1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 private:
  43   bool _unaligned_access; // Unaligned access from unsafe
  44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
  45 protected:
  46 #ifdef ASSERT
  47   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  48 #endif
  49   virtual uint size_of() const;
  50 public:
  51   enum { Control,               // When is it safe to do this load?
  52          Memory,                // Chunk of memory is being loaded from
  53          Address,               // Actually address, derived from base
  54          ValueIn,               // Value to store
  55          OopStore               // Preceeding oop store, only in StoreCM
  56   };
  57   typedef enum { unordered = 0,
  58                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  59                  release,       // Store has to release or be preceded by MemBarRelease.
  60                  seqcst,        // LoadStore has to have both acquire and release semantics.
  61                  unset          // The memory ordering is not set (used for testing)
  62   } MemOrd;
  63 protected:
  64   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  65     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false) {
  66     init_class_id(Class_Mem);
  67     debug_only(_adr_type=at; adr_type();)
  68   }
  69   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  70     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
  71     init_class_id(Class_Mem);
  72     debug_only(_adr_type=at; adr_type();)
  73   }
  74   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  75     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
  76     init_class_id(Class_Mem);
  77     debug_only(_adr_type=at; adr_type();)
  78   }
  79 
  80   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return NULL; }
  81 
  82 public:
  83   // Helpers for the optimizer.  Documented in memnode.cpp.
  84   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  85                                       Node* p2, AllocateNode* a2,
  86                                       PhaseTransform* phase);
  87   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  88 
  89   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  90   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  91   // This one should probably be a phase-specific function:
  92   static bool all_controls_dominate(Node* dom, Node* sub);
  93 
  94   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  95 
  96   // Shared code for Ideal methods:
  97   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  98 
  99   // Helper function for adr_type() implementations.
 100   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
 101 
 102   // Raw access function, to allow copying of adr_type efficiently in
 103   // product builds and retain the debug info for debug builds.
 104   const TypePtr *raw_adr_type() const {
 105 #ifdef ASSERT
 106     return _adr_type;
 107 #else
 108     return 0;
 109 #endif
 110   }
 111 
 112   // Map a load or store opcode to its corresponding store opcode.
 113   // (Return -1 if unknown.)
 114   virtual int store_Opcode() const { return -1; }
 115 
 116   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 117   virtual BasicType memory_type() const = 0;
 118   virtual int memory_size() const {
 119 #ifdef ASSERT
 120     return type2aelembytes(memory_type(), true);
 121 #else
 122     return type2aelembytes(memory_type());
 123 #endif
 124   }
 125 
 126   // Search through memory states which precede this node (load or store).
 127   // Look for an exact match for the address, with no intervening
 128   // aliased stores.
 129   Node* find_previous_store(PhaseTransform* phase);
 130 
 131   // Can this node (load or store) accurately see a stored value in
 132   // the given memory state?  (The state may or may not be in(Memory).)
 133   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 134 
 135   void set_unaligned_access() { _unaligned_access = true; }
 136   bool is_unaligned_access() const { return _unaligned_access; }
 137   void set_mismatched_access() { _mismatched_access = true; }
 138   bool is_mismatched_access() const { return _mismatched_access; }
 139 
 140 #ifndef PRODUCT
 141   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 142   virtual void dump_spec(outputStream *st) const;
 143 #endif
 144 };
 145 
 146 //------------------------------LoadNode---------------------------------------
 147 // Load value; requires Memory and Address
 148 class LoadNode : public MemNode {
 149 public:
 150   // Some loads (from unsafe) should be pinned: they don't depend only
 151   // on the dominating test.  The boolean field _depends_only_on_test
 152   // below records whether that node depends only on the dominating
 153   // test.
 154   // Methods used to build LoadNodes pass an argument of type enum
 155   // ControlDependency instead of a boolean because those methods
 156   // typically have multiple boolean parameters with default values:
 157   // passing the wrong boolean to one of these parameters by mistake
 158   // goes easily unnoticed. Using an enum, the compiler can check that
 159   // the type of a value and the type of the parameter match.
 160   enum ControlDependency {
 161     Pinned,
 162     DependsOnlyOnTest
 163   };
 164 private:
 165   // LoadNode::hash() doesn't take the _depends_only_on_test field
 166   // into account: If the graph already has a non-pinned LoadNode and
 167   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 168   // to replace the pinned LoadNode with the non-pinned LoadNode,
 169   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 170   // those inputs in the first place. If the graph already has a
 171   // pinned LoadNode and we add a non pinned LoadNode with the same
 172   // inputs, it's safe (but suboptimal) for GVN to replace the
 173   // non-pinned LoadNode by the pinned LoadNode.
 174   bool _depends_only_on_test;
 175 
 176   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 177   // loads that can be reordered, and such requiring acquire semantics to
 178   // adhere to the Java specification.  The required behaviour is stored in
 179   // this field.
 180   const MemOrd _mo;
 181 
 182 protected:
 183   virtual uint cmp(const Node &n) const;
 184   virtual uint size_of() const; // Size is bigger
 185   // Should LoadNode::Ideal() attempt to remove control edges?
 186   virtual bool can_remove_control() const;
 187   const Type* const _type;      // What kind of value is loaded?
 188 
 189   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
 190 public:
 191 
 192   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 193     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 194     init_class_id(Class_Load);
 195   }
 196   inline bool is_unordered() const { return !is_acquire(); }
 197   inline bool is_acquire() const {
 198     assert(_mo == unordered || _mo == acquire, "unexpected");
 199     return _mo == acquire;
 200   }
 201   inline bool is_unsigned() const {
 202     int lop = Opcode();
 203     return (lop == Op_LoadUB) || (lop == Op_LoadUS);
 204   }
 205 
 206   // Polymorphic factory method:
 207   static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 208                     const TypePtr* at, const Type *rt, BasicType bt,
 209                     MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 210                     bool unaligned = false, bool mismatched = false);
 211 
 212   virtual uint hash()   const;  // Check the type
 213 
 214   // Handle algebraic identities here.  If we have an identity, return the Node
 215   // we are equivalent to.  We look for Load of a Store.
 216   virtual Node* Identity(PhaseGVN* phase);
 217 
 218   // If the load is from Field memory and the pointer is non-null, it might be possible to
 219   // zero out the control input.
 220   // If the offset is constant and the base is an object allocation,
 221   // try to hook me up to the exact initializing store.
 222   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 223 
 224   // Split instance field load through Phi.
 225   Node* split_through_phi(PhaseGVN *phase);
 226 
 227   // Recover original value from boxed values
 228   Node *eliminate_autobox(PhaseGVN *phase);
 229 
 230   // Compute a new Type for this node.  Basically we just do the pre-check,
 231   // then call the virtual add() to set the type.
 232   virtual const Type* Value(PhaseGVN* phase) const;
 233 
 234   // Common methods for LoadKlass and LoadNKlass nodes.
 235   const Type* klass_value_common(PhaseGVN* phase) const;
 236   Node* klass_identity_common(PhaseGVN* phase);
 237 
 238   virtual uint ideal_reg() const;
 239   virtual const Type *bottom_type() const;
 240   // Following method is copied from TypeNode:
 241   void set_type(const Type* t) {
 242     assert(t != NULL, "sanity");
 243     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 244     *(const Type**)&_type = t;   // cast away const-ness
 245     // If this node is in the hash table, make sure it doesn't need a rehash.
 246     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 247   }
 248   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 249 
 250   // Do not match memory edge
 251   virtual uint match_edge(uint idx) const;
 252 
 253   // Map a load opcode to its corresponding store opcode.
 254   virtual int store_Opcode() const = 0;
 255 
 256   // Check if the load's memory input is a Phi node with the same control.
 257   bool is_instance_field_load_with_local_phi(Node* ctrl);
 258 
 259 #ifndef PRODUCT
 260   virtual void dump_spec(outputStream *st) const;
 261 #endif
 262 #ifdef ASSERT
 263   // Helper function to allow a raw load without control edge for some cases
 264   static bool is_immutable_value(Node* adr);
 265 #endif
 266 protected:
 267   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 268                                      ciKlass* klass) const;
 269 
 270   Node* can_see_arraycopy_value(Node* st, PhaseTransform* phase) const;
 271 
 272   // depends_only_on_test is almost always true, and needs to be almost always
 273   // true to enable key hoisting & commoning optimizations.  However, for the
 274   // special case of RawPtr loads from TLS top & end, and other loads performed by
 275   // GC barriers, the control edge carries the dependence preventing hoisting past
 276   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 277   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 278   // which produce results (new raw memory state) inside of loops preventing all
 279   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 280   // See comment in macro.cpp, around line 125 expand_allocate_common().
 281   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 282 };
 283 
 284 //------------------------------LoadBNode--------------------------------------
 285 // Load a byte (8bits signed) from memory
 286 class LoadBNode : public LoadNode {
 287 public:
 288   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 289     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 290   virtual int Opcode() const;
 291   virtual uint ideal_reg() const { return Op_RegI; }
 292   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 293   virtual const Type* Value(PhaseGVN* phase) const;
 294   virtual int store_Opcode() const { return Op_StoreB; }
 295   virtual BasicType memory_type() const { return T_BYTE; }
 296 };
 297 
 298 //------------------------------LoadUBNode-------------------------------------
 299 // Load a unsigned byte (8bits unsigned) from memory
 300 class LoadUBNode : public LoadNode {
 301 public:
 302   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 303     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 304   virtual int Opcode() const;
 305   virtual uint ideal_reg() const { return Op_RegI; }
 306   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 307   virtual const Type* Value(PhaseGVN* phase) const;
 308   virtual int store_Opcode() const { return Op_StoreB; }
 309   virtual BasicType memory_type() const { return T_BYTE; }
 310 };
 311 
 312 //------------------------------LoadUSNode-------------------------------------
 313 // Load an unsigned short/char (16bits unsigned) from memory
 314 class LoadUSNode : public LoadNode {
 315 public:
 316   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 317     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 318   virtual int Opcode() const;
 319   virtual uint ideal_reg() const { return Op_RegI; }
 320   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 321   virtual const Type* Value(PhaseGVN* phase) const;
 322   virtual int store_Opcode() const { return Op_StoreC; }
 323   virtual BasicType memory_type() const { return T_CHAR; }
 324 };
 325 
 326 //------------------------------LoadSNode--------------------------------------
 327 // Load a short (16bits signed) from memory
 328 class LoadSNode : public LoadNode {
 329 public:
 330   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 331     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 332   virtual int Opcode() const;
 333   virtual uint ideal_reg() const { return Op_RegI; }
 334   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 335   virtual const Type* Value(PhaseGVN* phase) const;
 336   virtual int store_Opcode() const { return Op_StoreC; }
 337   virtual BasicType memory_type() const { return T_SHORT; }
 338 };
 339 
 340 //------------------------------LoadINode--------------------------------------
 341 // Load an integer from memory
 342 class LoadINode : public LoadNode {
 343 public:
 344   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 345     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 346   virtual int Opcode() const;
 347   virtual uint ideal_reg() const { return Op_RegI; }
 348   virtual int store_Opcode() const { return Op_StoreI; }
 349   virtual BasicType memory_type() const { return T_INT; }
 350 };
 351 
 352 //------------------------------LoadRangeNode----------------------------------
 353 // Load an array length from the array
 354 class LoadRangeNode : public LoadINode {
 355 public:
 356   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 357     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 358   virtual int Opcode() const;
 359   virtual const Type* Value(PhaseGVN* phase) const;
 360   virtual Node* Identity(PhaseGVN* phase);
 361   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 362 };
 363 
 364 //------------------------------LoadLNode--------------------------------------
 365 // Load a long from memory
 366 class LoadLNode : public LoadNode {
 367   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 368   virtual uint cmp( const Node &n ) const {
 369     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 370       && LoadNode::cmp(n);
 371   }
 372   virtual uint size_of() const { return sizeof(*this); }
 373   const bool _require_atomic_access;  // is piecewise load forbidden?
 374 
 375 public:
 376   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 377             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 378     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 379   virtual int Opcode() const;
 380   virtual uint ideal_reg() const { return Op_RegL; }
 381   virtual int store_Opcode() const { return Op_StoreL; }
 382   virtual BasicType memory_type() const { return T_LONG; }
 383   bool require_atomic_access() const { return _require_atomic_access; }
 384   static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 385                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 386                                 bool unaligned = false, bool mismatched = false);
 387 #ifndef PRODUCT
 388   virtual void dump_spec(outputStream *st) const {
 389     LoadNode::dump_spec(st);
 390     if (_require_atomic_access)  st->print(" Atomic!");
 391   }
 392 #endif
 393 };
 394 
 395 //------------------------------LoadL_unalignedNode----------------------------
 396 // Load a long from unaligned memory
 397 class LoadL_unalignedNode : public LoadLNode {
 398 public:
 399   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 400     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 401   virtual int Opcode() const;
 402 };
 403 
 404 //------------------------------LoadFNode--------------------------------------
 405 // Load a float (64 bits) from memory
 406 class LoadFNode : public LoadNode {
 407 public:
 408   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 409     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 410   virtual int Opcode() const;
 411   virtual uint ideal_reg() const { return Op_RegF; }
 412   virtual int store_Opcode() const { return Op_StoreF; }
 413   virtual BasicType memory_type() const { return T_FLOAT; }
 414 };
 415 
 416 //------------------------------LoadDNode--------------------------------------
 417 // Load a double (64 bits) from memory
 418 class LoadDNode : public LoadNode {
 419   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 420   virtual uint cmp( const Node &n ) const {
 421     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 422       && LoadNode::cmp(n);
 423   }
 424   virtual uint size_of() const { return sizeof(*this); }
 425   const bool _require_atomic_access;  // is piecewise load forbidden?
 426 
 427 public:
 428   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 429             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 430     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 431   virtual int Opcode() const;
 432   virtual uint ideal_reg() const { return Op_RegD; }
 433   virtual int store_Opcode() const { return Op_StoreD; }
 434   virtual BasicType memory_type() const { return T_DOUBLE; }
 435   bool require_atomic_access() const { return _require_atomic_access; }
 436   static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 437                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
 438                                 bool unaligned = false, bool mismatched = false);
 439 #ifndef PRODUCT
 440   virtual void dump_spec(outputStream *st) const {
 441     LoadNode::dump_spec(st);
 442     if (_require_atomic_access)  st->print(" Atomic!");
 443   }
 444 #endif
 445 };
 446 
 447 //------------------------------LoadD_unalignedNode----------------------------
 448 // Load a double from unaligned memory
 449 class LoadD_unalignedNode : public LoadDNode {
 450 public:
 451   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 452     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 453   virtual int Opcode() const;
 454 };
 455 
 456 //------------------------------LoadPNode--------------------------------------
 457 // Load a pointer from memory (either object or array)
 458 class LoadPNode : public LoadNode {
 459 public:
 460   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 461     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 462   virtual int Opcode() const;
 463   virtual uint ideal_reg() const { return Op_RegP; }
 464   virtual int store_Opcode() const { return Op_StoreP; }
 465   virtual BasicType memory_type() const { return T_ADDRESS; }
 466 };
 467 
 468 
 469 //------------------------------LoadNNode--------------------------------------
 470 // Load a narrow oop from memory (either object or array)
 471 class LoadNNode : public LoadNode {
 472 public:
 473   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 474     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 475   virtual int Opcode() const;
 476   virtual uint ideal_reg() const { return Op_RegN; }
 477   virtual int store_Opcode() const { return Op_StoreN; }
 478   virtual BasicType memory_type() const { return T_NARROWOOP; }
 479 };
 480 
 481 //------------------------------LoadKlassNode----------------------------------
 482 // Load a Klass from an object
 483 class LoadKlassNode : public LoadPNode {
 484 protected:
 485   // In most cases, LoadKlassNode does not have the control input set. If the control
 486   // input is set, it must not be removed (by LoadNode::Ideal()).
 487   virtual bool can_remove_control() const;
 488 public:
 489   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 490     : LoadPNode(c, mem, adr, at, tk, mo) {}
 491   virtual int Opcode() const;
 492   virtual const Type* Value(PhaseGVN* phase) const;
 493   virtual Node* Identity(PhaseGVN* phase);
 494   virtual bool depends_only_on_test() const { return true; }
 495 
 496   // Polymorphic factory method:
 497   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 498                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 499 };
 500 
 501 //------------------------------LoadNKlassNode---------------------------------
 502 // Load a narrow Klass from an object.
 503 class LoadNKlassNode : public LoadNNode {
 504 public:
 505   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 506     : LoadNNode(c, mem, adr, at, tk, mo) {}
 507   virtual int Opcode() const;
 508   virtual uint ideal_reg() const { return Op_RegN; }
 509   virtual int store_Opcode() const { return Op_StoreNKlass; }
 510   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 511 
 512   virtual const Type* Value(PhaseGVN* phase) const;
 513   virtual Node* Identity(PhaseGVN* phase);
 514   virtual bool depends_only_on_test() const { return true; }
 515 };
 516 
 517 
 518 //------------------------------StoreNode--------------------------------------
 519 // Store value; requires Store, Address and Value
 520 class StoreNode : public MemNode {
 521 private:
 522   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 523   // stores that can be reordered, and such requiring release semantics to
 524   // adhere to the Java specification.  The required behaviour is stored in
 525   // this field.
 526   const MemOrd _mo;
 527   // Needed for proper cloning.
 528   virtual uint size_of() const { return sizeof(*this); }
 529 protected:
 530   virtual uint cmp( const Node &n ) const;
 531   virtual bool depends_only_on_test() const { return false; }
 532 
 533   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 534   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 535 
 536 public:
 537   // We must ensure that stores of object references will be visible
 538   // only after the object's initialization. So the callers of this
 539   // procedure must indicate that the store requires `release'
 540   // semantics, if the stored value is an object reference that might
 541   // point to a new object and may become externally visible.
 542   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 543     : MemNode(c, mem, adr, at, val), _mo(mo) {
 544     init_class_id(Class_Store);
 545   }
 546   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 547     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 548     init_class_id(Class_Store);
 549   }
 550 
 551   inline bool is_unordered() const { return !is_release(); }
 552   inline bool is_release() const {
 553     assert((_mo == unordered || _mo == release), "unexpected");
 554     return _mo == release;
 555   }
 556 
 557   // Conservatively release stores of object references in order to
 558   // ensure visibility of object initialization.
 559   static inline MemOrd release_if_reference(const BasicType t) {
 560 #ifdef AARCH64
 561     // AArch64 doesn't need a release store here because object
 562     // initialization contains the necessary barriers.
 563     return unordered;
 564 #else
 565     const MemOrd mo = (t == T_ARRAY ||
 566                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 567                        t == T_OBJECT) ? release : unordered;
 568     return mo;
 569 #endif
 570   }
 571 
 572   // Polymorphic factory method
 573   //
 574   // We must ensure that stores of object references will be visible
 575   // only after the object's initialization. So the callers of this
 576   // procedure must indicate that the store requires `release'
 577   // semantics, if the stored value is an object reference that might
 578   // point to a new object and may become externally visible.
 579   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 580                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 581 
 582   virtual uint hash() const;    // Check the type
 583 
 584   // If the store is to Field memory and the pointer is non-null, we can
 585   // zero out the control input.
 586   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 587 
 588   // Compute a new Type for this node.  Basically we just do the pre-check,
 589   // then call the virtual add() to set the type.
 590   virtual const Type* Value(PhaseGVN* phase) const;
 591 
 592   // Check for identity function on memory (Load then Store at same address)
 593   virtual Node* Identity(PhaseGVN* phase);
 594 
 595   // Do not match memory edge
 596   virtual uint match_edge(uint idx) const;
 597 
 598   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 599 
 600   // Map a store opcode to its corresponding own opcode, trivially.
 601   virtual int store_Opcode() const { return Opcode(); }
 602 
 603   // have all possible loads of the value stored been optimized away?
 604   bool value_never_loaded(PhaseTransform *phase) const;
 605 };
 606 
 607 //------------------------------StoreBNode-------------------------------------
 608 // Store byte to memory
 609 class StoreBNode : public StoreNode {
 610 public:
 611   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 612     : StoreNode(c, mem, adr, at, val, mo) {}
 613   virtual int Opcode() const;
 614   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 615   virtual BasicType memory_type() const { return T_BYTE; }
 616 };
 617 
 618 //------------------------------StoreCNode-------------------------------------
 619 // Store char/short to memory
 620 class StoreCNode : public StoreNode {
 621 public:
 622   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 623     : StoreNode(c, mem, adr, at, val, mo) {}
 624   virtual int Opcode() const;
 625   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 626   virtual BasicType memory_type() const { return T_CHAR; }
 627 };
 628 
 629 //------------------------------StoreINode-------------------------------------
 630 // Store int to memory
 631 class StoreINode : public StoreNode {
 632 public:
 633   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 634     : StoreNode(c, mem, adr, at, val, mo) {}
 635   virtual int Opcode() const;
 636   virtual BasicType memory_type() const { return T_INT; }
 637 };
 638 
 639 //------------------------------StoreLNode-------------------------------------
 640 // Store long to memory
 641 class StoreLNode : public StoreNode {
 642   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 643   virtual uint cmp( const Node &n ) const {
 644     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 645       && StoreNode::cmp(n);
 646   }
 647   virtual uint size_of() const { return sizeof(*this); }
 648   const bool _require_atomic_access;  // is piecewise store forbidden?
 649 
 650 public:
 651   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 652     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 653   virtual int Opcode() const;
 654   virtual BasicType memory_type() const { return T_LONG; }
 655   bool require_atomic_access() const { return _require_atomic_access; }
 656   static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 657 #ifndef PRODUCT
 658   virtual void dump_spec(outputStream *st) const {
 659     StoreNode::dump_spec(st);
 660     if (_require_atomic_access)  st->print(" Atomic!");
 661   }
 662 #endif
 663 };
 664 
 665 //------------------------------StoreFNode-------------------------------------
 666 // Store float to memory
 667 class StoreFNode : public StoreNode {
 668 public:
 669   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 670     : StoreNode(c, mem, adr, at, val, mo) {}
 671   virtual int Opcode() const;
 672   virtual BasicType memory_type() const { return T_FLOAT; }
 673 };
 674 
 675 //------------------------------StoreDNode-------------------------------------
 676 // Store double to memory
 677 class StoreDNode : public StoreNode {
 678   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 679   virtual uint cmp( const Node &n ) const {
 680     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 681       && StoreNode::cmp(n);
 682   }
 683   virtual uint size_of() const { return sizeof(*this); }
 684   const bool _require_atomic_access;  // is piecewise store forbidden?
 685 public:
 686   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 687              MemOrd mo, bool require_atomic_access = false)
 688     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 689   virtual int Opcode() const;
 690   virtual BasicType memory_type() const { return T_DOUBLE; }
 691   bool require_atomic_access() const { return _require_atomic_access; }
 692   static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 693 #ifndef PRODUCT
 694   virtual void dump_spec(outputStream *st) const {
 695     StoreNode::dump_spec(st);
 696     if (_require_atomic_access)  st->print(" Atomic!");
 697   }
 698 #endif
 699 
 700 };
 701 
 702 //------------------------------StorePNode-------------------------------------
 703 // Store pointer to memory
 704 class StorePNode : public StoreNode {
 705 public:
 706   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 707     : StoreNode(c, mem, adr, at, val, mo) {}
 708   virtual int Opcode() const;
 709   virtual BasicType memory_type() const { return T_ADDRESS; }
 710 };
 711 
 712 //------------------------------StoreNNode-------------------------------------
 713 // Store narrow oop to memory
 714 class StoreNNode : public StoreNode {
 715 public:
 716   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 717     : StoreNode(c, mem, adr, at, val, mo) {}
 718   virtual int Opcode() const;
 719   virtual BasicType memory_type() const { return T_NARROWOOP; }
 720 };
 721 
 722 //------------------------------StoreNKlassNode--------------------------------------
 723 // Store narrow klass to memory
 724 class StoreNKlassNode : public StoreNNode {
 725 public:
 726   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 727     : StoreNNode(c, mem, adr, at, val, mo) {}
 728   virtual int Opcode() const;
 729   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 730 };
 731 
 732 //------------------------------StoreCMNode-----------------------------------
 733 // Store card-mark byte to memory for CM
 734 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 735 // Preceeding equivalent StoreCMs may be eliminated.
 736 class StoreCMNode : public StoreNode {
 737  private:
 738   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 739   virtual uint cmp( const Node &n ) const {
 740     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 741       && StoreNode::cmp(n);
 742   }
 743   virtual uint size_of() const { return sizeof(*this); }
 744   int _oop_alias_idx;   // The alias_idx of OopStore
 745 
 746 public:
 747   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 748     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 749     _oop_alias_idx(oop_alias_idx) {
 750     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 751            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 752            "bad oop alias idx");
 753   }
 754   virtual int Opcode() const;
 755   virtual Node* Identity(PhaseGVN* phase);
 756   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 757   virtual const Type* Value(PhaseGVN* phase) const;
 758   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 759   int oop_alias_idx() const { return _oop_alias_idx; }
 760 };
 761 
 762 //------------------------------LoadPLockedNode---------------------------------
 763 // Load-locked a pointer from memory (either object or array).
 764 // On Sparc & Intel this is implemented as a normal pointer load.
 765 // On PowerPC and friends it's a real load-locked.
 766 class LoadPLockedNode : public LoadPNode {
 767 public:
 768   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 769     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 770   virtual int Opcode() const;
 771   virtual int store_Opcode() const { return Op_StorePConditional; }
 772   virtual bool depends_only_on_test() const { return true; }
 773 };
 774 
 775 //------------------------------SCMemProjNode---------------------------------------
 776 // This class defines a projection of the memory  state of a store conditional node.
 777 // These nodes return a value, but also update memory.
 778 class SCMemProjNode : public ProjNode {
 779 public:
 780   enum {SCMEMPROJCON = (uint)-2};
 781   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 782   virtual int Opcode() const;
 783   virtual bool      is_CFG() const  { return false; }
 784   virtual const Type *bottom_type() const {return Type::MEMORY;}
 785   virtual const TypePtr *adr_type() const {
 786     Node* ctrl = in(0);
 787     if (ctrl == NULL)  return NULL; // node is dead
 788     return ctrl->in(MemNode::Memory)->adr_type();
 789   }
 790   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 791   virtual const Type* Value(PhaseGVN* phase) const;
 792 #ifndef PRODUCT
 793   virtual void dump_spec(outputStream *st) const {};
 794 #endif
 795 };
 796 
 797 //------------------------------LoadStoreNode---------------------------
 798 // Note: is_Mem() method returns 'true' for this class.
 799 class LoadStoreNode : public Node {
 800 private:
 801   const Type* const _type;      // What kind of value is loaded?
 802   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 803   virtual uint size_of() const; // Size is bigger
 804 public:
 805   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 806   virtual bool depends_only_on_test() const { return false; }
 807   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 808 
 809   virtual const Type *bottom_type() const { return _type; }
 810   virtual uint ideal_reg() const;
 811   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 812 
 813   bool result_not_used() const;
 814 };
 815 
 816 class LoadStoreConditionalNode : public LoadStoreNode {
 817 public:
 818   enum {
 819     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 820   };
 821   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 822 };
 823 
 824 //------------------------------StorePConditionalNode---------------------------
 825 // Conditionally store pointer to memory, if no change since prior
 826 // load-locked.  Sets flags for success or failure of the store.
 827 class StorePConditionalNode : public LoadStoreConditionalNode {
 828 public:
 829   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 830   virtual int Opcode() const;
 831   // Produces flags
 832   virtual uint ideal_reg() const { return Op_RegFlags; }
 833 };
 834 
 835 //------------------------------StoreIConditionalNode---------------------------
 836 // Conditionally store int to memory, if no change since prior
 837 // load-locked.  Sets flags for success or failure of the store.
 838 class StoreIConditionalNode : public LoadStoreConditionalNode {
 839 public:
 840   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 841   virtual int Opcode() const;
 842   // Produces flags
 843   virtual uint ideal_reg() const { return Op_RegFlags; }
 844 };
 845 
 846 //------------------------------StoreLConditionalNode---------------------------
 847 // Conditionally store long to memory, if no change since prior
 848 // load-locked.  Sets flags for success or failure of the store.
 849 class StoreLConditionalNode : public LoadStoreConditionalNode {
 850 public:
 851   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 852   virtual int Opcode() const;
 853   // Produces flags
 854   virtual uint ideal_reg() const { return Op_RegFlags; }
 855 };
 856 
 857 class CompareAndSwapNode : public LoadStoreConditionalNode {
 858 private:
 859   const MemNode::MemOrd _mem_ord;
 860 public:
 861   CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {}
 862   MemNode::MemOrd order() const {
 863     return _mem_ord;
 864   }
 865 };
 866 
 867 class CompareAndExchangeNode : public LoadStoreNode {
 868 private:
 869   const MemNode::MemOrd _mem_ord;
 870 public:
 871   enum {
 872     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 873   };
 874   CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) :
 875     LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) {
 876      init_req(ExpectedIn, ex );
 877   }
 878 
 879   MemNode::MemOrd order() const {
 880     return _mem_ord;
 881   }
 882 };
 883 
 884 //------------------------------CompareAndSwapLNode---------------------------
 885 class CompareAndSwapLNode : public CompareAndSwapNode {
 886 public:
 887   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 888   virtual int Opcode() const;
 889 };
 890 
 891 
 892 //------------------------------CompareAndSwapINode---------------------------
 893 class CompareAndSwapINode : public CompareAndSwapNode {
 894 public:
 895   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 896   virtual int Opcode() const;
 897 };
 898 
 899 
 900 //------------------------------CompareAndSwapPNode---------------------------
 901 class CompareAndSwapPNode : public CompareAndSwapNode {
 902 public:
 903   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 904   virtual int Opcode() const;
 905 };
 906 
 907 //------------------------------CompareAndSwapNNode---------------------------
 908 class CompareAndSwapNNode : public CompareAndSwapNode {
 909 public:
 910   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 911   virtual int Opcode() const;
 912 };
 913 
 914 
 915 //------------------------------WeakCompareAndSwapLNode---------------------------
 916 class WeakCompareAndSwapLNode : public CompareAndSwapNode {
 917 public:
 918   WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 919   virtual int Opcode() const;
 920 };
 921 
 922 
 923 //------------------------------WeakCompareAndSwapINode---------------------------
 924 class WeakCompareAndSwapINode : public CompareAndSwapNode {
 925 public:
 926   WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 927   virtual int Opcode() const;
 928 };
 929 
 930 
 931 //------------------------------WeakCompareAndSwapPNode---------------------------
 932 class WeakCompareAndSwapPNode : public CompareAndSwapNode {
 933 public:
 934   WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 935   virtual int Opcode() const;
 936 };
 937 
 938 //------------------------------WeakCompareAndSwapNNode---------------------------
 939 class WeakCompareAndSwapNNode : public CompareAndSwapNode {
 940 public:
 941   WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
 942   virtual int Opcode() const;
 943 };
 944 
 945 //------------------------------CompareAndExchangeLNode---------------------------
 946 class CompareAndExchangeLNode : public CompareAndExchangeNode {
 947 public:
 948   CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { }
 949   virtual int Opcode() const;
 950 };
 951 
 952 
 953 //------------------------------CompareAndExchangeINode---------------------------
 954 class CompareAndExchangeINode : public CompareAndExchangeNode {
 955 public:
 956   CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { }
 957   virtual int Opcode() const;
 958 };
 959 
 960 
 961 //------------------------------CompareAndExchangePNode---------------------------
 962 class CompareAndExchangePNode : public CompareAndExchangeNode {
 963 public:
 964   CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
 965   virtual int Opcode() const;
 966 };
 967 
 968 //------------------------------CompareAndExchangeNNode---------------------------
 969 class CompareAndExchangeNNode : public CompareAndExchangeNode {
 970 public:
 971   CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
 972   virtual int Opcode() const;
 973 };
 974 
 975 //------------------------------GetAndAddINode---------------------------
 976 class GetAndAddINode : public LoadStoreNode {
 977 public:
 978   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 979   virtual int Opcode() const;
 980 };
 981 
 982 //------------------------------GetAndAddLNode---------------------------
 983 class GetAndAddLNode : public LoadStoreNode {
 984 public:
 985   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 986   virtual int Opcode() const;
 987 };
 988 
 989 
 990 //------------------------------GetAndSetINode---------------------------
 991 class GetAndSetINode : public LoadStoreNode {
 992 public:
 993   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 994   virtual int Opcode() const;
 995 };
 996 
 997 //------------------------------GetAndSetINode---------------------------
 998 class GetAndSetLNode : public LoadStoreNode {
 999 public:
1000   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
1001   virtual int Opcode() const;
1002 };
1003 
1004 //------------------------------GetAndSetPNode---------------------------
1005 class GetAndSetPNode : public LoadStoreNode {
1006 public:
1007   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1008   virtual int Opcode() const;
1009 };
1010 
1011 //------------------------------GetAndSetNNode---------------------------
1012 class GetAndSetNNode : public LoadStoreNode {
1013 public:
1014   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
1015   virtual int Opcode() const;
1016 };
1017 
1018 //------------------------------ClearArray-------------------------------------
1019 class ClearArrayNode: public Node {
1020 private:
1021   bool _is_large;
1022 public:
1023   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base, bool is_large)
1024     : Node(ctrl,arymem,word_cnt,base), _is_large(is_large) {
1025     init_class_id(Class_ClearArray);
1026   }
1027   virtual int         Opcode() const;
1028   virtual const Type *bottom_type() const { return Type::MEMORY; }
1029   // ClearArray modifies array elements, and so affects only the
1030   // array memory addressed by the bottom_type of its base address.
1031   virtual const class TypePtr *adr_type() const;
1032   virtual Node* Identity(PhaseGVN* phase);
1033   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1034   virtual uint match_edge(uint idx) const;
1035   bool is_large() const { return _is_large; }
1036 
1037   // Clear the given area of an object or array.
1038   // The start offset must always be aligned mod BytesPerInt.
1039   // The end offset must always be aligned mod BytesPerLong.
1040   // Return the new memory.
1041   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1042                             intptr_t start_offset,
1043                             intptr_t end_offset,
1044                             PhaseGVN* phase);
1045   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1046                             intptr_t start_offset,
1047                             Node* end_offset,
1048                             PhaseGVN* phase);
1049   static Node* clear_memory(Node* control, Node* mem, Node* dest,
1050                             Node* start_offset,
1051                             Node* end_offset,
1052                             PhaseGVN* phase);
1053   // Return allocation input memory edge if it is different instance
1054   // or itself if it is the one we are looking for.
1055   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
1056 };
1057 
1058 //------------------------------MemBar-----------------------------------------
1059 // There are different flavors of Memory Barriers to match the Java Memory
1060 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
1061 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
1062 // volatile-load.  Monitor-exit and volatile-store act as Release: no
1063 // preceding ref can be moved to after them.  We insert a MemBar-Release
1064 // before a FastUnlock or volatile-store.  All volatiles need to be
1065 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
1066 // separate it from any following volatile-load.
1067 class MemBarNode: public MultiNode {
1068   virtual uint hash() const ;                  // { return NO_HASH; }
1069   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1070 
1071   virtual uint size_of() const { return sizeof(*this); }
1072   // Memory type this node is serializing.  Usually either rawptr or bottom.
1073   const TypePtr* _adr_type;
1074 
1075 public:
1076   enum {
1077     Precedent = TypeFunc::Parms  // optional edge to force precedence
1078   };
1079   MemBarNode(Compile* C, int alias_idx, Node* precedent);
1080   virtual int Opcode() const = 0;
1081   virtual const class TypePtr *adr_type() const { return _adr_type; }
1082   virtual const Type* Value(PhaseGVN* phase) const;
1083   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1084   virtual uint match_edge(uint idx) const { return 0; }
1085   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
1086   virtual Node *match( const ProjNode *proj, const Matcher *m );
1087   // Factory method.  Builds a wide or narrow membar.
1088   // Optional 'precedent' becomes an extra edge if not null.
1089   static MemBarNode* make(Compile* C, int opcode,
1090                           int alias_idx = Compile::AliasIdxBot,
1091                           Node* precedent = NULL);
1092 };
1093 
1094 // "Acquire" - no following ref can move before (but earlier refs can
1095 // follow, like an early Load stalled in cache).  Requires multi-cpu
1096 // visibility.  Inserted after a volatile load.
1097 class MemBarAcquireNode: public MemBarNode {
1098 public:
1099   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1100     : MemBarNode(C, alias_idx, precedent) {}
1101   virtual int Opcode() const;
1102 };
1103 
1104 // "Acquire" - no following ref can move before (but earlier refs can
1105 // follow, like an early Load stalled in cache).  Requires multi-cpu
1106 // visibility.  Inserted independ of any load, as required
1107 // for intrinsic Unsafe.loadFence().
1108 class LoadFenceNode: public MemBarNode {
1109 public:
1110   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1111     : MemBarNode(C, alias_idx, precedent) {}
1112   virtual int Opcode() const;
1113 };
1114 
1115 // "Release" - no earlier ref can move after (but later refs can move
1116 // up, like a speculative pipelined cache-hitting Load).  Requires
1117 // multi-cpu visibility.  Inserted before a volatile store.
1118 class MemBarReleaseNode: public MemBarNode {
1119 public:
1120   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1121     : MemBarNode(C, alias_idx, precedent) {}
1122   virtual int Opcode() const;
1123 };
1124 
1125 // "Release" - no earlier ref can move after (but later refs can move
1126 // up, like a speculative pipelined cache-hitting Load).  Requires
1127 // multi-cpu visibility.  Inserted independent of any store, as required
1128 // for intrinsic Unsafe.storeFence().
1129 class StoreFenceNode: public MemBarNode {
1130 public:
1131   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1132     : MemBarNode(C, alias_idx, precedent) {}
1133   virtual int Opcode() const;
1134 };
1135 
1136 // "Acquire" - no following ref can move before (but earlier refs can
1137 // follow, like an early Load stalled in cache).  Requires multi-cpu
1138 // visibility.  Inserted after a FastLock.
1139 class MemBarAcquireLockNode: public MemBarNode {
1140 public:
1141   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1142     : MemBarNode(C, alias_idx, precedent) {}
1143   virtual int Opcode() const;
1144 };
1145 
1146 // "Release" - no earlier ref can move after (but later refs can move
1147 // up, like a speculative pipelined cache-hitting Load).  Requires
1148 // multi-cpu visibility.  Inserted before a FastUnLock.
1149 class MemBarReleaseLockNode: public MemBarNode {
1150 public:
1151   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1152     : MemBarNode(C, alias_idx, precedent) {}
1153   virtual int Opcode() const;
1154 };
1155 
1156 class MemBarStoreStoreNode: public MemBarNode {
1157 public:
1158   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1159     : MemBarNode(C, alias_idx, precedent) {
1160     init_class_id(Class_MemBarStoreStore);
1161   }
1162   virtual int Opcode() const;
1163 };
1164 
1165 // Ordering between a volatile store and a following volatile load.
1166 // Requires multi-CPU visibility?
1167 class MemBarVolatileNode: public MemBarNode {
1168 public:
1169   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1170     : MemBarNode(C, alias_idx, precedent) {}
1171   virtual int Opcode() const;
1172 };
1173 
1174 // Ordering within the same CPU.  Used to order unsafe memory references
1175 // inside the compiler when we lack alias info.  Not needed "outside" the
1176 // compiler because the CPU does all the ordering for us.
1177 class MemBarCPUOrderNode: public MemBarNode {
1178 public:
1179   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1180     : MemBarNode(C, alias_idx, precedent) {}
1181   virtual int Opcode() const;
1182   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1183 };
1184 
1185 // Isolation of object setup after an AllocateNode and before next safepoint.
1186 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1187 class InitializeNode: public MemBarNode {
1188   friend class AllocateNode;
1189 
1190   enum {
1191     Incomplete    = 0,
1192     Complete      = 1,
1193     WithArraycopy = 2
1194   };
1195   int _is_complete;
1196 
1197   bool _does_not_escape;
1198 
1199 public:
1200   enum {
1201     Control    = TypeFunc::Control,
1202     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1203     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1204     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1205   };
1206 
1207   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1208   virtual int Opcode() const;
1209   virtual uint size_of() const { return sizeof(*this); }
1210   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1211   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1212 
1213   // Manage incoming memory edges via a MergeMem on in(Memory):
1214   Node* memory(uint alias_idx);
1215 
1216   // The raw memory edge coming directly from the Allocation.
1217   // The contents of this memory are *always* all-zero-bits.
1218   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1219 
1220   // Return the corresponding allocation for this initialization (or null if none).
1221   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1222   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1223   AllocateNode* allocation();
1224 
1225   // Anything other than zeroing in this init?
1226   bool is_non_zero();
1227 
1228   // An InitializeNode must completed before macro expansion is done.
1229   // Completion requires that the AllocateNode must be followed by
1230   // initialization of the new memory to zero, then to any initializers.
1231   bool is_complete() { return _is_complete != Incomplete; }
1232   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1233 
1234   // Mark complete.  (Must not yet be complete.)
1235   void set_complete(PhaseGVN* phase);
1236   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1237 
1238   bool does_not_escape() { return _does_not_escape; }
1239   void set_does_not_escape() { _does_not_escape = true; }
1240 
1241 #ifdef ASSERT
1242   // ensure all non-degenerate stores are ordered and non-overlapping
1243   bool stores_are_sane(PhaseTransform* phase);
1244 #endif //ASSERT
1245 
1246   // See if this store can be captured; return offset where it initializes.
1247   // Return 0 if the store cannot be moved (any sort of problem).
1248   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1249 
1250   // Capture another store; reformat it to write my internal raw memory.
1251   // Return the captured copy, else NULL if there is some sort of problem.
1252   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1253 
1254   // Find captured store which corresponds to the range [start..start+size).
1255   // Return my own memory projection (meaning the initial zero bits)
1256   // if there is no such store.  Return NULL if there is a problem.
1257   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1258 
1259   // Called when the associated AllocateNode is expanded into CFG.
1260   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1261                         intptr_t header_size, Node* size_in_bytes,
1262                         PhaseGVN* phase);
1263 
1264  private:
1265   void remove_extra_zeroes();
1266 
1267   // Find out where a captured store should be placed (or already is placed).
1268   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1269                                      PhaseTransform* phase);
1270 
1271   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1272 
1273   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1274 
1275   bool detect_init_independence(Node* n, int& count);
1276 
1277   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1278                                PhaseGVN* phase);
1279 
1280   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1281 };
1282 
1283 //------------------------------MergeMem---------------------------------------
1284 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1285 class MergeMemNode: public Node {
1286   virtual uint hash() const ;                  // { return NO_HASH; }
1287   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1288   friend class MergeMemStream;
1289   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1290 
1291 public:
1292   // If the input is a whole memory state, clone it with all its slices intact.
1293   // Otherwise, make a new memory state with just that base memory input.
1294   // In either case, the result is a newly created MergeMem.
1295   static MergeMemNode* make(Node* base_memory);
1296 
1297   virtual int Opcode() const;
1298   virtual Node* Identity(PhaseGVN* phase);
1299   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1300   virtual uint ideal_reg() const { return NotAMachineReg; }
1301   virtual uint match_edge(uint idx) const { return 0; }
1302   virtual const RegMask &out_RegMask() const;
1303   virtual const Type *bottom_type() const { return Type::MEMORY; }
1304   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1305   // sparse accessors
1306   // Fetch the previously stored "set_memory_at", or else the base memory.
1307   // (Caller should clone it if it is a phi-nest.)
1308   Node* memory_at(uint alias_idx) const;
1309   // set the memory, regardless of its previous value
1310   void set_memory_at(uint alias_idx, Node* n);
1311   // the "base" is the memory that provides the non-finite support
1312   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1313   // warning: setting the base can implicitly set any of the other slices too
1314   void set_base_memory(Node* def);
1315   // sentinel value which denotes a copy of the base memory:
1316   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1317   static Node* make_empty_memory(); // where the sentinel comes from
1318   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1319   // hook for the iterator, to perform any necessary setup
1320   void iteration_setup(const MergeMemNode* other = NULL);
1321   // push sentinels until I am at least as long as the other (semantic no-op)
1322   void grow_to_match(const MergeMemNode* other);
1323   bool verify_sparse() const PRODUCT_RETURN0;
1324 #ifndef PRODUCT
1325   virtual void dump_spec(outputStream *st) const;
1326 #endif
1327 };
1328 
1329 class MergeMemStream : public StackObj {
1330  private:
1331   MergeMemNode*       _mm;
1332   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1333   Node*               _mm_base;  // loop-invariant base memory of _mm
1334   int                 _idx;
1335   int                 _cnt;
1336   Node*               _mem;
1337   Node*               _mem2;
1338   int                 _cnt2;
1339 
1340   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1341     // subsume_node will break sparseness at times, whenever a memory slice
1342     // folds down to a copy of the base ("fat") memory.  In such a case,
1343     // the raw edge will update to base, although it should be top.
1344     // This iterator will recognize either top or base_memory as an
1345     // "empty" slice.  See is_empty, is_empty2, and next below.
1346     //
1347     // The sparseness property is repaired in MergeMemNode::Ideal.
1348     // As long as access to a MergeMem goes through this iterator
1349     // or the memory_at accessor, flaws in the sparseness will
1350     // never be observed.
1351     //
1352     // Also, iteration_setup repairs sparseness.
1353     assert(mm->verify_sparse(), "please, no dups of base");
1354     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1355 
1356     _mm  = mm;
1357     _mm_base = mm->base_memory();
1358     _mm2 = mm2;
1359     _cnt = mm->req();
1360     _idx = Compile::AliasIdxBot-1; // start at the base memory
1361     _mem = NULL;
1362     _mem2 = NULL;
1363   }
1364 
1365 #ifdef ASSERT
1366   Node* check_memory() const {
1367     if (at_base_memory())
1368       return _mm->base_memory();
1369     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1370       return _mm->memory_at(_idx);
1371     else
1372       return _mm_base;
1373   }
1374   Node* check_memory2() const {
1375     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1376   }
1377 #endif
1378 
1379   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1380   void assert_synch() const {
1381     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1382            "no side-effects except through the stream");
1383   }
1384 
1385  public:
1386 
1387   // expected usages:
1388   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1389   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1390 
1391   // iterate over one merge
1392   MergeMemStream(MergeMemNode* mm) {
1393     mm->iteration_setup();
1394     init(mm);
1395     debug_only(_cnt2 = 999);
1396   }
1397   // iterate in parallel over two merges
1398   // only iterates through non-empty elements of mm2
1399   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1400     assert(mm2, "second argument must be a MergeMem also");
1401     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1402     mm->iteration_setup(mm2);
1403     init(mm, mm2);
1404     _cnt2 = mm2->req();
1405   }
1406 #ifdef ASSERT
1407   ~MergeMemStream() {
1408     assert_synch();
1409   }
1410 #endif
1411 
1412   MergeMemNode* all_memory() const {
1413     return _mm;
1414   }
1415   Node* base_memory() const {
1416     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1417     return _mm_base;
1418   }
1419   const MergeMemNode* all_memory2() const {
1420     assert(_mm2 != NULL, "");
1421     return _mm2;
1422   }
1423   bool at_base_memory() const {
1424     return _idx == Compile::AliasIdxBot;
1425   }
1426   int alias_idx() const {
1427     assert(_mem, "must call next 1st");
1428     return _idx;
1429   }
1430 
1431   const TypePtr* adr_type() const {
1432     return Compile::current()->get_adr_type(alias_idx());
1433   }
1434 
1435   const TypePtr* adr_type(Compile* C) const {
1436     return C->get_adr_type(alias_idx());
1437   }
1438   bool is_empty() const {
1439     assert(_mem, "must call next 1st");
1440     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1441     return _mem->is_top();
1442   }
1443   bool is_empty2() const {
1444     assert(_mem2, "must call next 1st");
1445     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1446     return _mem2->is_top();
1447   }
1448   Node* memory() const {
1449     assert(!is_empty(), "must not be empty");
1450     assert_synch();
1451     return _mem;
1452   }
1453   // get the current memory, regardless of empty or non-empty status
1454   Node* force_memory() const {
1455     assert(!is_empty() || !at_base_memory(), "");
1456     // Use _mm_base to defend against updates to _mem->base_memory().
1457     Node *mem = _mem->is_top() ? _mm_base : _mem;
1458     assert(mem == check_memory(), "");
1459     return mem;
1460   }
1461   Node* memory2() const {
1462     assert(_mem2 == check_memory2(), "");
1463     return _mem2;
1464   }
1465   void set_memory(Node* mem) {
1466     if (at_base_memory()) {
1467       // Note that this does not change the invariant _mm_base.
1468       _mm->set_base_memory(mem);
1469     } else {
1470       _mm->set_memory_at(_idx, mem);
1471     }
1472     _mem = mem;
1473     assert_synch();
1474   }
1475 
1476   // Recover from a side effect to the MergeMemNode.
1477   void set_memory() {
1478     _mem = _mm->in(_idx);
1479   }
1480 
1481   bool next()  { return next(false); }
1482   bool next2() { return next(true); }
1483 
1484   bool next_non_empty()  { return next_non_empty(false); }
1485   bool next_non_empty2() { return next_non_empty(true); }
1486   // next_non_empty2 can yield states where is_empty() is true
1487 
1488  private:
1489   // find the next item, which might be empty
1490   bool next(bool have_mm2) {
1491     assert((_mm2 != NULL) == have_mm2, "use other next");
1492     assert_synch();
1493     if (++_idx < _cnt) {
1494       // Note:  This iterator allows _mm to be non-sparse.
1495       // It behaves the same whether _mem is top or base_memory.
1496       _mem = _mm->in(_idx);
1497       if (have_mm2)
1498         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1499       return true;
1500     }
1501     return false;
1502   }
1503 
1504   // find the next non-empty item
1505   bool next_non_empty(bool have_mm2) {
1506     while (next(have_mm2)) {
1507       if (!is_empty()) {
1508         // make sure _mem2 is filled in sensibly
1509         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1510         return true;
1511       } else if (have_mm2 && !is_empty2()) {
1512         return true;   // is_empty() == true
1513       }
1514     }
1515     return false;
1516   }
1517 };
1518 
1519 //------------------------------Prefetch---------------------------------------
1520 
1521 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1522 class PrefetchAllocationNode : public Node {
1523 public:
1524   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1525   virtual int Opcode() const;
1526   virtual uint ideal_reg() const { return NotAMachineReg; }
1527   virtual uint match_edge(uint idx) const { return idx==2; }
1528   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1529 };
1530 
1531 #endif // SHARE_VM_OPTO_MEMNODE_HPP