1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "prims/unsafe.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #ifdef TRACE_HAVE_INTRINSICS
  54 #include "trace/traceMacros.hpp"
  55 #endif
  56 
  57 class LibraryIntrinsic : public InlineCallGenerator {
  58   // Extend the set of intrinsics known to the runtime:
  59  public:
  60  private:
  61   bool             _is_virtual;
  62   bool             _does_virtual_dispatch;
  63   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  64   int8_t           _last_predicate; // Last generated predicate
  65   vmIntrinsics::ID _intrinsic_id;
  66 
  67  public:
  68   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  69     : InlineCallGenerator(m),
  70       _is_virtual(is_virtual),
  71       _does_virtual_dispatch(does_virtual_dispatch),
  72       _predicates_count((int8_t)predicates_count),
  73       _last_predicate((int8_t)-1),
  74       _intrinsic_id(id)
  75   {
  76   }
  77   virtual bool is_intrinsic() const { return true; }
  78   virtual bool is_virtual()   const { return _is_virtual; }
  79   virtual bool is_predicated() const { return _predicates_count > 0; }
  80   virtual int  predicates_count() const { return _predicates_count; }
  81   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  82   virtual JVMState* generate(JVMState* jvms);
  83   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  84   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  85 };
  86 
  87 
  88 // Local helper class for LibraryIntrinsic:
  89 class LibraryCallKit : public GraphKit {
  90  private:
  91   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  92   Node*             _result;        // the result node, if any
  93   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  94 
  95   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  96 
  97  public:
  98   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  99     : GraphKit(jvms),
 100       _intrinsic(intrinsic),
 101       _result(NULL)
 102   {
 103     // Check if this is a root compile.  In that case we don't have a caller.
 104     if (!jvms->has_method()) {
 105       _reexecute_sp = sp();
 106     } else {
 107       // Find out how many arguments the interpreter needs when deoptimizing
 108       // and save the stack pointer value so it can used by uncommon_trap.
 109       // We find the argument count by looking at the declared signature.
 110       bool ignored_will_link;
 111       ciSignature* declared_signature = NULL;
 112       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 113       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 114       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 115     }
 116   }
 117 
 118   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 119 
 120   ciMethod*         caller()    const    { return jvms()->method(); }
 121   int               bci()       const    { return jvms()->bci(); }
 122   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 123   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 124   ciMethod*         callee()    const    { return _intrinsic->method(); }
 125 
 126   bool  try_to_inline(int predicate);
 127   Node* try_to_predicate(int predicate);
 128 
 129   void push_result() {
 130     // Push the result onto the stack.
 131     if (!stopped() && result() != NULL) {
 132       BasicType bt = result()->bottom_type()->basic_type();
 133       push_node(bt, result());
 134     }
 135   }
 136 
 137  private:
 138   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 139     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 140   }
 141 
 142   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 143   void  set_result(RegionNode* region, PhiNode* value);
 144   Node*     result() { return _result; }
 145 
 146   virtual int reexecute_sp() { return _reexecute_sp; }
 147 
 148   // Helper functions to inline natives
 149   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 150   Node* generate_slow_guard(Node* test, RegionNode* region);
 151   Node* generate_fair_guard(Node* test, RegionNode* region);
 152   Node* generate_negative_guard(Node* index, RegionNode* region,
 153                                 // resulting CastII of index:
 154                                 Node* *pos_index = NULL);
 155   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 156                              Node* array_length,
 157                              RegionNode* region);
 158   void  generate_string_range_check(Node* array, Node* offset,
 159                                     Node* length, bool char_count);
 160   Node* generate_current_thread(Node* &tls_output);
 161   Node* load_mirror_from_klass(Node* klass);
 162   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 163                                       RegionNode* region, int null_path,
 164                                       int offset);
 165   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 173                                      RegionNode* region, int null_path) {
 174     int offset = java_lang_Class::array_klass_offset_in_bytes();
 175     return load_klass_from_mirror_common(mirror, never_see_null,
 176                                          region, null_path,
 177                                          offset);
 178   }
 179   Node* generate_access_flags_guard(Node* kls,
 180                                     int modifier_mask, int modifier_bits,
 181                                     RegionNode* region);
 182   Node* generate_interface_guard(Node* kls, RegionNode* region);
 183   Node* generate_array_guard(Node* kls, RegionNode* region) {
 184     return generate_array_guard_common(kls, region, false, false);
 185   }
 186   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 187     return generate_array_guard_common(kls, region, false, true);
 188   }
 189   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, true, false);
 191   }
 192   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, true, true);
 194   }
 195   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 196                                     bool obj_array, bool not_array);
 197   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 198   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 199                                      bool is_virtual = false, bool is_static = false);
 200   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 201     return generate_method_call(method_id, false, true);
 202   }
 203   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 204     return generate_method_call(method_id, true, false);
 205   }
 206   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 207   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 208 
 209   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 210   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 211   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 213   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 214                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 215   bool inline_string_indexOfChar();
 216   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_toBytesU();
 218   bool inline_string_getCharsU();
 219   bool inline_string_copy(bool compress);
 220   bool inline_string_char_access(bool is_store);
 221   Node* round_double_node(Node* n);
 222   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 223   bool inline_math_native(vmIntrinsics::ID id);
 224   bool inline_trig(vmIntrinsics::ID id);
 225   bool inline_math(vmIntrinsics::ID id);
 226   template <typename OverflowOp>
 227   bool inline_math_overflow(Node* arg1, Node* arg2);
 228   void inline_math_mathExact(Node* math, Node* test);
 229   bool inline_math_addExactI(bool is_increment);
 230   bool inline_math_addExactL(bool is_increment);
 231   bool inline_math_multiplyExactI();
 232   bool inline_math_multiplyExactL();
 233   bool inline_math_negateExactI();
 234   bool inline_math_negateExactL();
 235   bool inline_math_subtractExactI(bool is_decrement);
 236   bool inline_math_subtractExactL(bool is_decrement);
 237   bool inline_min_max(vmIntrinsics::ID id);
 238   bool inline_notify(vmIntrinsics::ID id);
 239   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 240   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 241   int classify_unsafe_addr(Node* &base, Node* &offset);
 242   Node* make_unsafe_address(Node* base, Node* offset);
 243   // Helper for inline_unsafe_access.
 244   // Generates the guards that check whether the result of
 245   // Unsafe.getObject should be recorded in an SATB log buffer.
 246   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 247 
 248   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 249   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 250   static bool klass_needs_init_guard(Node* kls);
 251   Node* make_init_guard(Node* kls);
 252   bool inline_unsafe_allocate();
 253   bool inline_unsafe_newArray(bool uninitialized);
 254   bool inline_unsafe_copyMemory();
 255   bool inline_native_currentThread();
 256 
 257   bool inline_native_time_funcs(address method, const char* funcName);
 258   bool inline_native_isInterrupted();
 259   bool inline_native_Class_query(vmIntrinsics::ID id);
 260   bool inline_native_subtype_check();
 261   bool inline_native_getLength();
 262   bool inline_array_copyOf(bool is_copyOfRange);
 263   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 264   bool inline_objects_checkIndex();
 265   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 266   bool inline_native_clone(bool is_virtual);
 267   bool inline_native_Reflection_getCallerClass();
 268   // Helper function for inlining native object hash method
 269   bool inline_native_hashcode(bool is_virtual, bool is_static);
 270   bool inline_native_getClass();
 271 
 272   // Helper functions for inlining arraycopy
 273   bool inline_arraycopy();
 274   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 275                                                 RegionNode* slow_region);
 276   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 277   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 278 
 279   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 280   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 281   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 282   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 283   bool inline_unsafe_fence(vmIntrinsics::ID id);
 284   bool inline_onspinwait();
 285   bool inline_fp_conversions(vmIntrinsics::ID id);
 286   bool inline_number_methods(vmIntrinsics::ID id);
 287   bool inline_reference_get();
 288   bool inline_Class_cast();
 289   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 290   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 291   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 292   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 293   Node* inline_counterMode_AESCrypt_predicate();
 294   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 295   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 296   bool inline_ghash_processBlocks();
 297   bool inline_sha_implCompress(vmIntrinsics::ID id);
 298   bool inline_digestBase_implCompressMB(int predicate);
 299   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 300                                  bool long_state, address stubAddr, const char *stubName,
 301                                  Node* src_start, Node* ofs, Node* limit);
 302   Node* get_state_from_sha_object(Node *sha_object);
 303   Node* get_state_from_sha5_object(Node *sha_object);
 304   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 305   bool inline_encodeISOArray();
 306   bool inline_updateCRC32();
 307   bool inline_updateBytesCRC32();
 308   bool inline_updateByteBufferCRC32();
 309   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 310   bool inline_updateBytesCRC32C();
 311   bool inline_updateDirectByteBufferCRC32C();
 312   bool inline_updateBytesAdler32();
 313   bool inline_updateByteBufferAdler32();
 314   bool inline_multiplyToLen();
 315   bool inline_hasNegatives();
 316   bool inline_squareToLen();
 317   bool inline_mulAdd();
 318   bool inline_montgomeryMultiply();
 319   bool inline_montgomerySquare();
 320   bool inline_vectorizedMismatch();
 321 
 322   bool inline_profileBoolean();
 323   bool inline_isCompileConstant();
 324 };
 325 
 326 //---------------------------make_vm_intrinsic----------------------------
 327 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 328   vmIntrinsics::ID id = m->intrinsic_id();
 329   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 330 
 331   if (!m->is_loaded()) {
 332     // Do not attempt to inline unloaded methods.
 333     return NULL;
 334   }
 335 
 336   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 337   bool is_available = false;
 338 
 339   {
 340     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 341     // the compiler must transition to '_thread_in_vm' state because both
 342     // methods access VM-internal data.
 343     VM_ENTRY_MARK;
 344     methodHandle mh(THREAD, m->get_Method());
 345     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 346                    !C->directive()->is_intrinsic_disabled(mh) &&
 347                    !vmIntrinsics::is_disabled_by_flags(mh);
 348 
 349   }
 350 
 351   if (is_available) {
 352     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 353     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 354     return new LibraryIntrinsic(m, is_virtual,
 355                                 vmIntrinsics::predicates_needed(id),
 356                                 vmIntrinsics::does_virtual_dispatch(id),
 357                                 (vmIntrinsics::ID) id);
 358   } else {
 359     return NULL;
 360   }
 361 }
 362 
 363 //----------------------register_library_intrinsics-----------------------
 364 // Initialize this file's data structures, for each Compile instance.
 365 void Compile::register_library_intrinsics() {
 366   // Nothing to do here.
 367 }
 368 
 369 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 370   LibraryCallKit kit(jvms, this);
 371   Compile* C = kit.C;
 372   int nodes = C->unique();
 373 #ifndef PRODUCT
 374   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 375     char buf[1000];
 376     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 377     tty->print_cr("Intrinsic %s", str);
 378   }
 379 #endif
 380   ciMethod* callee = kit.callee();
 381   const int bci    = kit.bci();
 382 
 383   // Try to inline the intrinsic.
 384   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 385       kit.try_to_inline(_last_predicate)) {
 386     if (C->print_intrinsics() || C->print_inlining()) {
 387       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 388     }
 389     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 390     if (C->log()) {
 391       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 392                      vmIntrinsics::name_at(intrinsic_id()),
 393                      (is_virtual() ? " virtual='1'" : ""),
 394                      C->unique() - nodes);
 395     }
 396     // Push the result from the inlined method onto the stack.
 397     kit.push_result();
 398     C->print_inlining_update(this);
 399     return kit.transfer_exceptions_into_jvms();
 400   }
 401 
 402   // The intrinsic bailed out
 403   if (C->print_intrinsics() || C->print_inlining()) {
 404     if (jvms->has_method()) {
 405       // Not a root compile.
 406       const char* msg;
 407       if (callee->intrinsic_candidate()) {
 408         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 409       } else {
 410         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 411                            : "failed to inline (intrinsic), method not annotated";
 412       }
 413       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 414     } else {
 415       // Root compile
 416       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 417                vmIntrinsics::name_at(intrinsic_id()),
 418                (is_virtual() ? " (virtual)" : ""), bci);
 419     }
 420   }
 421   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 422   C->print_inlining_update(this);
 423   return NULL;
 424 }
 425 
 426 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 427   LibraryCallKit kit(jvms, this);
 428   Compile* C = kit.C;
 429   int nodes = C->unique();
 430   _last_predicate = predicate;
 431 #ifndef PRODUCT
 432   assert(is_predicated() && predicate < predicates_count(), "sanity");
 433   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 434     char buf[1000];
 435     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 436     tty->print_cr("Predicate for intrinsic %s", str);
 437   }
 438 #endif
 439   ciMethod* callee = kit.callee();
 440   const int bci    = kit.bci();
 441 
 442   Node* slow_ctl = kit.try_to_predicate(predicate);
 443   if (!kit.failing()) {
 444     if (C->print_intrinsics() || C->print_inlining()) {
 445       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 446     }
 447     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 448     if (C->log()) {
 449       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 450                      vmIntrinsics::name_at(intrinsic_id()),
 451                      (is_virtual() ? " virtual='1'" : ""),
 452                      C->unique() - nodes);
 453     }
 454     return slow_ctl; // Could be NULL if the check folds.
 455   }
 456 
 457   // The intrinsic bailed out
 458   if (C->print_intrinsics() || C->print_inlining()) {
 459     if (jvms->has_method()) {
 460       // Not a root compile.
 461       const char* msg = "failed to generate predicate for intrinsic";
 462       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 463     } else {
 464       // Root compile
 465       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 466                                         vmIntrinsics::name_at(intrinsic_id()),
 467                                         (is_virtual() ? " (virtual)" : ""), bci);
 468     }
 469   }
 470   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 471   return NULL;
 472 }
 473 
 474 bool LibraryCallKit::try_to_inline(int predicate) {
 475   // Handle symbolic names for otherwise undistinguished boolean switches:
 476   const bool is_store       = true;
 477   const bool is_compress    = true;
 478   const bool is_native_ptr  = true;
 479   const bool is_static      = true;
 480   const bool is_volatile    = true;
 481 
 482   if (!jvms()->has_method()) {
 483     // Root JVMState has a null method.
 484     assert(map()->memory()->Opcode() == Op_Parm, "");
 485     // Insert the memory aliasing node
 486     set_all_memory(reset_memory());
 487   }
 488   assert(merged_memory(), "");
 489 
 490 
 491   switch (intrinsic_id()) {
 492   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 493   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 494   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 495 
 496   case vmIntrinsics::_dsin:
 497   case vmIntrinsics::_dcos:
 498   case vmIntrinsics::_dtan:
 499   case vmIntrinsics::_dabs:
 500   case vmIntrinsics::_datan2:
 501   case vmIntrinsics::_dsqrt:
 502   case vmIntrinsics::_dexp:
 503   case vmIntrinsics::_dlog:
 504   case vmIntrinsics::_dlog10:
 505   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 506 
 507   case vmIntrinsics::_min:
 508   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 509 
 510   case vmIntrinsics::_notify:
 511   case vmIntrinsics::_notifyAll:
 512     if (InlineNotify) {
 513       return inline_notify(intrinsic_id());
 514     }
 515     return false;
 516 
 517   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 518   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 519   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 520   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 521   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 522   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 523   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 524   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 525   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 526   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 527   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 528   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 529 
 530   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 531 
 532   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 533   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 534   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 535   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 536 
 537   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 538   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 539   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 540   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 541   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 542   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 543   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 544 
 545   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 546   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 547 
 548   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 549   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 550   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 551   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 552 
 553   case vmIntrinsics::_compressStringC:
 554   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 555   case vmIntrinsics::_inflateStringC:
 556   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 557 
 558   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Relaxed, false);
 559   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Relaxed, false);
 560   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 561   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 562   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 563   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, false);
 564   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 565   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 566   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 567 
 568   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Relaxed, false);
 569   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Relaxed, false);
 570   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 571   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 572   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 573   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, false);
 574   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 575   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 576   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 577 
 578   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,     Relaxed, false);
 579   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,    Relaxed, false);
 580   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,     Relaxed, false);
 581   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,      Relaxed, false);
 582   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,     Relaxed, false);
 583   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,    Relaxed, false);
 584   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,   Relaxed, false);
 585   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS,  Relaxed, false);
 586 
 587   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,     Relaxed, false);
 588   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,    Relaxed, false);
 589   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,     Relaxed, false);
 590   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,      Relaxed, false);
 591   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,     Relaxed, false);
 592   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,    Relaxed, false);
 593   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,   Relaxed, false);
 594   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS,  Relaxed, false);
 595 
 596   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Volatile, false);
 597   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Volatile, false);
 598   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Volatile, false);
 599   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Volatile, false);
 600   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Volatile, false);
 601   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Volatile, false);
 602   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Volatile, false);
 603   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Volatile, false);
 604   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Volatile, false);
 605 
 606   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Volatile, false);
 607   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Volatile, false);
 608   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Volatile, false);
 609   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Volatile, false);
 610   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Volatile, false);
 611   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Volatile, false);
 612   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Volatile, false);
 613   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Volatile, false);
 614   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Volatile, false);
 615 
 616   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Relaxed, true);
 617   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Relaxed, true);
 618   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Relaxed, true);
 619   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Relaxed, true);
 620 
 621   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Relaxed, true);
 622   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Relaxed, true);
 623   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Relaxed, true);
 624   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Relaxed, true);
 625 
 626   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Acquire, false);
 627   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Acquire, false);
 628   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Acquire, false);
 629   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Acquire, false);
 630   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Acquire, false);
 631   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Acquire, false);
 632   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Acquire, false);
 633   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Acquire, false);
 634   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Acquire, false);
 635 
 636   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Release, false);
 637   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Release, false);
 638   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Release, false);
 639   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Release, false);
 640   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Release, false);
 641   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Release, false);
 642   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Release, false);
 643   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Release, false);
 644   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Release, false);
 645 
 646   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   Opaque, false);
 647   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  Opaque, false);
 648   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     Opaque, false);
 649   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    Opaque, false);
 650   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     Opaque, false);
 651   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      Opaque, false);
 652   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     Opaque, false);
 653   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    Opaque, false);
 654   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   Opaque, false);
 655 
 656   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   Opaque, false);
 657   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  Opaque, false);
 658   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     Opaque, false);
 659   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    Opaque, false);
 660   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     Opaque, false);
 661   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      Opaque, false);
 662   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     Opaque, false);
 663   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    Opaque, false);
 664   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   Opaque, false);
 665 
 666   case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 667   case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 668   case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 669 
 670   case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 671   case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 672   case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 673   case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 674   case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 675   case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 676   case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 677   case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 678   case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 679 
 680   case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 681   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 682   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 683   case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 684   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 685   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 686   case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 687   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 688   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 689 
 690   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 691   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 692   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 693   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 694   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 695 
 696   case vmIntrinsics::_loadFence:
 697   case vmIntrinsics::_storeFence:
 698   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 699 
 700   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 701 
 702   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 703   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 704 
 705 #ifdef TRACE_HAVE_INTRINSICS
 706   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 707 #endif
 708   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 709   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 710   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 711   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 712   case vmIntrinsics::_getLength:                return inline_native_getLength();
 713   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 714   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 715   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 716   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 717   case vmIntrinsics::_Objects_checkIndex:       return inline_objects_checkIndex();
 718   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 719 
 720   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 721   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 722 
 723   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 724 
 725   case vmIntrinsics::_isInstance:
 726   case vmIntrinsics::_getModifiers:
 727   case vmIntrinsics::_isInterface:
 728   case vmIntrinsics::_isArray:
 729   case vmIntrinsics::_isPrimitive:
 730   case vmIntrinsics::_getSuperclass:
 731   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 732 
 733   case vmIntrinsics::_floatToRawIntBits:
 734   case vmIntrinsics::_floatToIntBits:
 735   case vmIntrinsics::_intBitsToFloat:
 736   case vmIntrinsics::_doubleToRawLongBits:
 737   case vmIntrinsics::_doubleToLongBits:
 738   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 739 
 740   case vmIntrinsics::_numberOfLeadingZeros_i:
 741   case vmIntrinsics::_numberOfLeadingZeros_l:
 742   case vmIntrinsics::_numberOfTrailingZeros_i:
 743   case vmIntrinsics::_numberOfTrailingZeros_l:
 744   case vmIntrinsics::_bitCount_i:
 745   case vmIntrinsics::_bitCount_l:
 746   case vmIntrinsics::_reverseBytes_i:
 747   case vmIntrinsics::_reverseBytes_l:
 748   case vmIntrinsics::_reverseBytes_s:
 749   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 750 
 751   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 752 
 753   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 754 
 755   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 756 
 757   case vmIntrinsics::_aescrypt_encryptBlock:
 758   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 759 
 760   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 761   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 762     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 763 
 764   case vmIntrinsics::_counterMode_AESCrypt:
 765     return inline_counterMode_AESCrypt(intrinsic_id());
 766 
 767   case vmIntrinsics::_sha_implCompress:
 768   case vmIntrinsics::_sha2_implCompress:
 769   case vmIntrinsics::_sha5_implCompress:
 770     return inline_sha_implCompress(intrinsic_id());
 771 
 772   case vmIntrinsics::_digestBase_implCompressMB:
 773     return inline_digestBase_implCompressMB(predicate);
 774 
 775   case vmIntrinsics::_multiplyToLen:
 776     return inline_multiplyToLen();
 777 
 778   case vmIntrinsics::_squareToLen:
 779     return inline_squareToLen();
 780 
 781   case vmIntrinsics::_mulAdd:
 782     return inline_mulAdd();
 783 
 784   case vmIntrinsics::_montgomeryMultiply:
 785     return inline_montgomeryMultiply();
 786   case vmIntrinsics::_montgomerySquare:
 787     return inline_montgomerySquare();
 788 
 789   case vmIntrinsics::_vectorizedMismatch:
 790     return inline_vectorizedMismatch();
 791 
 792   case vmIntrinsics::_ghash_processBlocks:
 793     return inline_ghash_processBlocks();
 794 
 795   case vmIntrinsics::_encodeISOArray:
 796   case vmIntrinsics::_encodeByteISOArray:
 797     return inline_encodeISOArray();
 798 
 799   case vmIntrinsics::_updateCRC32:
 800     return inline_updateCRC32();
 801   case vmIntrinsics::_updateBytesCRC32:
 802     return inline_updateBytesCRC32();
 803   case vmIntrinsics::_updateByteBufferCRC32:
 804     return inline_updateByteBufferCRC32();
 805 
 806   case vmIntrinsics::_updateBytesCRC32C:
 807     return inline_updateBytesCRC32C();
 808   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 809     return inline_updateDirectByteBufferCRC32C();
 810 
 811   case vmIntrinsics::_updateBytesAdler32:
 812     return inline_updateBytesAdler32();
 813   case vmIntrinsics::_updateByteBufferAdler32:
 814     return inline_updateByteBufferAdler32();
 815 
 816   case vmIntrinsics::_profileBoolean:
 817     return inline_profileBoolean();
 818   case vmIntrinsics::_isCompileConstant:
 819     return inline_isCompileConstant();
 820 
 821   case vmIntrinsics::_hasNegatives:
 822     return inline_hasNegatives();
 823 
 824   default:
 825     // If you get here, it may be that someone has added a new intrinsic
 826     // to the list in vmSymbols.hpp without implementing it here.
 827 #ifndef PRODUCT
 828     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 829       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 830                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 831     }
 832 #endif
 833     return false;
 834   }
 835 }
 836 
 837 Node* LibraryCallKit::try_to_predicate(int predicate) {
 838   if (!jvms()->has_method()) {
 839     // Root JVMState has a null method.
 840     assert(map()->memory()->Opcode() == Op_Parm, "");
 841     // Insert the memory aliasing node
 842     set_all_memory(reset_memory());
 843   }
 844   assert(merged_memory(), "");
 845 
 846   switch (intrinsic_id()) {
 847   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 848     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 849   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 850     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 851   case vmIntrinsics::_counterMode_AESCrypt:
 852     return inline_counterMode_AESCrypt_predicate();
 853   case vmIntrinsics::_digestBase_implCompressMB:
 854     return inline_digestBase_implCompressMB_predicate(predicate);
 855 
 856   default:
 857     // If you get here, it may be that someone has added a new intrinsic
 858     // to the list in vmSymbols.hpp without implementing it here.
 859 #ifndef PRODUCT
 860     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 861       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 862                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 863     }
 864 #endif
 865     Node* slow_ctl = control();
 866     set_control(top()); // No fast path instrinsic
 867     return slow_ctl;
 868   }
 869 }
 870 
 871 //------------------------------set_result-------------------------------
 872 // Helper function for finishing intrinsics.
 873 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 874   record_for_igvn(region);
 875   set_control(_gvn.transform(region));
 876   set_result( _gvn.transform(value));
 877   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 878 }
 879 
 880 //------------------------------generate_guard---------------------------
 881 // Helper function for generating guarded fast-slow graph structures.
 882 // The given 'test', if true, guards a slow path.  If the test fails
 883 // then a fast path can be taken.  (We generally hope it fails.)
 884 // In all cases, GraphKit::control() is updated to the fast path.
 885 // The returned value represents the control for the slow path.
 886 // The return value is never 'top'; it is either a valid control
 887 // or NULL if it is obvious that the slow path can never be taken.
 888 // Also, if region and the slow control are not NULL, the slow edge
 889 // is appended to the region.
 890 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 891   if (stopped()) {
 892     // Already short circuited.
 893     return NULL;
 894   }
 895 
 896   // Build an if node and its projections.
 897   // If test is true we take the slow path, which we assume is uncommon.
 898   if (_gvn.type(test) == TypeInt::ZERO) {
 899     // The slow branch is never taken.  No need to build this guard.
 900     return NULL;
 901   }
 902 
 903   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 904 
 905   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 906   if (if_slow == top()) {
 907     // The slow branch is never taken.  No need to build this guard.
 908     return NULL;
 909   }
 910 
 911   if (region != NULL)
 912     region->add_req(if_slow);
 913 
 914   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 915   set_control(if_fast);
 916 
 917   return if_slow;
 918 }
 919 
 920 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 921   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 922 }
 923 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 924   return generate_guard(test, region, PROB_FAIR);
 925 }
 926 
 927 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 928                                                      Node* *pos_index) {
 929   if (stopped())
 930     return NULL;                // already stopped
 931   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 932     return NULL;                // index is already adequately typed
 933   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 934   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 935   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 936   if (is_neg != NULL && pos_index != NULL) {
 937     // Emulate effect of Parse::adjust_map_after_if.
 938     Node* ccast = new CastIINode(index, TypeInt::POS);
 939     ccast->set_req(0, control());
 940     (*pos_index) = _gvn.transform(ccast);
 941   }
 942   return is_neg;
 943 }
 944 
 945 // Make sure that 'position' is a valid limit index, in [0..length].
 946 // There are two equivalent plans for checking this:
 947 //   A. (offset + copyLength)  unsigned<=  arrayLength
 948 //   B. offset  <=  (arrayLength - copyLength)
 949 // We require that all of the values above, except for the sum and
 950 // difference, are already known to be non-negative.
 951 // Plan A is robust in the face of overflow, if offset and copyLength
 952 // are both hugely positive.
 953 //
 954 // Plan B is less direct and intuitive, but it does not overflow at
 955 // all, since the difference of two non-negatives is always
 956 // representable.  Whenever Java methods must perform the equivalent
 957 // check they generally use Plan B instead of Plan A.
 958 // For the moment we use Plan A.
 959 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 960                                                   Node* subseq_length,
 961                                                   Node* array_length,
 962                                                   RegionNode* region) {
 963   if (stopped())
 964     return NULL;                // already stopped
 965   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 966   if (zero_offset && subseq_length->eqv_uncast(array_length))
 967     return NULL;                // common case of whole-array copy
 968   Node* last = subseq_length;
 969   if (!zero_offset)             // last += offset
 970     last = _gvn.transform(new AddINode(last, offset));
 971   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 972   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 973   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 974   return is_over;
 975 }
 976 
 977 // Emit range checks for the given String.value byte array
 978 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 979   if (stopped()) {
 980     return; // already stopped
 981   }
 982   RegionNode* bailout = new RegionNode(1);
 983   record_for_igvn(bailout);
 984   if (char_count) {
 985     // Convert char count to byte count
 986     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 987   }
 988 
 989   // Offset and count must not be negative
 990   generate_negative_guard(offset, bailout);
 991   generate_negative_guard(count, bailout);
 992   // Offset + count must not exceed length of array
 993   generate_limit_guard(offset, count, load_array_length(array), bailout);
 994 
 995   if (bailout->req() > 1) {
 996     PreserveJVMState pjvms(this);
 997     set_control(_gvn.transform(bailout));
 998     uncommon_trap(Deoptimization::Reason_intrinsic,
 999                   Deoptimization::Action_maybe_recompile);
1000   }
1001 }
1002 
1003 //--------------------------generate_current_thread--------------------
1004 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1005   ciKlass*    thread_klass = env()->Thread_klass();
1006   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1007   Node* thread = _gvn.transform(new ThreadLocalNode());
1008   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1009   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1010   tls_output = thread;
1011   return threadObj;
1012 }
1013 
1014 
1015 //------------------------------make_string_method_node------------------------
1016 // Helper method for String intrinsic functions. This version is called with
1017 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1018 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1019 // containing the lengths of str1 and str2.
1020 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1021   Node* result = NULL;
1022   switch (opcode) {
1023   case Op_StrIndexOf:
1024     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1025                                 str1_start, cnt1, str2_start, cnt2, ae);
1026     break;
1027   case Op_StrComp:
1028     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1029                              str1_start, cnt1, str2_start, cnt2, ae);
1030     break;
1031   case Op_StrEquals:
1032     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1033     // Use the constant length if there is one because optimized match rule may exist.
1034     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1035                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1036     break;
1037   default:
1038     ShouldNotReachHere();
1039     return NULL;
1040   }
1041 
1042   // All these intrinsics have checks.
1043   C->set_has_split_ifs(true); // Has chance for split-if optimization
1044 
1045   return _gvn.transform(result);
1046 }
1047 
1048 //------------------------------inline_string_compareTo------------------------
1049 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1050   Node* arg1 = argument(0);
1051   Node* arg2 = argument(1);
1052 
1053   // Get start addr and length of first argument
1054   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1055   Node* arg1_cnt    = load_array_length(arg1);
1056 
1057   // Get start addr and length of second argument
1058   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1059   Node* arg2_cnt    = load_array_length(arg2);
1060 
1061   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1062   set_result(result);
1063   return true;
1064 }
1065 
1066 //------------------------------inline_string_equals------------------------
1067 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1068   Node* arg1 = argument(0);
1069   Node* arg2 = argument(1);
1070 
1071   // paths (plus control) merge
1072   RegionNode* region = new RegionNode(3);
1073   Node* phi = new PhiNode(region, TypeInt::BOOL);
1074 
1075   if (!stopped()) {
1076     // Get start addr and length of first argument
1077     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1078     Node* arg1_cnt    = load_array_length(arg1);
1079 
1080     // Get start addr and length of second argument
1081     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1082     Node* arg2_cnt    = load_array_length(arg2);
1083 
1084     // Check for arg1_cnt != arg2_cnt
1085     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1086     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1087     Node* if_ne = generate_slow_guard(bol, NULL);
1088     if (if_ne != NULL) {
1089       phi->init_req(2, intcon(0));
1090       region->init_req(2, if_ne);
1091     }
1092 
1093     // Check for count == 0 is done by assembler code for StrEquals.
1094 
1095     if (!stopped()) {
1096       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1097       phi->init_req(1, equals);
1098       region->init_req(1, control());
1099     }
1100   }
1101 
1102   // post merge
1103   set_control(_gvn.transform(region));
1104   record_for_igvn(region);
1105 
1106   set_result(_gvn.transform(phi));
1107   return true;
1108 }
1109 
1110 //------------------------------inline_array_equals----------------------------
1111 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1112   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1113   Node* arg1 = argument(0);
1114   Node* arg2 = argument(1);
1115 
1116   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1117   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1118   return true;
1119 }
1120 
1121 //------------------------------inline_hasNegatives------------------------------
1122 bool LibraryCallKit::inline_hasNegatives() {
1123   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1124     return false;
1125   }
1126 
1127   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1128   // no receiver since it is static method
1129   Node* ba         = argument(0);
1130   Node* offset     = argument(1);
1131   Node* len        = argument(2);
1132 
1133   // Range checks
1134   generate_string_range_check(ba, offset, len, false);
1135   if (stopped()) {
1136     return true;
1137   }
1138   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1139   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1140   set_result(_gvn.transform(result));
1141   return true;
1142 }
1143 
1144 bool LibraryCallKit::inline_objects_checkIndex() {
1145   Node* index = argument(0);
1146   Node* length = argument(1);
1147   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1148     return false;
1149   }
1150 
1151   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1152   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1153 
1154   {
1155     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1156     uncommon_trap(Deoptimization::Reason_intrinsic,
1157                   Deoptimization::Action_make_not_entrant);
1158   }
1159 
1160   if (stopped()) {
1161     return false;
1162   }
1163 
1164   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1165   BoolTest::mask btest = BoolTest::lt;
1166   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1167   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1168   _gvn.set_type(rc, rc->Value(&_gvn));
1169   if (!rc_bool->is_Con()) {
1170     record_for_igvn(rc);
1171   }
1172   set_control(_gvn.transform(new IfTrueNode(rc)));
1173   {
1174     PreserveJVMState pjvms(this);
1175     set_control(_gvn.transform(new IfFalseNode(rc)));
1176     uncommon_trap(Deoptimization::Reason_range_check,
1177                   Deoptimization::Action_make_not_entrant);
1178   }
1179 
1180   if (stopped()) {
1181     return false;
1182   }
1183 
1184   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1185   result->set_req(0, control());
1186   result = _gvn.transform(result);
1187   set_result(result);
1188   replace_in_map(index, result);
1189   return true;
1190 }
1191 
1192 //------------------------------inline_string_indexOf------------------------
1193 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1194   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1195     return false;
1196   }
1197   Node* src = argument(0);
1198   Node* tgt = argument(1);
1199 
1200   // Make the merge point
1201   RegionNode* result_rgn = new RegionNode(4);
1202   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1203 
1204   // Get start addr and length of source string
1205   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1206   Node* src_count = load_array_length(src);
1207 
1208   // Get start addr and length of substring
1209   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1210   Node* tgt_count = load_array_length(tgt);
1211 
1212   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1213     // Divide src size by 2 if String is UTF16 encoded
1214     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1215   }
1216   if (ae == StrIntrinsicNode::UU) {
1217     // Divide substring size by 2 if String is UTF16 encoded
1218     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1219   }
1220 
1221   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1222   if (result != NULL) {
1223     result_phi->init_req(3, result);
1224     result_rgn->init_req(3, control());
1225   }
1226   set_control(_gvn.transform(result_rgn));
1227   record_for_igvn(result_rgn);
1228   set_result(_gvn.transform(result_phi));
1229 
1230   return true;
1231 }
1232 
1233 //-----------------------------inline_string_indexOf-----------------------
1234 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1235   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1236     return false;
1237   }
1238   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1239     return false;
1240   }
1241   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1242   Node* src         = argument(0); // byte[]
1243   Node* src_count   = argument(1); // char count
1244   Node* tgt         = argument(2); // byte[]
1245   Node* tgt_count   = argument(3); // char count
1246   Node* from_index  = argument(4); // char index
1247 
1248   // Multiply byte array index by 2 if String is UTF16 encoded
1249   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1250   src_count = _gvn.transform(new SubINode(src_count, from_index));
1251   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1252   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1253 
1254   // Range checks
1255   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1256   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1257   if (stopped()) {
1258     return true;
1259   }
1260 
1261   RegionNode* region = new RegionNode(5);
1262   Node* phi = new PhiNode(region, TypeInt::INT);
1263 
1264   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1265   if (result != NULL) {
1266     // The result is index relative to from_index if substring was found, -1 otherwise.
1267     // Generate code which will fold into cmove.
1268     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1269     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1270 
1271     Node* if_lt = generate_slow_guard(bol, NULL);
1272     if (if_lt != NULL) {
1273       // result == -1
1274       phi->init_req(3, result);
1275       region->init_req(3, if_lt);
1276     }
1277     if (!stopped()) {
1278       result = _gvn.transform(new AddINode(result, from_index));
1279       phi->init_req(4, result);
1280       region->init_req(4, control());
1281     }
1282   }
1283 
1284   set_control(_gvn.transform(region));
1285   record_for_igvn(region);
1286   set_result(_gvn.transform(phi));
1287 
1288   return true;
1289 }
1290 
1291 // Create StrIndexOfNode with fast path checks
1292 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1293                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1294   // Check for substr count > string count
1295   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1296   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1297   Node* if_gt = generate_slow_guard(bol, NULL);
1298   if (if_gt != NULL) {
1299     phi->init_req(1, intcon(-1));
1300     region->init_req(1, if_gt);
1301   }
1302   if (!stopped()) {
1303     // Check for substr count == 0
1304     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1305     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1306     Node* if_zero = generate_slow_guard(bol, NULL);
1307     if (if_zero != NULL) {
1308       phi->init_req(2, intcon(0));
1309       region->init_req(2, if_zero);
1310     }
1311   }
1312   if (!stopped()) {
1313     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1314   }
1315   return NULL;
1316 }
1317 
1318 //-----------------------------inline_string_indexOfChar-----------------------
1319 bool LibraryCallKit::inline_string_indexOfChar() {
1320   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1321     return false;
1322   }
1323   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1324     return false;
1325   }
1326   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1327   Node* src         = argument(0); // byte[]
1328   Node* tgt         = argument(1); // tgt is int ch
1329   Node* from_index  = argument(2);
1330   Node* max         = argument(3);
1331 
1332   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1333   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1334   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1335 
1336   // Range checks
1337   generate_string_range_check(src, src_offset, src_count, true);
1338   if (stopped()) {
1339     return true;
1340   }
1341 
1342   RegionNode* region = new RegionNode(3);
1343   Node* phi = new PhiNode(region, TypeInt::INT);
1344 
1345   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1346   C->set_has_split_ifs(true); // Has chance for split-if optimization
1347   _gvn.transform(result);
1348 
1349   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1350   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1351 
1352   Node* if_lt = generate_slow_guard(bol, NULL);
1353   if (if_lt != NULL) {
1354     // result == -1
1355     phi->init_req(2, result);
1356     region->init_req(2, if_lt);
1357   }
1358   if (!stopped()) {
1359     result = _gvn.transform(new AddINode(result, from_index));
1360     phi->init_req(1, result);
1361     region->init_req(1, control());
1362   }
1363   set_control(_gvn.transform(region));
1364   record_for_igvn(region);
1365   set_result(_gvn.transform(phi));
1366 
1367   return true;
1368 }
1369 //---------------------------inline_string_copy---------------------
1370 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1371 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1372 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1373 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1374 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1375 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1376 bool LibraryCallKit::inline_string_copy(bool compress) {
1377   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1378     return false;
1379   }
1380   int nargs = 5;  // 2 oops, 3 ints
1381   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1382 
1383   Node* src         = argument(0);
1384   Node* src_offset  = argument(1);
1385   Node* dst         = argument(2);
1386   Node* dst_offset  = argument(3);
1387   Node* length      = argument(4);
1388 
1389   // Check for allocation before we add nodes that would confuse
1390   // tightly_coupled_allocation()
1391   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1392 
1393   // Figure out the size and type of the elements we will be copying.
1394   const Type* src_type = src->Value(&_gvn);
1395   const Type* dst_type = dst->Value(&_gvn);
1396   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1397   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1398   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1399          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1400          "Unsupported array types for inline_string_copy");
1401 
1402   // Range checks
1403   generate_string_range_check(src, src_offset, length, compress && src_elem == T_BYTE);
1404   generate_string_range_check(dst, dst_offset, length, !compress && dst_elem == T_BYTE);
1405   if (stopped()) {
1406     return true;
1407   }
1408 
1409   // Convert char[] offsets to byte[] offsets
1410   if (compress && src_elem == T_BYTE) {
1411     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1412   } else if (!compress && dst_elem == T_BYTE) {
1413     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1414   }
1415 
1416   Node* src_start = array_element_address(src, src_offset, src_elem);
1417   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1418   // 'src_start' points to src array + scaled offset
1419   // 'dst_start' points to dst array + scaled offset
1420   Node* count = NULL;
1421   if (compress) {
1422     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1423   } else {
1424     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1425   }
1426 
1427   if (alloc != NULL) {
1428     if (alloc->maybe_set_complete(&_gvn)) {
1429       // "You break it, you buy it."
1430       InitializeNode* init = alloc->initialization();
1431       assert(init->is_complete(), "we just did this");
1432       init->set_complete_with_arraycopy();
1433       assert(dst->is_CheckCastPP(), "sanity");
1434       assert(dst->in(0)->in(0) == init, "dest pinned");
1435     }
1436     // Do not let stores that initialize this object be reordered with
1437     // a subsequent store that would make this object accessible by
1438     // other threads.
1439     // Record what AllocateNode this StoreStore protects so that
1440     // escape analysis can go from the MemBarStoreStoreNode to the
1441     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1442     // based on the escape status of the AllocateNode.
1443     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1444   }
1445   if (compress) {
1446     set_result(_gvn.transform(count));
1447   }
1448   return true;
1449 }
1450 
1451 #ifdef _LP64
1452 #define XTOP ,top() /*additional argument*/
1453 #else  //_LP64
1454 #define XTOP        /*no additional argument*/
1455 #endif //_LP64
1456 
1457 //------------------------inline_string_toBytesU--------------------------
1458 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1459 bool LibraryCallKit::inline_string_toBytesU() {
1460   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1461     return false;
1462   }
1463   // Get the arguments.
1464   Node* value     = argument(0);
1465   Node* offset    = argument(1);
1466   Node* length    = argument(2);
1467 
1468   Node* newcopy = NULL;
1469 
1470   // Set the original stack and the reexecute bit for the interpreter to reexecute
1471   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1472   { PreserveReexecuteState preexecs(this);
1473     jvms()->set_should_reexecute(true);
1474 
1475     // Check if a null path was taken unconditionally.
1476     value = null_check(value);
1477 
1478     RegionNode* bailout = new RegionNode(1);
1479     record_for_igvn(bailout);
1480 
1481     // Range checks
1482     generate_negative_guard(offset, bailout);
1483     generate_negative_guard(length, bailout);
1484     generate_limit_guard(offset, length, load_array_length(value), bailout);
1485     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1486     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1487 
1488     if (bailout->req() > 1) {
1489       PreserveJVMState pjvms(this);
1490       set_control(_gvn.transform(bailout));
1491       uncommon_trap(Deoptimization::Reason_intrinsic,
1492                     Deoptimization::Action_maybe_recompile);
1493     }
1494     if (stopped()) {
1495       return true;
1496     }
1497 
1498     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1499     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1500     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1501     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1502 
1503     // Calculate starting addresses.
1504     Node* src_start = array_element_address(value, offset, T_CHAR);
1505     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1506 
1507     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1508     const TypeInt* toffset = gvn().type(offset)->is_int();
1509     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1510 
1511     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1512     const char* copyfunc_name = "arraycopy";
1513     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1514     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1515                       OptoRuntime::fast_arraycopy_Type(),
1516                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1517                       src_start, dst_start, ConvI2X(length) XTOP);
1518     // Do not let reads from the cloned object float above the arraycopy.
1519     if (alloc != NULL) {
1520       if (alloc->maybe_set_complete(&_gvn)) {
1521         // "You break it, you buy it."
1522         InitializeNode* init = alloc->initialization();
1523         assert(init->is_complete(), "we just did this");
1524         init->set_complete_with_arraycopy();
1525         assert(newcopy->is_CheckCastPP(), "sanity");
1526         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1527       }
1528       // Do not let stores that initialize this object be reordered with
1529       // a subsequent store that would make this object accessible by
1530       // other threads.
1531       // Record what AllocateNode this StoreStore protects so that
1532       // escape analysis can go from the MemBarStoreStoreNode to the
1533       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1534       // based on the escape status of the AllocateNode.
1535       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1536     } else {
1537       insert_mem_bar(Op_MemBarCPUOrder);
1538     }
1539   } // original reexecute is set back here
1540 
1541   C->set_has_split_ifs(true); // Has chance for split-if optimization
1542   if (!stopped()) {
1543     set_result(newcopy);
1544   }
1545   return true;
1546 }
1547 
1548 //------------------------inline_string_getCharsU--------------------------
1549 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1550 bool LibraryCallKit::inline_string_getCharsU() {
1551   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1552     return false;
1553   }
1554 
1555   // Get the arguments.
1556   Node* src       = argument(0);
1557   Node* src_begin = argument(1);
1558   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1559   Node* dst       = argument(3);
1560   Node* dst_begin = argument(4);
1561 
1562   // Check for allocation before we add nodes that would confuse
1563   // tightly_coupled_allocation()
1564   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1565 
1566   // Check if a null path was taken unconditionally.
1567   src = null_check(src);
1568   dst = null_check(dst);
1569   if (stopped()) {
1570     return true;
1571   }
1572 
1573   // Get length and convert char[] offset to byte[] offset
1574   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1575   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1576 
1577   // Range checks
1578   generate_string_range_check(src, src_begin, length, true);
1579   generate_string_range_check(dst, dst_begin, length, false);
1580   if (stopped()) {
1581     return true;
1582   }
1583 
1584   if (!stopped()) {
1585     // Calculate starting addresses.
1586     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1587     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1588 
1589     // Check if array addresses are aligned to HeapWordSize
1590     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1591     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1592     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1593                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1594 
1595     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1596     const char* copyfunc_name = "arraycopy";
1597     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1598     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1599                       OptoRuntime::fast_arraycopy_Type(),
1600                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1601                       src_start, dst_start, ConvI2X(length) XTOP);
1602     // Do not let reads from the cloned object float above the arraycopy.
1603     if (alloc != NULL) {
1604       if (alloc->maybe_set_complete(&_gvn)) {
1605         // "You break it, you buy it."
1606         InitializeNode* init = alloc->initialization();
1607         assert(init->is_complete(), "we just did this");
1608         init->set_complete_with_arraycopy();
1609         assert(dst->is_CheckCastPP(), "sanity");
1610         assert(dst->in(0)->in(0) == init, "dest pinned");
1611       }
1612       // Do not let stores that initialize this object be reordered with
1613       // a subsequent store that would make this object accessible by
1614       // other threads.
1615       // Record what AllocateNode this StoreStore protects so that
1616       // escape analysis can go from the MemBarStoreStoreNode to the
1617       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1618       // based on the escape status of the AllocateNode.
1619       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1620     } else {
1621       insert_mem_bar(Op_MemBarCPUOrder);
1622     }
1623   }
1624 
1625   C->set_has_split_ifs(true); // Has chance for split-if optimization
1626   return true;
1627 }
1628 
1629 //----------------------inline_string_char_access----------------------------
1630 // Store/Load char to/from byte[] array.
1631 // static void StringUTF16.putChar(byte[] val, int index, int c)
1632 // static char StringUTF16.getChar(byte[] val, int index)
1633 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1634   Node* value  = argument(0);
1635   Node* index  = argument(1);
1636   Node* ch = is_store ? argument(2) : NULL;
1637 
1638   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1639   // correctly requires matched array shapes.
1640   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1641           "sanity: byte[] and char[] bases agree");
1642   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1643           "sanity: byte[] and char[] scales agree");
1644 
1645   // Bail when getChar over constants is requested: constant folding would
1646   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1647   // Java method would constant fold nicely instead.
1648   if (!is_store && value->is_Con() && index->is_Con()) {
1649     return false;
1650   }
1651 
1652   Node* adr = array_element_address(value, index, T_CHAR);
1653   if (is_store) {
1654     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1655                            false, false, true /* mismatched */);
1656   } else {
1657     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1658                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1659     set_result(ch);
1660   }
1661   return true;
1662 }
1663 
1664 //--------------------------round_double_node--------------------------------
1665 // Round a double node if necessary.
1666 Node* LibraryCallKit::round_double_node(Node* n) {
1667   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1668     n = _gvn.transform(new RoundDoubleNode(0, n));
1669   return n;
1670 }
1671 
1672 //------------------------------inline_math-----------------------------------
1673 // public static double Math.abs(double)
1674 // public static double Math.sqrt(double)
1675 // public static double Math.log(double)
1676 // public static double Math.log10(double)
1677 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1678   Node* arg = round_double_node(argument(0));
1679   Node* n = NULL;
1680   switch (id) {
1681   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1682   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1683   default:  fatal_unexpected_iid(id);  break;
1684   }
1685   set_result(_gvn.transform(n));
1686   return true;
1687 }
1688 
1689 //------------------------------inline_trig----------------------------------
1690 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1691 // argument reduction which will turn into a fast/slow diamond.
1692 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1693   Node* arg = round_double_node(argument(0));
1694   Node* n = NULL;
1695 
1696   n = _gvn.transform(n);
1697 
1698   // Rounding required?  Check for argument reduction!
1699   if (Matcher::strict_fp_requires_explicit_rounding) {
1700     static const double     pi_4 =  0.7853981633974483;
1701     static const double neg_pi_4 = -0.7853981633974483;
1702     // pi/2 in 80-bit extended precision
1703     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1704     // -pi/2 in 80-bit extended precision
1705     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1706     // Cutoff value for using this argument reduction technique
1707     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1708     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1709 
1710     // Pseudocode for sin:
1711     // if (x <= Math.PI / 4.0) {
1712     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1713     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1714     // } else {
1715     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1716     // }
1717     // return StrictMath.sin(x);
1718 
1719     // Pseudocode for cos:
1720     // if (x <= Math.PI / 4.0) {
1721     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1722     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1723     // } else {
1724     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1725     // }
1726     // return StrictMath.cos(x);
1727 
1728     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1729     // requires a special machine instruction to load it.  Instead we'll try
1730     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1731     // probably do the math inside the SIN encoding.
1732 
1733     // Make the merge point
1734     RegionNode* r = new RegionNode(3);
1735     Node* phi = new PhiNode(r, Type::DOUBLE);
1736 
1737     // Flatten arg so we need only 1 test
1738     Node *abs = _gvn.transform(new AbsDNode(arg));
1739     // Node for PI/4 constant
1740     Node *pi4 = makecon(TypeD::make(pi_4));
1741     // Check PI/4 : abs(arg)
1742     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1743     // Check: If PI/4 < abs(arg) then go slow
1744     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1745     // Branch either way
1746     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1747     set_control(opt_iff(r,iff));
1748 
1749     // Set fast path result
1750     phi->init_req(2, n);
1751 
1752     // Slow path - non-blocking leaf call
1753     Node* call = NULL;
1754     switch (id) {
1755     case vmIntrinsics::_dtan:
1756       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1757                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1758                                "Tan", NULL, arg, top());
1759       break;
1760     }
1761     assert(control()->in(0) == call, "");
1762     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1763     r->init_req(1, control());
1764     phi->init_req(1, slow_result);
1765 
1766     // Post-merge
1767     set_control(_gvn.transform(r));
1768     record_for_igvn(r);
1769     n = _gvn.transform(phi);
1770 
1771     C->set_has_split_ifs(true); // Has chance for split-if optimization
1772   }
1773   set_result(n);
1774   return true;
1775 }
1776 
1777 //------------------------------runtime_math-----------------------------
1778 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1779   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1780          "must be (DD)D or (D)D type");
1781 
1782   // Inputs
1783   Node* a = round_double_node(argument(0));
1784   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1785 
1786   const TypePtr* no_memory_effects = NULL;
1787   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1788                                  no_memory_effects,
1789                                  a, top(), b, b ? top() : NULL);
1790   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1791 #ifdef ASSERT
1792   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1793   assert(value_top == top(), "second value must be top");
1794 #endif
1795 
1796   set_result(value);
1797   return true;
1798 }
1799 
1800 //------------------------------inline_math_native-----------------------------
1801 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1802 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1803   switch (id) {
1804     // These intrinsics are not properly supported on all hardware
1805   case vmIntrinsics::_dsin:
1806     return StubRoutines::dsin() != NULL ?
1807       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1808       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1809   case vmIntrinsics::_dcos:
1810     return StubRoutines::dcos() != NULL ?
1811       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1812       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1813   case vmIntrinsics::_dtan:
1814     return StubRoutines::dtan() != NULL ?
1815       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1816       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1817   case vmIntrinsics::_dlog:
1818     return StubRoutines::dlog() != NULL ?
1819       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1820       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1821   case vmIntrinsics::_dlog10:
1822     return StubRoutines::dlog10() != NULL ?
1823       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1824       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1825 
1826     // These intrinsics are supported on all hardware
1827   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1828   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1829 
1830   case vmIntrinsics::_dexp:
1831     return StubRoutines::dexp() != NULL ?
1832       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1833       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1834   case vmIntrinsics::_dpow:
1835     return StubRoutines::dpow() != NULL ?
1836       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1837       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1838 #undef FN_PTR
1839 
1840    // These intrinsics are not yet correctly implemented
1841   case vmIntrinsics::_datan2:
1842     return false;
1843 
1844   default:
1845     fatal_unexpected_iid(id);
1846     return false;
1847   }
1848 }
1849 
1850 static bool is_simple_name(Node* n) {
1851   return (n->req() == 1         // constant
1852           || (n->is_Type() && n->as_Type()->type()->singleton())
1853           || n->is_Proj()       // parameter or return value
1854           || n->is_Phi()        // local of some sort
1855           );
1856 }
1857 
1858 //----------------------------inline_notify-----------------------------------*
1859 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1860   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1861   address func;
1862   if (id == vmIntrinsics::_notify) {
1863     func = OptoRuntime::monitor_notify_Java();
1864   } else {
1865     func = OptoRuntime::monitor_notifyAll_Java();
1866   }
1867   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1868   make_slow_call_ex(call, env()->Throwable_klass(), false);
1869   return true;
1870 }
1871 
1872 
1873 //----------------------------inline_min_max-----------------------------------
1874 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1875   set_result(generate_min_max(id, argument(0), argument(1)));
1876   return true;
1877 }
1878 
1879 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1880   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1881   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1882   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1883   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1884 
1885   {
1886     PreserveJVMState pjvms(this);
1887     PreserveReexecuteState preexecs(this);
1888     jvms()->set_should_reexecute(true);
1889 
1890     set_control(slow_path);
1891     set_i_o(i_o());
1892 
1893     uncommon_trap(Deoptimization::Reason_intrinsic,
1894                   Deoptimization::Action_none);
1895   }
1896 
1897   set_control(fast_path);
1898   set_result(math);
1899 }
1900 
1901 template <typename OverflowOp>
1902 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1903   typedef typename OverflowOp::MathOp MathOp;
1904 
1905   MathOp* mathOp = new MathOp(arg1, arg2);
1906   Node* operation = _gvn.transform( mathOp );
1907   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1908   inline_math_mathExact(operation, ofcheck);
1909   return true;
1910 }
1911 
1912 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1913   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1914 }
1915 
1916 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1917   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1918 }
1919 
1920 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1921   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1922 }
1923 
1924 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1925   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1926 }
1927 
1928 bool LibraryCallKit::inline_math_negateExactI() {
1929   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1930 }
1931 
1932 bool LibraryCallKit::inline_math_negateExactL() {
1933   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1934 }
1935 
1936 bool LibraryCallKit::inline_math_multiplyExactI() {
1937   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1938 }
1939 
1940 bool LibraryCallKit::inline_math_multiplyExactL() {
1941   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1942 }
1943 
1944 Node*
1945 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1946   // These are the candidate return value:
1947   Node* xvalue = x0;
1948   Node* yvalue = y0;
1949 
1950   if (xvalue == yvalue) {
1951     return xvalue;
1952   }
1953 
1954   bool want_max = (id == vmIntrinsics::_max);
1955 
1956   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1957   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1958   if (txvalue == NULL || tyvalue == NULL)  return top();
1959   // This is not really necessary, but it is consistent with a
1960   // hypothetical MaxINode::Value method:
1961   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1962 
1963   // %%% This folding logic should (ideally) be in a different place.
1964   // Some should be inside IfNode, and there to be a more reliable
1965   // transformation of ?: style patterns into cmoves.  We also want
1966   // more powerful optimizations around cmove and min/max.
1967 
1968   // Try to find a dominating comparison of these guys.
1969   // It can simplify the index computation for Arrays.copyOf
1970   // and similar uses of System.arraycopy.
1971   // First, compute the normalized version of CmpI(x, y).
1972   int   cmp_op = Op_CmpI;
1973   Node* xkey = xvalue;
1974   Node* ykey = yvalue;
1975   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1976   if (ideal_cmpxy->is_Cmp()) {
1977     // E.g., if we have CmpI(length - offset, count),
1978     // it might idealize to CmpI(length, count + offset)
1979     cmp_op = ideal_cmpxy->Opcode();
1980     xkey = ideal_cmpxy->in(1);
1981     ykey = ideal_cmpxy->in(2);
1982   }
1983 
1984   // Start by locating any relevant comparisons.
1985   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1986   Node* cmpxy = NULL;
1987   Node* cmpyx = NULL;
1988   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1989     Node* cmp = start_from->fast_out(k);
1990     if (cmp->outcnt() > 0 &&            // must have prior uses
1991         cmp->in(0) == NULL &&           // must be context-independent
1992         cmp->Opcode() == cmp_op) {      // right kind of compare
1993       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1994       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1995     }
1996   }
1997 
1998   const int NCMPS = 2;
1999   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2000   int cmpn;
2001   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2002     if (cmps[cmpn] != NULL)  break;     // find a result
2003   }
2004   if (cmpn < NCMPS) {
2005     // Look for a dominating test that tells us the min and max.
2006     int depth = 0;                // Limit search depth for speed
2007     Node* dom = control();
2008     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2009       if (++depth >= 100)  break;
2010       Node* ifproj = dom;
2011       if (!ifproj->is_Proj())  continue;
2012       Node* iff = ifproj->in(0);
2013       if (!iff->is_If())  continue;
2014       Node* bol = iff->in(1);
2015       if (!bol->is_Bool())  continue;
2016       Node* cmp = bol->in(1);
2017       if (cmp == NULL)  continue;
2018       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2019         if (cmps[cmpn] == cmp)  break;
2020       if (cmpn == NCMPS)  continue;
2021       BoolTest::mask btest = bol->as_Bool()->_test._test;
2022       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2023       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2024       // At this point, we know that 'x btest y' is true.
2025       switch (btest) {
2026       case BoolTest::eq:
2027         // They are proven equal, so we can collapse the min/max.
2028         // Either value is the answer.  Choose the simpler.
2029         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2030           return yvalue;
2031         return xvalue;
2032       case BoolTest::lt:          // x < y
2033       case BoolTest::le:          // x <= y
2034         return (want_max ? yvalue : xvalue);
2035       case BoolTest::gt:          // x > y
2036       case BoolTest::ge:          // x >= y
2037         return (want_max ? xvalue : yvalue);
2038       }
2039     }
2040   }
2041 
2042   // We failed to find a dominating test.
2043   // Let's pick a test that might GVN with prior tests.
2044   Node*          best_bol   = NULL;
2045   BoolTest::mask best_btest = BoolTest::illegal;
2046   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2047     Node* cmp = cmps[cmpn];
2048     if (cmp == NULL)  continue;
2049     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2050       Node* bol = cmp->fast_out(j);
2051       if (!bol->is_Bool())  continue;
2052       BoolTest::mask btest = bol->as_Bool()->_test._test;
2053       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2054       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2055       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2056         best_bol   = bol->as_Bool();
2057         best_btest = btest;
2058       }
2059     }
2060   }
2061 
2062   Node* answer_if_true  = NULL;
2063   Node* answer_if_false = NULL;
2064   switch (best_btest) {
2065   default:
2066     if (cmpxy == NULL)
2067       cmpxy = ideal_cmpxy;
2068     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2069     // and fall through:
2070   case BoolTest::lt:          // x < y
2071   case BoolTest::le:          // x <= y
2072     answer_if_true  = (want_max ? yvalue : xvalue);
2073     answer_if_false = (want_max ? xvalue : yvalue);
2074     break;
2075   case BoolTest::gt:          // x > y
2076   case BoolTest::ge:          // x >= y
2077     answer_if_true  = (want_max ? xvalue : yvalue);
2078     answer_if_false = (want_max ? yvalue : xvalue);
2079     break;
2080   }
2081 
2082   jint hi, lo;
2083   if (want_max) {
2084     // We can sharpen the minimum.
2085     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2086     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2087   } else {
2088     // We can sharpen the maximum.
2089     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2090     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2091   }
2092 
2093   // Use a flow-free graph structure, to avoid creating excess control edges
2094   // which could hinder other optimizations.
2095   // Since Math.min/max is often used with arraycopy, we want
2096   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2097   Node* cmov = CMoveNode::make(NULL, best_bol,
2098                                answer_if_false, answer_if_true,
2099                                TypeInt::make(lo, hi, widen));
2100 
2101   return _gvn.transform(cmov);
2102 
2103   /*
2104   // This is not as desirable as it may seem, since Min and Max
2105   // nodes do not have a full set of optimizations.
2106   // And they would interfere, anyway, with 'if' optimizations
2107   // and with CMoveI canonical forms.
2108   switch (id) {
2109   case vmIntrinsics::_min:
2110     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2111   case vmIntrinsics::_max:
2112     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2113   default:
2114     ShouldNotReachHere();
2115   }
2116   */
2117 }
2118 
2119 inline int
2120 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2121   const TypePtr* base_type = TypePtr::NULL_PTR;
2122   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2123   if (base_type == NULL) {
2124     // Unknown type.
2125     return Type::AnyPtr;
2126   } else if (base_type == TypePtr::NULL_PTR) {
2127     // Since this is a NULL+long form, we have to switch to a rawptr.
2128     base   = _gvn.transform(new CastX2PNode(offset));
2129     offset = MakeConX(0);
2130     return Type::RawPtr;
2131   } else if (base_type->base() == Type::RawPtr) {
2132     return Type::RawPtr;
2133   } else if (base_type->isa_oopptr()) {
2134     // Base is never null => always a heap address.
2135     if (base_type->ptr() == TypePtr::NotNull) {
2136       return Type::OopPtr;
2137     }
2138     // Offset is small => always a heap address.
2139     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2140     if (offset_type != NULL &&
2141         base_type->offset() == 0 &&     // (should always be?)
2142         offset_type->_lo >= 0 &&
2143         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2144       return Type::OopPtr;
2145     }
2146     // Otherwise, it might either be oop+off or NULL+addr.
2147     return Type::AnyPtr;
2148   } else {
2149     // No information:
2150     return Type::AnyPtr;
2151   }
2152 }
2153 
2154 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2155   int kind = classify_unsafe_addr(base, offset);
2156   if (kind == Type::RawPtr) {
2157     return basic_plus_adr(top(), base, offset);
2158   } else {
2159     return basic_plus_adr(base, offset);
2160   }
2161 }
2162 
2163 //--------------------------inline_number_methods-----------------------------
2164 // inline int     Integer.numberOfLeadingZeros(int)
2165 // inline int        Long.numberOfLeadingZeros(long)
2166 //
2167 // inline int     Integer.numberOfTrailingZeros(int)
2168 // inline int        Long.numberOfTrailingZeros(long)
2169 //
2170 // inline int     Integer.bitCount(int)
2171 // inline int        Long.bitCount(long)
2172 //
2173 // inline char  Character.reverseBytes(char)
2174 // inline short     Short.reverseBytes(short)
2175 // inline int     Integer.reverseBytes(int)
2176 // inline long       Long.reverseBytes(long)
2177 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2178   Node* arg = argument(0);
2179   Node* n = NULL;
2180   switch (id) {
2181   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2182   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2183   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2184   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2185   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2186   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2187   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2188   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2189   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2190   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2191   default:  fatal_unexpected_iid(id);  break;
2192   }
2193   set_result(_gvn.transform(n));
2194   return true;
2195 }
2196 
2197 //----------------------------inline_unsafe_access----------------------------
2198 
2199 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2200 
2201 // Helper that guards and inserts a pre-barrier.
2202 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2203                                         Node* pre_val, bool need_mem_bar) {
2204   // We could be accessing the referent field of a reference object. If so, when G1
2205   // is enabled, we need to log the value in the referent field in an SATB buffer.
2206   // This routine performs some compile time filters and generates suitable
2207   // runtime filters that guard the pre-barrier code.
2208   // Also add memory barrier for non volatile load from the referent field
2209   // to prevent commoning of loads across safepoint.
2210   if (!UseG1GC && !need_mem_bar)
2211     return;
2212 
2213   // Some compile time checks.
2214 
2215   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2216   const TypeX* otype = offset->find_intptr_t_type();
2217   if (otype != NULL && otype->is_con() &&
2218       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2219     // Constant offset but not the reference_offset so just return
2220     return;
2221   }
2222 
2223   // We only need to generate the runtime guards for instances.
2224   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2225   if (btype != NULL) {
2226     if (btype->isa_aryptr()) {
2227       // Array type so nothing to do
2228       return;
2229     }
2230 
2231     const TypeInstPtr* itype = btype->isa_instptr();
2232     if (itype != NULL) {
2233       // Can the klass of base_oop be statically determined to be
2234       // _not_ a sub-class of Reference and _not_ Object?
2235       ciKlass* klass = itype->klass();
2236       if ( klass->is_loaded() &&
2237           !klass->is_subtype_of(env()->Reference_klass()) &&
2238           !env()->Object_klass()->is_subtype_of(klass)) {
2239         return;
2240       }
2241     }
2242   }
2243 
2244   // The compile time filters did not reject base_oop/offset so
2245   // we need to generate the following runtime filters
2246   //
2247   // if (offset == java_lang_ref_Reference::_reference_offset) {
2248   //   if (instance_of(base, java.lang.ref.Reference)) {
2249   //     pre_barrier(_, pre_val, ...);
2250   //   }
2251   // }
2252 
2253   float likely   = PROB_LIKELY(  0.999);
2254   float unlikely = PROB_UNLIKELY(0.999);
2255 
2256   IdealKit ideal(this);
2257 #define __ ideal.
2258 
2259   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2260 
2261   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2262       // Update graphKit memory and control from IdealKit.
2263       sync_kit(ideal);
2264 
2265       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2266       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2267 
2268       // Update IdealKit memory and control from graphKit.
2269       __ sync_kit(this);
2270 
2271       Node* one = __ ConI(1);
2272       // is_instof == 0 if base_oop == NULL
2273       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2274 
2275         // Update graphKit from IdeakKit.
2276         sync_kit(ideal);
2277 
2278         // Use the pre-barrier to record the value in the referent field
2279         pre_barrier(false /* do_load */,
2280                     __ ctrl(),
2281                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2282                     pre_val /* pre_val */,
2283                     T_OBJECT);
2284         if (need_mem_bar) {
2285           // Add memory barrier to prevent commoning reads from this field
2286           // across safepoint since GC can change its value.
2287           insert_mem_bar(Op_MemBarCPUOrder);
2288         }
2289         // Update IdealKit from graphKit.
2290         __ sync_kit(this);
2291 
2292       } __ end_if(); // _ref_type != ref_none
2293   } __ end_if(); // offset == referent_offset
2294 
2295   // Final sync IdealKit and GraphKit.
2296   final_sync(ideal);
2297 #undef __
2298 }
2299 
2300 
2301 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2302   // Attempt to infer a sharper value type from the offset and base type.
2303   ciKlass* sharpened_klass = NULL;
2304 
2305   // See if it is an instance field, with an object type.
2306   if (alias_type->field() != NULL) {
2307     assert(!is_native_ptr, "native pointer op cannot use a java address");
2308     if (alias_type->field()->type()->is_klass()) {
2309       sharpened_klass = alias_type->field()->type()->as_klass();
2310     }
2311   }
2312 
2313   // See if it is a narrow oop array.
2314   if (adr_type->isa_aryptr()) {
2315     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2316       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2317       if (elem_type != NULL) {
2318         sharpened_klass = elem_type->klass();
2319       }
2320     }
2321   }
2322 
2323   // The sharpened class might be unloaded if there is no class loader
2324   // contraint in place.
2325   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2326     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2327 
2328 #ifndef PRODUCT
2329     if (C->print_intrinsics() || C->print_inlining()) {
2330       tty->print("  from base type: ");  adr_type->dump();
2331       tty->print("  sharpened value: ");  tjp->dump();
2332     }
2333 #endif
2334     // Sharpen the value type.
2335     return tjp;
2336   }
2337   return NULL;
2338 }
2339 
2340 bool LibraryCallKit::inline_unsafe_access(const bool is_native_ptr, bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2341   if (callee()->is_static())  return false;  // caller must have the capability!
2342   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2343   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2344 
2345 #ifndef PRODUCT
2346   {
2347     ResourceMark rm;
2348     // Check the signatures.
2349     ciSignature* sig = callee()->signature();
2350 #ifdef ASSERT
2351     if (!is_store) {
2352       // Object getObject(Object base, int/long offset), etc.
2353       BasicType rtype = sig->return_type()->basic_type();
2354       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2355           rtype = T_ADDRESS;  // it is really a C void*
2356       assert(rtype == type, "getter must return the expected value");
2357       if (!is_native_ptr) {
2358         assert(sig->count() == 2, "oop getter has 2 arguments");
2359         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2360         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2361       } else {
2362         assert(sig->count() == 1, "native getter has 1 argument");
2363         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2364       }
2365     } else {
2366       // void putObject(Object base, int/long offset, Object x), etc.
2367       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2368       if (!is_native_ptr) {
2369         assert(sig->count() == 3, "oop putter has 3 arguments");
2370         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2371         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2372       } else {
2373         assert(sig->count() == 2, "native putter has 2 arguments");
2374         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2375       }
2376       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2377       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2378         vtype = T_ADDRESS;  // it is really a C void*
2379       assert(vtype == type, "putter must accept the expected value");
2380     }
2381 #endif // ASSERT
2382  }
2383 #endif //PRODUCT
2384 
2385   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2386 
2387   Node* receiver = argument(0);  // type: oop
2388 
2389   // Build address expression.
2390   Node* adr;
2391   Node* heap_base_oop = top();
2392   Node* offset = top();
2393   Node* val;
2394 
2395   if (!is_native_ptr) {
2396     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2397     Node* base = argument(1);  // type: oop
2398     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2399     offset = argument(2);  // type: long
2400     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2401     // to be plain byte offsets, which are also the same as those accepted
2402     // by oopDesc::field_base.
2403     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2404            "fieldOffset must be byte-scaled");
2405     // 32-bit machines ignore the high half!
2406     offset = ConvL2X(offset);
2407     adr = make_unsafe_address(base, offset);
2408     heap_base_oop = base;
2409     val = is_store ? argument(4) : NULL;
2410   } else {
2411     Node* ptr = argument(1);  // type: long
2412     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2413     adr = make_unsafe_address(NULL, ptr);
2414     val = is_store ? argument(3) : NULL;
2415   }
2416 
2417   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2418 
2419   // First guess at the value type.
2420   const Type *value_type = Type::get_const_basic_type(type);
2421 
2422   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2423   // there was not enough information to nail it down.
2424   Compile::AliasType* alias_type = C->alias_type(adr_type);
2425   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2426 
2427   // We will need memory barriers unless we can determine a unique
2428   // alias category for this reference.  (Note:  If for some reason
2429   // the barriers get omitted and the unsafe reference begins to "pollute"
2430   // the alias analysis of the rest of the graph, either Compile::can_alias
2431   // or Compile::must_alias will throw a diagnostic assert.)
2432   bool need_mem_bar;
2433   switch (kind) {
2434       case Relaxed:
2435           need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2436           break;
2437       case Opaque:
2438           // Opaque uses CPUOrder membars for protection against code movement.
2439       case Acquire:
2440       case Release:
2441       case Volatile:
2442           need_mem_bar = true;
2443           break;
2444       default:
2445           ShouldNotReachHere();
2446   }
2447 
2448   // Some accesses require access atomicity for all types, notably longs and doubles.
2449   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2450   bool requires_atomic_access = false;
2451   switch (kind) {
2452       case Relaxed:
2453       case Opaque:
2454           requires_atomic_access = AlwaysAtomicAccesses;
2455           break;
2456       case Acquire:
2457       case Release:
2458       case Volatile:
2459           requires_atomic_access = true;
2460           break;
2461       default:
2462           ShouldNotReachHere();
2463   }
2464 
2465   // Figure out the memory ordering.
2466   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2467   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2468 
2469   // If we are reading the value of the referent field of a Reference
2470   // object (either by using Unsafe directly or through reflection)
2471   // then, if G1 is enabled, we need to record the referent in an
2472   // SATB log buffer using the pre-barrier mechanism.
2473   // Also we need to add memory barrier to prevent commoning reads
2474   // from this field across safepoint since GC can change its value.
2475   bool need_read_barrier = !is_native_ptr && !is_store &&
2476                            offset != top() && heap_base_oop != top();
2477 
2478   if (!is_store && type == T_OBJECT) {
2479     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2480     if (tjp != NULL) {
2481       value_type = tjp;
2482     }
2483   }
2484 
2485   receiver = null_check(receiver);
2486   if (stopped()) {
2487     return true;
2488   }
2489   // Heap pointers get a null-check from the interpreter,
2490   // as a courtesy.  However, this is not guaranteed by Unsafe,
2491   // and it is not possible to fully distinguish unintended nulls
2492   // from intended ones in this API.
2493 
2494   // We need to emit leading and trailing CPU membars (see below) in
2495   // addition to memory membars for special access modes. This is a little
2496   // too strong, but avoids the need to insert per-alias-type
2497   // volatile membars (for stores; compare Parse::do_put_xxx), which
2498   // we cannot do effectively here because we probably only have a
2499   // rough approximation of type.
2500 
2501   switch(kind) {
2502     case Relaxed:
2503     case Opaque:
2504     case Acquire:
2505       break;
2506     case Release:
2507     case Volatile:
2508       if (is_store) {
2509         insert_mem_bar(Op_MemBarRelease);
2510       } else {
2511         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2512           insert_mem_bar(Op_MemBarVolatile);
2513         }
2514       }
2515       break;
2516     default:
2517       ShouldNotReachHere();
2518   }
2519 
2520   // Memory barrier to prevent normal and 'unsafe' accesses from
2521   // bypassing each other.  Happens after null checks, so the
2522   // exception paths do not take memory state from the memory barrier,
2523   // so there's no problems making a strong assert about mixing users
2524   // of safe & unsafe memory.
2525   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2526 
2527   assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2528          alias_type->field() != NULL || alias_type->element() != NULL, "field, array element or unknown");
2529   bool mismatched = false;
2530   if (alias_type->element() != NULL || alias_type->field() != NULL) {
2531     BasicType bt;
2532     if (alias_type->element() != NULL) {
2533       // Use address type to get the element type. Alias type doesn't provide
2534       // enough information (e.g., doesn't differentiate between byte[] and boolean[]).
2535       const Type* element = adr_type->is_aryptr()->elem();
2536       bt = element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
2537     } else {
2538       bt = alias_type->field()->layout_type();
2539     }
2540     if (bt == T_ARRAY) {
2541       // accessing an array field with getObject is not a mismatch
2542       bt = T_OBJECT;
2543     }
2544     if (bt != type) {
2545       mismatched = true;
2546     }
2547   }
2548   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2549 
2550   if (!is_store) {
2551     Node* p = NULL;
2552     // Try to constant fold a load from a constant field
2553     ciField* field = alias_type->field();
2554     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2555       // final or stable field
2556       p = make_constant_from_field(field, heap_base_oop);
2557     }
2558     if (p == NULL) {
2559       // To be valid, unsafe loads may depend on other conditions than
2560       // the one that guards them: pin the Load node
2561       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2562       // load value
2563       switch (type) {
2564       case T_BOOLEAN:
2565       case T_CHAR:
2566       case T_BYTE:
2567       case T_SHORT:
2568       case T_INT:
2569       case T_LONG:
2570       case T_FLOAT:
2571       case T_DOUBLE:
2572         break;
2573       case T_OBJECT:
2574         if (need_read_barrier) {
2575           // We do not require a mem bar inside pre_barrier if need_mem_bar
2576           // is set: the barriers would be emitted by us.
2577           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2578         }
2579         break;
2580       case T_ADDRESS:
2581         // Cast to an int type.
2582         p = _gvn.transform(new CastP2XNode(NULL, p));
2583         p = ConvX2UL(p);
2584         break;
2585       default:
2586         fatal("unexpected type %d: %s", type, type2name(type));
2587         break;
2588       }
2589     }
2590     // The load node has the control of the preceding MemBarCPUOrder.  All
2591     // following nodes will have the control of the MemBarCPUOrder inserted at
2592     // the end of this method.  So, pushing the load onto the stack at a later
2593     // point is fine.
2594     set_result(p);
2595   } else {
2596     // place effect of store into memory
2597     switch (type) {
2598     case T_DOUBLE:
2599       val = dstore_rounding(val);
2600       break;
2601     case T_ADDRESS:
2602       // Repackage the long as a pointer.
2603       val = ConvL2X(val);
2604       val = _gvn.transform(new CastX2PNode(val));
2605       break;
2606     }
2607 
2608     if (type != T_OBJECT) {
2609       (void) store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2610     } else {
2611       // Possibly an oop being stored to Java heap or native memory
2612       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2613         // oop to Java heap.
2614         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2615       } else {
2616         // We can't tell at compile time if we are storing in the Java heap or outside
2617         // of it. So we need to emit code to conditionally do the proper type of
2618         // store.
2619 
2620         IdealKit ideal(this);
2621 #define __ ideal.
2622         // QQQ who knows what probability is here??
2623         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2624           // Sync IdealKit and graphKit.
2625           sync_kit(ideal);
2626           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2627           // Update IdealKit memory.
2628           __ sync_kit(this);
2629         } __ else_(); {
2630           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, requires_atomic_access, mismatched);
2631         } __ end_if();
2632         // Final sync IdealKit and GraphKit.
2633         final_sync(ideal);
2634 #undef __
2635       }
2636     }
2637   }
2638 
2639   switch(kind) {
2640     case Relaxed:
2641     case Opaque:
2642     case Release:
2643       break;
2644     case Acquire:
2645     case Volatile:
2646       if (!is_store) {
2647         insert_mem_bar(Op_MemBarAcquire);
2648       } else {
2649         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2650           insert_mem_bar(Op_MemBarVolatile);
2651         }
2652       }
2653       break;
2654     default:
2655       ShouldNotReachHere();
2656   }
2657 
2658   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2659 
2660   return true;
2661 }
2662 
2663 //----------------------------inline_unsafe_load_store----------------------------
2664 // This method serves a couple of different customers (depending on LoadStoreKind):
2665 //
2666 // LS_cmp_swap:
2667 //
2668 //   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2669 //   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2670 //   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2671 //
2672 // LS_cmp_swap_weak:
2673 //
2674 //   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2675 //   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2676 //   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2677 //
2678 //   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2679 //   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2680 //   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2681 //
2682 //   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2683 //   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2684 //   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2685 //
2686 // LS_cmp_exchange:
2687 //
2688 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2689 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2690 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2691 //
2692 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2693 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2694 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2695 //
2696 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2697 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2698 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2699 //
2700 // LS_get_add:
2701 //
2702 //   int  getAndAddInt( Object o, long offset, int  delta)
2703 //   long getAndAddLong(Object o, long offset, long delta)
2704 //
2705 // LS_get_set:
2706 //
2707 //   int    getAndSet(Object o, long offset, int    newValue)
2708 //   long   getAndSet(Object o, long offset, long   newValue)
2709 //   Object getAndSet(Object o, long offset, Object newValue)
2710 //
2711 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2712   // This basic scheme here is the same as inline_unsafe_access, but
2713   // differs in enough details that combining them would make the code
2714   // overly confusing.  (This is a true fact! I originally combined
2715   // them, but even I was confused by it!) As much code/comments as
2716   // possible are retained from inline_unsafe_access though to make
2717   // the correspondences clearer. - dl
2718 
2719   if (callee()->is_static())  return false;  // caller must have the capability!
2720 
2721 #ifndef PRODUCT
2722   BasicType rtype;
2723   {
2724     ResourceMark rm;
2725     // Check the signatures.
2726     ciSignature* sig = callee()->signature();
2727     rtype = sig->return_type()->basic_type();
2728     switch(kind) {
2729       case LS_get_add:
2730       case LS_get_set: {
2731       // Check the signatures.
2732 #ifdef ASSERT
2733       assert(rtype == type, "get and set must return the expected type");
2734       assert(sig->count() == 3, "get and set has 3 arguments");
2735       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2736       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2737       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2738 #endif // ASSERT
2739         break;
2740       }
2741       case LS_cmp_swap:
2742       case LS_cmp_swap_weak: {
2743       // Check the signatures.
2744 #ifdef ASSERT
2745       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2746       assert(sig->count() == 4, "CAS has 4 arguments");
2747       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2748       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2749 #endif // ASSERT
2750         break;
2751       }
2752       case LS_cmp_exchange: {
2753       // Check the signatures.
2754 #ifdef ASSERT
2755       assert(rtype == type, "CAS must return the expected type");
2756       assert(sig->count() == 4, "CAS has 4 arguments");
2757       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2758       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2759 #endif // ASSERT
2760         break;
2761       }
2762       default:
2763         ShouldNotReachHere();
2764     }
2765   }
2766 #endif //PRODUCT
2767 
2768   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2769 
2770   // Get arguments:
2771   Node* receiver = NULL;
2772   Node* base     = NULL;
2773   Node* offset   = NULL;
2774   Node* oldval   = NULL;
2775   Node* newval   = NULL;
2776   switch(kind) {
2777     case LS_cmp_swap:
2778     case LS_cmp_swap_weak:
2779     case LS_cmp_exchange: {
2780       const bool two_slot_type = type2size[type] == 2;
2781       receiver = argument(0);  // type: oop
2782       base     = argument(1);  // type: oop
2783       offset   = argument(2);  // type: long
2784       oldval   = argument(4);  // type: oop, int, or long
2785       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2786       break;
2787     }
2788     case LS_get_add:
2789     case LS_get_set: {
2790       receiver = argument(0);  // type: oop
2791       base     = argument(1);  // type: oop
2792       offset   = argument(2);  // type: long
2793       oldval   = NULL;
2794       newval   = argument(4);  // type: oop, int, or long
2795       break;
2796     }
2797     default:
2798       ShouldNotReachHere();
2799   }
2800 
2801   // Null check receiver.
2802   receiver = null_check(receiver);
2803   if (stopped()) {
2804     return true;
2805   }
2806 
2807   // Build field offset expression.
2808   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2809   // to be plain byte offsets, which are also the same as those accepted
2810   // by oopDesc::field_base.
2811   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2812   // 32-bit machines ignore the high half of long offsets
2813   offset = ConvL2X(offset);
2814   Node* adr = make_unsafe_address(base, offset);
2815   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2816 
2817   // For CAS, unlike inline_unsafe_access, there seems no point in
2818   // trying to refine types. Just use the coarse types here.
2819   const Type *value_type = Type::get_const_basic_type(type);
2820   Compile::AliasType* alias_type = C->alias_type(adr_type);
2821   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2822 
2823   switch (kind) {
2824     case LS_get_set:
2825     case LS_cmp_exchange: {
2826       if (type == T_OBJECT) {
2827         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2828         if (tjp != NULL) {
2829           value_type = tjp;
2830         }
2831       }
2832       break;
2833     }
2834     case LS_cmp_swap:
2835     case LS_cmp_swap_weak:
2836     case LS_get_add:
2837       break;
2838     default:
2839       ShouldNotReachHere();
2840   }
2841 
2842   int alias_idx = C->get_alias_index(adr_type);
2843 
2844   // Memory-model-wise, a LoadStore acts like a little synchronized
2845   // block, so needs barriers on each side.  These don't translate
2846   // into actual barriers on most machines, but we still need rest of
2847   // compiler to respect ordering.
2848 
2849   switch (access_kind) {
2850     case Relaxed:
2851     case Acquire:
2852       break;
2853     case Release:
2854     case Volatile:
2855       insert_mem_bar(Op_MemBarRelease);
2856       break;
2857     default:
2858       ShouldNotReachHere();
2859   }
2860   insert_mem_bar(Op_MemBarCPUOrder);
2861 
2862   // Figure out the memory ordering.
2863   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2864 
2865   // 4984716: MemBars must be inserted before this
2866   //          memory node in order to avoid a false
2867   //          dependency which will confuse the scheduler.
2868   Node *mem = memory(alias_idx);
2869 
2870   // For now, we handle only those cases that actually exist: ints,
2871   // longs, and Object. Adding others should be straightforward.
2872   Node* load_store = NULL;
2873   switch(type) {
2874   case T_INT:
2875     switch(kind) {
2876       case LS_get_add:
2877         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2878         break;
2879       case LS_get_set:
2880         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2881         break;
2882       case LS_cmp_swap_weak:
2883         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2884         break;
2885       case LS_cmp_swap:
2886         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2887         break;
2888       case LS_cmp_exchange:
2889         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2890         break;
2891       default:
2892         ShouldNotReachHere();
2893     }
2894     break;
2895   case T_LONG:
2896     switch(kind) {
2897       case LS_get_add:
2898         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2899         break;
2900       case LS_get_set:
2901         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2902         break;
2903       case LS_cmp_swap_weak:
2904         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2905         break;
2906       case LS_cmp_swap:
2907         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2908         break;
2909       case LS_cmp_exchange:
2910         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2911         break;
2912       default:
2913         ShouldNotReachHere();
2914     }
2915     break;
2916   case T_OBJECT:
2917     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2918     // could be delayed during Parse (for example, in adjust_map_after_if()).
2919     // Execute transformation here to avoid barrier generation in such case.
2920     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2921       newval = _gvn.makecon(TypePtr::NULL_PTR);
2922 
2923     // Reference stores need a store barrier.
2924     switch(kind) {
2925       case LS_get_set: {
2926         // If pre-barrier must execute before the oop store, old value will require do_load here.
2927         if (!can_move_pre_barrier()) {
2928           pre_barrier(true /* do_load*/,
2929                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2930                       NULL /* pre_val*/,
2931                       T_OBJECT);
2932         } // Else move pre_barrier to use load_store value, see below.
2933         break;
2934       }
2935       case LS_cmp_swap_weak:
2936       case LS_cmp_swap:
2937       case LS_cmp_exchange: {
2938         // Same as for newval above:
2939         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2940           oldval = _gvn.makecon(TypePtr::NULL_PTR);
2941         }
2942         // The only known value which might get overwritten is oldval.
2943         pre_barrier(false /* do_load */,
2944                     control(), NULL, NULL, max_juint, NULL, NULL,
2945                     oldval /* pre_val */,
2946                     T_OBJECT);
2947         break;
2948       }
2949       default:
2950         ShouldNotReachHere();
2951     }
2952 
2953 #ifdef _LP64
2954     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2955       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2956 
2957       switch(kind) {
2958         case LS_get_set:
2959           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2960           break;
2961         case LS_cmp_swap_weak: {
2962           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2963           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2964           break;
2965         }
2966         case LS_cmp_swap: {
2967           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2968           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2969           break;
2970         }
2971         case LS_cmp_exchange: {
2972           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2973           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2974           break;
2975         }
2976         default:
2977           ShouldNotReachHere();
2978       }
2979     } else
2980 #endif
2981     switch (kind) {
2982       case LS_get_set:
2983         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2984         break;
2985       case LS_cmp_swap_weak:
2986         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2987         break;
2988       case LS_cmp_swap:
2989         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2990         break;
2991       case LS_cmp_exchange:
2992         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
2993         break;
2994       default:
2995         ShouldNotReachHere();
2996     }
2997 
2998     // Emit the post barrier only when the actual store happened. This makes sense
2999     // to check only for LS_cmp_* that can fail to set the value.
3000     // LS_cmp_exchange does not produce any branches by default, so there is no
3001     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3002     // CompareAndExchange and move branches here, it would make sense to conditionalize
3003     // post_barriers for LS_cmp_exchange as well.
3004     //
3005     // CAS success path is marked more likely since we anticipate this is a performance
3006     // critical path, while CAS failure path can use the penalty for going through unlikely
3007     // path as backoff. Which is still better than doing a store barrier there.
3008     switch (kind) {
3009       case LS_get_set:
3010       case LS_cmp_exchange: {
3011         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3012         break;
3013       }
3014       case LS_cmp_swap_weak:
3015       case LS_cmp_swap: {
3016         IdealKit ideal(this);
3017         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3018           sync_kit(ideal);
3019           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3020           ideal.sync_kit(this);
3021         } ideal.end_if();
3022         final_sync(ideal);
3023         break;
3024       }
3025       default:
3026         ShouldNotReachHere();
3027     }
3028     break;
3029   default:
3030     fatal("unexpected type %d: %s", type, type2name(type));
3031     break;
3032   }
3033 
3034   // SCMemProjNodes represent the memory state of a LoadStore. Their
3035   // main role is to prevent LoadStore nodes from being optimized away
3036   // when their results aren't used.
3037   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3038   set_memory(proj, alias_idx);
3039 
3040   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3041 #ifdef _LP64
3042     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3043       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3044     }
3045 #endif
3046     if (can_move_pre_barrier()) {
3047       // Don't need to load pre_val. The old value is returned by load_store.
3048       // The pre_barrier can execute after the xchg as long as no safepoint
3049       // gets inserted between them.
3050       pre_barrier(false /* do_load */,
3051                   control(), NULL, NULL, max_juint, NULL, NULL,
3052                   load_store /* pre_val */,
3053                   T_OBJECT);
3054     }
3055   }
3056 
3057   // Add the trailing membar surrounding the access
3058   insert_mem_bar(Op_MemBarCPUOrder);
3059 
3060   switch (access_kind) {
3061     case Relaxed:
3062     case Release:
3063       break; // do nothing
3064     case Acquire:
3065     case Volatile:
3066       insert_mem_bar(Op_MemBarAcquire);
3067       break;
3068     default:
3069       ShouldNotReachHere();
3070   }
3071 
3072   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3073   set_result(load_store);
3074   return true;
3075 }
3076 
3077 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3078   MemNode::MemOrd mo = MemNode::unset;
3079   switch(kind) {
3080     case Opaque:
3081     case Relaxed:  mo = MemNode::unordered; break;
3082     case Acquire:  mo = MemNode::acquire;   break;
3083     case Release:  mo = MemNode::release;   break;
3084     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3085     default:
3086       ShouldNotReachHere();
3087   }
3088   guarantee(mo != MemNode::unset, "Should select memory ordering");
3089   return mo;
3090 }
3091 
3092 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3093   MemNode::MemOrd mo = MemNode::unset;
3094   switch(kind) {
3095     case Opaque:
3096     case Relaxed:  mo = MemNode::unordered; break;
3097     case Acquire:  mo = MemNode::acquire;   break;
3098     case Release:  mo = MemNode::release;   break;
3099     case Volatile: mo = MemNode::seqcst;    break;
3100     default:
3101       ShouldNotReachHere();
3102   }
3103   guarantee(mo != MemNode::unset, "Should select memory ordering");
3104   return mo;
3105 }
3106 
3107 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3108   // Regardless of form, don't allow previous ld/st to move down,
3109   // then issue acquire, release, or volatile mem_bar.
3110   insert_mem_bar(Op_MemBarCPUOrder);
3111   switch(id) {
3112     case vmIntrinsics::_loadFence:
3113       insert_mem_bar(Op_LoadFence);
3114       return true;
3115     case vmIntrinsics::_storeFence:
3116       insert_mem_bar(Op_StoreFence);
3117       return true;
3118     case vmIntrinsics::_fullFence:
3119       insert_mem_bar(Op_MemBarVolatile);
3120       return true;
3121     default:
3122       fatal_unexpected_iid(id);
3123       return false;
3124   }
3125 }
3126 
3127 bool LibraryCallKit::inline_onspinwait() {
3128   insert_mem_bar(Op_OnSpinWait);
3129   return true;
3130 }
3131 
3132 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3133   if (!kls->is_Con()) {
3134     return true;
3135   }
3136   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3137   if (klsptr == NULL) {
3138     return true;
3139   }
3140   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3141   // don't need a guard for a klass that is already initialized
3142   return !ik->is_initialized();
3143 }
3144 
3145 Node* LibraryCallKit::make_init_guard(Node* kls) {
3146   if (!klass_needs_init_guard(kls))  return NULL;
3147 
3148   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3149   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3150   // can generate code to load it as unsigned byte.
3151   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3152   Node* bits = intcon(InstanceKlass::fully_initialized);
3153 
3154   // The test is non-zero if we need to take a slow path.
3155   return _gvn.transform(new SubINode(inst, bits));
3156 
3157 }
3158 
3159 //----------------------------inline_unsafe_allocate---------------------------
3160 // public native Object Unsafe.allocateInstance0(Class<?> cls) throws InstantiationException;
3161 bool LibraryCallKit::inline_unsafe_allocate() {
3162   null_check_receiver();  // null-check, then ignore
3163   Node* cls = null_check(argument(1));
3164   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3165   Node* test = make_init_guard(kls);
3166   Node* obj = new_instance(kls, test);
3167   set_result(obj);
3168   return true;
3169 }
3170 
3171 //------------------------inline_native_time_funcs--------------
3172 // inline code for System.currentTimeMillis() and System.nanoTime()
3173 // these have the same type and signature
3174 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3175   const TypeFunc* tf = OptoRuntime::void_long_Type();
3176   const TypePtr* no_memory_effects = NULL;
3177   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3178   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3179 #ifdef ASSERT
3180   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3181   assert(value_top == top(), "second value must be top");
3182 #endif
3183   set_result(value);
3184   return true;
3185 }
3186 
3187 //------------------------inline_native_currentThread------------------
3188 bool LibraryCallKit::inline_native_currentThread() {
3189   Node* junk = NULL;
3190   set_result(generate_current_thread(junk));
3191   return true;
3192 }
3193 
3194 //------------------------inline_native_isInterrupted------------------
3195 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3196 bool LibraryCallKit::inline_native_isInterrupted() {
3197   // Add a fast path to t.isInterrupted(clear_int):
3198   //   (t == Thread.current() &&
3199   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3200   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3201   // So, in the common case that the interrupt bit is false,
3202   // we avoid making a call into the VM.  Even if the interrupt bit
3203   // is true, if the clear_int argument is false, we avoid the VM call.
3204   // However, if the receiver is not currentThread, we must call the VM,
3205   // because there must be some locking done around the operation.
3206 
3207   // We only go to the fast case code if we pass two guards.
3208   // Paths which do not pass are accumulated in the slow_region.
3209 
3210   enum {
3211     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3212     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3213     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3214     PATH_LIMIT
3215   };
3216 
3217   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3218   // out of the function.
3219   insert_mem_bar(Op_MemBarCPUOrder);
3220 
3221   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3222   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3223 
3224   RegionNode* slow_region = new RegionNode(1);
3225   record_for_igvn(slow_region);
3226 
3227   // (a) Receiving thread must be the current thread.
3228   Node* rec_thr = argument(0);
3229   Node* tls_ptr = NULL;
3230   Node* cur_thr = generate_current_thread(tls_ptr);
3231   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3232   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3233 
3234   generate_slow_guard(bol_thr, slow_region);
3235 
3236   // (b) Interrupt bit on TLS must be false.
3237   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3238   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3239   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3240 
3241   // Set the control input on the field _interrupted read to prevent it floating up.
3242   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3243   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3244   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3245 
3246   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3247 
3248   // First fast path:  if (!TLS._interrupted) return false;
3249   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3250   result_rgn->init_req(no_int_result_path, false_bit);
3251   result_val->init_req(no_int_result_path, intcon(0));
3252 
3253   // drop through to next case
3254   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3255 
3256 #ifndef TARGET_OS_FAMILY_windows
3257   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3258   Node* clr_arg = argument(1);
3259   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3260   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3261   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3262 
3263   // Second fast path:  ... else if (!clear_int) return true;
3264   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3265   result_rgn->init_req(no_clear_result_path, false_arg);
3266   result_val->init_req(no_clear_result_path, intcon(1));
3267 
3268   // drop through to next case
3269   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3270 #else
3271   // To return true on Windows you must read the _interrupted field
3272   // and check the event state i.e. take the slow path.
3273 #endif // TARGET_OS_FAMILY_windows
3274 
3275   // (d) Otherwise, go to the slow path.
3276   slow_region->add_req(control());
3277   set_control( _gvn.transform(slow_region));
3278 
3279   if (stopped()) {
3280     // There is no slow path.
3281     result_rgn->init_req(slow_result_path, top());
3282     result_val->init_req(slow_result_path, top());
3283   } else {
3284     // non-virtual because it is a private non-static
3285     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3286 
3287     Node* slow_val = set_results_for_java_call(slow_call);
3288     // this->control() comes from set_results_for_java_call
3289 
3290     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3291     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3292 
3293     // These two phis are pre-filled with copies of of the fast IO and Memory
3294     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3295     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3296 
3297     result_rgn->init_req(slow_result_path, control());
3298     result_io ->init_req(slow_result_path, i_o());
3299     result_mem->init_req(slow_result_path, reset_memory());
3300     result_val->init_req(slow_result_path, slow_val);
3301 
3302     set_all_memory(_gvn.transform(result_mem));
3303     set_i_o(       _gvn.transform(result_io));
3304   }
3305 
3306   C->set_has_split_ifs(true); // Has chance for split-if optimization
3307   set_result(result_rgn, result_val);
3308   return true;
3309 }
3310 
3311 //---------------------------load_mirror_from_klass----------------------------
3312 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3313 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3314   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3315   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3316 }
3317 
3318 //-----------------------load_klass_from_mirror_common-------------------------
3319 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3320 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3321 // and branch to the given path on the region.
3322 // If never_see_null, take an uncommon trap on null, so we can optimistically
3323 // compile for the non-null case.
3324 // If the region is NULL, force never_see_null = true.
3325 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3326                                                     bool never_see_null,
3327                                                     RegionNode* region,
3328                                                     int null_path,
3329                                                     int offset) {
3330   if (region == NULL)  never_see_null = true;
3331   Node* p = basic_plus_adr(mirror, offset);
3332   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3333   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3334   Node* null_ctl = top();
3335   kls = null_check_oop(kls, &null_ctl, never_see_null);
3336   if (region != NULL) {
3337     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3338     region->init_req(null_path, null_ctl);
3339   } else {
3340     assert(null_ctl == top(), "no loose ends");
3341   }
3342   return kls;
3343 }
3344 
3345 //--------------------(inline_native_Class_query helpers)---------------------
3346 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3347 // Fall through if (mods & mask) == bits, take the guard otherwise.
3348 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3349   // Branch around if the given klass has the given modifier bit set.
3350   // Like generate_guard, adds a new path onto the region.
3351   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3352   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3353   Node* mask = intcon(modifier_mask);
3354   Node* bits = intcon(modifier_bits);
3355   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3356   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3357   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3358   return generate_fair_guard(bol, region);
3359 }
3360 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3361   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3362 }
3363 
3364 //-------------------------inline_native_Class_query-------------------
3365 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3366   const Type* return_type = TypeInt::BOOL;
3367   Node* prim_return_value = top();  // what happens if it's a primitive class?
3368   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3369   bool expect_prim = false;     // most of these guys expect to work on refs
3370 
3371   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3372 
3373   Node* mirror = argument(0);
3374   Node* obj    = top();
3375 
3376   switch (id) {
3377   case vmIntrinsics::_isInstance:
3378     // nothing is an instance of a primitive type
3379     prim_return_value = intcon(0);
3380     obj = argument(1);
3381     break;
3382   case vmIntrinsics::_getModifiers:
3383     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3384     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3385     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3386     break;
3387   case vmIntrinsics::_isInterface:
3388     prim_return_value = intcon(0);
3389     break;
3390   case vmIntrinsics::_isArray:
3391     prim_return_value = intcon(0);
3392     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3393     break;
3394   case vmIntrinsics::_isPrimitive:
3395     prim_return_value = intcon(1);
3396     expect_prim = true;  // obviously
3397     break;
3398   case vmIntrinsics::_getSuperclass:
3399     prim_return_value = null();
3400     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3401     break;
3402   case vmIntrinsics::_getClassAccessFlags:
3403     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3404     return_type = TypeInt::INT;  // not bool!  6297094
3405     break;
3406   default:
3407     fatal_unexpected_iid(id);
3408     break;
3409   }
3410 
3411   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3412   if (mirror_con == NULL)  return false;  // cannot happen?
3413 
3414 #ifndef PRODUCT
3415   if (C->print_intrinsics() || C->print_inlining()) {
3416     ciType* k = mirror_con->java_mirror_type();
3417     if (k) {
3418       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3419       k->print_name();
3420       tty->cr();
3421     }
3422   }
3423 #endif
3424 
3425   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3426   RegionNode* region = new RegionNode(PATH_LIMIT);
3427   record_for_igvn(region);
3428   PhiNode* phi = new PhiNode(region, return_type);
3429 
3430   // The mirror will never be null of Reflection.getClassAccessFlags, however
3431   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3432   // if it is. See bug 4774291.
3433 
3434   // For Reflection.getClassAccessFlags(), the null check occurs in
3435   // the wrong place; see inline_unsafe_access(), above, for a similar
3436   // situation.
3437   mirror = null_check(mirror);
3438   // If mirror or obj is dead, only null-path is taken.
3439   if (stopped())  return true;
3440 
3441   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3442 
3443   // Now load the mirror's klass metaobject, and null-check it.
3444   // Side-effects region with the control path if the klass is null.
3445   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3446   // If kls is null, we have a primitive mirror.
3447   phi->init_req(_prim_path, prim_return_value);
3448   if (stopped()) { set_result(region, phi); return true; }
3449   bool safe_for_replace = (region->in(_prim_path) == top());
3450 
3451   Node* p;  // handy temp
3452   Node* null_ctl;
3453 
3454   // Now that we have the non-null klass, we can perform the real query.
3455   // For constant classes, the query will constant-fold in LoadNode::Value.
3456   Node* query_value = top();
3457   switch (id) {
3458   case vmIntrinsics::_isInstance:
3459     // nothing is an instance of a primitive type
3460     query_value = gen_instanceof(obj, kls, safe_for_replace);
3461     break;
3462 
3463   case vmIntrinsics::_getModifiers:
3464     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3465     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3466     break;
3467 
3468   case vmIntrinsics::_isInterface:
3469     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3470     if (generate_interface_guard(kls, region) != NULL)
3471       // A guard was added.  If the guard is taken, it was an interface.
3472       phi->add_req(intcon(1));
3473     // If we fall through, it's a plain class.
3474     query_value = intcon(0);
3475     break;
3476 
3477   case vmIntrinsics::_isArray:
3478     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3479     if (generate_array_guard(kls, region) != NULL)
3480       // A guard was added.  If the guard is taken, it was an array.
3481       phi->add_req(intcon(1));
3482     // If we fall through, it's a plain class.
3483     query_value = intcon(0);
3484     break;
3485 
3486   case vmIntrinsics::_isPrimitive:
3487     query_value = intcon(0); // "normal" path produces false
3488     break;
3489 
3490   case vmIntrinsics::_getSuperclass:
3491     // The rules here are somewhat unfortunate, but we can still do better
3492     // with random logic than with a JNI call.
3493     // Interfaces store null or Object as _super, but must report null.
3494     // Arrays store an intermediate super as _super, but must report Object.
3495     // Other types can report the actual _super.
3496     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3497     if (generate_interface_guard(kls, region) != NULL)
3498       // A guard was added.  If the guard is taken, it was an interface.
3499       phi->add_req(null());
3500     if (generate_array_guard(kls, region) != NULL)
3501       // A guard was added.  If the guard is taken, it was an array.
3502       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3503     // If we fall through, it's a plain class.  Get its _super.
3504     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3505     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3506     null_ctl = top();
3507     kls = null_check_oop(kls, &null_ctl);
3508     if (null_ctl != top()) {
3509       // If the guard is taken, Object.superClass is null (both klass and mirror).
3510       region->add_req(null_ctl);
3511       phi   ->add_req(null());
3512     }
3513     if (!stopped()) {
3514       query_value = load_mirror_from_klass(kls);
3515     }
3516     break;
3517 
3518   case vmIntrinsics::_getClassAccessFlags:
3519     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3520     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3521     break;
3522 
3523   default:
3524     fatal_unexpected_iid(id);
3525     break;
3526   }
3527 
3528   // Fall-through is the normal case of a query to a real class.
3529   phi->init_req(1, query_value);
3530   region->init_req(1, control());
3531 
3532   C->set_has_split_ifs(true); // Has chance for split-if optimization
3533   set_result(region, phi);
3534   return true;
3535 }
3536 
3537 //-------------------------inline_Class_cast-------------------
3538 bool LibraryCallKit::inline_Class_cast() {
3539   Node* mirror = argument(0); // Class
3540   Node* obj    = argument(1);
3541   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3542   if (mirror_con == NULL) {
3543     return false;  // dead path (mirror->is_top()).
3544   }
3545   if (obj == NULL || obj->is_top()) {
3546     return false;  // dead path
3547   }
3548   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3549 
3550   // First, see if Class.cast() can be folded statically.
3551   // java_mirror_type() returns non-null for compile-time Class constants.
3552   ciType* tm = mirror_con->java_mirror_type();
3553   if (tm != NULL && tm->is_klass() &&
3554       tp != NULL && tp->klass() != NULL) {
3555     if (!tp->klass()->is_loaded()) {
3556       // Don't use intrinsic when class is not loaded.
3557       return false;
3558     } else {
3559       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3560       if (static_res == Compile::SSC_always_true) {
3561         // isInstance() is true - fold the code.
3562         set_result(obj);
3563         return true;
3564       } else if (static_res == Compile::SSC_always_false) {
3565         // Don't use intrinsic, have to throw ClassCastException.
3566         // If the reference is null, the non-intrinsic bytecode will
3567         // be optimized appropriately.
3568         return false;
3569       }
3570     }
3571   }
3572 
3573   // Bailout intrinsic and do normal inlining if exception path is frequent.
3574   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3575     return false;
3576   }
3577 
3578   // Generate dynamic checks.
3579   // Class.cast() is java implementation of _checkcast bytecode.
3580   // Do checkcast (Parse::do_checkcast()) optimizations here.
3581 
3582   mirror = null_check(mirror);
3583   // If mirror is dead, only null-path is taken.
3584   if (stopped()) {
3585     return true;
3586   }
3587 
3588   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3589   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3590   RegionNode* region = new RegionNode(PATH_LIMIT);
3591   record_for_igvn(region);
3592 
3593   // Now load the mirror's klass metaobject, and null-check it.
3594   // If kls is null, we have a primitive mirror and
3595   // nothing is an instance of a primitive type.
3596   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3597 
3598   Node* res = top();
3599   if (!stopped()) {
3600     Node* bad_type_ctrl = top();
3601     // Do checkcast optimizations.
3602     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3603     region->init_req(_bad_type_path, bad_type_ctrl);
3604   }
3605   if (region->in(_prim_path) != top() ||
3606       region->in(_bad_type_path) != top()) {
3607     // Let Interpreter throw ClassCastException.
3608     PreserveJVMState pjvms(this);
3609     set_control(_gvn.transform(region));
3610     uncommon_trap(Deoptimization::Reason_intrinsic,
3611                   Deoptimization::Action_maybe_recompile);
3612   }
3613   if (!stopped()) {
3614     set_result(res);
3615   }
3616   return true;
3617 }
3618 
3619 
3620 //--------------------------inline_native_subtype_check------------------------
3621 // This intrinsic takes the JNI calls out of the heart of
3622 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3623 bool LibraryCallKit::inline_native_subtype_check() {
3624   // Pull both arguments off the stack.
3625   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3626   args[0] = argument(0);
3627   args[1] = argument(1);
3628   Node* klasses[2];             // corresponding Klasses: superk, subk
3629   klasses[0] = klasses[1] = top();
3630 
3631   enum {
3632     // A full decision tree on {superc is prim, subc is prim}:
3633     _prim_0_path = 1,           // {P,N} => false
3634                                 // {P,P} & superc!=subc => false
3635     _prim_same_path,            // {P,P} & superc==subc => true
3636     _prim_1_path,               // {N,P} => false
3637     _ref_subtype_path,          // {N,N} & subtype check wins => true
3638     _both_ref_path,             // {N,N} & subtype check loses => false
3639     PATH_LIMIT
3640   };
3641 
3642   RegionNode* region = new RegionNode(PATH_LIMIT);
3643   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3644   record_for_igvn(region);
3645 
3646   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3647   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3648   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3649 
3650   // First null-check both mirrors and load each mirror's klass metaobject.
3651   int which_arg;
3652   for (which_arg = 0; which_arg <= 1; which_arg++) {
3653     Node* arg = args[which_arg];
3654     arg = null_check(arg);
3655     if (stopped())  break;
3656     args[which_arg] = arg;
3657 
3658     Node* p = basic_plus_adr(arg, class_klass_offset);
3659     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3660     klasses[which_arg] = _gvn.transform(kls);
3661   }
3662 
3663   // Having loaded both klasses, test each for null.
3664   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3665   for (which_arg = 0; which_arg <= 1; which_arg++) {
3666     Node* kls = klasses[which_arg];
3667     Node* null_ctl = top();
3668     kls = null_check_oop(kls, &null_ctl, never_see_null);
3669     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3670     region->init_req(prim_path, null_ctl);
3671     if (stopped())  break;
3672     klasses[which_arg] = kls;
3673   }
3674 
3675   if (!stopped()) {
3676     // now we have two reference types, in klasses[0..1]
3677     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3678     Node* superk = klasses[0];  // the receiver
3679     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3680     // now we have a successful reference subtype check
3681     region->set_req(_ref_subtype_path, control());
3682   }
3683 
3684   // If both operands are primitive (both klasses null), then
3685   // we must return true when they are identical primitives.
3686   // It is convenient to test this after the first null klass check.
3687   set_control(region->in(_prim_0_path)); // go back to first null check
3688   if (!stopped()) {
3689     // Since superc is primitive, make a guard for the superc==subc case.
3690     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3691     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3692     generate_guard(bol_eq, region, PROB_FAIR);
3693     if (region->req() == PATH_LIMIT+1) {
3694       // A guard was added.  If the added guard is taken, superc==subc.
3695       region->swap_edges(PATH_LIMIT, _prim_same_path);
3696       region->del_req(PATH_LIMIT);
3697     }
3698     region->set_req(_prim_0_path, control()); // Not equal after all.
3699   }
3700 
3701   // these are the only paths that produce 'true':
3702   phi->set_req(_prim_same_path,   intcon(1));
3703   phi->set_req(_ref_subtype_path, intcon(1));
3704 
3705   // pull together the cases:
3706   assert(region->req() == PATH_LIMIT, "sane region");
3707   for (uint i = 1; i < region->req(); i++) {
3708     Node* ctl = region->in(i);
3709     if (ctl == NULL || ctl == top()) {
3710       region->set_req(i, top());
3711       phi   ->set_req(i, top());
3712     } else if (phi->in(i) == NULL) {
3713       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3714     }
3715   }
3716 
3717   set_control(_gvn.transform(region));
3718   set_result(_gvn.transform(phi));
3719   return true;
3720 }
3721 
3722 //---------------------generate_array_guard_common------------------------
3723 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3724                                                   bool obj_array, bool not_array) {
3725 
3726   if (stopped()) {
3727     return NULL;
3728   }
3729 
3730   // If obj_array/non_array==false/false:
3731   // Branch around if the given klass is in fact an array (either obj or prim).
3732   // If obj_array/non_array==false/true:
3733   // Branch around if the given klass is not an array klass of any kind.
3734   // If obj_array/non_array==true/true:
3735   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3736   // If obj_array/non_array==true/false:
3737   // Branch around if the kls is an oop array (Object[] or subtype)
3738   //
3739   // Like generate_guard, adds a new path onto the region.
3740   jint  layout_con = 0;
3741   Node* layout_val = get_layout_helper(kls, layout_con);
3742   if (layout_val == NULL) {
3743     bool query = (obj_array
3744                   ? Klass::layout_helper_is_objArray(layout_con)
3745                   : Klass::layout_helper_is_array(layout_con));
3746     if (query == not_array) {
3747       return NULL;                       // never a branch
3748     } else {                             // always a branch
3749       Node* always_branch = control();
3750       if (region != NULL)
3751         region->add_req(always_branch);
3752       set_control(top());
3753       return always_branch;
3754     }
3755   }
3756   // Now test the correct condition.
3757   jint  nval = (obj_array
3758                 ? ((jint)Klass::_lh_array_tag_type_value
3759                    <<    Klass::_lh_array_tag_shift)
3760                 : Klass::_lh_neutral_value);
3761   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3762   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3763   // invert the test if we are looking for a non-array
3764   if (not_array)  btest = BoolTest(btest).negate();
3765   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3766   return generate_fair_guard(bol, region);
3767 }
3768 
3769 
3770 //-----------------------inline_native_newArray--------------------------
3771 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3772 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3773 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3774   Node* mirror;
3775   Node* count_val;
3776   if (uninitialized) {
3777     mirror    = argument(1);
3778     count_val = argument(2);
3779   } else {
3780     mirror    = argument(0);
3781     count_val = argument(1);
3782   }
3783 
3784   mirror = null_check(mirror);
3785   // If mirror or obj is dead, only null-path is taken.
3786   if (stopped())  return true;
3787 
3788   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3789   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3790   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3791   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3792   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3793 
3794   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3795   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3796                                                   result_reg, _slow_path);
3797   Node* normal_ctl   = control();
3798   Node* no_array_ctl = result_reg->in(_slow_path);
3799 
3800   // Generate code for the slow case.  We make a call to newArray().
3801   set_control(no_array_ctl);
3802   if (!stopped()) {
3803     // Either the input type is void.class, or else the
3804     // array klass has not yet been cached.  Either the
3805     // ensuing call will throw an exception, or else it
3806     // will cache the array klass for next time.
3807     PreserveJVMState pjvms(this);
3808     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3809     Node* slow_result = set_results_for_java_call(slow_call);
3810     // this->control() comes from set_results_for_java_call
3811     result_reg->set_req(_slow_path, control());
3812     result_val->set_req(_slow_path, slow_result);
3813     result_io ->set_req(_slow_path, i_o());
3814     result_mem->set_req(_slow_path, reset_memory());
3815   }
3816 
3817   set_control(normal_ctl);
3818   if (!stopped()) {
3819     // Normal case:  The array type has been cached in the java.lang.Class.
3820     // The following call works fine even if the array type is polymorphic.
3821     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3822     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3823     result_reg->init_req(_normal_path, control());
3824     result_val->init_req(_normal_path, obj);
3825     result_io ->init_req(_normal_path, i_o());
3826     result_mem->init_req(_normal_path, reset_memory());
3827 
3828     if (uninitialized) {
3829       // Mark the allocation so that zeroing is skipped
3830       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3831       alloc->maybe_set_complete(&_gvn);
3832     }
3833   }
3834 
3835   // Return the combined state.
3836   set_i_o(        _gvn.transform(result_io)  );
3837   set_all_memory( _gvn.transform(result_mem));
3838 
3839   C->set_has_split_ifs(true); // Has chance for split-if optimization
3840   set_result(result_reg, result_val);
3841   return true;
3842 }
3843 
3844 //----------------------inline_native_getLength--------------------------
3845 // public static native int java.lang.reflect.Array.getLength(Object array);
3846 bool LibraryCallKit::inline_native_getLength() {
3847   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3848 
3849   Node* array = null_check(argument(0));
3850   // If array is dead, only null-path is taken.
3851   if (stopped())  return true;
3852 
3853   // Deoptimize if it is a non-array.
3854   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3855 
3856   if (non_array != NULL) {
3857     PreserveJVMState pjvms(this);
3858     set_control(non_array);
3859     uncommon_trap(Deoptimization::Reason_intrinsic,
3860                   Deoptimization::Action_maybe_recompile);
3861   }
3862 
3863   // If control is dead, only non-array-path is taken.
3864   if (stopped())  return true;
3865 
3866   // The works fine even if the array type is polymorphic.
3867   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3868   Node* result = load_array_length(array);
3869 
3870   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3871   set_result(result);
3872   return true;
3873 }
3874 
3875 //------------------------inline_array_copyOf----------------------------
3876 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3877 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3878 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3879   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3880 
3881   // Get the arguments.
3882   Node* original          = argument(0);
3883   Node* start             = is_copyOfRange? argument(1): intcon(0);
3884   Node* end               = is_copyOfRange? argument(2): argument(1);
3885   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3886 
3887   Node* newcopy = NULL;
3888 
3889   // Set the original stack and the reexecute bit for the interpreter to reexecute
3890   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3891   { PreserveReexecuteState preexecs(this);
3892     jvms()->set_should_reexecute(true);
3893 
3894     array_type_mirror = null_check(array_type_mirror);
3895     original          = null_check(original);
3896 
3897     // Check if a null path was taken unconditionally.
3898     if (stopped())  return true;
3899 
3900     Node* orig_length = load_array_length(original);
3901 
3902     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3903     klass_node = null_check(klass_node);
3904 
3905     RegionNode* bailout = new RegionNode(1);
3906     record_for_igvn(bailout);
3907 
3908     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3909     // Bail out if that is so.
3910     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3911     if (not_objArray != NULL) {
3912       // Improve the klass node's type from the new optimistic assumption:
3913       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3914       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3915       Node* cast = new CastPPNode(klass_node, akls);
3916       cast->init_req(0, control());
3917       klass_node = _gvn.transform(cast);
3918     }
3919 
3920     // Bail out if either start or end is negative.
3921     generate_negative_guard(start, bailout, &start);
3922     generate_negative_guard(end,   bailout, &end);
3923 
3924     Node* length = end;
3925     if (_gvn.type(start) != TypeInt::ZERO) {
3926       length = _gvn.transform(new SubINode(end, start));
3927     }
3928 
3929     // Bail out if length is negative.
3930     // Without this the new_array would throw
3931     // NegativeArraySizeException but IllegalArgumentException is what
3932     // should be thrown
3933     generate_negative_guard(length, bailout, &length);
3934 
3935     if (bailout->req() > 1) {
3936       PreserveJVMState pjvms(this);
3937       set_control(_gvn.transform(bailout));
3938       uncommon_trap(Deoptimization::Reason_intrinsic,
3939                     Deoptimization::Action_maybe_recompile);
3940     }
3941 
3942     if (!stopped()) {
3943       // How many elements will we copy from the original?
3944       // The answer is MinI(orig_length - start, length).
3945       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3946       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3947 
3948       // Generate a direct call to the right arraycopy function(s).
3949       // We know the copy is disjoint but we might not know if the
3950       // oop stores need checking.
3951       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3952       // This will fail a store-check if x contains any non-nulls.
3953 
3954       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3955       // loads/stores but it is legal only if we're sure the
3956       // Arrays.copyOf would succeed. So we need all input arguments
3957       // to the copyOf to be validated, including that the copy to the
3958       // new array won't trigger an ArrayStoreException. That subtype
3959       // check can be optimized if we know something on the type of
3960       // the input array from type speculation.
3961       if (_gvn.type(klass_node)->singleton()) {
3962         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3963         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3964 
3965         int test = C->static_subtype_check(superk, subk);
3966         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3967           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3968           if (t_original->speculative_type() != NULL) {
3969             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3970           }
3971         }
3972       }
3973 
3974       bool validated = false;
3975       // Reason_class_check rather than Reason_intrinsic because we
3976       // want to intrinsify even if this traps.
3977       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3978         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3979                                                    klass_node);
3980 
3981         if (not_subtype_ctrl != top()) {
3982           PreserveJVMState pjvms(this);
3983           set_control(not_subtype_ctrl);
3984           uncommon_trap(Deoptimization::Reason_class_check,
3985                         Deoptimization::Action_make_not_entrant);
3986           assert(stopped(), "Should be stopped");
3987         }
3988         validated = true;
3989       }
3990 
3991       if (!stopped()) {
3992         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3993 
3994         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3995                                                 load_object_klass(original), klass_node);
3996         if (!is_copyOfRange) {
3997           ac->set_copyof(validated);
3998         } else {
3999           ac->set_copyofrange(validated);
4000         }
4001         Node* n = _gvn.transform(ac);
4002         if (n == ac) {
4003           ac->connect_outputs(this);
4004         } else {
4005           assert(validated, "shouldn't transform if all arguments not validated");
4006           set_all_memory(n);
4007         }
4008       }
4009     }
4010   } // original reexecute is set back here
4011 
4012   C->set_has_split_ifs(true); // Has chance for split-if optimization
4013   if (!stopped()) {
4014     set_result(newcopy);
4015   }
4016   return true;
4017 }
4018 
4019 
4020 //----------------------generate_virtual_guard---------------------------
4021 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4022 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4023                                              RegionNode* slow_region) {
4024   ciMethod* method = callee();
4025   int vtable_index = method->vtable_index();
4026   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4027          "bad index %d", vtable_index);
4028   // Get the Method* out of the appropriate vtable entry.
4029   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4030                      vtable_index*vtableEntry::size_in_bytes() +
4031                      vtableEntry::method_offset_in_bytes();
4032   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4033   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4034 
4035   // Compare the target method with the expected method (e.g., Object.hashCode).
4036   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4037 
4038   Node* native_call = makecon(native_call_addr);
4039   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4040   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4041 
4042   return generate_slow_guard(test_native, slow_region);
4043 }
4044 
4045 //-----------------------generate_method_call----------------------------
4046 // Use generate_method_call to make a slow-call to the real
4047 // method if the fast path fails.  An alternative would be to
4048 // use a stub like OptoRuntime::slow_arraycopy_Java.
4049 // This only works for expanding the current library call,
4050 // not another intrinsic.  (E.g., don't use this for making an
4051 // arraycopy call inside of the copyOf intrinsic.)
4052 CallJavaNode*
4053 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4054   // When compiling the intrinsic method itself, do not use this technique.
4055   guarantee(callee() != C->method(), "cannot make slow-call to self");
4056 
4057   ciMethod* method = callee();
4058   // ensure the JVMS we have will be correct for this call
4059   guarantee(method_id == method->intrinsic_id(), "must match");
4060 
4061   const TypeFunc* tf = TypeFunc::make(method);
4062   CallJavaNode* slow_call;
4063   if (is_static) {
4064     assert(!is_virtual, "");
4065     slow_call = new CallStaticJavaNode(C, tf,
4066                            SharedRuntime::get_resolve_static_call_stub(),
4067                            method, bci());
4068   } else if (is_virtual) {
4069     null_check_receiver();
4070     int vtable_index = Method::invalid_vtable_index;
4071     if (UseInlineCaches) {
4072       // Suppress the vtable call
4073     } else {
4074       // hashCode and clone are not a miranda methods,
4075       // so the vtable index is fixed.
4076       // No need to use the linkResolver to get it.
4077        vtable_index = method->vtable_index();
4078        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4079               "bad index %d", vtable_index);
4080     }
4081     slow_call = new CallDynamicJavaNode(tf,
4082                           SharedRuntime::get_resolve_virtual_call_stub(),
4083                           method, vtable_index, bci());
4084   } else {  // neither virtual nor static:  opt_virtual
4085     null_check_receiver();
4086     slow_call = new CallStaticJavaNode(C, tf,
4087                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4088                                 method, bci());
4089     slow_call->set_optimized_virtual(true);
4090   }
4091   set_arguments_for_java_call(slow_call);
4092   set_edges_for_java_call(slow_call);
4093   return slow_call;
4094 }
4095 
4096 
4097 /**
4098  * Build special case code for calls to hashCode on an object. This call may
4099  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4100  * slightly different code.
4101  */
4102 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4103   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4104   assert(!(is_virtual && is_static), "either virtual, special, or static");
4105 
4106   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4107 
4108   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4109   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4110   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4111   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4112   Node* obj = NULL;
4113   if (!is_static) {
4114     // Check for hashing null object
4115     obj = null_check_receiver();
4116     if (stopped())  return true;        // unconditionally null
4117     result_reg->init_req(_null_path, top());
4118     result_val->init_req(_null_path, top());
4119   } else {
4120     // Do a null check, and return zero if null.
4121     // System.identityHashCode(null) == 0
4122     obj = argument(0);
4123     Node* null_ctl = top();
4124     obj = null_check_oop(obj, &null_ctl);
4125     result_reg->init_req(_null_path, null_ctl);
4126     result_val->init_req(_null_path, _gvn.intcon(0));
4127   }
4128 
4129   // Unconditionally null?  Then return right away.
4130   if (stopped()) {
4131     set_control( result_reg->in(_null_path));
4132     if (!stopped())
4133       set_result(result_val->in(_null_path));
4134     return true;
4135   }
4136 
4137   // We only go to the fast case code if we pass a number of guards.  The
4138   // paths which do not pass are accumulated in the slow_region.
4139   RegionNode* slow_region = new RegionNode(1);
4140   record_for_igvn(slow_region);
4141 
4142   // If this is a virtual call, we generate a funny guard.  We pull out
4143   // the vtable entry corresponding to hashCode() from the target object.
4144   // If the target method which we are calling happens to be the native
4145   // Object hashCode() method, we pass the guard.  We do not need this
4146   // guard for non-virtual calls -- the caller is known to be the native
4147   // Object hashCode().
4148   if (is_virtual) {
4149     // After null check, get the object's klass.
4150     Node* obj_klass = load_object_klass(obj);
4151     generate_virtual_guard(obj_klass, slow_region);
4152   }
4153 
4154   // Get the header out of the object, use LoadMarkNode when available
4155   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4156   // The control of the load must be NULL. Otherwise, the load can move before
4157   // the null check after castPP removal.
4158   Node* no_ctrl = NULL;
4159   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4160 
4161   // Test the header to see if it is unlocked.
4162   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4163   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4164   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4165   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4166   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4167 
4168   generate_slow_guard(test_unlocked, slow_region);
4169 
4170   // Get the hash value and check to see that it has been properly assigned.
4171   // We depend on hash_mask being at most 32 bits and avoid the use of
4172   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4173   // vm: see markOop.hpp.
4174   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4175   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4176   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4177   // This hack lets the hash bits live anywhere in the mark object now, as long
4178   // as the shift drops the relevant bits into the low 32 bits.  Note that
4179   // Java spec says that HashCode is an int so there's no point in capturing
4180   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4181   hshifted_header      = ConvX2I(hshifted_header);
4182   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4183 
4184   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4185   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4186   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4187 
4188   generate_slow_guard(test_assigned, slow_region);
4189 
4190   Node* init_mem = reset_memory();
4191   // fill in the rest of the null path:
4192   result_io ->init_req(_null_path, i_o());
4193   result_mem->init_req(_null_path, init_mem);
4194 
4195   result_val->init_req(_fast_path, hash_val);
4196   result_reg->init_req(_fast_path, control());
4197   result_io ->init_req(_fast_path, i_o());
4198   result_mem->init_req(_fast_path, init_mem);
4199 
4200   // Generate code for the slow case.  We make a call to hashCode().
4201   set_control(_gvn.transform(slow_region));
4202   if (!stopped()) {
4203     // No need for PreserveJVMState, because we're using up the present state.
4204     set_all_memory(init_mem);
4205     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4206     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4207     Node* slow_result = set_results_for_java_call(slow_call);
4208     // this->control() comes from set_results_for_java_call
4209     result_reg->init_req(_slow_path, control());
4210     result_val->init_req(_slow_path, slow_result);
4211     result_io  ->set_req(_slow_path, i_o());
4212     result_mem ->set_req(_slow_path, reset_memory());
4213   }
4214 
4215   // Return the combined state.
4216   set_i_o(        _gvn.transform(result_io)  );
4217   set_all_memory( _gvn.transform(result_mem));
4218 
4219   set_result(result_reg, result_val);
4220   return true;
4221 }
4222 
4223 //---------------------------inline_native_getClass----------------------------
4224 // public final native Class<?> java.lang.Object.getClass();
4225 //
4226 // Build special case code for calls to getClass on an object.
4227 bool LibraryCallKit::inline_native_getClass() {
4228   Node* obj = null_check_receiver();
4229   if (stopped())  return true;
4230   set_result(load_mirror_from_klass(load_object_klass(obj)));
4231   return true;
4232 }
4233 
4234 //-----------------inline_native_Reflection_getCallerClass---------------------
4235 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4236 //
4237 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4238 //
4239 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4240 // in that it must skip particular security frames and checks for
4241 // caller sensitive methods.
4242 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4243 #ifndef PRODUCT
4244   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4245     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4246   }
4247 #endif
4248 
4249   if (!jvms()->has_method()) {
4250 #ifndef PRODUCT
4251     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4252       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4253     }
4254 #endif
4255     return false;
4256   }
4257 
4258   // Walk back up the JVM state to find the caller at the required
4259   // depth.
4260   JVMState* caller_jvms = jvms();
4261 
4262   // Cf. JVM_GetCallerClass
4263   // NOTE: Start the loop at depth 1 because the current JVM state does
4264   // not include the Reflection.getCallerClass() frame.
4265   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4266     ciMethod* m = caller_jvms->method();
4267     switch (n) {
4268     case 0:
4269       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4270       break;
4271     case 1:
4272       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4273       if (!m->caller_sensitive()) {
4274 #ifndef PRODUCT
4275         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4276           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4277         }
4278 #endif
4279         return false;  // bail-out; let JVM_GetCallerClass do the work
4280       }
4281       break;
4282     default:
4283       if (!m->is_ignored_by_security_stack_walk()) {
4284         // We have reached the desired frame; return the holder class.
4285         // Acquire method holder as java.lang.Class and push as constant.
4286         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4287         ciInstance* caller_mirror = caller_klass->java_mirror();
4288         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4289 
4290 #ifndef PRODUCT
4291         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4292           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4293           tty->print_cr("  JVM state at this point:");
4294           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4295             ciMethod* m = jvms()->of_depth(i)->method();
4296             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4297           }
4298         }
4299 #endif
4300         return true;
4301       }
4302       break;
4303     }
4304   }
4305 
4306 #ifndef PRODUCT
4307   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4308     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4309     tty->print_cr("  JVM state at this point:");
4310     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4311       ciMethod* m = jvms()->of_depth(i)->method();
4312       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4313     }
4314   }
4315 #endif
4316 
4317   return false;  // bail-out; let JVM_GetCallerClass do the work
4318 }
4319 
4320 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4321   Node* arg = argument(0);
4322   Node* result = NULL;
4323 
4324   switch (id) {
4325   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4326   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4327   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4328   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4329 
4330   case vmIntrinsics::_doubleToLongBits: {
4331     // two paths (plus control) merge in a wood
4332     RegionNode *r = new RegionNode(3);
4333     Node *phi = new PhiNode(r, TypeLong::LONG);
4334 
4335     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4336     // Build the boolean node
4337     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4338 
4339     // Branch either way.
4340     // NaN case is less traveled, which makes all the difference.
4341     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4342     Node *opt_isnan = _gvn.transform(ifisnan);
4343     assert( opt_isnan->is_If(), "Expect an IfNode");
4344     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4345     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4346 
4347     set_control(iftrue);
4348 
4349     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4350     Node *slow_result = longcon(nan_bits); // return NaN
4351     phi->init_req(1, _gvn.transform( slow_result ));
4352     r->init_req(1, iftrue);
4353 
4354     // Else fall through
4355     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4356     set_control(iffalse);
4357 
4358     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4359     r->init_req(2, iffalse);
4360 
4361     // Post merge
4362     set_control(_gvn.transform(r));
4363     record_for_igvn(r);
4364 
4365     C->set_has_split_ifs(true); // Has chance for split-if optimization
4366     result = phi;
4367     assert(result->bottom_type()->isa_long(), "must be");
4368     break;
4369   }
4370 
4371   case vmIntrinsics::_floatToIntBits: {
4372     // two paths (plus control) merge in a wood
4373     RegionNode *r = new RegionNode(3);
4374     Node *phi = new PhiNode(r, TypeInt::INT);
4375 
4376     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4377     // Build the boolean node
4378     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4379 
4380     // Branch either way.
4381     // NaN case is less traveled, which makes all the difference.
4382     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4383     Node *opt_isnan = _gvn.transform(ifisnan);
4384     assert( opt_isnan->is_If(), "Expect an IfNode");
4385     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4386     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4387 
4388     set_control(iftrue);
4389 
4390     static const jint nan_bits = 0x7fc00000;
4391     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4392     phi->init_req(1, _gvn.transform( slow_result ));
4393     r->init_req(1, iftrue);
4394 
4395     // Else fall through
4396     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4397     set_control(iffalse);
4398 
4399     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4400     r->init_req(2, iffalse);
4401 
4402     // Post merge
4403     set_control(_gvn.transform(r));
4404     record_for_igvn(r);
4405 
4406     C->set_has_split_ifs(true); // Has chance for split-if optimization
4407     result = phi;
4408     assert(result->bottom_type()->isa_int(), "must be");
4409     break;
4410   }
4411 
4412   default:
4413     fatal_unexpected_iid(id);
4414     break;
4415   }
4416   set_result(_gvn.transform(result));
4417   return true;
4418 }
4419 
4420 //----------------------inline_unsafe_copyMemory-------------------------
4421 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4422 bool LibraryCallKit::inline_unsafe_copyMemory() {
4423   if (callee()->is_static())  return false;  // caller must have the capability!
4424   null_check_receiver();  // null-check receiver
4425   if (stopped())  return true;
4426 
4427   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4428 
4429   Node* src_ptr =         argument(1);   // type: oop
4430   Node* src_off = ConvL2X(argument(2));  // type: long
4431   Node* dst_ptr =         argument(4);   // type: oop
4432   Node* dst_off = ConvL2X(argument(5));  // type: long
4433   Node* size    = ConvL2X(argument(7));  // type: long
4434 
4435   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4436          "fieldOffset must be byte-scaled");
4437 
4438   Node* src = make_unsafe_address(src_ptr, src_off);
4439   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4440 
4441   // Conservatively insert a memory barrier on all memory slices.
4442   // Do not let writes of the copy source or destination float below the copy.
4443   insert_mem_bar(Op_MemBarCPUOrder);
4444 
4445   // Call it.  Note that the length argument is not scaled.
4446   make_runtime_call(RC_LEAF|RC_NO_FP,
4447                     OptoRuntime::fast_arraycopy_Type(),
4448                     StubRoutines::unsafe_arraycopy(),
4449                     "unsafe_arraycopy",
4450                     TypeRawPtr::BOTTOM,
4451                     src, dst, size XTOP);
4452 
4453   // Do not let reads of the copy destination float above the copy.
4454   insert_mem_bar(Op_MemBarCPUOrder);
4455 
4456   return true;
4457 }
4458 
4459 //------------------------clone_coping-----------------------------------
4460 // Helper function for inline_native_clone.
4461 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4462   assert(obj_size != NULL, "");
4463   Node* raw_obj = alloc_obj->in(1);
4464   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4465 
4466   AllocateNode* alloc = NULL;
4467   if (ReduceBulkZeroing) {
4468     // We will be completely responsible for initializing this object -
4469     // mark Initialize node as complete.
4470     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4471     // The object was just allocated - there should be no any stores!
4472     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4473     // Mark as complete_with_arraycopy so that on AllocateNode
4474     // expansion, we know this AllocateNode is initialized by an array
4475     // copy and a StoreStore barrier exists after the array copy.
4476     alloc->initialization()->set_complete_with_arraycopy();
4477   }
4478 
4479   // Copy the fastest available way.
4480   // TODO: generate fields copies for small objects instead.
4481   Node* src  = obj;
4482   Node* dest = alloc_obj;
4483   Node* size = _gvn.transform(obj_size);
4484 
4485   // Exclude the header but include array length to copy by 8 bytes words.
4486   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4487   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4488                             instanceOopDesc::base_offset_in_bytes();
4489   // base_off:
4490   // 8  - 32-bit VM
4491   // 12 - 64-bit VM, compressed klass
4492   // 16 - 64-bit VM, normal klass
4493   if (base_off % BytesPerLong != 0) {
4494     assert(UseCompressedClassPointers, "");
4495     if (is_array) {
4496       // Exclude length to copy by 8 bytes words.
4497       base_off += sizeof(int);
4498     } else {
4499       // Include klass to copy by 8 bytes words.
4500       base_off = instanceOopDesc::klass_offset_in_bytes();
4501     }
4502     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4503   }
4504   src  = basic_plus_adr(src,  base_off);
4505   dest = basic_plus_adr(dest, base_off);
4506 
4507   // Compute the length also, if needed:
4508   Node* countx = size;
4509   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4510   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4511 
4512   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4513 
4514   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4515   ac->set_clonebasic();
4516   Node* n = _gvn.transform(ac);
4517   if (n == ac) {
4518     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4519   } else {
4520     set_all_memory(n);
4521   }
4522 
4523   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4524   if (card_mark) {
4525     assert(!is_array, "");
4526     // Put in store barrier for any and all oops we are sticking
4527     // into this object.  (We could avoid this if we could prove
4528     // that the object type contains no oop fields at all.)
4529     Node* no_particular_value = NULL;
4530     Node* no_particular_field = NULL;
4531     int raw_adr_idx = Compile::AliasIdxRaw;
4532     post_barrier(control(),
4533                  memory(raw_adr_type),
4534                  alloc_obj,
4535                  no_particular_field,
4536                  raw_adr_idx,
4537                  no_particular_value,
4538                  T_OBJECT,
4539                  false);
4540   }
4541 
4542   // Do not let reads from the cloned object float above the arraycopy.
4543   if (alloc != NULL) {
4544     // Do not let stores that initialize this object be reordered with
4545     // a subsequent store that would make this object accessible by
4546     // other threads.
4547     // Record what AllocateNode this StoreStore protects so that
4548     // escape analysis can go from the MemBarStoreStoreNode to the
4549     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4550     // based on the escape status of the AllocateNode.
4551     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4552   } else {
4553     insert_mem_bar(Op_MemBarCPUOrder);
4554   }
4555 }
4556 
4557 //------------------------inline_native_clone----------------------------
4558 // protected native Object java.lang.Object.clone();
4559 //
4560 // Here are the simple edge cases:
4561 //  null receiver => normal trap
4562 //  virtual and clone was overridden => slow path to out-of-line clone
4563 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4564 //
4565 // The general case has two steps, allocation and copying.
4566 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4567 //
4568 // Copying also has two cases, oop arrays and everything else.
4569 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4570 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4571 //
4572 // These steps fold up nicely if and when the cloned object's klass
4573 // can be sharply typed as an object array, a type array, or an instance.
4574 //
4575 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4576   PhiNode* result_val;
4577 
4578   // Set the reexecute bit for the interpreter to reexecute
4579   // the bytecode that invokes Object.clone if deoptimization happens.
4580   { PreserveReexecuteState preexecs(this);
4581     jvms()->set_should_reexecute(true);
4582 
4583     Node* obj = null_check_receiver();
4584     if (stopped())  return true;
4585 
4586     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4587 
4588     // If we are going to clone an instance, we need its exact type to
4589     // know the number and types of fields to convert the clone to
4590     // loads/stores. Maybe a speculative type can help us.
4591     if (!obj_type->klass_is_exact() &&
4592         obj_type->speculative_type() != NULL &&
4593         obj_type->speculative_type()->is_instance_klass()) {
4594       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4595       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4596           !spec_ik->has_injected_fields()) {
4597         ciKlass* k = obj_type->klass();
4598         if (!k->is_instance_klass() ||
4599             k->as_instance_klass()->is_interface() ||
4600             k->as_instance_klass()->has_subklass()) {
4601           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4602         }
4603       }
4604     }
4605 
4606     Node* obj_klass = load_object_klass(obj);
4607     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4608     const TypeOopPtr*   toop   = ((tklass != NULL)
4609                                 ? tklass->as_instance_type()
4610                                 : TypeInstPtr::NOTNULL);
4611 
4612     // Conservatively insert a memory barrier on all memory slices.
4613     // Do not let writes into the original float below the clone.
4614     insert_mem_bar(Op_MemBarCPUOrder);
4615 
4616     // paths into result_reg:
4617     enum {
4618       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4619       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4620       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4621       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4622       PATH_LIMIT
4623     };
4624     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4625     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4626     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4627     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4628     record_for_igvn(result_reg);
4629 
4630     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4631     int raw_adr_idx = Compile::AliasIdxRaw;
4632 
4633     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4634     if (array_ctl != NULL) {
4635       // It's an array.
4636       PreserveJVMState pjvms(this);
4637       set_control(array_ctl);
4638       Node* obj_length = load_array_length(obj);
4639       Node* obj_size  = NULL;
4640       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4641 
4642       if (!use_ReduceInitialCardMarks()) {
4643         // If it is an oop array, it requires very special treatment,
4644         // because card marking is required on each card of the array.
4645         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4646         if (is_obja != NULL) {
4647           PreserveJVMState pjvms2(this);
4648           set_control(is_obja);
4649           // Generate a direct call to the right arraycopy function(s).
4650           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4651           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4652           ac->set_cloneoop();
4653           Node* n = _gvn.transform(ac);
4654           assert(n == ac, "cannot disappear");
4655           ac->connect_outputs(this);
4656 
4657           result_reg->init_req(_objArray_path, control());
4658           result_val->init_req(_objArray_path, alloc_obj);
4659           result_i_o ->set_req(_objArray_path, i_o());
4660           result_mem ->set_req(_objArray_path, reset_memory());
4661         }
4662       }
4663       // Otherwise, there are no card marks to worry about.
4664       // (We can dispense with card marks if we know the allocation
4665       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4666       //  causes the non-eden paths to take compensating steps to
4667       //  simulate a fresh allocation, so that no further
4668       //  card marks are required in compiled code to initialize
4669       //  the object.)
4670 
4671       if (!stopped()) {
4672         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4673 
4674         // Present the results of the copy.
4675         result_reg->init_req(_array_path, control());
4676         result_val->init_req(_array_path, alloc_obj);
4677         result_i_o ->set_req(_array_path, i_o());
4678         result_mem ->set_req(_array_path, reset_memory());
4679       }
4680     }
4681 
4682     // We only go to the instance fast case code if we pass a number of guards.
4683     // The paths which do not pass are accumulated in the slow_region.
4684     RegionNode* slow_region = new RegionNode(1);
4685     record_for_igvn(slow_region);
4686     if (!stopped()) {
4687       // It's an instance (we did array above).  Make the slow-path tests.
4688       // If this is a virtual call, we generate a funny guard.  We grab
4689       // the vtable entry corresponding to clone() from the target object.
4690       // If the target method which we are calling happens to be the
4691       // Object clone() method, we pass the guard.  We do not need this
4692       // guard for non-virtual calls; the caller is known to be the native
4693       // Object clone().
4694       if (is_virtual) {
4695         generate_virtual_guard(obj_klass, slow_region);
4696       }
4697 
4698       // The object must be easily cloneable and must not have a finalizer.
4699       // Both of these conditions may be checked in a single test.
4700       // We could optimize the test further, but we don't care.
4701       generate_access_flags_guard(obj_klass,
4702                                   // Test both conditions:
4703                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4704                                   // Must be cloneable but not finalizer:
4705                                   JVM_ACC_IS_CLONEABLE_FAST,
4706                                   slow_region);
4707     }
4708 
4709     if (!stopped()) {
4710       // It's an instance, and it passed the slow-path tests.
4711       PreserveJVMState pjvms(this);
4712       Node* obj_size  = NULL;
4713       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4714       // is reexecuted if deoptimization occurs and there could be problems when merging
4715       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4716       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4717 
4718       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4719 
4720       // Present the results of the slow call.
4721       result_reg->init_req(_instance_path, control());
4722       result_val->init_req(_instance_path, alloc_obj);
4723       result_i_o ->set_req(_instance_path, i_o());
4724       result_mem ->set_req(_instance_path, reset_memory());
4725     }
4726 
4727     // Generate code for the slow case.  We make a call to clone().
4728     set_control(_gvn.transform(slow_region));
4729     if (!stopped()) {
4730       PreserveJVMState pjvms(this);
4731       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4732       Node* slow_result = set_results_for_java_call(slow_call);
4733       // this->control() comes from set_results_for_java_call
4734       result_reg->init_req(_slow_path, control());
4735       result_val->init_req(_slow_path, slow_result);
4736       result_i_o ->set_req(_slow_path, i_o());
4737       result_mem ->set_req(_slow_path, reset_memory());
4738     }
4739 
4740     // Return the combined state.
4741     set_control(    _gvn.transform(result_reg));
4742     set_i_o(        _gvn.transform(result_i_o));
4743     set_all_memory( _gvn.transform(result_mem));
4744   } // original reexecute is set back here
4745 
4746   set_result(_gvn.transform(result_val));
4747   return true;
4748 }
4749 
4750 // If we have a tighly coupled allocation, the arraycopy may take care
4751 // of the array initialization. If one of the guards we insert between
4752 // the allocation and the arraycopy causes a deoptimization, an
4753 // unitialized array will escape the compiled method. To prevent that
4754 // we set the JVM state for uncommon traps between the allocation and
4755 // the arraycopy to the state before the allocation so, in case of
4756 // deoptimization, we'll reexecute the allocation and the
4757 // initialization.
4758 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4759   if (alloc != NULL) {
4760     ciMethod* trap_method = alloc->jvms()->method();
4761     int trap_bci = alloc->jvms()->bci();
4762 
4763     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4764           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4765       // Make sure there's no store between the allocation and the
4766       // arraycopy otherwise visible side effects could be rexecuted
4767       // in case of deoptimization and cause incorrect execution.
4768       bool no_interfering_store = true;
4769       Node* mem = alloc->in(TypeFunc::Memory);
4770       if (mem->is_MergeMem()) {
4771         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4772           Node* n = mms.memory();
4773           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4774             assert(n->is_Store(), "what else?");
4775             no_interfering_store = false;
4776             break;
4777           }
4778         }
4779       } else {
4780         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4781           Node* n = mms.memory();
4782           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4783             assert(n->is_Store(), "what else?");
4784             no_interfering_store = false;
4785             break;
4786           }
4787         }
4788       }
4789 
4790       if (no_interfering_store) {
4791         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4792         uint size = alloc->req();
4793         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4794         old_jvms->set_map(sfpt);
4795         for (uint i = 0; i < size; i++) {
4796           sfpt->init_req(i, alloc->in(i));
4797         }
4798         // re-push array length for deoptimization
4799         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4800         old_jvms->set_sp(old_jvms->sp()+1);
4801         old_jvms->set_monoff(old_jvms->monoff()+1);
4802         old_jvms->set_scloff(old_jvms->scloff()+1);
4803         old_jvms->set_endoff(old_jvms->endoff()+1);
4804         old_jvms->set_should_reexecute(true);
4805 
4806         sfpt->set_i_o(map()->i_o());
4807         sfpt->set_memory(map()->memory());
4808         sfpt->set_control(map()->control());
4809 
4810         JVMState* saved_jvms = jvms();
4811         saved_reexecute_sp = _reexecute_sp;
4812 
4813         set_jvms(sfpt->jvms());
4814         _reexecute_sp = jvms()->sp();
4815 
4816         return saved_jvms;
4817       }
4818     }
4819   }
4820   return NULL;
4821 }
4822 
4823 // In case of a deoptimization, we restart execution at the
4824 // allocation, allocating a new array. We would leave an uninitialized
4825 // array in the heap that GCs wouldn't expect. Move the allocation
4826 // after the traps so we don't allocate the array if we
4827 // deoptimize. This is possible because tightly_coupled_allocation()
4828 // guarantees there's no observer of the allocated array at this point
4829 // and the control flow is simple enough.
4830 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4831   if (saved_jvms != NULL && !stopped()) {
4832     assert(alloc != NULL, "only with a tightly coupled allocation");
4833     // restore JVM state to the state at the arraycopy
4834     saved_jvms->map()->set_control(map()->control());
4835     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4836     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4837     // If we've improved the types of some nodes (null check) while
4838     // emitting the guards, propagate them to the current state
4839     map()->replaced_nodes().apply(saved_jvms->map());
4840     set_jvms(saved_jvms);
4841     _reexecute_sp = saved_reexecute_sp;
4842 
4843     // Remove the allocation from above the guards
4844     CallProjections callprojs;
4845     alloc->extract_projections(&callprojs, true);
4846     InitializeNode* init = alloc->initialization();
4847     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4848     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4849     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4850     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4851 
4852     // move the allocation here (after the guards)
4853     _gvn.hash_delete(alloc);
4854     alloc->set_req(TypeFunc::Control, control());
4855     alloc->set_req(TypeFunc::I_O, i_o());
4856     Node *mem = reset_memory();
4857     set_all_memory(mem);
4858     alloc->set_req(TypeFunc::Memory, mem);
4859     set_control(init->proj_out(TypeFunc::Control));
4860     set_i_o(callprojs.fallthrough_ioproj);
4861 
4862     // Update memory as done in GraphKit::set_output_for_allocation()
4863     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4864     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4865     if (ary_type->isa_aryptr() && length_type != NULL) {
4866       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4867     }
4868     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4869     int            elemidx  = C->get_alias_index(telemref);
4870     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4871     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4872 
4873     Node* allocx = _gvn.transform(alloc);
4874     assert(allocx == alloc, "where has the allocation gone?");
4875     assert(dest->is_CheckCastPP(), "not an allocation result?");
4876 
4877     _gvn.hash_delete(dest);
4878     dest->set_req(0, control());
4879     Node* destx = _gvn.transform(dest);
4880     assert(destx == dest, "where has the allocation result gone?");
4881   }
4882 }
4883 
4884 
4885 //------------------------------inline_arraycopy-----------------------
4886 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4887 //                                                      Object dest, int destPos,
4888 //                                                      int length);
4889 bool LibraryCallKit::inline_arraycopy() {
4890   // Get the arguments.
4891   Node* src         = argument(0);  // type: oop
4892   Node* src_offset  = argument(1);  // type: int
4893   Node* dest        = argument(2);  // type: oop
4894   Node* dest_offset = argument(3);  // type: int
4895   Node* length      = argument(4);  // type: int
4896 
4897 
4898   // Check for allocation before we add nodes that would confuse
4899   // tightly_coupled_allocation()
4900   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4901 
4902   int saved_reexecute_sp = -1;
4903   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4904   // See arraycopy_restore_alloc_state() comment
4905   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4906   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4907   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4908   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4909 
4910   // The following tests must be performed
4911   // (1) src and dest are arrays.
4912   // (2) src and dest arrays must have elements of the same BasicType
4913   // (3) src and dest must not be null.
4914   // (4) src_offset must not be negative.
4915   // (5) dest_offset must not be negative.
4916   // (6) length must not be negative.
4917   // (7) src_offset + length must not exceed length of src.
4918   // (8) dest_offset + length must not exceed length of dest.
4919   // (9) each element of an oop array must be assignable
4920 
4921   // (3) src and dest must not be null.
4922   // always do this here because we need the JVM state for uncommon traps
4923   Node* null_ctl = top();
4924   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4925   assert(null_ctl->is_top(), "no null control here");
4926   dest = null_check(dest, T_ARRAY);
4927 
4928   if (!can_emit_guards) {
4929     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4930     // guards but the arraycopy node could still take advantage of a
4931     // tightly allocated allocation. tightly_coupled_allocation() is
4932     // called again to make sure it takes the null check above into
4933     // account: the null check is mandatory and if it caused an
4934     // uncommon trap to be emitted then the allocation can't be
4935     // considered tightly coupled in this context.
4936     alloc = tightly_coupled_allocation(dest, NULL);
4937   }
4938 
4939   bool validated = false;
4940 
4941   const Type* src_type  = _gvn.type(src);
4942   const Type* dest_type = _gvn.type(dest);
4943   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4944   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4945 
4946   // Do we have the type of src?
4947   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4948   // Do we have the type of dest?
4949   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4950   // Is the type for src from speculation?
4951   bool src_spec = false;
4952   // Is the type for dest from speculation?
4953   bool dest_spec = false;
4954 
4955   if ((!has_src || !has_dest) && can_emit_guards) {
4956     // We don't have sufficient type information, let's see if
4957     // speculative types can help. We need to have types for both src
4958     // and dest so that it pays off.
4959 
4960     // Do we already have or could we have type information for src
4961     bool could_have_src = has_src;
4962     // Do we already have or could we have type information for dest
4963     bool could_have_dest = has_dest;
4964 
4965     ciKlass* src_k = NULL;
4966     if (!has_src) {
4967       src_k = src_type->speculative_type_not_null();
4968       if (src_k != NULL && src_k->is_array_klass()) {
4969         could_have_src = true;
4970       }
4971     }
4972 
4973     ciKlass* dest_k = NULL;
4974     if (!has_dest) {
4975       dest_k = dest_type->speculative_type_not_null();
4976       if (dest_k != NULL && dest_k->is_array_klass()) {
4977         could_have_dest = true;
4978       }
4979     }
4980 
4981     if (could_have_src && could_have_dest) {
4982       // This is going to pay off so emit the required guards
4983       if (!has_src) {
4984         src = maybe_cast_profiled_obj(src, src_k, true);
4985         src_type  = _gvn.type(src);
4986         top_src  = src_type->isa_aryptr();
4987         has_src = (top_src != NULL && top_src->klass() != NULL);
4988         src_spec = true;
4989       }
4990       if (!has_dest) {
4991         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4992         dest_type  = _gvn.type(dest);
4993         top_dest  = dest_type->isa_aryptr();
4994         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4995         dest_spec = true;
4996       }
4997     }
4998   }
4999 
5000   if (has_src && has_dest && can_emit_guards) {
5001     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5002     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5003     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5004     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5005 
5006     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5007       // If both arrays are object arrays then having the exact types
5008       // for both will remove the need for a subtype check at runtime
5009       // before the call and may make it possible to pick a faster copy
5010       // routine (without a subtype check on every element)
5011       // Do we have the exact type of src?
5012       bool could_have_src = src_spec;
5013       // Do we have the exact type of dest?
5014       bool could_have_dest = dest_spec;
5015       ciKlass* src_k = top_src->klass();
5016       ciKlass* dest_k = top_dest->klass();
5017       if (!src_spec) {
5018         src_k = src_type->speculative_type_not_null();
5019         if (src_k != NULL && src_k->is_array_klass()) {
5020           could_have_src = true;
5021         }
5022       }
5023       if (!dest_spec) {
5024         dest_k = dest_type->speculative_type_not_null();
5025         if (dest_k != NULL && dest_k->is_array_klass()) {
5026           could_have_dest = true;
5027         }
5028       }
5029       if (could_have_src && could_have_dest) {
5030         // If we can have both exact types, emit the missing guards
5031         if (could_have_src && !src_spec) {
5032           src = maybe_cast_profiled_obj(src, src_k, true);
5033         }
5034         if (could_have_dest && !dest_spec) {
5035           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5036         }
5037       }
5038     }
5039   }
5040 
5041   ciMethod* trap_method = method();
5042   int trap_bci = bci();
5043   if (saved_jvms != NULL) {
5044     trap_method = alloc->jvms()->method();
5045     trap_bci = alloc->jvms()->bci();
5046   }
5047 
5048   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5049       can_emit_guards &&
5050       !src->is_top() && !dest->is_top()) {
5051     // validate arguments: enables transformation the ArrayCopyNode
5052     validated = true;
5053 
5054     RegionNode* slow_region = new RegionNode(1);
5055     record_for_igvn(slow_region);
5056 
5057     // (1) src and dest are arrays.
5058     generate_non_array_guard(load_object_klass(src), slow_region);
5059     generate_non_array_guard(load_object_klass(dest), slow_region);
5060 
5061     // (2) src and dest arrays must have elements of the same BasicType
5062     // done at macro expansion or at Ideal transformation time
5063 
5064     // (4) src_offset must not be negative.
5065     generate_negative_guard(src_offset, slow_region);
5066 
5067     // (5) dest_offset must not be negative.
5068     generate_negative_guard(dest_offset, slow_region);
5069 
5070     // (7) src_offset + length must not exceed length of src.
5071     generate_limit_guard(src_offset, length,
5072                          load_array_length(src),
5073                          slow_region);
5074 
5075     // (8) dest_offset + length must not exceed length of dest.
5076     generate_limit_guard(dest_offset, length,
5077                          load_array_length(dest),
5078                          slow_region);
5079 
5080     // (9) each element of an oop array must be assignable
5081     Node* src_klass  = load_object_klass(src);
5082     Node* dest_klass = load_object_klass(dest);
5083     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5084 
5085     if (not_subtype_ctrl != top()) {
5086       PreserveJVMState pjvms(this);
5087       set_control(not_subtype_ctrl);
5088       uncommon_trap(Deoptimization::Reason_intrinsic,
5089                     Deoptimization::Action_make_not_entrant);
5090       assert(stopped(), "Should be stopped");
5091     }
5092     {
5093       PreserveJVMState pjvms(this);
5094       set_control(_gvn.transform(slow_region));
5095       uncommon_trap(Deoptimization::Reason_intrinsic,
5096                     Deoptimization::Action_make_not_entrant);
5097       assert(stopped(), "Should be stopped");
5098     }
5099   }
5100 
5101   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5102 
5103   if (stopped()) {
5104     return true;
5105   }
5106 
5107   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5108                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5109                                           // so the compiler has a chance to eliminate them: during macro expansion,
5110                                           // we have to set their control (CastPP nodes are eliminated).
5111                                           load_object_klass(src), load_object_klass(dest),
5112                                           load_array_length(src), load_array_length(dest));
5113 
5114   ac->set_arraycopy(validated);
5115 
5116   Node* n = _gvn.transform(ac);
5117   if (n == ac) {
5118     ac->connect_outputs(this);
5119   } else {
5120     assert(validated, "shouldn't transform if all arguments not validated");
5121     set_all_memory(n);
5122   }
5123 
5124   return true;
5125 }
5126 
5127 
5128 // Helper function which determines if an arraycopy immediately follows
5129 // an allocation, with no intervening tests or other escapes for the object.
5130 AllocateArrayNode*
5131 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5132                                            RegionNode* slow_region) {
5133   if (stopped())             return NULL;  // no fast path
5134   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5135 
5136   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5137   if (alloc == NULL)  return NULL;
5138 
5139   Node* rawmem = memory(Compile::AliasIdxRaw);
5140   // Is the allocation's memory state untouched?
5141   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5142     // Bail out if there have been raw-memory effects since the allocation.
5143     // (Example:  There might have been a call or safepoint.)
5144     return NULL;
5145   }
5146   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5147   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5148     return NULL;
5149   }
5150 
5151   // There must be no unexpected observers of this allocation.
5152   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5153     Node* obs = ptr->fast_out(i);
5154     if (obs != this->map()) {
5155       return NULL;
5156     }
5157   }
5158 
5159   // This arraycopy must unconditionally follow the allocation of the ptr.
5160   Node* alloc_ctl = ptr->in(0);
5161   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5162 
5163   Node* ctl = control();
5164   while (ctl != alloc_ctl) {
5165     // There may be guards which feed into the slow_region.
5166     // Any other control flow means that we might not get a chance
5167     // to finish initializing the allocated object.
5168     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5169       IfNode* iff = ctl->in(0)->as_If();
5170       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5171       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5172       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5173         ctl = iff->in(0);       // This test feeds the known slow_region.
5174         continue;
5175       }
5176       // One more try:  Various low-level checks bottom out in
5177       // uncommon traps.  If the debug-info of the trap omits
5178       // any reference to the allocation, as we've already
5179       // observed, then there can be no objection to the trap.
5180       bool found_trap = false;
5181       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5182         Node* obs = not_ctl->fast_out(j);
5183         if (obs->in(0) == not_ctl && obs->is_Call() &&
5184             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5185           found_trap = true; break;
5186         }
5187       }
5188       if (found_trap) {
5189         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5190         continue;
5191       }
5192     }
5193     return NULL;
5194   }
5195 
5196   // If we get this far, we have an allocation which immediately
5197   // precedes the arraycopy, and we can take over zeroing the new object.
5198   // The arraycopy will finish the initialization, and provide
5199   // a new control state to which we will anchor the destination pointer.
5200 
5201   return alloc;
5202 }
5203 
5204 //-------------inline_encodeISOArray-----------------------------------
5205 // encode char[] to byte[] in ISO_8859_1
5206 bool LibraryCallKit::inline_encodeISOArray() {
5207   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5208   // no receiver since it is static method
5209   Node *src         = argument(0);
5210   Node *src_offset  = argument(1);
5211   Node *dst         = argument(2);
5212   Node *dst_offset  = argument(3);
5213   Node *length      = argument(4);
5214 
5215   const Type* src_type = src->Value(&_gvn);
5216   const Type* dst_type = dst->Value(&_gvn);
5217   const TypeAryPtr* top_src = src_type->isa_aryptr();
5218   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5219   if (top_src  == NULL || top_src->klass()  == NULL ||
5220       top_dest == NULL || top_dest->klass() == NULL) {
5221     // failed array check
5222     return false;
5223   }
5224 
5225   // Figure out the size and type of the elements we will be copying.
5226   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5227   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5228   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5229     return false;
5230   }
5231 
5232   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5233   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5234   // 'src_start' points to src array + scaled offset
5235   // 'dst_start' points to dst array + scaled offset
5236 
5237   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5238   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5239   enc = _gvn.transform(enc);
5240   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5241   set_memory(res_mem, mtype);
5242   set_result(enc);
5243   return true;
5244 }
5245 
5246 //-------------inline_multiplyToLen-----------------------------------
5247 bool LibraryCallKit::inline_multiplyToLen() {
5248   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5249 
5250   address stubAddr = StubRoutines::multiplyToLen();
5251   if (stubAddr == NULL) {
5252     return false; // Intrinsic's stub is not implemented on this platform
5253   }
5254   const char* stubName = "multiplyToLen";
5255 
5256   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5257 
5258   // no receiver because it is a static method
5259   Node* x    = argument(0);
5260   Node* xlen = argument(1);
5261   Node* y    = argument(2);
5262   Node* ylen = argument(3);
5263   Node* z    = argument(4);
5264 
5265   const Type* x_type = x->Value(&_gvn);
5266   const Type* y_type = y->Value(&_gvn);
5267   const TypeAryPtr* top_x = x_type->isa_aryptr();
5268   const TypeAryPtr* top_y = y_type->isa_aryptr();
5269   if (top_x  == NULL || top_x->klass()  == NULL ||
5270       top_y == NULL || top_y->klass() == NULL) {
5271     // failed array check
5272     return false;
5273   }
5274 
5275   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5276   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5277   if (x_elem != T_INT || y_elem != T_INT) {
5278     return false;
5279   }
5280 
5281   // Set the original stack and the reexecute bit for the interpreter to reexecute
5282   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5283   // on the return from z array allocation in runtime.
5284   { PreserveReexecuteState preexecs(this);
5285     jvms()->set_should_reexecute(true);
5286 
5287     Node* x_start = array_element_address(x, intcon(0), x_elem);
5288     Node* y_start = array_element_address(y, intcon(0), y_elem);
5289     // 'x_start' points to x array + scaled xlen
5290     // 'y_start' points to y array + scaled ylen
5291 
5292     // Allocate the result array
5293     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5294     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5295     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5296 
5297     IdealKit ideal(this);
5298 
5299 #define __ ideal.
5300      Node* one = __ ConI(1);
5301      Node* zero = __ ConI(0);
5302      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5303      __ set(need_alloc, zero);
5304      __ set(z_alloc, z);
5305      __ if_then(z, BoolTest::eq, null()); {
5306        __ increment (need_alloc, one);
5307      } __ else_(); {
5308        // Update graphKit memory and control from IdealKit.
5309        sync_kit(ideal);
5310        Node* zlen_arg = load_array_length(z);
5311        // Update IdealKit memory and control from graphKit.
5312        __ sync_kit(this);
5313        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5314          __ increment (need_alloc, one);
5315        } __ end_if();
5316      } __ end_if();
5317 
5318      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5319        // Update graphKit memory and control from IdealKit.
5320        sync_kit(ideal);
5321        Node * narr = new_array(klass_node, zlen, 1);
5322        // Update IdealKit memory and control from graphKit.
5323        __ sync_kit(this);
5324        __ set(z_alloc, narr);
5325      } __ end_if();
5326 
5327      sync_kit(ideal);
5328      z = __ value(z_alloc);
5329      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5330      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5331      // Final sync IdealKit and GraphKit.
5332      final_sync(ideal);
5333 #undef __
5334 
5335     Node* z_start = array_element_address(z, intcon(0), T_INT);
5336 
5337     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5338                                    OptoRuntime::multiplyToLen_Type(),
5339                                    stubAddr, stubName, TypePtr::BOTTOM,
5340                                    x_start, xlen, y_start, ylen, z_start, zlen);
5341   } // original reexecute is set back here
5342 
5343   C->set_has_split_ifs(true); // Has chance for split-if optimization
5344   set_result(z);
5345   return true;
5346 }
5347 
5348 //-------------inline_squareToLen------------------------------------
5349 bool LibraryCallKit::inline_squareToLen() {
5350   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5351 
5352   address stubAddr = StubRoutines::squareToLen();
5353   if (stubAddr == NULL) {
5354     return false; // Intrinsic's stub is not implemented on this platform
5355   }
5356   const char* stubName = "squareToLen";
5357 
5358   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5359 
5360   Node* x    = argument(0);
5361   Node* len  = argument(1);
5362   Node* z    = argument(2);
5363   Node* zlen = argument(3);
5364 
5365   const Type* x_type = x->Value(&_gvn);
5366   const Type* z_type = z->Value(&_gvn);
5367   const TypeAryPtr* top_x = x_type->isa_aryptr();
5368   const TypeAryPtr* top_z = z_type->isa_aryptr();
5369   if (top_x  == NULL || top_x->klass()  == NULL ||
5370       top_z  == NULL || top_z->klass()  == NULL) {
5371     // failed array check
5372     return false;
5373   }
5374 
5375   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5376   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5377   if (x_elem != T_INT || z_elem != T_INT) {
5378     return false;
5379   }
5380 
5381 
5382   Node* x_start = array_element_address(x, intcon(0), x_elem);
5383   Node* z_start = array_element_address(z, intcon(0), z_elem);
5384 
5385   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5386                                   OptoRuntime::squareToLen_Type(),
5387                                   stubAddr, stubName, TypePtr::BOTTOM,
5388                                   x_start, len, z_start, zlen);
5389 
5390   set_result(z);
5391   return true;
5392 }
5393 
5394 //-------------inline_mulAdd------------------------------------------
5395 bool LibraryCallKit::inline_mulAdd() {
5396   assert(UseMulAddIntrinsic, "not implemented on this platform");
5397 
5398   address stubAddr = StubRoutines::mulAdd();
5399   if (stubAddr == NULL) {
5400     return false; // Intrinsic's stub is not implemented on this platform
5401   }
5402   const char* stubName = "mulAdd";
5403 
5404   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5405 
5406   Node* out      = argument(0);
5407   Node* in       = argument(1);
5408   Node* offset   = argument(2);
5409   Node* len      = argument(3);
5410   Node* k        = argument(4);
5411 
5412   const Type* out_type = out->Value(&_gvn);
5413   const Type* in_type = in->Value(&_gvn);
5414   const TypeAryPtr* top_out = out_type->isa_aryptr();
5415   const TypeAryPtr* top_in = in_type->isa_aryptr();
5416   if (top_out  == NULL || top_out->klass()  == NULL ||
5417       top_in == NULL || top_in->klass() == NULL) {
5418     // failed array check
5419     return false;
5420   }
5421 
5422   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5423   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5424   if (out_elem != T_INT || in_elem != T_INT) {
5425     return false;
5426   }
5427 
5428   Node* outlen = load_array_length(out);
5429   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5430   Node* out_start = array_element_address(out, intcon(0), out_elem);
5431   Node* in_start = array_element_address(in, intcon(0), in_elem);
5432 
5433   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5434                                   OptoRuntime::mulAdd_Type(),
5435                                   stubAddr, stubName, TypePtr::BOTTOM,
5436                                   out_start,in_start, new_offset, len, k);
5437   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5438   set_result(result);
5439   return true;
5440 }
5441 
5442 //-------------inline_montgomeryMultiply-----------------------------------
5443 bool LibraryCallKit::inline_montgomeryMultiply() {
5444   address stubAddr = StubRoutines::montgomeryMultiply();
5445   if (stubAddr == NULL) {
5446     return false; // Intrinsic's stub is not implemented on this platform
5447   }
5448 
5449   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5450   const char* stubName = "montgomery_square";
5451 
5452   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5453 
5454   Node* a    = argument(0);
5455   Node* b    = argument(1);
5456   Node* n    = argument(2);
5457   Node* len  = argument(3);
5458   Node* inv  = argument(4);
5459   Node* m    = argument(6);
5460 
5461   const Type* a_type = a->Value(&_gvn);
5462   const TypeAryPtr* top_a = a_type->isa_aryptr();
5463   const Type* b_type = b->Value(&_gvn);
5464   const TypeAryPtr* top_b = b_type->isa_aryptr();
5465   const Type* n_type = a->Value(&_gvn);
5466   const TypeAryPtr* top_n = n_type->isa_aryptr();
5467   const Type* m_type = a->Value(&_gvn);
5468   const TypeAryPtr* top_m = m_type->isa_aryptr();
5469   if (top_a  == NULL || top_a->klass()  == NULL ||
5470       top_b == NULL || top_b->klass()  == NULL ||
5471       top_n == NULL || top_n->klass()  == NULL ||
5472       top_m == NULL || top_m->klass()  == NULL) {
5473     // failed array check
5474     return false;
5475   }
5476 
5477   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5478   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5479   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5480   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5481   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5482     return false;
5483   }
5484 
5485   // Make the call
5486   {
5487     Node* a_start = array_element_address(a, intcon(0), a_elem);
5488     Node* b_start = array_element_address(b, intcon(0), b_elem);
5489     Node* n_start = array_element_address(n, intcon(0), n_elem);
5490     Node* m_start = array_element_address(m, intcon(0), m_elem);
5491 
5492     Node* call = make_runtime_call(RC_LEAF,
5493                                    OptoRuntime::montgomeryMultiply_Type(),
5494                                    stubAddr, stubName, TypePtr::BOTTOM,
5495                                    a_start, b_start, n_start, len, inv, top(),
5496                                    m_start);
5497     set_result(m);
5498   }
5499 
5500   return true;
5501 }
5502 
5503 bool LibraryCallKit::inline_montgomerySquare() {
5504   address stubAddr = StubRoutines::montgomerySquare();
5505   if (stubAddr == NULL) {
5506     return false; // Intrinsic's stub is not implemented on this platform
5507   }
5508 
5509   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5510   const char* stubName = "montgomery_square";
5511 
5512   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5513 
5514   Node* a    = argument(0);
5515   Node* n    = argument(1);
5516   Node* len  = argument(2);
5517   Node* inv  = argument(3);
5518   Node* m    = argument(5);
5519 
5520   const Type* a_type = a->Value(&_gvn);
5521   const TypeAryPtr* top_a = a_type->isa_aryptr();
5522   const Type* n_type = a->Value(&_gvn);
5523   const TypeAryPtr* top_n = n_type->isa_aryptr();
5524   const Type* m_type = a->Value(&_gvn);
5525   const TypeAryPtr* top_m = m_type->isa_aryptr();
5526   if (top_a  == NULL || top_a->klass()  == NULL ||
5527       top_n == NULL || top_n->klass()  == NULL ||
5528       top_m == NULL || top_m->klass()  == NULL) {
5529     // failed array check
5530     return false;
5531   }
5532 
5533   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5534   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5535   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5536   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5537     return false;
5538   }
5539 
5540   // Make the call
5541   {
5542     Node* a_start = array_element_address(a, intcon(0), a_elem);
5543     Node* n_start = array_element_address(n, intcon(0), n_elem);
5544     Node* m_start = array_element_address(m, intcon(0), m_elem);
5545 
5546     Node* call = make_runtime_call(RC_LEAF,
5547                                    OptoRuntime::montgomerySquare_Type(),
5548                                    stubAddr, stubName, TypePtr::BOTTOM,
5549                                    a_start, n_start, len, inv, top(),
5550                                    m_start);
5551     set_result(m);
5552   }
5553 
5554   return true;
5555 }
5556 
5557 //-------------inline_vectorizedMismatch------------------------------
5558 bool LibraryCallKit::inline_vectorizedMismatch() {
5559   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5560 
5561   address stubAddr = StubRoutines::vectorizedMismatch();
5562   if (stubAddr == NULL) {
5563     return false; // Intrinsic's stub is not implemented on this platform
5564   }
5565   const char* stubName = "vectorizedMismatch";
5566   int size_l = callee()->signature()->size();
5567   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5568 
5569   Node* obja = argument(0);
5570   Node* aoffset = argument(1);
5571   Node* objb = argument(3);
5572   Node* boffset = argument(4);
5573   Node* length = argument(6);
5574   Node* scale = argument(7);
5575 
5576   const Type* a_type = obja->Value(&_gvn);
5577   const Type* b_type = objb->Value(&_gvn);
5578   const TypeAryPtr* top_a = a_type->isa_aryptr();
5579   const TypeAryPtr* top_b = b_type->isa_aryptr();
5580   if (top_a == NULL || top_a->klass() == NULL ||
5581     top_b == NULL || top_b->klass() == NULL) {
5582     // failed array check
5583     return false;
5584   }
5585 
5586   Node* call;
5587   jvms()->set_should_reexecute(true);
5588 
5589   Node* obja_adr = make_unsafe_address(obja, aoffset);
5590   Node* objb_adr = make_unsafe_address(objb, boffset);
5591 
5592   call = make_runtime_call(RC_LEAF,
5593     OptoRuntime::vectorizedMismatch_Type(),
5594     stubAddr, stubName, TypePtr::BOTTOM,
5595     obja_adr, objb_adr, length, scale);
5596 
5597   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5598   set_result(result);
5599   return true;
5600 }
5601 
5602 /**
5603  * Calculate CRC32 for byte.
5604  * int java.util.zip.CRC32.update(int crc, int b)
5605  */
5606 bool LibraryCallKit::inline_updateCRC32() {
5607   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5608   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5609   // no receiver since it is static method
5610   Node* crc  = argument(0); // type: int
5611   Node* b    = argument(1); // type: int
5612 
5613   /*
5614    *    int c = ~ crc;
5615    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5616    *    b = b ^ (c >>> 8);
5617    *    crc = ~b;
5618    */
5619 
5620   Node* M1 = intcon(-1);
5621   crc = _gvn.transform(new XorINode(crc, M1));
5622   Node* result = _gvn.transform(new XorINode(crc, b));
5623   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5624 
5625   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5626   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5627   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5628   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5629 
5630   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5631   result = _gvn.transform(new XorINode(crc, result));
5632   result = _gvn.transform(new XorINode(result, M1));
5633   set_result(result);
5634   return true;
5635 }
5636 
5637 /**
5638  * Calculate CRC32 for byte[] array.
5639  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5640  */
5641 bool LibraryCallKit::inline_updateBytesCRC32() {
5642   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5643   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5644   // no receiver since it is static method
5645   Node* crc     = argument(0); // type: int
5646   Node* src     = argument(1); // type: oop
5647   Node* offset  = argument(2); // type: int
5648   Node* length  = argument(3); // type: int
5649 
5650   const Type* src_type = src->Value(&_gvn);
5651   const TypeAryPtr* top_src = src_type->isa_aryptr();
5652   if (top_src  == NULL || top_src->klass()  == NULL) {
5653     // failed array check
5654     return false;
5655   }
5656 
5657   // Figure out the size and type of the elements we will be copying.
5658   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5659   if (src_elem != T_BYTE) {
5660     return false;
5661   }
5662 
5663   // 'src_start' points to src array + scaled offset
5664   Node* src_start = array_element_address(src, offset, src_elem);
5665 
5666   // We assume that range check is done by caller.
5667   // TODO: generate range check (offset+length < src.length) in debug VM.
5668 
5669   // Call the stub.
5670   address stubAddr = StubRoutines::updateBytesCRC32();
5671   const char *stubName = "updateBytesCRC32";
5672 
5673   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5674                                  stubAddr, stubName, TypePtr::BOTTOM,
5675                                  crc, src_start, length);
5676   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5677   set_result(result);
5678   return true;
5679 }
5680 
5681 /**
5682  * Calculate CRC32 for ByteBuffer.
5683  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5684  */
5685 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5686   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5687   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5688   // no receiver since it is static method
5689   Node* crc     = argument(0); // type: int
5690   Node* src     = argument(1); // type: long
5691   Node* offset  = argument(3); // type: int
5692   Node* length  = argument(4); // type: int
5693 
5694   src = ConvL2X(src);  // adjust Java long to machine word
5695   Node* base = _gvn.transform(new CastX2PNode(src));
5696   offset = ConvI2X(offset);
5697 
5698   // 'src_start' points to src array + scaled offset
5699   Node* src_start = basic_plus_adr(top(), base, offset);
5700 
5701   // Call the stub.
5702   address stubAddr = StubRoutines::updateBytesCRC32();
5703   const char *stubName = "updateBytesCRC32";
5704 
5705   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5706                                  stubAddr, stubName, TypePtr::BOTTOM,
5707                                  crc, src_start, length);
5708   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5709   set_result(result);
5710   return true;
5711 }
5712 
5713 //------------------------------get_table_from_crc32c_class-----------------------
5714 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5715   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5716   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5717 
5718   return table;
5719 }
5720 
5721 //------------------------------inline_updateBytesCRC32C-----------------------
5722 //
5723 // Calculate CRC32C for byte[] array.
5724 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5725 //
5726 bool LibraryCallKit::inline_updateBytesCRC32C() {
5727   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5728   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5729   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5730   // no receiver since it is a static method
5731   Node* crc     = argument(0); // type: int
5732   Node* src     = argument(1); // type: oop
5733   Node* offset  = argument(2); // type: int
5734   Node* end     = argument(3); // type: int
5735 
5736   Node* length = _gvn.transform(new SubINode(end, offset));
5737 
5738   const Type* src_type = src->Value(&_gvn);
5739   const TypeAryPtr* top_src = src_type->isa_aryptr();
5740   if (top_src  == NULL || top_src->klass()  == NULL) {
5741     // failed array check
5742     return false;
5743   }
5744 
5745   // Figure out the size and type of the elements we will be copying.
5746   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5747   if (src_elem != T_BYTE) {
5748     return false;
5749   }
5750 
5751   // 'src_start' points to src array + scaled offset
5752   Node* src_start = array_element_address(src, offset, src_elem);
5753 
5754   // static final int[] byteTable in class CRC32C
5755   Node* table = get_table_from_crc32c_class(callee()->holder());
5756   Node* table_start = array_element_address(table, intcon(0), T_INT);
5757 
5758   // We assume that range check is done by caller.
5759   // TODO: generate range check (offset+length < src.length) in debug VM.
5760 
5761   // Call the stub.
5762   address stubAddr = StubRoutines::updateBytesCRC32C();
5763   const char *stubName = "updateBytesCRC32C";
5764 
5765   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5766                                  stubAddr, stubName, TypePtr::BOTTOM,
5767                                  crc, src_start, length, table_start);
5768   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5769   set_result(result);
5770   return true;
5771 }
5772 
5773 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5774 //
5775 // Calculate CRC32C for DirectByteBuffer.
5776 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5777 //
5778 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5779   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5780   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5781   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5782   // no receiver since it is a static method
5783   Node* crc     = argument(0); // type: int
5784   Node* src     = argument(1); // type: long
5785   Node* offset  = argument(3); // type: int
5786   Node* end     = argument(4); // type: int
5787 
5788   Node* length = _gvn.transform(new SubINode(end, offset));
5789 
5790   src = ConvL2X(src);  // adjust Java long to machine word
5791   Node* base = _gvn.transform(new CastX2PNode(src));
5792   offset = ConvI2X(offset);
5793 
5794   // 'src_start' points to src array + scaled offset
5795   Node* src_start = basic_plus_adr(top(), base, offset);
5796 
5797   // static final int[] byteTable in class CRC32C
5798   Node* table = get_table_from_crc32c_class(callee()->holder());
5799   Node* table_start = array_element_address(table, intcon(0), T_INT);
5800 
5801   // Call the stub.
5802   address stubAddr = StubRoutines::updateBytesCRC32C();
5803   const char *stubName = "updateBytesCRC32C";
5804 
5805   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5806                                  stubAddr, stubName, TypePtr::BOTTOM,
5807                                  crc, src_start, length, table_start);
5808   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5809   set_result(result);
5810   return true;
5811 }
5812 
5813 //------------------------------inline_updateBytesAdler32----------------------
5814 //
5815 // Calculate Adler32 checksum for byte[] array.
5816 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5817 //
5818 bool LibraryCallKit::inline_updateBytesAdler32() {
5819   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5820   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5821   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5822   // no receiver since it is static method
5823   Node* crc     = argument(0); // type: int
5824   Node* src     = argument(1); // type: oop
5825   Node* offset  = argument(2); // type: int
5826   Node* length  = argument(3); // type: int
5827 
5828   const Type* src_type = src->Value(&_gvn);
5829   const TypeAryPtr* top_src = src_type->isa_aryptr();
5830   if (top_src  == NULL || top_src->klass()  == NULL) {
5831     // failed array check
5832     return false;
5833   }
5834 
5835   // Figure out the size and type of the elements we will be copying.
5836   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5837   if (src_elem != T_BYTE) {
5838     return false;
5839   }
5840 
5841   // 'src_start' points to src array + scaled offset
5842   Node* src_start = array_element_address(src, offset, src_elem);
5843 
5844   // We assume that range check is done by caller.
5845   // TODO: generate range check (offset+length < src.length) in debug VM.
5846 
5847   // Call the stub.
5848   address stubAddr = StubRoutines::updateBytesAdler32();
5849   const char *stubName = "updateBytesAdler32";
5850 
5851   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5852                                  stubAddr, stubName, TypePtr::BOTTOM,
5853                                  crc, src_start, length);
5854   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5855   set_result(result);
5856   return true;
5857 }
5858 
5859 //------------------------------inline_updateByteBufferAdler32---------------
5860 //
5861 // Calculate Adler32 checksum for DirectByteBuffer.
5862 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5863 //
5864 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5865   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5866   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5867   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5868   // no receiver since it is static method
5869   Node* crc     = argument(0); // type: int
5870   Node* src     = argument(1); // type: long
5871   Node* offset  = argument(3); // type: int
5872   Node* length  = argument(4); // type: int
5873 
5874   src = ConvL2X(src);  // adjust Java long to machine word
5875   Node* base = _gvn.transform(new CastX2PNode(src));
5876   offset = ConvI2X(offset);
5877 
5878   // 'src_start' points to src array + scaled offset
5879   Node* src_start = basic_plus_adr(top(), base, offset);
5880 
5881   // Call the stub.
5882   address stubAddr = StubRoutines::updateBytesAdler32();
5883   const char *stubName = "updateBytesAdler32";
5884 
5885   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5886                                  stubAddr, stubName, TypePtr::BOTTOM,
5887                                  crc, src_start, length);
5888 
5889   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5890   set_result(result);
5891   return true;
5892 }
5893 
5894 //----------------------------inline_reference_get----------------------------
5895 // public T java.lang.ref.Reference.get();
5896 bool LibraryCallKit::inline_reference_get() {
5897   const int referent_offset = java_lang_ref_Reference::referent_offset;
5898   guarantee(referent_offset > 0, "should have already been set");
5899 
5900   // Get the argument:
5901   Node* reference_obj = null_check_receiver();
5902   if (stopped()) return true;
5903 
5904   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5905 
5906   ciInstanceKlass* klass = env()->Object_klass();
5907   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5908 
5909   Node* no_ctrl = NULL;
5910   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5911 
5912   // Use the pre-barrier to record the value in the referent field
5913   pre_barrier(false /* do_load */,
5914               control(),
5915               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5916               result /* pre_val */,
5917               T_OBJECT);
5918 
5919   // Add memory barrier to prevent commoning reads from this field
5920   // across safepoint since GC can change its value.
5921   insert_mem_bar(Op_MemBarCPUOrder);
5922 
5923   set_result(result);
5924   return true;
5925 }
5926 
5927 
5928 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5929                                               bool is_exact=true, bool is_static=false,
5930                                               ciInstanceKlass * fromKls=NULL) {
5931   if (fromKls == NULL) {
5932     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5933     assert(tinst != NULL, "obj is null");
5934     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5935     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5936     fromKls = tinst->klass()->as_instance_klass();
5937   } else {
5938     assert(is_static, "only for static field access");
5939   }
5940   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5941                                               ciSymbol::make(fieldTypeString),
5942                                               is_static);
5943 
5944   assert (field != NULL, "undefined field");
5945   if (field == NULL) return (Node *) NULL;
5946 
5947   if (is_static) {
5948     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5949     fromObj = makecon(tip);
5950   }
5951 
5952   // Next code  copied from Parse::do_get_xxx():
5953 
5954   // Compute address and memory type.
5955   int offset  = field->offset_in_bytes();
5956   bool is_vol = field->is_volatile();
5957   ciType* field_klass = field->type();
5958   assert(field_klass->is_loaded(), "should be loaded");
5959   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5960   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5961   BasicType bt = field->layout_type();
5962 
5963   // Build the resultant type of the load
5964   const Type *type;
5965   if (bt == T_OBJECT) {
5966     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5967   } else {
5968     type = Type::get_const_basic_type(bt);
5969   }
5970 
5971   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5972     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5973   }
5974   // Build the load.
5975   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5976   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5977   // If reference is volatile, prevent following memory ops from
5978   // floating up past the volatile read.  Also prevents commoning
5979   // another volatile read.
5980   if (is_vol) {
5981     // Memory barrier includes bogus read of value to force load BEFORE membar
5982     insert_mem_bar(Op_MemBarAcquire, loadedField);
5983   }
5984   return loadedField;
5985 }
5986 
5987 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5988                                                  bool is_exact = true, bool is_static = false,
5989                                                  ciInstanceKlass * fromKls = NULL) {
5990   if (fromKls == NULL) {
5991     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5992     assert(tinst != NULL, "obj is null");
5993     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5994     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5995     fromKls = tinst->klass()->as_instance_klass();
5996   }
5997   else {
5998     assert(is_static, "only for static field access");
5999   }
6000   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6001     ciSymbol::make(fieldTypeString),
6002     is_static);
6003 
6004   assert(field != NULL, "undefined field");
6005   assert(!field->is_volatile(), "not defined for volatile fields");
6006 
6007   if (is_static) {
6008     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6009     fromObj = makecon(tip);
6010   }
6011 
6012   // Next code  copied from Parse::do_get_xxx():
6013 
6014   // Compute address and memory type.
6015   int offset = field->offset_in_bytes();
6016   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6017 
6018   return adr;
6019 }
6020 
6021 //------------------------------inline_aescrypt_Block-----------------------
6022 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6023   address stubAddr = NULL;
6024   const char *stubName;
6025   assert(UseAES, "need AES instruction support");
6026 
6027   switch(id) {
6028   case vmIntrinsics::_aescrypt_encryptBlock:
6029     stubAddr = StubRoutines::aescrypt_encryptBlock();
6030     stubName = "aescrypt_encryptBlock";
6031     break;
6032   case vmIntrinsics::_aescrypt_decryptBlock:
6033     stubAddr = StubRoutines::aescrypt_decryptBlock();
6034     stubName = "aescrypt_decryptBlock";
6035     break;
6036   }
6037   if (stubAddr == NULL) return false;
6038 
6039   Node* aescrypt_object = argument(0);
6040   Node* src             = argument(1);
6041   Node* src_offset      = argument(2);
6042   Node* dest            = argument(3);
6043   Node* dest_offset     = argument(4);
6044 
6045   // (1) src and dest are arrays.
6046   const Type* src_type = src->Value(&_gvn);
6047   const Type* dest_type = dest->Value(&_gvn);
6048   const TypeAryPtr* top_src = src_type->isa_aryptr();
6049   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6050   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6051 
6052   // for the quick and dirty code we will skip all the checks.
6053   // we are just trying to get the call to be generated.
6054   Node* src_start  = src;
6055   Node* dest_start = dest;
6056   if (src_offset != NULL || dest_offset != NULL) {
6057     assert(src_offset != NULL && dest_offset != NULL, "");
6058     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6059     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6060   }
6061 
6062   // now need to get the start of its expanded key array
6063   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6064   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6065   if (k_start == NULL) return false;
6066 
6067   if (Matcher::pass_original_key_for_aes()) {
6068     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6069     // compatibility issues between Java key expansion and SPARC crypto instructions
6070     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6071     if (original_k_start == NULL) return false;
6072 
6073     // Call the stub.
6074     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6075                       stubAddr, stubName, TypePtr::BOTTOM,
6076                       src_start, dest_start, k_start, original_k_start);
6077   } else {
6078     // Call the stub.
6079     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6080                       stubAddr, stubName, TypePtr::BOTTOM,
6081                       src_start, dest_start, k_start);
6082   }
6083 
6084   return true;
6085 }
6086 
6087 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6088 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6089   address stubAddr = NULL;
6090   const char *stubName = NULL;
6091 
6092   assert(UseAES, "need AES instruction support");
6093 
6094   switch(id) {
6095   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6096     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6097     stubName = "cipherBlockChaining_encryptAESCrypt";
6098     break;
6099   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6100     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6101     stubName = "cipherBlockChaining_decryptAESCrypt";
6102     break;
6103   }
6104   if (stubAddr == NULL) return false;
6105 
6106   Node* cipherBlockChaining_object = argument(0);
6107   Node* src                        = argument(1);
6108   Node* src_offset                 = argument(2);
6109   Node* len                        = argument(3);
6110   Node* dest                       = argument(4);
6111   Node* dest_offset                = argument(5);
6112 
6113   // (1) src and dest are arrays.
6114   const Type* src_type = src->Value(&_gvn);
6115   const Type* dest_type = dest->Value(&_gvn);
6116   const TypeAryPtr* top_src = src_type->isa_aryptr();
6117   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6118   assert (top_src  != NULL && top_src->klass()  != NULL
6119           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6120 
6121   // checks are the responsibility of the caller
6122   Node* src_start  = src;
6123   Node* dest_start = dest;
6124   if (src_offset != NULL || dest_offset != NULL) {
6125     assert(src_offset != NULL && dest_offset != NULL, "");
6126     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6127     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6128   }
6129 
6130   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6131   // (because of the predicated logic executed earlier).
6132   // so we cast it here safely.
6133   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6134 
6135   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6136   if (embeddedCipherObj == NULL) return false;
6137 
6138   // cast it to what we know it will be at runtime
6139   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6140   assert(tinst != NULL, "CBC obj is null");
6141   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6142   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6143   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6144 
6145   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6146   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6147   const TypeOopPtr* xtype = aklass->as_instance_type();
6148   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6149   aescrypt_object = _gvn.transform(aescrypt_object);
6150 
6151   // we need to get the start of the aescrypt_object's expanded key array
6152   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6153   if (k_start == NULL) return false;
6154 
6155   // similarly, get the start address of the r vector
6156   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6157   if (objRvec == NULL) return false;
6158   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6159 
6160   Node* cbcCrypt;
6161   if (Matcher::pass_original_key_for_aes()) {
6162     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6163     // compatibility issues between Java key expansion and SPARC crypto instructions
6164     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6165     if (original_k_start == NULL) return false;
6166 
6167     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6168     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6169                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6170                                  stubAddr, stubName, TypePtr::BOTTOM,
6171                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6172   } else {
6173     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6174     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6175                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6176                                  stubAddr, stubName, TypePtr::BOTTOM,
6177                                  src_start, dest_start, k_start, r_start, len);
6178   }
6179 
6180   // return cipher length (int)
6181   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6182   set_result(retvalue);
6183   return true;
6184 }
6185 
6186 //------------------------------inline_counterMode_AESCrypt-----------------------
6187 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6188   assert(UseAES, "need AES instruction support");
6189   if (!UseAESCTRIntrinsics) return false;
6190 
6191   address stubAddr = NULL;
6192   const char *stubName = NULL;
6193   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6194     stubAddr = StubRoutines::counterMode_AESCrypt();
6195     stubName = "counterMode_AESCrypt";
6196   }
6197   if (stubAddr == NULL) return false;
6198 
6199   Node* counterMode_object = argument(0);
6200   Node* src = argument(1);
6201   Node* src_offset = argument(2);
6202   Node* len = argument(3);
6203   Node* dest = argument(4);
6204   Node* dest_offset = argument(5);
6205 
6206   // (1) src and dest are arrays.
6207   const Type* src_type = src->Value(&_gvn);
6208   const Type* dest_type = dest->Value(&_gvn);
6209   const TypeAryPtr* top_src = src_type->isa_aryptr();
6210   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6211   assert(top_src != NULL && top_src->klass() != NULL &&
6212          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6213 
6214   // checks are the responsibility of the caller
6215   Node* src_start = src;
6216   Node* dest_start = dest;
6217   if (src_offset != NULL || dest_offset != NULL) {
6218     assert(src_offset != NULL && dest_offset != NULL, "");
6219     src_start = array_element_address(src, src_offset, T_BYTE);
6220     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6221   }
6222 
6223   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6224   // (because of the predicated logic executed earlier).
6225   // so we cast it here safely.
6226   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6227   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6228   if (embeddedCipherObj == NULL) return false;
6229   // cast it to what we know it will be at runtime
6230   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6231   assert(tinst != NULL, "CTR obj is null");
6232   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6233   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6234   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6235   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6236   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6237   const TypeOopPtr* xtype = aklass->as_instance_type();
6238   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6239   aescrypt_object = _gvn.transform(aescrypt_object);
6240   // we need to get the start of the aescrypt_object's expanded key array
6241   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6242   if (k_start == NULL) return false;
6243   // similarly, get the start address of the r vector
6244   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6245   if (obj_counter == NULL) return false;
6246   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6247 
6248   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6249   if (saved_encCounter == NULL) return false;
6250   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6251   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6252 
6253   Node* ctrCrypt;
6254   if (Matcher::pass_original_key_for_aes()) {
6255     // no SPARC version for AES/CTR intrinsics now.
6256     return false;
6257   }
6258   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6259   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6260                                OptoRuntime::counterMode_aescrypt_Type(),
6261                                stubAddr, stubName, TypePtr::BOTTOM,
6262                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6263 
6264   // return cipher length (int)
6265   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6266   set_result(retvalue);
6267   return true;
6268 }
6269 
6270 //------------------------------get_key_start_from_aescrypt_object-----------------------
6271 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6272 #ifdef PPC64
6273   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6274   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6275   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6276   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6277   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6278   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6279   if (objSessionK == NULL) {
6280     return (Node *) NULL;
6281   }
6282   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6283 #else
6284   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6285 #endif // PPC64
6286   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6287   if (objAESCryptKey == NULL) return (Node *) NULL;
6288 
6289   // now have the array, need to get the start address of the K array
6290   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6291   return k_start;
6292 }
6293 
6294 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6295 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6296   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6297   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6298   if (objAESCryptKey == NULL) return (Node *) NULL;
6299 
6300   // now have the array, need to get the start address of the lastKey array
6301   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6302   return original_k_start;
6303 }
6304 
6305 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6306 // Return node representing slow path of predicate check.
6307 // the pseudo code we want to emulate with this predicate is:
6308 // for encryption:
6309 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6310 // for decryption:
6311 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6312 //    note cipher==plain is more conservative than the original java code but that's OK
6313 //
6314 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6315   // The receiver was checked for NULL already.
6316   Node* objCBC = argument(0);
6317 
6318   // Load embeddedCipher field of CipherBlockChaining object.
6319   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6320 
6321   // get AESCrypt klass for instanceOf check
6322   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6323   // will have same classloader as CipherBlockChaining object
6324   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6325   assert(tinst != NULL, "CBCobj is null");
6326   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6327 
6328   // we want to do an instanceof comparison against the AESCrypt class
6329   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6330   if (!klass_AESCrypt->is_loaded()) {
6331     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6332     Node* ctrl = control();
6333     set_control(top()); // no regular fast path
6334     return ctrl;
6335   }
6336   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6337 
6338   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6339   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6340   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6341 
6342   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6343 
6344   // for encryption, we are done
6345   if (!decrypting)
6346     return instof_false;  // even if it is NULL
6347 
6348   // for decryption, we need to add a further check to avoid
6349   // taking the intrinsic path when cipher and plain are the same
6350   // see the original java code for why.
6351   RegionNode* region = new RegionNode(3);
6352   region->init_req(1, instof_false);
6353   Node* src = argument(1);
6354   Node* dest = argument(4);
6355   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6356   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6357   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6358   region->init_req(2, src_dest_conjoint);
6359 
6360   record_for_igvn(region);
6361   return _gvn.transform(region);
6362 }
6363 
6364 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6365 // Return node representing slow path of predicate check.
6366 // the pseudo code we want to emulate with this predicate is:
6367 // for encryption:
6368 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6369 // for decryption:
6370 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6371 //    note cipher==plain is more conservative than the original java code but that's OK
6372 //
6373 
6374 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6375   // The receiver was checked for NULL already.
6376   Node* objCTR = argument(0);
6377 
6378   // Load embeddedCipher field of CipherBlockChaining object.
6379   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6380 
6381   // get AESCrypt klass for instanceOf check
6382   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6383   // will have same classloader as CipherBlockChaining object
6384   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6385   assert(tinst != NULL, "CTRobj is null");
6386   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6387 
6388   // we want to do an instanceof comparison against the AESCrypt class
6389   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6390   if (!klass_AESCrypt->is_loaded()) {
6391     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6392     Node* ctrl = control();
6393     set_control(top()); // no regular fast path
6394     return ctrl;
6395   }
6396 
6397   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6398   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6399   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6400   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6401   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6402 
6403   return instof_false; // even if it is NULL
6404 }
6405 
6406 //------------------------------inline_ghash_processBlocks
6407 bool LibraryCallKit::inline_ghash_processBlocks() {
6408   address stubAddr;
6409   const char *stubName;
6410   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6411 
6412   stubAddr = StubRoutines::ghash_processBlocks();
6413   stubName = "ghash_processBlocks";
6414 
6415   Node* data           = argument(0);
6416   Node* offset         = argument(1);
6417   Node* len            = argument(2);
6418   Node* state          = argument(3);
6419   Node* subkeyH        = argument(4);
6420 
6421   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6422   assert(state_start, "state is NULL");
6423   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6424   assert(subkeyH_start, "subkeyH is NULL");
6425   Node* data_start  = array_element_address(data, offset, T_BYTE);
6426   assert(data_start, "data is NULL");
6427 
6428   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6429                                   OptoRuntime::ghash_processBlocks_Type(),
6430                                   stubAddr, stubName, TypePtr::BOTTOM,
6431                                   state_start, subkeyH_start, data_start, len);
6432   return true;
6433 }
6434 
6435 //------------------------------inline_sha_implCompress-----------------------
6436 //
6437 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6438 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6439 //
6440 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6441 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6442 //
6443 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6444 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6445 //
6446 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6447   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6448 
6449   Node* sha_obj = argument(0);
6450   Node* src     = argument(1); // type oop
6451   Node* ofs     = argument(2); // type int
6452 
6453   const Type* src_type = src->Value(&_gvn);
6454   const TypeAryPtr* top_src = src_type->isa_aryptr();
6455   if (top_src  == NULL || top_src->klass()  == NULL) {
6456     // failed array check
6457     return false;
6458   }
6459   // Figure out the size and type of the elements we will be copying.
6460   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6461   if (src_elem != T_BYTE) {
6462     return false;
6463   }
6464   // 'src_start' points to src array + offset
6465   Node* src_start = array_element_address(src, ofs, src_elem);
6466   Node* state = NULL;
6467   address stubAddr;
6468   const char *stubName;
6469 
6470   switch(id) {
6471   case vmIntrinsics::_sha_implCompress:
6472     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6473     state = get_state_from_sha_object(sha_obj);
6474     stubAddr = StubRoutines::sha1_implCompress();
6475     stubName = "sha1_implCompress";
6476     break;
6477   case vmIntrinsics::_sha2_implCompress:
6478     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6479     state = get_state_from_sha_object(sha_obj);
6480     stubAddr = StubRoutines::sha256_implCompress();
6481     stubName = "sha256_implCompress";
6482     break;
6483   case vmIntrinsics::_sha5_implCompress:
6484     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6485     state = get_state_from_sha5_object(sha_obj);
6486     stubAddr = StubRoutines::sha512_implCompress();
6487     stubName = "sha512_implCompress";
6488     break;
6489   default:
6490     fatal_unexpected_iid(id);
6491     return false;
6492   }
6493   if (state == NULL) return false;
6494 
6495   // Call the stub.
6496   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6497                                  stubAddr, stubName, TypePtr::BOTTOM,
6498                                  src_start, state);
6499 
6500   return true;
6501 }
6502 
6503 //------------------------------inline_digestBase_implCompressMB-----------------------
6504 //
6505 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6506 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6507 //
6508 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6509   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6510          "need SHA1/SHA256/SHA512 instruction support");
6511   assert((uint)predicate < 3, "sanity");
6512   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6513 
6514   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6515   Node* src            = argument(1); // byte[] array
6516   Node* ofs            = argument(2); // type int
6517   Node* limit          = argument(3); // type int
6518 
6519   const Type* src_type = src->Value(&_gvn);
6520   const TypeAryPtr* top_src = src_type->isa_aryptr();
6521   if (top_src  == NULL || top_src->klass()  == NULL) {
6522     // failed array check
6523     return false;
6524   }
6525   // Figure out the size and type of the elements we will be copying.
6526   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6527   if (src_elem != T_BYTE) {
6528     return false;
6529   }
6530   // 'src_start' points to src array + offset
6531   Node* src_start = array_element_address(src, ofs, src_elem);
6532 
6533   const char* klass_SHA_name = NULL;
6534   const char* stub_name = NULL;
6535   address     stub_addr = NULL;
6536   bool        long_state = false;
6537 
6538   switch (predicate) {
6539   case 0:
6540     if (UseSHA1Intrinsics) {
6541       klass_SHA_name = "sun/security/provider/SHA";
6542       stub_name = "sha1_implCompressMB";
6543       stub_addr = StubRoutines::sha1_implCompressMB();
6544     }
6545     break;
6546   case 1:
6547     if (UseSHA256Intrinsics) {
6548       klass_SHA_name = "sun/security/provider/SHA2";
6549       stub_name = "sha256_implCompressMB";
6550       stub_addr = StubRoutines::sha256_implCompressMB();
6551     }
6552     break;
6553   case 2:
6554     if (UseSHA512Intrinsics) {
6555       klass_SHA_name = "sun/security/provider/SHA5";
6556       stub_name = "sha512_implCompressMB";
6557       stub_addr = StubRoutines::sha512_implCompressMB();
6558       long_state = true;
6559     }
6560     break;
6561   default:
6562     fatal("unknown SHA intrinsic predicate: %d", predicate);
6563   }
6564   if (klass_SHA_name != NULL) {
6565     // get DigestBase klass to lookup for SHA klass
6566     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6567     assert(tinst != NULL, "digestBase_obj is not instance???");
6568     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6569 
6570     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6571     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6572     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6573     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6574   }
6575   return false;
6576 }
6577 //------------------------------inline_sha_implCompressMB-----------------------
6578 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6579                                                bool long_state, address stubAddr, const char *stubName,
6580                                                Node* src_start, Node* ofs, Node* limit) {
6581   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6582   const TypeOopPtr* xtype = aklass->as_instance_type();
6583   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6584   sha_obj = _gvn.transform(sha_obj);
6585 
6586   Node* state;
6587   if (long_state) {
6588     state = get_state_from_sha5_object(sha_obj);
6589   } else {
6590     state = get_state_from_sha_object(sha_obj);
6591   }
6592   if (state == NULL) return false;
6593 
6594   // Call the stub.
6595   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6596                                  OptoRuntime::digestBase_implCompressMB_Type(),
6597                                  stubAddr, stubName, TypePtr::BOTTOM,
6598                                  src_start, state, ofs, limit);
6599   // return ofs (int)
6600   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6601   set_result(result);
6602 
6603   return true;
6604 }
6605 
6606 //------------------------------get_state_from_sha_object-----------------------
6607 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6608   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6609   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6610   if (sha_state == NULL) return (Node *) NULL;
6611 
6612   // now have the array, need to get the start address of the state array
6613   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6614   return state;
6615 }
6616 
6617 //------------------------------get_state_from_sha5_object-----------------------
6618 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6619   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6620   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6621   if (sha_state == NULL) return (Node *) NULL;
6622 
6623   // now have the array, need to get the start address of the state array
6624   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6625   return state;
6626 }
6627 
6628 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6629 // Return node representing slow path of predicate check.
6630 // the pseudo code we want to emulate with this predicate is:
6631 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6632 //
6633 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6634   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6635          "need SHA1/SHA256/SHA512 instruction support");
6636   assert((uint)predicate < 3, "sanity");
6637 
6638   // The receiver was checked for NULL already.
6639   Node* digestBaseObj = argument(0);
6640 
6641   // get DigestBase klass for instanceOf check
6642   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6643   assert(tinst != NULL, "digestBaseObj is null");
6644   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6645 
6646   const char* klass_SHA_name = NULL;
6647   switch (predicate) {
6648   case 0:
6649     if (UseSHA1Intrinsics) {
6650       // we want to do an instanceof comparison against the SHA class
6651       klass_SHA_name = "sun/security/provider/SHA";
6652     }
6653     break;
6654   case 1:
6655     if (UseSHA256Intrinsics) {
6656       // we want to do an instanceof comparison against the SHA2 class
6657       klass_SHA_name = "sun/security/provider/SHA2";
6658     }
6659     break;
6660   case 2:
6661     if (UseSHA512Intrinsics) {
6662       // we want to do an instanceof comparison against the SHA5 class
6663       klass_SHA_name = "sun/security/provider/SHA5";
6664     }
6665     break;
6666   default:
6667     fatal("unknown SHA intrinsic predicate: %d", predicate);
6668   }
6669 
6670   ciKlass* klass_SHA = NULL;
6671   if (klass_SHA_name != NULL) {
6672     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6673   }
6674   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6675     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6676     Node* ctrl = control();
6677     set_control(top()); // no intrinsic path
6678     return ctrl;
6679   }
6680   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6681 
6682   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6683   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6684   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6685   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6686 
6687   return instof_false;  // even if it is NULL
6688 }
6689 
6690 bool LibraryCallKit::inline_profileBoolean() {
6691   Node* counts = argument(1);
6692   const TypeAryPtr* ary = NULL;
6693   ciArray* aobj = NULL;
6694   if (counts->is_Con()
6695       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6696       && (aobj = ary->const_oop()->as_array()) != NULL
6697       && (aobj->length() == 2)) {
6698     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6699     jint false_cnt = aobj->element_value(0).as_int();
6700     jint  true_cnt = aobj->element_value(1).as_int();
6701 
6702     if (C->log() != NULL) {
6703       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6704                      false_cnt, true_cnt);
6705     }
6706 
6707     if (false_cnt + true_cnt == 0) {
6708       // According to profile, never executed.
6709       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6710                           Deoptimization::Action_reinterpret);
6711       return true;
6712     }
6713 
6714     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6715     // is a number of each value occurrences.
6716     Node* result = argument(0);
6717     if (false_cnt == 0 || true_cnt == 0) {
6718       // According to profile, one value has been never seen.
6719       int expected_val = (false_cnt == 0) ? 1 : 0;
6720 
6721       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6722       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6723 
6724       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6725       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6726       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6727 
6728       { // Slow path: uncommon trap for never seen value and then reexecute
6729         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6730         // the value has been seen at least once.
6731         PreserveJVMState pjvms(this);
6732         PreserveReexecuteState preexecs(this);
6733         jvms()->set_should_reexecute(true);
6734 
6735         set_control(slow_path);
6736         set_i_o(i_o());
6737 
6738         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6739                             Deoptimization::Action_reinterpret);
6740       }
6741       // The guard for never seen value enables sharpening of the result and
6742       // returning a constant. It allows to eliminate branches on the same value
6743       // later on.
6744       set_control(fast_path);
6745       result = intcon(expected_val);
6746     }
6747     // Stop profiling.
6748     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6749     // By replacing method body with profile data (represented as ProfileBooleanNode
6750     // on IR level) we effectively disable profiling.
6751     // It enables full speed execution once optimized code is generated.
6752     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6753     C->record_for_igvn(profile);
6754     set_result(profile);
6755     return true;
6756   } else {
6757     // Continue profiling.
6758     // Profile data isn't available at the moment. So, execute method's bytecode version.
6759     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6760     // is compiled and counters aren't available since corresponding MethodHandle
6761     // isn't a compile-time constant.
6762     return false;
6763   }
6764 }
6765 
6766 bool LibraryCallKit::inline_isCompileConstant() {
6767   Node* n = argument(0);
6768   set_result(n->is_Con() ? intcon(1) : intcon(0));
6769   return true;
6770 }