   dims[0] = len1;
 370   dims[1] = len2;
 371   dims[2] = len3;
 372   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 373   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 374   thread->set_vm_result(obj);
 375 JRT_END
 376 
 377 // multianewarray for 4 dimensions
 378 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 379 #ifndef PRODUCT
 380   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 381 #endif
 382   assert(check_compiled_frame(thread), "incorrect caller");
 383   assert(elem_type->is_klass(), "not a class");
 384   jint dims[4];
 385   dims[0] = len1;
 386   dims[1] = len2;
 387   dims[2] = len3;
 388   dims[3] = len4;
 389   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 390   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 391   thread->set_vm_result(obj);
 392 JRT_END
 393 
 394 // multianewarray for 5 dimensions
 395 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 396 #ifndef PRODUCT
 397   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 398 #endif
 399   assert(check_compiled_frame(thread), "incorrect caller");
 400   assert(elem_type->is_klass(), "not a class");
 401   jint dims[5];
 402   dims[0] = len1;
 403   dims[1] = len2;
 404   dims[2] = len3;
 405   dims[3] = len4;
 406   dims[4] = len5;
 407   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 408   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 409   thread->set_vm_result(obj);
 410 JRT_END
 411 
 412 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 413   assert(check_compiled_frame(thread), "incorrect caller");
 414   assert(elem_type->is_klass(), "not a class");
 415   assert(oop(dims)->is_typeArray(), "not an array");
 416 
 417   ResourceMark rm;
 418   jint len = dims->length();
 419   assert(len > 0, "Dimensions array should contain data");
 420   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 421   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 422   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 423 
 424   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 425   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 426   thread->set_vm_result(obj);
 427 JRT_END
 428 
 429 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 430 
 431   // Very few notify/notifyAll operations find any threads on the waitset, so
 432   // the dominant fast-path is to simply return.
 433   // Relatedly, it's critical that notify/notifyAll be fast in order to
 434   // reduce lock hold times.
 435   if (!SafepointSynchronize::is_synchronizing()) {
 436     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 437       return;
 438     }
 439   }
 440 
 441   // This is the case the fast-path above isn't provisioned to handle.
 442   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 443   // (The fast-path is just a degenerate variant of the slow-path).
 444   // Perform the dreaded state transition and pass control into the slow-path.
 445   JRT_BLOCK;
 446   Handle h_obj(THREAD, obj);
 447   ObjectSynchronizer::notify(h_obj, CHECK);
 448   JRT_BLOCK_END;
 449 JRT_END
 450 
 451 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 452 
 453   if (!SafepointSynchronize::is_synchronizing() ) {
 454     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 455       return;
 456     }
 457   }
 458 
 459   // This is the case the fast-path above isn't provisioned to handle.
 460   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 461   // (The fast-path is just a degenerate variant of the slow-path).
 462   // Perform the dreaded state transition and pass control into the slow-path.
 463   JRT_BLOCK;
 464   Handle h_obj(THREAD, obj);
 465   ObjectSynchronizer::notifyall(h_obj, CHECK);
 466   JRT_BLOCK_END;
 467 JRT_END
 468 
 469 const TypeFunc *OptoRuntime::new_instance_Type() {
 470   // create input type (domain)
 471   const Type **fields = TypeTuple::fields(1);
 472   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 473   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 474 
 475   // create result type (range)
 476   fields = TypeTuple::fields(1);
 477   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 478 
 479   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 480 
 481   return TypeFunc::make(domain, range);
 482 }
 483 
 484 
 485 const TypeFunc *OptoRuntime::athrow_Type() {
 486   // create input type (domain)
 487   const Type **fields = TypeTuple::fields(1);
 488   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 489   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 490 
 491   // create result type (range)
 492   fields = TypeTuple::fields(0);
 493 
 494   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 495 
 496   return TypeFunc::make(domain, range);
 497 }
 498 
 499 
 500 const TypeFunc *OptoRuntime::new_array_Type() {
 501   // create input type (domain)
 502   const Type **fields = TypeTuple::fields(2);
 503   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 504   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 505   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 506 
 507   // create result type (range)
 508   fields = TypeTuple::fields(1);
 509   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 510 
 511   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 512 
 513   return TypeFunc::make(domain, range);
 514 }
 515 
 516 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 517   // create input type (domain)
 518   const int nargs = ndim + 1;
 519   const Type **fields = TypeTuple::fields(nargs);
 520   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 521   for( int i = 1; i < nargs; i++ )
 522     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 523   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 524 
 525   // create result type (range)
 526   fields = TypeTuple::fields(1);
 527   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 528   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 529 
 530   return TypeFunc::make(domain, range);
 531 }
 532 
 533 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 534   return multianewarray_Type(2);
 535 }
 536 
 537 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 538   return multianewarray_Type(3);
 539 }
 540 
 541 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 542   return multianewarray_Type(4);
 543 }
 544 
 545 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 546   return multianewarray_Type(5);
 547 }
 548 
 549 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 550   // create input type (domain)
 551   const Type **fields = TypeTuple::fields(2);
 552   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 553   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 554   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 555 
 556   // create result type (range)
 557   fields = TypeTuple::fields(1);
 558   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 559   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 560 
 561   return TypeFunc::make(domain, range);
 562 }
 563 
 564 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 565   const Type **fields = TypeTuple::fields(2);
 566   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 567   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 568   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 569 
 570   // create result type (range)
 571   fields = TypeTuple::fields(0);
 572   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 573 
 574   return TypeFunc::make(domain, range);
 575 }
 576 
 577 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 578 
 579   const Type **fields = TypeTuple::fields(2);
 580   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 581   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 582   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 583 
 584   // create result type (range)
 585   fields = TypeTuple::fields(0);
 586   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 587 
 588   return TypeFunc::make(domain, range);
 589 }
 590 
 591 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 592   // create input type (domain)
 593   const Type **fields = TypeTuple::fields(1);
 594   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 595   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 596 
 597   // create result type (range)
 598   fields = TypeTuple::fields(0);
 599   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 600 
 601   return TypeFunc::make(domain, range);
 602 }
 603 
 604 //-----------------------------------------------------------------------------
 605 // Monitor Handling
 606 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 607   // create input type (domain)
 608   const Type **fields = TypeTuple::fields(2);
 609   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 610   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 611   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 612 
 613   // create result type (range)
 614   fields = TypeTuple::fields(0);
 615 
 616   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 617 
 618   return TypeFunc::make(domain,range);
 619 }
 620 
 621 
 622 //-----------------------------------------------------------------------------
 623 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 624   // create input type (domain)
 625   const Type **fields = TypeTuple::fields(3);
 626   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 627   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 628   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 629   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 630 
 631   // create result type (range)
 632   fields = TypeTuple::fields(0);
 633 
 634   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 635 
 636   return TypeFunc::make(domain, range);
 637 }
 638 
 639 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 640   // create input type (domain)
 641   const Type **fields = TypeTuple::fields(1);
 642   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 643   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 644 
 645   // create result type (range)
 646   fields = TypeTuple::fields(0);
 647   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 648   return TypeFunc::make(domain, range);
 649 }
 650 
 651 const TypeFunc* OptoRuntime::flush_windows_Type() {
 652   // create input type (domain)
 653   const Type** fields = TypeTuple::fields(1);
 654   fields[TypeFunc::Parms+0] = NULL; // void
 655   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 656 
 657   // create result type
 658   fields = TypeTuple::fields(1);
 659   fields[TypeFunc::Parms+0] = NULL; // void
 660   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 661 
 662   return TypeFunc::make(domain, range);
 663 }
 664 
 665 const TypeFunc* OptoRuntime::l2f_Type() {
 666   // create input type (domain)
 667   const Type **fields = TypeTuple::fields(2);
 668   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 669   fields[TypeFunc::Parms+1] = Type::HALF;
 670   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 671 
 672   // create result type (range)
 673   fields = TypeTuple::fields(1);
 674   fields[TypeFunc::Parms+0] = Type::FLOAT;
 675   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 676 
 677   return TypeFunc::make(domain, range);
 678 }
 679 
 680 const TypeFunc* OptoRuntime::modf_Type() {
 681   const Type **fields = TypeTuple::fields(2);
 682   fields[TypeFunc::Parms+0] = Type::FLOAT;
 683   fields[TypeFunc::Parms+1] = Type::FLOAT;
 684   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 685 
 686   // create result type (range)
 687   fields = TypeTuple::fields(1);
 688   fields[TypeFunc::Parms+0] = Type::FLOAT;
 689 
 690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 691 
 692   return TypeFunc::make(domain, range);
 693 }
 694 
 695 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 696   // create input type (domain)
 697   const Type **fields = TypeTuple::fields(2);
 698   // Symbol* name of class to be loaded
 699   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 700   fields[TypeFunc::Parms+1] = Type::HALF;
 701   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 702 
 703   // create result type (range)
 704   fields = TypeTuple::fields(2);
 705   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 706   fields[TypeFunc::Parms+1] = Type::HALF;
 707   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 708 
 709   return TypeFunc::make(domain, range);
 710 }
 711 
 712 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 713   const Type **fields = TypeTuple::fields(4);
 714   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 715   fields[TypeFunc::Parms+1] = Type::HALF;
 716   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 717   fields[TypeFunc::Parms+3] = Type::HALF;
 718   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 719 
 720   // create result type (range)
 721   fields = TypeTuple::fields(2);
 722   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 723   fields[TypeFunc::Parms+1] = Type::HALF;
 724   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 725 
 726   return TypeFunc::make(domain, range);
 727 }
 728 
 729 //-------------- currentTimeMillis, currentTimeNanos, etc
 730 
 731 const TypeFunc* OptoRuntime::void_long_Type() {
 732   // create input type (domain)
 733   const Type **fields = TypeTuple::fields(0);
 734   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 735 
 736   // create result type (range)
 737   fields = TypeTuple::fields(2);
 738   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 739   fields[TypeFunc::Parms+1] = Type::HALF;
 740   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 741 
 742   return TypeFunc::make(domain, range);
 743 }
 744 
 745 // arraycopy stub variations:
 746 enum ArrayCopyType {
 747   ac_fast,                      // void(ptr, ptr, size_t)
 748   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 749   ac_slow,                      // void(ptr, int, ptr, int, int)
 750   ac_generic                    //  int(ptr, int, ptr, int, int)
 751 };
 752 
 753 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 754   // create input type (domain)
 755   int num_args      = (act == ac_fast ? 3 : 5);
 756   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 757   int argcnt = num_args;
 758   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 759   const Type** fields = TypeTuple::fields(argcnt);
 760   int argp = TypeFunc::Parms;
 761   fields[argp++] = TypePtr::NOTNULL;    // src
 762   if (num_size_args == 0) {
 763     fields[argp++] = TypeInt::INT;      // src_pos
 764   }
 765   fields[argp++] = TypePtr::NOTNULL;    // dest
 766   if (num_size_args == 0) {
 767     fields[argp++] = TypeInt::INT;      // dest_pos
 768     fields[argp++] = TypeInt::INT;      // length
 769   }
 770   while (num_size_args-- > 0) {
 771     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 772     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 773   }
 774   if (act == ac_checkcast) {
 775     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 776   }
 777   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 778   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 779 
 780   // create result type if needed
 781   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 782   fields = TypeTuple::fields(1);
 783   if (retcnt == 0)
 784     fields[TypeFunc::Parms+0] = NULL; // void
 785   else
 786     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 787   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 788   return TypeFunc::make(domain, range);
 789 }
 790 
 791 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 792   // This signature is simple:  Two base pointers and a size_t.
 793   return make_arraycopy_Type(ac_fast);
 794 }
 795 
 796 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 797   // An extension of fast_arraycopy_Type which adds type checking.
 798   return make_arraycopy_Type(ac_checkcast);
 799 }
 800 
 801 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 802   // This signature is exactly the same as System.arraycopy.
 803   // There are no intptr_t (int/long) arguments.
 804   return make_arraycopy_Type(ac_slow);
 805 }
 806 
 807 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 808   // This signature is like System.arraycopy, except that it returns status.
 809   return make_arraycopy_Type(ac_generic);
 810 }
 811 
 812 
 813 const TypeFunc* OptoRuntime::array_fill_Type() {
 814   const Type** fields;
 815   int argp = TypeFunc::Parms;
 816   // create input type (domain): pointer, int, size_t
 817   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 818   fields[argp++] = TypePtr::NOTNULL;
 819   fields[argp++] = TypeInt::INT;
 820   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 821   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 822   const TypeTuple *domain = TypeTuple::make(argp, fields);
 823 
 824   // create result type
 825   fields = TypeTuple::fields(1);
 826   fields[TypeFunc::Parms+0] = NULL; // void
 827   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 828 
 829   return TypeFunc::make(domain, range);
 830 }
 831 
 832 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 833 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 834   // create input type (domain)
 835   int num_args      = 3;
 836   if (Matcher::pass_original_key_for_aes()) {
 837     num_args = 4;
 838   }
 839   int argcnt = num_args;
 840   const Type** fields = TypeTuple::fields(argcnt);
 841   int argp = TypeFunc::Parms;
 842   fields[argp++] = TypePtr::NOTNULL;    // src
 843   fields[argp++] = TypePtr::NOTNULL;    // dest
 844   fields[argp++] = TypePtr::NOTNULL;    // k array
 845   if (Matcher::pass_original_key_for_aes()) {
 846     fields[argp++] = TypePtr::NOTNULL;    // original k array
 847   }
 848   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 849   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 850 
 851   // no result type needed
 852   fields = TypeTuple::fields(1);
 853   fields[TypeFunc::Parms+0] = NULL; // void
 854   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 855   return TypeFunc::make(domain, range);
 856 }
 857 
 858 /**
 859  * int updateBytesCRC32(int crc, byte* b, int len)
 860  */
 861 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 862   // create input type (domain)
 863   int num_args      = 3;
 864   int argcnt = num_args;
 865   const Type** fields = TypeTuple::fields(argcnt);
 866   int argp = TypeFunc::Parms;
 867   fields[argp++] = TypeInt::INT;        // crc
 868   fields[argp++] = TypePtr::NOTNULL;    // src
 869   fields[argp++] = TypeInt::INT;        // len
 870   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 871   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 872 
 873   // result type needed
 874   fields = TypeTuple::fields(1);
 875   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 876   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 877   return TypeFunc::make(domain, range);
 878 }
 879 
 880 /**
 881  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 882  */
 883 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 884   // create input type (domain)
 885   int num_args      = 4;
 886   int argcnt = num_args;
 887   const Type** fields = TypeTuple::fields(argcnt);
 888   int argp = TypeFunc::Parms;
 889   fields[argp++] = TypeInt::INT;        // crc
 890   fields[argp++] = TypePtr::NOTNULL;    // buf
 891   fields[argp++] = TypeInt::INT;        // len
 892   fields[argp++] = TypePtr::NOTNULL;    // table
 893   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 894   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 895 
 896   // result type needed
 897   fields = TypeTuple::fields(1);
 898   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 899   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 900   return TypeFunc::make(domain, range);
 901 }
 902 
 903 /**
 904 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 905 */
 906 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 907   // create input type (domain)
 908   int num_args      = 3;
 909   int argcnt = num_args;
 910   const Type** fields = TypeTuple::fields(argcnt);
 911   int argp = TypeFunc::Parms;
 912   fields[argp++] = TypeInt::INT;        // crc
 913   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 914   fields[argp++] = TypeInt::INT;        // len
 915   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 916   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 917 
 918   // result type needed
 919   fields = TypeTuple::fields(1);
 920   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 921   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 922   return TypeFunc::make(domain, range);
 923 }
 924 
 925 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 926 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 927   // create input type (domain)
 928   int num_args      = 5;
 929   if (Matcher::pass_original_key_for_aes()) {
 930     num_args = 6;
 931   }
 932   int argcnt = num_args;
 933   const Type** fields = TypeTuple::fields(argcnt);
 934   int argp = TypeFunc::Parms;
 935   fields[argp++] = TypePtr::NOTNULL;    // src
 936   fields[argp++] = TypePtr::NOTNULL;    // dest
 937   fields[argp++] = TypePtr::NOTNULL;    // k array
 938   fields[argp++] = TypePtr::NOTNULL;    // r array
 939   fields[argp++] = TypeInt::INT;        // src len
 940   if (Matcher::pass_original_key_for_aes()) {
 941     fields[argp++] = TypePtr::NOTNULL;    // original k array
 942   }
 943   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 944   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 945 
 946   // returning cipher len (int)
 947   fields = TypeTuple::fields(1);
 948   fields[TypeFunc::Parms+0] = TypeInt::INT;
 949   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 950   return TypeFunc::make(domain, range);
 951 }
 952 
 953 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 954 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 955   // create input type (domain)
 956   int num_args = 7;
 957   if (Matcher::pass_original_key_for_aes()) {
 958     num_args = 8;
 959   }
 960   int argcnt = num_args;
 961   const Type** fields = TypeTuple::fields(argcnt);
 962   int argp = TypeFunc::Parms;
 963   fields[argp++] = TypePtr::NOTNULL; // src
 964   fields[argp++] = TypePtr::NOTNULL; // dest
 965   fields[argp++] = TypePtr::NOTNULL; // k array
 966   fields[argp++] = TypePtr::NOTNULL; // counter array
 967   fields[argp++] = TypeInt::INT; // src len
 968   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 969   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 970   if (Matcher::pass_original_key_for_aes()) {
 971     fields[argp++] = TypePtr::NOTNULL; // original k array
 972   }
 973   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 974   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 975   // returning cipher len (int)
 976   fields = TypeTuple::fields(1);
 977   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 978   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 979   return TypeFunc::make(domain, range);
 980 }
 981 
 982 /*
 983  * void implCompress(byte[] buf, int ofs)
 984  */
 985 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 986   // create input type (domain)
 987   int num_args = 2;
 988   int argcnt = num_args;
 989   const Type** fields = TypeTuple::fields(argcnt);
 990   int argp = TypeFunc::Parms;
 991   fields[argp++] = TypePtr::NOTNULL; // buf
 992   fields[argp++] = TypePtr::NOTNULL; // state
 993   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 994   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 995 
 996   // no result type needed
 997   fields = TypeTuple::fields(1);
 998   fields[TypeFunc::Parms+0] = NULL; // void
 999   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1000   return TypeFunc::make(domain, range);
1001 }
1002 
1003 /*
1004  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1005  */
1006 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
1007   // create input type (domain)
1008   int num_args = 4;
1009   int argcnt = num_args;
1010   const Type** fields = TypeTuple::fields(argcnt);
1011   int argp = TypeFunc::Parms;
1012   fields[argp++] = TypePtr::NOTNULL; // buf
1013   fields[argp++] = TypePtr::NOTNULL; // state
1014   fields[argp++] = TypeInt::INT;     // ofs
1015   fields[argp++] = TypeInt::INT;     // limit
1016   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1017   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1018 
1019   // returning ofs (int)
1020   fields = TypeTuple::fields(1);
1021   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1022   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1023   return TypeFunc::make(domain, range);
1024 }
1025 
1026 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1027   // create input type (domain)
1028   int num_args      = 6;
1029   int argcnt = num_args;
1030   const Type** fields = TypeTuple::fields(argcnt);
1031   int argp = TypeFunc::Parms;
1032   fields[argp++] = TypePtr::NOTNULL;    // x
1033   fields[argp++] = TypeInt::INT;        // xlen
1034   fields[argp++] = TypePtr::NOTNULL;    // y
1035   fields[argp++] = TypeInt::INT;        // ylen
1036   fields[argp++] = TypePtr::NOTNULL;    // z
1037   fields[argp++] = TypeInt::INT;        // zlen
1038   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1039   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1040 
1041   // no result type needed
1042   fields = TypeTuple::fields(1);
1043   fields[TypeFunc::Parms+0] = NULL;
1044   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1045   return TypeFunc::make(domain, range);
1046 }
1047 
1048 const TypeFunc* OptoRuntime::squareToLen_Type() {
1049   // create input type (domain)
1050   int num_args      = 4;
1051   int argcnt = num_args;
1052   const Type** fields = TypeTuple::fields(argcnt);
1053   int argp = TypeFunc::Parms;
1054   fields[argp++] = TypePtr::NOTNULL;    // x
1055   fields[argp++] = TypeInt::INT;        // len
1056   fields[argp++] = TypePtr::NOTNULL;    // z
1057   fields[argp++] = TypeInt::INT;        // zlen
1058   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1059   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1060 
1061   // no result type needed
1062   fields = TypeTuple::fields(1);
1063   fields[TypeFunc::Parms+0] = NULL;
1064   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1065   return TypeFunc::make(domain, range);
1066 }
1067 
1068 // for mulAdd calls, 2 pointers and 3 ints, returning int
1069 const TypeFunc* OptoRuntime::mulAdd_Type() {
1070   // create input type (domain)
1071   int num_args      = 5;
1072   int argcnt = num_args;
1073   const Type** fields = TypeTuple::fields(argcnt);
1074   int argp = TypeFunc::Parms;
1075   fields[argp++] = TypePtr::NOTNULL;    // out
1076   fields[argp++] = TypePtr::NOTNULL;    // in
1077   fields[argp++] = TypeInt::INT;        // offset
1078   fields[argp++] = TypeInt::INT;        // len
1079   fields[argp++] = TypeInt::INT;        // k
1080   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1081   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1082 
1083   // returning carry (int)
1084   fields = TypeTuple::fields(1);
1085   fields[TypeFunc::Parms+0] = TypeInt::INT;
1086   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1087   return TypeFunc::make(domain, range);
1088 }
1089 
1090 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1091   // create input type (domain)
1092   int num_args      = 7;
1093   int argcnt = num_args;
1094   const Type** fields = TypeTuple::fields(argcnt);
1095   int argp = TypeFunc::Parms;
1096   fields[argp++] = TypePtr::NOTNULL;    // a
1097   fields[argp++] = TypePtr::NOTNULL;    // b
1098   fields[argp++] = TypePtr::NOTNULL;    // n
1099   fields[argp++] = TypeInt::INT;        // len
1100   fields[argp++] = TypeLong::LONG;      // inv
1101   fields[argp++] = Type::HALF;
1102   fields[argp++] = TypePtr::NOTNULL;    // result
1103   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1104   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1105 
1106   // result type needed
1107   fields = TypeTuple::fields(1);
1108   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1109 
1110   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1111   return TypeFunc::make(domain, range);
1112 }
1113 
1114 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1115   // create input type (domain)
1116   int num_args      = 6;
1117   int argcnt = num_args;
1118   const Type** fields = TypeTuple::fields(argcnt);
1119   int argp = TypeFunc::Parms;
1120   fields[argp++] = TypePtr::NOTNULL;    // a
1121   fields[argp++] = TypePtr::NOTNULL;    // n
1122   fields[argp++] = TypeInt::INT;        // len
1123   fields[argp++] = TypeLong::LONG;      // inv
1124   fields[argp++] = Type::HALF;
1125   fields[argp++] = TypePtr::NOTNULL;    // result
1126   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1127   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1128 
1129   // result type needed
1130   fields = TypeTuple::fields(1);
1131   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1132 
1133   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1134   return TypeFunc::make(domain, range);
1135 }
1136 
1137 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1138   // create input type (domain)
1139   int num_args = 4;
1140   int argcnt = num_args;
1141   const Type** fields = TypeTuple::fields(argcnt);
1142   int argp = TypeFunc::Parms;
1143   fields[argp++] = TypePtr::NOTNULL;    // obja
1144   fields[argp++] = TypePtr::NOTNULL;    // objb
1145   fields[argp++] = TypeInt::INT;        // length, number of elements
1146   fields[argp++] = TypeInt::INT;        // log2scale, element size
1147   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1148   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1149 
1150   //return mismatch index (int)
1151   fields = TypeTuple::fields(1);
1152   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1153   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1154   return TypeFunc::make(domain, range);
1155 }
1156 
1157 // GHASH block processing
1158 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1159     int argcnt = 4;
1160 
1161     const Type** fields = TypeTuple::fields(argcnt);
1162     int argp = TypeFunc::Parms;
1163     fields[argp++] = TypePtr::NOTNULL;    // state
1164     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1165     fields[argp++] = TypePtr::NOTNULL;    // data
1166     fields[argp++] = TypeInt::INT;        // blocks
1167     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1168     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1169 
1170     // result type needed
1171     fields = TypeTuple::fields(1);
1172     fields[TypeFunc::Parms+0] = NULL; // void
1173     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1174     return TypeFunc::make(domain, range);
1175 }
1176 
1177 //------------- Interpreter state access for on stack replacement
1178 const TypeFunc* OptoRuntime::osr_end_Type() {
1179   // create input type (domain)
1180   const Type **fields = TypeTuple::fields(1);
1181   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1182   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1183 
1184   // create result type
1185   fields = TypeTuple::fields(1);
1186   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1187   fields[TypeFunc::Parms+0] = NULL; // void
1188   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1189   return TypeFunc::make(domain, range);
1190 }
1191 
1192 //-------------- methodData update helpers
1193 
1194 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1195   // create input type (domain)
1196   const Type **fields = TypeTuple::fields(2);
1197   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1198   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1199   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1200 
1201   // create result type
1202   fields = TypeTuple::fields(1);
1203   fields[TypeFunc::Parms+0] = NULL; // void
1204   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1205   return TypeFunc::make(domain,range);
1206 }
1207 
1208 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1209   if (receiver == NULL) return;
1210   Klass* receiver_klass = receiver->klass();
1211 
1212   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1213   int empty_row = -1;           // free row, if any is encountered
1214 
1215   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1216   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1217     // if (vc->receiver(row) == receiver_klass)
1218     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1219     intptr_t row_recv = *(mdp + receiver_off);
1220     if (row_recv == (intptr_t) receiver_klass) {
1221       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1222       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1223       *(mdp + count_off) += DataLayout::counter_increment;
1224       return;
1225     } else if (row_recv == 0) {
1226       // else if (vc->receiver(row) == NULL)
1227       empty_row = (int) row;
1228     }
1229   }
1230 
1231   if (empty_row != -1) {
1232     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1233     // vc->set_receiver(empty_row, receiver_klass);
1234     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1235     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1236     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1237     *(mdp + count_off) = DataLayout::counter_increment;
1238   } else {
1239     // Receiver did not match any saved receiver and there is no empty row for it.
1240     // Increment total counter to indicate polymorphic case.
1241     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1242     *count_p += DataLayout::counter_increment;
1243   }
1244 JRT_END
1245 
1246 //-------------------------------------------------------------------------------------
1247 // register policy
1248 
1249 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1250   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1251   switch (register_save_policy[reg]) {
1252     case 'C': return false; //SOC
1253     case 'E': return true ; //SOE
1254     case 'N': return false; //NS
1255     case 'A': return false; //AS
1256   }
1257   ShouldNotReachHere();
1258   return false;
1259 }
1260 
1261 //-----------------------------------------------------------------------
1262 // Exceptions
1263 //
1264 
1265 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1266 
1267 // The method is an entry that is always called by a C++ method not
1268 // directly from compiled code. Compiled code will call the C++ method following.
1269 // We can't allow async exception to be installed during  exception processing.
1270 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1271 
1272   // Do not confuse exception_oop with pending_exception. The exception_oop
1273   // is only used to pass arguments into the method. Not for general
1274   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1275   // the runtime stubs checks this on exit.
1276   assert(thread->exception_oop() != NULL, "exception oop is found");
1277   address handler_address = NULL;
1278 
1279   Handle exception(thread, thread->exception_oop());
1280   address pc = thread->exception_pc();
1281 
1282   // Clear out the exception oop and pc since looking up an
1283   // exception handler can cause class loading, which might throw an
1284   // exception and those fields are expected to be clear during
1285   // normal bytecode execution.
1286   thread->clear_exception_oop_and_pc();
1287 
1288   if (log_is_enabled(Info, exceptions)) {
1289     ResourceMark rm;
1290     trace_exception(LogHandle(exceptions)::info_stream(), exception(), pc, "");
1291   }
1292 
1293   // for AbortVMOnException flag
1294   Exceptions::debug_check_abort(exception);
1295 
1296 #ifdef ASSERT
1297   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1298     // should throw an exception here
1299     ShouldNotReachHere();
1300   }
1301 #endif
1302 
1303   // new exception handling: this method is entered only from adapters
1304   // exceptions from compiled java methods are handled in compiled code
1305   // using rethrow node
1306 
1307   nm = CodeCache::find_nmethod(pc);
1308   assert(nm != NULL, "No NMethod found");
1309   if (nm->is_native_method()) {
1310     fatal("Native method should not have path to exception handling");
1311   } else {
1312     // we are switching to old paradigm: search for exception handler in caller_frame
1313     // instead in exception handler of caller_frame.sender()
1314 
1315     if (JvmtiExport::can_post_on_exceptions()) {
1316       // "Full-speed catching" is not necessary here,
1317       // since we're notifying the VM on every catch.
1318       // Force deoptimization and the rest of the lookup
1319       // will be fine.
1320       deoptimize_caller_frame(thread);
1321     }
1322 
1323     // Check the stack guard pages.  If enabled, look for handler in this frame;
1324     // otherwise, forcibly unwind the frame.
1325     //
1326     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1327     bool force_unwind = !thread->reguard_stack();
1328     bool deopting = false;
1329     if (nm->is_deopt_pc(pc)) {
1330       deopting = true;
1331       RegisterMap map(thread, false);
1332       frame deoptee = thread->last_frame().sender(&map);
1333       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1334       // Adjust the pc back to the original throwing pc
1335       pc = deoptee.pc();
1336     }
1337 
1338     // If we are forcing an unwind because of stack overflow then deopt is
1339     // irrelevant since we are throwing the frame away anyway.
1340 
1341     if (deopting && !force_unwind) {
1342       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1343     } else {
1344 
1345       handler_address =
1346         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1347 
1348       if (handler_address == NULL) {
1349         Handle original_exception(thread, exception());
1350         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1351         assert (handler_address != NULL, "must have compiled handler");
1352         // Update the exception cache only when the unwind was not forced
1353         // and there didn't happen another exception during the computation of the
1354         // compiled exception handler.
1355         if (!force_unwind && original_exception() == exception()) {
1356           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1357         }
1358       } else {
1359         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1360       }
1361     }
1362 
1363     thread->set_exception_pc(pc);
1364     thread->set_exception_handler_pc(handler_address);
1365 
1366     // Check if the exception PC is a MethodHandle call site.
1367     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1368   }
1369 
1370   // Restore correct return pc.  Was saved above.
1371   thread->set_exception_oop(exception());
1372   return handler_address;
1373 
1374 JRT_END
1375 
1376 // We are entering here from exception_blob
1377 // If there is a compiled exception handler in this method, we will continue there;
1378 // otherwise we will unwind the stack and continue at the caller of top frame method
1379 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1380 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1381 // we looked up the handler for has been deoptimized in the meantime. If it has been
1382 // we must not use the handler and instead return the deopt blob.
1383 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1384 //
1385 // We are in Java not VM and in debug mode we have a NoHandleMark
1386 //
1387 #ifndef PRODUCT
1388   SharedRuntime::_find_handler_ctr++;          // find exception handler
1389 #endif
1390   debug_only(NoHandleMark __hm;)
1391   nmethod* nm = NULL;
1392   address handler_address = NULL;
1393   {
1394     // Enter the VM
1395 
1396     ResetNoHandleMark rnhm;
1397     handler_address = handle_exception_C_helper(thread, nm);
1398   }
1399 
1400   // Back in java: Use no oops, DON'T safepoint
1401 
1402   // Now check to see if the handler we are returning is in a now
1403   // deoptimized frame
1404 
1405   if (nm != NULL) {
1406     RegisterMap map(thread, false);
1407     frame caller = thread->last_frame().sender(&map);
1408 #ifdef ASSERT
1409     assert(caller.is_compiled_frame(), "must be");
1410 #endif // ASSERT
1411     if (caller.is_deoptimized_frame()) {
1412       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1413     }
1414   }
1415   return handler_address;
1416 }
1417 
1418 //------------------------------rethrow----------------------------------------
1419 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1420 // is either throwing or rethrowing an exception.  The callee-save registers
1421 // have been restored, synchronized objects have been unlocked and the callee
1422 // stack frame has been removed.  The return address was passed in.
1423 // Exception oop is passed as the 1st argument.  This routine is then called
1424 // from the stub.  On exit, we know where to jump in the caller's code.
1425 // After this C code exits, the stub will pop his frame and end in a jump
1426 // (instead of a return).  We enter the caller's default handler.
1427 //
1428 // This must be JRT_LEAF:
1429 //     - caller will not change its state as we cannot block on exit,
1430 //       therefore raw_exception_handler_for_return_address is all it takes
1431 //       to handle deoptimized blobs
1432 //
1433 // However, there needs to be a safepoint check in the middle!  So compiled
1434 // safepoints are completely watertight.
1435 //
1436 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1437 //
1438 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1439 //
1440 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1441 #ifndef PRODUCT
1442   SharedRuntime::_rethrow_ctr++;               // count rethrows
1443 #endif
1444   assert (exception != NULL, "should have thrown a NULLPointerException");
1445 #ifdef ASSERT
1446   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1447     // should throw an exception here
1448     ShouldNotReachHere();
1449   }
1450 #endif
1451 
1452   thread->set_vm_result(exception);
1453   // Frame not compiled (handles deoptimization blob)
1454   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1455 }
1456 
1457 
1458 const TypeFunc *OptoRuntime::rethrow_Type() {
1459   // create input type (domain)
1460   const Type **fields = TypeTuple::fields(1);
1461   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1462   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1463 
1464   // create result type (range)
1465   fields = TypeTuple::fields(1);
1466   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1467   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1468 
1469   return TypeFunc::make(domain, range);
1470 }
1471 
1472 
1473 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1474   // Deoptimize the caller before continuing, as the compiled
1475   // exception handler table may not be valid.
1476   if (!StressCompiledExceptionHandlers && doit) {
1477     deoptimize_caller_frame(thread);
1478   }
1479 }
1480 
1481 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1482   // Called from within the owner thread, so no need for safepoint
1483   RegisterMap reg_map(thread);
1484   frame stub_frame = thread->last_frame();
1485   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1486   frame caller_frame = stub_frame.sender(&reg_map);
1487 
1488   // Deoptimize the caller frame.
1489   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1490 }
1491 
1492 
1493 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1494   // Called from within the owner thread, so no need for safepoint
1495   RegisterMap reg_map(thread);
1496   frame stub_frame = thread->last_frame();
1497   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1498   frame caller_frame = stub_frame.sender(&reg_map);
1499   return caller_frame.is_deoptimized_frame();
1500 }
1501 
1502 
1503 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1504   // create input type (domain)
1505   const Type **fields = TypeTuple::fields(1);
1506   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1507   // // The JavaThread* is passed to each routine as the last argument
1508   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1509   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1510 
1511   // create result type (range)
1512   fields = TypeTuple::fields(0);
1513 
1514   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1515 
1516   return TypeFunc::make(domain,range);
1517 }
1518 
1519 
1520 //-----------------------------------------------------------------------------
1521 // Dtrace support.  entry and exit probes have the same signature
1522 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1523   // create input type (domain)
1524   const Type **fields = TypeTuple::fields(2);
1525   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1526   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1527   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1528 
1529   // create result type (range)
1530   fields = TypeTuple::fields(0);
1531 
1532   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1533 
1534   return TypeFunc::make(domain,range);
1535 }
1536 
1537 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1538   // create input type (domain)
1539   const Type **fields = TypeTuple::fields(2);
1540   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1541   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1542 
1543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1544 
1545   // create result type (range)
1546   fields = TypeTuple::fields(0);
1547 
1548   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1549 
1550   return TypeFunc::make(domain,range);
1551 }
1552 
1553 
1554 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1555   assert(obj->is_oop(), "must be a valid oop");
1556   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1557   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1558 JRT_END
1559 
1560 //-----------------------------------------------------------------------------
1561 
1562 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1563 
1564 //
1565 // dump the collected NamedCounters.
1566 //
1567 void OptoRuntime::print_named_counters() {
1568   int total_lock_count = 0;
1569   int eliminated_lock_count = 0;
1570 
1571   NamedCounter* c = _named_counters;
1572   while (c) {
1573     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1574       int count = c->count();
1575       if (count > 0) {
1576         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1577         if (Verbose) {
1578           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1579         }
1580         total_lock_count += count;
1581         if (eliminated) {
1582           eliminated_lock_count += count;
1583         }
1584       }
1585     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1586       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1587       if (blc->nonzero()) {
1588         tty->print_cr("%s", c->name());
1589         blc->print_on(tty);
1590       }
1591 #if INCLUDE_RTM_OPT
1592     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1593       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1594       if (rlc->nonzero()) {
1595         tty->print_cr("%s", c->name());
1596         rlc->print_on(tty);
1597       }
1598 #endif
1599     }
1600     c = c->next();
1601   }
1602   if (total_lock_count > 0) {
1603     tty->print_cr("dynamic locks: %d", total_lock_count);
1604     if (eliminated_lock_count) {
1605       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1606                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1607     }
1608   }
1609 }
1610 
1611 //
1612 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1613 //  name which consists of method@line for the inlining tree.
1614 //
1615 
1616 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1617   int max_depth = youngest_jvms->depth();
1618 
1619   // Visit scopes from youngest to oldest.
1620   bool first = true;
1621   stringStream st;
1622   for (int depth = max_depth; depth >= 1; depth--) {
1623     JVMState* jvms = youngest_jvms->of_depth(depth);
1624     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1625     if (!first) {
1626       st.print(" ");
1627     } else {
1628       first = false;
1629     }
1630     int bci = jvms->bci();
1631     if (bci < 0) bci = 0;
1632     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1633     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1634   }
1635   NamedCounter* c;
1636   if (tag == NamedCounter::BiasedLockingCounter) {
1637     c = new BiasedLockingNamedCounter(st.as_string());
1638   } else if (tag == NamedCounter::RTMLockingCounter) {
1639     c = new RTMLockingNamedCounter(st.as_string());
1640   } else {
1641     c = new NamedCounter(st.as_string(), tag);
1642   }
1643 
1644   // atomically add the new counter to the head of the list.  We only
1645   // add counters so this is safe.
1646   NamedCounter* head;
1647   do {
1648     c->set_next(NULL);
1649     head = _named_counters;
1650     c->set_next(head);
1651   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1652   return c;
1653 }
1654 
1655 int trace_exception_counter = 0;
1656 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1657   trace_exception_counter++;
1658   stringStream tempst;
1659 
1660   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1661   exception_oop->print_value_on(&tempst);
1662   tempst.print(" in ");
1663   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1664   if (blob->is_nmethod()) {
1665     nmethod* nm = blob->as_nmethod_or_null();
1666     nm->method()->print_value_on(&tempst);
1667   } else if (blob->is_runtime_stub()) {
1668     tempst.print("<runtime-stub>");
1669   } else {
1670     tempst.print("<unknown>");
1671   }
1672   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1673   tempst.print("]");
1674 
1675   st->print_raw_cr(tempst.as_string());
1676 }