1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "trace/traceMacros.hpp"
  53 
  54 class LibraryIntrinsic : public InlineCallGenerator {
  55   // Extend the set of intrinsics known to the runtime:
  56  public:
  57  private:
  58   bool             _is_virtual;
  59   bool             _does_virtual_dispatch;
  60   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  61   int8_t           _last_predicate; // Last generated predicate
  62   vmIntrinsics::ID _intrinsic_id;
  63 
  64  public:
  65   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  66     : InlineCallGenerator(m),
  67       _is_virtual(is_virtual),
  68       _does_virtual_dispatch(does_virtual_dispatch),
  69       _predicates_count((int8_t)predicates_count),
  70       _last_predicate((int8_t)-1),
  71       _intrinsic_id(id)
  72   {
  73   }
  74   virtual bool is_intrinsic() const { return true; }
  75   virtual bool is_virtual()   const { return _is_virtual; }
  76   virtual bool is_predicated() const { return _predicates_count > 0; }
  77   virtual int  predicates_count() const { return _predicates_count; }
  78   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  79   virtual JVMState* generate(JVMState* jvms);
  80   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  81   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  82 };
  83 
  84 
  85 // Local helper class for LibraryIntrinsic:
  86 class LibraryCallKit : public GraphKit {
  87  private:
  88   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  89   Node*             _result;        // the result node, if any
  90   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  91 
  92   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  93 
  94  public:
  95   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  96     : GraphKit(jvms),
  97       _intrinsic(intrinsic),
  98       _result(NULL)
  99   {
 100     // Check if this is a root compile.  In that case we don't have a caller.
 101     if (!jvms->has_method()) {
 102       _reexecute_sp = sp();
 103     } else {
 104       // Find out how many arguments the interpreter needs when deoptimizing
 105       // and save the stack pointer value so it can used by uncommon_trap.
 106       // We find the argument count by looking at the declared signature.
 107       bool ignored_will_link;
 108       ciSignature* declared_signature = NULL;
 109       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 110       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 111       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 112     }
 113   }
 114 
 115   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 116 
 117   ciMethod*         caller()    const    { return jvms()->method(); }
 118   int               bci()       const    { return jvms()->bci(); }
 119   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 120   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 121   ciMethod*         callee()    const    { return _intrinsic->method(); }
 122 
 123   bool  try_to_inline(int predicate);
 124   Node* try_to_predicate(int predicate);
 125 
 126   void push_result() {
 127     // Push the result onto the stack.
 128     if (!stopped() && result() != NULL) {
 129       BasicType bt = result()->bottom_type()->basic_type();
 130       push_node(bt, result());
 131     }
 132   }
 133 
 134  private:
 135   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 136     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 137   }
 138 
 139   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 140   void  set_result(RegionNode* region, PhiNode* value);
 141   Node*     result() { return _result; }
 142 
 143   virtual int reexecute_sp() { return _reexecute_sp; }
 144 
 145   // Helper functions to inline natives
 146   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 147   Node* generate_slow_guard(Node* test, RegionNode* region);
 148   Node* generate_fair_guard(Node* test, RegionNode* region);
 149   Node* generate_negative_guard(Node* index, RegionNode* region,
 150                                 // resulting CastII of index:
 151                                 Node* *pos_index = NULL);
 152   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 153                              Node* array_length,
 154                              RegionNode* region);
 155   void  generate_string_range_check(Node* array, Node* offset,
 156                                     Node* length, bool char_count);
 157   Node* generate_current_thread(Node* &tls_output);
 158   Node* load_mirror_from_klass(Node* klass);
 159   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 160                                       RegionNode* region, int null_path,
 161                                       int offset);
 162   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 163                                RegionNode* region, int null_path) {
 164     int offset = java_lang_Class::klass_offset_in_bytes();
 165     return load_klass_from_mirror_common(mirror, never_see_null,
 166                                          region, null_path,
 167                                          offset);
 168   }
 169   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 170                                      RegionNode* region, int null_path) {
 171     int offset = java_lang_Class::array_klass_offset_in_bytes();
 172     return load_klass_from_mirror_common(mirror, never_see_null,
 173                                          region, null_path,
 174                                          offset);
 175   }
 176   Node* generate_access_flags_guard(Node* kls,
 177                                     int modifier_mask, int modifier_bits,
 178                                     RegionNode* region);
 179   Node* generate_interface_guard(Node* kls, RegionNode* region);
 180   Node* generate_array_guard(Node* kls, RegionNode* region) {
 181     return generate_array_guard_common(kls, region, false, false);
 182   }
 183   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, false, true);
 185   }
 186   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, true, false);
 188   }
 189   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, true, true);
 191   }
 192   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 193                                     bool obj_array, bool not_array);
 194   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 195   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 196                                      bool is_virtual = false, bool is_static = false);
 197   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 198     return generate_method_call(method_id, false, true);
 199   }
 200   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 201     return generate_method_call(method_id, true, false);
 202   }
 203   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 204   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 205 
 206   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 207   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 208   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 209   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 210   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 211                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOfChar();
 213   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 214   bool inline_string_toBytesU();
 215   bool inline_string_getCharsU();
 216   bool inline_string_copy(bool compress);
 217   bool inline_string_char_access(bool is_store);
 218   Node* round_double_node(Node* n);
 219   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 220   bool inline_math_native(vmIntrinsics::ID id);
 221   bool inline_trig(vmIntrinsics::ID id);
 222   bool inline_math(vmIntrinsics::ID id);
 223   template <typename OverflowOp>
 224   bool inline_math_overflow(Node* arg1, Node* arg2);
 225   void inline_math_mathExact(Node* math, Node* test);
 226   bool inline_math_addExactI(bool is_increment);
 227   bool inline_math_addExactL(bool is_increment);
 228   bool inline_math_multiplyExactI();
 229   bool inline_math_multiplyExactL();
 230   bool inline_math_negateExactI();
 231   bool inline_math_negateExactL();
 232   bool inline_math_subtractExactI(bool is_decrement);
 233   bool inline_math_subtractExactL(bool is_decrement);
 234   bool inline_min_max(vmIntrinsics::ID id);
 235   bool inline_notify(vmIntrinsics::ID id);
 236   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 237   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 238   int classify_unsafe_addr(Node* &base, Node* &offset);
 239   Node* make_unsafe_address(Node* base, Node* offset);
 240   // Helper for inline_unsafe_access.
 241   // Generates the guards that check whether the result of
 242   // Unsafe.getObject should be recorded in an SATB log buffer.
 243   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 244 
 245   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 246   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 247   static bool klass_needs_init_guard(Node* kls);
 248   bool inline_unsafe_allocate();
 249   bool inline_unsafe_copyMemory();
 250   bool inline_native_currentThread();
 251 #ifdef TRACE_HAVE_INTRINSICS
 252   bool inline_native_classID();
 253   bool inline_native_threadID();
 254 #endif
 255   bool inline_native_time_funcs(address method, const char* funcName);
 256   bool inline_native_isInterrupted();
 257   bool inline_native_Class_query(vmIntrinsics::ID id);
 258   bool inline_native_subtype_check();
 259 
 260   bool inline_native_newArray();
 261   bool inline_native_getLength();
 262   bool inline_array_copyOf(bool is_copyOfRange);
 263   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 264   bool inline_objects_checkIndex();
 265   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 266   bool inline_native_clone(bool is_virtual);
 267   bool inline_native_Reflection_getCallerClass();
 268   // Helper function for inlining native object hash method
 269   bool inline_native_hashcode(bool is_virtual, bool is_static);
 270   bool inline_native_getClass();
 271 
 272   // Helper functions for inlining arraycopy
 273   bool inline_arraycopy();
 274   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 275                                                 RegionNode* slow_region);
 276   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 277   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 278 
 279   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 280   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 281   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 282   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 283   bool inline_unsafe_fence(vmIntrinsics::ID id);
 284   bool inline_fp_conversions(vmIntrinsics::ID id);
 285   bool inline_number_methods(vmIntrinsics::ID id);
 286   bool inline_reference_get();
 287   bool inline_Class_cast();
 288   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 289   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 290   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 292   Node* inline_counterMode_AESCrypt_predicate();
 293   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 294   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 295   bool inline_ghash_processBlocks();
 296   bool inline_sha_implCompress(vmIntrinsics::ID id);
 297   bool inline_digestBase_implCompressMB(int predicate);
 298   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 299                                  bool long_state, address stubAddr, const char *stubName,
 300                                  Node* src_start, Node* ofs, Node* limit);
 301   Node* get_state_from_sha_object(Node *sha_object);
 302   Node* get_state_from_sha5_object(Node *sha_object);
 303   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 304   bool inline_encodeISOArray();
 305   bool inline_updateCRC32();
 306   bool inline_updateBytesCRC32();
 307   bool inline_updateByteBufferCRC32();
 308   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 309   bool inline_updateBytesCRC32C();
 310   bool inline_updateDirectByteBufferCRC32C();
 311   bool inline_updateBytesAdler32();
 312   bool inline_updateByteBufferAdler32();
 313   bool inline_multiplyToLen();
 314   bool inline_hasNegatives();
 315   bool inline_squareToLen();
 316   bool inline_mulAdd();
 317   bool inline_montgomeryMultiply();
 318   bool inline_montgomerySquare();
 319   bool inline_vectorizedMismatch();
 320 
 321   bool inline_profileBoolean();
 322   bool inline_isCompileConstant();
 323 
 324   bool inline_deoptimize();
 325 };
 326 
 327 //---------------------------make_vm_intrinsic----------------------------
 328 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 329   vmIntrinsics::ID id = m->intrinsic_id();
 330   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 331 
 332   if (!m->is_loaded()) {
 333     // Do not attempt to inline unloaded methods.
 334     return NULL;
 335   }
 336 
 337   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 338   bool is_available = false;
 339 
 340   {
 341     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 342     // the compiler must transition to '_thread_in_vm' state because both
 343     // methods access VM-internal data.
 344     VM_ENTRY_MARK;
 345     methodHandle mh(THREAD, m->get_Method());
 346     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 347                    !C->directive()->is_intrinsic_disabled(mh) &&
 348                    !vmIntrinsics::is_disabled_by_flags(mh);
 349 
 350   }
 351 
 352   if (is_available) {
 353     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 354     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 355     return new LibraryIntrinsic(m, is_virtual,
 356                                 vmIntrinsics::predicates_needed(id),
 357                                 vmIntrinsics::does_virtual_dispatch(id),
 358                                 (vmIntrinsics::ID) id);
 359   } else {
 360     return NULL;
 361   }
 362 }
 363 
 364 //----------------------register_library_intrinsics-----------------------
 365 // Initialize this file's data structures, for each Compile instance.
 366 void Compile::register_library_intrinsics() {
 367   // Nothing to do here.
 368 }
 369 
 370 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 371   LibraryCallKit kit(jvms, this);
 372   Compile* C = kit.C;
 373   int nodes = C->unique();
 374 #ifndef PRODUCT
 375   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 376     char buf[1000];
 377     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 378     tty->print_cr("Intrinsic %s", str);
 379   }
 380 #endif
 381   ciMethod* callee = kit.callee();
 382   const int bci    = kit.bci();
 383 
 384   // Try to inline the intrinsic.
 385   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 386       kit.try_to_inline(_last_predicate)) {
 387     if (C->print_intrinsics() || C->print_inlining()) {
 388       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 389     }
 390     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 391     if (C->log()) {
 392       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 393                      vmIntrinsics::name_at(intrinsic_id()),
 394                      (is_virtual() ? " virtual='1'" : ""),
 395                      C->unique() - nodes);
 396     }
 397     // Push the result from the inlined method onto the stack.
 398     kit.push_result();
 399     C->print_inlining_update(this);
 400     return kit.transfer_exceptions_into_jvms();
 401   }
 402 
 403   // The intrinsic bailed out
 404   if (C->print_intrinsics() || C->print_inlining()) {
 405     if (jvms->has_method()) {
 406       // Not a root compile.
 407       const char* msg;
 408       if (callee->intrinsic_candidate()) {
 409         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 410       } else {
 411         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 412                            : "failed to inline (intrinsic), method not annotated";
 413       }
 414       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 415     } else {
 416       // Root compile
 417       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 418                vmIntrinsics::name_at(intrinsic_id()),
 419                (is_virtual() ? " (virtual)" : ""), bci);
 420     }
 421   }
 422   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 423   C->print_inlining_update(this);
 424   return NULL;
 425 }
 426 
 427 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 428   LibraryCallKit kit(jvms, this);
 429   Compile* C = kit.C;
 430   int nodes = C->unique();
 431   _last_predicate = predicate;
 432 #ifndef PRODUCT
 433   assert(is_predicated() && predicate < predicates_count(), "sanity");
 434   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 435     char buf[1000];
 436     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 437     tty->print_cr("Predicate for intrinsic %s", str);
 438   }
 439 #endif
 440   ciMethod* callee = kit.callee();
 441   const int bci    = kit.bci();
 442 
 443   Node* slow_ctl = kit.try_to_predicate(predicate);
 444   if (!kit.failing()) {
 445     if (C->print_intrinsics() || C->print_inlining()) {
 446       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 447     }
 448     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 449     if (C->log()) {
 450       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 451                      vmIntrinsics::name_at(intrinsic_id()),
 452                      (is_virtual() ? " virtual='1'" : ""),
 453                      C->unique() - nodes);
 454     }
 455     return slow_ctl; // Could be NULL if the check folds.
 456   }
 457 
 458   // The intrinsic bailed out
 459   if (C->print_intrinsics() || C->print_inlining()) {
 460     if (jvms->has_method()) {
 461       // Not a root compile.
 462       const char* msg = "failed to generate predicate for intrinsic";
 463       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 464     } else {
 465       // Root compile
 466       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 467                                         vmIntrinsics::name_at(intrinsic_id()),
 468                                         (is_virtual() ? " (virtual)" : ""), bci);
 469     }
 470   }
 471   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 472   return NULL;
 473 }
 474 
 475 bool LibraryCallKit::try_to_inline(int predicate) {
 476   // Handle symbolic names for otherwise undistinguished boolean switches:
 477   const bool is_store       = true;
 478   const bool is_compress    = true;
 479   const bool is_native_ptr  = true;
 480   const bool is_static      = true;
 481   const bool is_volatile    = true;
 482 
 483   if (!jvms()->has_method()) {
 484     // Root JVMState has a null method.
 485     assert(map()->memory()->Opcode() == Op_Parm, "");
 486     // Insert the memory aliasing node
 487     set_all_memory(reset_memory());
 488   }
 489   assert(merged_memory(), "");
 490 
 491 
 492   switch (intrinsic_id()) {
 493   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 494   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 495   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 496 
 497   case vmIntrinsics::_dsin:
 498   case vmIntrinsics::_dcos:
 499   case vmIntrinsics::_dtan:
 500   case vmIntrinsics::_dabs:
 501   case vmIntrinsics::_datan2:
 502   case vmIntrinsics::_dsqrt:
 503   case vmIntrinsics::_dexp:
 504   case vmIntrinsics::_dlog:
 505   case vmIntrinsics::_dlog10:
 506   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 507 
 508   case vmIntrinsics::_min:
 509   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 510 
 511   case vmIntrinsics::_notify:
 512   case vmIntrinsics::_notifyAll:
 513     if (InlineNotify) {
 514       return inline_notify(intrinsic_id());
 515     }
 516     return false;
 517 
 518   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 519   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 520   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 521   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 522   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 523   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 524   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 525   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 526   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 527   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 528   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 529   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 530 
 531   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 532 
 533   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 534   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 535   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 536   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 537 
 538   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 539   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 540   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 541   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 542   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 543   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 544   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 545 
 546   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 547   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 548 
 549   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 550   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 551   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 552   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 553 
 554   case vmIntrinsics::_compressStringC:
 555   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 556   case vmIntrinsics::_inflateStringC:
 557   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 558 
 559   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Relaxed, false);
 560   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Relaxed, false);
 561   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 562   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 563   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 564   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, false);
 565   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 566   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 567   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 568 
 569   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Relaxed, false);
 570   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Relaxed, false);
 571   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 572   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 573   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 574   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, false);
 575   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 576   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 577   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 578 
 579   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 580   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 581   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 582   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,      Relaxed, false);
 583   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 584   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 585   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 586   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS,  Relaxed, false);
 587 
 588   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 589   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 590   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 591   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,      Relaxed, false);
 592   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 593   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 594   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 595   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS,  Relaxed, false);
 596 
 597   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Volatile, false);
 598   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Volatile, false);
 599   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Volatile, false);
 600   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Volatile, false);
 601   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Volatile, false);
 602   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Volatile, false);
 603   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Volatile, false);
 604   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Volatile, false);
 605   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Volatile, false);
 606 
 607   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Volatile, false);
 608   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Volatile, false);
 609   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Volatile, false);
 610   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Volatile, false);
 611   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Volatile, false);
 612   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Volatile, false);
 613   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Volatile, false);
 614   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Volatile, false);
 615   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Volatile, false);
 616 
 617   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, true);
 618   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, true);
 619   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, true);
 620   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, true);
 621 
 622   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, true);
 623   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, true);
 624   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, true);
 625   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, true);
 626 
 627   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Release, false);
 628   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Release, false);
 629   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Release, false);
 630 
 631   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Acquire, false);
 632   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Acquire, false);
 633   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Acquire, false);
 634   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Acquire, false);
 635   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Acquire, false);
 636   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Acquire, false);
 637   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Acquire, false);
 638   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Acquire, false);
 639   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Acquire, false);
 640 
 641   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Release, false);
 642   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Release, false);
 643   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Release, false);
 644   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Release, false);
 645   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Release, false);
 646   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Release, false);
 647   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Release, false);
 648   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Release, false);
 649   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Release, false);
 650 
 651   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Opaque, false);
 652   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Opaque, false);
 653   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Opaque, false);
 654   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Opaque, false);
 655   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Opaque, false);
 656   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Opaque, false);
 657   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Opaque, false);
 658   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Opaque, false);
 659   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Opaque, false);
 660 
 661   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Opaque, false);
 662   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Opaque, false);
 663   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Opaque, false);
 664   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Opaque, false);
 665   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Opaque, false);
 666   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Opaque, false);
 667   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Opaque, false);
 668   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Opaque, false);
 669   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Opaque, false);
 670 
 671   case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 672   case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 673   case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 674 
 675   case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 676   case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 677   case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 678   case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 679   case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 680   case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 681   case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 682   case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 683   case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 684 
 685   case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 686   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 687   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 688   case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 689   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 690   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 691   case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 692   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 693   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 694 
 695   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 696   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 697   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 698   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 699   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 700 
 701   case vmIntrinsics::_loadFence:
 702   case vmIntrinsics::_storeFence:
 703   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 704 
 705   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 706   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 707 
 708 #ifdef TRACE_HAVE_INTRINSICS
 709   case vmIntrinsics::_classID:                  return inline_native_classID();
 710   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 711   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 712 #endif
 713   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 714   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 715   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 716   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 717   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 718   case vmIntrinsics::_getLength:                return inline_native_getLength();
 719   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 720   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 721   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 722   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 723   case vmIntrinsics::_Objects_checkIndex:       return inline_objects_checkIndex();
 724   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 725 
 726   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 727 
 728   case vmIntrinsics::_isInstance:
 729   case vmIntrinsics::_getModifiers:
 730   case vmIntrinsics::_isInterface:
 731   case vmIntrinsics::_isArray:
 732   case vmIntrinsics::_isPrimitive:
 733   case vmIntrinsics::_getSuperclass:
 734   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 735 
 736   case vmIntrinsics::_floatToRawIntBits:
 737   case vmIntrinsics::_floatToIntBits:
 738   case vmIntrinsics::_intBitsToFloat:
 739   case vmIntrinsics::_doubleToRawLongBits:
 740   case vmIntrinsics::_doubleToLongBits:
 741   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 742 
 743   case vmIntrinsics::_numberOfLeadingZeros_i:
 744   case vmIntrinsics::_numberOfLeadingZeros_l:
 745   case vmIntrinsics::_numberOfTrailingZeros_i:
 746   case vmIntrinsics::_numberOfTrailingZeros_l:
 747   case vmIntrinsics::_bitCount_i:
 748   case vmIntrinsics::_bitCount_l:
 749   case vmIntrinsics::_reverseBytes_i:
 750   case vmIntrinsics::_reverseBytes_l:
 751   case vmIntrinsics::_reverseBytes_s:
 752   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 753 
 754   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 755 
 756   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 757 
 758   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 759 
 760   case vmIntrinsics::_aescrypt_encryptBlock:
 761   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 762 
 763   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 764   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 765     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 766 
 767   case vmIntrinsics::_counterMode_AESCrypt:
 768     return inline_counterMode_AESCrypt(intrinsic_id());
 769 
 770   case vmIntrinsics::_sha_implCompress:
 771   case vmIntrinsics::_sha2_implCompress:
 772   case vmIntrinsics::_sha5_implCompress:
 773     return inline_sha_implCompress(intrinsic_id());
 774 
 775   case vmIntrinsics::_digestBase_implCompressMB:
 776     return inline_digestBase_implCompressMB(predicate);
 777 
 778   case vmIntrinsics::_multiplyToLen:
 779     return inline_multiplyToLen();
 780 
 781   case vmIntrinsics::_squareToLen:
 782     return inline_squareToLen();
 783 
 784   case vmIntrinsics::_mulAdd:
 785     return inline_mulAdd();
 786 
 787   case vmIntrinsics::_montgomeryMultiply:
 788     return inline_montgomeryMultiply();
 789   case vmIntrinsics::_montgomerySquare:
 790     return inline_montgomerySquare();
 791 
 792   case vmIntrinsics::_vectorizedMismatch:
 793     return inline_vectorizedMismatch();
 794 
 795   case vmIntrinsics::_ghash_processBlocks:
 796     return inline_ghash_processBlocks();
 797 
 798   case vmIntrinsics::_encodeISOArray:
 799   case vmIntrinsics::_encodeByteISOArray:
 800     return inline_encodeISOArray();
 801 
 802   case vmIntrinsics::_updateCRC32:
 803     return inline_updateCRC32();
 804   case vmIntrinsics::_updateBytesCRC32:
 805     return inline_updateBytesCRC32();
 806   case vmIntrinsics::_updateByteBufferCRC32:
 807     return inline_updateByteBufferCRC32();
 808 
 809   case vmIntrinsics::_updateBytesCRC32C:
 810     return inline_updateBytesCRC32C();
 811   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 812     return inline_updateDirectByteBufferCRC32C();
 813 
 814   case vmIntrinsics::_updateBytesAdler32:
 815     return inline_updateBytesAdler32();
 816   case vmIntrinsics::_updateByteBufferAdler32:
 817     return inline_updateByteBufferAdler32();
 818 
 819   case vmIntrinsics::_profileBoolean:
 820     return inline_profileBoolean();
 821   case vmIntrinsics::_isCompileConstant:
 822     return inline_isCompileConstant();
 823 
 824   case vmIntrinsics::_hasNegatives:
 825     return inline_hasNegatives();
 826 
 827   case vmIntrinsics::_deoptimize:
 828     return inline_deoptimize();
 829 
 830   default:
 831     // If you get here, it may be that someone has added a new intrinsic
 832     // to the list in vmSymbols.hpp without implementing it here.
 833 #ifndef PRODUCT
 834     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 835       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 836                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 837     }
 838 #endif
 839     return false;
 840   }
 841 }
 842 
 843 Node* LibraryCallKit::try_to_predicate(int predicate) {
 844   if (!jvms()->has_method()) {
 845     // Root JVMState has a null method.
 846     assert(map()->memory()->Opcode() == Op_Parm, "");
 847     // Insert the memory aliasing node
 848     set_all_memory(reset_memory());
 849   }
 850   assert(merged_memory(), "");
 851 
 852   switch (intrinsic_id()) {
 853   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 854     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 855   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 856     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 857   case vmIntrinsics::_counterMode_AESCrypt:
 858     return inline_counterMode_AESCrypt_predicate();
 859   case vmIntrinsics::_digestBase_implCompressMB:
 860     return inline_digestBase_implCompressMB_predicate(predicate);
 861 
 862   default:
 863     // If you get here, it may be that someone has added a new intrinsic
 864     // to the list in vmSymbols.hpp without implementing it here.
 865 #ifndef PRODUCT
 866     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 867       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 868                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 869     }
 870 #endif
 871     Node* slow_ctl = control();
 872     set_control(top()); // No fast path instrinsic
 873     return slow_ctl;
 874   }
 875 }
 876 
 877 //------------------------------set_result-------------------------------
 878 // Helper function for finishing intrinsics.
 879 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 880   record_for_igvn(region);
 881   set_control(_gvn.transform(region));
 882   set_result( _gvn.transform(value));
 883   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 884 }
 885 
 886 //------------------------------generate_guard---------------------------
 887 // Helper function for generating guarded fast-slow graph structures.
 888 // The given 'test', if true, guards a slow path.  If the test fails
 889 // then a fast path can be taken.  (We generally hope it fails.)
 890 // In all cases, GraphKit::control() is updated to the fast path.
 891 // The returned value represents the control for the slow path.
 892 // The return value is never 'top'; it is either a valid control
 893 // or NULL if it is obvious that the slow path can never be taken.
 894 // Also, if region and the slow control are not NULL, the slow edge
 895 // is appended to the region.
 896 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 897   if (stopped()) {
 898     // Already short circuited.
 899     return NULL;
 900   }
 901 
 902   // Build an if node and its projections.
 903   // If test is true we take the slow path, which we assume is uncommon.
 904   if (_gvn.type(test) == TypeInt::ZERO) {
 905     // The slow branch is never taken.  No need to build this guard.
 906     return NULL;
 907   }
 908 
 909   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 910 
 911   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 912   if (if_slow == top()) {
 913     // The slow branch is never taken.  No need to build this guard.
 914     return NULL;
 915   }
 916 
 917   if (region != NULL)
 918     region->add_req(if_slow);
 919 
 920   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 921   set_control(if_fast);
 922 
 923   return if_slow;
 924 }
 925 
 926 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 927   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 928 }
 929 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 930   return generate_guard(test, region, PROB_FAIR);
 931 }
 932 
 933 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 934                                                      Node* *pos_index) {
 935   if (stopped())
 936     return NULL;                // already stopped
 937   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 938     return NULL;                // index is already adequately typed
 939   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 940   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 941   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 942   if (is_neg != NULL && pos_index != NULL) {
 943     // Emulate effect of Parse::adjust_map_after_if.
 944     Node* ccast = new CastIINode(index, TypeInt::POS);
 945     ccast->set_req(0, control());
 946     (*pos_index) = _gvn.transform(ccast);
 947   }
 948   return is_neg;
 949 }
 950 
 951 // Make sure that 'position' is a valid limit index, in [0..length].
 952 // There are two equivalent plans for checking this:
 953 //   A. (offset + copyLength)  unsigned<=  arrayLength
 954 //   B. offset  <=  (arrayLength - copyLength)
 955 // We require that all of the values above, except for the sum and
 956 // difference, are already known to be non-negative.
 957 // Plan A is robust in the face of overflow, if offset and copyLength
 958 // are both hugely positive.
 959 //
 960 // Plan B is less direct and intuitive, but it does not overflow at
 961 // all, since the difference of two non-negatives is always
 962 // representable.  Whenever Java methods must perform the equivalent
 963 // check they generally use Plan B instead of Plan A.
 964 // For the moment we use Plan A.
 965 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 966                                                   Node* subseq_length,
 967                                                   Node* array_length,
 968                                                   RegionNode* region) {
 969   if (stopped())
 970     return NULL;                // already stopped
 971   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 972   if (zero_offset && subseq_length->eqv_uncast(array_length))
 973     return NULL;                // common case of whole-array copy
 974   Node* last = subseq_length;
 975   if (!zero_offset)             // last += offset
 976     last = _gvn.transform(new AddINode(last, offset));
 977   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 978   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 979   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 980   return is_over;
 981 }
 982 
 983 // Emit range checks for the given String.value byte array
 984 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 985   if (stopped()) {
 986     return; // already stopped
 987   }
 988   RegionNode* bailout = new RegionNode(1);
 989   record_for_igvn(bailout);
 990   if (char_count) {
 991     // Convert char count to byte count
 992     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 993   }
 994 
 995   // Offset and count must not be negative
 996   generate_negative_guard(offset, bailout);
 997   generate_negative_guard(count, bailout);
 998   // Offset + count must not exceed length of array
 999   generate_limit_guard(offset, count, load_array_length(array), bailout);
1000 
1001   if (bailout->req() > 1) {
1002     PreserveJVMState pjvms(this);
1003     set_control(_gvn.transform(bailout));
1004     uncommon_trap(Deoptimization::Reason_intrinsic,
1005                   Deoptimization::Action_maybe_recompile);
1006   }
1007 }
1008 
1009 //--------------------------generate_current_thread--------------------
1010 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1011   ciKlass*    thread_klass = env()->Thread_klass();
1012   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1013   Node* thread = _gvn.transform(new ThreadLocalNode());
1014   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1015   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1016   tls_output = thread;
1017   return threadObj;
1018 }
1019 
1020 
1021 //------------------------------make_string_method_node------------------------
1022 // Helper method for String intrinsic functions. This version is called with
1023 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1024 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1025 // containing the lengths of str1 and str2.
1026 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1027   Node* result = NULL;
1028   switch (opcode) {
1029   case Op_StrIndexOf:
1030     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1031                                 str1_start, cnt1, str2_start, cnt2, ae);
1032     break;
1033   case Op_StrComp:
1034     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1035                              str1_start, cnt1, str2_start, cnt2, ae);
1036     break;
1037   case Op_StrEquals:
1038     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1039     // Use the constant length if there is one because optimized match rule may exist.
1040     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1041                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1042     break;
1043   default:
1044     ShouldNotReachHere();
1045     return NULL;
1046   }
1047 
1048   // All these intrinsics have checks.
1049   C->set_has_split_ifs(true); // Has chance for split-if optimization
1050 
1051   return _gvn.transform(result);
1052 }
1053 
1054 //------------------------------inline_string_compareTo------------------------
1055 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1056   Node* arg1 = argument(0);
1057   Node* arg2 = argument(1);
1058 
1059   // Get start addr and length of first argument
1060   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1061   Node* arg1_cnt    = load_array_length(arg1);
1062 
1063   // Get start addr and length of second argument
1064   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1065   Node* arg2_cnt    = load_array_length(arg2);
1066 
1067   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1068   set_result(result);
1069   return true;
1070 }
1071 
1072 //------------------------------inline_string_equals------------------------
1073 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1074   Node* arg1 = argument(0);
1075   Node* arg2 = argument(1);
1076 
1077   // paths (plus control) merge
1078   RegionNode* region = new RegionNode(3);
1079   Node* phi = new PhiNode(region, TypeInt::BOOL);
1080 
1081   if (!stopped()) {
1082     // Get start addr and length of first argument
1083     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1084     Node* arg1_cnt    = load_array_length(arg1);
1085 
1086     // Get start addr and length of second argument
1087     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1088     Node* arg2_cnt    = load_array_length(arg2);
1089 
1090     // Check for arg1_cnt != arg2_cnt
1091     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1092     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1093     Node* if_ne = generate_slow_guard(bol, NULL);
1094     if (if_ne != NULL) {
1095       phi->init_req(2, intcon(0));
1096       region->init_req(2, if_ne);
1097     }
1098 
1099     // Check for count == 0 is done by assembler code for StrEquals.
1100 
1101     if (!stopped()) {
1102       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1103       phi->init_req(1, equals);
1104       region->init_req(1, control());
1105     }
1106   }
1107 
1108   // post merge
1109   set_control(_gvn.transform(region));
1110   record_for_igvn(region);
1111 
1112   set_result(_gvn.transform(phi));
1113   return true;
1114 }
1115 
1116 //------------------------------inline_array_equals----------------------------
1117 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1118   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1119   Node* arg1 = argument(0);
1120   Node* arg2 = argument(1);
1121 
1122   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1123   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1124   return true;
1125 }
1126 
1127 //------------------------------inline_hasNegatives------------------------------
1128 bool LibraryCallKit::inline_hasNegatives() {
1129   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1130     return false;
1131   }
1132 
1133   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1134   // no receiver since it is static method
1135   Node* ba         = argument(0);
1136   Node* offset     = argument(1);
1137   Node* len        = argument(2);
1138 
1139   // Range checks
1140   generate_string_range_check(ba, offset, len, false);
1141   if (stopped()) {
1142     return true;
1143   }
1144   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1145   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1146   set_result(_gvn.transform(result));
1147   return true;
1148 }
1149 
1150 bool LibraryCallKit::inline_objects_checkIndex() {
1151   Node* index = argument(0);
1152   Node* length = argument(1);
1153   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1154     return false;
1155   }
1156 
1157   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1158   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1159 
1160   {
1161     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1162     uncommon_trap(Deoptimization::Reason_intrinsic,
1163                   Deoptimization::Action_make_not_entrant);
1164   }
1165 
1166   if (stopped()) {
1167     return false;
1168   }
1169 
1170   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1171   BoolTest::mask btest = BoolTest::lt;
1172   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1173   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1174   _gvn.set_type(rc, rc->Value(&_gvn));
1175   if (!rc_bool->is_Con()) {
1176     record_for_igvn(rc);
1177   }
1178   set_control(_gvn.transform(new IfTrueNode(rc)));
1179   {
1180     PreserveJVMState pjvms(this);
1181     set_control(_gvn.transform(new IfFalseNode(rc)));
1182     uncommon_trap(Deoptimization::Reason_range_check,
1183                   Deoptimization::Action_make_not_entrant);
1184   }
1185 
1186   if (stopped()) {
1187     return false;
1188   }
1189 
1190   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1191   result->set_req(0, control());
1192   result = _gvn.transform(result);
1193   set_result(result);
1194   replace_in_map(index, result);
1195   return true;
1196 }
1197 
1198 //------------------------------inline_string_indexOf------------------------
1199 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1200   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1201     return false;
1202   }
1203   Node* src = argument(0);
1204   Node* tgt = argument(1);
1205 
1206   // Make the merge point
1207   RegionNode* result_rgn = new RegionNode(4);
1208   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1209 
1210   // Get start addr and length of source string
1211   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1212   Node* src_count = load_array_length(src);
1213 
1214   // Get start addr and length of substring
1215   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1216   Node* tgt_count = load_array_length(tgt);
1217 
1218   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1219     // Divide src size by 2 if String is UTF16 encoded
1220     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1221   }
1222   if (ae == StrIntrinsicNode::UU) {
1223     // Divide substring size by 2 if String is UTF16 encoded
1224     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1225   }
1226 
1227   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1228   if (result != NULL) {
1229     result_phi->init_req(3, result);
1230     result_rgn->init_req(3, control());
1231   }
1232   set_control(_gvn.transform(result_rgn));
1233   record_for_igvn(result_rgn);
1234   set_result(_gvn.transform(result_phi));
1235 
1236   return true;
1237 }
1238 
1239 //-----------------------------inline_string_indexOf-----------------------
1240 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1241   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1242     return false;
1243   }
1244   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1245     return false;
1246   }
1247   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1248   Node* src         = argument(0); // byte[]
1249   Node* src_count   = argument(1); // char count
1250   Node* tgt         = argument(2); // byte[]
1251   Node* tgt_count   = argument(3); // char count
1252   Node* from_index  = argument(4); // char index
1253 
1254   // Multiply byte array index by 2 if String is UTF16 encoded
1255   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1256   src_count = _gvn.transform(new SubINode(src_count, from_index));
1257   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1258   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1259 
1260   // Range checks
1261   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1262   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1263   if (stopped()) {
1264     return true;
1265   }
1266 
1267   RegionNode* region = new RegionNode(5);
1268   Node* phi = new PhiNode(region, TypeInt::INT);
1269 
1270   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1271   if (result != NULL) {
1272     // The result is index relative to from_index if substring was found, -1 otherwise.
1273     // Generate code which will fold into cmove.
1274     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1275     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1276 
1277     Node* if_lt = generate_slow_guard(bol, NULL);
1278     if (if_lt != NULL) {
1279       // result == -1
1280       phi->init_req(3, result);
1281       region->init_req(3, if_lt);
1282     }
1283     if (!stopped()) {
1284       result = _gvn.transform(new AddINode(result, from_index));
1285       phi->init_req(4, result);
1286       region->init_req(4, control());
1287     }
1288   }
1289 
1290   set_control(_gvn.transform(region));
1291   record_for_igvn(region);
1292   set_result(_gvn.transform(phi));
1293 
1294   return true;
1295 }
1296 
1297 // Create StrIndexOfNode with fast path checks
1298 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1299                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1300   // Check for substr count > string count
1301   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1302   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1303   Node* if_gt = generate_slow_guard(bol, NULL);
1304   if (if_gt != NULL) {
1305     phi->init_req(1, intcon(-1));
1306     region->init_req(1, if_gt);
1307   }
1308   if (!stopped()) {
1309     // Check for substr count == 0
1310     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1311     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1312     Node* if_zero = generate_slow_guard(bol, NULL);
1313     if (if_zero != NULL) {
1314       phi->init_req(2, intcon(0));
1315       region->init_req(2, if_zero);
1316     }
1317   }
1318   if (!stopped()) {
1319     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1320   }
1321   return NULL;
1322 }
1323 
1324 //-----------------------------inline_string_indexOfChar-----------------------
1325 bool LibraryCallKit::inline_string_indexOfChar() {
1326   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1327     return false;
1328   }
1329   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1330     return false;
1331   }
1332   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1333   Node* src         = argument(0); // byte[]
1334   Node* tgt         = argument(1); // tgt is int ch
1335   Node* from_index  = argument(2);
1336   Node* max         = argument(3);
1337 
1338   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1339   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1340   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1341 
1342   // Range checks
1343   generate_string_range_check(src, src_offset, src_count, true);
1344   if (stopped()) {
1345     return true;
1346   }
1347 
1348   RegionNode* region = new RegionNode(3);
1349   Node* phi = new PhiNode(region, TypeInt::INT);
1350 
1351   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1352   C->set_has_split_ifs(true); // Has chance for split-if optimization
1353   _gvn.transform(result);
1354 
1355   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1356   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1357 
1358   Node* if_lt = generate_slow_guard(bol, NULL);
1359   if (if_lt != NULL) {
1360     // result == -1
1361     phi->init_req(2, result);
1362     region->init_req(2, if_lt);
1363   }
1364   if (!stopped()) {
1365     result = _gvn.transform(new AddINode(result, from_index));
1366     phi->init_req(1, result);
1367     region->init_req(1, control());
1368   }
1369   set_control(_gvn.transform(region));
1370   record_for_igvn(region);
1371   set_result(_gvn.transform(phi));
1372 
1373   return true;
1374 }
1375 //---------------------------inline_string_copy---------------------
1376 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1377 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1378 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1379 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1380 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1381 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1382 bool LibraryCallKit::inline_string_copy(bool compress) {
1383   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1384     return false;
1385   }
1386   int nargs = 5;  // 2 oops, 3 ints
1387   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1388 
1389   Node* src         = argument(0);
1390   Node* src_offset  = argument(1);
1391   Node* dst         = argument(2);
1392   Node* dst_offset  = argument(3);
1393   Node* length      = argument(4);
1394 
1395   // Check for allocation before we add nodes that would confuse
1396   // tightly_coupled_allocation()
1397   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1398 
1399   // Figure out the size and type of the elements we will be copying.
1400   const Type* src_type = src->Value(&_gvn);
1401   const Type* dst_type = dst->Value(&_gvn);
1402   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1403   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1404   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1405          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1406          "Unsupported array types for inline_string_copy");
1407 
1408   // Range checks
1409   generate_string_range_check(src, src_offset, length, compress && src_elem == T_BYTE);
1410   generate_string_range_check(dst, dst_offset, length, !compress && dst_elem == T_BYTE);
1411   if (stopped()) {
1412     return true;
1413   }
1414 
1415   // Convert char[] offsets to byte[] offsets
1416   if (compress && src_elem == T_BYTE) {
1417     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1418   } else if (!compress && dst_elem == T_BYTE) {
1419     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1420   }
1421 
1422   Node* src_start = array_element_address(src, src_offset, src_elem);
1423   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1424   // 'src_start' points to src array + scaled offset
1425   // 'dst_start' points to dst array + scaled offset
1426   Node* count = NULL;
1427   if (compress) {
1428     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1429   } else {
1430     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1431   }
1432 
1433   if (alloc != NULL) {
1434     if (alloc->maybe_set_complete(&_gvn)) {
1435       // "You break it, you buy it."
1436       InitializeNode* init = alloc->initialization();
1437       assert(init->is_complete(), "we just did this");
1438       init->set_complete_with_arraycopy();
1439       assert(dst->is_CheckCastPP(), "sanity");
1440       assert(dst->in(0)->in(0) == init, "dest pinned");
1441     }
1442     // Do not let stores that initialize this object be reordered with
1443     // a subsequent store that would make this object accessible by
1444     // other threads.
1445     // Record what AllocateNode this StoreStore protects so that
1446     // escape analysis can go from the MemBarStoreStoreNode to the
1447     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1448     // based on the escape status of the AllocateNode.
1449     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1450   }
1451   if (compress) {
1452     set_result(_gvn.transform(count));
1453   }
1454   return true;
1455 }
1456 
1457 #ifdef _LP64
1458 #define XTOP ,top() /*additional argument*/
1459 #else  //_LP64
1460 #define XTOP        /*no additional argument*/
1461 #endif //_LP64
1462 
1463 //------------------------inline_string_toBytesU--------------------------
1464 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1465 bool LibraryCallKit::inline_string_toBytesU() {
1466   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1467     return false;
1468   }
1469   // Get the arguments.
1470   Node* value     = argument(0);
1471   Node* offset    = argument(1);
1472   Node* length    = argument(2);
1473 
1474   Node* newcopy = NULL;
1475 
1476   // Set the original stack and the reexecute bit for the interpreter to reexecute
1477   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1478   { PreserveReexecuteState preexecs(this);
1479     jvms()->set_should_reexecute(true);
1480 
1481     // Check if a null path was taken unconditionally.
1482     value = null_check(value);
1483 
1484     RegionNode* bailout = new RegionNode(1);
1485     record_for_igvn(bailout);
1486 
1487     // Range checks
1488     generate_negative_guard(offset, bailout);
1489     generate_negative_guard(length, bailout);
1490     generate_limit_guard(offset, length, load_array_length(value), bailout);
1491     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1492     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1493 
1494     if (bailout->req() > 1) {
1495       PreserveJVMState pjvms(this);
1496       set_control(_gvn.transform(bailout));
1497       uncommon_trap(Deoptimization::Reason_intrinsic,
1498                     Deoptimization::Action_maybe_recompile);
1499     }
1500     if (stopped()) {
1501       return true;
1502     }
1503 
1504     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1505     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1506     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1507     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1508 
1509     // Calculate starting addresses.
1510     Node* src_start = array_element_address(value, offset, T_CHAR);
1511     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1512 
1513     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1514     const TypeInt* toffset = gvn().type(offset)->is_int();
1515     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1516 
1517     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1518     const char* copyfunc_name = "arraycopy";
1519     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1520     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1521                       OptoRuntime::fast_arraycopy_Type(),
1522                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1523                       src_start, dst_start, ConvI2X(length) XTOP);
1524     // Do not let reads from the cloned object float above the arraycopy.
1525     if (alloc != NULL) {
1526       if (alloc->maybe_set_complete(&_gvn)) {
1527         // "You break it, you buy it."
1528         InitializeNode* init = alloc->initialization();
1529         assert(init->is_complete(), "we just did this");
1530         init->set_complete_with_arraycopy();
1531         assert(newcopy->is_CheckCastPP(), "sanity");
1532         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1533       }
1534       // Do not let stores that initialize this object be reordered with
1535       // a subsequent store that would make this object accessible by
1536       // other threads.
1537       // Record what AllocateNode this StoreStore protects so that
1538       // escape analysis can go from the MemBarStoreStoreNode to the
1539       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1540       // based on the escape status of the AllocateNode.
1541       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1542     } else {
1543       insert_mem_bar(Op_MemBarCPUOrder);
1544     }
1545   } // original reexecute is set back here
1546 
1547   C->set_has_split_ifs(true); // Has chance for split-if optimization
1548   if (!stopped()) {
1549     set_result(newcopy);
1550   }
1551   return true;
1552 }
1553 
1554 //------------------------inline_string_getCharsU--------------------------
1555 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1556 bool LibraryCallKit::inline_string_getCharsU() {
1557   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1558     return false;
1559   }
1560 
1561   // Get the arguments.
1562   Node* src       = argument(0);
1563   Node* src_begin = argument(1);
1564   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1565   Node* dst       = argument(3);
1566   Node* dst_begin = argument(4);
1567 
1568   // Check for allocation before we add nodes that would confuse
1569   // tightly_coupled_allocation()
1570   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1571 
1572   // Check if a null path was taken unconditionally.
1573   src = null_check(src);
1574   dst = null_check(dst);
1575   if (stopped()) {
1576     return true;
1577   }
1578 
1579   // Get length and convert char[] offset to byte[] offset
1580   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1581   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1582 
1583   // Range checks
1584   generate_string_range_check(src, src_begin, length, true);
1585   generate_string_range_check(dst, dst_begin, length, false);
1586   if (stopped()) {
1587     return true;
1588   }
1589 
1590   if (!stopped()) {
1591     // Calculate starting addresses.
1592     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1593     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1594 
1595     // Check if array addresses are aligned to HeapWordSize
1596     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1597     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1598     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1599                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1600 
1601     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1602     const char* copyfunc_name = "arraycopy";
1603     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1604     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1605                       OptoRuntime::fast_arraycopy_Type(),
1606                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1607                       src_start, dst_start, ConvI2X(length) XTOP);
1608     // Do not let reads from the cloned object float above the arraycopy.
1609     if (alloc != NULL) {
1610       if (alloc->maybe_set_complete(&_gvn)) {
1611         // "You break it, you buy it."
1612         InitializeNode* init = alloc->initialization();
1613         assert(init->is_complete(), "we just did this");
1614         init->set_complete_with_arraycopy();
1615         assert(dst->is_CheckCastPP(), "sanity");
1616         assert(dst->in(0)->in(0) == init, "dest pinned");
1617       }
1618       // Do not let stores that initialize this object be reordered with
1619       // a subsequent store that would make this object accessible by
1620       // other threads.
1621       // Record what AllocateNode this StoreStore protects so that
1622       // escape analysis can go from the MemBarStoreStoreNode to the
1623       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1624       // based on the escape status of the AllocateNode.
1625       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1626     } else {
1627       insert_mem_bar(Op_MemBarCPUOrder);
1628     }
1629   }
1630 
1631   C->set_has_split_ifs(true); // Has chance for split-if optimization
1632   return true;
1633 }
1634 
1635 //----------------------inline_string_char_access----------------------------
1636 // Store/Load char to/from byte[] array.
1637 // static void StringUTF16.putChar(byte[] val, int index, int c)
1638 // static char StringUTF16.getChar(byte[] val, int index)
1639 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1640   Node* value  = argument(0);
1641   Node* index  = argument(1);
1642   Node* ch = is_store ? argument(2) : NULL;
1643 
1644   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1645   // correctly requires matched array shapes.
1646   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1647           "sanity: byte[] and char[] bases agree");
1648   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1649           "sanity: byte[] and char[] scales agree");
1650 
1651   // Bail when getChar over constants is requested: constant folding would
1652   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1653   // Java method would constant fold nicely instead.
1654   if (!is_store && value->is_Con() && index->is_Con()) {
1655     return false;
1656   }
1657 
1658   Node* adr = array_element_address(value, index, T_CHAR);
1659   if (is_store) {
1660     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1661                            false, false, true /* mismatched */);
1662   } else {
1663     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1664                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1665     set_result(ch);
1666   }
1667   return true;
1668 }
1669 
1670 //--------------------------round_double_node--------------------------------
1671 // Round a double node if necessary.
1672 Node* LibraryCallKit::round_double_node(Node* n) {
1673   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1674     n = _gvn.transform(new RoundDoubleNode(0, n));
1675   return n;
1676 }
1677 
1678 //------------------------------inline_math-----------------------------------
1679 // public static double Math.abs(double)
1680 // public static double Math.sqrt(double)
1681 // public static double Math.log(double)
1682 // public static double Math.log10(double)
1683 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1684   Node* arg = round_double_node(argument(0));
1685   Node* n = NULL;
1686   switch (id) {
1687   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1688   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1689   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1690   default:  fatal_unexpected_iid(id);  break;
1691   }
1692   set_result(_gvn.transform(n));
1693   return true;
1694 }
1695 
1696 //------------------------------inline_trig----------------------------------
1697 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1698 // argument reduction which will turn into a fast/slow diamond.
1699 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1700   Node* arg = round_double_node(argument(0));
1701   Node* n = NULL;
1702 
1703   switch (id) {
1704   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1705   default:  fatal_unexpected_iid(id);  break;
1706   }
1707   n = _gvn.transform(n);
1708 
1709   // Rounding required?  Check for argument reduction!
1710   if (Matcher::strict_fp_requires_explicit_rounding) {
1711     static const double     pi_4 =  0.7853981633974483;
1712     static const double neg_pi_4 = -0.7853981633974483;
1713     // pi/2 in 80-bit extended precision
1714     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1715     // -pi/2 in 80-bit extended precision
1716     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1717     // Cutoff value for using this argument reduction technique
1718     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1719     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1720 
1721     // Pseudocode for sin:
1722     // if (x <= Math.PI / 4.0) {
1723     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1724     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1725     // } else {
1726     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1727     // }
1728     // return StrictMath.sin(x);
1729 
1730     // Pseudocode for cos:
1731     // if (x <= Math.PI / 4.0) {
1732     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1733     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1734     // } else {
1735     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1736     // }
1737     // return StrictMath.cos(x);
1738 
1739     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1740     // requires a special machine instruction to load it.  Instead we'll try
1741     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1742     // probably do the math inside the SIN encoding.
1743 
1744     // Make the merge point
1745     RegionNode* r = new RegionNode(3);
1746     Node* phi = new PhiNode(r, Type::DOUBLE);
1747 
1748     // Flatten arg so we need only 1 test
1749     Node *abs = _gvn.transform(new AbsDNode(arg));
1750     // Node for PI/4 constant
1751     Node *pi4 = makecon(TypeD::make(pi_4));
1752     // Check PI/4 : abs(arg)
1753     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1754     // Check: If PI/4 < abs(arg) then go slow
1755     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1756     // Branch either way
1757     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1758     set_control(opt_iff(r,iff));
1759 
1760     // Set fast path result
1761     phi->init_req(2, n);
1762 
1763     // Slow path - non-blocking leaf call
1764     Node* call = NULL;
1765     switch (id) {
1766     case vmIntrinsics::_dtan:
1767       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1768                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1769                                "Tan", NULL, arg, top());
1770       break;
1771     }
1772     assert(control()->in(0) == call, "");
1773     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1774     r->init_req(1, control());
1775     phi->init_req(1, slow_result);
1776 
1777     // Post-merge
1778     set_control(_gvn.transform(r));
1779     record_for_igvn(r);
1780     n = _gvn.transform(phi);
1781 
1782     C->set_has_split_ifs(true); // Has chance for split-if optimization
1783   }
1784   set_result(n);
1785   return true;
1786 }
1787 
1788 //------------------------------runtime_math-----------------------------
1789 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1790   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1791          "must be (DD)D or (D)D type");
1792 
1793   // Inputs
1794   Node* a = round_double_node(argument(0));
1795   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1796 
1797   const TypePtr* no_memory_effects = NULL;
1798   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1799                                  no_memory_effects,
1800                                  a, top(), b, b ? top() : NULL);
1801   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1802 #ifdef ASSERT
1803   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1804   assert(value_top == top(), "second value must be top");
1805 #endif
1806 
1807   set_result(value);
1808   return true;
1809 }
1810 
1811 //------------------------------inline_math_native-----------------------------
1812 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1813 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1814   switch (id) {
1815     // These intrinsics are not properly supported on all hardware
1816   case vmIntrinsics::_dsin:
1817     return StubRoutines::dsin() != NULL ?
1818       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1819       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1820   case vmIntrinsics::_dcos:
1821     return StubRoutines::dcos() != NULL ?
1822       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1823       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1824   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1825     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1826 
1827   case vmIntrinsics::_dlog:
1828     return StubRoutines::dlog() != NULL ?
1829       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1830       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1831   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1832     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1833 
1834     // These intrinsics are supported on all hardware
1835   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1836   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1837 
1838   case vmIntrinsics::_dexp:
1839     return StubRoutines::dexp() != NULL ?
1840       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1841       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1842   case vmIntrinsics::_dpow:
1843     return StubRoutines::dpow() != NULL ?
1844       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1845       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1846 #undef FN_PTR
1847 
1848    // These intrinsics are not yet correctly implemented
1849   case vmIntrinsics::_datan2:
1850     return false;
1851 
1852   default:
1853     fatal_unexpected_iid(id);
1854     return false;
1855   }
1856 }
1857 
1858 static bool is_simple_name(Node* n) {
1859   return (n->req() == 1         // constant
1860           || (n->is_Type() && n->as_Type()->type()->singleton())
1861           || n->is_Proj()       // parameter or return value
1862           || n->is_Phi()        // local of some sort
1863           );
1864 }
1865 
1866 //----------------------------inline_notify-----------------------------------*
1867 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1868   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1869   address func;
1870   if (id == vmIntrinsics::_notify) {
1871     func = OptoRuntime::monitor_notify_Java();
1872   } else {
1873     func = OptoRuntime::monitor_notifyAll_Java();
1874   }
1875   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1876   make_slow_call_ex(call, env()->Throwable_klass(), false);
1877   return true;
1878 }
1879 
1880 
1881 //----------------------------inline_min_max-----------------------------------
1882 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1883   set_result(generate_min_max(id, argument(0), argument(1)));
1884   return true;
1885 }
1886 
1887 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1888   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1889   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1890   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1891   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1892 
1893   {
1894     PreserveJVMState pjvms(this);
1895     PreserveReexecuteState preexecs(this);
1896     jvms()->set_should_reexecute(true);
1897 
1898     set_control(slow_path);
1899     set_i_o(i_o());
1900 
1901     uncommon_trap(Deoptimization::Reason_intrinsic,
1902                   Deoptimization::Action_none);
1903   }
1904 
1905   set_control(fast_path);
1906   set_result(math);
1907 }
1908 
1909 template <typename OverflowOp>
1910 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1911   typedef typename OverflowOp::MathOp MathOp;
1912 
1913   MathOp* mathOp = new MathOp(arg1, arg2);
1914   Node* operation = _gvn.transform( mathOp );
1915   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1916   inline_math_mathExact(operation, ofcheck);
1917   return true;
1918 }
1919 
1920 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1921   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1922 }
1923 
1924 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1925   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1926 }
1927 
1928 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1929   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1930 }
1931 
1932 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1933   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1934 }
1935 
1936 bool LibraryCallKit::inline_math_negateExactI() {
1937   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1938 }
1939 
1940 bool LibraryCallKit::inline_math_negateExactL() {
1941   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1942 }
1943 
1944 bool LibraryCallKit::inline_math_multiplyExactI() {
1945   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1946 }
1947 
1948 bool LibraryCallKit::inline_math_multiplyExactL() {
1949   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1950 }
1951 
1952 Node*
1953 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1954   // These are the candidate return value:
1955   Node* xvalue = x0;
1956   Node* yvalue = y0;
1957 
1958   if (xvalue == yvalue) {
1959     return xvalue;
1960   }
1961 
1962   bool want_max = (id == vmIntrinsics::_max);
1963 
1964   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1965   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1966   if (txvalue == NULL || tyvalue == NULL)  return top();
1967   // This is not really necessary, but it is consistent with a
1968   // hypothetical MaxINode::Value method:
1969   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1970 
1971   // %%% This folding logic should (ideally) be in a different place.
1972   // Some should be inside IfNode, and there to be a more reliable
1973   // transformation of ?: style patterns into cmoves.  We also want
1974   // more powerful optimizations around cmove and min/max.
1975 
1976   // Try to find a dominating comparison of these guys.
1977   // It can simplify the index computation for Arrays.copyOf
1978   // and similar uses of System.arraycopy.
1979   // First, compute the normalized version of CmpI(x, y).
1980   int   cmp_op = Op_CmpI;
1981   Node* xkey = xvalue;
1982   Node* ykey = yvalue;
1983   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1984   if (ideal_cmpxy->is_Cmp()) {
1985     // E.g., if we have CmpI(length - offset, count),
1986     // it might idealize to CmpI(length, count + offset)
1987     cmp_op = ideal_cmpxy->Opcode();
1988     xkey = ideal_cmpxy->in(1);
1989     ykey = ideal_cmpxy->in(2);
1990   }
1991 
1992   // Start by locating any relevant comparisons.
1993   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1994   Node* cmpxy = NULL;
1995   Node* cmpyx = NULL;
1996   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1997     Node* cmp = start_from->fast_out(k);
1998     if (cmp->outcnt() > 0 &&            // must have prior uses
1999         cmp->in(0) == NULL &&           // must be context-independent
2000         cmp->Opcode() == cmp_op) {      // right kind of compare
2001       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2002       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2003     }
2004   }
2005 
2006   const int NCMPS = 2;
2007   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2008   int cmpn;
2009   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2010     if (cmps[cmpn] != NULL)  break;     // find a result
2011   }
2012   if (cmpn < NCMPS) {
2013     // Look for a dominating test that tells us the min and max.
2014     int depth = 0;                // Limit search depth for speed
2015     Node* dom = control();
2016     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2017       if (++depth >= 100)  break;
2018       Node* ifproj = dom;
2019       if (!ifproj->is_Proj())  continue;
2020       Node* iff = ifproj->in(0);
2021       if (!iff->is_If())  continue;
2022       Node* bol = iff->in(1);
2023       if (!bol->is_Bool())  continue;
2024       Node* cmp = bol->in(1);
2025       if (cmp == NULL)  continue;
2026       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2027         if (cmps[cmpn] == cmp)  break;
2028       if (cmpn == NCMPS)  continue;
2029       BoolTest::mask btest = bol->as_Bool()->_test._test;
2030       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2031       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2032       // At this point, we know that 'x btest y' is true.
2033       switch (btest) {
2034       case BoolTest::eq:
2035         // They are proven equal, so we can collapse the min/max.
2036         // Either value is the answer.  Choose the simpler.
2037         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2038           return yvalue;
2039         return xvalue;
2040       case BoolTest::lt:          // x < y
2041       case BoolTest::le:          // x <= y
2042         return (want_max ? yvalue : xvalue);
2043       case BoolTest::gt:          // x > y
2044       case BoolTest::ge:          // x >= y
2045         return (want_max ? xvalue : yvalue);
2046       }
2047     }
2048   }
2049 
2050   // We failed to find a dominating test.
2051   // Let's pick a test that might GVN with prior tests.
2052   Node*          best_bol   = NULL;
2053   BoolTest::mask best_btest = BoolTest::illegal;
2054   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2055     Node* cmp = cmps[cmpn];
2056     if (cmp == NULL)  continue;
2057     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2058       Node* bol = cmp->fast_out(j);
2059       if (!bol->is_Bool())  continue;
2060       BoolTest::mask btest = bol->as_Bool()->_test._test;
2061       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2062       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2063       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2064         best_bol   = bol->as_Bool();
2065         best_btest = btest;
2066       }
2067     }
2068   }
2069 
2070   Node* answer_if_true  = NULL;
2071   Node* answer_if_false = NULL;
2072   switch (best_btest) {
2073   default:
2074     if (cmpxy == NULL)
2075       cmpxy = ideal_cmpxy;
2076     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2077     // and fall through:
2078   case BoolTest::lt:          // x < y
2079   case BoolTest::le:          // x <= y
2080     answer_if_true  = (want_max ? yvalue : xvalue);
2081     answer_if_false = (want_max ? xvalue : yvalue);
2082     break;
2083   case BoolTest::gt:          // x > y
2084   case BoolTest::ge:          // x >= y
2085     answer_if_true  = (want_max ? xvalue : yvalue);
2086     answer_if_false = (want_max ? yvalue : xvalue);
2087     break;
2088   }
2089 
2090   jint hi, lo;
2091   if (want_max) {
2092     // We can sharpen the minimum.
2093     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2094     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2095   } else {
2096     // We can sharpen the maximum.
2097     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2098     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2099   }
2100 
2101   // Use a flow-free graph structure, to avoid creating excess control edges
2102   // which could hinder other optimizations.
2103   // Since Math.min/max is often used with arraycopy, we want
2104   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2105   Node* cmov = CMoveNode::make(NULL, best_bol,
2106                                answer_if_false, answer_if_true,
2107                                TypeInt::make(lo, hi, widen));
2108 
2109   return _gvn.transform(cmov);
2110 
2111   /*
2112   // This is not as desirable as it may seem, since Min and Max
2113   // nodes do not have a full set of optimizations.
2114   // And they would interfere, anyway, with 'if' optimizations
2115   // and with CMoveI canonical forms.
2116   switch (id) {
2117   case vmIntrinsics::_min:
2118     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2119   case vmIntrinsics::_max:
2120     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2121   default:
2122     ShouldNotReachHere();
2123   }
2124   */
2125 }
2126 
2127 inline int
2128 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2129   const TypePtr* base_type = TypePtr::NULL_PTR;
2130   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2131   if (base_type == NULL) {
2132     // Unknown type.
2133     return Type::AnyPtr;
2134   } else if (base_type == TypePtr::NULL_PTR) {
2135     // Since this is a NULL+long form, we have to switch to a rawptr.
2136     base   = _gvn.transform(new CastX2PNode(offset));
2137     offset = MakeConX(0);
2138     return Type::RawPtr;
2139   } else if (base_type->base() == Type::RawPtr) {
2140     return Type::RawPtr;
2141   } else if (base_type->isa_oopptr()) {
2142     // Base is never null => always a heap address.
2143     if (base_type->ptr() == TypePtr::NotNull) {
2144       return Type::OopPtr;
2145     }
2146     // Offset is small => always a heap address.
2147     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2148     if (offset_type != NULL &&
2149         base_type->offset() == 0 &&     // (should always be?)
2150         offset_type->_lo >= 0 &&
2151         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2152       return Type::OopPtr;
2153     }
2154     // Otherwise, it might either be oop+off or NULL+addr.
2155     return Type::AnyPtr;
2156   } else {
2157     // No information:
2158     return Type::AnyPtr;
2159   }
2160 }
2161 
2162 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2163   int kind = classify_unsafe_addr(base, offset);
2164   if (kind == Type::RawPtr) {
2165     return basic_plus_adr(top(), base, offset);
2166   } else {
2167     return basic_plus_adr(base, offset);
2168   }
2169 }
2170 
2171 //--------------------------inline_number_methods-----------------------------
2172 // inline int     Integer.numberOfLeadingZeros(int)
2173 // inline int        Long.numberOfLeadingZeros(long)
2174 //
2175 // inline int     Integer.numberOfTrailingZeros(int)
2176 // inline int        Long.numberOfTrailingZeros(long)
2177 //
2178 // inline int     Integer.bitCount(int)
2179 // inline int        Long.bitCount(long)
2180 //
2181 // inline char  Character.reverseBytes(char)
2182 // inline short     Short.reverseBytes(short)
2183 // inline int     Integer.reverseBytes(int)
2184 // inline long       Long.reverseBytes(long)
2185 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2186   Node* arg = argument(0);
2187   Node* n = NULL;
2188   switch (id) {
2189   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2190   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2191   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2192   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2193   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2194   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2195   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2196   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2197   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2198   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2199   default:  fatal_unexpected_iid(id);  break;
2200   }
2201   set_result(_gvn.transform(n));
2202   return true;
2203 }
2204 
2205 //----------------------------inline_unsafe_access----------------------------
2206 
2207 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2208 
2209 // Helper that guards and inserts a pre-barrier.
2210 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2211                                         Node* pre_val, bool need_mem_bar) {
2212   // We could be accessing the referent field of a reference object. If so, when G1
2213   // is enabled, we need to log the value in the referent field in an SATB buffer.
2214   // This routine performs some compile time filters and generates suitable
2215   // runtime filters that guard the pre-barrier code.
2216   // Also add memory barrier for non volatile load from the referent field
2217   // to prevent commoning of loads across safepoint.
2218   if (!UseG1GC && !need_mem_bar)
2219     return;
2220 
2221   // Some compile time checks.
2222 
2223   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2224   const TypeX* otype = offset->find_intptr_t_type();
2225   if (otype != NULL && otype->is_con() &&
2226       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2227     // Constant offset but not the reference_offset so just return
2228     return;
2229   }
2230 
2231   // We only need to generate the runtime guards for instances.
2232   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2233   if (btype != NULL) {
2234     if (btype->isa_aryptr()) {
2235       // Array type so nothing to do
2236       return;
2237     }
2238 
2239     const TypeInstPtr* itype = btype->isa_instptr();
2240     if (itype != NULL) {
2241       // Can the klass of base_oop be statically determined to be
2242       // _not_ a sub-class of Reference and _not_ Object?
2243       ciKlass* klass = itype->klass();
2244       if ( klass->is_loaded() &&
2245           !klass->is_subtype_of(env()->Reference_klass()) &&
2246           !env()->Object_klass()->is_subtype_of(klass)) {
2247         return;
2248       }
2249     }
2250   }
2251 
2252   // The compile time filters did not reject base_oop/offset so
2253   // we need to generate the following runtime filters
2254   //
2255   // if (offset == java_lang_ref_Reference::_reference_offset) {
2256   //   if (instance_of(base, java.lang.ref.Reference)) {
2257   //     pre_barrier(_, pre_val, ...);
2258   //   }
2259   // }
2260 
2261   float likely   = PROB_LIKELY(  0.999);
2262   float unlikely = PROB_UNLIKELY(0.999);
2263 
2264   IdealKit ideal(this);
2265 #define __ ideal.
2266 
2267   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2268 
2269   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2270       // Update graphKit memory and control from IdealKit.
2271       sync_kit(ideal);
2272 
2273       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2274       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2275 
2276       // Update IdealKit memory and control from graphKit.
2277       __ sync_kit(this);
2278 
2279       Node* one = __ ConI(1);
2280       // is_instof == 0 if base_oop == NULL
2281       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2282 
2283         // Update graphKit from IdeakKit.
2284         sync_kit(ideal);
2285 
2286         // Use the pre-barrier to record the value in the referent field
2287         pre_barrier(false /* do_load */,
2288                     __ ctrl(),
2289                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2290                     pre_val /* pre_val */,
2291                     T_OBJECT);
2292         if (need_mem_bar) {
2293           // Add memory barrier to prevent commoning reads from this field
2294           // across safepoint since GC can change its value.
2295           insert_mem_bar(Op_MemBarCPUOrder);
2296         }
2297         // Update IdealKit from graphKit.
2298         __ sync_kit(this);
2299 
2300       } __ end_if(); // _ref_type != ref_none
2301   } __ end_if(); // offset == referent_offset
2302 
2303   // Final sync IdealKit and GraphKit.
2304   final_sync(ideal);
2305 #undef __
2306 }
2307 
2308 
2309 // Interpret Unsafe.fieldOffset cookies correctly:
2310 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2311 
2312 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2313   // Attempt to infer a sharper value type from the offset and base type.
2314   ciKlass* sharpened_klass = NULL;
2315 
2316   // See if it is an instance field, with an object type.
2317   if (alias_type->field() != NULL) {
2318     assert(!is_native_ptr, "native pointer op cannot use a java address");
2319     if (alias_type->field()->type()->is_klass()) {
2320       sharpened_klass = alias_type->field()->type()->as_klass();
2321     }
2322   }
2323 
2324   // See if it is a narrow oop array.
2325   if (adr_type->isa_aryptr()) {
2326     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2327       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2328       if (elem_type != NULL) {
2329         sharpened_klass = elem_type->klass();
2330       }
2331     }
2332   }
2333 
2334   // The sharpened class might be unloaded if there is no class loader
2335   // contraint in place.
2336   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2337     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2338 
2339 #ifndef PRODUCT
2340     if (C->print_intrinsics() || C->print_inlining()) {
2341       tty->print("  from base type: ");  adr_type->dump();
2342       tty->print("  sharpened value: ");  tjp->dump();
2343     }
2344 #endif
2345     // Sharpen the value type.
2346     return tjp;
2347   }
2348   return NULL;
2349 }
2350 
2351 bool LibraryCallKit::inline_unsafe_access(const bool is_native_ptr, bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2352   if (callee()->is_static())  return false;  // caller must have the capability!
2353   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2354   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2355 
2356 #ifndef PRODUCT
2357   {
2358     ResourceMark rm;
2359     // Check the signatures.
2360     ciSignature* sig = callee()->signature();
2361 #ifdef ASSERT
2362     if (!is_store) {
2363       // Object getObject(Object base, int/long offset), etc.
2364       BasicType rtype = sig->return_type()->basic_type();
2365       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2366           rtype = T_ADDRESS;  // it is really a C void*
2367       assert(rtype == type, "getter must return the expected value");
2368       if (!is_native_ptr) {
2369         assert(sig->count() == 2, "oop getter has 2 arguments");
2370         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2371         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2372       } else {
2373         assert(sig->count() == 1, "native getter has 1 argument");
2374         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2375       }
2376     } else {
2377       // void putObject(Object base, int/long offset, Object x), etc.
2378       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2379       if (!is_native_ptr) {
2380         assert(sig->count() == 3, "oop putter has 3 arguments");
2381         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2382         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2383       } else {
2384         assert(sig->count() == 2, "native putter has 2 arguments");
2385         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2386       }
2387       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2388       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2389         vtype = T_ADDRESS;  // it is really a C void*
2390       assert(vtype == type, "putter must accept the expected value");
2391     }
2392 #endif // ASSERT
2393  }
2394 #endif //PRODUCT
2395 
2396   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2397 
2398   Node* receiver = argument(0);  // type: oop
2399 
2400   // Build address expression.
2401   Node* adr;
2402   Node* heap_base_oop = top();
2403   Node* offset = top();
2404   Node* val;
2405 
2406   if (!is_native_ptr) {
2407     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2408     Node* base = argument(1);  // type: oop
2409     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2410     offset = argument(2);  // type: long
2411     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2412     // to be plain byte offsets, which are also the same as those accepted
2413     // by oopDesc::field_base.
2414     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2415            "fieldOffset must be byte-scaled");
2416     // 32-bit machines ignore the high half!
2417     offset = ConvL2X(offset);
2418     adr = make_unsafe_address(base, offset);
2419     heap_base_oop = base;
2420     val = is_store ? argument(4) : NULL;
2421   } else {
2422     Node* ptr = argument(1);  // type: long
2423     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2424     adr = make_unsafe_address(NULL, ptr);
2425     val = is_store ? argument(3) : NULL;
2426   }
2427 
2428   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2429 
2430   // First guess at the value type.
2431   const Type *value_type = Type::get_const_basic_type(type);
2432 
2433   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2434   // there was not enough information to nail it down.
2435   Compile::AliasType* alias_type = C->alias_type(adr_type);
2436   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2437 
2438   // We will need memory barriers unless we can determine a unique
2439   // alias category for this reference.  (Note:  If for some reason
2440   // the barriers get omitted and the unsafe reference begins to "pollute"
2441   // the alias analysis of the rest of the graph, either Compile::can_alias
2442   // or Compile::must_alias will throw a diagnostic assert.)
2443   bool need_mem_bar;
2444   switch (kind) {
2445       case Relaxed:
2446           need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2447           break;
2448       case Opaque:
2449           // Opaque uses CPUOrder membars for protection against code movement.
2450       case Acquire:
2451       case Release:
2452       case Volatile:
2453           need_mem_bar = true;
2454           break;
2455       default:
2456           ShouldNotReachHere();
2457   }
2458 
2459   // Some accesses require access atomicity for all types, notably longs and doubles.
2460   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2461   bool requires_atomic_access = false;
2462   switch (kind) {
2463       case Relaxed:
2464       case Opaque:
2465           requires_atomic_access = AlwaysAtomicAccesses;
2466           break;
2467       case Acquire:
2468       case Release:
2469       case Volatile:
2470           requires_atomic_access = true;
2471           break;
2472       default:
2473           ShouldNotReachHere();
2474   }
2475 
2476   // Figure out the memory ordering.
2477   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2478   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2479 
2480   // If we are reading the value of the referent field of a Reference
2481   // object (either by using Unsafe directly or through reflection)
2482   // then, if G1 is enabled, we need to record the referent in an
2483   // SATB log buffer using the pre-barrier mechanism.
2484   // Also we need to add memory barrier to prevent commoning reads
2485   // from this field across safepoint since GC can change its value.
2486   bool need_read_barrier = !is_native_ptr && !is_store &&
2487                            offset != top() && heap_base_oop != top();
2488 
2489   if (!is_store && type == T_OBJECT) {
2490     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2491     if (tjp != NULL) {
2492       value_type = tjp;
2493     }
2494   }
2495 
2496   receiver = null_check(receiver);
2497   if (stopped()) {
2498     return true;
2499   }
2500   // Heap pointers get a null-check from the interpreter,
2501   // as a courtesy.  However, this is not guaranteed by Unsafe,
2502   // and it is not possible to fully distinguish unintended nulls
2503   // from intended ones in this API.
2504 
2505   // We need to emit leading and trailing CPU membars (see below) in
2506   // addition to memory membars for special access modes. This is a little
2507   // too strong, but avoids the need to insert per-alias-type
2508   // volatile membars (for stores; compare Parse::do_put_xxx), which
2509   // we cannot do effectively here because we probably only have a
2510   // rough approximation of type.
2511 
2512   switch(kind) {
2513     case Relaxed:
2514     case Opaque:
2515     case Acquire:
2516       break;
2517     case Release:
2518     case Volatile:
2519       if (is_store) {
2520         insert_mem_bar(Op_MemBarRelease);
2521       } else {
2522         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2523           insert_mem_bar(Op_MemBarVolatile);
2524         }
2525       }
2526       break;
2527     default:
2528       ShouldNotReachHere();
2529   }
2530 
2531   // Memory barrier to prevent normal and 'unsafe' accesses from
2532   // bypassing each other.  Happens after null checks, so the
2533   // exception paths do not take memory state from the memory barrier,
2534   // so there's no problems making a strong assert about mixing users
2535   // of safe & unsafe memory.
2536   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2537 
2538   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2539          alias_type->field() != NULL || alias_type->element() != NULL, "field, array element or unknown");
2540   bool mismatched = false;
2541   if (alias_type->element() != NULL || alias_type->field() != NULL) {
2542     BasicType bt;
2543     if (alias_type->element() != NULL) {
2544       // Use address type to get the element type. Alias type doesn't provide
2545       // enough information (e.g., doesn't differentiate between byte[] and boolean[]).
2546       const Type* element = adr_type->is_aryptr()->elem();
2547       bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
2548     } else {
2549       bt = alias_type->field()->layout_type();
2550     }
2551     if (bt == T_ARRAY) {
2552       // accessing an array field with getObject is not a mismatch
2553       bt = T_OBJECT;
2554     }
2555     if (bt != type) {
2556       mismatched = true;
2557     }
2558   }
2559   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2560 
2561   if (!is_store) {
2562     Node* p = NULL;
2563     // Try to constant fold a load from a constant field
2564     ciField* field = alias_type->field();
2565     if (heap_base_oop != top() &&
2566         field != NULL && field->is_constant() && !mismatched) {
2567       // final or stable field
2568       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2569       if (con_type != NULL) {
2570         p = makecon(con_type);
2571       }
2572     }
2573     if (p == NULL) {
2574       // To be valid, unsafe loads may depend on other conditions than
2575       // the one that guards them: pin the Load node
2576       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2577       // load value
2578       switch (type) {
2579       case T_BOOLEAN:
2580       case T_CHAR:
2581       case T_BYTE:
2582       case T_SHORT:
2583       case T_INT:
2584       case T_LONG:
2585       case T_FLOAT:
2586       case T_DOUBLE:
2587         break;
2588       case T_OBJECT:
2589         if (need_read_barrier) {
2590           // We do not require a mem bar inside pre_barrier if need_mem_bar
2591           // is set: the barriers would be emitted by us.
2592           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2593         }
2594         break;
2595       case T_ADDRESS:
2596         // Cast to an int type.
2597         p = _gvn.transform(new CastP2XNode(NULL, p));
2598         p = ConvX2UL(p);
2599         break;
2600       default:
2601         fatal("unexpected type %d: %s", type, type2name(type));
2602         break;
2603       }
2604     }
2605     // The load node has the control of the preceding MemBarCPUOrder.  All
2606     // following nodes will have the control of the MemBarCPUOrder inserted at
2607     // the end of this method.  So, pushing the load onto the stack at a later
2608     // point is fine.
2609     set_result(p);
2610   } else {
2611     // place effect of store into memory
2612     switch (type) {
2613     case T_DOUBLE:
2614       val = dstore_rounding(val);
2615       break;
2616     case T_ADDRESS:
2617       // Repackage the long as a pointer.
2618       val = ConvL2X(val);
2619       val = _gvn.transform(new CastX2PNode(val));
2620       break;
2621     }
2622 
2623     if (type != T_OBJECT) {
2624       (void) store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2625     } else {
2626       // Possibly an oop being stored to Java heap or native memory
2627       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2628         // oop to Java heap.
2629         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2630       } else {
2631         // We can't tell at compile time if we are storing in the Java heap or outside
2632         // of it. So we need to emit code to conditionally do the proper type of
2633         // store.
2634 
2635         IdealKit ideal(this);
2636 #define __ ideal.
2637         // QQQ who knows what probability is here??
2638         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2639           // Sync IdealKit and graphKit.
2640           sync_kit(ideal);
2641           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2642           // Update IdealKit memory.
2643           __ sync_kit(this);
2644         } __ else_(); {
2645           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, requires_atomic_access, mismatched);
2646         } __ end_if();
2647         // Final sync IdealKit and GraphKit.
2648         final_sync(ideal);
2649 #undef __
2650       }
2651     }
2652   }
2653 
2654   switch(kind) {
2655     case Relaxed:
2656     case Opaque:
2657     case Release:
2658       break;
2659     case Acquire:
2660     case Volatile:
2661       if (!is_store) {
2662         insert_mem_bar(Op_MemBarAcquire);
2663       } else {
2664         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2665           insert_mem_bar(Op_MemBarVolatile);
2666         }
2667       }
2668       break;
2669     default:
2670       ShouldNotReachHere();
2671   }
2672 
2673   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2674 
2675   return true;
2676 }
2677 
2678 //----------------------------inline_unsafe_load_store----------------------------
2679 // This method serves a couple of different customers (depending on LoadStoreKind):
2680 //
2681 // LS_cmp_swap:
2682 //
2683 //   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2684 //   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2685 //   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2686 //
2687 // LS_cmp_swap_weak:
2688 //
2689 //   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2690 //   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2691 //   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2692 //
2693 //   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2694 //   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2695 //   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2696 //
2697 //   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2698 //   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2699 //   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2700 //
2701 // LS_cmp_exchange:
2702 //
2703 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2704 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2705 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2706 //
2707 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2708 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2709 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2710 //
2711 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2712 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2713 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2714 //
2715 // LS_get_add:
2716 //
2717 //   int  getAndAddInt( Object o, long offset, int  delta)
2718 //   long getAndAddLong(Object o, long offset, long delta)
2719 //
2720 // LS_get_set:
2721 //
2722 //   int    getAndSet(Object o, long offset, int    newValue)
2723 //   long   getAndSet(Object o, long offset, long   newValue)
2724 //   Object getAndSet(Object o, long offset, Object newValue)
2725 //
2726 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2727   // This basic scheme here is the same as inline_unsafe_access, but
2728   // differs in enough details that combining them would make the code
2729   // overly confusing.  (This is a true fact! I originally combined
2730   // them, but even I was confused by it!) As much code/comments as
2731   // possible are retained from inline_unsafe_access though to make
2732   // the correspondences clearer. - dl
2733 
2734   if (callee()->is_static())  return false;  // caller must have the capability!
2735 
2736 #ifndef PRODUCT
2737   BasicType rtype;
2738   {
2739     ResourceMark rm;
2740     // Check the signatures.
2741     ciSignature* sig = callee()->signature();
2742     rtype = sig->return_type()->basic_type();
2743     switch(kind) {
2744       case LS_get_add:
2745       case LS_get_set: {
2746       // Check the signatures.
2747 #ifdef ASSERT
2748       assert(rtype == type, "get and set must return the expected type");
2749       assert(sig->count() == 3, "get and set has 3 arguments");
2750       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2751       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2752       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2753 #endif // ASSERT
2754         break;
2755       }
2756       case LS_cmp_swap:
2757       case LS_cmp_swap_weak: {
2758       // Check the signatures.
2759 #ifdef ASSERT
2760       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2761       assert(sig->count() == 4, "CAS has 4 arguments");
2762       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2763       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2764 #endif // ASSERT
2765         break;
2766       }
2767       case LS_cmp_exchange: {
2768       // Check the signatures.
2769 #ifdef ASSERT
2770       assert(rtype == type, "CAS must return the expected type");
2771       assert(sig->count() == 4, "CAS has 4 arguments");
2772       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2773       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2774 #endif // ASSERT
2775         break;
2776       }
2777       default:
2778         ShouldNotReachHere();
2779     }
2780   }
2781 #endif //PRODUCT
2782 
2783   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2784 
2785   // Get arguments:
2786   Node* receiver = NULL;
2787   Node* base     = NULL;
2788   Node* offset   = NULL;
2789   Node* oldval   = NULL;
2790   Node* newval   = NULL;
2791   switch(kind) {
2792     case LS_cmp_swap:
2793     case LS_cmp_swap_weak:
2794     case LS_cmp_exchange: {
2795       const bool two_slot_type = type2size[type] == 2;
2796       receiver = argument(0);  // type: oop
2797       base     = argument(1);  // type: oop
2798       offset   = argument(2);  // type: long
2799       oldval   = argument(4);  // type: oop, int, or long
2800       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2801       break;
2802     }
2803     case LS_get_add:
2804     case LS_get_set: {
2805       receiver = argument(0);  // type: oop
2806       base     = argument(1);  // type: oop
2807       offset   = argument(2);  // type: long
2808       oldval   = NULL;
2809       newval   = argument(4);  // type: oop, int, or long
2810       break;
2811     }
2812     default:
2813       ShouldNotReachHere();
2814   }
2815 
2816   // Null check receiver.
2817   receiver = null_check(receiver);
2818   if (stopped()) {
2819     return true;
2820   }
2821 
2822   // Build field offset expression.
2823   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2824   // to be plain byte offsets, which are also the same as those accepted
2825   // by oopDesc::field_base.
2826   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2827   // 32-bit machines ignore the high half of long offsets
2828   offset = ConvL2X(offset);
2829   Node* adr = make_unsafe_address(base, offset);
2830   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2831 
2832   // For CAS, unlike inline_unsafe_access, there seems no point in
2833   // trying to refine types. Just use the coarse types here.
2834   const Type *value_type = Type::get_const_basic_type(type);
2835   Compile::AliasType* alias_type = C->alias_type(adr_type);
2836   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2837 
2838   switch (kind) {
2839     case LS_get_set:
2840     case LS_cmp_exchange: {
2841       if (type == T_OBJECT) {
2842         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2843         if (tjp != NULL) {
2844           value_type = tjp;
2845         }
2846       }
2847       break;
2848     }
2849     case LS_cmp_swap:
2850     case LS_cmp_swap_weak:
2851     case LS_get_add:
2852       break;
2853     default:
2854       ShouldNotReachHere();
2855   }
2856 
2857   int alias_idx = C->get_alias_index(adr_type);
2858 
2859   // Memory-model-wise, a LoadStore acts like a little synchronized
2860   // block, so needs barriers on each side.  These don't translate
2861   // into actual barriers on most machines, but we still need rest of
2862   // compiler to respect ordering.
2863 
2864   switch (access_kind) {
2865     case Relaxed:
2866     case Acquire:
2867       break;
2868     case Release:
2869     case Volatile:
2870       insert_mem_bar(Op_MemBarRelease);
2871       break;
2872     default:
2873       ShouldNotReachHere();
2874   }
2875   insert_mem_bar(Op_MemBarCPUOrder);
2876 
2877   // Figure out the memory ordering.
2878   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2879 
2880   // 4984716: MemBars must be inserted before this
2881   //          memory node in order to avoid a false
2882   //          dependency which will confuse the scheduler.
2883   Node *mem = memory(alias_idx);
2884 
2885   // For now, we handle only those cases that actually exist: ints,
2886   // longs, and Object. Adding others should be straightforward.
2887   Node* load_store = NULL;
2888   switch(type) {
2889   case T_INT:
2890     switch(kind) {
2891       case LS_get_add:
2892         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2893         break;
2894       case LS_get_set:
2895         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2896         break;
2897       case LS_cmp_swap_weak:
2898         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2899         break;
2900       case LS_cmp_swap:
2901         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2902         break;
2903       case LS_cmp_exchange:
2904         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2905         break;
2906       default:
2907         ShouldNotReachHere();
2908     }
2909     break;
2910   case T_LONG:
2911     switch(kind) {
2912       case LS_get_add:
2913         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2914         break;
2915       case LS_get_set:
2916         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2917         break;
2918       case LS_cmp_swap_weak:
2919         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2920         break;
2921       case LS_cmp_swap:
2922         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2923         break;
2924       case LS_cmp_exchange:
2925         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2926         break;
2927       default:
2928         ShouldNotReachHere();
2929     }
2930     break;
2931   case T_OBJECT:
2932     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2933     // could be delayed during Parse (for example, in adjust_map_after_if()).
2934     // Execute transformation here to avoid barrier generation in such case.
2935     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2936       newval = _gvn.makecon(TypePtr::NULL_PTR);
2937 
2938     // Reference stores need a store barrier.
2939     switch(kind) {
2940       case LS_get_set: {
2941         // If pre-barrier must execute before the oop store, old value will require do_load here.
2942         if (!can_move_pre_barrier()) {
2943           pre_barrier(true /* do_load*/,
2944                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2945                       NULL /* pre_val*/,
2946                       T_OBJECT);
2947         } // Else move pre_barrier to use load_store value, see below.
2948         break;
2949       }
2950       case LS_cmp_swap_weak:
2951       case LS_cmp_swap:
2952       case LS_cmp_exchange: {
2953         // Same as for newval above:
2954         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2955           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2956         }
2957         // The only known value which might get overwritten is oldval.
2958         pre_barrier(false /* do_load */,
2959                     control(), NULL, NULL, max_juint, NULL, NULL,
2960                     oldval /* pre_val */,
2961                     T_OBJECT);
2962         break;
2963       }
2964       default:
2965         ShouldNotReachHere();
2966     }
2967 
2968 #ifdef _LP64
2969     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2970       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2971 
2972       switch(kind) {
2973         case LS_get_set:
2974           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2975           break;
2976         case LS_cmp_swap_weak: {
2977           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2978           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2979           break;
2980         }
2981         case LS_cmp_swap: {
2982           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2983           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2984           break;
2985         }
2986         case LS_cmp_exchange: {
2987           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2988           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2989           break;
2990         }
2991         default:
2992           ShouldNotReachHere();
2993       }
2994     } else
2995 #endif
2996     switch (kind) {
2997       case LS_get_set:
2998         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2999         break;
3000       case LS_cmp_swap_weak:
3001         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3002         break;
3003       case LS_cmp_swap:
3004         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3005         break;
3006       case LS_cmp_exchange:
3007         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
3008         break;
3009       default:
3010         ShouldNotReachHere();
3011     }
3012 
3013     // Emit the post barrier only when the actual store happened. This makes sense
3014     // to check only for LS_cmp_* that can fail to set the value.
3015     // LS_cmp_exchange does not produce any branches by default, so there is no
3016     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3017     // CompareAndExchange and move branches here, it would make sense to conditionalize
3018     // post_barriers for LS_cmp_exchange as well.
3019     //
3020     // CAS success path is marked more likely since we anticipate this is a performance
3021     // critical path, while CAS failure path can use the penalty for going through unlikely
3022     // path as backoff. Which is still better than doing a store barrier there.
3023     switch (kind) {
3024       case LS_get_set:
3025       case LS_cmp_exchange: {
3026         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3027         break;
3028       }
3029       case LS_cmp_swap_weak:
3030       case LS_cmp_swap: {
3031         IdealKit ideal(this);
3032         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3033           sync_kit(ideal);
3034           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3035           ideal.sync_kit(this);
3036         } ideal.end_if();
3037         final_sync(ideal);
3038         break;
3039       }
3040       default:
3041         ShouldNotReachHere();
3042     }
3043     break;
3044   default:
3045     fatal("unexpected type %d: %s", type, type2name(type));
3046     break;
3047   }
3048 
3049   // SCMemProjNodes represent the memory state of a LoadStore. Their
3050   // main role is to prevent LoadStore nodes from being optimized away
3051   // when their results aren't used.
3052   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3053   set_memory(proj, alias_idx);
3054 
3055   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3056 #ifdef _LP64
3057     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3058       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3059     }
3060 #endif
3061     if (can_move_pre_barrier()) {
3062       // Don't need to load pre_val. The old value is returned by load_store.
3063       // The pre_barrier can execute after the xchg as long as no safepoint
3064       // gets inserted between them.
3065       pre_barrier(false /* do_load */,
3066                   control(), NULL, NULL, max_juint, NULL, NULL,
3067                   load_store /* pre_val */,
3068                   T_OBJECT);
3069     }
3070   }
3071 
3072   // Add the trailing membar surrounding the access
3073   insert_mem_bar(Op_MemBarCPUOrder);
3074 
3075   switch (access_kind) {
3076     case Relaxed:
3077     case Release:
3078       break; // do nothing
3079     case Acquire:
3080     case Volatile:
3081       insert_mem_bar(Op_MemBarAcquire);
3082       break;
3083     default:
3084       ShouldNotReachHere();
3085   }
3086 
3087   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3088   set_result(load_store);
3089   return true;
3090 }
3091 
3092 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3093   MemNode::MemOrd mo = MemNode::unset;
3094   switch(kind) {
3095     case Opaque:
3096     case Relaxed:  mo = MemNode::unordered; break;
3097     case Acquire:  mo = MemNode::acquire;   break;
3098     case Release:  mo = MemNode::release;   break;
3099     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3100     default:
3101       ShouldNotReachHere();
3102   }
3103   guarantee(mo != MemNode::unset, "Should select memory ordering");
3104   return mo;
3105 }
3106 
3107 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3108   MemNode::MemOrd mo = MemNode::unset;
3109   switch(kind) {
3110     case Opaque:
3111     case Relaxed:  mo = MemNode::unordered; break;
3112     case Acquire:  mo = MemNode::acquire;   break;
3113     case Release:  mo = MemNode::release;   break;
3114     case Volatile: mo = MemNode::seqcst;    break;
3115     default:
3116       ShouldNotReachHere();
3117   }
3118   guarantee(mo != MemNode::unset, "Should select memory ordering");
3119   return mo;
3120 }
3121 
3122 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3123   // Regardless of form, don't allow previous ld/st to move down,
3124   // then issue acquire, release, or volatile mem_bar.
3125   insert_mem_bar(Op_MemBarCPUOrder);
3126   switch(id) {
3127     case vmIntrinsics::_loadFence:
3128       insert_mem_bar(Op_LoadFence);
3129       return true;
3130     case vmIntrinsics::_storeFence:
3131       insert_mem_bar(Op_StoreFence);
3132       return true;
3133     case vmIntrinsics::_fullFence:
3134       insert_mem_bar(Op_MemBarVolatile);
3135       return true;
3136     default:
3137       fatal_unexpected_iid(id);
3138       return false;
3139   }
3140 }
3141 
3142 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3143   if (!kls->is_Con()) {
3144     return true;
3145   }
3146   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3147   if (klsptr == NULL) {
3148     return true;
3149   }
3150   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3151   // don't need a guard for a klass that is already initialized
3152   return !ik->is_initialized();
3153 }
3154 
3155 //----------------------------inline_unsafe_allocate---------------------------
3156 // public native Object Unsafe.allocateInstance(Class<?> cls);
3157 bool LibraryCallKit::inline_unsafe_allocate() {
3158   if (callee()->is_static())  return false;  // caller must have the capability!
3159 
3160   null_check_receiver();  // null-check, then ignore
3161   Node* cls = null_check(argument(1));
3162   if (stopped())  return true;
3163 
3164   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3165   kls = null_check(kls);
3166   if (stopped())  return true;  // argument was like int.class
3167 
3168   Node* test = NULL;
3169   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3170     // Note:  The argument might still be an illegal value like
3171     // Serializable.class or Object[].class.   The runtime will handle it.
3172     // But we must make an explicit check for initialization.
3173     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3174     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3175     // can generate code to load it as unsigned byte.
3176     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3177     Node* bits = intcon(InstanceKlass::fully_initialized);
3178     test = _gvn.transform(new SubINode(inst, bits));
3179     // The 'test' is non-zero if we need to take a slow path.
3180   }
3181 
3182   Node* obj = new_instance(kls, test);
3183   set_result(obj);
3184   return true;
3185 }
3186 
3187 #ifdef TRACE_HAVE_INTRINSICS
3188 /*
3189  * oop -> myklass
3190  * myklass->trace_id |= USED
3191  * return myklass->trace_id & ~0x3
3192  */
3193 bool LibraryCallKit::inline_native_classID() {
3194   null_check_receiver();  // null-check, then ignore
3195   Node* cls = null_check(argument(1), T_OBJECT);
3196   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3197   kls = null_check(kls, T_OBJECT);
3198   ByteSize offset = TRACE_ID_OFFSET;
3199   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3200   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3201   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3202   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3203   Node* clsused = longcon(0x01l); // set the class bit
3204   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3205 
3206   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3207   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3208   set_result(andl);
3209   return true;
3210 }
3211 
3212 bool LibraryCallKit::inline_native_threadID() {
3213   Node* tls_ptr = NULL;
3214   Node* cur_thr = generate_current_thread(tls_ptr);
3215   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3216   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3217   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3218 
3219   Node* threadid = NULL;
3220   size_t thread_id_size = OSThread::thread_id_size();
3221   if (thread_id_size == (size_t) BytesPerLong) {
3222     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3223   } else if (thread_id_size == (size_t) BytesPerInt) {
3224     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3225   } else {
3226     ShouldNotReachHere();
3227   }
3228   set_result(threadid);
3229   return true;
3230 }
3231 #endif
3232 
3233 //------------------------inline_native_time_funcs--------------
3234 // inline code for System.currentTimeMillis() and System.nanoTime()
3235 // these have the same type and signature
3236 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3237   const TypeFunc* tf = OptoRuntime::void_long_Type();
3238   const TypePtr* no_memory_effects = NULL;
3239   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3240   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3241 #ifdef ASSERT
3242   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3243   assert(value_top == top(), "second value must be top");
3244 #endif
3245   set_result(value);
3246   return true;
3247 }
3248 
3249 //------------------------inline_native_currentThread------------------
3250 bool LibraryCallKit::inline_native_currentThread() {
3251   Node* junk = NULL;
3252   set_result(generate_current_thread(junk));
3253   return true;
3254 }
3255 
3256 //------------------------inline_native_isInterrupted------------------
3257 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3258 bool LibraryCallKit::inline_native_isInterrupted() {
3259   // Add a fast path to t.isInterrupted(clear_int):
3260   //   (t == Thread.current() &&
3261   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3262   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3263   // So, in the common case that the interrupt bit is false,
3264   // we avoid making a call into the VM.  Even if the interrupt bit
3265   // is true, if the clear_int argument is false, we avoid the VM call.
3266   // However, if the receiver is not currentThread, we must call the VM,
3267   // because there must be some locking done around the operation.
3268 
3269   // We only go to the fast case code if we pass two guards.
3270   // Paths which do not pass are accumulated in the slow_region.
3271 
3272   enum {
3273     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3274     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3275     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3276     PATH_LIMIT
3277   };
3278 
3279   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3280   // out of the function.
3281   insert_mem_bar(Op_MemBarCPUOrder);
3282 
3283   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3284   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3285 
3286   RegionNode* slow_region = new RegionNode(1);
3287   record_for_igvn(slow_region);
3288 
3289   // (a) Receiving thread must be the current thread.
3290   Node* rec_thr = argument(0);
3291   Node* tls_ptr = NULL;
3292   Node* cur_thr = generate_current_thread(tls_ptr);
3293   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3294   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3295 
3296   generate_slow_guard(bol_thr, slow_region);
3297 
3298   // (b) Interrupt bit on TLS must be false.
3299   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3300   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3301   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3302 
3303   // Set the control input on the field _interrupted read to prevent it floating up.
3304   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3305   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3306   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3307 
3308   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3309 
3310   // First fast path:  if (!TLS._interrupted) return false;
3311   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3312   result_rgn->init_req(no_int_result_path, false_bit);
3313   result_val->init_req(no_int_result_path, intcon(0));
3314 
3315   // drop through to next case
3316   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3317 
3318 #ifndef TARGET_OS_FAMILY_windows
3319   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3320   Node* clr_arg = argument(1);
3321   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3322   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3323   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3324 
3325   // Second fast path:  ... else if (!clear_int) return true;
3326   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3327   result_rgn->init_req(no_clear_result_path, false_arg);
3328   result_val->init_req(no_clear_result_path, intcon(1));
3329 
3330   // drop through to next case
3331   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3332 #else
3333   // To return true on Windows you must read the _interrupted field
3334   // and check the event state i.e. take the slow path.
3335 #endif // TARGET_OS_FAMILY_windows
3336 
3337   // (d) Otherwise, go to the slow path.
3338   slow_region->add_req(control());
3339   set_control( _gvn.transform(slow_region));
3340 
3341   if (stopped()) {
3342     // There is no slow path.
3343     result_rgn->init_req(slow_result_path, top());
3344     result_val->init_req(slow_result_path, top());
3345   } else {
3346     // non-virtual because it is a private non-static
3347     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3348 
3349     Node* slow_val = set_results_for_java_call(slow_call);
3350     // this->control() comes from set_results_for_java_call
3351 
3352     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3353     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3354 
3355     // These two phis are pre-filled with copies of of the fast IO and Memory
3356     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3357     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3358 
3359     result_rgn->init_req(slow_result_path, control());
3360     result_io ->init_req(slow_result_path, i_o());
3361     result_mem->init_req(slow_result_path, reset_memory());
3362     result_val->init_req(slow_result_path, slow_val);
3363 
3364     set_all_memory(_gvn.transform(result_mem));
3365     set_i_o(       _gvn.transform(result_io));
3366   }
3367 
3368   C->set_has_split_ifs(true); // Has chance for split-if optimization
3369   set_result(result_rgn, result_val);
3370   return true;
3371 }
3372 
3373 //---------------------------load_mirror_from_klass----------------------------
3374 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3375 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3376   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3377   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3378 }
3379 
3380 //-----------------------load_klass_from_mirror_common-------------------------
3381 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3382 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3383 // and branch to the given path on the region.
3384 // If never_see_null, take an uncommon trap on null, so we can optimistically
3385 // compile for the non-null case.
3386 // If the region is NULL, force never_see_null = true.
3387 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3388                                                     bool never_see_null,
3389                                                     RegionNode* region,
3390                                                     int null_path,
3391                                                     int offset) {
3392   if (region == NULL)  never_see_null = true;
3393   Node* p = basic_plus_adr(mirror, offset);
3394   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3395   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3396   Node* null_ctl = top();
3397   kls = null_check_oop(kls, &null_ctl, never_see_null);
3398   if (region != NULL) {
3399     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3400     region->init_req(null_path, null_ctl);
3401   } else {
3402     assert(null_ctl == top(), "no loose ends");
3403   }
3404   return kls;
3405 }
3406 
3407 //--------------------(inline_native_Class_query helpers)---------------------
3408 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3409 // Fall through if (mods & mask) == bits, take the guard otherwise.
3410 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3411   // Branch around if the given klass has the given modifier bit set.
3412   // Like generate_guard, adds a new path onto the region.
3413   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3414   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3415   Node* mask = intcon(modifier_mask);
3416   Node* bits = intcon(modifier_bits);
3417   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3418   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3419   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3420   return generate_fair_guard(bol, region);
3421 }
3422 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3423   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3424 }
3425 
3426 //-------------------------inline_native_Class_query-------------------
3427 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3428   const Type* return_type = TypeInt::BOOL;
3429   Node* prim_return_value = top();  // what happens if it's a primitive class?
3430   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3431   bool expect_prim = false;     // most of these guys expect to work on refs
3432 
3433   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3434 
3435   Node* mirror = argument(0);
3436   Node* obj    = top();
3437 
3438   switch (id) {
3439   case vmIntrinsics::_isInstance:
3440     // nothing is an instance of a primitive type
3441     prim_return_value = intcon(0);
3442     obj = argument(1);
3443     break;
3444   case vmIntrinsics::_getModifiers:
3445     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3446     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3447     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3448     break;
3449   case vmIntrinsics::_isInterface:
3450     prim_return_value = intcon(0);
3451     break;
3452   case vmIntrinsics::_isArray:
3453     prim_return_value = intcon(0);
3454     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3455     break;
3456   case vmIntrinsics::_isPrimitive:
3457     prim_return_value = intcon(1);
3458     expect_prim = true;  // obviously
3459     break;
3460   case vmIntrinsics::_getSuperclass:
3461     prim_return_value = null();
3462     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3463     break;
3464   case vmIntrinsics::_getClassAccessFlags:
3465     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3466     return_type = TypeInt::INT;  // not bool!  6297094
3467     break;
3468   default:
3469     fatal_unexpected_iid(id);
3470     break;
3471   }
3472 
3473   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3474   if (mirror_con == NULL)  return false;  // cannot happen?
3475 
3476 #ifndef PRODUCT
3477   if (C->print_intrinsics() || C->print_inlining()) {
3478     ciType* k = mirror_con->java_mirror_type();
3479     if (k) {
3480       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3481       k->print_name();
3482       tty->cr();
3483     }
3484   }
3485 #endif
3486 
3487   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3488   RegionNode* region = new RegionNode(PATH_LIMIT);
3489   record_for_igvn(region);
3490   PhiNode* phi = new PhiNode(region, return_type);
3491 
3492   // The mirror will never be null of Reflection.getClassAccessFlags, however
3493   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3494   // if it is. See bug 4774291.
3495 
3496   // For Reflection.getClassAccessFlags(), the null check occurs in
3497   // the wrong place; see inline_unsafe_access(), above, for a similar
3498   // situation.
3499   mirror = null_check(mirror);
3500   // If mirror or obj is dead, only null-path is taken.
3501   if (stopped())  return true;
3502 
3503   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3504 
3505   // Now load the mirror's klass metaobject, and null-check it.
3506   // Side-effects region with the control path if the klass is null.
3507   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3508   // If kls is null, we have a primitive mirror.
3509   phi->init_req(_prim_path, prim_return_value);
3510   if (stopped()) { set_result(region, phi); return true; }
3511   bool safe_for_replace = (region->in(_prim_path) == top());
3512 
3513   Node* p;  // handy temp
3514   Node* null_ctl;
3515 
3516   // Now that we have the non-null klass, we can perform the real query.
3517   // For constant classes, the query will constant-fold in LoadNode::Value.
3518   Node* query_value = top();
3519   switch (id) {
3520   case vmIntrinsics::_isInstance:
3521     // nothing is an instance of a primitive type
3522     query_value = gen_instanceof(obj, kls, safe_for_replace);
3523     break;
3524 
3525   case vmIntrinsics::_getModifiers:
3526     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3527     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3528     break;
3529 
3530   case vmIntrinsics::_isInterface:
3531     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3532     if (generate_interface_guard(kls, region) != NULL)
3533       // A guard was added.  If the guard is taken, it was an interface.
3534       phi->add_req(intcon(1));
3535     // If we fall through, it's a plain class.
3536     query_value = intcon(0);
3537     break;
3538 
3539   case vmIntrinsics::_isArray:
3540     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3541     if (generate_array_guard(kls, region) != NULL)
3542       // A guard was added.  If the guard is taken, it was an array.
3543       phi->add_req(intcon(1));
3544     // If we fall through, it's a plain class.
3545     query_value = intcon(0);
3546     break;
3547 
3548   case vmIntrinsics::_isPrimitive:
3549     query_value = intcon(0); // "normal" path produces false
3550     break;
3551 
3552   case vmIntrinsics::_getSuperclass:
3553     // The rules here are somewhat unfortunate, but we can still do better
3554     // with random logic than with a JNI call.
3555     // Interfaces store null or Object as _super, but must report null.
3556     // Arrays store an intermediate super as _super, but must report Object.
3557     // Other types can report the actual _super.
3558     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3559     if (generate_interface_guard(kls, region) != NULL)
3560       // A guard was added.  If the guard is taken, it was an interface.
3561       phi->add_req(null());
3562     if (generate_array_guard(kls, region) != NULL)
3563       // A guard was added.  If the guard is taken, it was an array.
3564       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3565     // If we fall through, it's a plain class.  Get its _super.
3566     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3567     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3568     null_ctl = top();
3569     kls = null_check_oop(kls, &null_ctl);
3570     if (null_ctl != top()) {
3571       // If the guard is taken, Object.superClass is null (both klass and mirror).
3572       region->add_req(null_ctl);
3573       phi   ->add_req(null());
3574     }
3575     if (!stopped()) {
3576       query_value = load_mirror_from_klass(kls);
3577     }
3578     break;
3579 
3580   case vmIntrinsics::_getClassAccessFlags:
3581     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3582     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3583     break;
3584 
3585   default:
3586     fatal_unexpected_iid(id);
3587     break;
3588   }
3589 
3590   // Fall-through is the normal case of a query to a real class.
3591   phi->init_req(1, query_value);
3592   region->init_req(1, control());
3593 
3594   C->set_has_split_ifs(true); // Has chance for split-if optimization
3595   set_result(region, phi);
3596   return true;
3597 }
3598 
3599 //-------------------------inline_Class_cast-------------------
3600 bool LibraryCallKit::inline_Class_cast() {
3601   Node* mirror = argument(0); // Class
3602   Node* obj    = argument(1);
3603   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3604   if (mirror_con == NULL) {
3605     return false;  // dead path (mirror->is_top()).
3606   }
3607   if (obj == NULL || obj->is_top()) {
3608     return false;  // dead path
3609   }
3610   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3611 
3612   // First, see if Class.cast() can be folded statically.
3613   // java_mirror_type() returns non-null for compile-time Class constants.
3614   ciType* tm = mirror_con->java_mirror_type();
3615   if (tm != NULL && tm->is_klass() &&
3616       tp != NULL && tp->klass() != NULL) {
3617     if (!tp->klass()->is_loaded()) {
3618       // Don't use intrinsic when class is not loaded.
3619       return false;
3620     } else {
3621       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3622       if (static_res == Compile::SSC_always_true) {
3623         // isInstance() is true - fold the code.
3624         set_result(obj);
3625         return true;
3626       } else if (static_res == Compile::SSC_always_false) {
3627         // Don't use intrinsic, have to throw ClassCastException.
3628         // If the reference is null, the non-intrinsic bytecode will
3629         // be optimized appropriately.
3630         return false;
3631       }
3632     }
3633   }
3634 
3635   // Bailout intrinsic and do normal inlining if exception path is frequent.
3636   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3637     return false;
3638   }
3639 
3640   // Generate dynamic checks.
3641   // Class.cast() is java implementation of _checkcast bytecode.
3642   // Do checkcast (Parse::do_checkcast()) optimizations here.
3643 
3644   mirror = null_check(mirror);
3645   // If mirror is dead, only null-path is taken.
3646   if (stopped()) {
3647     return true;
3648   }
3649 
3650   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3651   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3652   RegionNode* region = new RegionNode(PATH_LIMIT);
3653   record_for_igvn(region);
3654 
3655   // Now load the mirror's klass metaobject, and null-check it.
3656   // If kls is null, we have a primitive mirror and
3657   // nothing is an instance of a primitive type.
3658   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3659 
3660   Node* res = top();
3661   if (!stopped()) {
3662     Node* bad_type_ctrl = top();
3663     // Do checkcast optimizations.
3664     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3665     region->init_req(_bad_type_path, bad_type_ctrl);
3666   }
3667   if (region->in(_prim_path) != top() ||
3668       region->in(_bad_type_path) != top()) {
3669     // Let Interpreter throw ClassCastException.
3670     PreserveJVMState pjvms(this);
3671     set_control(_gvn.transform(region));
3672     uncommon_trap(Deoptimization::Reason_intrinsic,
3673                   Deoptimization::Action_maybe_recompile);
3674   }
3675   if (!stopped()) {
3676     set_result(res);
3677   }
3678   return true;
3679 }
3680 
3681 
3682 //--------------------------inline_native_subtype_check------------------------
3683 // This intrinsic takes the JNI calls out of the heart of
3684 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3685 bool LibraryCallKit::inline_native_subtype_check() {
3686   // Pull both arguments off the stack.
3687   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3688   args[0] = argument(0);
3689   args[1] = argument(1);
3690   Node* klasses[2];             // corresponding Klasses: superk, subk
3691   klasses[0] = klasses[1] = top();
3692 
3693   enum {
3694     // A full decision tree on {superc is prim, subc is prim}:
3695     _prim_0_path = 1,           // {P,N} => false
3696                                 // {P,P} & superc!=subc => false
3697     _prim_same_path,            // {P,P} & superc==subc => true
3698     _prim_1_path,               // {N,P} => false
3699     _ref_subtype_path,          // {N,N} & subtype check wins => true
3700     _both_ref_path,             // {N,N} & subtype check loses => false
3701     PATH_LIMIT
3702   };
3703 
3704   RegionNode* region = new RegionNode(PATH_LIMIT);
3705   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3706   record_for_igvn(region);
3707 
3708   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3709   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3710   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3711 
3712   // First null-check both mirrors and load each mirror's klass metaobject.
3713   int which_arg;
3714   for (which_arg = 0; which_arg <= 1; which_arg++) {
3715     Node* arg = args[which_arg];
3716     arg = null_check(arg);
3717     if (stopped())  break;
3718     args[which_arg] = arg;
3719 
3720     Node* p = basic_plus_adr(arg, class_klass_offset);
3721     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3722     klasses[which_arg] = _gvn.transform(kls);
3723   }
3724 
3725   // Having loaded both klasses, test each for null.
3726   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3727   for (which_arg = 0; which_arg <= 1; which_arg++) {
3728     Node* kls = klasses[which_arg];
3729     Node* null_ctl = top();
3730     kls = null_check_oop(kls, &null_ctl, never_see_null);
3731     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3732     region->init_req(prim_path, null_ctl);
3733     if (stopped())  break;
3734     klasses[which_arg] = kls;
3735   }
3736 
3737   if (!stopped()) {
3738     // now we have two reference types, in klasses[0..1]
3739     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3740     Node* superk = klasses[0];  // the receiver
3741     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3742     // now we have a successful reference subtype check
3743     region->set_req(_ref_subtype_path, control());
3744   }
3745 
3746   // If both operands are primitive (both klasses null), then
3747   // we must return true when they are identical primitives.
3748   // It is convenient to test this after the first null klass check.
3749   set_control(region->in(_prim_0_path)); // go back to first null check
3750   if (!stopped()) {
3751     // Since superc is primitive, make a guard for the superc==subc case.
3752     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3753     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3754     generate_guard(bol_eq, region, PROB_FAIR);
3755     if (region->req() == PATH_LIMIT+1) {
3756       // A guard was added.  If the added guard is taken, superc==subc.
3757       region->swap_edges(PATH_LIMIT, _prim_same_path);
3758       region->del_req(PATH_LIMIT);
3759     }
3760     region->set_req(_prim_0_path, control()); // Not equal after all.
3761   }
3762 
3763   // these are the only paths that produce 'true':
3764   phi->set_req(_prim_same_path,   intcon(1));
3765   phi->set_req(_ref_subtype_path, intcon(1));
3766 
3767   // pull together the cases:
3768   assert(region->req() == PATH_LIMIT, "sane region");
3769   for (uint i = 1; i < region->req(); i++) {
3770     Node* ctl = region->in(i);
3771     if (ctl == NULL || ctl == top()) {
3772       region->set_req(i, top());
3773       phi   ->set_req(i, top());
3774     } else if (phi->in(i) == NULL) {
3775       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3776     }
3777   }
3778 
3779   set_control(_gvn.transform(region));
3780   set_result(_gvn.transform(phi));
3781   return true;
3782 }
3783 
3784 //---------------------generate_array_guard_common------------------------
3785 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3786                                                   bool obj_array, bool not_array) {
3787 
3788   if (stopped()) {
3789     return NULL;
3790   }
3791 
3792   // If obj_array/non_array==false/false:
3793   // Branch around if the given klass is in fact an array (either obj or prim).
3794   // If obj_array/non_array==false/true:
3795   // Branch around if the given klass is not an array klass of any kind.
3796   // If obj_array/non_array==true/true:
3797   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3798   // If obj_array/non_array==true/false:
3799   // Branch around if the kls is an oop array (Object[] or subtype)
3800   //
3801   // Like generate_guard, adds a new path onto the region.
3802   jint  layout_con = 0;
3803   Node* layout_val = get_layout_helper(kls, layout_con);
3804   if (layout_val == NULL) {
3805     bool query = (obj_array
3806                   ? Klass::layout_helper_is_objArray(layout_con)
3807                   : Klass::layout_helper_is_array(layout_con));
3808     if (query == not_array) {
3809       return NULL;                       // never a branch
3810     } else {                             // always a branch
3811       Node* always_branch = control();
3812       if (region != NULL)
3813         region->add_req(always_branch);
3814       set_control(top());
3815       return always_branch;
3816     }
3817   }
3818   // Now test the correct condition.
3819   jint  nval = (obj_array
3820                 ? ((jint)Klass::_lh_array_tag_type_value
3821                    <<    Klass::_lh_array_tag_shift)
3822                 : Klass::_lh_neutral_value);
3823   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3824   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3825   // invert the test if we are looking for a non-array
3826   if (not_array)  btest = BoolTest(btest).negate();
3827   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3828   return generate_fair_guard(bol, region);
3829 }
3830 
3831 
3832 //-----------------------inline_native_newArray--------------------------
3833 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3834 bool LibraryCallKit::inline_native_newArray() {
3835   Node* mirror    = argument(0);
3836   Node* count_val = argument(1);
3837 
3838   mirror = null_check(mirror);
3839   // If mirror or obj is dead, only null-path is taken.
3840   if (stopped())  return true;
3841 
3842   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3843   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3844   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3845   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3846   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3847 
3848   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3849   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3850                                                   result_reg, _slow_path);
3851   Node* normal_ctl   = control();
3852   Node* no_array_ctl = result_reg->in(_slow_path);
3853 
3854   // Generate code for the slow case.  We make a call to newArray().
3855   set_control(no_array_ctl);
3856   if (!stopped()) {
3857     // Either the input type is void.class, or else the
3858     // array klass has not yet been cached.  Either the
3859     // ensuing call will throw an exception, or else it
3860     // will cache the array klass for next time.
3861     PreserveJVMState pjvms(this);
3862     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3863     Node* slow_result = set_results_for_java_call(slow_call);
3864     // this->control() comes from set_results_for_java_call
3865     result_reg->set_req(_slow_path, control());
3866     result_val->set_req(_slow_path, slow_result);
3867     result_io ->set_req(_slow_path, i_o());
3868     result_mem->set_req(_slow_path, reset_memory());
3869   }
3870 
3871   set_control(normal_ctl);
3872   if (!stopped()) {
3873     // Normal case:  The array type has been cached in the java.lang.Class.
3874     // The following call works fine even if the array type is polymorphic.
3875     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3876     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3877     result_reg->init_req(_normal_path, control());
3878     result_val->init_req(_normal_path, obj);
3879     result_io ->init_req(_normal_path, i_o());
3880     result_mem->init_req(_normal_path, reset_memory());
3881   }
3882 
3883   // Return the combined state.
3884   set_i_o(        _gvn.transform(result_io)  );
3885   set_all_memory( _gvn.transform(result_mem));
3886 
3887   C->set_has_split_ifs(true); // Has chance for split-if optimization
3888   set_result(result_reg, result_val);
3889   return true;
3890 }
3891 
3892 //----------------------inline_native_getLength--------------------------
3893 // public static native int java.lang.reflect.Array.getLength(Object array);
3894 bool LibraryCallKit::inline_native_getLength() {
3895   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3896 
3897   Node* array = null_check(argument(0));
3898   // If array is dead, only null-path is taken.
3899   if (stopped())  return true;
3900 
3901   // Deoptimize if it is a non-array.
3902   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3903 
3904   if (non_array != NULL) {
3905     PreserveJVMState pjvms(this);
3906     set_control(non_array);
3907     uncommon_trap(Deoptimization::Reason_intrinsic,
3908                   Deoptimization::Action_maybe_recompile);
3909   }
3910 
3911   // If control is dead, only non-array-path is taken.
3912   if (stopped())  return true;
3913 
3914   // The works fine even if the array type is polymorphic.
3915   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3916   Node* result = load_array_length(array);
3917 
3918   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3919   set_result(result);
3920   return true;
3921 }
3922 
3923 //------------------------inline_array_copyOf----------------------------
3924 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3925 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3926 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3927   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3928 
3929   // Get the arguments.
3930   Node* original          = argument(0);
3931   Node* start             = is_copyOfRange? argument(1): intcon(0);
3932   Node* end               = is_copyOfRange? argument(2): argument(1);
3933   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3934 
3935   Node* newcopy = NULL;
3936 
3937   // Set the original stack and the reexecute bit for the interpreter to reexecute
3938   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3939   { PreserveReexecuteState preexecs(this);
3940     jvms()->set_should_reexecute(true);
3941 
3942     array_type_mirror = null_check(array_type_mirror);
3943     original          = null_check(original);
3944 
3945     // Check if a null path was taken unconditionally.
3946     if (stopped())  return true;
3947 
3948     Node* orig_length = load_array_length(original);
3949 
3950     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3951     klass_node = null_check(klass_node);
3952 
3953     RegionNode* bailout = new RegionNode(1);
3954     record_for_igvn(bailout);
3955 
3956     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3957     // Bail out if that is so.
3958     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3959     if (not_objArray != NULL) {
3960       // Improve the klass node's type from the new optimistic assumption:
3961       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3962       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3963       Node* cast = new CastPPNode(klass_node, akls);
3964       cast->init_req(0, control());
3965       klass_node = _gvn.transform(cast);
3966     }
3967 
3968     // Bail out if either start or end is negative.
3969     generate_negative_guard(start, bailout, &start);
3970     generate_negative_guard(end,   bailout, &end);
3971 
3972     Node* length = end;
3973     if (_gvn.type(start) != TypeInt::ZERO) {
3974       length = _gvn.transform(new SubINode(end, start));
3975     }
3976 
3977     // Bail out if length is negative.
3978     // Without this the new_array would throw
3979     // NegativeArraySizeException but IllegalArgumentException is what
3980     // should be thrown
3981     generate_negative_guard(length, bailout, &length);
3982 
3983     if (bailout->req() > 1) {
3984       PreserveJVMState pjvms(this);
3985       set_control(_gvn.transform(bailout));
3986       uncommon_trap(Deoptimization::Reason_intrinsic,
3987                     Deoptimization::Action_maybe_recompile);
3988     }
3989 
3990     if (!stopped()) {
3991       // How many elements will we copy from the original?
3992       // The answer is MinI(orig_length - start, length).
3993       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3994       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3995 
3996       // Generate a direct call to the right arraycopy function(s).
3997       // We know the copy is disjoint but we might not know if the
3998       // oop stores need checking.
3999       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4000       // This will fail a store-check if x contains any non-nulls.
4001 
4002       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4003       // loads/stores but it is legal only if we're sure the
4004       // Arrays.copyOf would succeed. So we need all input arguments
4005       // to the copyOf to be validated, including that the copy to the
4006       // new array won't trigger an ArrayStoreException. That subtype
4007       // check can be optimized if we know something on the type of
4008       // the input array from type speculation.
4009       if (_gvn.type(klass_node)->singleton()) {
4010         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4011         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4012 
4013         int test = C->static_subtype_check(superk, subk);
4014         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4015           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4016           if (t_original->speculative_type() != NULL) {
4017             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4018           }
4019         }
4020       }
4021 
4022       bool validated = false;
4023       // Reason_class_check rather than Reason_intrinsic because we
4024       // want to intrinsify even if this traps.
4025       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4026         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4027                                                    klass_node);
4028 
4029         if (not_subtype_ctrl != top()) {
4030           PreserveJVMState pjvms(this);
4031           set_control(not_subtype_ctrl);
4032           uncommon_trap(Deoptimization::Reason_class_check,
4033                         Deoptimization::Action_make_not_entrant);
4034           assert(stopped(), "Should be stopped");
4035         }
4036         validated = true;
4037       }
4038 
4039       if (!stopped()) {
4040         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4041 
4042         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
4043                                                 load_object_klass(original), klass_node);
4044         if (!is_copyOfRange) {
4045           ac->set_copyof(validated);
4046         } else {
4047           ac->set_copyofrange(validated);
4048         }
4049         Node* n = _gvn.transform(ac);
4050         if (n == ac) {
4051           ac->connect_outputs(this);
4052         } else {
4053           assert(validated, "shouldn't transform if all arguments not validated");
4054           set_all_memory(n);
4055         }
4056       }
4057     }
4058   } // original reexecute is set back here
4059 
4060   C->set_has_split_ifs(true); // Has chance for split-if optimization
4061   if (!stopped()) {
4062     set_result(newcopy);
4063   }
4064   return true;
4065 }
4066 
4067 
4068 //----------------------generate_virtual_guard---------------------------
4069 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4070 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4071                                              RegionNode* slow_region) {
4072   ciMethod* method = callee();
4073   int vtable_index = method->vtable_index();
4074   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4075          "bad index %d", vtable_index);
4076   // Get the Method* out of the appropriate vtable entry.
4077   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4078                      vtable_index*vtableEntry::size_in_bytes() +
4079                      vtableEntry::method_offset_in_bytes();
4080   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4081   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4082 
4083   // Compare the target method with the expected method (e.g., Object.hashCode).
4084   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4085 
4086   Node* native_call = makecon(native_call_addr);
4087   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4088   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4089 
4090   return generate_slow_guard(test_native, slow_region);
4091 }
4092 
4093 //-----------------------generate_method_call----------------------------
4094 // Use generate_method_call to make a slow-call to the real
4095 // method if the fast path fails.  An alternative would be to
4096 // use a stub like OptoRuntime::slow_arraycopy_Java.
4097 // This only works for expanding the current library call,
4098 // not another intrinsic.  (E.g., don't use this for making an
4099 // arraycopy call inside of the copyOf intrinsic.)
4100 CallJavaNode*
4101 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4102   // When compiling the intrinsic method itself, do not use this technique.
4103   guarantee(callee() != C->method(), "cannot make slow-call to self");
4104 
4105   ciMethod* method = callee();
4106   // ensure the JVMS we have will be correct for this call
4107   guarantee(method_id == method->intrinsic_id(), "must match");
4108 
4109   const TypeFunc* tf = TypeFunc::make(method);
4110   CallJavaNode* slow_call;
4111   if (is_static) {
4112     assert(!is_virtual, "");
4113     slow_call = new CallStaticJavaNode(C, tf,
4114                            SharedRuntime::get_resolve_static_call_stub(),
4115                            method, bci());
4116   } else if (is_virtual) {
4117     null_check_receiver();
4118     int vtable_index = Method::invalid_vtable_index;
4119     if (UseInlineCaches) {
4120       // Suppress the vtable call
4121     } else {
4122       // hashCode and clone are not a miranda methods,
4123       // so the vtable index is fixed.
4124       // No need to use the linkResolver to get it.
4125        vtable_index = method->vtable_index();
4126        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4127               "bad index %d", vtable_index);
4128     }
4129     slow_call = new CallDynamicJavaNode(tf,
4130                           SharedRuntime::get_resolve_virtual_call_stub(),
4131                           method, vtable_index, bci());
4132   } else {  // neither virtual nor static:  opt_virtual
4133     null_check_receiver();
4134     slow_call = new CallStaticJavaNode(C, tf,
4135                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4136                                 method, bci());
4137     slow_call->set_optimized_virtual(true);
4138   }
4139   set_arguments_for_java_call(slow_call);
4140   set_edges_for_java_call(slow_call);
4141   return slow_call;
4142 }
4143 
4144 
4145 /**
4146  * Build special case code for calls to hashCode on an object. This call may
4147  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4148  * slightly different code.
4149  */
4150 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4151   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4152   assert(!(is_virtual && is_static), "either virtual, special, or static");
4153 
4154   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4155 
4156   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4157   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4158   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4159   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4160   Node* obj = NULL;
4161   if (!is_static) {
4162     // Check for hashing null object
4163     obj = null_check_receiver();
4164     if (stopped())  return true;        // unconditionally null
4165     result_reg->init_req(_null_path, top());
4166     result_val->init_req(_null_path, top());
4167   } else {
4168     // Do a null check, and return zero if null.
4169     // System.identityHashCode(null) == 0
4170     obj = argument(0);
4171     Node* null_ctl = top();
4172     obj = null_check_oop(obj, &null_ctl);
4173     result_reg->init_req(_null_path, null_ctl);
4174     result_val->init_req(_null_path, _gvn.intcon(0));
4175   }
4176 
4177   // Unconditionally null?  Then return right away.
4178   if (stopped()) {
4179     set_control( result_reg->in(_null_path));
4180     if (!stopped())
4181       set_result(result_val->in(_null_path));
4182     return true;
4183   }
4184 
4185   // We only go to the fast case code if we pass a number of guards.  The
4186   // paths which do not pass are accumulated in the slow_region.
4187   RegionNode* slow_region = new RegionNode(1);
4188   record_for_igvn(slow_region);
4189 
4190   // If this is a virtual call, we generate a funny guard.  We pull out
4191   // the vtable entry corresponding to hashCode() from the target object.
4192   // If the target method which we are calling happens to be the native
4193   // Object hashCode() method, we pass the guard.  We do not need this
4194   // guard for non-virtual calls -- the caller is known to be the native
4195   // Object hashCode().
4196   if (is_virtual) {
4197     // After null check, get the object's klass.
4198     Node* obj_klass = load_object_klass(obj);
4199     generate_virtual_guard(obj_klass, slow_region);
4200   }
4201 
4202   // Get the header out of the object, use LoadMarkNode when available
4203   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4204   // The control of the load must be NULL. Otherwise, the load can move before
4205   // the null check after castPP removal.
4206   Node* no_ctrl = NULL;
4207   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4208 
4209   // Test the header to see if it is unlocked.
4210   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4211   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4212   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4213   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4214   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4215 
4216   generate_slow_guard(test_unlocked, slow_region);
4217 
4218   // Get the hash value and check to see that it has been properly assigned.
4219   // We depend on hash_mask being at most 32 bits and avoid the use of
4220   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4221   // vm: see markOop.hpp.
4222   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4223   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4224   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4225   // This hack lets the hash bits live anywhere in the mark object now, as long
4226   // as the shift drops the relevant bits into the low 32 bits.  Note that
4227   // Java spec says that HashCode is an int so there's no point in capturing
4228   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4229   hshifted_header      = ConvX2I(hshifted_header);
4230   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4231 
4232   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4233   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4234   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4235 
4236   generate_slow_guard(test_assigned, slow_region);
4237 
4238   Node* init_mem = reset_memory();
4239   // fill in the rest of the null path:
4240   result_io ->init_req(_null_path, i_o());
4241   result_mem->init_req(_null_path, init_mem);
4242 
4243   result_val->init_req(_fast_path, hash_val);
4244   result_reg->init_req(_fast_path, control());
4245   result_io ->init_req(_fast_path, i_o());
4246   result_mem->init_req(_fast_path, init_mem);
4247 
4248   // Generate code for the slow case.  We make a call to hashCode().
4249   set_control(_gvn.transform(slow_region));
4250   if (!stopped()) {
4251     // No need for PreserveJVMState, because we're using up the present state.
4252     set_all_memory(init_mem);
4253     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4254     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4255     Node* slow_result = set_results_for_java_call(slow_call);
4256     // this->control() comes from set_results_for_java_call
4257     result_reg->init_req(_slow_path, control());
4258     result_val->init_req(_slow_path, slow_result);
4259     result_io  ->set_req(_slow_path, i_o());
4260     result_mem ->set_req(_slow_path, reset_memory());
4261   }
4262 
4263   // Return the combined state.
4264   set_i_o(        _gvn.transform(result_io)  );
4265   set_all_memory( _gvn.transform(result_mem));
4266 
4267   set_result(result_reg, result_val);
4268   return true;
4269 }
4270 
4271 //---------------------------inline_native_getClass----------------------------
4272 // public final native Class<?> java.lang.Object.getClass();
4273 //
4274 // Build special case code for calls to getClass on an object.
4275 bool LibraryCallKit::inline_native_getClass() {
4276   Node* obj = null_check_receiver();
4277   if (stopped())  return true;
4278   set_result(load_mirror_from_klass(load_object_klass(obj)));
4279   return true;
4280 }
4281 
4282 //-----------------inline_native_Reflection_getCallerClass---------------------
4283 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4284 //
4285 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4286 //
4287 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4288 // in that it must skip particular security frames and checks for
4289 // caller sensitive methods.
4290 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4291 #ifndef PRODUCT
4292   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4293     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4294   }
4295 #endif
4296 
4297   if (!jvms()->has_method()) {
4298 #ifndef PRODUCT
4299     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4300       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4301     }
4302 #endif
4303     return false;
4304   }
4305 
4306   // Walk back up the JVM state to find the caller at the required
4307   // depth.
4308   JVMState* caller_jvms = jvms();
4309 
4310   // Cf. JVM_GetCallerClass
4311   // NOTE: Start the loop at depth 1 because the current JVM state does
4312   // not include the Reflection.getCallerClass() frame.
4313   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4314     ciMethod* m = caller_jvms->method();
4315     switch (n) {
4316     case 0:
4317       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4318       break;
4319     case 1:
4320       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4321       if (!m->caller_sensitive()) {
4322 #ifndef PRODUCT
4323         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4324           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4325         }
4326 #endif
4327         return false;  // bail-out; let JVM_GetCallerClass do the work
4328       }
4329       break;
4330     default:
4331       if (!m->is_ignored_by_security_stack_walk()) {
4332         // We have reached the desired frame; return the holder class.
4333         // Acquire method holder as java.lang.Class and push as constant.
4334         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4335         ciInstance* caller_mirror = caller_klass->java_mirror();
4336         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4337 
4338 #ifndef PRODUCT
4339         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4340           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4341           tty->print_cr("  JVM state at this point:");
4342           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4343             ciMethod* m = jvms()->of_depth(i)->method();
4344             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4345           }
4346         }
4347 #endif
4348         return true;
4349       }
4350       break;
4351     }
4352   }
4353 
4354 #ifndef PRODUCT
4355   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4356     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4357     tty->print_cr("  JVM state at this point:");
4358     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4359       ciMethod* m = jvms()->of_depth(i)->method();
4360       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4361     }
4362   }
4363 #endif
4364 
4365   return false;  // bail-out; let JVM_GetCallerClass do the work
4366 }
4367 
4368 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4369   Node* arg = argument(0);
4370   Node* result = NULL;
4371 
4372   switch (id) {
4373   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4374   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4375   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4376   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4377 
4378   case vmIntrinsics::_doubleToLongBits: {
4379     // two paths (plus control) merge in a wood
4380     RegionNode *r = new RegionNode(3);
4381     Node *phi = new PhiNode(r, TypeLong::LONG);
4382 
4383     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4384     // Build the boolean node
4385     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4386 
4387     // Branch either way.
4388     // NaN case is less traveled, which makes all the difference.
4389     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4390     Node *opt_isnan = _gvn.transform(ifisnan);
4391     assert( opt_isnan->is_If(), "Expect an IfNode");
4392     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4393     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4394 
4395     set_control(iftrue);
4396 
4397     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4398     Node *slow_result = longcon(nan_bits); // return NaN
4399     phi->init_req(1, _gvn.transform( slow_result ));
4400     r->init_req(1, iftrue);
4401 
4402     // Else fall through
4403     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4404     set_control(iffalse);
4405 
4406     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4407     r->init_req(2, iffalse);
4408 
4409     // Post merge
4410     set_control(_gvn.transform(r));
4411     record_for_igvn(r);
4412 
4413     C->set_has_split_ifs(true); // Has chance for split-if optimization
4414     result = phi;
4415     assert(result->bottom_type()->isa_long(), "must be");
4416     break;
4417   }
4418 
4419   case vmIntrinsics::_floatToIntBits: {
4420     // two paths (plus control) merge in a wood
4421     RegionNode *r = new RegionNode(3);
4422     Node *phi = new PhiNode(r, TypeInt::INT);
4423 
4424     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4425     // Build the boolean node
4426     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4427 
4428     // Branch either way.
4429     // NaN case is less traveled, which makes all the difference.
4430     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4431     Node *opt_isnan = _gvn.transform(ifisnan);
4432     assert( opt_isnan->is_If(), "Expect an IfNode");
4433     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4434     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4435 
4436     set_control(iftrue);
4437 
4438     static const jint nan_bits = 0x7fc00000;
4439     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4440     phi->init_req(1, _gvn.transform( slow_result ));
4441     r->init_req(1, iftrue);
4442 
4443     // Else fall through
4444     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4445     set_control(iffalse);
4446 
4447     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4448     r->init_req(2, iffalse);
4449 
4450     // Post merge
4451     set_control(_gvn.transform(r));
4452     record_for_igvn(r);
4453 
4454     C->set_has_split_ifs(true); // Has chance for split-if optimization
4455     result = phi;
4456     assert(result->bottom_type()->isa_int(), "must be");
4457     break;
4458   }
4459 
4460   default:
4461     fatal_unexpected_iid(id);
4462     break;
4463   }
4464   set_result(_gvn.transform(result));
4465   return true;
4466 }
4467 
4468 //----------------------inline_unsafe_copyMemory-------------------------
4469 // public native void Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4470 bool LibraryCallKit::inline_unsafe_copyMemory() {
4471   if (callee()->is_static())  return false;  // caller must have the capability!
4472   null_check_receiver();  // null-check receiver
4473   if (stopped())  return true;
4474 
4475   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4476 
4477   Node* src_ptr =         argument(1);   // type: oop
4478   Node* src_off = ConvL2X(argument(2));  // type: long
4479   Node* dst_ptr =         argument(4);   // type: oop
4480   Node* dst_off = ConvL2X(argument(5));  // type: long
4481   Node* size    = ConvL2X(argument(7));  // type: long
4482 
4483   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4484          "fieldOffset must be byte-scaled");
4485 
4486   Node* src = make_unsafe_address(src_ptr, src_off);
4487   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4488 
4489   // Conservatively insert a memory barrier on all memory slices.
4490   // Do not let writes of the copy source or destination float below the copy.
4491   insert_mem_bar(Op_MemBarCPUOrder);
4492 
4493   // Call it.  Note that the length argument is not scaled.
4494   make_runtime_call(RC_LEAF|RC_NO_FP,
4495                     OptoRuntime::fast_arraycopy_Type(),
4496                     StubRoutines::unsafe_arraycopy(),
4497                     "unsafe_arraycopy",
4498                     TypeRawPtr::BOTTOM,
4499                     src, dst, size XTOP);
4500 
4501   // Do not let reads of the copy destination float above the copy.
4502   insert_mem_bar(Op_MemBarCPUOrder);
4503 
4504   return true;
4505 }
4506 
4507 //------------------------clone_coping-----------------------------------
4508 // Helper function for inline_native_clone.
4509 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4510   assert(obj_size != NULL, "");
4511   Node* raw_obj = alloc_obj->in(1);
4512   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4513 
4514   AllocateNode* alloc = NULL;
4515   if (ReduceBulkZeroing) {
4516     // We will be completely responsible for initializing this object -
4517     // mark Initialize node as complete.
4518     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4519     // The object was just allocated - there should be no any stores!
4520     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4521     // Mark as complete_with_arraycopy so that on AllocateNode
4522     // expansion, we know this AllocateNode is initialized by an array
4523     // copy and a StoreStore barrier exists after the array copy.
4524     alloc->initialization()->set_complete_with_arraycopy();
4525   }
4526 
4527   // Copy the fastest available way.
4528   // TODO: generate fields copies for small objects instead.
4529   Node* src  = obj;
4530   Node* dest = alloc_obj;
4531   Node* size = _gvn.transform(obj_size);
4532 
4533   // Exclude the header but include array length to copy by 8 bytes words.
4534   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4535   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4536                             instanceOopDesc::base_offset_in_bytes();
4537   // base_off:
4538   // 8  - 32-bit VM
4539   // 12 - 64-bit VM, compressed klass
4540   // 16 - 64-bit VM, normal klass
4541   if (base_off % BytesPerLong != 0) {
4542     assert(UseCompressedClassPointers, "");
4543     if (is_array) {
4544       // Exclude length to copy by 8 bytes words.
4545       base_off += sizeof(int);
4546     } else {
4547       // Include klass to copy by 8 bytes words.
4548       base_off = instanceOopDesc::klass_offset_in_bytes();
4549     }
4550     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4551   }
4552   src  = basic_plus_adr(src,  base_off);
4553   dest = basic_plus_adr(dest, base_off);
4554 
4555   // Compute the length also, if needed:
4556   Node* countx = size;
4557   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4558   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4559 
4560   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4561 
4562   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4563   ac->set_clonebasic();
4564   Node* n = _gvn.transform(ac);
4565   if (n == ac) {
4566     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4567   } else {
4568     set_all_memory(n);
4569   }
4570 
4571   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4572   if (card_mark) {
4573     assert(!is_array, "");
4574     // Put in store barrier for any and all oops we are sticking
4575     // into this object.  (We could avoid this if we could prove
4576     // that the object type contains no oop fields at all.)
4577     Node* no_particular_value = NULL;
4578     Node* no_particular_field = NULL;
4579     int raw_adr_idx = Compile::AliasIdxRaw;
4580     post_barrier(control(),
4581                  memory(raw_adr_type),
4582                  alloc_obj,
4583                  no_particular_field,
4584                  raw_adr_idx,
4585                  no_particular_value,
4586                  T_OBJECT,
4587                  false);
4588   }
4589 
4590   // Do not let reads from the cloned object float above the arraycopy.
4591   if (alloc != NULL) {
4592     // Do not let stores that initialize this object be reordered with
4593     // a subsequent store that would make this object accessible by
4594     // other threads.
4595     // Record what AllocateNode this StoreStore protects so that
4596     // escape analysis can go from the MemBarStoreStoreNode to the
4597     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4598     // based on the escape status of the AllocateNode.
4599     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4600   } else {
4601     insert_mem_bar(Op_MemBarCPUOrder);
4602   }
4603 }
4604 
4605 //------------------------inline_native_clone----------------------------
4606 // protected native Object java.lang.Object.clone();
4607 //
4608 // Here are the simple edge cases:
4609 //  null receiver => normal trap
4610 //  virtual and clone was overridden => slow path to out-of-line clone
4611 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4612 //
4613 // The general case has two steps, allocation and copying.
4614 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4615 //
4616 // Copying also has two cases, oop arrays and everything else.
4617 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4618 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4619 //
4620 // These steps fold up nicely if and when the cloned object's klass
4621 // can be sharply typed as an object array, a type array, or an instance.
4622 //
4623 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4624   PhiNode* result_val;
4625 
4626   // Set the reexecute bit for the interpreter to reexecute
4627   // the bytecode that invokes Object.clone if deoptimization happens.
4628   { PreserveReexecuteState preexecs(this);
4629     jvms()->set_should_reexecute(true);
4630 
4631     Node* obj = null_check_receiver();
4632     if (stopped())  return true;
4633 
4634     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4635 
4636     // If we are going to clone an instance, we need its exact type to
4637     // know the number and types of fields to convert the clone to
4638     // loads/stores. Maybe a speculative type can help us.
4639     if (!obj_type->klass_is_exact() &&
4640         obj_type->speculative_type() != NULL &&
4641         obj_type->speculative_type()->is_instance_klass()) {
4642       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4643       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4644           !spec_ik->has_injected_fields()) {
4645         ciKlass* k = obj_type->klass();
4646         if (!k->is_instance_klass() ||
4647             k->as_instance_klass()->is_interface() ||
4648             k->as_instance_klass()->has_subklass()) {
4649           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4650         }
4651       }
4652     }
4653 
4654     Node* obj_klass = load_object_klass(obj);
4655     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4656     const TypeOopPtr*   toop   = ((tklass != NULL)
4657                                 ? tklass->as_instance_type()
4658                                 : TypeInstPtr::NOTNULL);
4659 
4660     // Conservatively insert a memory barrier on all memory slices.
4661     // Do not let writes into the original float below the clone.
4662     insert_mem_bar(Op_MemBarCPUOrder);
4663 
4664     // paths into result_reg:
4665     enum {
4666       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4667       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4668       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4669       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4670       PATH_LIMIT
4671     };
4672     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4673     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4674     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4675     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4676     record_for_igvn(result_reg);
4677 
4678     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4679     int raw_adr_idx = Compile::AliasIdxRaw;
4680 
4681     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4682     if (array_ctl != NULL) {
4683       // It's an array.
4684       PreserveJVMState pjvms(this);
4685       set_control(array_ctl);
4686       Node* obj_length = load_array_length(obj);
4687       Node* obj_size  = NULL;
4688       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4689 
4690       if (!use_ReduceInitialCardMarks()) {
4691         // If it is an oop array, it requires very special treatment,
4692         // because card marking is required on each card of the array.
4693         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4694         if (is_obja != NULL) {
4695           PreserveJVMState pjvms2(this);
4696           set_control(is_obja);
4697           // Generate a direct call to the right arraycopy function(s).
4698           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4699           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4700           ac->set_cloneoop();
4701           Node* n = _gvn.transform(ac);
4702           assert(n == ac, "cannot disappear");
4703           ac->connect_outputs(this);
4704 
4705           result_reg->init_req(_objArray_path, control());
4706           result_val->init_req(_objArray_path, alloc_obj);
4707           result_i_o ->set_req(_objArray_path, i_o());
4708           result_mem ->set_req(_objArray_path, reset_memory());
4709         }
4710       }
4711       // Otherwise, there are no card marks to worry about.
4712       // (We can dispense with card marks if we know the allocation
4713       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4714       //  causes the non-eden paths to take compensating steps to
4715       //  simulate a fresh allocation, so that no further
4716       //  card marks are required in compiled code to initialize
4717       //  the object.)
4718 
4719       if (!stopped()) {
4720         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4721 
4722         // Present the results of the copy.
4723         result_reg->init_req(_array_path, control());
4724         result_val->init_req(_array_path, alloc_obj);
4725         result_i_o ->set_req(_array_path, i_o());
4726         result_mem ->set_req(_array_path, reset_memory());
4727       }
4728     }
4729 
4730     // We only go to the instance fast case code if we pass a number of guards.
4731     // The paths which do not pass are accumulated in the slow_region.
4732     RegionNode* slow_region = new RegionNode(1);
4733     record_for_igvn(slow_region);
4734     if (!stopped()) {
4735       // It's an instance (we did array above).  Make the slow-path tests.
4736       // If this is a virtual call, we generate a funny guard.  We grab
4737       // the vtable entry corresponding to clone() from the target object.
4738       // If the target method which we are calling happens to be the
4739       // Object clone() method, we pass the guard.  We do not need this
4740       // guard for non-virtual calls; the caller is known to be the native
4741       // Object clone().
4742       if (is_virtual) {
4743         generate_virtual_guard(obj_klass, slow_region);
4744       }
4745 
4746       // The object must be easily cloneable and must not have a finalizer.
4747       // Both of these conditions may be checked in a single test.
4748       // We could optimize the test further, but we don't care.
4749       generate_access_flags_guard(obj_klass,
4750                                   // Test both conditions:
4751                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4752                                   // Must be cloneable but not finalizer:
4753                                   JVM_ACC_IS_CLONEABLE_FAST,
4754                                   slow_region);
4755     }
4756 
4757     if (!stopped()) {
4758       // It's an instance, and it passed the slow-path tests.
4759       PreserveJVMState pjvms(this);
4760       Node* obj_size  = NULL;
4761       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4762       // is reexecuted if deoptimization occurs and there could be problems when merging
4763       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4764       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4765 
4766       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4767 
4768       // Present the results of the slow call.
4769       result_reg->init_req(_instance_path, control());
4770       result_val->init_req(_instance_path, alloc_obj);
4771       result_i_o ->set_req(_instance_path, i_o());
4772       result_mem ->set_req(_instance_path, reset_memory());
4773     }
4774 
4775     // Generate code for the slow case.  We make a call to clone().
4776     set_control(_gvn.transform(slow_region));
4777     if (!stopped()) {
4778       PreserveJVMState pjvms(this);
4779       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4780       Node* slow_result = set_results_for_java_call(slow_call);
4781       // this->control() comes from set_results_for_java_call
4782       result_reg->init_req(_slow_path, control());
4783       result_val->init_req(_slow_path, slow_result);
4784       result_i_o ->set_req(_slow_path, i_o());
4785       result_mem ->set_req(_slow_path, reset_memory());
4786     }
4787 
4788     // Return the combined state.
4789     set_control(    _gvn.transform(result_reg));
4790     set_i_o(        _gvn.transform(result_i_o));
4791     set_all_memory( _gvn.transform(result_mem));
4792   } // original reexecute is set back here
4793 
4794   set_result(_gvn.transform(result_val));
4795   return true;
4796 }
4797 
4798 // If we have a tighly coupled allocation, the arraycopy may take care
4799 // of the array initialization. If one of the guards we insert between
4800 // the allocation and the arraycopy causes a deoptimization, an
4801 // unitialized array will escape the compiled method. To prevent that
4802 // we set the JVM state for uncommon traps between the allocation and
4803 // the arraycopy to the state before the allocation so, in case of
4804 // deoptimization, we'll reexecute the allocation and the
4805 // initialization.
4806 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4807   if (alloc != NULL) {
4808     ciMethod* trap_method = alloc->jvms()->method();
4809     int trap_bci = alloc->jvms()->bci();
4810 
4811     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4812           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4813       // Make sure there's no store between the allocation and the
4814       // arraycopy otherwise visible side effects could be rexecuted
4815       // in case of deoptimization and cause incorrect execution.
4816       bool no_interfering_store = true;
4817       Node* mem = alloc->in(TypeFunc::Memory);
4818       if (mem->is_MergeMem()) {
4819         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4820           Node* n = mms.memory();
4821           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4822             assert(n->is_Store(), "what else?");
4823             no_interfering_store = false;
4824             break;
4825           }
4826         }
4827       } else {
4828         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4829           Node* n = mms.memory();
4830           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4831             assert(n->is_Store(), "what else?");
4832             no_interfering_store = false;
4833             break;
4834           }
4835         }
4836       }
4837 
4838       if (no_interfering_store) {
4839         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4840         uint size = alloc->req();
4841         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4842         old_jvms->set_map(sfpt);
4843         for (uint i = 0; i < size; i++) {
4844           sfpt->init_req(i, alloc->in(i));
4845         }
4846         // re-push array length for deoptimization
4847         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4848         old_jvms->set_sp(old_jvms->sp()+1);
4849         old_jvms->set_monoff(old_jvms->monoff()+1);
4850         old_jvms->set_scloff(old_jvms->scloff()+1);
4851         old_jvms->set_endoff(old_jvms->endoff()+1);
4852         old_jvms->set_should_reexecute(true);
4853 
4854         sfpt->set_i_o(map()->i_o());
4855         sfpt->set_memory(map()->memory());
4856         sfpt->set_control(map()->control());
4857 
4858         JVMState* saved_jvms = jvms();
4859         saved_reexecute_sp = _reexecute_sp;
4860 
4861         set_jvms(sfpt->jvms());
4862         _reexecute_sp = jvms()->sp();
4863 
4864         return saved_jvms;
4865       }
4866     }
4867   }
4868   return NULL;
4869 }
4870 
4871 // In case of a deoptimization, we restart execution at the
4872 // allocation, allocating a new array. We would leave an uninitialized
4873 // array in the heap that GCs wouldn't expect. Move the allocation
4874 // after the traps so we don't allocate the array if we
4875 // deoptimize. This is possible because tightly_coupled_allocation()
4876 // guarantees there's no observer of the allocated array at this point
4877 // and the control flow is simple enough.
4878 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4879   if (saved_jvms != NULL && !stopped()) {
4880     assert(alloc != NULL, "only with a tightly coupled allocation");
4881     // restore JVM state to the state at the arraycopy
4882     saved_jvms->map()->set_control(map()->control());
4883     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4884     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4885     // If we've improved the types of some nodes (null check) while
4886     // emitting the guards, propagate them to the current state
4887     map()->replaced_nodes().apply(saved_jvms->map());
4888     set_jvms(saved_jvms);
4889     _reexecute_sp = saved_reexecute_sp;
4890 
4891     // Remove the allocation from above the guards
4892     CallProjections callprojs;
4893     alloc->extract_projections(&callprojs, true);
4894     InitializeNode* init = alloc->initialization();
4895     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4896     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4897     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4898     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4899 
4900     // move the allocation here (after the guards)
4901     _gvn.hash_delete(alloc);
4902     alloc->set_req(TypeFunc::Control, control());
4903     alloc->set_req(TypeFunc::I_O, i_o());
4904     Node *mem = reset_memory();
4905     set_all_memory(mem);
4906     alloc->set_req(TypeFunc::Memory, mem);
4907     set_control(init->proj_out(TypeFunc::Control));
4908     set_i_o(callprojs.fallthrough_ioproj);
4909 
4910     // Update memory as done in GraphKit::set_output_for_allocation()
4911     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4912     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4913     if (ary_type->isa_aryptr() && length_type != NULL) {
4914       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4915     }
4916     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4917     int            elemidx  = C->get_alias_index(telemref);
4918     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4919     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4920 
4921     Node* allocx = _gvn.transform(alloc);
4922     assert(allocx == alloc, "where has the allocation gone?");
4923     assert(dest->is_CheckCastPP(), "not an allocation result?");
4924 
4925     _gvn.hash_delete(dest);
4926     dest->set_req(0, control());
4927     Node* destx = _gvn.transform(dest);
4928     assert(destx == dest, "where has the allocation result gone?");
4929   }
4930 }
4931 
4932 
4933 //------------------------------inline_arraycopy-----------------------
4934 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4935 //                                                      Object dest, int destPos,
4936 //                                                      int length);
4937 bool LibraryCallKit::inline_arraycopy() {
4938   // Get the arguments.
4939   Node* src         = argument(0);  // type: oop
4940   Node* src_offset  = argument(1);  // type: int
4941   Node* dest        = argument(2);  // type: oop
4942   Node* dest_offset = argument(3);  // type: int
4943   Node* length      = argument(4);  // type: int
4944 
4945 
4946   // Check for allocation before we add nodes that would confuse
4947   // tightly_coupled_allocation()
4948   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4949 
4950   int saved_reexecute_sp = -1;
4951   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4952   // See arraycopy_restore_alloc_state() comment
4953   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4954   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4955   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4956   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4957 
4958   // The following tests must be performed
4959   // (1) src and dest are arrays.
4960   // (2) src and dest arrays must have elements of the same BasicType
4961   // (3) src and dest must not be null.
4962   // (4) src_offset must not be negative.
4963   // (5) dest_offset must not be negative.
4964   // (6) length must not be negative.
4965   // (7) src_offset + length must not exceed length of src.
4966   // (8) dest_offset + length must not exceed length of dest.
4967   // (9) each element of an oop array must be assignable
4968 
4969   // (3) src and dest must not be null.
4970   // always do this here because we need the JVM state for uncommon traps
4971   Node* null_ctl = top();
4972   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4973   assert(null_ctl->is_top(), "no null control here");
4974   dest = null_check(dest, T_ARRAY);
4975 
4976   if (!can_emit_guards) {
4977     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4978     // guards but the arraycopy node could still take advantage of a
4979     // tightly allocated allocation. tightly_coupled_allocation() is
4980     // called again to make sure it takes the null check above into
4981     // account: the null check is mandatory and if it caused an
4982     // uncommon trap to be emitted then the allocation can't be
4983     // considered tightly coupled in this context.
4984     alloc = tightly_coupled_allocation(dest, NULL);
4985   }
4986 
4987   bool validated = false;
4988 
4989   const Type* src_type  = _gvn.type(src);
4990   const Type* dest_type = _gvn.type(dest);
4991   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4992   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4993 
4994   // Do we have the type of src?
4995   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4996   // Do we have the type of dest?
4997   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4998   // Is the type for src from speculation?
4999   bool src_spec = false;
5000   // Is the type for dest from speculation?
5001   bool dest_spec = false;
5002 
5003   if ((!has_src || !has_dest) && can_emit_guards) {
5004     // We don't have sufficient type information, let's see if
5005     // speculative types can help. We need to have types for both src
5006     // and dest so that it pays off.
5007 
5008     // Do we already have or could we have type information for src
5009     bool could_have_src = has_src;
5010     // Do we already have or could we have type information for dest
5011     bool could_have_dest = has_dest;
5012 
5013     ciKlass* src_k = NULL;
5014     if (!has_src) {
5015       src_k = src_type->speculative_type_not_null();
5016       if (src_k != NULL && src_k->is_array_klass()) {
5017         could_have_src = true;
5018       }
5019     }
5020 
5021     ciKlass* dest_k = NULL;
5022     if (!has_dest) {
5023       dest_k = dest_type->speculative_type_not_null();
5024       if (dest_k != NULL && dest_k->is_array_klass()) {
5025         could_have_dest = true;
5026       }
5027     }
5028 
5029     if (could_have_src && could_have_dest) {
5030       // This is going to pay off so emit the required guards
5031       if (!has_src) {
5032         src = maybe_cast_profiled_obj(src, src_k, true);
5033         src_type  = _gvn.type(src);
5034         top_src  = src_type->isa_aryptr();
5035         has_src = (top_src != NULL && top_src->klass() != NULL);
5036         src_spec = true;
5037       }
5038       if (!has_dest) {
5039         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5040         dest_type  = _gvn.type(dest);
5041         top_dest  = dest_type->isa_aryptr();
5042         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5043         dest_spec = true;
5044       }
5045     }
5046   }
5047 
5048   if (has_src && has_dest && can_emit_guards) {
5049     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5050     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5051     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5052     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5053 
5054     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5055       // If both arrays are object arrays then having the exact types
5056       // for both will remove the need for a subtype check at runtime
5057       // before the call and may make it possible to pick a faster copy
5058       // routine (without a subtype check on every element)
5059       // Do we have the exact type of src?
5060       bool could_have_src = src_spec;
5061       // Do we have the exact type of dest?
5062       bool could_have_dest = dest_spec;
5063       ciKlass* src_k = top_src->klass();
5064       ciKlass* dest_k = top_dest->klass();
5065       if (!src_spec) {
5066         src_k = src_type->speculative_type_not_null();
5067         if (src_k != NULL && src_k->is_array_klass()) {
5068           could_have_src = true;
5069         }
5070       }
5071       if (!dest_spec) {
5072         dest_k = dest_type->speculative_type_not_null();
5073         if (dest_k != NULL && dest_k->is_array_klass()) {
5074           could_have_dest = true;
5075         }
5076       }
5077       if (could_have_src && could_have_dest) {
5078         // If we can have both exact types, emit the missing guards
5079         if (could_have_src && !src_spec) {
5080           src = maybe_cast_profiled_obj(src, src_k, true);
5081         }
5082         if (could_have_dest && !dest_spec) {
5083           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5084         }
5085       }
5086     }
5087   }
5088 
5089   ciMethod* trap_method = method();
5090   int trap_bci = bci();
5091   if (saved_jvms != NULL) {
5092     trap_method = alloc->jvms()->method();
5093     trap_bci = alloc->jvms()->bci();
5094   }
5095 
5096   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5097       can_emit_guards &&
5098       !src->is_top() && !dest->is_top()) {
5099     // validate arguments: enables transformation the ArrayCopyNode
5100     validated = true;
5101 
5102     RegionNode* slow_region = new RegionNode(1);
5103     record_for_igvn(slow_region);
5104 
5105     // (1) src and dest are arrays.
5106     generate_non_array_guard(load_object_klass(src), slow_region);
5107     generate_non_array_guard(load_object_klass(dest), slow_region);
5108 
5109     // (2) src and dest arrays must have elements of the same BasicType
5110     // done at macro expansion or at Ideal transformation time
5111 
5112     // (4) src_offset must not be negative.
5113     generate_negative_guard(src_offset, slow_region);
5114 
5115     // (5) dest_offset must not be negative.
5116     generate_negative_guard(dest_offset, slow_region);
5117 
5118     // (7) src_offset + length must not exceed length of src.
5119     generate_limit_guard(src_offset, length,
5120                          load_array_length(src),
5121                          slow_region);
5122 
5123     // (8) dest_offset + length must not exceed length of dest.
5124     generate_limit_guard(dest_offset, length,
5125                          load_array_length(dest),
5126                          slow_region);
5127 
5128     // (9) each element of an oop array must be assignable
5129     Node* src_klass  = load_object_klass(src);
5130     Node* dest_klass = load_object_klass(dest);
5131     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5132 
5133     if (not_subtype_ctrl != top()) {
5134       PreserveJVMState pjvms(this);
5135       set_control(not_subtype_ctrl);
5136       uncommon_trap(Deoptimization::Reason_intrinsic,
5137                     Deoptimization::Action_make_not_entrant);
5138       assert(stopped(), "Should be stopped");
5139     }
5140     {
5141       PreserveJVMState pjvms(this);
5142       set_control(_gvn.transform(slow_region));
5143       uncommon_trap(Deoptimization::Reason_intrinsic,
5144                     Deoptimization::Action_make_not_entrant);
5145       assert(stopped(), "Should be stopped");
5146     }
5147   }
5148 
5149   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5150 
5151   if (stopped()) {
5152     return true;
5153   }
5154 
5155   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5156                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5157                                           // so the compiler has a chance to eliminate them: during macro expansion,
5158                                           // we have to set their control (CastPP nodes are eliminated).
5159                                           load_object_klass(src), load_object_klass(dest),
5160                                           load_array_length(src), load_array_length(dest));
5161 
5162   ac->set_arraycopy(validated);
5163 
5164   Node* n = _gvn.transform(ac);
5165   if (n == ac) {
5166     ac->connect_outputs(this);
5167   } else {
5168     assert(validated, "shouldn't transform if all arguments not validated");
5169     set_all_memory(n);
5170   }
5171 
5172   return true;
5173 }
5174 
5175 
5176 // Helper function which determines if an arraycopy immediately follows
5177 // an allocation, with no intervening tests or other escapes for the object.
5178 AllocateArrayNode*
5179 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5180                                            RegionNode* slow_region) {
5181   if (stopped())             return NULL;  // no fast path
5182   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5183 
5184   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5185   if (alloc == NULL)  return NULL;
5186 
5187   Node* rawmem = memory(Compile::AliasIdxRaw);
5188   // Is the allocation's memory state untouched?
5189   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5190     // Bail out if there have been raw-memory effects since the allocation.
5191     // (Example:  There might have been a call or safepoint.)
5192     return NULL;
5193   }
5194   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5195   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5196     return NULL;
5197   }
5198 
5199   // There must be no unexpected observers of this allocation.
5200   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5201     Node* obs = ptr->fast_out(i);
5202     if (obs != this->map()) {
5203       return NULL;
5204     }
5205   }
5206 
5207   // This arraycopy must unconditionally follow the allocation of the ptr.
5208   Node* alloc_ctl = ptr->in(0);
5209   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5210 
5211   Node* ctl = control();
5212   while (ctl != alloc_ctl) {
5213     // There may be guards which feed into the slow_region.
5214     // Any other control flow means that we might not get a chance
5215     // to finish initializing the allocated object.
5216     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5217       IfNode* iff = ctl->in(0)->as_If();
5218       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5219       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5220       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5221         ctl = iff->in(0);       // This test feeds the known slow_region.
5222         continue;
5223       }
5224       // One more try:  Various low-level checks bottom out in
5225       // uncommon traps.  If the debug-info of the trap omits
5226       // any reference to the allocation, as we've already
5227       // observed, then there can be no objection to the trap.
5228       bool found_trap = false;
5229       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5230         Node* obs = not_ctl->fast_out(j);
5231         if (obs->in(0) == not_ctl && obs->is_Call() &&
5232             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5233           found_trap = true; break;
5234         }
5235       }
5236       if (found_trap) {
5237         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5238         continue;
5239       }
5240     }
5241     return NULL;
5242   }
5243 
5244   // If we get this far, we have an allocation which immediately
5245   // precedes the arraycopy, and we can take over zeroing the new object.
5246   // The arraycopy will finish the initialization, and provide
5247   // a new control state to which we will anchor the destination pointer.
5248 
5249   return alloc;
5250 }
5251 
5252 //-------------inline_encodeISOArray-----------------------------------
5253 // encode char[] to byte[] in ISO_8859_1
5254 bool LibraryCallKit::inline_encodeISOArray() {
5255   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5256   // no receiver since it is static method
5257   Node *src         = argument(0);
5258   Node *src_offset  = argument(1);
5259   Node *dst         = argument(2);
5260   Node *dst_offset  = argument(3);
5261   Node *length      = argument(4);
5262 
5263   const Type* src_type = src->Value(&_gvn);
5264   const Type* dst_type = dst->Value(&_gvn);
5265   const TypeAryPtr* top_src = src_type->isa_aryptr();
5266   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5267   if (top_src  == NULL || top_src->klass()  == NULL ||
5268       top_dest == NULL || top_dest->klass() == NULL) {
5269     // failed array check
5270     return false;
5271   }
5272 
5273   // Figure out the size and type of the elements we will be copying.
5274   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5275   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5276   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5277     return false;
5278   }
5279 
5280   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5281   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5282   // 'src_start' points to src array + scaled offset
5283   // 'dst_start' points to dst array + scaled offset
5284 
5285   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5286   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5287   enc = _gvn.transform(enc);
5288   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5289   set_memory(res_mem, mtype);
5290   set_result(enc);
5291   return true;
5292 }
5293 
5294 //-------------inline_multiplyToLen-----------------------------------
5295 bool LibraryCallKit::inline_multiplyToLen() {
5296   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5297 
5298   address stubAddr = StubRoutines::multiplyToLen();
5299   if (stubAddr == NULL) {
5300     return false; // Intrinsic's stub is not implemented on this platform
5301   }
5302   const char* stubName = "multiplyToLen";
5303 
5304   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5305 
5306   // no receiver because it is a static method
5307   Node* x    = argument(0);
5308   Node* xlen = argument(1);
5309   Node* y    = argument(2);
5310   Node* ylen = argument(3);
5311   Node* z    = argument(4);
5312 
5313   const Type* x_type = x->Value(&_gvn);
5314   const Type* y_type = y->Value(&_gvn);
5315   const TypeAryPtr* top_x = x_type->isa_aryptr();
5316   const TypeAryPtr* top_y = y_type->isa_aryptr();
5317   if (top_x  == NULL || top_x->klass()  == NULL ||
5318       top_y == NULL || top_y->klass() == NULL) {
5319     // failed array check
5320     return false;
5321   }
5322 
5323   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5324   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5325   if (x_elem != T_INT || y_elem != T_INT) {
5326     return false;
5327   }
5328 
5329   // Set the original stack and the reexecute bit for the interpreter to reexecute
5330   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5331   // on the return from z array allocation in runtime.
5332   { PreserveReexecuteState preexecs(this);
5333     jvms()->set_should_reexecute(true);
5334 
5335     Node* x_start = array_element_address(x, intcon(0), x_elem);
5336     Node* y_start = array_element_address(y, intcon(0), y_elem);
5337     // 'x_start' points to x array + scaled xlen
5338     // 'y_start' points to y array + scaled ylen
5339 
5340     // Allocate the result array
5341     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5342     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5343     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5344 
5345     IdealKit ideal(this);
5346 
5347 #define __ ideal.
5348      Node* one = __ ConI(1);
5349      Node* zero = __ ConI(0);
5350      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5351      __ set(need_alloc, zero);
5352      __ set(z_alloc, z);
5353      __ if_then(z, BoolTest::eq, null()); {
5354        __ increment (need_alloc, one);
5355      } __ else_(); {
5356        // Update graphKit memory and control from IdealKit.
5357        sync_kit(ideal);
5358        Node* zlen_arg = load_array_length(z);
5359        // Update IdealKit memory and control from graphKit.
5360        __ sync_kit(this);
5361        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5362          __ increment (need_alloc, one);
5363        } __ end_if();
5364      } __ end_if();
5365 
5366      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5367        // Update graphKit memory and control from IdealKit.
5368        sync_kit(ideal);
5369        Node * narr = new_array(klass_node, zlen, 1);
5370        // Update IdealKit memory and control from graphKit.
5371        __ sync_kit(this);
5372        __ set(z_alloc, narr);
5373      } __ end_if();
5374 
5375      sync_kit(ideal);
5376      z = __ value(z_alloc);
5377      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5378      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5379      // Final sync IdealKit and GraphKit.
5380      final_sync(ideal);
5381 #undef __
5382 
5383     Node* z_start = array_element_address(z, intcon(0), T_INT);
5384 
5385     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5386                                    OptoRuntime::multiplyToLen_Type(),
5387                                    stubAddr, stubName, TypePtr::BOTTOM,
5388                                    x_start, xlen, y_start, ylen, z_start, zlen);
5389   } // original reexecute is set back here
5390 
5391   C->set_has_split_ifs(true); // Has chance for split-if optimization
5392   set_result(z);
5393   return true;
5394 }
5395 
5396 //-------------inline_squareToLen------------------------------------
5397 bool LibraryCallKit::inline_squareToLen() {
5398   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5399 
5400   address stubAddr = StubRoutines::squareToLen();
5401   if (stubAddr == NULL) {
5402     return false; // Intrinsic's stub is not implemented on this platform
5403   }
5404   const char* stubName = "squareToLen";
5405 
5406   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5407 
5408   Node* x    = argument(0);
5409   Node* len  = argument(1);
5410   Node* z    = argument(2);
5411   Node* zlen = argument(3);
5412 
5413   const Type* x_type = x->Value(&_gvn);
5414   const Type* z_type = z->Value(&_gvn);
5415   const TypeAryPtr* top_x = x_type->isa_aryptr();
5416   const TypeAryPtr* top_z = z_type->isa_aryptr();
5417   if (top_x  == NULL || top_x->klass()  == NULL ||
5418       top_z  == NULL || top_z->klass()  == NULL) {
5419     // failed array check
5420     return false;
5421   }
5422 
5423   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5424   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5425   if (x_elem != T_INT || z_elem != T_INT) {
5426     return false;
5427   }
5428 
5429 
5430   Node* x_start = array_element_address(x, intcon(0), x_elem);
5431   Node* z_start = array_element_address(z, intcon(0), z_elem);
5432 
5433   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5434                                   OptoRuntime::squareToLen_Type(),
5435                                   stubAddr, stubName, TypePtr::BOTTOM,
5436                                   x_start, len, z_start, zlen);
5437 
5438   set_result(z);
5439   return true;
5440 }
5441 
5442 //-------------inline_mulAdd------------------------------------------
5443 bool LibraryCallKit::inline_mulAdd() {
5444   assert(UseMulAddIntrinsic, "not implemented on this platform");
5445 
5446   address stubAddr = StubRoutines::mulAdd();
5447   if (stubAddr == NULL) {
5448     return false; // Intrinsic's stub is not implemented on this platform
5449   }
5450   const char* stubName = "mulAdd";
5451 
5452   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5453 
5454   Node* out      = argument(0);
5455   Node* in       = argument(1);
5456   Node* offset   = argument(2);
5457   Node* len      = argument(3);
5458   Node* k        = argument(4);
5459 
5460   const Type* out_type = out->Value(&_gvn);
5461   const Type* in_type = in->Value(&_gvn);
5462   const TypeAryPtr* top_out = out_type->isa_aryptr();
5463   const TypeAryPtr* top_in = in_type->isa_aryptr();
5464   if (top_out  == NULL || top_out->klass()  == NULL ||
5465       top_in == NULL || top_in->klass() == NULL) {
5466     // failed array check
5467     return false;
5468   }
5469 
5470   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5471   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5472   if (out_elem != T_INT || in_elem != T_INT) {
5473     return false;
5474   }
5475 
5476   Node* outlen = load_array_length(out);
5477   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5478   Node* out_start = array_element_address(out, intcon(0), out_elem);
5479   Node* in_start = array_element_address(in, intcon(0), in_elem);
5480 
5481   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5482                                   OptoRuntime::mulAdd_Type(),
5483                                   stubAddr, stubName, TypePtr::BOTTOM,
5484                                   out_start,in_start, new_offset, len, k);
5485   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5486   set_result(result);
5487   return true;
5488 }
5489 
5490 //-------------inline_montgomeryMultiply-----------------------------------
5491 bool LibraryCallKit::inline_montgomeryMultiply() {
5492   address stubAddr = StubRoutines::montgomeryMultiply();
5493   if (stubAddr == NULL) {
5494     return false; // Intrinsic's stub is not implemented on this platform
5495   }
5496 
5497   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5498   const char* stubName = "montgomery_square";
5499 
5500   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5501 
5502   Node* a    = argument(0);
5503   Node* b    = argument(1);
5504   Node* n    = argument(2);
5505   Node* len  = argument(3);
5506   Node* inv  = argument(4);
5507   Node* m    = argument(6);
5508 
5509   const Type* a_type = a->Value(&_gvn);
5510   const TypeAryPtr* top_a = a_type->isa_aryptr();
5511   const Type* b_type = b->Value(&_gvn);
5512   const TypeAryPtr* top_b = b_type->isa_aryptr();
5513   const Type* n_type = a->Value(&_gvn);
5514   const TypeAryPtr* top_n = n_type->isa_aryptr();
5515   const Type* m_type = a->Value(&_gvn);
5516   const TypeAryPtr* top_m = m_type->isa_aryptr();
5517   if (top_a  == NULL || top_a->klass()  == NULL ||
5518       top_b == NULL || top_b->klass()  == NULL ||
5519       top_n == NULL || top_n->klass()  == NULL ||
5520       top_m == NULL || top_m->klass()  == NULL) {
5521     // failed array check
5522     return false;
5523   }
5524 
5525   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5526   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5527   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5528   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5529   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5530     return false;
5531   }
5532 
5533   // Make the call
5534   {
5535     Node* a_start = array_element_address(a, intcon(0), a_elem);
5536     Node* b_start = array_element_address(b, intcon(0), b_elem);
5537     Node* n_start = array_element_address(n, intcon(0), n_elem);
5538     Node* m_start = array_element_address(m, intcon(0), m_elem);
5539 
5540     Node* call = make_runtime_call(RC_LEAF,
5541                                    OptoRuntime::montgomeryMultiply_Type(),
5542                                    stubAddr, stubName, TypePtr::BOTTOM,
5543                                    a_start, b_start, n_start, len, inv, top(),
5544                                    m_start);
5545     set_result(m);
5546   }
5547 
5548   return true;
5549 }
5550 
5551 bool LibraryCallKit::inline_montgomerySquare() {
5552   address stubAddr = StubRoutines::montgomerySquare();
5553   if (stubAddr == NULL) {
5554     return false; // Intrinsic's stub is not implemented on this platform
5555   }
5556 
5557   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5558   const char* stubName = "montgomery_square";
5559 
5560   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5561 
5562   Node* a    = argument(0);
5563   Node* n    = argument(1);
5564   Node* len  = argument(2);
5565   Node* inv  = argument(3);
5566   Node* m    = argument(5);
5567 
5568   const Type* a_type = a->Value(&_gvn);
5569   const TypeAryPtr* top_a = a_type->isa_aryptr();
5570   const Type* n_type = a->Value(&_gvn);
5571   const TypeAryPtr* top_n = n_type->isa_aryptr();
5572   const Type* m_type = a->Value(&_gvn);
5573   const TypeAryPtr* top_m = m_type->isa_aryptr();
5574   if (top_a  == NULL || top_a->klass()  == NULL ||
5575       top_n == NULL || top_n->klass()  == NULL ||
5576       top_m == NULL || top_m->klass()  == NULL) {
5577     // failed array check
5578     return false;
5579   }
5580 
5581   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5582   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5583   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5584   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5585     return false;
5586   }
5587 
5588   // Make the call
5589   {
5590     Node* a_start = array_element_address(a, intcon(0), a_elem);
5591     Node* n_start = array_element_address(n, intcon(0), n_elem);
5592     Node* m_start = array_element_address(m, intcon(0), m_elem);
5593 
5594     Node* call = make_runtime_call(RC_LEAF,
5595                                    OptoRuntime::montgomerySquare_Type(),
5596                                    stubAddr, stubName, TypePtr::BOTTOM,
5597                                    a_start, n_start, len, inv, top(),
5598                                    m_start);
5599     set_result(m);
5600   }
5601 
5602   return true;
5603 }
5604 
5605 //-------------inline_vectorizedMismatch------------------------------
5606 bool LibraryCallKit::inline_vectorizedMismatch() {
5607   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5608 
5609   address stubAddr = StubRoutines::vectorizedMismatch();
5610   if (stubAddr == NULL) {
5611     return false; // Intrinsic's stub is not implemented on this platform
5612   }
5613   const char* stubName = "vectorizedMismatch";
5614   int size_l = callee()->signature()->size();
5615   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5616 
5617   Node* obja = argument(0);
5618   Node* aoffset = argument(1);
5619   Node* objb = argument(3);
5620   Node* boffset = argument(4);
5621   Node* length = argument(6);
5622   Node* scale = argument(7);
5623 
5624   const Type* a_type = obja->Value(&_gvn);
5625   const Type* b_type = objb->Value(&_gvn);
5626   const TypeAryPtr* top_a = a_type->isa_aryptr();
5627   const TypeAryPtr* top_b = b_type->isa_aryptr();
5628   if (top_a == NULL || top_a->klass() == NULL ||
5629     top_b == NULL || top_b->klass() == NULL) {
5630     // failed array check
5631     return false;
5632   }
5633 
5634   Node* call;
5635   jvms()->set_should_reexecute(true);
5636 
5637   Node* obja_adr = make_unsafe_address(obja, aoffset);
5638   Node* objb_adr = make_unsafe_address(objb, boffset);
5639 
5640   call = make_runtime_call(RC_LEAF,
5641     OptoRuntime::vectorizedMismatch_Type(),
5642     stubAddr, stubName, TypePtr::BOTTOM,
5643     obja_adr, objb_adr, length, scale);
5644 
5645   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5646   set_result(result);
5647   return true;
5648 }
5649 
5650 /**
5651  * Calculate CRC32 for byte.
5652  * int java.util.zip.CRC32.update(int crc, int b)
5653  */
5654 bool LibraryCallKit::inline_updateCRC32() {
5655   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5656   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5657   // no receiver since it is static method
5658   Node* crc  = argument(0); // type: int
5659   Node* b    = argument(1); // type: int
5660 
5661   /*
5662    *    int c = ~ crc;
5663    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5664    *    b = b ^ (c >>> 8);
5665    *    crc = ~b;
5666    */
5667 
5668   Node* M1 = intcon(-1);
5669   crc = _gvn.transform(new XorINode(crc, M1));
5670   Node* result = _gvn.transform(new XorINode(crc, b));
5671   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5672 
5673   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5674   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5675   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5676   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5677 
5678   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5679   result = _gvn.transform(new XorINode(crc, result));
5680   result = _gvn.transform(new XorINode(result, M1));
5681   set_result(result);
5682   return true;
5683 }
5684 
5685 /**
5686  * Calculate CRC32 for byte[] array.
5687  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5688  */
5689 bool LibraryCallKit::inline_updateBytesCRC32() {
5690   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5691   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5692   // no receiver since it is static method
5693   Node* crc     = argument(0); // type: int
5694   Node* src     = argument(1); // type: oop
5695   Node* offset  = argument(2); // type: int
5696   Node* length  = argument(3); // type: int
5697 
5698   const Type* src_type = src->Value(&_gvn);
5699   const TypeAryPtr* top_src = src_type->isa_aryptr();
5700   if (top_src  == NULL || top_src->klass()  == NULL) {
5701     // failed array check
5702     return false;
5703   }
5704 
5705   // Figure out the size and type of the elements we will be copying.
5706   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5707   if (src_elem != T_BYTE) {
5708     return false;
5709   }
5710 
5711   // 'src_start' points to src array + scaled offset
5712   Node* src_start = array_element_address(src, offset, src_elem);
5713 
5714   // We assume that range check is done by caller.
5715   // TODO: generate range check (offset+length < src.length) in debug VM.
5716 
5717   // Call the stub.
5718   address stubAddr = StubRoutines::updateBytesCRC32();
5719   const char *stubName = "updateBytesCRC32";
5720 
5721   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5722                                  stubAddr, stubName, TypePtr::BOTTOM,
5723                                  crc, src_start, length);
5724   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5725   set_result(result);
5726   return true;
5727 }
5728 
5729 /**
5730  * Calculate CRC32 for ByteBuffer.
5731  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5732  */
5733 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5734   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5735   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5736   // no receiver since it is static method
5737   Node* crc     = argument(0); // type: int
5738   Node* src     = argument(1); // type: long
5739   Node* offset  = argument(3); // type: int
5740   Node* length  = argument(4); // type: int
5741 
5742   src = ConvL2X(src);  // adjust Java long to machine word
5743   Node* base = _gvn.transform(new CastX2PNode(src));
5744   offset = ConvI2X(offset);
5745 
5746   // 'src_start' points to src array + scaled offset
5747   Node* src_start = basic_plus_adr(top(), base, offset);
5748 
5749   // Call the stub.
5750   address stubAddr = StubRoutines::updateBytesCRC32();
5751   const char *stubName = "updateBytesCRC32";
5752 
5753   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5754                                  stubAddr, stubName, TypePtr::BOTTOM,
5755                                  crc, src_start, length);
5756   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5757   set_result(result);
5758   return true;
5759 }
5760 
5761 //------------------------------get_table_from_crc32c_class-----------------------
5762 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5763   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5764   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5765 
5766   return table;
5767 }
5768 
5769 //------------------------------inline_updateBytesCRC32C-----------------------
5770 //
5771 // Calculate CRC32C for byte[] array.
5772 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5773 //
5774 bool LibraryCallKit::inline_updateBytesCRC32C() {
5775   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5776   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5777   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5778   // no receiver since it is a static method
5779   Node* crc     = argument(0); // type: int
5780   Node* src     = argument(1); // type: oop
5781   Node* offset  = argument(2); // type: int
5782   Node* end     = argument(3); // type: int
5783 
5784   Node* length = _gvn.transform(new SubINode(end, offset));
5785 
5786   const Type* src_type = src->Value(&_gvn);
5787   const TypeAryPtr* top_src = src_type->isa_aryptr();
5788   if (top_src  == NULL || top_src->klass()  == NULL) {
5789     // failed array check
5790     return false;
5791   }
5792 
5793   // Figure out the size and type of the elements we will be copying.
5794   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5795   if (src_elem != T_BYTE) {
5796     return false;
5797   }
5798 
5799   // 'src_start' points to src array + scaled offset
5800   Node* src_start = array_element_address(src, offset, src_elem);
5801 
5802   // static final int[] byteTable in class CRC32C
5803   Node* table = get_table_from_crc32c_class(callee()->holder());
5804   Node* table_start = array_element_address(table, intcon(0), T_INT);
5805 
5806   // We assume that range check is done by caller.
5807   // TODO: generate range check (offset+length < src.length) in debug VM.
5808 
5809   // Call the stub.
5810   address stubAddr = StubRoutines::updateBytesCRC32C();
5811   const char *stubName = "updateBytesCRC32C";
5812 
5813   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5814                                  stubAddr, stubName, TypePtr::BOTTOM,
5815                                  crc, src_start, length, table_start);
5816   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5817   set_result(result);
5818   return true;
5819 }
5820 
5821 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5822 //
5823 // Calculate CRC32C for DirectByteBuffer.
5824 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5825 //
5826 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5827   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5828   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5829   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5830   // no receiver since it is a static method
5831   Node* crc     = argument(0); // type: int
5832   Node* src     = argument(1); // type: long
5833   Node* offset  = argument(3); // type: int
5834   Node* end     = argument(4); // type: int
5835 
5836   Node* length = _gvn.transform(new SubINode(end, offset));
5837 
5838   src = ConvL2X(src);  // adjust Java long to machine word
5839   Node* base = _gvn.transform(new CastX2PNode(src));
5840   offset = ConvI2X(offset);
5841 
5842   // 'src_start' points to src array + scaled offset
5843   Node* src_start = basic_plus_adr(top(), base, offset);
5844 
5845   // static final int[] byteTable in class CRC32C
5846   Node* table = get_table_from_crc32c_class(callee()->holder());
5847   Node* table_start = array_element_address(table, intcon(0), T_INT);
5848 
5849   // Call the stub.
5850   address stubAddr = StubRoutines::updateBytesCRC32C();
5851   const char *stubName = "updateBytesCRC32C";
5852 
5853   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5854                                  stubAddr, stubName, TypePtr::BOTTOM,
5855                                  crc, src_start, length, table_start);
5856   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5857   set_result(result);
5858   return true;
5859 }
5860 
5861 //------------------------------inline_updateBytesAdler32----------------------
5862 //
5863 // Calculate Adler32 checksum for byte[] array.
5864 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5865 //
5866 bool LibraryCallKit::inline_updateBytesAdler32() {
5867   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5868   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5869   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5870   // no receiver since it is static method
5871   Node* crc     = argument(0); // type: int
5872   Node* src     = argument(1); // type: oop
5873   Node* offset  = argument(2); // type: int
5874   Node* length  = argument(3); // type: int
5875 
5876   const Type* src_type = src->Value(&_gvn);
5877   const TypeAryPtr* top_src = src_type->isa_aryptr();
5878   if (top_src  == NULL || top_src->klass()  == NULL) {
5879     // failed array check
5880     return false;
5881   }
5882 
5883   // Figure out the size and type of the elements we will be copying.
5884   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5885   if (src_elem != T_BYTE) {
5886     return false;
5887   }
5888 
5889   // 'src_start' points to src array + scaled offset
5890   Node* src_start = array_element_address(src, offset, src_elem);
5891 
5892   // We assume that range check is done by caller.
5893   // TODO: generate range check (offset+length < src.length) in debug VM.
5894 
5895   // Call the stub.
5896   address stubAddr = StubRoutines::updateBytesAdler32();
5897   const char *stubName = "updateBytesAdler32";
5898 
5899   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5900                                  stubAddr, stubName, TypePtr::BOTTOM,
5901                                  crc, src_start, length);
5902   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5903   set_result(result);
5904   return true;
5905 }
5906 
5907 //------------------------------inline_updateByteBufferAdler32---------------
5908 //
5909 // Calculate Adler32 checksum for DirectByteBuffer.
5910 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5911 //
5912 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5913   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5914   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5915   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5916   // no receiver since it is static method
5917   Node* crc     = argument(0); // type: int
5918   Node* src     = argument(1); // type: long
5919   Node* offset  = argument(3); // type: int
5920   Node* length  = argument(4); // type: int
5921 
5922   src = ConvL2X(src);  // adjust Java long to machine word
5923   Node* base = _gvn.transform(new CastX2PNode(src));
5924   offset = ConvI2X(offset);
5925 
5926   // 'src_start' points to src array + scaled offset
5927   Node* src_start = basic_plus_adr(top(), base, offset);
5928 
5929   // Call the stub.
5930   address stubAddr = StubRoutines::updateBytesAdler32();
5931   const char *stubName = "updateBytesAdler32";
5932 
5933   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5934                                  stubAddr, stubName, TypePtr::BOTTOM,
5935                                  crc, src_start, length);
5936 
5937   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5938   set_result(result);
5939   return true;
5940 }
5941 
5942 //----------------------------inline_reference_get----------------------------
5943 // public T java.lang.ref.Reference.get();
5944 bool LibraryCallKit::inline_reference_get() {
5945   const int referent_offset = java_lang_ref_Reference::referent_offset;
5946   guarantee(referent_offset > 0, "should have already been set");
5947 
5948   // Get the argument:
5949   Node* reference_obj = null_check_receiver();
5950   if (stopped()) return true;
5951 
5952   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5953 
5954   ciInstanceKlass* klass = env()->Object_klass();
5955   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5956 
5957   Node* no_ctrl = NULL;
5958   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5959 
5960   // Use the pre-barrier to record the value in the referent field
5961   pre_barrier(false /* do_load */,
5962               control(),
5963               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5964               result /* pre_val */,
5965               T_OBJECT);
5966 
5967   // Add memory barrier to prevent commoning reads from this field
5968   // across safepoint since GC can change its value.
5969   insert_mem_bar(Op_MemBarCPUOrder);
5970 
5971   set_result(result);
5972   return true;
5973 }
5974 
5975 
5976 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5977                                               bool is_exact=true, bool is_static=false,
5978                                               ciInstanceKlass * fromKls=NULL) {
5979   if (fromKls == NULL) {
5980     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5981     assert(tinst != NULL, "obj is null");
5982     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5983     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5984     fromKls = tinst->klass()->as_instance_klass();
5985   } else {
5986     assert(is_static, "only for static field access");
5987   }
5988   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5989                                               ciSymbol::make(fieldTypeString),
5990                                               is_static);
5991 
5992   assert (field != NULL, "undefined field");
5993   if (field == NULL) return (Node *) NULL;
5994 
5995   if (is_static) {
5996     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5997     fromObj = makecon(tip);
5998   }
5999 
6000   // Next code  copied from Parse::do_get_xxx():
6001 
6002   // Compute address and memory type.
6003   int offset  = field->offset_in_bytes();
6004   bool is_vol = field->is_volatile();
6005   ciType* field_klass = field->type();
6006   assert(field_klass->is_loaded(), "should be loaded");
6007   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6008   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6009   BasicType bt = field->layout_type();
6010 
6011   // Build the resultant type of the load
6012   const Type *type;
6013   if (bt == T_OBJECT) {
6014     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6015   } else {
6016     type = Type::get_const_basic_type(bt);
6017   }
6018 
6019   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6020     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6021   }
6022   // Build the load.
6023   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6024   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6025   // If reference is volatile, prevent following memory ops from
6026   // floating up past the volatile read.  Also prevents commoning
6027   // another volatile read.
6028   if (is_vol) {
6029     // Memory barrier includes bogus read of value to force load BEFORE membar
6030     insert_mem_bar(Op_MemBarAcquire, loadedField);
6031   }
6032   return loadedField;
6033 }
6034 
6035 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6036                                                  bool is_exact = true, bool is_static = false,
6037                                                  ciInstanceKlass * fromKls = NULL) {
6038   if (fromKls == NULL) {
6039     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6040     assert(tinst != NULL, "obj is null");
6041     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6042     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6043     fromKls = tinst->klass()->as_instance_klass();
6044   }
6045   else {
6046     assert(is_static, "only for static field access");
6047   }
6048   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6049     ciSymbol::make(fieldTypeString),
6050     is_static);
6051 
6052   assert(field != NULL, "undefined field");
6053   assert(!field->is_volatile(), "not defined for volatile fields");
6054 
6055   if (is_static) {
6056     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6057     fromObj = makecon(tip);
6058   }
6059 
6060   // Next code  copied from Parse::do_get_xxx():
6061 
6062   // Compute address and memory type.
6063   int offset = field->offset_in_bytes();
6064   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6065 
6066   return adr;
6067 }
6068 
6069 //------------------------------inline_aescrypt_Block-----------------------
6070 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6071   address stubAddr = NULL;
6072   const char *stubName;
6073   assert(UseAES, "need AES instruction support");
6074 
6075   switch(id) {
6076   case vmIntrinsics::_aescrypt_encryptBlock:
6077     stubAddr = StubRoutines::aescrypt_encryptBlock();
6078     stubName = "aescrypt_encryptBlock";
6079     break;
6080   case vmIntrinsics::_aescrypt_decryptBlock:
6081     stubAddr = StubRoutines::aescrypt_decryptBlock();
6082     stubName = "aescrypt_decryptBlock";
6083     break;
6084   }
6085   if (stubAddr == NULL) return false;
6086 
6087   Node* aescrypt_object = argument(0);
6088   Node* src             = argument(1);
6089   Node* src_offset      = argument(2);
6090   Node* dest            = argument(3);
6091   Node* dest_offset     = argument(4);
6092 
6093   // (1) src and dest are arrays.
6094   const Type* src_type = src->Value(&_gvn);
6095   const Type* dest_type = dest->Value(&_gvn);
6096   const TypeAryPtr* top_src = src_type->isa_aryptr();
6097   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6098   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6099 
6100   // for the quick and dirty code we will skip all the checks.
6101   // we are just trying to get the call to be generated.
6102   Node* src_start  = src;
6103   Node* dest_start = dest;
6104   if (src_offset != NULL || dest_offset != NULL) {
6105     assert(src_offset != NULL && dest_offset != NULL, "");
6106     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6107     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6108   }
6109 
6110   // now need to get the start of its expanded key array
6111   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6112   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6113   if (k_start == NULL) return false;
6114 
6115   if (Matcher::pass_original_key_for_aes()) {
6116     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6117     // compatibility issues between Java key expansion and SPARC crypto instructions
6118     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6119     if (original_k_start == NULL) return false;
6120 
6121     // Call the stub.
6122     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6123                       stubAddr, stubName, TypePtr::BOTTOM,
6124                       src_start, dest_start, k_start, original_k_start);
6125   } else {
6126     // Call the stub.
6127     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6128                       stubAddr, stubName, TypePtr::BOTTOM,
6129                       src_start, dest_start, k_start);
6130   }
6131 
6132   return true;
6133 }
6134 
6135 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6136 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6137   address stubAddr = NULL;
6138   const char *stubName = NULL;
6139 
6140   assert(UseAES, "need AES instruction support");
6141 
6142   switch(id) {
6143   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6144     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6145     stubName = "cipherBlockChaining_encryptAESCrypt";
6146     break;
6147   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6148     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6149     stubName = "cipherBlockChaining_decryptAESCrypt";
6150     break;
6151   }
6152   if (stubAddr == NULL) return false;
6153 
6154   Node* cipherBlockChaining_object = argument(0);
6155   Node* src                        = argument(1);
6156   Node* src_offset                 = argument(2);
6157   Node* len                        = argument(3);
6158   Node* dest                       = argument(4);
6159   Node* dest_offset                = argument(5);
6160 
6161   // (1) src and dest are arrays.
6162   const Type* src_type = src->Value(&_gvn);
6163   const Type* dest_type = dest->Value(&_gvn);
6164   const TypeAryPtr* top_src = src_type->isa_aryptr();
6165   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6166   assert (top_src  != NULL && top_src->klass()  != NULL
6167           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6168 
6169   // checks are the responsibility of the caller
6170   Node* src_start  = src;
6171   Node* dest_start = dest;
6172   if (src_offset != NULL || dest_offset != NULL) {
6173     assert(src_offset != NULL && dest_offset != NULL, "");
6174     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6175     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6176   }
6177 
6178   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6179   // (because of the predicated logic executed earlier).
6180   // so we cast it here safely.
6181   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6182 
6183   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6184   if (embeddedCipherObj == NULL) return false;
6185 
6186   // cast it to what we know it will be at runtime
6187   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6188   assert(tinst != NULL, "CBC obj is null");
6189   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6190   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6191   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6192 
6193   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6194   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6195   const TypeOopPtr* xtype = aklass->as_instance_type();
6196   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6197   aescrypt_object = _gvn.transform(aescrypt_object);
6198 
6199   // we need to get the start of the aescrypt_object's expanded key array
6200   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6201   if (k_start == NULL) return false;
6202 
6203   // similarly, get the start address of the r vector
6204   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6205   if (objRvec == NULL) return false;
6206   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6207 
6208   Node* cbcCrypt;
6209   if (Matcher::pass_original_key_for_aes()) {
6210     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6211     // compatibility issues between Java key expansion and SPARC crypto instructions
6212     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6213     if (original_k_start == NULL) return false;
6214 
6215     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6216     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6217                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6218                                  stubAddr, stubName, TypePtr::BOTTOM,
6219                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6220   } else {
6221     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6222     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6223                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6224                                  stubAddr, stubName, TypePtr::BOTTOM,
6225                                  src_start, dest_start, k_start, r_start, len);
6226   }
6227 
6228   // return cipher length (int)
6229   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6230   set_result(retvalue);
6231   return true;
6232 }
6233 
6234 //------------------------------inline_counterMode_AESCrypt-----------------------
6235 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6236   assert(UseAES, "need AES instruction support");
6237   if (!UseAESCTRIntrinsics) return false;
6238 
6239   address stubAddr = NULL;
6240   const char *stubName = NULL;
6241   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6242     stubAddr = StubRoutines::counterMode_AESCrypt();
6243     stubName = "counterMode_AESCrypt";
6244   }
6245   if (stubAddr == NULL) return false;
6246 
6247   Node* counterMode_object = argument(0);
6248   Node* src = argument(1);
6249   Node* src_offset = argument(2);
6250   Node* len = argument(3);
6251   Node* dest = argument(4);
6252   Node* dest_offset = argument(5);
6253 
6254   // (1) src and dest are arrays.
6255   const Type* src_type = src->Value(&_gvn);
6256   const Type* dest_type = dest->Value(&_gvn);
6257   const TypeAryPtr* top_src = src_type->isa_aryptr();
6258   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6259   assert(top_src != NULL && top_src->klass() != NULL &&
6260          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6261 
6262   // checks are the responsibility of the caller
6263   Node* src_start = src;
6264   Node* dest_start = dest;
6265   if (src_offset != NULL || dest_offset != NULL) {
6266     assert(src_offset != NULL && dest_offset != NULL, "");
6267     src_start = array_element_address(src, src_offset, T_BYTE);
6268     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6269   }
6270 
6271   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6272   // (because of the predicated logic executed earlier).
6273   // so we cast it here safely.
6274   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6275   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6276   if (embeddedCipherObj == NULL) return false;
6277   // cast it to what we know it will be at runtime
6278   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6279   assert(tinst != NULL, "CTR obj is null");
6280   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6281   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6282   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6283   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6284   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6285   const TypeOopPtr* xtype = aklass->as_instance_type();
6286   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6287   aescrypt_object = _gvn.transform(aescrypt_object);
6288   // we need to get the start of the aescrypt_object's expanded key array
6289   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6290   if (k_start == NULL) return false;
6291   // similarly, get the start address of the r vector
6292   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6293   if (obj_counter == NULL) return false;
6294   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6295 
6296   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6297   if (saved_encCounter == NULL) return false;
6298   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6299   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6300 
6301   Node* ctrCrypt;
6302   if (Matcher::pass_original_key_for_aes()) {
6303     // no SPARC version for AES/CTR intrinsics now.
6304     return false;
6305   }
6306   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6307   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6308                                OptoRuntime::counterMode_aescrypt_Type(),
6309                                stubAddr, stubName, TypePtr::BOTTOM,
6310                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6311 
6312   // return cipher length (int)
6313   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6314   set_result(retvalue);
6315   return true;
6316 }
6317 
6318 //------------------------------get_key_start_from_aescrypt_object-----------------------
6319 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6320   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6321   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6322   if (objAESCryptKey == NULL) return (Node *) NULL;
6323 
6324   // now have the array, need to get the start address of the K array
6325   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6326   return k_start;
6327 }
6328 
6329 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6330 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6331   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6332   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6333   if (objAESCryptKey == NULL) return (Node *) NULL;
6334 
6335   // now have the array, need to get the start address of the lastKey array
6336   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6337   return original_k_start;
6338 }
6339 
6340 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6341 // Return node representing slow path of predicate check.
6342 // the pseudo code we want to emulate with this predicate is:
6343 // for encryption:
6344 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6345 // for decryption:
6346 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6347 //    note cipher==plain is more conservative than the original java code but that's OK
6348 //
6349 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6350   // The receiver was checked for NULL already.
6351   Node* objCBC = argument(0);
6352 
6353   // Load embeddedCipher field of CipherBlockChaining object.
6354   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6355 
6356   // get AESCrypt klass for instanceOf check
6357   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6358   // will have same classloader as CipherBlockChaining object
6359   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6360   assert(tinst != NULL, "CBCobj is null");
6361   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6362 
6363   // we want to do an instanceof comparison against the AESCrypt class
6364   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6365   if (!klass_AESCrypt->is_loaded()) {
6366     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6367     Node* ctrl = control();
6368     set_control(top()); // no regular fast path
6369     return ctrl;
6370   }
6371   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6372 
6373   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6374   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6375   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6376 
6377   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6378 
6379   // for encryption, we are done
6380   if (!decrypting)
6381     return instof_false;  // even if it is NULL
6382 
6383   // for decryption, we need to add a further check to avoid
6384   // taking the intrinsic path when cipher and plain are the same
6385   // see the original java code for why.
6386   RegionNode* region = new RegionNode(3);
6387   region->init_req(1, instof_false);
6388   Node* src = argument(1);
6389   Node* dest = argument(4);
6390   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6391   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6392   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6393   region->init_req(2, src_dest_conjoint);
6394 
6395   record_for_igvn(region);
6396   return _gvn.transform(region);
6397 }
6398 
6399 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6400 // Return node representing slow path of predicate check.
6401 // the pseudo code we want to emulate with this predicate is:
6402 // for encryption:
6403 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6404 // for decryption:
6405 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6406 //    note cipher==plain is more conservative than the original java code but that's OK
6407 //
6408 
6409 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6410   // The receiver was checked for NULL already.
6411   Node* objCTR = argument(0);
6412 
6413   // Load embeddedCipher field of CipherBlockChaining object.
6414   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6415 
6416   // get AESCrypt klass for instanceOf check
6417   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6418   // will have same classloader as CipherBlockChaining object
6419   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6420   assert(tinst != NULL, "CTRobj is null");
6421   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6422 
6423   // we want to do an instanceof comparison against the AESCrypt class
6424   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6425   if (!klass_AESCrypt->is_loaded()) {
6426     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6427     Node* ctrl = control();
6428     set_control(top()); // no regular fast path
6429     return ctrl;
6430   }
6431 
6432   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6433   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6434   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6435   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6436   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6437 
6438   return instof_false; // even if it is NULL
6439 }
6440 
6441 //------------------------------inline_ghash_processBlocks
6442 bool LibraryCallKit::inline_ghash_processBlocks() {
6443   address stubAddr;
6444   const char *stubName;
6445   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6446 
6447   stubAddr = StubRoutines::ghash_processBlocks();
6448   stubName = "ghash_processBlocks";
6449 
6450   Node* data           = argument(0);
6451   Node* offset         = argument(1);
6452   Node* len            = argument(2);
6453   Node* state          = argument(3);
6454   Node* subkeyH        = argument(4);
6455 
6456   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6457   assert(state_start, "state is NULL");
6458   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6459   assert(subkeyH_start, "subkeyH is NULL");
6460   Node* data_start  = array_element_address(data, offset, T_BYTE);
6461   assert(data_start, "data is NULL");
6462 
6463   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6464                                   OptoRuntime::ghash_processBlocks_Type(),
6465                                   stubAddr, stubName, TypePtr::BOTTOM,
6466                                   state_start, subkeyH_start, data_start, len);
6467   return true;
6468 }
6469 
6470 //------------------------------inline_sha_implCompress-----------------------
6471 //
6472 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6473 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6474 //
6475 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6476 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6477 //
6478 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6479 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6480 //
6481 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6482   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6483 
6484   Node* sha_obj = argument(0);
6485   Node* src     = argument(1); // type oop
6486   Node* ofs     = argument(2); // type int
6487 
6488   const Type* src_type = src->Value(&_gvn);
6489   const TypeAryPtr* top_src = src_type->isa_aryptr();
6490   if (top_src  == NULL || top_src->klass()  == NULL) {
6491     // failed array check
6492     return false;
6493   }
6494   // Figure out the size and type of the elements we will be copying.
6495   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6496   if (src_elem != T_BYTE) {
6497     return false;
6498   }
6499   // 'src_start' points to src array + offset
6500   Node* src_start = array_element_address(src, ofs, src_elem);
6501   Node* state = NULL;
6502   address stubAddr;
6503   const char *stubName;
6504 
6505   switch(id) {
6506   case vmIntrinsics::_sha_implCompress:
6507     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6508     state = get_state_from_sha_object(sha_obj);
6509     stubAddr = StubRoutines::sha1_implCompress();
6510     stubName = "sha1_implCompress";
6511     break;
6512   case vmIntrinsics::_sha2_implCompress:
6513     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6514     state = get_state_from_sha_object(sha_obj);
6515     stubAddr = StubRoutines::sha256_implCompress();
6516     stubName = "sha256_implCompress";
6517     break;
6518   case vmIntrinsics::_sha5_implCompress:
6519     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6520     state = get_state_from_sha5_object(sha_obj);
6521     stubAddr = StubRoutines::sha512_implCompress();
6522     stubName = "sha512_implCompress";
6523     break;
6524   default:
6525     fatal_unexpected_iid(id);
6526     return false;
6527   }
6528   if (state == NULL) return false;
6529 
6530   // Call the stub.
6531   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6532                                  stubAddr, stubName, TypePtr::BOTTOM,
6533                                  src_start, state);
6534 
6535   return true;
6536 }
6537 
6538 //------------------------------inline_digestBase_implCompressMB-----------------------
6539 //
6540 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6541 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6542 //
6543 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6544   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6545          "need SHA1/SHA256/SHA512 instruction support");
6546   assert((uint)predicate < 3, "sanity");
6547   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6548 
6549   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6550   Node* src            = argument(1); // byte[] array
6551   Node* ofs            = argument(2); // type int
6552   Node* limit          = argument(3); // type int
6553 
6554   const Type* src_type = src->Value(&_gvn);
6555   const TypeAryPtr* top_src = src_type->isa_aryptr();
6556   if (top_src  == NULL || top_src->klass()  == NULL) {
6557     // failed array check
6558     return false;
6559   }
6560   // Figure out the size and type of the elements we will be copying.
6561   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6562   if (src_elem != T_BYTE) {
6563     return false;
6564   }
6565   // 'src_start' points to src array + offset
6566   Node* src_start = array_element_address(src, ofs, src_elem);
6567 
6568   const char* klass_SHA_name = NULL;
6569   const char* stub_name = NULL;
6570   address     stub_addr = NULL;
6571   bool        long_state = false;
6572 
6573   switch (predicate) {
6574   case 0:
6575     if (UseSHA1Intrinsics) {
6576       klass_SHA_name = "sun/security/provider/SHA";
6577       stub_name = "sha1_implCompressMB";
6578       stub_addr = StubRoutines::sha1_implCompressMB();
6579     }
6580     break;
6581   case 1:
6582     if (UseSHA256Intrinsics) {
6583       klass_SHA_name = "sun/security/provider/SHA2";
6584       stub_name = "sha256_implCompressMB";
6585       stub_addr = StubRoutines::sha256_implCompressMB();
6586     }
6587     break;
6588   case 2:
6589     if (UseSHA512Intrinsics) {
6590       klass_SHA_name = "sun/security/provider/SHA5";
6591       stub_name = "sha512_implCompressMB";
6592       stub_addr = StubRoutines::sha512_implCompressMB();
6593       long_state = true;
6594     }
6595     break;
6596   default:
6597     fatal("unknown SHA intrinsic predicate: %d", predicate);
6598   }
6599   if (klass_SHA_name != NULL) {
6600     // get DigestBase klass to lookup for SHA klass
6601     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6602     assert(tinst != NULL, "digestBase_obj is not instance???");
6603     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6604 
6605     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6606     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6607     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6608     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6609   }
6610   return false;
6611 }
6612 //------------------------------inline_sha_implCompressMB-----------------------
6613 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6614                                                bool long_state, address stubAddr, const char *stubName,
6615                                                Node* src_start, Node* ofs, Node* limit) {
6616   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6617   const TypeOopPtr* xtype = aklass->as_instance_type();
6618   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6619   sha_obj = _gvn.transform(sha_obj);
6620 
6621   Node* state;
6622   if (long_state) {
6623     state = get_state_from_sha5_object(sha_obj);
6624   } else {
6625     state = get_state_from_sha_object(sha_obj);
6626   }
6627   if (state == NULL) return false;
6628 
6629   // Call the stub.
6630   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6631                                  OptoRuntime::digestBase_implCompressMB_Type(),
6632                                  stubAddr, stubName, TypePtr::BOTTOM,
6633                                  src_start, state, ofs, limit);
6634   // return ofs (int)
6635   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6636   set_result(result);
6637 
6638   return true;
6639 }
6640 
6641 //------------------------------get_state_from_sha_object-----------------------
6642 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6643   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6644   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6645   if (sha_state == NULL) return (Node *) NULL;
6646 
6647   // now have the array, need to get the start address of the state array
6648   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6649   return state;
6650 }
6651 
6652 //------------------------------get_state_from_sha5_object-----------------------
6653 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6654   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6655   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6656   if (sha_state == NULL) return (Node *) NULL;
6657 
6658   // now have the array, need to get the start address of the state array
6659   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6660   return state;
6661 }
6662 
6663 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6664 // Return node representing slow path of predicate check.
6665 // the pseudo code we want to emulate with this predicate is:
6666 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6667 //
6668 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6669   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6670          "need SHA1/SHA256/SHA512 instruction support");
6671   assert((uint)predicate < 3, "sanity");
6672 
6673   // The receiver was checked for NULL already.
6674   Node* digestBaseObj = argument(0);
6675 
6676   // get DigestBase klass for instanceOf check
6677   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6678   assert(tinst != NULL, "digestBaseObj is null");
6679   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6680 
6681   const char* klass_SHA_name = NULL;
6682   switch (predicate) {
6683   case 0:
6684     if (UseSHA1Intrinsics) {
6685       // we want to do an instanceof comparison against the SHA class
6686       klass_SHA_name = "sun/security/provider/SHA";
6687     }
6688     break;
6689   case 1:
6690     if (UseSHA256Intrinsics) {
6691       // we want to do an instanceof comparison against the SHA2 class
6692       klass_SHA_name = "sun/security/provider/SHA2";
6693     }
6694     break;
6695   case 2:
6696     if (UseSHA512Intrinsics) {
6697       // we want to do an instanceof comparison against the SHA5 class
6698       klass_SHA_name = "sun/security/provider/SHA5";
6699     }
6700     break;
6701   default:
6702     fatal("unknown SHA intrinsic predicate: %d", predicate);
6703   }
6704 
6705   ciKlass* klass_SHA = NULL;
6706   if (klass_SHA_name != NULL) {
6707     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6708   }
6709   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6710     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6711     Node* ctrl = control();
6712     set_control(top()); // no intrinsic path
6713     return ctrl;
6714   }
6715   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6716 
6717   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6718   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6719   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6720   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6721 
6722   return instof_false;  // even if it is NULL
6723 }
6724 
6725 bool LibraryCallKit::inline_profileBoolean() {
6726   Node* counts = argument(1);
6727   const TypeAryPtr* ary = NULL;
6728   ciArray* aobj = NULL;
6729   if (counts->is_Con()
6730       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6731       && (aobj = ary->const_oop()->as_array()) != NULL
6732       && (aobj->length() == 2)) {
6733     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6734     jint false_cnt = aobj->element_value(0).as_int();
6735     jint  true_cnt = aobj->element_value(1).as_int();
6736 
6737     if (C->log() != NULL) {
6738       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6739                      false_cnt, true_cnt);
6740     }
6741 
6742     if (false_cnt + true_cnt == 0) {
6743       // According to profile, never executed.
6744       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6745                           Deoptimization::Action_reinterpret);
6746       return true;
6747     }
6748 
6749     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6750     // is a number of each value occurrences.
6751     Node* result = argument(0);
6752     if (false_cnt == 0 || true_cnt == 0) {
6753       // According to profile, one value has been never seen.
6754       int expected_val = (false_cnt == 0) ? 1 : 0;
6755 
6756       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6757       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6758 
6759       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6760       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6761       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6762 
6763       { // Slow path: uncommon trap for never seen value and then reexecute
6764         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6765         // the value has been seen at least once.
6766         PreserveJVMState pjvms(this);
6767         PreserveReexecuteState preexecs(this);
6768         jvms()->set_should_reexecute(true);
6769 
6770         set_control(slow_path);
6771         set_i_o(i_o());
6772 
6773         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6774                             Deoptimization::Action_reinterpret);
6775       }
6776       // The guard for never seen value enables sharpening of the result and
6777       // returning a constant. It allows to eliminate branches on the same value
6778       // later on.
6779       set_control(fast_path);
6780       result = intcon(expected_val);
6781     }
6782     // Stop profiling.
6783     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6784     // By replacing method body with profile data (represented as ProfileBooleanNode
6785     // on IR level) we effectively disable profiling.
6786     // It enables full speed execution once optimized code is generated.
6787     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6788     C->record_for_igvn(profile);
6789     set_result(profile);
6790     return true;
6791   } else {
6792     // Continue profiling.
6793     // Profile data isn't available at the moment. So, execute method's bytecode version.
6794     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6795     // is compiled and counters aren't available since corresponding MethodHandle
6796     // isn't a compile-time constant.
6797     return false;
6798   }
6799 }
6800 
6801 bool LibraryCallKit::inline_isCompileConstant() {
6802   Node* n = argument(0);
6803   set_result(n->is_Con() ? intcon(1) : intcon(0));
6804   return true;
6805 }
6806 
6807 bool LibraryCallKit::inline_deoptimize() {
6808   assert(WhiteBoxAPI, "");
6809   PreserveReexecuteState preexecs(this);
6810   jvms()->set_should_reexecute(false);
6811   uncommon_trap(Deoptimization::Reason_intrinsic,
6812                 Deoptimization::Action_none);
6813   return true;
6814 }