1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/loopnode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/mulnode.hpp"
  41 #include "opto/narrowptrnode.hpp"
  42 #include "opto/phaseX.hpp"
  43 #include "opto/regmask.hpp"
  44 #include "utilities/copy.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  51 
  52 //=============================================================================
  53 uint MemNode::size_of() const { return sizeof(*this); }
  54 
  55 const TypePtr *MemNode::adr_type() const {
  56   Node* adr = in(Address);
  57   if (adr == NULL)  return NULL; // node is dead
  58   const TypePtr* cross_check = NULL;
  59   DEBUG_ONLY(cross_check = _adr_type);
  60   return calculate_adr_type(adr->bottom_type(), cross_check);
  61 }
  62 
  63 #ifndef PRODUCT
  64 void MemNode::dump_spec(outputStream *st) const {
  65   if (in(Address) == NULL)  return; // node is dead
  66 #ifndef ASSERT
  67   // fake the missing field
  68   const TypePtr* _adr_type = NULL;
  69   if (in(Address) != NULL)
  70     _adr_type = in(Address)->bottom_type()->isa_ptr();
  71 #endif
  72   dump_adr_type(this, _adr_type, st);
  73 
  74   Compile* C = Compile::current();
  75   if (C->alias_type(_adr_type)->is_volatile()) {
  76     st->print(" Volatile!");
  77   }
  78   if (_unaligned_access) {
  79     st->print(" unaligned");
  80   }
  81   if (_mismatched_access) {
  82     st->print(" mismatched");
  83   }
  84 }
  85 
  86 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  87   st->print(" @");
  88   if (adr_type == NULL) {
  89     st->print("NULL");
  90   } else {
  91     adr_type->dump_on(st);
  92     Compile* C = Compile::current();
  93     Compile::AliasType* atp = NULL;
  94     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  95     if (atp == NULL)
  96       st->print(", idx=?\?;");
  97     else if (atp->index() == Compile::AliasIdxBot)
  98       st->print(", idx=Bot;");
  99     else if (atp->index() == Compile::AliasIdxTop)
 100       st->print(", idx=Top;");
 101     else if (atp->index() == Compile::AliasIdxRaw)
 102       st->print(", idx=Raw;");
 103     else {
 104       ciField* field = atp->field();
 105       if (field) {
 106         st->print(", name=");
 107         field->print_name_on(st);
 108       }
 109       st->print(", idx=%d;", atp->index());
 110     }
 111   }
 112 }
 113 
 114 extern void print_alias_types();
 115 
 116 #endif
 117 
 118 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 119   assert((t_oop != NULL), "sanity");
 120   bool is_instance = t_oop->is_known_instance_field();
 121   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 122                              (load != NULL) && load->is_Load() &&
 123                              (phase->is_IterGVN() != NULL);
 124   if (!(is_instance || is_boxed_value_load))
 125     return mchain;  // don't try to optimize non-instance types
 126   uint instance_id = t_oop->instance_id();
 127   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 128   Node *prev = NULL;
 129   Node *result = mchain;
 130   while (prev != result) {
 131     prev = result;
 132     if (result == start_mem)
 133       break;  // hit one of our sentinels
 134     // skip over a call which does not affect this memory slice
 135     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 136       Node *proj_in = result->in(0);
 137       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 138         break;  // hit one of our sentinels
 139       } else if (proj_in->is_Call()) {
 140         // ArrayCopyNodes processed here as well
 141         CallNode *call = proj_in->as_Call();
 142         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 143           result = call->in(TypeFunc::Memory);
 144         }
 145       } else if (proj_in->is_Initialize()) {
 146         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 147         // Stop if this is the initialization for the object instance which
 148         // contains this memory slice, otherwise skip over it.
 149         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 150           break;
 151         }
 152         if (is_instance) {
 153           result = proj_in->in(TypeFunc::Memory);
 154         } else if (is_boxed_value_load) {
 155           Node* klass = alloc->in(AllocateNode::KlassNode);
 156           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 157           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 158             result = proj_in->in(TypeFunc::Memory); // not related allocation
 159           }
 160         }
 161       } else if (proj_in->is_MemBar()) {
 162         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase)) {
 163           break;
 164         }
 165         result = proj_in->in(TypeFunc::Memory);
 166       } else {
 167         assert(false, "unexpected projection");
 168       }
 169     } else if (result->is_ClearArray()) {
 170       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 171         // Can not bypass initialization of the instance
 172         // we are looking for.
 173         break;
 174       }
 175       // Otherwise skip it (the call updated 'result' value).
 176     } else if (result->is_MergeMem()) {
 177       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 178     }
 179   }
 180   return result;
 181 }
 182 
 183 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 184   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 185   if (t_oop == NULL)
 186     return mchain;  // don't try to optimize non-oop types
 187   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 188   bool is_instance = t_oop->is_known_instance_field();
 189   PhaseIterGVN *igvn = phase->is_IterGVN();
 190   if (is_instance && igvn != NULL  && result->is_Phi()) {
 191     PhiNode *mphi = result->as_Phi();
 192     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 193     const TypePtr *t = mphi->adr_type();
 194     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 195         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 196         t->is_oopptr()->cast_to_exactness(true)
 197          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 198          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 199       // clone the Phi with our address type
 200       result = mphi->split_out_instance(t_adr, igvn);
 201     } else {
 202       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 203     }
 204   }
 205   return result;
 206 }
 207 
 208 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 209   uint alias_idx = phase->C->get_alias_index(tp);
 210   Node *mem = mmem;
 211 #ifdef ASSERT
 212   {
 213     // Check that current type is consistent with the alias index used during graph construction
 214     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 215     bool consistent =  adr_check == NULL || adr_check->empty() ||
 216                        phase->C->must_alias(adr_check, alias_idx );
 217     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 218     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 219                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 220         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 221         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 222           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 223           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 224       // don't assert if it is dead code.
 225       consistent = true;
 226     }
 227     if( !consistent ) {
 228       st->print("alias_idx==%d, adr_check==", alias_idx);
 229       if( adr_check == NULL ) {
 230         st->print("NULL");
 231       } else {
 232         adr_check->dump();
 233       }
 234       st->cr();
 235       print_alias_types();
 236       assert(consistent, "adr_check must match alias idx");
 237     }
 238   }
 239 #endif
 240   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 241   // means an array I have not precisely typed yet.  Do not do any
 242   // alias stuff with it any time soon.
 243   const TypeOopPtr *toop = tp->isa_oopptr();
 244   if( tp->base() != Type::AnyPtr &&
 245       !(toop &&
 246         toop->klass() != NULL &&
 247         toop->klass()->is_java_lang_Object() &&
 248         toop->offset() == Type::OffsetBot) ) {
 249     // compress paths and change unreachable cycles to TOP
 250     // If not, we can update the input infinitely along a MergeMem cycle
 251     // Equivalent code in PhiNode::Ideal
 252     Node* m  = phase->transform(mmem);
 253     // If transformed to a MergeMem, get the desired slice
 254     // Otherwise the returned node represents memory for every slice
 255     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 256     // Update input if it is progress over what we have now
 257   }
 258   return mem;
 259 }
 260 
 261 //--------------------------Ideal_common---------------------------------------
 262 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 263 // Unhook non-raw memories from complete (macro-expanded) initializations.
 264 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 265   // If our control input is a dead region, kill all below the region
 266   Node *ctl = in(MemNode::Control);
 267   if (ctl && remove_dead_region(phase, can_reshape))
 268     return this;
 269   ctl = in(MemNode::Control);
 270   // Don't bother trying to transform a dead node
 271   if (ctl && ctl->is_top())  return NodeSentinel;
 272 
 273   PhaseIterGVN *igvn = phase->is_IterGVN();
 274   // Wait if control on the worklist.
 275   if (ctl && can_reshape && igvn != NULL) {
 276     Node* bol = NULL;
 277     Node* cmp = NULL;
 278     if (ctl->in(0)->is_If()) {
 279       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 280       bol = ctl->in(0)->in(1);
 281       if (bol->is_Bool())
 282         cmp = ctl->in(0)->in(1)->in(1);
 283     }
 284     if (igvn->_worklist.member(ctl) ||
 285         (bol != NULL && igvn->_worklist.member(bol)) ||
 286         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 287       // This control path may be dead.
 288       // Delay this memory node transformation until the control is processed.
 289       phase->is_IterGVN()->_worklist.push(this);
 290       return NodeSentinel; // caller will return NULL
 291     }
 292   }
 293   // Ignore if memory is dead, or self-loop
 294   Node *mem = in(MemNode::Memory);
 295   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 296   assert(mem != this, "dead loop in MemNode::Ideal");
 297 
 298   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 299     // This memory slice may be dead.
 300     // Delay this mem node transformation until the memory is processed.
 301     phase->is_IterGVN()->_worklist.push(this);
 302     return NodeSentinel; // caller will return NULL
 303   }
 304 
 305   Node *address = in(MemNode::Address);
 306   const Type *t_adr = phase->type(address);
 307   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 308 
 309   if (can_reshape && igvn != NULL &&
 310       (igvn->_worklist.member(address) ||
 311        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 312     // The address's base and type may change when the address is processed.
 313     // Delay this mem node transformation until the address is processed.
 314     phase->is_IterGVN()->_worklist.push(this);
 315     return NodeSentinel; // caller will return NULL
 316   }
 317 
 318   // Do NOT remove or optimize the next lines: ensure a new alias index
 319   // is allocated for an oop pointer type before Escape Analysis.
 320   // Note: C++ will not remove it since the call has side effect.
 321   if (t_adr->isa_oopptr()) {
 322     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 323   }
 324 
 325   Node* base = NULL;
 326   if (address->is_AddP()) {
 327     base = address->in(AddPNode::Base);
 328   }
 329   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 330       !t_adr->isa_rawptr()) {
 331     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 332     // Skip this node optimization if its address has TOP base.
 333     return NodeSentinel; // caller will return NULL
 334   }
 335 
 336   // Avoid independent memory operations
 337   Node* old_mem = mem;
 338 
 339   // The code which unhooks non-raw memories from complete (macro-expanded)
 340   // initializations was removed. After macro-expansion all stores catched
 341   // by Initialize node became raw stores and there is no information
 342   // which memory slices they modify. So it is unsafe to move any memory
 343   // operation above these stores. Also in most cases hooked non-raw memories
 344   // were already unhooked by using information from detect_ptr_independence()
 345   // and find_previous_store().
 346 
 347   if (mem->is_MergeMem()) {
 348     MergeMemNode* mmem = mem->as_MergeMem();
 349     const TypePtr *tp = t_adr->is_ptr();
 350 
 351     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 352   }
 353 
 354   if (mem != old_mem) {
 355     set_req(MemNode::Memory, mem);
 356     if (can_reshape && old_mem->outcnt() == 0) {
 357         igvn->_worklist.push(old_mem);
 358     }
 359     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 360     return this;
 361   }
 362 
 363   // let the subclass continue analyzing...
 364   return NULL;
 365 }
 366 
 367 // Helper function for proving some simple control dominations.
 368 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 369 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 370 // is not a constant (dominated by the method's StartNode).
 371 // Used by MemNode::find_previous_store to prove that the
 372 // control input of a memory operation predates (dominates)
 373 // an allocation it wants to look past.
 374 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 375   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 376     return false; // Conservative answer for dead code
 377 
 378   // Check 'dom'. Skip Proj and CatchProj nodes.
 379   dom = dom->find_exact_control(dom);
 380   if (dom == NULL || dom->is_top())
 381     return false; // Conservative answer for dead code
 382 
 383   if (dom == sub) {
 384     // For the case when, for example, 'sub' is Initialize and the original
 385     // 'dom' is Proj node of the 'sub'.
 386     return false;
 387   }
 388 
 389   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 390     return true;
 391 
 392   // 'dom' dominates 'sub' if its control edge and control edges
 393   // of all its inputs dominate or equal to sub's control edge.
 394 
 395   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 396   // Or Region for the check in LoadNode::Ideal();
 397   // 'sub' should have sub->in(0) != NULL.
 398   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 399          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 400 
 401   // Get control edge of 'sub'.
 402   Node* orig_sub = sub;
 403   sub = sub->find_exact_control(sub->in(0));
 404   if (sub == NULL || sub->is_top())
 405     return false; // Conservative answer for dead code
 406 
 407   assert(sub->is_CFG(), "expecting control");
 408 
 409   if (sub == dom)
 410     return true;
 411 
 412   if (sub->is_Start() || sub->is_Root())
 413     return false;
 414 
 415   {
 416     // Check all control edges of 'dom'.
 417 
 418     ResourceMark rm;
 419     Arena* arena = Thread::current()->resource_area();
 420     Node_List nlist(arena);
 421     Unique_Node_List dom_list(arena);
 422 
 423     dom_list.push(dom);
 424     bool only_dominating_controls = false;
 425 
 426     for (uint next = 0; next < dom_list.size(); next++) {
 427       Node* n = dom_list.at(next);
 428       if (n == orig_sub)
 429         return false; // One of dom's inputs dominated by sub.
 430       if (!n->is_CFG() && n->pinned()) {
 431         // Check only own control edge for pinned non-control nodes.
 432         n = n->find_exact_control(n->in(0));
 433         if (n == NULL || n->is_top())
 434           return false; // Conservative answer for dead code
 435         assert(n->is_CFG(), "expecting control");
 436         dom_list.push(n);
 437       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 438         only_dominating_controls = true;
 439       } else if (n->is_CFG()) {
 440         if (n->dominates(sub, nlist))
 441           only_dominating_controls = true;
 442         else
 443           return false;
 444       } else {
 445         // First, own control edge.
 446         Node* m = n->find_exact_control(n->in(0));
 447         if (m != NULL) {
 448           if (m->is_top())
 449             return false; // Conservative answer for dead code
 450           dom_list.push(m);
 451         }
 452         // Now, the rest of edges.
 453         uint cnt = n->req();
 454         for (uint i = 1; i < cnt; i++) {
 455           m = n->find_exact_control(n->in(i));
 456           if (m == NULL || m->is_top())
 457             continue;
 458           dom_list.push(m);
 459         }
 460       }
 461     }
 462     return only_dominating_controls;
 463   }
 464 }
 465 
 466 //---------------------detect_ptr_independence---------------------------------
 467 // Used by MemNode::find_previous_store to prove that two base
 468 // pointers are never equal.
 469 // The pointers are accompanied by their associated allocations,
 470 // if any, which have been previously discovered by the caller.
 471 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 472                                       Node* p2, AllocateNode* a2,
 473                                       PhaseTransform* phase) {
 474   // Attempt to prove that these two pointers cannot be aliased.
 475   // They may both manifestly be allocations, and they should differ.
 476   // Or, if they are not both allocations, they can be distinct constants.
 477   // Otherwise, one is an allocation and the other a pre-existing value.
 478   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 479     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 480   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 481     return (a1 != a2);
 482   } else if (a1 != NULL) {                  // one allocation a1
 483     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 484     return all_controls_dominate(p2, a1);
 485   } else { //(a2 != NULL)                   // one allocation a2
 486     return all_controls_dominate(p1, a2);
 487   }
 488   return false;
 489 }
 490 
 491 
 492 // Find an arraycopy that must have set (can_see_stored_value=true) or
 493 // could have set (can_see_stored_value=false) the value for this load
 494 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 495   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 496                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 497     Node* mb = mem->in(0);
 498     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 499         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 500       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 501       if (ac->is_clonebasic()) {
 502         intptr_t offset;
 503         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 504         assert(alloc != NULL && alloc->initialization()->is_complete_with_arraycopy(), "broken allocation");
 505         if (alloc == ld_alloc) {
 506           return ac;
 507         }
 508       }
 509     }
 510   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 511     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 512 
 513     if (ac->is_arraycopy_validated() ||
 514         ac->is_copyof_validated() ||
 515         ac->is_copyofrange_validated()) {
 516       Node* ld_addp = in(MemNode::Address);
 517       if (ld_addp->is_AddP()) {
 518         Node* ld_base = ld_addp->in(AddPNode::Address);
 519         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 520 
 521         Node* dest = ac->in(ArrayCopyNode::Dest);
 522 
 523         if (dest == ld_base) {
 524           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 525           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 526             return ac;
 527           }
 528           if (!can_see_stored_value) {
 529             mem = ac->in(TypeFunc::Memory);
 530           }
 531         }
 532       }
 533     }
 534   }
 535   return NULL;
 536 }
 537 
 538 // The logic for reordering loads and stores uses four steps:
 539 // (a) Walk carefully past stores and initializations which we
 540 //     can prove are independent of this load.
 541 // (b) Observe that the next memory state makes an exact match
 542 //     with self (load or store), and locate the relevant store.
 543 // (c) Ensure that, if we were to wire self directly to the store,
 544 //     the optimizer would fold it up somehow.
 545 // (d) Do the rewiring, and return, depending on some other part of
 546 //     the optimizer to fold up the load.
 547 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 548 // specific to loads and stores, so they are handled by the callers.
 549 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 550 //
 551 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 552   Node*         ctrl   = in(MemNode::Control);
 553   Node*         adr    = in(MemNode::Address);
 554   intptr_t      offset = 0;
 555   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 556   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 557 
 558   if (offset == Type::OffsetBot)
 559     return NULL;            // cannot unalias unless there are precise offsets
 560 
 561   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 562 
 563   intptr_t size_in_bytes = memory_size();
 564 
 565   Node* mem = in(MemNode::Memory);   // start searching here...
 566 
 567   int cnt = 50;             // Cycle limiter
 568   for (;;) {                // While we can dance past unrelated stores...
 569     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 570 
 571     Node* prev = mem;
 572     if (mem->is_Store()) {
 573       Node* st_adr = mem->in(MemNode::Address);
 574       intptr_t st_offset = 0;
 575       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 576       if (st_base == NULL)
 577         break;              // inscrutable pointer
 578       if (st_offset != offset && st_offset != Type::OffsetBot) {
 579         const int MAX_STORE = BytesPerLong;
 580         if (st_offset >= offset + size_in_bytes ||
 581             st_offset <= offset - MAX_STORE ||
 582             st_offset <= offset - mem->as_Store()->memory_size()) {
 583           // Success:  The offsets are provably independent.
 584           // (You may ask, why not just test st_offset != offset and be done?
 585           // The answer is that stores of different sizes can co-exist
 586           // in the same sequence of RawMem effects.  We sometimes initialize
 587           // a whole 'tile' of array elements with a single jint or jlong.)
 588           mem = mem->in(MemNode::Memory);
 589           continue;           // (a) advance through independent store memory
 590         }
 591       }
 592       if (st_base != base &&
 593           detect_ptr_independence(base, alloc,
 594                                   st_base,
 595                                   AllocateNode::Ideal_allocation(st_base, phase),
 596                                   phase)) {
 597         // Success:  The bases are provably independent.
 598         mem = mem->in(MemNode::Memory);
 599         continue;           // (a) advance through independent store memory
 600       }
 601 
 602       // (b) At this point, if the bases or offsets do not agree, we lose,
 603       // since we have not managed to prove 'this' and 'mem' independent.
 604       if (st_base == base && st_offset == offset) {
 605         return mem;         // let caller handle steps (c), (d)
 606       }
 607 
 608     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 609       InitializeNode* st_init = mem->in(0)->as_Initialize();
 610       AllocateNode*  st_alloc = st_init->allocation();
 611       if (st_alloc == NULL)
 612         break;              // something degenerated
 613       bool known_identical = false;
 614       bool known_independent = false;
 615       if (alloc == st_alloc)
 616         known_identical = true;
 617       else if (alloc != NULL)
 618         known_independent = true;
 619       else if (all_controls_dominate(this, st_alloc))
 620         known_independent = true;
 621 
 622       if (known_independent) {
 623         // The bases are provably independent: Either they are
 624         // manifestly distinct allocations, or else the control
 625         // of this load dominates the store's allocation.
 626         int alias_idx = phase->C->get_alias_index(adr_type());
 627         if (alias_idx == Compile::AliasIdxRaw) {
 628           mem = st_alloc->in(TypeFunc::Memory);
 629         } else {
 630           mem = st_init->memory(alias_idx);
 631         }
 632         continue;           // (a) advance through independent store memory
 633       }
 634 
 635       // (b) at this point, if we are not looking at a store initializing
 636       // the same allocation we are loading from, we lose.
 637       if (known_identical) {
 638         // From caller, can_see_stored_value will consult find_captured_store.
 639         return mem;         // let caller handle steps (c), (d)
 640       }
 641 
 642     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 643       if (prev != mem) {
 644         // Found an arraycopy but it doesn't affect that load
 645         continue;
 646       }
 647       // Found an arraycopy that may affect that load
 648       return mem;
 649     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 650       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 651       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 652         // ArrayCopyNodes processed here as well.
 653         CallNode *call = mem->in(0)->as_Call();
 654         if (!call->may_modify(addr_t, phase)) {
 655           mem = call->in(TypeFunc::Memory);
 656           continue;         // (a) advance through independent call memory
 657         }
 658       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 659         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase)) {
 660           break;
 661         }
 662         mem = mem->in(0)->in(TypeFunc::Memory);
 663         continue;           // (a) advance through independent MemBar memory
 664       } else if (mem->is_ClearArray()) {
 665         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 666           // (the call updated 'mem' value)
 667           continue;         // (a) advance through independent allocation memory
 668         } else {
 669           // Can not bypass initialization of the instance
 670           // we are looking for.
 671           return mem;
 672         }
 673       } else if (mem->is_MergeMem()) {
 674         int alias_idx = phase->C->get_alias_index(adr_type());
 675         mem = mem->as_MergeMem()->memory_at(alias_idx);
 676         continue;           // (a) advance through independent MergeMem memory
 677       }
 678     }
 679 
 680     // Unless there is an explicit 'continue', we must bail out here,
 681     // because 'mem' is an inscrutable memory state (e.g., a call).
 682     break;
 683   }
 684 
 685   return NULL;              // bail out
 686 }
 687 
 688 //----------------------calculate_adr_type-------------------------------------
 689 // Helper function.  Notices when the given type of address hits top or bottom.
 690 // Also, asserts a cross-check of the type against the expected address type.
 691 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 692   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 693   #ifdef PRODUCT
 694   cross_check = NULL;
 695   #else
 696   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 697   #endif
 698   const TypePtr* tp = t->isa_ptr();
 699   if (tp == NULL) {
 700     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 701     return TypePtr::BOTTOM;           // touches lots of memory
 702   } else {
 703     #ifdef ASSERT
 704     // %%%% [phh] We don't check the alias index if cross_check is
 705     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 706     if (cross_check != NULL &&
 707         cross_check != TypePtr::BOTTOM &&
 708         cross_check != TypeRawPtr::BOTTOM) {
 709       // Recheck the alias index, to see if it has changed (due to a bug).
 710       Compile* C = Compile::current();
 711       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 712              "must stay in the original alias category");
 713       // The type of the address must be contained in the adr_type,
 714       // disregarding "null"-ness.
 715       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 716       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 717       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 718              "real address must not escape from expected memory type");
 719     }
 720     #endif
 721     return tp;
 722   }
 723 }
 724 
 725 //=============================================================================
 726 // Should LoadNode::Ideal() attempt to remove control edges?
 727 bool LoadNode::can_remove_control() const {
 728   return true;
 729 }
 730 uint LoadNode::size_of() const { return sizeof(*this); }
 731 uint LoadNode::cmp( const Node &n ) const
 732 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 733 const Type *LoadNode::bottom_type() const { return _type; }
 734 uint LoadNode::ideal_reg() const {
 735   return _type->ideal_reg();
 736 }
 737 
 738 #ifndef PRODUCT
 739 void LoadNode::dump_spec(outputStream *st) const {
 740   MemNode::dump_spec(st);
 741   if( !Verbose && !WizardMode ) {
 742     // standard dump does this in Verbose and WizardMode
 743     st->print(" #"); _type->dump_on(st);
 744   }
 745   if (!depends_only_on_test()) {
 746     st->print(" (does not depend only on test)");
 747   }
 748 }
 749 #endif
 750 
 751 #ifdef ASSERT
 752 //----------------------------is_immutable_value-------------------------------
 753 // Helper function to allow a raw load without control edge for some cases
 754 bool LoadNode::is_immutable_value(Node* adr) {
 755   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 756           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 757           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 758            in_bytes(JavaThread::osthread_offset())));
 759 }
 760 #endif
 761 
 762 //----------------------------LoadNode::make-----------------------------------
 763 // Polymorphic factory method:
 764 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 765                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 766   Compile* C = gvn.C;
 767 
 768   // sanity check the alias category against the created node type
 769   assert(!(adr_type->isa_oopptr() &&
 770            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 771          "use LoadKlassNode instead");
 772   assert(!(adr_type->isa_aryptr() &&
 773            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 774          "use LoadRangeNode instead");
 775   // Check control edge of raw loads
 776   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 777           // oop will be recorded in oop map if load crosses safepoint
 778           rt->isa_oopptr() || is_immutable_value(adr),
 779           "raw memory operations should have control edge");
 780   LoadNode* load = NULL;
 781   switch (bt) {
 782   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 783   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 784   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 785   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 786   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 787   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 788   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 789   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 790   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 791   case T_OBJECT:
 792 #ifdef _LP64
 793     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 794       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 795     } else
 796 #endif
 797     {
 798       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 799       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo, control_dependency);
 800     }
 801     break;
 802   }
 803   assert(load != NULL, "LoadNode should have been created");
 804   if (unaligned) {
 805     load->set_unaligned_access();
 806   }
 807   if (mismatched) {
 808     load->set_mismatched_access();
 809   }
 810   if (load->Opcode() == Op_LoadN) {
 811     Node* ld = gvn.transform(load);
 812     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 813   }
 814 
 815   return load;
 816 }
 817 
 818 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 819                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 820   bool require_atomic = true;
 821   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 822   if (unaligned) {
 823     load->set_unaligned_access();
 824   }
 825   if (mismatched) {
 826     load->set_mismatched_access();
 827   }
 828   return load;
 829 }
 830 
 831 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 832                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 833   bool require_atomic = true;
 834   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 835   if (unaligned) {
 836     load->set_unaligned_access();
 837   }
 838   if (mismatched) {
 839     load->set_mismatched_access();
 840   }
 841   return load;
 842 }
 843 
 844 
 845 
 846 //------------------------------hash-------------------------------------------
 847 uint LoadNode::hash() const {
 848   // unroll addition of interesting fields
 849   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 850 }
 851 
 852 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 853   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 854     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 855     bool is_stable_ary = FoldStableValues &&
 856                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 857                          tp->isa_aryptr()->is_stable();
 858 
 859     return (eliminate_boxing && non_volatile) || is_stable_ary;
 860   }
 861 
 862   return false;
 863 }
 864 
 865 // Is the value loaded previously stored by an arraycopy? If so return
 866 // a load node that reads from the source array so we may be able to
 867 // optimize out the ArrayCopy node later.
 868 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseTransform* phase) const {
 869   Node* ld_adr = in(MemNode::Address);
 870   intptr_t ld_off = 0;
 871   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 872   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 873   if (ac != NULL) {
 874     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 875 
 876     Node* ld = clone();
 877     if (ac->as_ArrayCopy()->is_clonebasic()) {
 878       assert(ld_alloc != NULL, "need an alloc");
 879       Node* addp = in(MemNode::Address)->clone();
 880       assert(addp->is_AddP(), "address must be addp");
 881       assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
 882       assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
 883       addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src)->in(AddPNode::Base));
 884       addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src)->in(AddPNode::Address));
 885       ld->set_req(MemNode::Address, phase->transform(addp));
 886       if (in(0) != NULL) {
 887         assert(ld_alloc->in(0) != NULL, "alloc must have control");
 888         ld->set_req(0, ld_alloc->in(0));
 889       }
 890     } else {
 891       Node* addp = in(MemNode::Address)->clone();
 892       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 893       addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src));
 894       addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src));
 895 
 896       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 897       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 898       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 899       uint shift  = exact_log2(type2aelembytes(ary_elem));
 900 
 901       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 902 #ifdef _LP64
 903       diff = phase->transform(new ConvI2LNode(diff));
 904 #endif
 905       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 906 
 907       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 908       addp->set_req(AddPNode::Offset, offset);
 909       ld->set_req(MemNode::Address, phase->transform(addp));
 910 
 911       if (in(0) != NULL) {
 912         assert(ac->in(0) != NULL, "alloc must have control");
 913         ld->set_req(0, ac->in(0));
 914       }
 915     }
 916     // load depends on the tests that validate the arraycopy
 917     ld->as_Load()->_control_dependency = Pinned;
 918     return ld;
 919   }
 920   return NULL;
 921 }
 922 
 923 
 924 //---------------------------can_see_stored_value------------------------------
 925 // This routine exists to make sure this set of tests is done the same
 926 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 927 // will change the graph shape in a way which makes memory alive twice at the
 928 // same time (uses the Oracle model of aliasing), then some
 929 // LoadXNode::Identity will fold things back to the equivalence-class model
 930 // of aliasing.
 931 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 932   Node* ld_adr = in(MemNode::Address);
 933   intptr_t ld_off = 0;
 934   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 935   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 936   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 937   // This is more general than load from boxing objects.
 938   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 939     uint alias_idx = atp->index();
 940     bool final = !atp->is_rewritable();
 941     Node* result = NULL;
 942     Node* current = st;
 943     // Skip through chains of MemBarNodes checking the MergeMems for
 944     // new states for the slice of this load.  Stop once any other
 945     // kind of node is encountered.  Loads from final memory can skip
 946     // through any kind of MemBar but normal loads shouldn't skip
 947     // through MemBarAcquire since the could allow them to move out of
 948     // a synchronized region.
 949     while (current->is_Proj()) {
 950       int opc = current->in(0)->Opcode();
 951       if ((final && (opc == Op_MemBarAcquire ||
 952                      opc == Op_MemBarAcquireLock ||
 953                      opc == Op_LoadFence)) ||
 954           opc == Op_MemBarRelease ||
 955           opc == Op_StoreFence ||
 956           opc == Op_MemBarReleaseLock ||
 957           opc == Op_MemBarStoreStore ||
 958           opc == Op_MemBarCPUOrder) {
 959         Node* mem = current->in(0)->in(TypeFunc::Memory);
 960         if (mem->is_MergeMem()) {
 961           MergeMemNode* merge = mem->as_MergeMem();
 962           Node* new_st = merge->memory_at(alias_idx);
 963           if (new_st == merge->base_memory()) {
 964             // Keep searching
 965             current = new_st;
 966             continue;
 967           }
 968           // Save the new memory state for the slice and fall through
 969           // to exit.
 970           result = new_st;
 971         }
 972       }
 973       break;
 974     }
 975     if (result != NULL) {
 976       st = result;
 977     }
 978   }
 979 
 980   // Loop around twice in the case Load -> Initialize -> Store.
 981   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 982   for (int trip = 0; trip <= 1; trip++) {
 983 
 984     if (st->is_Store()) {
 985       Node* st_adr = st->in(MemNode::Address);
 986       if (!phase->eqv(st_adr, ld_adr)) {
 987         // Try harder before giving up...  Match raw and non-raw pointers.
 988         intptr_t st_off = 0;
 989         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 990         if (alloc == NULL)       return NULL;
 991         if (alloc != ld_alloc)   return NULL;
 992         if (ld_off != st_off)    return NULL;
 993         // At this point we have proven something like this setup:
 994         //  A = Allocate(...)
 995         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 996         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 997         // (Actually, we haven't yet proven the Q's are the same.)
 998         // In other words, we are loading from a casted version of
 999         // the same pointer-and-offset that we stored to.
1000         // Thus, we are able to replace L by V.
1001       }
1002       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1003       if (store_Opcode() != st->Opcode())
1004         return NULL;
1005       return st->in(MemNode::ValueIn);
1006     }
1007 
1008     // A load from a freshly-created object always returns zero.
1009     // (This can happen after LoadNode::Ideal resets the load's memory input
1010     // to find_captured_store, which returned InitializeNode::zero_memory.)
1011     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1012         (st->in(0) == ld_alloc) &&
1013         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1014       // return a zero value for the load's basic type
1015       // (This is one of the few places where a generic PhaseTransform
1016       // can create new nodes.  Think of it as lazily manifesting
1017       // virtually pre-existing constants.)
1018       return phase->zerocon(memory_type());
1019     }
1020 
1021     // A load from an initialization barrier can match a captured store.
1022     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1023       InitializeNode* init = st->in(0)->as_Initialize();
1024       AllocateNode* alloc = init->allocation();
1025       if ((alloc != NULL) && (alloc == ld_alloc)) {
1026         // examine a captured store value
1027         st = init->find_captured_store(ld_off, memory_size(), phase);
1028         if (st != NULL) {
1029           continue;             // take one more trip around
1030         }
1031       }
1032     }
1033 
1034     // Load boxed value from result of valueOf() call is input parameter.
1035     if (this->is_Load() && ld_adr->is_AddP() &&
1036         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1037       intptr_t ignore = 0;
1038       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1039       if (base != NULL && base->is_Proj() &&
1040           base->as_Proj()->_con == TypeFunc::Parms &&
1041           base->in(0)->is_CallStaticJava() &&
1042           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1043         return base->in(0)->in(TypeFunc::Parms);
1044       }
1045     }
1046 
1047     break;
1048   }
1049 
1050   return NULL;
1051 }
1052 
1053 //----------------------is_instance_field_load_with_local_phi------------------
1054 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1055   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1056       in(Address)->is_AddP() ) {
1057     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1058     // Only instances and boxed values.
1059     if( t_oop != NULL &&
1060         (t_oop->is_ptr_to_boxed_value() ||
1061          t_oop->is_known_instance_field()) &&
1062         t_oop->offset() != Type::OffsetBot &&
1063         t_oop->offset() != Type::OffsetTop) {
1064       return true;
1065     }
1066   }
1067   return false;
1068 }
1069 
1070 //------------------------------Identity---------------------------------------
1071 // Loads are identity if previous store is to same address
1072 Node* LoadNode::Identity(PhaseGVN* phase) {
1073   // If the previous store-maker is the right kind of Store, and the store is
1074   // to the same address, then we are equal to the value stored.
1075   Node* mem = in(Memory);
1076   Node* value = can_see_stored_value(mem, phase);
1077   if( value ) {
1078     // byte, short & char stores truncate naturally.
1079     // A load has to load the truncated value which requires
1080     // some sort of masking operation and that requires an
1081     // Ideal call instead of an Identity call.
1082     if (memory_size() < BytesPerInt) {
1083       // If the input to the store does not fit with the load's result type,
1084       // it must be truncated via an Ideal call.
1085       if (!phase->type(value)->higher_equal(phase->type(this)))
1086         return this;
1087     }
1088     // (This works even when value is a Con, but LoadNode::Value
1089     // usually runs first, producing the singleton type of the Con.)
1090     return value;
1091   }
1092 
1093   // Search for an existing data phi which was generated before for the same
1094   // instance's field to avoid infinite generation of phis in a loop.
1095   Node *region = mem->in(0);
1096   if (is_instance_field_load_with_local_phi(region)) {
1097     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1098     int this_index  = phase->C->get_alias_index(addr_t);
1099     int this_offset = addr_t->offset();
1100     int this_iid    = addr_t->instance_id();
1101     if (!addr_t->is_known_instance() &&
1102          addr_t->is_ptr_to_boxed_value()) {
1103       // Use _idx of address base (could be Phi node) for boxed values.
1104       intptr_t   ignore = 0;
1105       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1106       this_iid = base->_idx;
1107     }
1108     const Type* this_type = bottom_type();
1109     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1110       Node* phi = region->fast_out(i);
1111       if (phi->is_Phi() && phi != mem &&
1112           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1113         return phi;
1114       }
1115     }
1116   }
1117 
1118   return this;
1119 }
1120 
1121 // Construct an equivalent unsigned load.
1122 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1123   BasicType bt = T_ILLEGAL;
1124   const Type* rt = NULL;
1125   switch (Opcode()) {
1126     case Op_LoadUB: return this;
1127     case Op_LoadUS: return this;
1128     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1129     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1130     default:
1131       assert(false, "no unsigned variant");
1132       return NULL;
1133   }
1134   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1135                         adr_type(), rt, bt, _mo, _control_dependency,
1136                         is_unaligned_access(), is_mismatched_access());
1137 }
1138 
1139 // Construct an equivalent signed load.
1140 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1141   BasicType bt = T_ILLEGAL;
1142   const Type* rt = NULL;
1143   switch (Opcode()) {
1144     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1145     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1146     default:
1147       return this; // All other loads are signed.
1148   }
1149   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1150                         adr_type(), rt, bt, _mo, _control_dependency,
1151                         is_unaligned_access(), is_mismatched_access());
1152 }
1153 
1154 // We're loading from an object which has autobox behaviour.
1155 // If this object is result of a valueOf call we'll have a phi
1156 // merging a newly allocated object and a load from the cache.
1157 // We want to replace this load with the original incoming
1158 // argument to the valueOf call.
1159 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1160   assert(phase->C->eliminate_boxing(), "sanity");
1161   intptr_t ignore = 0;
1162   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1163   if ((base == NULL) || base->is_Phi()) {
1164     // Push the loads from the phi that comes from valueOf up
1165     // through it to allow elimination of the loads and the recovery
1166     // of the original value. It is done in split_through_phi().
1167     return NULL;
1168   } else if (base->is_Load() ||
1169              base->is_DecodeN() && base->in(1)->is_Load()) {
1170     // Eliminate the load of boxed value for integer types from the cache
1171     // array by deriving the value from the index into the array.
1172     // Capture the offset of the load and then reverse the computation.
1173 
1174     // Get LoadN node which loads a boxing object from 'cache' array.
1175     if (base->is_DecodeN()) {
1176       base = base->in(1);
1177     }
1178     if (!base->in(Address)->is_AddP()) {
1179       return NULL; // Complex address
1180     }
1181     AddPNode* address = base->in(Address)->as_AddP();
1182     Node* cache_base = address->in(AddPNode::Base);
1183     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1184       // Get ConP node which is static 'cache' field.
1185       cache_base = cache_base->in(1);
1186     }
1187     if ((cache_base != NULL) && cache_base->is_Con()) {
1188       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1189       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1190         Node* elements[4];
1191         int shift = exact_log2(type2aelembytes(T_OBJECT));
1192         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1193         if ((count >  0) && elements[0]->is_Con() &&
1194             ((count == 1) ||
1195              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1196                              elements[1]->in(2) == phase->intcon(shift))) {
1197           ciObjArray* array = base_type->const_oop()->as_obj_array();
1198           // Fetch the box object cache[0] at the base of the array and get its value
1199           ciInstance* box = array->obj_at(0)->as_instance();
1200           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1201           assert(ik->is_box_klass(), "sanity");
1202           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1203           if (ik->nof_nonstatic_fields() == 1) {
1204             // This should be true nonstatic_field_at requires calling
1205             // nof_nonstatic_fields so check it anyway
1206             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1207             BasicType bt = c.basic_type();
1208             // Only integer types have boxing cache.
1209             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1210                    bt == T_BYTE    || bt == T_SHORT ||
1211                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1212             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1213             if (cache_low != (int)cache_low) {
1214               return NULL; // should not happen since cache is array indexed by value
1215             }
1216             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1217             if (offset != (int)offset) {
1218               return NULL; // should not happen since cache is array indexed by value
1219             }
1220            // Add up all the offsets making of the address of the load
1221             Node* result = elements[0];
1222             for (int i = 1; i < count; i++) {
1223               result = phase->transform(new AddXNode(result, elements[i]));
1224             }
1225             // Remove the constant offset from the address and then
1226             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1227             // remove the scaling of the offset to recover the original index.
1228             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1229               // Peel the shift off directly but wrap it in a dummy node
1230               // since Ideal can't return existing nodes
1231               result = new RShiftXNode(result->in(1), phase->intcon(0));
1232             } else if (result->is_Add() && result->in(2)->is_Con() &&
1233                        result->in(1)->Opcode() == Op_LShiftX &&
1234                        result->in(1)->in(2) == phase->intcon(shift)) {
1235               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1236               // but for boxing cache access we know that X<<Z will not overflow
1237               // (there is range check) so we do this optimizatrion by hand here.
1238               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1239               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1240             } else {
1241               result = new RShiftXNode(result, phase->intcon(shift));
1242             }
1243 #ifdef _LP64
1244             if (bt != T_LONG) {
1245               result = new ConvL2INode(phase->transform(result));
1246             }
1247 #else
1248             if (bt == T_LONG) {
1249               result = new ConvI2LNode(phase->transform(result));
1250             }
1251 #endif
1252             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1253             // Need to preserve unboxing load type if it is unsigned.
1254             switch(this->Opcode()) {
1255               case Op_LoadUB:
1256                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1257                 break;
1258               case Op_LoadUS:
1259                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1260                 break;
1261             }
1262             return result;
1263           }
1264         }
1265       }
1266     }
1267   }
1268   return NULL;
1269 }
1270 
1271 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1272   Node* region = phi->in(0);
1273   if (region == NULL) {
1274     return false; // Wait stable graph
1275   }
1276   uint cnt = phi->req();
1277   for (uint i = 1; i < cnt; i++) {
1278     Node* rc = region->in(i);
1279     if (rc == NULL || phase->type(rc) == Type::TOP)
1280       return false; // Wait stable graph
1281     Node* in = phi->in(i);
1282     if (in == NULL || phase->type(in) == Type::TOP)
1283       return false; // Wait stable graph
1284   }
1285   return true;
1286 }
1287 //------------------------------split_through_phi------------------------------
1288 // Split instance or boxed field load through Phi.
1289 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1290   Node* mem     = in(Memory);
1291   Node* address = in(Address);
1292   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1293 
1294   assert((t_oop != NULL) &&
1295          (t_oop->is_known_instance_field() ||
1296           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1297 
1298   Compile* C = phase->C;
1299   intptr_t ignore = 0;
1300   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1301   bool base_is_phi = (base != NULL) && base->is_Phi();
1302   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1303                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1304                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1305 
1306   if (!((mem->is_Phi() || base_is_phi) &&
1307         (load_boxed_values || t_oop->is_known_instance_field()))) {
1308     return NULL; // memory is not Phi
1309   }
1310 
1311   if (mem->is_Phi()) {
1312     if (!stable_phi(mem->as_Phi(), phase)) {
1313       return NULL; // Wait stable graph
1314     }
1315     uint cnt = mem->req();
1316     // Check for loop invariant memory.
1317     if (cnt == 3) {
1318       for (uint i = 1; i < cnt; i++) {
1319         Node* in = mem->in(i);
1320         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1321         if (m == mem) {
1322           set_req(Memory, mem->in(cnt - i));
1323           return this; // made change
1324         }
1325       }
1326     }
1327   }
1328   if (base_is_phi) {
1329     if (!stable_phi(base->as_Phi(), phase)) {
1330       return NULL; // Wait stable graph
1331     }
1332     uint cnt = base->req();
1333     // Check for loop invariant memory.
1334     if (cnt == 3) {
1335       for (uint i = 1; i < cnt; i++) {
1336         if (base->in(i) == base) {
1337           return NULL; // Wait stable graph
1338         }
1339       }
1340     }
1341   }
1342 
1343   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1344 
1345   // Split through Phi (see original code in loopopts.cpp).
1346   assert(C->have_alias_type(t_oop), "instance should have alias type");
1347 
1348   // Do nothing here if Identity will find a value
1349   // (to avoid infinite chain of value phis generation).
1350   if (!phase->eqv(this, this->Identity(phase)))
1351     return NULL;
1352 
1353   // Select Region to split through.
1354   Node* region;
1355   if (!base_is_phi) {
1356     assert(mem->is_Phi(), "sanity");
1357     region = mem->in(0);
1358     // Skip if the region dominates some control edge of the address.
1359     if (!MemNode::all_controls_dominate(address, region))
1360       return NULL;
1361   } else if (!mem->is_Phi()) {
1362     assert(base_is_phi, "sanity");
1363     region = base->in(0);
1364     // Skip if the region dominates some control edge of the memory.
1365     if (!MemNode::all_controls_dominate(mem, region))
1366       return NULL;
1367   } else if (base->in(0) != mem->in(0)) {
1368     assert(base_is_phi && mem->is_Phi(), "sanity");
1369     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1370       region = base->in(0);
1371     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1372       region = mem->in(0);
1373     } else {
1374       return NULL; // complex graph
1375     }
1376   } else {
1377     assert(base->in(0) == mem->in(0), "sanity");
1378     region = mem->in(0);
1379   }
1380 
1381   const Type* this_type = this->bottom_type();
1382   int this_index  = C->get_alias_index(t_oop);
1383   int this_offset = t_oop->offset();
1384   int this_iid    = t_oop->instance_id();
1385   if (!t_oop->is_known_instance() && load_boxed_values) {
1386     // Use _idx of address base for boxed values.
1387     this_iid = base->_idx;
1388   }
1389   PhaseIterGVN* igvn = phase->is_IterGVN();
1390   Node* phi = new PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1391   for (uint i = 1; i < region->req(); i++) {
1392     Node* x;
1393     Node* the_clone = NULL;
1394     if (region->in(i) == C->top()) {
1395       x = C->top();      // Dead path?  Use a dead data op
1396     } else {
1397       x = this->clone();        // Else clone up the data op
1398       the_clone = x;            // Remember for possible deletion.
1399       // Alter data node to use pre-phi inputs
1400       if (this->in(0) == region) {
1401         x->set_req(0, region->in(i));
1402       } else {
1403         x->set_req(0, NULL);
1404       }
1405       if (mem->is_Phi() && (mem->in(0) == region)) {
1406         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1407       }
1408       if (address->is_Phi() && address->in(0) == region) {
1409         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1410       }
1411       if (base_is_phi && (base->in(0) == region)) {
1412         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1413         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1414         x->set_req(Address, adr_x);
1415       }
1416     }
1417     // Check for a 'win' on some paths
1418     const Type *t = x->Value(igvn);
1419 
1420     bool singleton = t->singleton();
1421 
1422     // See comments in PhaseIdealLoop::split_thru_phi().
1423     if (singleton && t == Type::TOP) {
1424       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1425     }
1426 
1427     if (singleton) {
1428       x = igvn->makecon(t);
1429     } else {
1430       // We now call Identity to try to simplify the cloned node.
1431       // Note that some Identity methods call phase->type(this).
1432       // Make sure that the type array is big enough for
1433       // our new node, even though we may throw the node away.
1434       // (This tweaking with igvn only works because x is a new node.)
1435       igvn->set_type(x, t);
1436       // If x is a TypeNode, capture any more-precise type permanently into Node
1437       // otherwise it will be not updated during igvn->transform since
1438       // igvn->type(x) is set to x->Value() already.
1439       x->raise_bottom_type(t);
1440       Node *y = x->Identity(igvn);
1441       if (y != x) {
1442         x = y;
1443       } else {
1444         y = igvn->hash_find_insert(x);
1445         if (y) {
1446           x = y;
1447         } else {
1448           // Else x is a new node we are keeping
1449           // We do not need register_new_node_with_optimizer
1450           // because set_type has already been called.
1451           igvn->_worklist.push(x);
1452         }
1453       }
1454     }
1455     if (x != the_clone && the_clone != NULL) {
1456       igvn->remove_dead_node(the_clone);
1457     }
1458     phi->set_req(i, x);
1459   }
1460   // Record Phi
1461   igvn->register_new_node_with_optimizer(phi);
1462   return phi;
1463 }
1464 
1465 //------------------------------Ideal------------------------------------------
1466 // If the load is from Field memory and the pointer is non-null, it might be possible to
1467 // zero out the control input.
1468 // If the offset is constant and the base is an object allocation,
1469 // try to hook me up to the exact initializing store.
1470 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1471   Node* p = MemNode::Ideal_common(phase, can_reshape);
1472   if (p)  return (p == NodeSentinel) ? NULL : p;
1473 
1474   Node* ctrl    = in(MemNode::Control);
1475   Node* address = in(MemNode::Address);
1476   bool progress = false;
1477 
1478   // Skip up past a SafePoint control.  Cannot do this for Stores because
1479   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1480   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1481       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1482     ctrl = ctrl->in(0);
1483     set_req(MemNode::Control,ctrl);
1484     progress = true;
1485   }
1486 
1487   intptr_t ignore = 0;
1488   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1489   if (base != NULL
1490       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1491     // Check for useless control edge in some common special cases
1492     if (in(MemNode::Control) != NULL
1493         && can_remove_control()
1494         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1495         && all_controls_dominate(base, phase->C->start())) {
1496       // A method-invariant, non-null address (constant or 'this' argument).
1497       set_req(MemNode::Control, NULL);
1498       progress = true;
1499     }
1500   }
1501 
1502   Node* mem = in(MemNode::Memory);
1503   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1504 
1505   if (can_reshape && (addr_t != NULL)) {
1506     // try to optimize our memory input
1507     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1508     if (opt_mem != mem) {
1509       set_req(MemNode::Memory, opt_mem);
1510       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1511       return this;
1512     }
1513     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1514     if ((t_oop != NULL) &&
1515         (t_oop->is_known_instance_field() ||
1516          t_oop->is_ptr_to_boxed_value())) {
1517       PhaseIterGVN *igvn = phase->is_IterGVN();
1518       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1519         // Delay this transformation until memory Phi is processed.
1520         phase->is_IterGVN()->_worklist.push(this);
1521         return NULL;
1522       }
1523       // Split instance field load through Phi.
1524       Node* result = split_through_phi(phase);
1525       if (result != NULL) return result;
1526 
1527       if (t_oop->is_ptr_to_boxed_value()) {
1528         Node* result = eliminate_autobox(phase);
1529         if (result != NULL) return result;
1530       }
1531     }
1532   }
1533 
1534   // Is there a dominating load that loads the same value?  Leave
1535   // anything that is not a load of a field/array element (like
1536   // barriers etc.) alone
1537   if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1538     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1539       Node *use = mem->fast_out(i);
1540       if (use != this &&
1541           use->Opcode() == Opcode() &&
1542           use->in(0) != NULL &&
1543           use->in(0) != in(0) &&
1544           use->in(Address) == in(Address)) {
1545         Node* ctl = in(0);
1546         for (int i = 0; i < 10 && ctl != NULL; i++) {
1547           ctl = IfNode::up_one_dom(ctl);
1548           if (ctl == use->in(0)) {
1549             set_req(0, use->in(0));
1550             return this;
1551           }
1552         }
1553       }
1554     }
1555   }
1556 
1557   // Check for prior store with a different base or offset; make Load
1558   // independent.  Skip through any number of them.  Bail out if the stores
1559   // are in an endless dead cycle and report no progress.  This is a key
1560   // transform for Reflection.  However, if after skipping through the Stores
1561   // we can't then fold up against a prior store do NOT do the transform as
1562   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1563   // array memory alive twice: once for the hoisted Load and again after the
1564   // bypassed Store.  This situation only works if EVERYBODY who does
1565   // anti-dependence work knows how to bypass.  I.e. we need all
1566   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1567   // the alias index stuff.  So instead, peek through Stores and IFF we can
1568   // fold up, do so.
1569   Node* prev_mem = find_previous_store(phase);
1570   if (prev_mem != NULL) {
1571     Node* value = can_see_arraycopy_value(prev_mem, phase);
1572     if (value != NULL) {
1573       return value;
1574     }
1575   }
1576   // Steps (a), (b):  Walk past independent stores to find an exact match.
1577   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1578     // (c) See if we can fold up on the spot, but don't fold up here.
1579     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1580     // just return a prior value, which is done by Identity calls.
1581     if (can_see_stored_value(prev_mem, phase)) {
1582       // Make ready for step (d):
1583       set_req(MemNode::Memory, prev_mem);
1584       return this;
1585     }
1586   }
1587 
1588   return progress ? this : NULL;
1589 }
1590 
1591 // Helper to recognize certain Klass fields which are invariant across
1592 // some group of array types (e.g., int[] or all T[] where T < Object).
1593 const Type*
1594 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1595                                  ciKlass* klass) const {
1596   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1597     // The field is Klass::_modifier_flags.  Return its (constant) value.
1598     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1599     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1600     return TypeInt::make(klass->modifier_flags());
1601   }
1602   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1603     // The field is Klass::_access_flags.  Return its (constant) value.
1604     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1605     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1606     return TypeInt::make(klass->access_flags());
1607   }
1608   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1609     // The field is Klass::_layout_helper.  Return its constant value if known.
1610     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1611     return TypeInt::make(klass->layout_helper());
1612   }
1613 
1614   // No match.
1615   return NULL;
1616 }
1617 
1618 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
1619   BasicType conbt = con.basic_type();
1620   switch (conbt) {
1621     case T_BOOLEAN: conbt = T_BYTE;   break;
1622     case T_ARRAY:   conbt = T_OBJECT; break;
1623   }
1624   switch (loadbt) {
1625     case T_BOOLEAN:   loadbt = T_BYTE;   break;
1626     case T_NARROWOOP: loadbt = T_OBJECT; break;
1627     case T_ARRAY:     loadbt = T_OBJECT; break;
1628     case T_ADDRESS:   loadbt = T_OBJECT; break;
1629   }
1630   if (conbt == loadbt) {
1631     if (is_unsigned && conbt == T_BYTE) {
1632       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
1633       return ciConstant(T_INT, con.as_int() & 0xFF);
1634     } else {
1635       return con;
1636     }
1637   }
1638   if (conbt == T_SHORT && loadbt == T_CHAR) {
1639     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
1640     return ciConstant(T_INT, con.as_int() & 0xFFFF);
1641   }
1642   return ciConstant(); // T_ILLEGAL
1643 }
1644 
1645 // Try to constant-fold a stable array element.
1646 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, bool is_unsigned_load, BasicType loadbt) {
1647   assert(ary->const_oop(), "array should be constant");
1648   assert(ary->is_stable(), "array should be stable");
1649 
1650   // Decode the results of GraphKit::array_element_address.
1651   ciArray* aobj = ary->const_oop()->as_array();
1652   ciConstant element_value = aobj->element_value_by_offset(off);
1653   if (element_value.basic_type() == T_ILLEGAL) {
1654     return NULL; // wrong offset
1655   }
1656   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
1657   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
1658          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
1659 
1660   if (con.basic_type() != T_ILLEGAL && // not a mismatched access
1661       !con.is_null_or_zero()) {        // not a default value
1662     const Type* con_type = Type::make_from_constant(con);
1663     if (con_type != NULL) {
1664       if (con_type->isa_aryptr()) {
1665         // Join with the array element type, in case it is also stable.
1666         int dim = ary->stable_dimension();
1667         con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1668       }
1669       if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1670         con_type = con_type->make_narrowoop();
1671       }
1672 #ifndef PRODUCT
1673       if (TraceIterativeGVN) {
1674         tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1675         con_type->dump(); tty->cr();
1676       }
1677 #endif //PRODUCT
1678       return con_type;
1679     }
1680   }
1681   return NULL;
1682 }
1683 
1684 //------------------------------Value-----------------------------------------
1685 const Type* LoadNode::Value(PhaseGVN* phase) const {
1686   // Either input is TOP ==> the result is TOP
1687   Node* mem = in(MemNode::Memory);
1688   const Type *t1 = phase->type(mem);
1689   if (t1 == Type::TOP)  return Type::TOP;
1690   Node* adr = in(MemNode::Address);
1691   const TypePtr* tp = phase->type(adr)->isa_ptr();
1692   if (tp == NULL || tp->empty())  return Type::TOP;
1693   int off = tp->offset();
1694   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1695   Compile* C = phase->C;
1696 
1697   // Try to guess loaded type from pointer type
1698   if (tp->isa_aryptr()) {
1699     const TypeAryPtr* ary = tp->is_aryptr();
1700     const Type* t = ary->elem();
1701 
1702     // Determine whether the reference is beyond the header or not, by comparing
1703     // the offset against the offset of the start of the array's data.
1704     // Different array types begin at slightly different offsets (12 vs. 16).
1705     // We choose T_BYTE as an example base type that is least restrictive
1706     // as to alignment, which will therefore produce the smallest
1707     // possible base offset.
1708     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1709     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1710 
1711     // Try to constant-fold a stable array element.
1712     if (FoldStableValues && !is_mismatched_access() && ary->is_stable() && ary->const_oop() != NULL) {
1713       // Make sure the reference is not into the header and the offset is constant
1714       if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1715         const Type* con_type = fold_stable_ary_elem(ary, off, is_unsigned(), memory_type());
1716         if (con_type != NULL) {
1717           return con_type;
1718         }
1719       }
1720     }
1721 
1722     // Don't do this for integer types. There is only potential profit if
1723     // the element type t is lower than _type; that is, for int types, if _type is
1724     // more restrictive than t.  This only happens here if one is short and the other
1725     // char (both 16 bits), and in those cases we've made an intentional decision
1726     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1727     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1728     //
1729     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1730     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1731     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1732     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1733     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1734     // In fact, that could have been the original type of p1, and p1 could have
1735     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1736     // expression (LShiftL quux 3) independently optimized to the constant 8.
1737     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1738         && (_type->isa_vect() == NULL)
1739         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1740       // t might actually be lower than _type, if _type is a unique
1741       // concrete subclass of abstract class t.
1742       if (off_beyond_header) {  // is the offset beyond the header?
1743         const Type* jt = t->join_speculative(_type);
1744         // In any case, do not allow the join, per se, to empty out the type.
1745         if (jt->empty() && !t->empty()) {
1746           // This can happen if a interface-typed array narrows to a class type.
1747           jt = _type;
1748         }
1749 #ifdef ASSERT
1750         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1751           // The pointers in the autobox arrays are always non-null
1752           Node* base = adr->in(AddPNode::Base);
1753           if ((base != NULL) && base->is_DecodeN()) {
1754             // Get LoadN node which loads IntegerCache.cache field
1755             base = base->in(1);
1756           }
1757           if ((base != NULL) && base->is_Con()) {
1758             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1759             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1760               // It could be narrow oop
1761               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1762             }
1763           }
1764         }
1765 #endif
1766         return jt;
1767       }
1768     }
1769   } else if (tp->base() == Type::InstPtr) {
1770     ciEnv* env = C->env();
1771     const TypeInstPtr* tinst = tp->is_instptr();
1772     ciKlass* klass = tinst->klass();
1773     assert( off != Type::OffsetBot ||
1774             // arrays can be cast to Objects
1775             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1776             // unsafe field access may not have a constant offset
1777             C->has_unsafe_access(),
1778             "Field accesses must be precise" );
1779     // For oop loads, we expect the _type to be precise.
1780     // Optimizations for constant objects
1781     ciObject* const_oop = tinst->const_oop();
1782     if (const_oop != NULL) {
1783       // For constant CallSites treat the target field as a compile time constant.
1784       if (const_oop->is_call_site()) {
1785         ciCallSite* call_site = const_oop->as_call_site();
1786         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1787         if (field != NULL && field->is_call_site_target()) {
1788           ciMethodHandle* target = call_site->get_target();
1789           if (target != NULL) {  // just in case
1790             ciConstant constant(T_OBJECT, target);
1791             const Type* t;
1792             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1793               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1794             } else {
1795               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1796             }
1797             // Add a dependence for invalidation of the optimization.
1798             if (!call_site->is_constant_call_site()) {
1799               C->dependencies()->assert_call_site_target_value(call_site, target);
1800             }
1801             return t;
1802           }
1803         }
1804       }
1805     }
1806   } else if (tp->base() == Type::KlassPtr) {
1807     assert( off != Type::OffsetBot ||
1808             // arrays can be cast to Objects
1809             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1810             // also allow array-loading from the primary supertype
1811             // array during subtype checks
1812             Opcode() == Op_LoadKlass,
1813             "Field accesses must be precise" );
1814     // For klass/static loads, we expect the _type to be precise
1815   }
1816 
1817   const TypeKlassPtr *tkls = tp->isa_klassptr();
1818   if (tkls != NULL && !StressReflectiveCode) {
1819     ciKlass* klass = tkls->klass();
1820     if (klass->is_loaded() && tkls->klass_is_exact()) {
1821       // We are loading a field from a Klass metaobject whose identity
1822       // is known at compile time (the type is "exact" or "precise").
1823       // Check for fields we know are maintained as constants by the VM.
1824       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1825         // The field is Klass::_super_check_offset.  Return its (constant) value.
1826         // (Folds up type checking code.)
1827         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1828         return TypeInt::make(klass->super_check_offset());
1829       }
1830       // Compute index into primary_supers array
1831       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1832       // Check for overflowing; use unsigned compare to handle the negative case.
1833       if( depth < ciKlass::primary_super_limit() ) {
1834         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1835         // (Folds up type checking code.)
1836         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1837         ciKlass *ss = klass->super_of_depth(depth);
1838         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1839       }
1840       const Type* aift = load_array_final_field(tkls, klass);
1841       if (aift != NULL)  return aift;
1842       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1843         // The field is Klass::_java_mirror.  Return its (constant) value.
1844         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1845         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1846         return TypeInstPtr::make(klass->java_mirror());
1847       }
1848     }
1849 
1850     // We can still check if we are loading from the primary_supers array at a
1851     // shallow enough depth.  Even though the klass is not exact, entries less
1852     // than or equal to its super depth are correct.
1853     if (klass->is_loaded() ) {
1854       ciType *inner = klass;
1855       while( inner->is_obj_array_klass() )
1856         inner = inner->as_obj_array_klass()->base_element_type();
1857       if( inner->is_instance_klass() &&
1858           !inner->as_instance_klass()->flags().is_interface() ) {
1859         // Compute index into primary_supers array
1860         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1861         // Check for overflowing; use unsigned compare to handle the negative case.
1862         if( depth < ciKlass::primary_super_limit() &&
1863             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1864           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1865           // (Folds up type checking code.)
1866           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1867           ciKlass *ss = klass->super_of_depth(depth);
1868           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1869         }
1870       }
1871     }
1872 
1873     // If the type is enough to determine that the thing is not an array,
1874     // we can give the layout_helper a positive interval type.
1875     // This will help short-circuit some reflective code.
1876     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1877         && !klass->is_array_klass() // not directly typed as an array
1878         && !klass->is_interface()  // specifically not Serializable & Cloneable
1879         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1880         ) {
1881       // Note:  When interfaces are reliable, we can narrow the interface
1882       // test to (klass != Serializable && klass != Cloneable).
1883       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1884       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1885       // The key property of this type is that it folds up tests
1886       // for array-ness, since it proves that the layout_helper is positive.
1887       // Thus, a generic value like the basic object layout helper works fine.
1888       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1889     }
1890   }
1891 
1892   // If we are loading from a freshly-allocated object, produce a zero,
1893   // if the load is provably beyond the header of the object.
1894   // (Also allow a variable load from a fresh array to produce zero.)
1895   const TypeOopPtr *tinst = tp->isa_oopptr();
1896   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1897   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1898   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1899     Node* value = can_see_stored_value(mem,phase);
1900     if (value != NULL && value->is_Con()) {
1901       assert(value->bottom_type()->higher_equal(_type),"sanity");
1902       return value->bottom_type();
1903     }
1904   }
1905 
1906   if (is_instance) {
1907     // If we have an instance type and our memory input is the
1908     // programs's initial memory state, there is no matching store,
1909     // so just return a zero of the appropriate type
1910     Node *mem = in(MemNode::Memory);
1911     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1912       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1913       return Type::get_zero_type(_type->basic_type());
1914     }
1915   }
1916   return _type;
1917 }
1918 
1919 //------------------------------match_edge-------------------------------------
1920 // Do we Match on this edge index or not?  Match only the address.
1921 uint LoadNode::match_edge(uint idx) const {
1922   return idx == MemNode::Address;
1923 }
1924 
1925 //--------------------------LoadBNode::Ideal--------------------------------------
1926 //
1927 //  If the previous store is to the same address as this load,
1928 //  and the value stored was larger than a byte, replace this load
1929 //  with the value stored truncated to a byte.  If no truncation is
1930 //  needed, the replacement is done in LoadNode::Identity().
1931 //
1932 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1933   Node* mem = in(MemNode::Memory);
1934   Node* value = can_see_stored_value(mem,phase);
1935   if( value && !phase->type(value)->higher_equal( _type ) ) {
1936     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1937     return new RShiftINode(result, phase->intcon(24));
1938   }
1939   // Identity call will handle the case where truncation is not needed.
1940   return LoadNode::Ideal(phase, can_reshape);
1941 }
1942 
1943 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1944   Node* mem = in(MemNode::Memory);
1945   Node* value = can_see_stored_value(mem,phase);
1946   if (value != NULL && value->is_Con() &&
1947       !value->bottom_type()->higher_equal(_type)) {
1948     // If the input to the store does not fit with the load's result type,
1949     // it must be truncated. We can't delay until Ideal call since
1950     // a singleton Value is needed for split_thru_phi optimization.
1951     int con = value->get_int();
1952     return TypeInt::make((con << 24) >> 24);
1953   }
1954   return LoadNode::Value(phase);
1955 }
1956 
1957 //--------------------------LoadUBNode::Ideal-------------------------------------
1958 //
1959 //  If the previous store is to the same address as this load,
1960 //  and the value stored was larger than a byte, replace this load
1961 //  with the value stored truncated to a byte.  If no truncation is
1962 //  needed, the replacement is done in LoadNode::Identity().
1963 //
1964 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1965   Node* mem = in(MemNode::Memory);
1966   Node* value = can_see_stored_value(mem, phase);
1967   if (value && !phase->type(value)->higher_equal(_type))
1968     return new AndINode(value, phase->intcon(0xFF));
1969   // Identity call will handle the case where truncation is not needed.
1970   return LoadNode::Ideal(phase, can_reshape);
1971 }
1972 
1973 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1974   Node* mem = in(MemNode::Memory);
1975   Node* value = can_see_stored_value(mem,phase);
1976   if (value != NULL && value->is_Con() &&
1977       !value->bottom_type()->higher_equal(_type)) {
1978     // If the input to the store does not fit with the load's result type,
1979     // it must be truncated. We can't delay until Ideal call since
1980     // a singleton Value is needed for split_thru_phi optimization.
1981     int con = value->get_int();
1982     return TypeInt::make(con & 0xFF);
1983   }
1984   return LoadNode::Value(phase);
1985 }
1986 
1987 //--------------------------LoadUSNode::Ideal-------------------------------------
1988 //
1989 //  If the previous store is to the same address as this load,
1990 //  and the value stored was larger than a char, replace this load
1991 //  with the value stored truncated to a char.  If no truncation is
1992 //  needed, the replacement is done in LoadNode::Identity().
1993 //
1994 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1995   Node* mem = in(MemNode::Memory);
1996   Node* value = can_see_stored_value(mem,phase);
1997   if( value && !phase->type(value)->higher_equal( _type ) )
1998     return new AndINode(value,phase->intcon(0xFFFF));
1999   // Identity call will handle the case where truncation is not needed.
2000   return LoadNode::Ideal(phase, can_reshape);
2001 }
2002 
2003 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2004   Node* mem = in(MemNode::Memory);
2005   Node* value = can_see_stored_value(mem,phase);
2006   if (value != NULL && value->is_Con() &&
2007       !value->bottom_type()->higher_equal(_type)) {
2008     // If the input to the store does not fit with the load's result type,
2009     // it must be truncated. We can't delay until Ideal call since
2010     // a singleton Value is needed for split_thru_phi optimization.
2011     int con = value->get_int();
2012     return TypeInt::make(con & 0xFFFF);
2013   }
2014   return LoadNode::Value(phase);
2015 }
2016 
2017 //--------------------------LoadSNode::Ideal--------------------------------------
2018 //
2019 //  If the previous store is to the same address as this load,
2020 //  and the value stored was larger than a short, replace this load
2021 //  with the value stored truncated to a short.  If no truncation is
2022 //  needed, the replacement is done in LoadNode::Identity().
2023 //
2024 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2025   Node* mem = in(MemNode::Memory);
2026   Node* value = can_see_stored_value(mem,phase);
2027   if( value && !phase->type(value)->higher_equal( _type ) ) {
2028     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2029     return new RShiftINode(result, phase->intcon(16));
2030   }
2031   // Identity call will handle the case where truncation is not needed.
2032   return LoadNode::Ideal(phase, can_reshape);
2033 }
2034 
2035 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2036   Node* mem = in(MemNode::Memory);
2037   Node* value = can_see_stored_value(mem,phase);
2038   if (value != NULL && value->is_Con() &&
2039       !value->bottom_type()->higher_equal(_type)) {
2040     // If the input to the store does not fit with the load's result type,
2041     // it must be truncated. We can't delay until Ideal call since
2042     // a singleton Value is needed for split_thru_phi optimization.
2043     int con = value->get_int();
2044     return TypeInt::make((con << 16) >> 16);
2045   }
2046   return LoadNode::Value(phase);
2047 }
2048 
2049 //=============================================================================
2050 //----------------------------LoadKlassNode::make------------------------------
2051 // Polymorphic factory method:
2052 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2053   // sanity check the alias category against the created node type
2054   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2055   assert(adr_type != NULL, "expecting TypeKlassPtr");
2056 #ifdef _LP64
2057   if (adr_type->is_ptr_to_narrowklass()) {
2058     assert(UseCompressedClassPointers, "no compressed klasses");
2059     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2060     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2061   }
2062 #endif
2063   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2064   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2065 }
2066 
2067 //------------------------------Value------------------------------------------
2068 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2069   return klass_value_common(phase);
2070 }
2071 
2072 // In most cases, LoadKlassNode does not have the control input set. If the control
2073 // input is set, it must not be removed (by LoadNode::Ideal()).
2074 bool LoadKlassNode::can_remove_control() const {
2075   return false;
2076 }
2077 
2078 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2079   // Either input is TOP ==> the result is TOP
2080   const Type *t1 = phase->type( in(MemNode::Memory) );
2081   if (t1 == Type::TOP)  return Type::TOP;
2082   Node *adr = in(MemNode::Address);
2083   const Type *t2 = phase->type( adr );
2084   if (t2 == Type::TOP)  return Type::TOP;
2085   const TypePtr *tp = t2->is_ptr();
2086   if (TypePtr::above_centerline(tp->ptr()) ||
2087       tp->ptr() == TypePtr::Null)  return Type::TOP;
2088 
2089   // Return a more precise klass, if possible
2090   const TypeInstPtr *tinst = tp->isa_instptr();
2091   if (tinst != NULL) {
2092     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2093     int offset = tinst->offset();
2094     if (ik == phase->C->env()->Class_klass()
2095         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2096             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2097       // We are loading a special hidden field from a Class mirror object,
2098       // the field which points to the VM's Klass metaobject.
2099       ciType* t = tinst->java_mirror_type();
2100       // java_mirror_type returns non-null for compile-time Class constants.
2101       if (t != NULL) {
2102         // constant oop => constant klass
2103         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2104           if (t->is_void()) {
2105             // We cannot create a void array.  Since void is a primitive type return null
2106             // klass.  Users of this result need to do a null check on the returned klass.
2107             return TypePtr::NULL_PTR;
2108           }
2109           return TypeKlassPtr::make(ciArrayKlass::make(t));
2110         }
2111         if (!t->is_klass()) {
2112           // a primitive Class (e.g., int.class) has NULL for a klass field
2113           return TypePtr::NULL_PTR;
2114         }
2115         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2116         return TypeKlassPtr::make(t->as_klass());
2117       }
2118       // non-constant mirror, so we can't tell what's going on
2119     }
2120     if( !ik->is_loaded() )
2121       return _type;             // Bail out if not loaded
2122     if (offset == oopDesc::klass_offset_in_bytes()) {
2123       if (tinst->klass_is_exact()) {
2124         return TypeKlassPtr::make(ik);
2125       }
2126       // See if we can become precise: no subklasses and no interface
2127       // (Note:  We need to support verified interfaces.)
2128       if (!ik->is_interface() && !ik->has_subklass()) {
2129         //assert(!UseExactTypes, "this code should be useless with exact types");
2130         // Add a dependence; if any subclass added we need to recompile
2131         if (!ik->is_final()) {
2132           // %%% should use stronger assert_unique_concrete_subtype instead
2133           phase->C->dependencies()->assert_leaf_type(ik);
2134         }
2135         // Return precise klass
2136         return TypeKlassPtr::make(ik);
2137       }
2138 
2139       // Return root of possible klass
2140       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2141     }
2142   }
2143 
2144   // Check for loading klass from an array
2145   const TypeAryPtr *tary = tp->isa_aryptr();
2146   if( tary != NULL ) {
2147     ciKlass *tary_klass = tary->klass();
2148     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2149         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2150       if (tary->klass_is_exact()) {
2151         return TypeKlassPtr::make(tary_klass);
2152       }
2153       ciArrayKlass *ak = tary->klass()->as_array_klass();
2154       // If the klass is an object array, we defer the question to the
2155       // array component klass.
2156       if( ak->is_obj_array_klass() ) {
2157         assert( ak->is_loaded(), "" );
2158         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2159         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2160           ciInstanceKlass* ik = base_k->as_instance_klass();
2161           // See if we can become precise: no subklasses and no interface
2162           if (!ik->is_interface() && !ik->has_subklass()) {
2163             //assert(!UseExactTypes, "this code should be useless with exact types");
2164             // Add a dependence; if any subclass added we need to recompile
2165             if (!ik->is_final()) {
2166               phase->C->dependencies()->assert_leaf_type(ik);
2167             }
2168             // Return precise array klass
2169             return TypeKlassPtr::make(ak);
2170           }
2171         }
2172         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2173       } else {                  // Found a type-array?
2174         //assert(!UseExactTypes, "this code should be useless with exact types");
2175         assert( ak->is_type_array_klass(), "" );
2176         return TypeKlassPtr::make(ak); // These are always precise
2177       }
2178     }
2179   }
2180 
2181   // Check for loading klass from an array klass
2182   const TypeKlassPtr *tkls = tp->isa_klassptr();
2183   if (tkls != NULL && !StressReflectiveCode) {
2184     ciKlass* klass = tkls->klass();
2185     if( !klass->is_loaded() )
2186       return _type;             // Bail out if not loaded
2187     if( klass->is_obj_array_klass() &&
2188         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2189       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2190       // // Always returning precise element type is incorrect,
2191       // // e.g., element type could be object and array may contain strings
2192       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2193 
2194       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2195       // according to the element type's subclassing.
2196       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2197     }
2198     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2199         tkls->offset() == in_bytes(Klass::super_offset())) {
2200       ciKlass* sup = klass->as_instance_klass()->super();
2201       // The field is Klass::_super.  Return its (constant) value.
2202       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2203       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2204     }
2205   }
2206 
2207   // Bailout case
2208   return LoadNode::Value(phase);
2209 }
2210 
2211 //------------------------------Identity---------------------------------------
2212 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2213 // Also feed through the klass in Allocate(...klass...)._klass.
2214 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2215   return klass_identity_common(phase);
2216 }
2217 
2218 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2219   Node* x = LoadNode::Identity(phase);
2220   if (x != this)  return x;
2221 
2222   // Take apart the address into an oop and and offset.
2223   // Return 'this' if we cannot.
2224   Node*    adr    = in(MemNode::Address);
2225   intptr_t offset = 0;
2226   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2227   if (base == NULL)     return this;
2228   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2229   if (toop == NULL)     return this;
2230 
2231   // We can fetch the klass directly through an AllocateNode.
2232   // This works even if the klass is not constant (clone or newArray).
2233   if (offset == oopDesc::klass_offset_in_bytes()) {
2234     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2235     if (allocated_klass != NULL) {
2236       return allocated_klass;
2237     }
2238   }
2239 
2240   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2241   // See inline_native_Class_query for occurrences of these patterns.
2242   // Java Example:  x.getClass().isAssignableFrom(y)
2243   //
2244   // This improves reflective code, often making the Class
2245   // mirror go completely dead.  (Current exception:  Class
2246   // mirrors may appear in debug info, but we could clean them out by
2247   // introducing a new debug info operator for Klass*.java_mirror).
2248   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2249       && offset == java_lang_Class::klass_offset_in_bytes()) {
2250     // We are loading a special hidden field from a Class mirror,
2251     // the field which points to its Klass or ArrayKlass metaobject.
2252     if (base->is_Load()) {
2253       Node* adr2 = base->in(MemNode::Address);
2254       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2255       if (tkls != NULL && !tkls->empty()
2256           && (tkls->klass()->is_instance_klass() ||
2257               tkls->klass()->is_array_klass())
2258           && adr2->is_AddP()
2259           ) {
2260         int mirror_field = in_bytes(Klass::java_mirror_offset());
2261         if (tkls->offset() == mirror_field) {
2262           return adr2->in(AddPNode::Base);
2263         }
2264       }
2265     }
2266   }
2267 
2268   return this;
2269 }
2270 
2271 
2272 //------------------------------Value------------------------------------------
2273 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2274   const Type *t = klass_value_common(phase);
2275   if (t == Type::TOP)
2276     return t;
2277 
2278   return t->make_narrowklass();
2279 }
2280 
2281 //------------------------------Identity---------------------------------------
2282 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2283 // Also feed through the klass in Allocate(...klass...)._klass.
2284 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2285   Node *x = klass_identity_common(phase);
2286 
2287   const Type *t = phase->type( x );
2288   if( t == Type::TOP ) return x;
2289   if( t->isa_narrowklass()) return x;
2290   assert (!t->isa_narrowoop(), "no narrow oop here");
2291 
2292   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2293 }
2294 
2295 //------------------------------Value-----------------------------------------
2296 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2297   // Either input is TOP ==> the result is TOP
2298   const Type *t1 = phase->type( in(MemNode::Memory) );
2299   if( t1 == Type::TOP ) return Type::TOP;
2300   Node *adr = in(MemNode::Address);
2301   const Type *t2 = phase->type( adr );
2302   if( t2 == Type::TOP ) return Type::TOP;
2303   const TypePtr *tp = t2->is_ptr();
2304   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2305   const TypeAryPtr *tap = tp->isa_aryptr();
2306   if( !tap ) return _type;
2307   return tap->size();
2308 }
2309 
2310 //-------------------------------Ideal---------------------------------------
2311 // Feed through the length in AllocateArray(...length...)._length.
2312 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2313   Node* p = MemNode::Ideal_common(phase, can_reshape);
2314   if (p)  return (p == NodeSentinel) ? NULL : p;
2315 
2316   // Take apart the address into an oop and and offset.
2317   // Return 'this' if we cannot.
2318   Node*    adr    = in(MemNode::Address);
2319   intptr_t offset = 0;
2320   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2321   if (base == NULL)     return NULL;
2322   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2323   if (tary == NULL)     return NULL;
2324 
2325   // We can fetch the length directly through an AllocateArrayNode.
2326   // This works even if the length is not constant (clone or newArray).
2327   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2328     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2329     if (alloc != NULL) {
2330       Node* allocated_length = alloc->Ideal_length();
2331       Node* len = alloc->make_ideal_length(tary, phase);
2332       if (allocated_length != len) {
2333         // New CastII improves on this.
2334         return len;
2335       }
2336     }
2337   }
2338 
2339   return NULL;
2340 }
2341 
2342 //------------------------------Identity---------------------------------------
2343 // Feed through the length in AllocateArray(...length...)._length.
2344 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2345   Node* x = LoadINode::Identity(phase);
2346   if (x != this)  return x;
2347 
2348   // Take apart the address into an oop and and offset.
2349   // Return 'this' if we cannot.
2350   Node*    adr    = in(MemNode::Address);
2351   intptr_t offset = 0;
2352   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2353   if (base == NULL)     return this;
2354   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2355   if (tary == NULL)     return this;
2356 
2357   // We can fetch the length directly through an AllocateArrayNode.
2358   // This works even if the length is not constant (clone or newArray).
2359   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2360     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2361     if (alloc != NULL) {
2362       Node* allocated_length = alloc->Ideal_length();
2363       // Do not allow make_ideal_length to allocate a CastII node.
2364       Node* len = alloc->make_ideal_length(tary, phase, false);
2365       if (allocated_length == len) {
2366         // Return allocated_length only if it would not be improved by a CastII.
2367         return allocated_length;
2368       }
2369     }
2370   }
2371 
2372   return this;
2373 
2374 }
2375 
2376 //=============================================================================
2377 //---------------------------StoreNode::make-----------------------------------
2378 // Polymorphic factory method:
2379 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2380   assert((mo == unordered || mo == release), "unexpected");
2381   Compile* C = gvn.C;
2382   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2383          ctl != NULL, "raw memory operations should have control edge");
2384 
2385   switch (bt) {
2386   case T_BOOLEAN:
2387   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2388   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2389   case T_CHAR:
2390   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2391   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2392   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2393   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2394   case T_METADATA:
2395   case T_ADDRESS:
2396   case T_OBJECT:
2397 #ifdef _LP64
2398     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2399       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2400       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2401     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2402                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2403                 adr->bottom_type()->isa_rawptr())) {
2404       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2405       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2406     }
2407 #endif
2408     {
2409       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2410     }
2411   }
2412   ShouldNotReachHere();
2413   return (StoreNode*)NULL;
2414 }
2415 
2416 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2417   bool require_atomic = true;
2418   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2419 }
2420 
2421 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2422   bool require_atomic = true;
2423   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2424 }
2425 
2426 
2427 //--------------------------bottom_type----------------------------------------
2428 const Type *StoreNode::bottom_type() const {
2429   return Type::MEMORY;
2430 }
2431 
2432 //------------------------------hash-------------------------------------------
2433 uint StoreNode::hash() const {
2434   // unroll addition of interesting fields
2435   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2436 
2437   // Since they are not commoned, do not hash them:
2438   return NO_HASH;
2439 }
2440 
2441 //------------------------------Ideal------------------------------------------
2442 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2443 // When a store immediately follows a relevant allocation/initialization,
2444 // try to capture it into the initialization, or hoist it above.
2445 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2446   Node* p = MemNode::Ideal_common(phase, can_reshape);
2447   if (p)  return (p == NodeSentinel) ? NULL : p;
2448 
2449   Node* mem     = in(MemNode::Memory);
2450   Node* address = in(MemNode::Address);
2451   // Back-to-back stores to same address?  Fold em up.  Generally
2452   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2453   // since they must follow each StoreP operation.  Redundant StoreCMs
2454   // are eliminated just before matching in final_graph_reshape.
2455   {
2456     Node* st = mem;
2457     // If Store 'st' has more than one use, we cannot fold 'st' away.
2458     // For example, 'st' might be the final state at a conditional
2459     // return.  Or, 'st' might be used by some node which is live at
2460     // the same time 'st' is live, which might be unschedulable.  So,
2461     // require exactly ONE user until such time as we clone 'mem' for
2462     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2463     // true).
2464     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2465       // Looking at a dead closed cycle of memory?
2466       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2467       assert(Opcode() == st->Opcode() ||
2468              st->Opcode() == Op_StoreVector ||
2469              Opcode() == Op_StoreVector ||
2470              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2471              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2472              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2473              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2474 
2475       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2476           st->as_Store()->memory_size() <= this->memory_size()) {
2477         Node* use = st->raw_out(0);
2478         phase->igvn_rehash_node_delayed(use);
2479         if (can_reshape) {
2480           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2481         } else {
2482           // It's OK to do this in the parser, since DU info is always accurate,
2483           // and the parser always refers to nodes via SafePointNode maps.
2484           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2485         }
2486         return this;
2487       }
2488       st = st->in(MemNode::Memory);
2489     }
2490   }
2491 
2492 
2493   // Capture an unaliased, unconditional, simple store into an initializer.
2494   // Or, if it is independent of the allocation, hoist it above the allocation.
2495   if (ReduceFieldZeroing && /*can_reshape &&*/
2496       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2497     InitializeNode* init = mem->in(0)->as_Initialize();
2498     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2499     if (offset > 0) {
2500       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2501       // If the InitializeNode captured me, it made a raw copy of me,
2502       // and I need to disappear.
2503       if (moved != NULL) {
2504         // %%% hack to ensure that Ideal returns a new node:
2505         mem = MergeMemNode::make(mem);
2506         return mem;             // fold me away
2507       }
2508     }
2509   }
2510 
2511   return NULL;                  // No further progress
2512 }
2513 
2514 //------------------------------Value-----------------------------------------
2515 const Type* StoreNode::Value(PhaseGVN* phase) const {
2516   // Either input is TOP ==> the result is TOP
2517   const Type *t1 = phase->type( in(MemNode::Memory) );
2518   if( t1 == Type::TOP ) return Type::TOP;
2519   const Type *t2 = phase->type( in(MemNode::Address) );
2520   if( t2 == Type::TOP ) return Type::TOP;
2521   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2522   if( t3 == Type::TOP ) return Type::TOP;
2523   return Type::MEMORY;
2524 }
2525 
2526 //------------------------------Identity---------------------------------------
2527 // Remove redundant stores:
2528 //   Store(m, p, Load(m, p)) changes to m.
2529 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2530 Node* StoreNode::Identity(PhaseGVN* phase) {
2531   Node* mem = in(MemNode::Memory);
2532   Node* adr = in(MemNode::Address);
2533   Node* val = in(MemNode::ValueIn);
2534 
2535   // Load then Store?  Then the Store is useless
2536   if (val->is_Load() &&
2537       val->in(MemNode::Address)->eqv_uncast(adr) &&
2538       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2539       val->as_Load()->store_Opcode() == Opcode()) {
2540     return mem;
2541   }
2542 
2543   // Two stores in a row of the same value?
2544   if (mem->is_Store() &&
2545       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2546       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2547       mem->Opcode() == Opcode()) {
2548     return mem;
2549   }
2550 
2551   // Store of zero anywhere into a freshly-allocated object?
2552   // Then the store is useless.
2553   // (It must already have been captured by the InitializeNode.)
2554   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2555     // a newly allocated object is already all-zeroes everywhere
2556     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2557       return mem;
2558     }
2559 
2560     // the store may also apply to zero-bits in an earlier object
2561     Node* prev_mem = find_previous_store(phase);
2562     // Steps (a), (b):  Walk past independent stores to find an exact match.
2563     if (prev_mem != NULL) {
2564       Node* prev_val = can_see_stored_value(prev_mem, phase);
2565       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2566         // prev_val and val might differ by a cast; it would be good
2567         // to keep the more informative of the two.
2568         return mem;
2569       }
2570     }
2571   }
2572 
2573   return this;
2574 }
2575 
2576 //------------------------------match_edge-------------------------------------
2577 // Do we Match on this edge index or not?  Match only memory & value
2578 uint StoreNode::match_edge(uint idx) const {
2579   return idx == MemNode::Address || idx == MemNode::ValueIn;
2580 }
2581 
2582 //------------------------------cmp--------------------------------------------
2583 // Do not common stores up together.  They generally have to be split
2584 // back up anyways, so do not bother.
2585 uint StoreNode::cmp( const Node &n ) const {
2586   return (&n == this);          // Always fail except on self
2587 }
2588 
2589 //------------------------------Ideal_masked_input-----------------------------
2590 // Check for a useless mask before a partial-word store
2591 // (StoreB ... (AndI valIn conIa) )
2592 // If (conIa & mask == mask) this simplifies to
2593 // (StoreB ... (valIn) )
2594 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2595   Node *val = in(MemNode::ValueIn);
2596   if( val->Opcode() == Op_AndI ) {
2597     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2598     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2599       set_req(MemNode::ValueIn, val->in(1));
2600       return this;
2601     }
2602   }
2603   return NULL;
2604 }
2605 
2606 
2607 //------------------------------Ideal_sign_extended_input----------------------
2608 // Check for useless sign-extension before a partial-word store
2609 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2610 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2611 // (StoreB ... (valIn) )
2612 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2613   Node *val = in(MemNode::ValueIn);
2614   if( val->Opcode() == Op_RShiftI ) {
2615     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2616     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2617       Node *shl = val->in(1);
2618       if( shl->Opcode() == Op_LShiftI ) {
2619         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2620         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2621           set_req(MemNode::ValueIn, shl->in(1));
2622           return this;
2623         }
2624       }
2625     }
2626   }
2627   return NULL;
2628 }
2629 
2630 //------------------------------value_never_loaded-----------------------------------
2631 // Determine whether there are any possible loads of the value stored.
2632 // For simplicity, we actually check if there are any loads from the
2633 // address stored to, not just for loads of the value stored by this node.
2634 //
2635 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2636   Node *adr = in(Address);
2637   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2638   if (adr_oop == NULL)
2639     return false;
2640   if (!adr_oop->is_known_instance_field())
2641     return false; // if not a distinct instance, there may be aliases of the address
2642   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2643     Node *use = adr->fast_out(i);
2644     if (use->is_Load() || use->is_LoadStore()) {
2645       return false;
2646     }
2647   }
2648   return true;
2649 }
2650 
2651 //=============================================================================
2652 //------------------------------Ideal------------------------------------------
2653 // If the store is from an AND mask that leaves the low bits untouched, then
2654 // we can skip the AND operation.  If the store is from a sign-extension
2655 // (a left shift, then right shift) we can skip both.
2656 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2657   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2658   if( progress != NULL ) return progress;
2659 
2660   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2661   if( progress != NULL ) return progress;
2662 
2663   // Finally check the default case
2664   return StoreNode::Ideal(phase, can_reshape);
2665 }
2666 
2667 //=============================================================================
2668 //------------------------------Ideal------------------------------------------
2669 // If the store is from an AND mask that leaves the low bits untouched, then
2670 // we can skip the AND operation
2671 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2672   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2673   if( progress != NULL ) return progress;
2674 
2675   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2676   if( progress != NULL ) return progress;
2677 
2678   // Finally check the default case
2679   return StoreNode::Ideal(phase, can_reshape);
2680 }
2681 
2682 //=============================================================================
2683 //------------------------------Identity---------------------------------------
2684 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2685   // No need to card mark when storing a null ptr
2686   Node* my_store = in(MemNode::OopStore);
2687   if (my_store->is_Store()) {
2688     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2689     if( t1 == TypePtr::NULL_PTR ) {
2690       return in(MemNode::Memory);
2691     }
2692   }
2693   return this;
2694 }
2695 
2696 //=============================================================================
2697 //------------------------------Ideal---------------------------------------
2698 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2699   Node* progress = StoreNode::Ideal(phase, can_reshape);
2700   if (progress != NULL) return progress;
2701 
2702   Node* my_store = in(MemNode::OopStore);
2703   if (my_store->is_MergeMem()) {
2704     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2705     set_req(MemNode::OopStore, mem);
2706     return this;
2707   }
2708 
2709   return NULL;
2710 }
2711 
2712 //------------------------------Value-----------------------------------------
2713 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2714   // Either input is TOP ==> the result is TOP
2715   const Type *t = phase->type( in(MemNode::Memory) );
2716   if( t == Type::TOP ) return Type::TOP;
2717   t = phase->type( in(MemNode::Address) );
2718   if( t == Type::TOP ) return Type::TOP;
2719   t = phase->type( in(MemNode::ValueIn) );
2720   if( t == Type::TOP ) return Type::TOP;
2721   // If extra input is TOP ==> the result is TOP
2722   t = phase->type( in(MemNode::OopStore) );
2723   if( t == Type::TOP ) return Type::TOP;
2724 
2725   return StoreNode::Value( phase );
2726 }
2727 
2728 
2729 //=============================================================================
2730 //----------------------------------SCMemProjNode------------------------------
2731 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2732 {
2733   return bottom_type();
2734 }
2735 
2736 //=============================================================================
2737 //----------------------------------LoadStoreNode------------------------------
2738 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2739   : Node(required),
2740     _type(rt),
2741     _adr_type(at)
2742 {
2743   init_req(MemNode::Control, c  );
2744   init_req(MemNode::Memory , mem);
2745   init_req(MemNode::Address, adr);
2746   init_req(MemNode::ValueIn, val);
2747   init_class_id(Class_LoadStore);
2748 }
2749 
2750 uint LoadStoreNode::ideal_reg() const {
2751   return _type->ideal_reg();
2752 }
2753 
2754 bool LoadStoreNode::result_not_used() const {
2755   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2756     Node *x = fast_out(i);
2757     if (x->Opcode() == Op_SCMemProj) continue;
2758     return false;
2759   }
2760   return true;
2761 }
2762 
2763 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2764 
2765 //=============================================================================
2766 //----------------------------------LoadStoreConditionalNode--------------------
2767 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2768   init_req(ExpectedIn, ex );
2769 }
2770 
2771 //=============================================================================
2772 //-------------------------------adr_type--------------------------------------
2773 const TypePtr* ClearArrayNode::adr_type() const {
2774   Node *adr = in(3);
2775   if (adr == NULL)  return NULL; // node is dead
2776   return MemNode::calculate_adr_type(adr->bottom_type());
2777 }
2778 
2779 //------------------------------match_edge-------------------------------------
2780 // Do we Match on this edge index or not?  Do not match memory
2781 uint ClearArrayNode::match_edge(uint idx) const {
2782   return idx > 1;
2783 }
2784 
2785 //------------------------------Identity---------------------------------------
2786 // Clearing a zero length array does nothing
2787 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2788   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2789 }
2790 
2791 //------------------------------Idealize---------------------------------------
2792 // Clearing a short array is faster with stores
2793 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2794   // Already know this is a large node, do not try to ideal it
2795   if (_is_large) return NULL;
2796 
2797   const int unit = BytesPerLong;
2798   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2799   if (!t)  return NULL;
2800   if (!t->is_con())  return NULL;
2801   intptr_t raw_count = t->get_con();
2802   intptr_t size = raw_count;
2803   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2804   // Clearing nothing uses the Identity call.
2805   // Negative clears are possible on dead ClearArrays
2806   // (see jck test stmt114.stmt11402.val).
2807   if (size <= 0 || size % unit != 0)  return NULL;
2808   intptr_t count = size / unit;
2809   // Length too long; communicate this to matchers and assemblers.
2810   // Assemblers are responsible to produce fast hardware clears for it.
2811   if (size > InitArrayShortSize) {
2812     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2813   }
2814   Node *mem = in(1);
2815   if( phase->type(mem)==Type::TOP ) return NULL;
2816   Node *adr = in(3);
2817   const Type* at = phase->type(adr);
2818   if( at==Type::TOP ) return NULL;
2819   const TypePtr* atp = at->isa_ptr();
2820   // adjust atp to be the correct array element address type
2821   if (atp == NULL)  atp = TypePtr::BOTTOM;
2822   else              atp = atp->add_offset(Type::OffsetBot);
2823   // Get base for derived pointer purposes
2824   if( adr->Opcode() != Op_AddP ) Unimplemented();
2825   Node *base = adr->in(1);
2826 
2827   Node *zero = phase->makecon(TypeLong::ZERO);
2828   Node *off  = phase->MakeConX(BytesPerLong);
2829   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2830   count--;
2831   while( count-- ) {
2832     mem = phase->transform(mem);
2833     adr = phase->transform(new AddPNode(base,adr,off));
2834     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2835   }
2836   return mem;
2837 }
2838 
2839 //----------------------------step_through----------------------------------
2840 // Return allocation input memory edge if it is different instance
2841 // or itself if it is the one we are looking for.
2842 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2843   Node* n = *np;
2844   assert(n->is_ClearArray(), "sanity");
2845   intptr_t offset;
2846   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2847   // This method is called only before Allocate nodes are expanded
2848   // during macro nodes expansion. Before that ClearArray nodes are
2849   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2850   // Allocate nodes are expanded) which follows allocations.
2851   assert(alloc != NULL, "should have allocation");
2852   if (alloc->_idx == instance_id) {
2853     // Can not bypass initialization of the instance we are looking for.
2854     return false;
2855   }
2856   // Otherwise skip it.
2857   InitializeNode* init = alloc->initialization();
2858   if (init != NULL)
2859     *np = init->in(TypeFunc::Memory);
2860   else
2861     *np = alloc->in(TypeFunc::Memory);
2862   return true;
2863 }
2864 
2865 //----------------------------clear_memory-------------------------------------
2866 // Generate code to initialize object storage to zero.
2867 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2868                                    intptr_t start_offset,
2869                                    Node* end_offset,
2870                                    PhaseGVN* phase) {
2871   intptr_t offset = start_offset;
2872 
2873   int unit = BytesPerLong;
2874   if ((offset % unit) != 0) {
2875     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2876     adr = phase->transform(adr);
2877     const TypePtr* atp = TypeRawPtr::BOTTOM;
2878     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2879     mem = phase->transform(mem);
2880     offset += BytesPerInt;
2881   }
2882   assert((offset % unit) == 0, "");
2883 
2884   // Initialize the remaining stuff, if any, with a ClearArray.
2885   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2886 }
2887 
2888 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2889                                    Node* start_offset,
2890                                    Node* end_offset,
2891                                    PhaseGVN* phase) {
2892   if (start_offset == end_offset) {
2893     // nothing to do
2894     return mem;
2895   }
2896 
2897   int unit = BytesPerLong;
2898   Node* zbase = start_offset;
2899   Node* zend  = end_offset;
2900 
2901   // Scale to the unit required by the CPU:
2902   if (!Matcher::init_array_count_is_in_bytes) {
2903     Node* shift = phase->intcon(exact_log2(unit));
2904     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2905     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2906   }
2907 
2908   // Bulk clear double-words
2909   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2910   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2911   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2912   return phase->transform(mem);
2913 }
2914 
2915 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2916                                    intptr_t start_offset,
2917                                    intptr_t end_offset,
2918                                    PhaseGVN* phase) {
2919   if (start_offset == end_offset) {
2920     // nothing to do
2921     return mem;
2922   }
2923 
2924   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2925   intptr_t done_offset = end_offset;
2926   if ((done_offset % BytesPerLong) != 0) {
2927     done_offset -= BytesPerInt;
2928   }
2929   if (done_offset > start_offset) {
2930     mem = clear_memory(ctl, mem, dest,
2931                        start_offset, phase->MakeConX(done_offset), phase);
2932   }
2933   if (done_offset < end_offset) { // emit the final 32-bit store
2934     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2935     adr = phase->transform(adr);
2936     const TypePtr* atp = TypeRawPtr::BOTTOM;
2937     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2938     mem = phase->transform(mem);
2939     done_offset += BytesPerInt;
2940   }
2941   assert(done_offset == end_offset, "");
2942   return mem;
2943 }
2944 
2945 //=============================================================================
2946 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2947   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2948     _adr_type(C->get_adr_type(alias_idx))
2949 {
2950   init_class_id(Class_MemBar);
2951   Node* top = C->top();
2952   init_req(TypeFunc::I_O,top);
2953   init_req(TypeFunc::FramePtr,top);
2954   init_req(TypeFunc::ReturnAdr,top);
2955   if (precedent != NULL)
2956     init_req(TypeFunc::Parms, precedent);
2957 }
2958 
2959 //------------------------------cmp--------------------------------------------
2960 uint MemBarNode::hash() const { return NO_HASH; }
2961 uint MemBarNode::cmp( const Node &n ) const {
2962   return (&n == this);          // Always fail except on self
2963 }
2964 
2965 //------------------------------make-------------------------------------------
2966 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2967   switch (opcode) {
2968   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2969   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2970   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2971   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2972   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2973   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2974   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2975   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2976   case Op_Initialize:        return new InitializeNode(C, atp, pn);
2977   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2978   default: ShouldNotReachHere(); return NULL;
2979   }
2980 }
2981 
2982 //------------------------------Ideal------------------------------------------
2983 // Return a node which is more "ideal" than the current node.  Strip out
2984 // control copies
2985 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2986   if (remove_dead_region(phase, can_reshape)) return this;
2987   // Don't bother trying to transform a dead node
2988   if (in(0) && in(0)->is_top()) {
2989     return NULL;
2990   }
2991 
2992   bool progress = false;
2993   // Eliminate volatile MemBars for scalar replaced objects.
2994   if (can_reshape && req() == (Precedent+1)) {
2995     bool eliminate = false;
2996     int opc = Opcode();
2997     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2998       // Volatile field loads and stores.
2999       Node* my_mem = in(MemBarNode::Precedent);
3000       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3001       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3002         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3003         // replace this Precedent (decodeN) with the Load instead.
3004         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3005           Node* load_node = my_mem->in(1);
3006           set_req(MemBarNode::Precedent, load_node);
3007           phase->is_IterGVN()->_worklist.push(my_mem);
3008           my_mem = load_node;
3009         } else {
3010           assert(my_mem->unique_out() == this, "sanity");
3011           del_req(Precedent);
3012           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3013           my_mem = NULL;
3014         }
3015         progress = true;
3016       }
3017       if (my_mem != NULL && my_mem->is_Mem()) {
3018         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3019         // Check for scalar replaced object reference.
3020         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3021             t_oop->offset() != Type::OffsetBot &&
3022             t_oop->offset() != Type::OffsetTop) {
3023           eliminate = true;
3024         }
3025       }
3026     } else if (opc == Op_MemBarRelease) {
3027       // Final field stores.
3028       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3029       if ((alloc != NULL) && alloc->is_Allocate() &&
3030           alloc->as_Allocate()->does_not_escape_thread()) {
3031         // The allocated object does not escape.
3032         eliminate = true;
3033       }
3034     }
3035     if (eliminate) {
3036       // Replace MemBar projections by its inputs.
3037       PhaseIterGVN* igvn = phase->is_IterGVN();
3038       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3039       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3040       // Must return either the original node (now dead) or a new node
3041       // (Do not return a top here, since that would break the uniqueness of top.)
3042       return new ConINode(TypeInt::ZERO);
3043     }
3044   }
3045   return progress ? this : NULL;
3046 }
3047 
3048 //------------------------------Value------------------------------------------
3049 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3050   if( !in(0) ) return Type::TOP;
3051   if( phase->type(in(0)) == Type::TOP )
3052     return Type::TOP;
3053   return TypeTuple::MEMBAR;
3054 }
3055 
3056 //------------------------------match------------------------------------------
3057 // Construct projections for memory.
3058 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3059   switch (proj->_con) {
3060   case TypeFunc::Control:
3061   case TypeFunc::Memory:
3062     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3063   }
3064   ShouldNotReachHere();
3065   return NULL;
3066 }
3067 
3068 //===========================InitializeNode====================================
3069 // SUMMARY:
3070 // This node acts as a memory barrier on raw memory, after some raw stores.
3071 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3072 // The Initialize can 'capture' suitably constrained stores as raw inits.
3073 // It can coalesce related raw stores into larger units (called 'tiles').
3074 // It can avoid zeroing new storage for memory units which have raw inits.
3075 // At macro-expansion, it is marked 'complete', and does not optimize further.
3076 //
3077 // EXAMPLE:
3078 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3079 //   ctl = incoming control; mem* = incoming memory
3080 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3081 // First allocate uninitialized memory and fill in the header:
3082 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3083 //   ctl := alloc.Control; mem* := alloc.Memory*
3084 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3085 // Then initialize to zero the non-header parts of the raw memory block:
3086 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3087 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3088 // After the initialize node executes, the object is ready for service:
3089 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3090 // Suppose its body is immediately initialized as {1,2}:
3091 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3092 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3093 //   mem.SLICE(#short[*]) := store2
3094 //
3095 // DETAILS:
3096 // An InitializeNode collects and isolates object initialization after
3097 // an AllocateNode and before the next possible safepoint.  As a
3098 // memory barrier (MemBarNode), it keeps critical stores from drifting
3099 // down past any safepoint or any publication of the allocation.
3100 // Before this barrier, a newly-allocated object may have uninitialized bits.
3101 // After this barrier, it may be treated as a real oop, and GC is allowed.
3102 //
3103 // The semantics of the InitializeNode include an implicit zeroing of
3104 // the new object from object header to the end of the object.
3105 // (The object header and end are determined by the AllocateNode.)
3106 //
3107 // Certain stores may be added as direct inputs to the InitializeNode.
3108 // These stores must update raw memory, and they must be to addresses
3109 // derived from the raw address produced by AllocateNode, and with
3110 // a constant offset.  They must be ordered by increasing offset.
3111 // The first one is at in(RawStores), the last at in(req()-1).
3112 // Unlike most memory operations, they are not linked in a chain,
3113 // but are displayed in parallel as users of the rawmem output of
3114 // the allocation.
3115 //
3116 // (See comments in InitializeNode::capture_store, which continue
3117 // the example given above.)
3118 //
3119 // When the associated Allocate is macro-expanded, the InitializeNode
3120 // may be rewritten to optimize collected stores.  A ClearArrayNode
3121 // may also be created at that point to represent any required zeroing.
3122 // The InitializeNode is then marked 'complete', prohibiting further
3123 // capturing of nearby memory operations.
3124 //
3125 // During macro-expansion, all captured initializations which store
3126 // constant values of 32 bits or smaller are coalesced (if advantageous)
3127 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3128 // initialized in fewer memory operations.  Memory words which are
3129 // covered by neither tiles nor non-constant stores are pre-zeroed
3130 // by explicit stores of zero.  (The code shape happens to do all
3131 // zeroing first, then all other stores, with both sequences occurring
3132 // in order of ascending offsets.)
3133 //
3134 // Alternatively, code may be inserted between an AllocateNode and its
3135 // InitializeNode, to perform arbitrary initialization of the new object.
3136 // E.g., the object copying intrinsics insert complex data transfers here.
3137 // The initialization must then be marked as 'complete' disable the
3138 // built-in zeroing semantics and the collection of initializing stores.
3139 //
3140 // While an InitializeNode is incomplete, reads from the memory state
3141 // produced by it are optimizable if they match the control edge and
3142 // new oop address associated with the allocation/initialization.
3143 // They return a stored value (if the offset matches) or else zero.
3144 // A write to the memory state, if it matches control and address,
3145 // and if it is to a constant offset, may be 'captured' by the
3146 // InitializeNode.  It is cloned as a raw memory operation and rewired
3147 // inside the initialization, to the raw oop produced by the allocation.
3148 // Operations on addresses which are provably distinct (e.g., to
3149 // other AllocateNodes) are allowed to bypass the initialization.
3150 //
3151 // The effect of all this is to consolidate object initialization
3152 // (both arrays and non-arrays, both piecewise and bulk) into a
3153 // single location, where it can be optimized as a unit.
3154 //
3155 // Only stores with an offset less than TrackedInitializationLimit words
3156 // will be considered for capture by an InitializeNode.  This puts a
3157 // reasonable limit on the complexity of optimized initializations.
3158 
3159 //---------------------------InitializeNode------------------------------------
3160 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3161   : _is_complete(Incomplete), _does_not_escape(false),
3162     MemBarNode(C, adr_type, rawoop)
3163 {
3164   init_class_id(Class_Initialize);
3165 
3166   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3167   assert(in(RawAddress) == rawoop, "proper init");
3168   // Note:  allocation() can be NULL, for secondary initialization barriers
3169 }
3170 
3171 // Since this node is not matched, it will be processed by the
3172 // register allocator.  Declare that there are no constraints
3173 // on the allocation of the RawAddress edge.
3174 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3175   // This edge should be set to top, by the set_complete.  But be conservative.
3176   if (idx == InitializeNode::RawAddress)
3177     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3178   return RegMask::Empty;
3179 }
3180 
3181 Node* InitializeNode::memory(uint alias_idx) {
3182   Node* mem = in(Memory);
3183   if (mem->is_MergeMem()) {
3184     return mem->as_MergeMem()->memory_at(alias_idx);
3185   } else {
3186     // incoming raw memory is not split
3187     return mem;
3188   }
3189 }
3190 
3191 bool InitializeNode::is_non_zero() {
3192   if (is_complete())  return false;
3193   remove_extra_zeroes();
3194   return (req() > RawStores);
3195 }
3196 
3197 void InitializeNode::set_complete(PhaseGVN* phase) {
3198   assert(!is_complete(), "caller responsibility");
3199   _is_complete = Complete;
3200 
3201   // After this node is complete, it contains a bunch of
3202   // raw-memory initializations.  There is no need for
3203   // it to have anything to do with non-raw memory effects.
3204   // Therefore, tell all non-raw users to re-optimize themselves,
3205   // after skipping the memory effects of this initialization.
3206   PhaseIterGVN* igvn = phase->is_IterGVN();
3207   if (igvn)  igvn->add_users_to_worklist(this);
3208 }
3209 
3210 // convenience function
3211 // return false if the init contains any stores already
3212 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3213   InitializeNode* init = initialization();
3214   if (init == NULL || init->is_complete())  return false;
3215   init->remove_extra_zeroes();
3216   // for now, if this allocation has already collected any inits, bail:
3217   if (init->is_non_zero())  return false;
3218   init->set_complete(phase);
3219   return true;
3220 }
3221 
3222 void InitializeNode::remove_extra_zeroes() {
3223   if (req() == RawStores)  return;
3224   Node* zmem = zero_memory();
3225   uint fill = RawStores;
3226   for (uint i = fill; i < req(); i++) {
3227     Node* n = in(i);
3228     if (n->is_top() || n == zmem)  continue;  // skip
3229     if (fill < i)  set_req(fill, n);          // compact
3230     ++fill;
3231   }
3232   // delete any empty spaces created:
3233   while (fill < req()) {
3234     del_req(fill);
3235   }
3236 }
3237 
3238 // Helper for remembering which stores go with which offsets.
3239 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3240   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3241   intptr_t offset = -1;
3242   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3243                                                phase, offset);
3244   if (base == NULL)     return -1;  // something is dead,
3245   if (offset < 0)       return -1;  //        dead, dead
3246   return offset;
3247 }
3248 
3249 // Helper for proving that an initialization expression is
3250 // "simple enough" to be folded into an object initialization.
3251 // Attempts to prove that a store's initial value 'n' can be captured
3252 // within the initialization without creating a vicious cycle, such as:
3253 //     { Foo p = new Foo(); p.next = p; }
3254 // True for constants and parameters and small combinations thereof.
3255 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3256   if (n == NULL)      return true;   // (can this really happen?)
3257   if (n->is_Proj())   n = n->in(0);
3258   if (n == this)      return false;  // found a cycle
3259   if (n->is_Con())    return true;
3260   if (n->is_Start())  return true;   // params, etc., are OK
3261   if (n->is_Root())   return true;   // even better
3262 
3263   Node* ctl = n->in(0);
3264   if (ctl != NULL && !ctl->is_top()) {
3265     if (ctl->is_Proj())  ctl = ctl->in(0);
3266     if (ctl == this)  return false;
3267 
3268     // If we already know that the enclosing memory op is pinned right after
3269     // the init, then any control flow that the store has picked up
3270     // must have preceded the init, or else be equal to the init.
3271     // Even after loop optimizations (which might change control edges)
3272     // a store is never pinned *before* the availability of its inputs.
3273     if (!MemNode::all_controls_dominate(n, this))
3274       return false;                  // failed to prove a good control
3275   }
3276 
3277   // Check data edges for possible dependencies on 'this'.
3278   if ((count += 1) > 20)  return false;  // complexity limit
3279   for (uint i = 1; i < n->req(); i++) {
3280     Node* m = n->in(i);
3281     if (m == NULL || m == n || m->is_top())  continue;
3282     uint first_i = n->find_edge(m);
3283     if (i != first_i)  continue;  // process duplicate edge just once
3284     if (!detect_init_independence(m, count)) {
3285       return false;
3286     }
3287   }
3288 
3289   return true;
3290 }
3291 
3292 // Here are all the checks a Store must pass before it can be moved into
3293 // an initialization.  Returns zero if a check fails.
3294 // On success, returns the (constant) offset to which the store applies,
3295 // within the initialized memory.
3296 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3297   const int FAIL = 0;
3298   if (st->is_unaligned_access()) {
3299     return FAIL;
3300   }
3301   if (st->req() != MemNode::ValueIn + 1)
3302     return FAIL;                // an inscrutable StoreNode (card mark?)
3303   Node* ctl = st->in(MemNode::Control);
3304   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3305     return FAIL;                // must be unconditional after the initialization
3306   Node* mem = st->in(MemNode::Memory);
3307   if (!(mem->is_Proj() && mem->in(0) == this))
3308     return FAIL;                // must not be preceded by other stores
3309   Node* adr = st->in(MemNode::Address);
3310   intptr_t offset;
3311   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3312   if (alloc == NULL)
3313     return FAIL;                // inscrutable address
3314   if (alloc != allocation())
3315     return FAIL;                // wrong allocation!  (store needs to float up)
3316   Node* val = st->in(MemNode::ValueIn);
3317   int complexity_count = 0;
3318   if (!detect_init_independence(val, complexity_count))
3319     return FAIL;                // stored value must be 'simple enough'
3320 
3321   // The Store can be captured only if nothing after the allocation
3322   // and before the Store is using the memory location that the store
3323   // overwrites.
3324   bool failed = false;
3325   // If is_complete_with_arraycopy() is true the shape of the graph is
3326   // well defined and is safe so no need for extra checks.
3327   if (!is_complete_with_arraycopy()) {
3328     // We are going to look at each use of the memory state following
3329     // the allocation to make sure nothing reads the memory that the
3330     // Store writes.
3331     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3332     int alias_idx = phase->C->get_alias_index(t_adr);
3333     ResourceMark rm;
3334     Unique_Node_List mems;
3335     mems.push(mem);
3336     Node* unique_merge = NULL;
3337     for (uint next = 0; next < mems.size(); ++next) {
3338       Node *m  = mems.at(next);
3339       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3340         Node *n = m->fast_out(j);
3341         if (n->outcnt() == 0) {
3342           continue;
3343         }
3344         if (n == st) {
3345           continue;
3346         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3347           // If the control of this use is different from the control
3348           // of the Store which is right after the InitializeNode then
3349           // this node cannot be between the InitializeNode and the
3350           // Store.
3351           continue;
3352         } else if (n->is_MergeMem()) {
3353           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3354             // We can hit a MergeMemNode (that will likely go away
3355             // later) that is a direct use of the memory state
3356             // following the InitializeNode on the same slice as the
3357             // store node that we'd like to capture. We need to check
3358             // the uses of the MergeMemNode.
3359             mems.push(n);
3360           }
3361         } else if (n->is_Mem()) {
3362           Node* other_adr = n->in(MemNode::Address);
3363           if (other_adr == adr) {
3364             failed = true;
3365             break;
3366           } else {
3367             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3368             if (other_t_adr != NULL) {
3369               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3370               if (other_alias_idx == alias_idx) {
3371                 // A load from the same memory slice as the store right
3372                 // after the InitializeNode. We check the control of the
3373                 // object/array that is loaded from. If it's the same as
3374                 // the store control then we cannot capture the store.
3375                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3376                 Node* base = other_adr;
3377                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3378                 base = base->in(AddPNode::Base);
3379                 if (base != NULL) {
3380                   base = base->uncast();
3381                   if (base->is_Proj() && base->in(0) == alloc) {
3382                     failed = true;
3383                     break;
3384                   }
3385                 }
3386               }
3387             }
3388           }
3389         } else {
3390           failed = true;
3391           break;
3392         }
3393       }
3394     }
3395   }
3396   if (failed) {
3397     if (!can_reshape) {
3398       // We decided we couldn't capture the store during parsing. We
3399       // should try again during the next IGVN once the graph is
3400       // cleaner.
3401       phase->C->record_for_igvn(st);
3402     }
3403     return FAIL;
3404   }
3405 
3406   return offset;                // success
3407 }
3408 
3409 // Find the captured store in(i) which corresponds to the range
3410 // [start..start+size) in the initialized object.
3411 // If there is one, return its index i.  If there isn't, return the
3412 // negative of the index where it should be inserted.
3413 // Return 0 if the queried range overlaps an initialization boundary
3414 // or if dead code is encountered.
3415 // If size_in_bytes is zero, do not bother with overlap checks.
3416 int InitializeNode::captured_store_insertion_point(intptr_t start,
3417                                                    int size_in_bytes,
3418                                                    PhaseTransform* phase) {
3419   const int FAIL = 0, MAX_STORE = BytesPerLong;
3420 
3421   if (is_complete())
3422     return FAIL;                // arraycopy got here first; punt
3423 
3424   assert(allocation() != NULL, "must be present");
3425 
3426   // no negatives, no header fields:
3427   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3428 
3429   // after a certain size, we bail out on tracking all the stores:
3430   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3431   if (start >= ti_limit)  return FAIL;
3432 
3433   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3434     if (i >= limit)  return -(int)i; // not found; here is where to put it
3435 
3436     Node*    st     = in(i);
3437     intptr_t st_off = get_store_offset(st, phase);
3438     if (st_off < 0) {
3439       if (st != zero_memory()) {
3440         return FAIL;            // bail out if there is dead garbage
3441       }
3442     } else if (st_off > start) {
3443       // ...we are done, since stores are ordered
3444       if (st_off < start + size_in_bytes) {
3445         return FAIL;            // the next store overlaps
3446       }
3447       return -(int)i;           // not found; here is where to put it
3448     } else if (st_off < start) {
3449       if (size_in_bytes != 0 &&
3450           start < st_off + MAX_STORE &&
3451           start < st_off + st->as_Store()->memory_size()) {
3452         return FAIL;            // the previous store overlaps
3453       }
3454     } else {
3455       if (size_in_bytes != 0 &&
3456           st->as_Store()->memory_size() != size_in_bytes) {
3457         return FAIL;            // mismatched store size
3458       }
3459       return i;
3460     }
3461 
3462     ++i;
3463   }
3464 }
3465 
3466 // Look for a captured store which initializes at the offset 'start'
3467 // with the given size.  If there is no such store, and no other
3468 // initialization interferes, then return zero_memory (the memory
3469 // projection of the AllocateNode).
3470 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3471                                           PhaseTransform* phase) {
3472   assert(stores_are_sane(phase), "");
3473   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3474   if (i == 0) {
3475     return NULL;                // something is dead
3476   } else if (i < 0) {
3477     return zero_memory();       // just primordial zero bits here
3478   } else {
3479     Node* st = in(i);           // here is the store at this position
3480     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3481     return st;
3482   }
3483 }
3484 
3485 // Create, as a raw pointer, an address within my new object at 'offset'.
3486 Node* InitializeNode::make_raw_address(intptr_t offset,
3487                                        PhaseTransform* phase) {
3488   Node* addr = in(RawAddress);
3489   if (offset != 0) {
3490     Compile* C = phase->C;
3491     addr = phase->transform( new AddPNode(C->top(), addr,
3492                                                  phase->MakeConX(offset)) );
3493   }
3494   return addr;
3495 }
3496 
3497 // Clone the given store, converting it into a raw store
3498 // initializing a field or element of my new object.
3499 // Caller is responsible for retiring the original store,
3500 // with subsume_node or the like.
3501 //
3502 // From the example above InitializeNode::InitializeNode,
3503 // here are the old stores to be captured:
3504 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3505 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3506 //
3507 // Here is the changed code; note the extra edges on init:
3508 //   alloc = (Allocate ...)
3509 //   rawoop = alloc.RawAddress
3510 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3511 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3512 //   init = (Initialize alloc.Control alloc.Memory rawoop
3513 //                      rawstore1 rawstore2)
3514 //
3515 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3516                                     PhaseTransform* phase, bool can_reshape) {
3517   assert(stores_are_sane(phase), "");
3518 
3519   if (start < 0)  return NULL;
3520   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3521 
3522   Compile* C = phase->C;
3523   int size_in_bytes = st->memory_size();
3524   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3525   if (i == 0)  return NULL;     // bail out
3526   Node* prev_mem = NULL;        // raw memory for the captured store
3527   if (i > 0) {
3528     prev_mem = in(i);           // there is a pre-existing store under this one
3529     set_req(i, C->top());       // temporarily disconnect it
3530     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3531   } else {
3532     i = -i;                     // no pre-existing store
3533     prev_mem = zero_memory();   // a slice of the newly allocated object
3534     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3535       set_req(--i, C->top());   // reuse this edge; it has been folded away
3536     else
3537       ins_req(i, C->top());     // build a new edge
3538   }
3539   Node* new_st = st->clone();
3540   new_st->set_req(MemNode::Control, in(Control));
3541   new_st->set_req(MemNode::Memory,  prev_mem);
3542   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3543   new_st = phase->transform(new_st);
3544 
3545   // At this point, new_st might have swallowed a pre-existing store
3546   // at the same offset, or perhaps new_st might have disappeared,
3547   // if it redundantly stored the same value (or zero to fresh memory).
3548 
3549   // In any case, wire it in:
3550   phase->igvn_rehash_node_delayed(this);
3551   set_req(i, new_st);
3552 
3553   // The caller may now kill the old guy.
3554   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3555   assert(check_st == new_st || check_st == NULL, "must be findable");
3556   assert(!is_complete(), "");
3557   return new_st;
3558 }
3559 
3560 static bool store_constant(jlong* tiles, int num_tiles,
3561                            intptr_t st_off, int st_size,
3562                            jlong con) {
3563   if ((st_off & (st_size-1)) != 0)
3564     return false;               // strange store offset (assume size==2**N)
3565   address addr = (address)tiles + st_off;
3566   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3567   switch (st_size) {
3568   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3569   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3570   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3571   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3572   default: return false;        // strange store size (detect size!=2**N here)
3573   }
3574   return true;                  // return success to caller
3575 }
3576 
3577 // Coalesce subword constants into int constants and possibly
3578 // into long constants.  The goal, if the CPU permits,
3579 // is to initialize the object with a small number of 64-bit tiles.
3580 // Also, convert floating-point constants to bit patterns.
3581 // Non-constants are not relevant to this pass.
3582 //
3583 // In terms of the running example on InitializeNode::InitializeNode
3584 // and InitializeNode::capture_store, here is the transformation
3585 // of rawstore1 and rawstore2 into rawstore12:
3586 //   alloc = (Allocate ...)
3587 //   rawoop = alloc.RawAddress
3588 //   tile12 = 0x00010002
3589 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3590 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3591 //
3592 void
3593 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3594                                         Node* size_in_bytes,
3595                                         PhaseGVN* phase) {
3596   Compile* C = phase->C;
3597 
3598   assert(stores_are_sane(phase), "");
3599   // Note:  After this pass, they are not completely sane,
3600   // since there may be some overlaps.
3601 
3602   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3603 
3604   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3605   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3606   size_limit = MIN2(size_limit, ti_limit);
3607   size_limit = align_size_up(size_limit, BytesPerLong);
3608   int num_tiles = size_limit / BytesPerLong;
3609 
3610   // allocate space for the tile map:
3611   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3612   jlong  tiles_buf[small_len];
3613   Node*  nodes_buf[small_len];
3614   jlong  inits_buf[small_len];
3615   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3616                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3617   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3618                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3619   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3620                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3621   // tiles: exact bitwise model of all primitive constants
3622   // nodes: last constant-storing node subsumed into the tiles model
3623   // inits: which bytes (in each tile) are touched by any initializations
3624 
3625   //// Pass A: Fill in the tile model with any relevant stores.
3626 
3627   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3628   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3629   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3630   Node* zmem = zero_memory(); // initially zero memory state
3631   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3632     Node* st = in(i);
3633     intptr_t st_off = get_store_offset(st, phase);
3634 
3635     // Figure out the store's offset and constant value:
3636     if (st_off < header_size)             continue; //skip (ignore header)
3637     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3638     int st_size = st->as_Store()->memory_size();
3639     if (st_off + st_size > size_limit)    break;
3640 
3641     // Record which bytes are touched, whether by constant or not.
3642     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3643       continue;                 // skip (strange store size)
3644 
3645     const Type* val = phase->type(st->in(MemNode::ValueIn));
3646     if (!val->singleton())                continue; //skip (non-con store)
3647     BasicType type = val->basic_type();
3648 
3649     jlong con = 0;
3650     switch (type) {
3651     case T_INT:    con = val->is_int()->get_con();  break;
3652     case T_LONG:   con = val->is_long()->get_con(); break;
3653     case T_FLOAT:  con = jint_cast(val->getf());    break;
3654     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3655     default:                              continue; //skip (odd store type)
3656     }
3657 
3658     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3659         st->Opcode() == Op_StoreL) {
3660       continue;                 // This StoreL is already optimal.
3661     }
3662 
3663     // Store down the constant.
3664     store_constant(tiles, num_tiles, st_off, st_size, con);
3665 
3666     intptr_t j = st_off >> LogBytesPerLong;
3667 
3668     if (type == T_INT && st_size == BytesPerInt
3669         && (st_off & BytesPerInt) == BytesPerInt) {
3670       jlong lcon = tiles[j];
3671       if (!Matcher::isSimpleConstant64(lcon) &&
3672           st->Opcode() == Op_StoreI) {
3673         // This StoreI is already optimal by itself.
3674         jint* intcon = (jint*) &tiles[j];
3675         intcon[1] = 0;  // undo the store_constant()
3676 
3677         // If the previous store is also optimal by itself, back up and
3678         // undo the action of the previous loop iteration... if we can.
3679         // But if we can't, just let the previous half take care of itself.
3680         st = nodes[j];
3681         st_off -= BytesPerInt;
3682         con = intcon[0];
3683         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3684           assert(st_off >= header_size, "still ignoring header");
3685           assert(get_store_offset(st, phase) == st_off, "must be");
3686           assert(in(i-1) == zmem, "must be");
3687           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3688           assert(con == tcon->is_int()->get_con(), "must be");
3689           // Undo the effects of the previous loop trip, which swallowed st:
3690           intcon[0] = 0;        // undo store_constant()
3691           set_req(i-1, st);     // undo set_req(i, zmem)
3692           nodes[j] = NULL;      // undo nodes[j] = st
3693           --old_subword;        // undo ++old_subword
3694         }
3695         continue;               // This StoreI is already optimal.
3696       }
3697     }
3698 
3699     // This store is not needed.
3700     set_req(i, zmem);
3701     nodes[j] = st;              // record for the moment
3702     if (st_size < BytesPerLong) // something has changed
3703           ++old_subword;        // includes int/float, but who's counting...
3704     else  ++old_long;
3705   }
3706 
3707   if ((old_subword + old_long) == 0)
3708     return;                     // nothing more to do
3709 
3710   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3711   // Be sure to insert them before overlapping non-constant stores.
3712   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3713   for (int j = 0; j < num_tiles; j++) {
3714     jlong con  = tiles[j];
3715     jlong init = inits[j];
3716     if (con == 0)  continue;
3717     jint con0,  con1;           // split the constant, address-wise
3718     jint init0, init1;          // split the init map, address-wise
3719     { union { jlong con; jint intcon[2]; } u;
3720       u.con = con;
3721       con0  = u.intcon[0];
3722       con1  = u.intcon[1];
3723       u.con = init;
3724       init0 = u.intcon[0];
3725       init1 = u.intcon[1];
3726     }
3727 
3728     Node* old = nodes[j];
3729     assert(old != NULL, "need the prior store");
3730     intptr_t offset = (j * BytesPerLong);
3731 
3732     bool split = !Matcher::isSimpleConstant64(con);
3733 
3734     if (offset < header_size) {
3735       assert(offset + BytesPerInt >= header_size, "second int counts");
3736       assert(*(jint*)&tiles[j] == 0, "junk in header");
3737       split = true;             // only the second word counts
3738       // Example:  int a[] = { 42 ... }
3739     } else if (con0 == 0 && init0 == -1) {
3740       split = true;             // first word is covered by full inits
3741       // Example:  int a[] = { ... foo(), 42 ... }
3742     } else if (con1 == 0 && init1 == -1) {
3743       split = true;             // second word is covered by full inits
3744       // Example:  int a[] = { ... 42, foo() ... }
3745     }
3746 
3747     // Here's a case where init0 is neither 0 nor -1:
3748     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3749     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3750     // In this case the tile is not split; it is (jlong)42.
3751     // The big tile is stored down, and then the foo() value is inserted.
3752     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3753 
3754     Node* ctl = old->in(MemNode::Control);
3755     Node* adr = make_raw_address(offset, phase);
3756     const TypePtr* atp = TypeRawPtr::BOTTOM;
3757 
3758     // One or two coalesced stores to plop down.
3759     Node*    st[2];
3760     intptr_t off[2];
3761     int  nst = 0;
3762     if (!split) {
3763       ++new_long;
3764       off[nst] = offset;
3765       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3766                                   phase->longcon(con), T_LONG, MemNode::unordered);
3767     } else {
3768       // Omit either if it is a zero.
3769       if (con0 != 0) {
3770         ++new_int;
3771         off[nst]  = offset;
3772         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3773                                     phase->intcon(con0), T_INT, MemNode::unordered);
3774       }
3775       if (con1 != 0) {
3776         ++new_int;
3777         offset += BytesPerInt;
3778         adr = make_raw_address(offset, phase);
3779         off[nst]  = offset;
3780         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3781                                     phase->intcon(con1), T_INT, MemNode::unordered);
3782       }
3783     }
3784 
3785     // Insert second store first, then the first before the second.
3786     // Insert each one just before any overlapping non-constant stores.
3787     while (nst > 0) {
3788       Node* st1 = st[--nst];
3789       C->copy_node_notes_to(st1, old);
3790       st1 = phase->transform(st1);
3791       offset = off[nst];
3792       assert(offset >= header_size, "do not smash header");
3793       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3794       guarantee(ins_idx != 0, "must re-insert constant store");
3795       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3796       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3797         set_req(--ins_idx, st1);
3798       else
3799         ins_req(ins_idx, st1);
3800     }
3801   }
3802 
3803   if (PrintCompilation && WizardMode)
3804     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3805                   old_subword, old_long, new_int, new_long);
3806   if (C->log() != NULL)
3807     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3808                    old_subword, old_long, new_int, new_long);
3809 
3810   // Clean up any remaining occurrences of zmem:
3811   remove_extra_zeroes();
3812 }
3813 
3814 // Explore forward from in(start) to find the first fully initialized
3815 // word, and return its offset.  Skip groups of subword stores which
3816 // together initialize full words.  If in(start) is itself part of a
3817 // fully initialized word, return the offset of in(start).  If there
3818 // are no following full-word stores, or if something is fishy, return
3819 // a negative value.
3820 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3821   int       int_map = 0;
3822   intptr_t  int_map_off = 0;
3823   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3824 
3825   for (uint i = start, limit = req(); i < limit; i++) {
3826     Node* st = in(i);
3827 
3828     intptr_t st_off = get_store_offset(st, phase);
3829     if (st_off < 0)  break;  // return conservative answer
3830 
3831     int st_size = st->as_Store()->memory_size();
3832     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3833       return st_off;            // we found a complete word init
3834     }
3835 
3836     // update the map:
3837 
3838     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3839     if (this_int_off != int_map_off) {
3840       // reset the map:
3841       int_map = 0;
3842       int_map_off = this_int_off;
3843     }
3844 
3845     int subword_off = st_off - this_int_off;
3846     int_map |= right_n_bits(st_size) << subword_off;
3847     if ((int_map & FULL_MAP) == FULL_MAP) {
3848       return this_int_off;      // we found a complete word init
3849     }
3850 
3851     // Did this store hit or cross the word boundary?
3852     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3853     if (next_int_off == this_int_off + BytesPerInt) {
3854       // We passed the current int, without fully initializing it.
3855       int_map_off = next_int_off;
3856       int_map >>= BytesPerInt;
3857     } else if (next_int_off > this_int_off + BytesPerInt) {
3858       // We passed the current and next int.
3859       return this_int_off + BytesPerInt;
3860     }
3861   }
3862 
3863   return -1;
3864 }
3865 
3866 
3867 // Called when the associated AllocateNode is expanded into CFG.
3868 // At this point, we may perform additional optimizations.
3869 // Linearize the stores by ascending offset, to make memory
3870 // activity as coherent as possible.
3871 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3872                                       intptr_t header_size,
3873                                       Node* size_in_bytes,
3874                                       PhaseGVN* phase) {
3875   assert(!is_complete(), "not already complete");
3876   assert(stores_are_sane(phase), "");
3877   assert(allocation() != NULL, "must be present");
3878 
3879   remove_extra_zeroes();
3880 
3881   if (ReduceFieldZeroing || ReduceBulkZeroing)
3882     // reduce instruction count for common initialization patterns
3883     coalesce_subword_stores(header_size, size_in_bytes, phase);
3884 
3885   Node* zmem = zero_memory();   // initially zero memory state
3886   Node* inits = zmem;           // accumulating a linearized chain of inits
3887   #ifdef ASSERT
3888   intptr_t first_offset = allocation()->minimum_header_size();
3889   intptr_t last_init_off = first_offset;  // previous init offset
3890   intptr_t last_init_end = first_offset;  // previous init offset+size
3891   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3892   #endif
3893   intptr_t zeroes_done = header_size;
3894 
3895   bool do_zeroing = true;       // we might give up if inits are very sparse
3896   int  big_init_gaps = 0;       // how many large gaps have we seen?
3897 
3898   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3899   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3900 
3901   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3902     Node* st = in(i);
3903     intptr_t st_off = get_store_offset(st, phase);
3904     if (st_off < 0)
3905       break;                    // unknown junk in the inits
3906     if (st->in(MemNode::Memory) != zmem)
3907       break;                    // complicated store chains somehow in list
3908 
3909     int st_size = st->as_Store()->memory_size();
3910     intptr_t next_init_off = st_off + st_size;
3911 
3912     if (do_zeroing && zeroes_done < next_init_off) {
3913       // See if this store needs a zero before it or under it.
3914       intptr_t zeroes_needed = st_off;
3915 
3916       if (st_size < BytesPerInt) {
3917         // Look for subword stores which only partially initialize words.
3918         // If we find some, we must lay down some word-level zeroes first,
3919         // underneath the subword stores.
3920         //
3921         // Examples:
3922         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3923         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3924         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3925         //
3926         // Note:  coalesce_subword_stores may have already done this,
3927         // if it was prompted by constant non-zero subword initializers.
3928         // But this case can still arise with non-constant stores.
3929 
3930         intptr_t next_full_store = find_next_fullword_store(i, phase);
3931 
3932         // In the examples above:
3933         //   in(i)          p   q   r   s     x   y     z
3934         //   st_off        12  13  14  15    12  13    14
3935         //   st_size        1   1   1   1     1   1     1
3936         //   next_full_s.  12  16  16  16    16  16    16
3937         //   z's_done      12  16  16  16    12  16    12
3938         //   z's_needed    12  16  16  16    16  16    16
3939         //   zsize          0   0   0   0     4   0     4
3940         if (next_full_store < 0) {
3941           // Conservative tack:  Zero to end of current word.
3942           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3943         } else {
3944           // Zero to beginning of next fully initialized word.
3945           // Or, don't zero at all, if we are already in that word.
3946           assert(next_full_store >= zeroes_needed, "must go forward");
3947           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3948           zeroes_needed = next_full_store;
3949         }
3950       }
3951 
3952       if (zeroes_needed > zeroes_done) {
3953         intptr_t zsize = zeroes_needed - zeroes_done;
3954         // Do some incremental zeroing on rawmem, in parallel with inits.
3955         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3956         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3957                                               zeroes_done, zeroes_needed,
3958                                               phase);
3959         zeroes_done = zeroes_needed;
3960         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
3961           do_zeroing = false;   // leave the hole, next time
3962       }
3963     }
3964 
3965     // Collect the store and move on:
3966     st->set_req(MemNode::Memory, inits);
3967     inits = st;                 // put it on the linearized chain
3968     set_req(i, zmem);           // unhook from previous position
3969 
3970     if (zeroes_done == st_off)
3971       zeroes_done = next_init_off;
3972 
3973     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3974 
3975     #ifdef ASSERT
3976     // Various order invariants.  Weaker than stores_are_sane because
3977     // a large constant tile can be filled in by smaller non-constant stores.
3978     assert(st_off >= last_init_off, "inits do not reverse");
3979     last_init_off = st_off;
3980     const Type* val = NULL;
3981     if (st_size >= BytesPerInt &&
3982         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3983         (int)val->basic_type() < (int)T_OBJECT) {
3984       assert(st_off >= last_tile_end, "tiles do not overlap");
3985       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3986       last_tile_end = MAX2(last_tile_end, next_init_off);
3987     } else {
3988       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3989       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3990       assert(st_off      >= last_init_end, "inits do not overlap");
3991       last_init_end = next_init_off;  // it's a non-tile
3992     }
3993     #endif //ASSERT
3994   }
3995 
3996   remove_extra_zeroes();        // clear out all the zmems left over
3997   add_req(inits);
3998 
3999   if (!(UseTLAB && ZeroTLAB)) {
4000     // If anything remains to be zeroed, zero it all now.
4001     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
4002     // if it is the last unused 4 bytes of an instance, forget about it
4003     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4004     if (zeroes_done + BytesPerLong >= size_limit) {
4005       assert(allocation() != NULL, "");
4006       if (allocation()->Opcode() == Op_Allocate) {
4007         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
4008         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4009         if (zeroes_done == k->layout_helper())
4010           zeroes_done = size_limit;
4011       }
4012     }
4013     if (zeroes_done < size_limit) {
4014       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4015                                             zeroes_done, size_in_bytes, phase);
4016     }
4017   }
4018 
4019   set_complete(phase);
4020   return rawmem;
4021 }
4022 
4023 
4024 #ifdef ASSERT
4025 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4026   if (is_complete())
4027     return true;                // stores could be anything at this point
4028   assert(allocation() != NULL, "must be present");
4029   intptr_t last_off = allocation()->minimum_header_size();
4030   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4031     Node* st = in(i);
4032     intptr_t st_off = get_store_offset(st, phase);
4033     if (st_off < 0)  continue;  // ignore dead garbage
4034     if (last_off > st_off) {
4035       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4036       this->dump(2);
4037       assert(false, "ascending store offsets");
4038       return false;
4039     }
4040     last_off = st_off + st->as_Store()->memory_size();
4041   }
4042   return true;
4043 }
4044 #endif //ASSERT
4045 
4046 
4047 
4048 
4049 //============================MergeMemNode=====================================
4050 //
4051 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4052 // contributing store or call operations.  Each contributor provides the memory
4053 // state for a particular "alias type" (see Compile::alias_type).  For example,
4054 // if a MergeMem has an input X for alias category #6, then any memory reference
4055 // to alias category #6 may use X as its memory state input, as an exact equivalent
4056 // to using the MergeMem as a whole.
4057 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4058 //
4059 // (Here, the <N> notation gives the index of the relevant adr_type.)
4060 //
4061 // In one special case (and more cases in the future), alias categories overlap.
4062 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4063 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4064 // it is exactly equivalent to that state W:
4065 //   MergeMem(<Bot>: W) <==> W
4066 //
4067 // Usually, the merge has more than one input.  In that case, where inputs
4068 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4069 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4070 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4071 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4072 //
4073 // A merge can take a "wide" memory state as one of its narrow inputs.
4074 // This simply means that the merge observes out only the relevant parts of
4075 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4076 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4077 //
4078 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4079 // and that memory slices "leak through":
4080 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4081 //
4082 // But, in such a cascade, repeated memory slices can "block the leak":
4083 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4084 //
4085 // In the last example, Y is not part of the combined memory state of the
4086 // outermost MergeMem.  The system must, of course, prevent unschedulable
4087 // memory states from arising, so you can be sure that the state Y is somehow
4088 // a precursor to state Y'.
4089 //
4090 //
4091 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4092 // of each MergeMemNode array are exactly the numerical alias indexes, including
4093 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4094 // Compile::alias_type (and kin) produce and manage these indexes.
4095 //
4096 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4097 // (Note that this provides quick access to the top node inside MergeMem methods,
4098 // without the need to reach out via TLS to Compile::current.)
4099 //
4100 // As a consequence of what was just described, a MergeMem that represents a full
4101 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4102 // containing all alias categories.
4103 //
4104 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4105 //
4106 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4107 // a memory state for the alias type <N>, or else the top node, meaning that
4108 // there is no particular input for that alias type.  Note that the length of
4109 // a MergeMem is variable, and may be extended at any time to accommodate new
4110 // memory states at larger alias indexes.  When merges grow, they are of course
4111 // filled with "top" in the unused in() positions.
4112 //
4113 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4114 // (Top was chosen because it works smoothly with passes like GCM.)
4115 //
4116 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4117 // the type of random VM bits like TLS references.)  Since it is always the
4118 // first non-Bot memory slice, some low-level loops use it to initialize an
4119 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4120 //
4121 //
4122 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4123 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4124 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4125 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4126 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4127 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4128 //
4129 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4130 // really that different from the other memory inputs.  An abbreviation called
4131 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4132 //
4133 //
4134 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4135 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4136 // that "emerges though" the base memory will be marked as excluding the alias types
4137 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4138 //
4139 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4140 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4141 //
4142 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4143 // (It is currently unimplemented.)  As you can see, the resulting merge is
4144 // actually a disjoint union of memory states, rather than an overlay.
4145 //
4146 
4147 //------------------------------MergeMemNode-----------------------------------
4148 Node* MergeMemNode::make_empty_memory() {
4149   Node* empty_memory = (Node*) Compile::current()->top();
4150   assert(empty_memory->is_top(), "correct sentinel identity");
4151   return empty_memory;
4152 }
4153 
4154 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4155   init_class_id(Class_MergeMem);
4156   // all inputs are nullified in Node::Node(int)
4157   // set_input(0, NULL);  // no control input
4158 
4159   // Initialize the edges uniformly to top, for starters.
4160   Node* empty_mem = make_empty_memory();
4161   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4162     init_req(i,empty_mem);
4163   }
4164   assert(empty_memory() == empty_mem, "");
4165 
4166   if( new_base != NULL && new_base->is_MergeMem() ) {
4167     MergeMemNode* mdef = new_base->as_MergeMem();
4168     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4169     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4170       mms.set_memory(mms.memory2());
4171     }
4172     assert(base_memory() == mdef->base_memory(), "");
4173   } else {
4174     set_base_memory(new_base);
4175   }
4176 }
4177 
4178 // Make a new, untransformed MergeMem with the same base as 'mem'.
4179 // If mem is itself a MergeMem, populate the result with the same edges.
4180 MergeMemNode* MergeMemNode::make(Node* mem) {
4181   return new MergeMemNode(mem);
4182 }
4183 
4184 //------------------------------cmp--------------------------------------------
4185 uint MergeMemNode::hash() const { return NO_HASH; }
4186 uint MergeMemNode::cmp( const Node &n ) const {
4187   return (&n == this);          // Always fail except on self
4188 }
4189 
4190 //------------------------------Identity---------------------------------------
4191 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4192   // Identity if this merge point does not record any interesting memory
4193   // disambiguations.
4194   Node* base_mem = base_memory();
4195   Node* empty_mem = empty_memory();
4196   if (base_mem != empty_mem) {  // Memory path is not dead?
4197     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4198       Node* mem = in(i);
4199       if (mem != empty_mem && mem != base_mem) {
4200         return this;            // Many memory splits; no change
4201       }
4202     }
4203   }
4204   return base_mem;              // No memory splits; ID on the one true input
4205 }
4206 
4207 //------------------------------Ideal------------------------------------------
4208 // This method is invoked recursively on chains of MergeMem nodes
4209 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4210   // Remove chain'd MergeMems
4211   //
4212   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4213   // relative to the "in(Bot)".  Since we are patching both at the same time,
4214   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4215   // but rewrite each "in(i)" relative to the new "in(Bot)".
4216   Node *progress = NULL;
4217 
4218 
4219   Node* old_base = base_memory();
4220   Node* empty_mem = empty_memory();
4221   if (old_base == empty_mem)
4222     return NULL; // Dead memory path.
4223 
4224   MergeMemNode* old_mbase;
4225   if (old_base != NULL && old_base->is_MergeMem())
4226     old_mbase = old_base->as_MergeMem();
4227   else
4228     old_mbase = NULL;
4229   Node* new_base = old_base;
4230 
4231   // simplify stacked MergeMems in base memory
4232   if (old_mbase)  new_base = old_mbase->base_memory();
4233 
4234   // the base memory might contribute new slices beyond my req()
4235   if (old_mbase)  grow_to_match(old_mbase);
4236 
4237   // Look carefully at the base node if it is a phi.
4238   PhiNode* phi_base;
4239   if (new_base != NULL && new_base->is_Phi())
4240     phi_base = new_base->as_Phi();
4241   else
4242     phi_base = NULL;
4243 
4244   Node*    phi_reg = NULL;
4245   uint     phi_len = (uint)-1;
4246   if (phi_base != NULL && !phi_base->is_copy()) {
4247     // do not examine phi if degraded to a copy
4248     phi_reg = phi_base->region();
4249     phi_len = phi_base->req();
4250     // see if the phi is unfinished
4251     for (uint i = 1; i < phi_len; i++) {
4252       if (phi_base->in(i) == NULL) {
4253         // incomplete phi; do not look at it yet!
4254         phi_reg = NULL;
4255         phi_len = (uint)-1;
4256         break;
4257       }
4258     }
4259   }
4260 
4261   // Note:  We do not call verify_sparse on entry, because inputs
4262   // can normalize to the base_memory via subsume_node or similar
4263   // mechanisms.  This method repairs that damage.
4264 
4265   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4266 
4267   // Look at each slice.
4268   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4269     Node* old_in = in(i);
4270     // calculate the old memory value
4271     Node* old_mem = old_in;
4272     if (old_mem == empty_mem)  old_mem = old_base;
4273     assert(old_mem == memory_at(i), "");
4274 
4275     // maybe update (reslice) the old memory value
4276 
4277     // simplify stacked MergeMems
4278     Node* new_mem = old_mem;
4279     MergeMemNode* old_mmem;
4280     if (old_mem != NULL && old_mem->is_MergeMem())
4281       old_mmem = old_mem->as_MergeMem();
4282     else
4283       old_mmem = NULL;
4284     if (old_mmem == this) {
4285       // This can happen if loops break up and safepoints disappear.
4286       // A merge of BotPtr (default) with a RawPtr memory derived from a
4287       // safepoint can be rewritten to a merge of the same BotPtr with
4288       // the BotPtr phi coming into the loop.  If that phi disappears
4289       // also, we can end up with a self-loop of the mergemem.
4290       // In general, if loops degenerate and memory effects disappear,
4291       // a mergemem can be left looking at itself.  This simply means
4292       // that the mergemem's default should be used, since there is
4293       // no longer any apparent effect on this slice.
4294       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4295       //       from start.  Update the input to TOP.
4296       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4297     }
4298     else if (old_mmem != NULL) {
4299       new_mem = old_mmem->memory_at(i);
4300     }
4301     // else preceding memory was not a MergeMem
4302 
4303     // replace equivalent phis (unfortunately, they do not GVN together)
4304     if (new_mem != NULL && new_mem != new_base &&
4305         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4306       if (new_mem->is_Phi()) {
4307         PhiNode* phi_mem = new_mem->as_Phi();
4308         for (uint i = 1; i < phi_len; i++) {
4309           if (phi_base->in(i) != phi_mem->in(i)) {
4310             phi_mem = NULL;
4311             break;
4312           }
4313         }
4314         if (phi_mem != NULL) {
4315           // equivalent phi nodes; revert to the def
4316           new_mem = new_base;
4317         }
4318       }
4319     }
4320 
4321     // maybe store down a new value
4322     Node* new_in = new_mem;
4323     if (new_in == new_base)  new_in = empty_mem;
4324 
4325     if (new_in != old_in) {
4326       // Warning:  Do not combine this "if" with the previous "if"
4327       // A memory slice might have be be rewritten even if it is semantically
4328       // unchanged, if the base_memory value has changed.
4329       set_req(i, new_in);
4330       progress = this;          // Report progress
4331     }
4332   }
4333 
4334   if (new_base != old_base) {
4335     set_req(Compile::AliasIdxBot, new_base);
4336     // Don't use set_base_memory(new_base), because we need to update du.
4337     assert(base_memory() == new_base, "");
4338     progress = this;
4339   }
4340 
4341   if( base_memory() == this ) {
4342     // a self cycle indicates this memory path is dead
4343     set_req(Compile::AliasIdxBot, empty_mem);
4344   }
4345 
4346   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4347   // Recursion must occur after the self cycle check above
4348   if( base_memory()->is_MergeMem() ) {
4349     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4350     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4351     if( m != NULL && (m->is_top() ||
4352         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4353       // propagate rollup of dead cycle to self
4354       set_req(Compile::AliasIdxBot, empty_mem);
4355     }
4356   }
4357 
4358   if( base_memory() == empty_mem ) {
4359     progress = this;
4360     // Cut inputs during Parse phase only.
4361     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4362     if( !can_reshape ) {
4363       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4364         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4365       }
4366     }
4367   }
4368 
4369   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4370     // Check if PhiNode::Ideal's "Split phis through memory merges"
4371     // transform should be attempted. Look for this->phi->this cycle.
4372     uint merge_width = req();
4373     if (merge_width > Compile::AliasIdxRaw) {
4374       PhiNode* phi = base_memory()->as_Phi();
4375       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4376         if (phi->in(i) == this) {
4377           phase->is_IterGVN()->_worklist.push(phi);
4378           break;
4379         }
4380       }
4381     }
4382   }
4383 
4384   assert(progress || verify_sparse(), "please, no dups of base");
4385   return progress;
4386 }
4387 
4388 //-------------------------set_base_memory-------------------------------------
4389 void MergeMemNode::set_base_memory(Node *new_base) {
4390   Node* empty_mem = empty_memory();
4391   set_req(Compile::AliasIdxBot, new_base);
4392   assert(memory_at(req()) == new_base, "must set default memory");
4393   // Clear out other occurrences of new_base:
4394   if (new_base != empty_mem) {
4395     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4396       if (in(i) == new_base)  set_req(i, empty_mem);
4397     }
4398   }
4399 }
4400 
4401 //------------------------------out_RegMask------------------------------------
4402 const RegMask &MergeMemNode::out_RegMask() const {
4403   return RegMask::Empty;
4404 }
4405 
4406 //------------------------------dump_spec--------------------------------------
4407 #ifndef PRODUCT
4408 void MergeMemNode::dump_spec(outputStream *st) const {
4409   st->print(" {");
4410   Node* base_mem = base_memory();
4411   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4412     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4413     if (mem == base_mem) { st->print(" -"); continue; }
4414     st->print( " N%d:", mem->_idx );
4415     Compile::current()->get_adr_type(i)->dump_on(st);
4416   }
4417   st->print(" }");
4418 }
4419 #endif // !PRODUCT
4420 
4421 
4422 #ifdef ASSERT
4423 static bool might_be_same(Node* a, Node* b) {
4424   if (a == b)  return true;
4425   if (!(a->is_Phi() || b->is_Phi()))  return false;
4426   // phis shift around during optimization
4427   return true;  // pretty stupid...
4428 }
4429 
4430 // verify a narrow slice (either incoming or outgoing)
4431 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4432   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4433   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4434   if (Node::in_dump())      return;  // muzzle asserts when printing
4435   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4436   assert(n != NULL, "");
4437   // Elide intervening MergeMem's
4438   while (n->is_MergeMem()) {
4439     n = n->as_MergeMem()->memory_at(alias_idx);
4440   }
4441   Compile* C = Compile::current();
4442   const TypePtr* n_adr_type = n->adr_type();
4443   if (n == m->empty_memory()) {
4444     // Implicit copy of base_memory()
4445   } else if (n_adr_type != TypePtr::BOTTOM) {
4446     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4447     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4448   } else {
4449     // A few places like make_runtime_call "know" that VM calls are narrow,
4450     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4451     bool expected_wide_mem = false;
4452     if (n == m->base_memory()) {
4453       expected_wide_mem = true;
4454     } else if (alias_idx == Compile::AliasIdxRaw ||
4455                n == m->memory_at(Compile::AliasIdxRaw)) {
4456       expected_wide_mem = true;
4457     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4458       // memory can "leak through" calls on channels that
4459       // are write-once.  Allow this also.
4460       expected_wide_mem = true;
4461     }
4462     assert(expected_wide_mem, "expected narrow slice replacement");
4463   }
4464 }
4465 #else // !ASSERT
4466 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4467 #endif
4468 
4469 
4470 //-----------------------------memory_at---------------------------------------
4471 Node* MergeMemNode::memory_at(uint alias_idx) const {
4472   assert(alias_idx >= Compile::AliasIdxRaw ||
4473          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4474          "must avoid base_memory and AliasIdxTop");
4475 
4476   // Otherwise, it is a narrow slice.
4477   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4478   Compile *C = Compile::current();
4479   if (is_empty_memory(n)) {
4480     // the array is sparse; empty slots are the "top" node
4481     n = base_memory();
4482     assert(Node::in_dump()
4483            || n == NULL || n->bottom_type() == Type::TOP
4484            || n->adr_type() == NULL // address is TOP
4485            || n->adr_type() == TypePtr::BOTTOM
4486            || n->adr_type() == TypeRawPtr::BOTTOM
4487            || Compile::current()->AliasLevel() == 0,
4488            "must be a wide memory");
4489     // AliasLevel == 0 if we are organizing the memory states manually.
4490     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4491   } else {
4492     // make sure the stored slice is sane
4493     #ifdef ASSERT
4494     if (is_error_reported() || Node::in_dump()) {
4495     } else if (might_be_same(n, base_memory())) {
4496       // Give it a pass:  It is a mostly harmless repetition of the base.
4497       // This can arise normally from node subsumption during optimization.
4498     } else {
4499       verify_memory_slice(this, alias_idx, n);
4500     }
4501     #endif
4502   }
4503   return n;
4504 }
4505 
4506 //---------------------------set_memory_at-------------------------------------
4507 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4508   verify_memory_slice(this, alias_idx, n);
4509   Node* empty_mem = empty_memory();
4510   if (n == base_memory())  n = empty_mem;  // collapse default
4511   uint need_req = alias_idx+1;
4512   if (req() < need_req) {
4513     if (n == empty_mem)  return;  // already the default, so do not grow me
4514     // grow the sparse array
4515     do {
4516       add_req(empty_mem);
4517     } while (req() < need_req);
4518   }
4519   set_req( alias_idx, n );
4520 }
4521 
4522 
4523 
4524 //--------------------------iteration_setup------------------------------------
4525 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4526   if (other != NULL) {
4527     grow_to_match(other);
4528     // invariant:  the finite support of mm2 is within mm->req()
4529     #ifdef ASSERT
4530     for (uint i = req(); i < other->req(); i++) {
4531       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4532     }
4533     #endif
4534   }
4535   // Replace spurious copies of base_memory by top.
4536   Node* base_mem = base_memory();
4537   if (base_mem != NULL && !base_mem->is_top()) {
4538     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4539       if (in(i) == base_mem)
4540         set_req(i, empty_memory());
4541     }
4542   }
4543 }
4544 
4545 //---------------------------grow_to_match-------------------------------------
4546 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4547   Node* empty_mem = empty_memory();
4548   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4549   // look for the finite support of the other memory
4550   for (uint i = other->req(); --i >= req(); ) {
4551     if (other->in(i) != empty_mem) {
4552       uint new_len = i+1;
4553       while (req() < new_len)  add_req(empty_mem);
4554       break;
4555     }
4556   }
4557 }
4558 
4559 //---------------------------verify_sparse-------------------------------------
4560 #ifndef PRODUCT
4561 bool MergeMemNode::verify_sparse() const {
4562   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4563   Node* base_mem = base_memory();
4564   // The following can happen in degenerate cases, since empty==top.
4565   if (is_empty_memory(base_mem))  return true;
4566   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4567     assert(in(i) != NULL, "sane slice");
4568     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4569   }
4570   return true;
4571 }
4572 
4573 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4574   Node* n;
4575   n = mm->in(idx);
4576   if (mem == n)  return true;  // might be empty_memory()
4577   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4578   if (mem == n)  return true;
4579   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4580     if (mem == n)  return true;
4581     if (n == NULL)  break;
4582   }
4583   return false;
4584 }
4585 #endif // !PRODUCT