1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/connode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/loopnode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/memnode.hpp"
  43 #include "opto/mulnode.hpp"
  44 #include "opto/narrowptrnode.hpp"
  45 #include "opto/phaseX.hpp"
  46 #include "opto/regmask.hpp"
  47 #include "utilities/align.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/macros.hpp"
  50 #include "utilities/vmError.hpp"
  51 #if INCLUDE_ZGC
  52 #include "gc/z/c2/zBarrierSetC2.hpp"
  53 #endif
  54 
  55 // Portions of code courtesy of Clifford Click
  56 
  57 // Optimization - Graph Style
  58 
  59 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  60 
  61 //=============================================================================
  62 uint MemNode::size_of() const { return sizeof(*this); }
  63 
  64 const TypePtr *MemNode::adr_type() const {
  65   Node* adr = in(Address);
  66   if (adr == NULL)  return NULL; // node is dead
  67   const TypePtr* cross_check = NULL;
  68   DEBUG_ONLY(cross_check = _adr_type);
  69   return calculate_adr_type(adr->bottom_type(), cross_check);
  70 }
  71 
  72 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  73   if (adr != NULL) {
  74     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  75       return true;
  76     }
  77   }
  78   return false;
  79 }
  80 
  81 #ifndef PRODUCT
  82 void MemNode::dump_spec(outputStream *st) const {
  83   if (in(Address) == NULL)  return; // node is dead
  84 #ifndef ASSERT
  85   // fake the missing field
  86   const TypePtr* _adr_type = NULL;
  87   if (in(Address) != NULL)
  88     _adr_type = in(Address)->bottom_type()->isa_ptr();
  89 #endif
  90   dump_adr_type(this, _adr_type, st);
  91 
  92   Compile* C = Compile::current();
  93   if (C->alias_type(_adr_type)->is_volatile()) {
  94     st->print(" Volatile!");
  95   }
  96   if (_unaligned_access) {
  97     st->print(" unaligned");
  98   }
  99   if (_mismatched_access) {
 100     st->print(" mismatched");
 101   }
 102 }
 103 
 104 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
 105   st->print(" @");
 106   if (adr_type == NULL) {
 107     st->print("NULL");
 108   } else {
 109     adr_type->dump_on(st);
 110     Compile* C = Compile::current();
 111     Compile::AliasType* atp = NULL;
 112     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 113     if (atp == NULL)
 114       st->print(", idx=?\?;");
 115     else if (atp->index() == Compile::AliasIdxBot)
 116       st->print(", idx=Bot;");
 117     else if (atp->index() == Compile::AliasIdxTop)
 118       st->print(", idx=Top;");
 119     else if (atp->index() == Compile::AliasIdxRaw)
 120       st->print(", idx=Raw;");
 121     else {
 122       ciField* field = atp->field();
 123       if (field) {
 124         st->print(", name=");
 125         field->print_name_on(st);
 126       }
 127       st->print(", idx=%d;", atp->index());
 128     }
 129   }
 130 }
 131 
 132 extern void print_alias_types();
 133 
 134 #endif
 135 
 136 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 137   assert((t_oop != NULL), "sanity");
 138   bool is_instance = t_oop->is_known_instance_field();
 139   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 140                              (load != NULL) && load->is_Load() &&
 141                              (phase->is_IterGVN() != NULL);
 142   if (!(is_instance || is_boxed_value_load))
 143     return mchain;  // don't try to optimize non-instance types
 144   uint instance_id = t_oop->instance_id();
 145   Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory);
 146   Node *prev = NULL;
 147   Node *result = mchain;
 148   while (prev != result) {
 149     prev = result;
 150     if (result == start_mem)
 151       break;  // hit one of our sentinels
 152     // skip over a call which does not affect this memory slice
 153     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 154       Node *proj_in = result->in(0);
 155       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 156         break;  // hit one of our sentinels
 157       } else if (proj_in->is_Call()) {
 158         // ArrayCopyNodes processed here as well
 159         CallNode *call = proj_in->as_Call();
 160         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 161           result = call->in(TypeFunc::Memory);
 162         }
 163       } else if (proj_in->is_Initialize()) {
 164         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 165         // Stop if this is the initialization for the object instance which
 166         // contains this memory slice, otherwise skip over it.
 167         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 168           break;
 169         }
 170         if (is_instance) {
 171           result = proj_in->in(TypeFunc::Memory);
 172         } else if (is_boxed_value_load) {
 173           Node* klass = alloc->in(AllocateNode::KlassNode);
 174           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 175           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 176             result = proj_in->in(TypeFunc::Memory); // not related allocation
 177           }
 178         }
 179       } else if (proj_in->is_MemBar()) {
 180         ArrayCopyNode* ac = NULL;
 181         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 182           break;
 183         }
 184         result = proj_in->in(TypeFunc::Memory);
 185       } else {
 186         assert(false, "unexpected projection");
 187       }
 188     } else if (result->is_ClearArray()) {
 189       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 190         // Can not bypass initialization of the instance
 191         // we are looking for.
 192         break;
 193       }
 194       // Otherwise skip it (the call updated 'result' value).
 195     } else if (result->is_MergeMem()) {
 196       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 197     }
 198   }
 199   return result;
 200 }
 201 
 202 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 203   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 204   if (t_oop == NULL)
 205     return mchain;  // don't try to optimize non-oop types
 206   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 207   bool is_instance = t_oop->is_known_instance_field();
 208   PhaseIterGVN *igvn = phase->is_IterGVN();
 209   if (is_instance && igvn != NULL  && result->is_Phi()) {
 210     PhiNode *mphi = result->as_Phi();
 211     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 212     const TypePtr *t = mphi->adr_type();
 213     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 214         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 215          t->is_oopptr()->cast_to_exactness(true)
 216            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 217             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 218       // clone the Phi with our address type
 219       result = mphi->split_out_instance(t_adr, igvn);
 220     } else {
 221       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 222     }
 223   }
 224   return result;
 225 }
 226 
 227 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 228   uint alias_idx = phase->C->get_alias_index(tp);
 229   Node *mem = mmem;
 230 #ifdef ASSERT
 231   {
 232     // Check that current type is consistent with the alias index used during graph construction
 233     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 234     bool consistent =  adr_check == NULL || adr_check->empty() ||
 235                        phase->C->must_alias(adr_check, alias_idx );
 236     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 237     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 238                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 239         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 240         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 241           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 242           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 243       // don't assert if it is dead code.
 244       consistent = true;
 245     }
 246     if( !consistent ) {
 247       st->print("alias_idx==%d, adr_check==", alias_idx);
 248       if( adr_check == NULL ) {
 249         st->print("NULL");
 250       } else {
 251         adr_check->dump();
 252       }
 253       st->cr();
 254       print_alias_types();
 255       assert(consistent, "adr_check must match alias idx");
 256     }
 257   }
 258 #endif
 259   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 260   // means an array I have not precisely typed yet.  Do not do any
 261   // alias stuff with it any time soon.
 262   const TypeOopPtr *toop = tp->isa_oopptr();
 263   if( tp->base() != Type::AnyPtr &&
 264       !(toop &&
 265         toop->klass() != NULL &&
 266         toop->klass()->is_java_lang_Object() &&
 267         toop->offset() == Type::OffsetBot) ) {
 268     // compress paths and change unreachable cycles to TOP
 269     // If not, we can update the input infinitely along a MergeMem cycle
 270     // Equivalent code in PhiNode::Ideal
 271     Node* m  = phase->transform(mmem);
 272     // If transformed to a MergeMem, get the desired slice
 273     // Otherwise the returned node represents memory for every slice
 274     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 275     // Update input if it is progress over what we have now
 276   }
 277   return mem;
 278 }
 279 
 280 //--------------------------Ideal_common---------------------------------------
 281 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 282 // Unhook non-raw memories from complete (macro-expanded) initializations.
 283 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 284   // If our control input is a dead region, kill all below the region
 285   Node *ctl = in(MemNode::Control);
 286   if (ctl && remove_dead_region(phase, can_reshape))
 287     return this;
 288   ctl = in(MemNode::Control);
 289   // Don't bother trying to transform a dead node
 290   if (ctl && ctl->is_top())  return NodeSentinel;
 291 
 292   PhaseIterGVN *igvn = phase->is_IterGVN();
 293   // Wait if control on the worklist.
 294   if (ctl && can_reshape && igvn != NULL) {
 295     Node* bol = NULL;
 296     Node* cmp = NULL;
 297     if (ctl->in(0)->is_If()) {
 298       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 299       bol = ctl->in(0)->in(1);
 300       if (bol->is_Bool())
 301         cmp = ctl->in(0)->in(1)->in(1);
 302     }
 303     if (igvn->_worklist.member(ctl) ||
 304         (bol != NULL && igvn->_worklist.member(bol)) ||
 305         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 306       // This control path may be dead.
 307       // Delay this memory node transformation until the control is processed.
 308       phase->is_IterGVN()->_worklist.push(this);
 309       return NodeSentinel; // caller will return NULL
 310     }
 311   }
 312   // Ignore if memory is dead, or self-loop
 313   Node *mem = in(MemNode::Memory);
 314   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 315   assert(mem != this, "dead loop in MemNode::Ideal");
 316 
 317   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 318     // This memory slice may be dead.
 319     // Delay this mem node transformation until the memory is processed.
 320     phase->is_IterGVN()->_worklist.push(this);
 321     return NodeSentinel; // caller will return NULL
 322   }
 323 
 324   Node *address = in(MemNode::Address);
 325   const Type *t_adr = phase->type(address);
 326   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 327 
 328   if (can_reshape && igvn != NULL &&
 329       (igvn->_worklist.member(address) ||
 330        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 331     // The address's base and type may change when the address is processed.
 332     // Delay this mem node transformation until the address is processed.
 333     phase->is_IterGVN()->_worklist.push(this);
 334     return NodeSentinel; // caller will return NULL
 335   }
 336 
 337   // Do NOT remove or optimize the next lines: ensure a new alias index
 338   // is allocated for an oop pointer type before Escape Analysis.
 339   // Note: C++ will not remove it since the call has side effect.
 340   if (t_adr->isa_oopptr()) {
 341     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 342   }
 343 
 344   Node* base = NULL;
 345   if (address->is_AddP()) {
 346     base = address->in(AddPNode::Base);
 347   }
 348   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 349       !t_adr->isa_rawptr()) {
 350     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 351     // Skip this node optimization if its address has TOP base.
 352     return NodeSentinel; // caller will return NULL
 353   }
 354 
 355   // Avoid independent memory operations
 356   Node* old_mem = mem;
 357 
 358   // The code which unhooks non-raw memories from complete (macro-expanded)
 359   // initializations was removed. After macro-expansion all stores catched
 360   // by Initialize node became raw stores and there is no information
 361   // which memory slices they modify. So it is unsafe to move any memory
 362   // operation above these stores. Also in most cases hooked non-raw memories
 363   // were already unhooked by using information from detect_ptr_independence()
 364   // and find_previous_store().
 365 
 366   if (mem->is_MergeMem()) {
 367     MergeMemNode* mmem = mem->as_MergeMem();
 368     const TypePtr *tp = t_adr->is_ptr();
 369 
 370     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 371   }
 372 
 373   if (mem != old_mem) {
 374     set_req(MemNode::Memory, mem);
 375     if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) {
 376       igvn->_worklist.push(old_mem);
 377     }
 378     if (phase->type(mem) == Type::TOP) return NodeSentinel;
 379     return this;
 380   }
 381 
 382   // let the subclass continue analyzing...
 383   return NULL;
 384 }
 385 
 386 // Helper function for proving some simple control dominations.
 387 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 388 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 389 // is not a constant (dominated by the method's StartNode).
 390 // Used by MemNode::find_previous_store to prove that the
 391 // control input of a memory operation predates (dominates)
 392 // an allocation it wants to look past.
 393 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 394   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 395     return false; // Conservative answer for dead code
 396 
 397   // Check 'dom'. Skip Proj and CatchProj nodes.
 398   dom = dom->find_exact_control(dom);
 399   if (dom == NULL || dom->is_top())
 400     return false; // Conservative answer for dead code
 401 
 402   if (dom == sub) {
 403     // For the case when, for example, 'sub' is Initialize and the original
 404     // 'dom' is Proj node of the 'sub'.
 405     return false;
 406   }
 407 
 408   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 409     return true;
 410 
 411   // 'dom' dominates 'sub' if its control edge and control edges
 412   // of all its inputs dominate or equal to sub's control edge.
 413 
 414   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 415   // Or Region for the check in LoadNode::Ideal();
 416   // 'sub' should have sub->in(0) != NULL.
 417   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 418          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 419 
 420   // Get control edge of 'sub'.
 421   Node* orig_sub = sub;
 422   sub = sub->find_exact_control(sub->in(0));
 423   if (sub == NULL || sub->is_top())
 424     return false; // Conservative answer for dead code
 425 
 426   assert(sub->is_CFG(), "expecting control");
 427 
 428   if (sub == dom)
 429     return true;
 430 
 431   if (sub->is_Start() || sub->is_Root())
 432     return false;
 433 
 434   {
 435     // Check all control edges of 'dom'.
 436 
 437     ResourceMark rm;
 438     Arena* arena = Thread::current()->resource_area();
 439     Node_List nlist(arena);
 440     Unique_Node_List dom_list(arena);
 441 
 442     dom_list.push(dom);
 443     bool only_dominating_controls = false;
 444 
 445     for (uint next = 0; next < dom_list.size(); next++) {
 446       Node* n = dom_list.at(next);
 447       if (n == orig_sub)
 448         return false; // One of dom's inputs dominated by sub.
 449       if (!n->is_CFG() && n->pinned()) {
 450         // Check only own control edge for pinned non-control nodes.
 451         n = n->find_exact_control(n->in(0));
 452         if (n == NULL || n->is_top())
 453           return false; // Conservative answer for dead code
 454         assert(n->is_CFG(), "expecting control");
 455         dom_list.push(n);
 456       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 457         only_dominating_controls = true;
 458       } else if (n->is_CFG()) {
 459         if (n->dominates(sub, nlist))
 460           only_dominating_controls = true;
 461         else
 462           return false;
 463       } else {
 464         // First, own control edge.
 465         Node* m = n->find_exact_control(n->in(0));
 466         if (m != NULL) {
 467           if (m->is_top())
 468             return false; // Conservative answer for dead code
 469           dom_list.push(m);
 470         }
 471         // Now, the rest of edges.
 472         uint cnt = n->req();
 473         for (uint i = 1; i < cnt; i++) {
 474           m = n->find_exact_control(n->in(i));
 475           if (m == NULL || m->is_top())
 476             continue;
 477           dom_list.push(m);
 478         }
 479       }
 480     }
 481     return only_dominating_controls;
 482   }
 483 }
 484 
 485 //---------------------detect_ptr_independence---------------------------------
 486 // Used by MemNode::find_previous_store to prove that two base
 487 // pointers are never equal.
 488 // The pointers are accompanied by their associated allocations,
 489 // if any, which have been previously discovered by the caller.
 490 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 491                                       Node* p2, AllocateNode* a2,
 492                                       PhaseTransform* phase) {
 493   // Attempt to prove that these two pointers cannot be aliased.
 494   // They may both manifestly be allocations, and they should differ.
 495   // Or, if they are not both allocations, they can be distinct constants.
 496   // Otherwise, one is an allocation and the other a pre-existing value.
 497   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 498     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 499   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 500     return (a1 != a2);
 501   } else if (a1 != NULL) {                  // one allocation a1
 502     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 503     return all_controls_dominate(p2, a1);
 504   } else { //(a2 != NULL)                   // one allocation a2
 505     return all_controls_dominate(p1, a2);
 506   }
 507   return false;
 508 }
 509 
 510 
 511 // Find an arraycopy that must have set (can_see_stored_value=true) or
 512 // could have set (can_see_stored_value=false) the value for this load
 513 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 514   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 515                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 516     Node* mb = mem->in(0);
 517     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 518         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 519       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 520       if (ac->is_clonebasic()) {
 521         intptr_t offset;
 522         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 523         if (alloc != NULL && alloc == ld_alloc) {
 524           return ac;
 525         }
 526       }
 527     }
 528   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 529     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 530 
 531     if (ac->is_arraycopy_validated() ||
 532         ac->is_copyof_validated() ||
 533         ac->is_copyofrange_validated()) {
 534       Node* ld_addp = in(MemNode::Address);
 535       if (ld_addp->is_AddP()) {
 536         Node* ld_base = ld_addp->in(AddPNode::Address);
 537         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 538 
 539         Node* dest = ac->in(ArrayCopyNode::Dest);
 540 
 541         if (dest == ld_base) {
 542           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 543           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 544             return ac;
 545           }
 546           if (!can_see_stored_value) {
 547             mem = ac->in(TypeFunc::Memory);
 548           }
 549         }
 550       }
 551     }
 552   }
 553   return NULL;
 554 }
 555 
 556 // The logic for reordering loads and stores uses four steps:
 557 // (a) Walk carefully past stores and initializations which we
 558 //     can prove are independent of this load.
 559 // (b) Observe that the next memory state makes an exact match
 560 //     with self (load or store), and locate the relevant store.
 561 // (c) Ensure that, if we were to wire self directly to the store,
 562 //     the optimizer would fold it up somehow.
 563 // (d) Do the rewiring, and return, depending on some other part of
 564 //     the optimizer to fold up the load.
 565 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 566 // specific to loads and stores, so they are handled by the callers.
 567 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 568 //
 569 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 570   Node*         ctrl   = in(MemNode::Control);
 571   Node*         adr    = in(MemNode::Address);
 572   intptr_t      offset = 0;
 573   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 574   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 575 
 576   if (offset == Type::OffsetBot)
 577     return NULL;            // cannot unalias unless there are precise offsets
 578 
 579   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 580   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 581 
 582   intptr_t size_in_bytes = memory_size();
 583 
 584   Node* mem = in(MemNode::Memory);   // start searching here...
 585 
 586   int cnt = 50;             // Cycle limiter
 587   for (;;) {                // While we can dance past unrelated stores...
 588     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 589 
 590     Node* prev = mem;
 591     if (mem->is_Store()) {
 592       Node* st_adr = mem->in(MemNode::Address);
 593       intptr_t st_offset = 0;
 594       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 595       if (st_base == NULL)
 596         break;              // inscrutable pointer
 597 
 598       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 599       // We need the bases to be the equal in order for the offset check to make sense.
 600       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 601         break;
 602       }
 603 
 604       if (st_offset != offset && st_offset != Type::OffsetBot) {
 605         const int MAX_STORE = BytesPerLong;
 606         if (st_offset >= offset + size_in_bytes ||
 607             st_offset <= offset - MAX_STORE ||
 608             st_offset <= offset - mem->as_Store()->memory_size()) {
 609           // Success:  The offsets are provably independent.
 610           // (You may ask, why not just test st_offset != offset and be done?
 611           // The answer is that stores of different sizes can co-exist
 612           // in the same sequence of RawMem effects.  We sometimes initialize
 613           // a whole 'tile' of array elements with a single jint or jlong.)
 614           mem = mem->in(MemNode::Memory);
 615           continue;           // (a) advance through independent store memory
 616         }
 617       }
 618       if (st_base != base &&
 619           detect_ptr_independence(base, alloc,
 620                                   st_base,
 621                                   AllocateNode::Ideal_allocation(st_base, phase),
 622                                   phase)) {
 623         // Success:  The bases are provably independent.
 624         mem = mem->in(MemNode::Memory);
 625         continue;           // (a) advance through independent store memory
 626       }
 627 
 628       // (b) At this point, if the bases or offsets do not agree, we lose,
 629       // since we have not managed to prove 'this' and 'mem' independent.
 630       if (st_base == base && st_offset == offset) {
 631         return mem;         // let caller handle steps (c), (d)
 632       }
 633 
 634     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 635       InitializeNode* st_init = mem->in(0)->as_Initialize();
 636       AllocateNode*  st_alloc = st_init->allocation();
 637       if (st_alloc == NULL)
 638         break;              // something degenerated
 639       bool known_identical = false;
 640       bool known_independent = false;
 641       if (alloc == st_alloc)
 642         known_identical = true;
 643       else if (alloc != NULL)
 644         known_independent = true;
 645       else if (all_controls_dominate(this, st_alloc))
 646         known_independent = true;
 647 
 648       if (known_independent) {
 649         // The bases are provably independent: Either they are
 650         // manifestly distinct allocations, or else the control
 651         // of this load dominates the store's allocation.
 652         int alias_idx = phase->C->get_alias_index(adr_type());
 653         if (alias_idx == Compile::AliasIdxRaw) {
 654           mem = st_alloc->in(TypeFunc::Memory);
 655         } else {
 656           mem = st_init->memory(alias_idx);
 657         }
 658         continue;           // (a) advance through independent store memory
 659       }
 660 
 661       // (b) at this point, if we are not looking at a store initializing
 662       // the same allocation we are loading from, we lose.
 663       if (known_identical) {
 664         // From caller, can_see_stored_value will consult find_captured_store.
 665         return mem;         // let caller handle steps (c), (d)
 666       }
 667 
 668     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 669       if (prev != mem) {
 670         // Found an arraycopy but it doesn't affect that load
 671         continue;
 672       }
 673       // Found an arraycopy that may affect that load
 674       return mem;
 675     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 676       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 677       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 678         // ArrayCopyNodes processed here as well.
 679         CallNode *call = mem->in(0)->as_Call();
 680         if (!call->may_modify(addr_t, phase)) {
 681           mem = call->in(TypeFunc::Memory);
 682           continue;         // (a) advance through independent call memory
 683         }
 684       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 685         ArrayCopyNode* ac = NULL;
 686         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 687           break;
 688         }
 689         mem = mem->in(0)->in(TypeFunc::Memory);
 690         continue;           // (a) advance through independent MemBar memory
 691       } else if (mem->is_ClearArray()) {
 692         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 693           // (the call updated 'mem' value)
 694           continue;         // (a) advance through independent allocation memory
 695         } else {
 696           // Can not bypass initialization of the instance
 697           // we are looking for.
 698           return mem;
 699         }
 700       } else if (mem->is_MergeMem()) {
 701         int alias_idx = phase->C->get_alias_index(adr_type());
 702         mem = mem->as_MergeMem()->memory_at(alias_idx);
 703         continue;           // (a) advance through independent MergeMem memory
 704       }
 705     }
 706 
 707     // Unless there is an explicit 'continue', we must bail out here,
 708     // because 'mem' is an inscrutable memory state (e.g., a call).
 709     break;
 710   }
 711 
 712   return NULL;              // bail out
 713 }
 714 
 715 //----------------------calculate_adr_type-------------------------------------
 716 // Helper function.  Notices when the given type of address hits top or bottom.
 717 // Also, asserts a cross-check of the type against the expected address type.
 718 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 719   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 720   #ifdef PRODUCT
 721   cross_check = NULL;
 722   #else
 723   if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
 724   #endif
 725   const TypePtr* tp = t->isa_ptr();
 726   if (tp == NULL) {
 727     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 728     return TypePtr::BOTTOM;           // touches lots of memory
 729   } else {
 730     #ifdef ASSERT
 731     // %%%% [phh] We don't check the alias index if cross_check is
 732     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 733     if (cross_check != NULL &&
 734         cross_check != TypePtr::BOTTOM &&
 735         cross_check != TypeRawPtr::BOTTOM) {
 736       // Recheck the alias index, to see if it has changed (due to a bug).
 737       Compile* C = Compile::current();
 738       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 739              "must stay in the original alias category");
 740       // The type of the address must be contained in the adr_type,
 741       // disregarding "null"-ness.
 742       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 743       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 744       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 745              "real address must not escape from expected memory type");
 746     }
 747     #endif
 748     return tp;
 749   }
 750 }
 751 
 752 //=============================================================================
 753 // Should LoadNode::Ideal() attempt to remove control edges?
 754 bool LoadNode::can_remove_control() const {
 755   return true;
 756 }
 757 uint LoadNode::size_of() const { return sizeof(*this); }
 758 uint LoadNode::cmp( const Node &n ) const
 759 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 760 const Type *LoadNode::bottom_type() const { return _type; }
 761 uint LoadNode::ideal_reg() const {
 762   return _type->ideal_reg();
 763 }
 764 
 765 #ifndef PRODUCT
 766 void LoadNode::dump_spec(outputStream *st) const {
 767   MemNode::dump_spec(st);
 768   if( !Verbose && !WizardMode ) {
 769     // standard dump does this in Verbose and WizardMode
 770     st->print(" #"); _type->dump_on(st);
 771   }
 772   if (!depends_only_on_test()) {
 773     st->print(" (does not depend only on test)");
 774   }
 775 }
 776 #endif
 777 
 778 #ifdef ASSERT
 779 //----------------------------is_immutable_value-------------------------------
 780 // Helper function to allow a raw load without control edge for some cases
 781 bool LoadNode::is_immutable_value(Node* adr) {
 782   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 783           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 784           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 785            in_bytes(JavaThread::osthread_offset())));
 786 }
 787 #endif
 788 
 789 //----------------------------LoadNode::make-----------------------------------
 790 // Polymorphic factory method:
 791 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 792                      ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 793   Compile* C = gvn.C;
 794 
 795   // sanity check the alias category against the created node type
 796   assert(!(adr_type->isa_oopptr() &&
 797            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 798          "use LoadKlassNode instead");
 799   assert(!(adr_type->isa_aryptr() &&
 800            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 801          "use LoadRangeNode instead");
 802   // Check control edge of raw loads
 803   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 804           // oop will be recorded in oop map if load crosses safepoint
 805           rt->isa_oopptr() || is_immutable_value(adr),
 806           "raw memory operations should have control edge");
 807   LoadNode* load = NULL;
 808   switch (bt) {
 809   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 810   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 811   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 812   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 813   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 814   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 815   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 816   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 817   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 818   case T_OBJECT:
 819 #ifdef _LP64
 820     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 821       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 822     } else
 823 #endif
 824     {
 825       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 826       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 827     }
 828     break;
 829   default:
 830     ShouldNotReachHere();
 831     break;
 832   }
 833   assert(load != NULL, "LoadNode should have been created");
 834   if (unaligned) {
 835     load->set_unaligned_access();
 836   }
 837   if (mismatched) {
 838     load->set_mismatched_access();
 839   }
 840   if (unsafe) {
 841     load->set_unsafe_access();
 842   }
 843   if (load->Opcode() == Op_LoadN) {
 844     Node* ld = gvn.transform(load);
 845     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 846   }
 847 
 848   return load;
 849 }
 850 
 851 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 852                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 853   bool require_atomic = true;
 854   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 855   if (unaligned) {
 856     load->set_unaligned_access();
 857   }
 858   if (mismatched) {
 859     load->set_mismatched_access();
 860   }
 861   if (unsafe) {
 862     load->set_unsafe_access();
 863   }
 864   return load;
 865 }
 866 
 867 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 868                                   ControlDependency control_dependency, bool unaligned, bool mismatched, bool unsafe) {
 869   bool require_atomic = true;
 870   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 871   if (unaligned) {
 872     load->set_unaligned_access();
 873   }
 874   if (mismatched) {
 875     load->set_mismatched_access();
 876   }
 877   if (unsafe) {
 878     load->set_unsafe_access();
 879   }
 880   return load;
 881 }
 882 
 883 
 884 
 885 //------------------------------hash-------------------------------------------
 886 uint LoadNode::hash() const {
 887   // unroll addition of interesting fields
 888   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 889 }
 890 
 891 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 892   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 893     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 894     bool is_stable_ary = FoldStableValues &&
 895                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 896                          tp->isa_aryptr()->is_stable();
 897 
 898     return (eliminate_boxing && non_volatile) || is_stable_ary;
 899   }
 900 
 901   return false;
 902 }
 903 
 904 // Is the value loaded previously stored by an arraycopy? If so return
 905 // a load node that reads from the source array so we may be able to
 906 // optimize out the ArrayCopy node later.
 907 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const {
 908 #if INCLUDE_ZGC
 909   if (UseZGC) {
 910     if (bottom_type()->make_oopptr() != NULL) {
 911       return NULL;
 912     }
 913   }
 914 #endif
 915 
 916   Node* ld_adr = in(MemNode::Address);
 917   intptr_t ld_off = 0;
 918   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 919   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 920   if (ac != NULL) {
 921     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 922 
 923     Node* mem = ac->in(TypeFunc::Memory);
 924     Node* ctl = ac->in(0);
 925     Node* src = ac->in(ArrayCopyNode::Src);
 926 
 927     if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) {
 928       return NULL;
 929     }
 930 
 931     LoadNode* ld = clone()->as_Load();
 932     Node* addp = in(MemNode::Address)->clone();
 933     if (ac->as_ArrayCopy()->is_clonebasic()) {
 934       assert(ld_alloc != NULL, "need an alloc");
 935       assert(addp->is_AddP(), "address must be addp");
 936       assert(ac->in(ArrayCopyNode::Dest)->is_AddP(), "dest must be an address");
 937       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 938       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base)), "strange pattern");
 939       assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address)), "strange pattern");
 940       addp->set_req(AddPNode::Base, src->in(AddPNode::Base));
 941       addp->set_req(AddPNode::Address, src->in(AddPNode::Address));
 942     } else {
 943       assert(ac->as_ArrayCopy()->is_arraycopy_validated() ||
 944              ac->as_ArrayCopy()->is_copyof_validated() ||
 945              ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases");
 946       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 947       addp->set_req(AddPNode::Base, src);
 948       addp->set_req(AddPNode::Address, src);
 949 
 950       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 951       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 952       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 953       uint shift  = exact_log2(type2aelembytes(ary_elem));
 954 
 955       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 956 #ifdef _LP64
 957       diff = phase->transform(new ConvI2LNode(diff));
 958 #endif
 959       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 960 
 961       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 962       addp->set_req(AddPNode::Offset, offset);
 963     }
 964     addp = phase->transform(addp);
 965 #ifdef ASSERT
 966     const TypePtr* adr_type = phase->type(addp)->is_ptr();
 967     ld->_adr_type = adr_type;
 968 #endif
 969     ld->set_req(MemNode::Address, addp);
 970     ld->set_req(0, ctl);
 971     ld->set_req(MemNode::Memory, mem);
 972     // load depends on the tests that validate the arraycopy
 973     ld->_control_dependency = Pinned;
 974     return ld;
 975   }
 976   return NULL;
 977 }
 978 
 979 
 980 //---------------------------can_see_stored_value------------------------------
 981 // This routine exists to make sure this set of tests is done the same
 982 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 983 // will change the graph shape in a way which makes memory alive twice at the
 984 // same time (uses the Oracle model of aliasing), then some
 985 // LoadXNode::Identity will fold things back to the equivalence-class model
 986 // of aliasing.
 987 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 988   Node* ld_adr = in(MemNode::Address);
 989   intptr_t ld_off = 0;
 990   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 991   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 992   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 993   // This is more general than load from boxing objects.
 994   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 995     uint alias_idx = atp->index();
 996     bool final = !atp->is_rewritable();
 997     Node* result = NULL;
 998     Node* current = st;
 999     // Skip through chains of MemBarNodes checking the MergeMems for
1000     // new states for the slice of this load.  Stop once any other
1001     // kind of node is encountered.  Loads from final memory can skip
1002     // through any kind of MemBar but normal loads shouldn't skip
1003     // through MemBarAcquire since the could allow them to move out of
1004     // a synchronized region.
1005     while (current->is_Proj()) {
1006       int opc = current->in(0)->Opcode();
1007       if ((final && (opc == Op_MemBarAcquire ||
1008                      opc == Op_MemBarAcquireLock ||
1009                      opc == Op_LoadFence)) ||
1010           opc == Op_MemBarRelease ||
1011           opc == Op_StoreFence ||
1012           opc == Op_MemBarReleaseLock ||
1013           opc == Op_MemBarStoreStore ||
1014           opc == Op_MemBarCPUOrder) {
1015         Node* mem = current->in(0)->in(TypeFunc::Memory);
1016         if (mem->is_MergeMem()) {
1017           MergeMemNode* merge = mem->as_MergeMem();
1018           Node* new_st = merge->memory_at(alias_idx);
1019           if (new_st == merge->base_memory()) {
1020             // Keep searching
1021             current = new_st;
1022             continue;
1023           }
1024           // Save the new memory state for the slice and fall through
1025           // to exit.
1026           result = new_st;
1027         }
1028       }
1029       break;
1030     }
1031     if (result != NULL) {
1032       st = result;
1033     }
1034   }
1035 
1036   // Loop around twice in the case Load -> Initialize -> Store.
1037   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1038   for (int trip = 0; trip <= 1; trip++) {
1039 
1040     if (st->is_Store()) {
1041       Node* st_adr = st->in(MemNode::Address);
1042       if (!phase->eqv(st_adr, ld_adr)) {
1043         // Try harder before giving up...  Match raw and non-raw pointers.
1044         intptr_t st_off = 0;
1045         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1046         if (alloc == NULL)       return NULL;
1047         if (alloc != ld_alloc)   return NULL;
1048         if (ld_off != st_off)    return NULL;
1049         // At this point we have proven something like this setup:
1050         //  A = Allocate(...)
1051         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1052         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1053         // (Actually, we haven't yet proven the Q's are the same.)
1054         // In other words, we are loading from a casted version of
1055         // the same pointer-and-offset that we stored to.
1056         // Thus, we are able to replace L by V.
1057       }
1058       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1059       if (store_Opcode() != st->Opcode())
1060         return NULL;
1061       return st->in(MemNode::ValueIn);
1062     }
1063 
1064     // A load from a freshly-created object always returns zero.
1065     // (This can happen after LoadNode::Ideal resets the load's memory input
1066     // to find_captured_store, which returned InitializeNode::zero_memory.)
1067     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1068         (st->in(0) == ld_alloc) &&
1069         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1070       // return a zero value for the load's basic type
1071       // (This is one of the few places where a generic PhaseTransform
1072       // can create new nodes.  Think of it as lazily manifesting
1073       // virtually pre-existing constants.)
1074       return phase->zerocon(memory_type());
1075     }
1076 
1077     // A load from an initialization barrier can match a captured store.
1078     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1079       InitializeNode* init = st->in(0)->as_Initialize();
1080       AllocateNode* alloc = init->allocation();
1081       if ((alloc != NULL) && (alloc == ld_alloc)) {
1082         // examine a captured store value
1083         st = init->find_captured_store(ld_off, memory_size(), phase);
1084         if (st != NULL) {
1085           continue;             // take one more trip around
1086         }
1087       }
1088     }
1089 
1090     // Load boxed value from result of valueOf() call is input parameter.
1091     if (this->is_Load() && ld_adr->is_AddP() &&
1092         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1093       intptr_t ignore = 0;
1094       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1095       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1096       base = bs->step_over_gc_barrier(base);
1097       if (base != NULL && base->is_Proj() &&
1098           base->as_Proj()->_con == TypeFunc::Parms &&
1099           base->in(0)->is_CallStaticJava() &&
1100           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1101         return base->in(0)->in(TypeFunc::Parms);
1102       }
1103     }
1104 
1105     break;
1106   }
1107 
1108   return NULL;
1109 }
1110 
1111 //----------------------is_instance_field_load_with_local_phi------------------
1112 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1113   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1114       in(Address)->is_AddP() ) {
1115     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1116     // Only instances and boxed values.
1117     if( t_oop != NULL &&
1118         (t_oop->is_ptr_to_boxed_value() ||
1119          t_oop->is_known_instance_field()) &&
1120         t_oop->offset() != Type::OffsetBot &&
1121         t_oop->offset() != Type::OffsetTop) {
1122       return true;
1123     }
1124   }
1125   return false;
1126 }
1127 
1128 //------------------------------Identity---------------------------------------
1129 // Loads are identity if previous store is to same address
1130 Node* LoadNode::Identity(PhaseGVN* phase) {
1131   // If the previous store-maker is the right kind of Store, and the store is
1132   // to the same address, then we are equal to the value stored.
1133   Node* mem = in(Memory);
1134   Node* value = can_see_stored_value(mem, phase);
1135   if( value ) {
1136     // byte, short & char stores truncate naturally.
1137     // A load has to load the truncated value which requires
1138     // some sort of masking operation and that requires an
1139     // Ideal call instead of an Identity call.
1140     if (memory_size() < BytesPerInt) {
1141       // If the input to the store does not fit with the load's result type,
1142       // it must be truncated via an Ideal call.
1143       if (!phase->type(value)->higher_equal(phase->type(this)))
1144         return this;
1145     }
1146     // (This works even when value is a Con, but LoadNode::Value
1147     // usually runs first, producing the singleton type of the Con.)
1148     return value;
1149   }
1150 
1151   // Search for an existing data phi which was generated before for the same
1152   // instance's field to avoid infinite generation of phis in a loop.
1153   Node *region = mem->in(0);
1154   if (is_instance_field_load_with_local_phi(region)) {
1155     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1156     int this_index  = phase->C->get_alias_index(addr_t);
1157     int this_offset = addr_t->offset();
1158     int this_iid    = addr_t->instance_id();
1159     if (!addr_t->is_known_instance() &&
1160          addr_t->is_ptr_to_boxed_value()) {
1161       // Use _idx of address base (could be Phi node) for boxed values.
1162       intptr_t   ignore = 0;
1163       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1164       if (base == NULL) {
1165         return this;
1166       }
1167       this_iid = base->_idx;
1168     }
1169     const Type* this_type = bottom_type();
1170     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1171       Node* phi = region->fast_out(i);
1172       if (phi->is_Phi() && phi != mem &&
1173           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1174         return phi;
1175       }
1176     }
1177   }
1178 
1179   return this;
1180 }
1181 
1182 // Construct an equivalent unsigned load.
1183 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1184   BasicType bt = T_ILLEGAL;
1185   const Type* rt = NULL;
1186   switch (Opcode()) {
1187     case Op_LoadUB: return this;
1188     case Op_LoadUS: return this;
1189     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1190     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1191     default:
1192       assert(false, "no unsigned variant: %s", Name());
1193       return NULL;
1194   }
1195   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1196                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1197                         is_unaligned_access(), is_mismatched_access());
1198 }
1199 
1200 // Construct an equivalent signed load.
1201 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1202   BasicType bt = T_ILLEGAL;
1203   const Type* rt = NULL;
1204   switch (Opcode()) {
1205     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1206     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1207     case Op_LoadB: // fall through
1208     case Op_LoadS: // fall through
1209     case Op_LoadI: // fall through
1210     case Op_LoadL: return this;
1211     default:
1212       assert(false, "no signed variant: %s", Name());
1213       return NULL;
1214   }
1215   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1216                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1217                         is_unaligned_access(), is_mismatched_access());
1218 }
1219 
1220 // We're loading from an object which has autobox behaviour.
1221 // If this object is result of a valueOf call we'll have a phi
1222 // merging a newly allocated object and a load from the cache.
1223 // We want to replace this load with the original incoming
1224 // argument to the valueOf call.
1225 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1226   assert(phase->C->eliminate_boxing(), "sanity");
1227   intptr_t ignore = 0;
1228   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1229   if ((base == NULL) || base->is_Phi()) {
1230     // Push the loads from the phi that comes from valueOf up
1231     // through it to allow elimination of the loads and the recovery
1232     // of the original value. It is done in split_through_phi().
1233     return NULL;
1234   } else if (base->is_Load() ||
1235              (base->is_DecodeN() && base->in(1)->is_Load())) {
1236     // Eliminate the load of boxed value for integer types from the cache
1237     // array by deriving the value from the index into the array.
1238     // Capture the offset of the load and then reverse the computation.
1239 
1240     // Get LoadN node which loads a boxing object from 'cache' array.
1241     if (base->is_DecodeN()) {
1242       base = base->in(1);
1243     }
1244     if (!base->in(Address)->is_AddP()) {
1245       return NULL; // Complex address
1246     }
1247     AddPNode* address = base->in(Address)->as_AddP();
1248     Node* cache_base = address->in(AddPNode::Base);
1249     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1250       // Get ConP node which is static 'cache' field.
1251       cache_base = cache_base->in(1);
1252     }
1253     if ((cache_base != NULL) && cache_base->is_Con()) {
1254       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1255       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1256         Node* elements[4];
1257         int shift = exact_log2(type2aelembytes(T_OBJECT));
1258         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1259         if (count > 0 && elements[0]->is_Con() &&
1260             (count == 1 ||
1261              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1262                             elements[1]->in(2) == phase->intcon(shift)))) {
1263           ciObjArray* array = base_type->const_oop()->as_obj_array();
1264           // Fetch the box object cache[0] at the base of the array and get its value
1265           ciInstance* box = array->obj_at(0)->as_instance();
1266           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1267           assert(ik->is_box_klass(), "sanity");
1268           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1269           if (ik->nof_nonstatic_fields() == 1) {
1270             // This should be true nonstatic_field_at requires calling
1271             // nof_nonstatic_fields so check it anyway
1272             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1273             BasicType bt = c.basic_type();
1274             // Only integer types have boxing cache.
1275             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1276                    bt == T_BYTE    || bt == T_SHORT ||
1277                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1278             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1279             if (cache_low != (int)cache_low) {
1280               return NULL; // should not happen since cache is array indexed by value
1281             }
1282             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1283             if (offset != (int)offset) {
1284               return NULL; // should not happen since cache is array indexed by value
1285             }
1286            // Add up all the offsets making of the address of the load
1287             Node* result = elements[0];
1288             for (int i = 1; i < count; i++) {
1289               result = phase->transform(new AddXNode(result, elements[i]));
1290             }
1291             // Remove the constant offset from the address and then
1292             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1293             // remove the scaling of the offset to recover the original index.
1294             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1295               // Peel the shift off directly but wrap it in a dummy node
1296               // since Ideal can't return existing nodes
1297               result = new RShiftXNode(result->in(1), phase->intcon(0));
1298             } else if (result->is_Add() && result->in(2)->is_Con() &&
1299                        result->in(1)->Opcode() == Op_LShiftX &&
1300                        result->in(1)->in(2) == phase->intcon(shift)) {
1301               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1302               // but for boxing cache access we know that X<<Z will not overflow
1303               // (there is range check) so we do this optimizatrion by hand here.
1304               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1305               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1306             } else {
1307               result = new RShiftXNode(result, phase->intcon(shift));
1308             }
1309 #ifdef _LP64
1310             if (bt != T_LONG) {
1311               result = new ConvL2INode(phase->transform(result));
1312             }
1313 #else
1314             if (bt == T_LONG) {
1315               result = new ConvI2LNode(phase->transform(result));
1316             }
1317 #endif
1318             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1319             // Need to preserve unboxing load type if it is unsigned.
1320             switch(this->Opcode()) {
1321               case Op_LoadUB:
1322                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1323                 break;
1324               case Op_LoadUS:
1325                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1326                 break;
1327             }
1328             return result;
1329           }
1330         }
1331       }
1332     }
1333   }
1334   return NULL;
1335 }
1336 
1337 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1338   Node* region = phi->in(0);
1339   if (region == NULL) {
1340     return false; // Wait stable graph
1341   }
1342   uint cnt = phi->req();
1343   for (uint i = 1; i < cnt; i++) {
1344     Node* rc = region->in(i);
1345     if (rc == NULL || phase->type(rc) == Type::TOP)
1346       return false; // Wait stable graph
1347     Node* in = phi->in(i);
1348     if (in == NULL || phase->type(in) == Type::TOP)
1349       return false; // Wait stable graph
1350   }
1351   return true;
1352 }
1353 //------------------------------split_through_phi------------------------------
1354 // Split instance or boxed field load through Phi.
1355 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1356   Node* mem     = in(Memory);
1357   Node* address = in(Address);
1358   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1359 
1360   assert((t_oop != NULL) &&
1361          (t_oop->is_known_instance_field() ||
1362           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1363 
1364   Compile* C = phase->C;
1365   intptr_t ignore = 0;
1366   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1367   bool base_is_phi = (base != NULL) && base->is_Phi();
1368   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1369                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1370                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1371 
1372   if (!((mem->is_Phi() || base_is_phi) &&
1373         (load_boxed_values || t_oop->is_known_instance_field()))) {
1374     return NULL; // memory is not Phi
1375   }
1376 
1377   if (mem->is_Phi()) {
1378     if (!stable_phi(mem->as_Phi(), phase)) {
1379       return NULL; // Wait stable graph
1380     }
1381     uint cnt = mem->req();
1382     // Check for loop invariant memory.
1383     if (cnt == 3) {
1384       for (uint i = 1; i < cnt; i++) {
1385         Node* in = mem->in(i);
1386         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1387         if (m == mem) {
1388           set_req(Memory, mem->in(cnt - i));
1389           return this; // made change
1390         }
1391       }
1392     }
1393   }
1394   if (base_is_phi) {
1395     if (!stable_phi(base->as_Phi(), phase)) {
1396       return NULL; // Wait stable graph
1397     }
1398     uint cnt = base->req();
1399     // Check for loop invariant memory.
1400     if (cnt == 3) {
1401       for (uint i = 1; i < cnt; i++) {
1402         if (base->in(i) == base) {
1403           return NULL; // Wait stable graph
1404         }
1405       }
1406     }
1407   }
1408 
1409   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1410 
1411   // Split through Phi (see original code in loopopts.cpp).
1412   assert(C->have_alias_type(t_oop), "instance should have alias type");
1413 
1414   // Do nothing here if Identity will find a value
1415   // (to avoid infinite chain of value phis generation).
1416   if (!phase->eqv(this, phase->apply_identity(this)))
1417     return NULL;
1418 
1419   // Select Region to split through.
1420   Node* region;
1421   if (!base_is_phi) {
1422     assert(mem->is_Phi(), "sanity");
1423     region = mem->in(0);
1424     // Skip if the region dominates some control edge of the address.
1425     if (!MemNode::all_controls_dominate(address, region))
1426       return NULL;
1427   } else if (!mem->is_Phi()) {
1428     assert(base_is_phi, "sanity");
1429     region = base->in(0);
1430     // Skip if the region dominates some control edge of the memory.
1431     if (!MemNode::all_controls_dominate(mem, region))
1432       return NULL;
1433   } else if (base->in(0) != mem->in(0)) {
1434     assert(base_is_phi && mem->is_Phi(), "sanity");
1435     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1436       region = base->in(0);
1437     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1438       region = mem->in(0);
1439     } else {
1440       return NULL; // complex graph
1441     }
1442   } else {
1443     assert(base->in(0) == mem->in(0), "sanity");
1444     region = mem->in(0);
1445   }
1446 
1447   const Type* this_type = this->bottom_type();
1448   int this_index  = C->get_alias_index(t_oop);
1449   int this_offset = t_oop->offset();
1450   int this_iid    = t_oop->instance_id();
1451   if (!t_oop->is_known_instance() && load_boxed_values) {
1452     // Use _idx of address base for boxed values.
1453     this_iid = base->_idx;
1454   }
1455   PhaseIterGVN* igvn = phase->is_IterGVN();
1456   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1457   for (uint i = 1; i < region->req(); i++) {
1458     Node* x;
1459     Node* the_clone = NULL;
1460     if (region->in(i) == C->top()) {
1461       x = C->top();      // Dead path?  Use a dead data op
1462     } else {
1463       x = this->clone();        // Else clone up the data op
1464       the_clone = x;            // Remember for possible deletion.
1465       // Alter data node to use pre-phi inputs
1466       if (this->in(0) == region) {
1467         x->set_req(0, region->in(i));
1468       } else {
1469         x->set_req(0, NULL);
1470       }
1471       if (mem->is_Phi() && (mem->in(0) == region)) {
1472         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1473       }
1474       if (address->is_Phi() && address->in(0) == region) {
1475         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1476       }
1477       if (base_is_phi && (base->in(0) == region)) {
1478         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1479         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1480         x->set_req(Address, adr_x);
1481       }
1482     }
1483     // Check for a 'win' on some paths
1484     const Type *t = x->Value(igvn);
1485 
1486     bool singleton = t->singleton();
1487 
1488     // See comments in PhaseIdealLoop::split_thru_phi().
1489     if (singleton && t == Type::TOP) {
1490       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1491     }
1492 
1493     if (singleton) {
1494       x = igvn->makecon(t);
1495     } else {
1496       // We now call Identity to try to simplify the cloned node.
1497       // Note that some Identity methods call phase->type(this).
1498       // Make sure that the type array is big enough for
1499       // our new node, even though we may throw the node away.
1500       // (This tweaking with igvn only works because x is a new node.)
1501       igvn->set_type(x, t);
1502       // If x is a TypeNode, capture any more-precise type permanently into Node
1503       // otherwise it will be not updated during igvn->transform since
1504       // igvn->type(x) is set to x->Value() already.
1505       x->raise_bottom_type(t);
1506       Node *y = igvn->apply_identity(x);
1507       if (y != x) {
1508         x = y;
1509       } else {
1510         y = igvn->hash_find_insert(x);
1511         if (y) {
1512           x = y;
1513         } else {
1514           // Else x is a new node we are keeping
1515           // We do not need register_new_node_with_optimizer
1516           // because set_type has already been called.
1517           igvn->_worklist.push(x);
1518         }
1519       }
1520     }
1521     if (x != the_clone && the_clone != NULL) {
1522       igvn->remove_dead_node(the_clone);
1523     }
1524     phi->set_req(i, x);
1525   }
1526   // Record Phi
1527   igvn->register_new_node_with_optimizer(phi);
1528   return phi;
1529 }
1530 
1531 //------------------------------Ideal------------------------------------------
1532 // If the load is from Field memory and the pointer is non-null, it might be possible to
1533 // zero out the control input.
1534 // If the offset is constant and the base is an object allocation,
1535 // try to hook me up to the exact initializing store.
1536 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1537   Node* p = MemNode::Ideal_common(phase, can_reshape);
1538   if (p)  return (p == NodeSentinel) ? NULL : p;
1539 
1540   Node* ctrl    = in(MemNode::Control);
1541   Node* address = in(MemNode::Address);
1542   bool progress = false;
1543 
1544   bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) &&
1545          phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes());
1546 
1547   // Skip up past a SafePoint control.  Cannot do this for Stores because
1548   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1549   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1550       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw  &&
1551       !addr_mark ) {
1552     ctrl = ctrl->in(0);
1553     set_req(MemNode::Control,ctrl);
1554     progress = true;
1555   }
1556 
1557   intptr_t ignore = 0;
1558   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1559   if (base != NULL
1560       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1561     // Check for useless control edge in some common special cases
1562     if (in(MemNode::Control) != NULL
1563         && can_remove_control()
1564         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1565         && all_controls_dominate(base, phase->C->start())) {
1566       // A method-invariant, non-null address (constant or 'this' argument).
1567       set_req(MemNode::Control, NULL);
1568       progress = true;
1569     }
1570   }
1571 
1572   Node* mem = in(MemNode::Memory);
1573   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1574 
1575   if (can_reshape && (addr_t != NULL)) {
1576     // try to optimize our memory input
1577     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1578     if (opt_mem != mem) {
1579       set_req(MemNode::Memory, opt_mem);
1580       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1581       return this;
1582     }
1583     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1584     if ((t_oop != NULL) &&
1585         (t_oop->is_known_instance_field() ||
1586          t_oop->is_ptr_to_boxed_value())) {
1587       PhaseIterGVN *igvn = phase->is_IterGVN();
1588       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1589         // Delay this transformation until memory Phi is processed.
1590         phase->is_IterGVN()->_worklist.push(this);
1591         return NULL;
1592       }
1593       // Split instance field load through Phi.
1594       Node* result = split_through_phi(phase);
1595       if (result != NULL) return result;
1596 
1597       if (t_oop->is_ptr_to_boxed_value()) {
1598         Node* result = eliminate_autobox(phase);
1599         if (result != NULL) return result;
1600       }
1601     }
1602   }
1603 
1604   // Is there a dominating load that loads the same value?  Leave
1605   // anything that is not a load of a field/array element (like
1606   // barriers etc.) alone
1607   if (in(0) != NULL && !adr_type()->isa_rawptr() && can_reshape) {
1608     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1609       Node *use = mem->fast_out(i);
1610       if (use != this &&
1611           use->Opcode() == Opcode() &&
1612           use->in(0) != NULL &&
1613           use->in(0) != in(0) &&
1614           use->in(Address) == in(Address)) {
1615         Node* ctl = in(0);
1616         for (int i = 0; i < 10 && ctl != NULL; i++) {
1617           ctl = IfNode::up_one_dom(ctl);
1618           if (ctl == use->in(0)) {
1619             set_req(0, use->in(0));
1620             return this;
1621           }
1622         }
1623       }
1624     }
1625   }
1626 
1627   // Check for prior store with a different base or offset; make Load
1628   // independent.  Skip through any number of them.  Bail out if the stores
1629   // are in an endless dead cycle and report no progress.  This is a key
1630   // transform for Reflection.  However, if after skipping through the Stores
1631   // we can't then fold up against a prior store do NOT do the transform as
1632   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1633   // array memory alive twice: once for the hoisted Load and again after the
1634   // bypassed Store.  This situation only works if EVERYBODY who does
1635   // anti-dependence work knows how to bypass.  I.e. we need all
1636   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1637   // the alias index stuff.  So instead, peek through Stores and IFF we can
1638   // fold up, do so.
1639   Node* prev_mem = find_previous_store(phase);
1640   if (prev_mem != NULL) {
1641     Node* value = can_see_arraycopy_value(prev_mem, phase);
1642     if (value != NULL) {
1643       return value;
1644     }
1645   }
1646   // Steps (a), (b):  Walk past independent stores to find an exact match.
1647   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1648     // (c) See if we can fold up on the spot, but don't fold up here.
1649     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1650     // just return a prior value, which is done by Identity calls.
1651     if (can_see_stored_value(prev_mem, phase)) {
1652       // Make ready for step (d):
1653       set_req(MemNode::Memory, prev_mem);
1654       return this;
1655     }
1656   }
1657 
1658   return progress ? this : NULL;
1659 }
1660 
1661 // Helper to recognize certain Klass fields which are invariant across
1662 // some group of array types (e.g., int[] or all T[] where T < Object).
1663 const Type*
1664 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1665                                  ciKlass* klass) const {
1666   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1667     // The field is Klass::_modifier_flags.  Return its (constant) value.
1668     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1669     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1670     return TypeInt::make(klass->modifier_flags());
1671   }
1672   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1673     // The field is Klass::_access_flags.  Return its (constant) value.
1674     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1675     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1676     return TypeInt::make(klass->access_flags());
1677   }
1678   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1679     // The field is Klass::_layout_helper.  Return its constant value if known.
1680     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1681     return TypeInt::make(klass->layout_helper());
1682   }
1683 
1684   // No match.
1685   return NULL;
1686 }
1687 
1688 //------------------------------Value-----------------------------------------
1689 const Type* LoadNode::Value(PhaseGVN* phase) const {
1690   // Either input is TOP ==> the result is TOP
1691   Node* mem = in(MemNode::Memory);
1692   const Type *t1 = phase->type(mem);
1693   if (t1 == Type::TOP)  return Type::TOP;
1694   Node* adr = in(MemNode::Address);
1695   const TypePtr* tp = phase->type(adr)->isa_ptr();
1696   if (tp == NULL || tp->empty())  return Type::TOP;
1697   int off = tp->offset();
1698   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1699   Compile* C = phase->C;
1700 
1701   // Try to guess loaded type from pointer type
1702   if (tp->isa_aryptr()) {
1703     const TypeAryPtr* ary = tp->is_aryptr();
1704     const Type* t = ary->elem();
1705 
1706     // Determine whether the reference is beyond the header or not, by comparing
1707     // the offset against the offset of the start of the array's data.
1708     // Different array types begin at slightly different offsets (12 vs. 16).
1709     // We choose T_BYTE as an example base type that is least restrictive
1710     // as to alignment, which will therefore produce the smallest
1711     // possible base offset.
1712     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1713     const bool off_beyond_header = (off >= min_base_off);
1714 
1715     // Try to constant-fold a stable array element.
1716     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1717       // Make sure the reference is not into the header and the offset is constant
1718       ciObject* aobj = ary->const_oop();
1719       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1720         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1721         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1722                                                                       stable_dimension,
1723                                                                       memory_type(), is_unsigned());
1724         if (con_type != NULL) {
1725           return con_type;
1726         }
1727       }
1728     }
1729 
1730     // Don't do this for integer types. There is only potential profit if
1731     // the element type t is lower than _type; that is, for int types, if _type is
1732     // more restrictive than t.  This only happens here if one is short and the other
1733     // char (both 16 bits), and in those cases we've made an intentional decision
1734     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1735     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1736     //
1737     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1738     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1739     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1740     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1741     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1742     // In fact, that could have been the original type of p1, and p1 could have
1743     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1744     // expression (LShiftL quux 3) independently optimized to the constant 8.
1745     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1746         && (_type->isa_vect() == NULL)
1747         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1748       // t might actually be lower than _type, if _type is a unique
1749       // concrete subclass of abstract class t.
1750       if (off_beyond_header || off == Type::OffsetBot) {  // is the offset beyond the header?
1751         const Type* jt = t->join_speculative(_type);
1752         // In any case, do not allow the join, per se, to empty out the type.
1753         if (jt->empty() && !t->empty()) {
1754           // This can happen if a interface-typed array narrows to a class type.
1755           jt = _type;
1756         }
1757 #ifdef ASSERT
1758         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1759           // The pointers in the autobox arrays are always non-null
1760           Node* base = adr->in(AddPNode::Base);
1761           if ((base != NULL) && base->is_DecodeN()) {
1762             // Get LoadN node which loads IntegerCache.cache field
1763             base = base->in(1);
1764           }
1765           if ((base != NULL) && base->is_Con()) {
1766             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1767             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1768               // It could be narrow oop
1769               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1770             }
1771           }
1772         }
1773 #endif
1774         return jt;
1775       }
1776     }
1777   } else if (tp->base() == Type::InstPtr) {
1778     assert( off != Type::OffsetBot ||
1779             // arrays can be cast to Objects
1780             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1781             // unsafe field access may not have a constant offset
1782             C->has_unsafe_access(),
1783             "Field accesses must be precise" );
1784     // For oop loads, we expect the _type to be precise.
1785 
1786     // Optimize loads from constant fields.
1787     const TypeInstPtr* tinst = tp->is_instptr();
1788     ciObject* const_oop = tinst->const_oop();
1789     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1790       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1791       if (con_type != NULL) {
1792         return con_type;
1793       }
1794     }
1795   } else if (tp->base() == Type::KlassPtr) {
1796     assert( off != Type::OffsetBot ||
1797             // arrays can be cast to Objects
1798             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1799             // also allow array-loading from the primary supertype
1800             // array during subtype checks
1801             Opcode() == Op_LoadKlass,
1802             "Field accesses must be precise" );
1803     // For klass/static loads, we expect the _type to be precise
1804   } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) {
1805     /* With mirrors being an indirect in the Klass*
1806      * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset))
1807      * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass).
1808      *
1809      * So check the type and klass of the node before the LoadP.
1810      */
1811     Node* adr2 = adr->in(MemNode::Address);
1812     const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1813     if (tkls != NULL && !StressReflectiveCode) {
1814       ciKlass* klass = tkls->klass();
1815       if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1816         assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1817         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1818         return TypeInstPtr::make(klass->java_mirror());
1819       }
1820     }
1821   }
1822 
1823   const TypeKlassPtr *tkls = tp->isa_klassptr();
1824   if (tkls != NULL && !StressReflectiveCode) {
1825     ciKlass* klass = tkls->klass();
1826     if (klass->is_loaded() && tkls->klass_is_exact()) {
1827       // We are loading a field from a Klass metaobject whose identity
1828       // is known at compile time (the type is "exact" or "precise").
1829       // Check for fields we know are maintained as constants by the VM.
1830       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1831         // The field is Klass::_super_check_offset.  Return its (constant) value.
1832         // (Folds up type checking code.)
1833         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1834         return TypeInt::make(klass->super_check_offset());
1835       }
1836       // Compute index into primary_supers array
1837       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1838       // Check for overflowing; use unsigned compare to handle the negative case.
1839       if( depth < ciKlass::primary_super_limit() ) {
1840         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1841         // (Folds up type checking code.)
1842         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1843         ciKlass *ss = klass->super_of_depth(depth);
1844         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1845       }
1846       const Type* aift = load_array_final_field(tkls, klass);
1847       if (aift != NULL)  return aift;
1848     }
1849 
1850     // We can still check if we are loading from the primary_supers array at a
1851     // shallow enough depth.  Even though the klass is not exact, entries less
1852     // than or equal to its super depth are correct.
1853     if (klass->is_loaded() ) {
1854       ciType *inner = klass;
1855       while( inner->is_obj_array_klass() )
1856         inner = inner->as_obj_array_klass()->base_element_type();
1857       if( inner->is_instance_klass() &&
1858           !inner->as_instance_klass()->flags().is_interface() ) {
1859         // Compute index into primary_supers array
1860         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1861         // Check for overflowing; use unsigned compare to handle the negative case.
1862         if( depth < ciKlass::primary_super_limit() &&
1863             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1864           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1865           // (Folds up type checking code.)
1866           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1867           ciKlass *ss = klass->super_of_depth(depth);
1868           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1869         }
1870       }
1871     }
1872 
1873     // If the type is enough to determine that the thing is not an array,
1874     // we can give the layout_helper a positive interval type.
1875     // This will help short-circuit some reflective code.
1876     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1877         && !klass->is_array_klass() // not directly typed as an array
1878         && !klass->is_interface()  // specifically not Serializable & Cloneable
1879         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1880         ) {
1881       // Note:  When interfaces are reliable, we can narrow the interface
1882       // test to (klass != Serializable && klass != Cloneable).
1883       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1884       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1885       // The key property of this type is that it folds up tests
1886       // for array-ness, since it proves that the layout_helper is positive.
1887       // Thus, a generic value like the basic object layout helper works fine.
1888       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1889     }
1890   }
1891 
1892   // If we are loading from a freshly-allocated object, produce a zero,
1893   // if the load is provably beyond the header of the object.
1894   // (Also allow a variable load from a fresh array to produce zero.)
1895   const TypeOopPtr *tinst = tp->isa_oopptr();
1896   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1897   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1898   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1899     Node* value = can_see_stored_value(mem,phase);
1900     if (value != NULL && value->is_Con()) {
1901       assert(value->bottom_type()->higher_equal(_type),"sanity");
1902       return value->bottom_type();
1903     }
1904   }
1905 
1906   if (is_instance) {
1907     // If we have an instance type and our memory input is the
1908     // programs's initial memory state, there is no matching store,
1909     // so just return a zero of the appropriate type
1910     Node *mem = in(MemNode::Memory);
1911     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1912       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1913       return Type::get_zero_type(_type->basic_type());
1914     }
1915   }
1916   return _type;
1917 }
1918 
1919 //------------------------------match_edge-------------------------------------
1920 // Do we Match on this edge index or not?  Match only the address.
1921 uint LoadNode::match_edge(uint idx) const {
1922   return idx == MemNode::Address;
1923 }
1924 
1925 //--------------------------LoadBNode::Ideal--------------------------------------
1926 //
1927 //  If the previous store is to the same address as this load,
1928 //  and the value stored was larger than a byte, replace this load
1929 //  with the value stored truncated to a byte.  If no truncation is
1930 //  needed, the replacement is done in LoadNode::Identity().
1931 //
1932 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1933   Node* mem = in(MemNode::Memory);
1934   Node* value = can_see_stored_value(mem,phase);
1935   if( value && !phase->type(value)->higher_equal( _type ) ) {
1936     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1937     return new RShiftINode(result, phase->intcon(24));
1938   }
1939   // Identity call will handle the case where truncation is not needed.
1940   return LoadNode::Ideal(phase, can_reshape);
1941 }
1942 
1943 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1944   Node* mem = in(MemNode::Memory);
1945   Node* value = can_see_stored_value(mem,phase);
1946   if (value != NULL && value->is_Con() &&
1947       !value->bottom_type()->higher_equal(_type)) {
1948     // If the input to the store does not fit with the load's result type,
1949     // it must be truncated. We can't delay until Ideal call since
1950     // a singleton Value is needed for split_thru_phi optimization.
1951     int con = value->get_int();
1952     return TypeInt::make((con << 24) >> 24);
1953   }
1954   return LoadNode::Value(phase);
1955 }
1956 
1957 //--------------------------LoadUBNode::Ideal-------------------------------------
1958 //
1959 //  If the previous store is to the same address as this load,
1960 //  and the value stored was larger than a byte, replace this load
1961 //  with the value stored truncated to a byte.  If no truncation is
1962 //  needed, the replacement is done in LoadNode::Identity().
1963 //
1964 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1965   Node* mem = in(MemNode::Memory);
1966   Node* value = can_see_stored_value(mem, phase);
1967   if (value && !phase->type(value)->higher_equal(_type))
1968     return new AndINode(value, phase->intcon(0xFF));
1969   // Identity call will handle the case where truncation is not needed.
1970   return LoadNode::Ideal(phase, can_reshape);
1971 }
1972 
1973 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1974   Node* mem = in(MemNode::Memory);
1975   Node* value = can_see_stored_value(mem,phase);
1976   if (value != NULL && value->is_Con() &&
1977       !value->bottom_type()->higher_equal(_type)) {
1978     // If the input to the store does not fit with the load's result type,
1979     // it must be truncated. We can't delay until Ideal call since
1980     // a singleton Value is needed for split_thru_phi optimization.
1981     int con = value->get_int();
1982     return TypeInt::make(con & 0xFF);
1983   }
1984   return LoadNode::Value(phase);
1985 }
1986 
1987 //--------------------------LoadUSNode::Ideal-------------------------------------
1988 //
1989 //  If the previous store is to the same address as this load,
1990 //  and the value stored was larger than a char, replace this load
1991 //  with the value stored truncated to a char.  If no truncation is
1992 //  needed, the replacement is done in LoadNode::Identity().
1993 //
1994 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1995   Node* mem = in(MemNode::Memory);
1996   Node* value = can_see_stored_value(mem,phase);
1997   if( value && !phase->type(value)->higher_equal( _type ) )
1998     return new AndINode(value,phase->intcon(0xFFFF));
1999   // Identity call will handle the case where truncation is not needed.
2000   return LoadNode::Ideal(phase, can_reshape);
2001 }
2002 
2003 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
2004   Node* mem = in(MemNode::Memory);
2005   Node* value = can_see_stored_value(mem,phase);
2006   if (value != NULL && value->is_Con() &&
2007       !value->bottom_type()->higher_equal(_type)) {
2008     // If the input to the store does not fit with the load's result type,
2009     // it must be truncated. We can't delay until Ideal call since
2010     // a singleton Value is needed for split_thru_phi optimization.
2011     int con = value->get_int();
2012     return TypeInt::make(con & 0xFFFF);
2013   }
2014   return LoadNode::Value(phase);
2015 }
2016 
2017 //--------------------------LoadSNode::Ideal--------------------------------------
2018 //
2019 //  If the previous store is to the same address as this load,
2020 //  and the value stored was larger than a short, replace this load
2021 //  with the value stored truncated to a short.  If no truncation is
2022 //  needed, the replacement is done in LoadNode::Identity().
2023 //
2024 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2025   Node* mem = in(MemNode::Memory);
2026   Node* value = can_see_stored_value(mem,phase);
2027   if( value && !phase->type(value)->higher_equal( _type ) ) {
2028     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
2029     return new RShiftINode(result, phase->intcon(16));
2030   }
2031   // Identity call will handle the case where truncation is not needed.
2032   return LoadNode::Ideal(phase, can_reshape);
2033 }
2034 
2035 const Type* LoadSNode::Value(PhaseGVN* phase) const {
2036   Node* mem = in(MemNode::Memory);
2037   Node* value = can_see_stored_value(mem,phase);
2038   if (value != NULL && value->is_Con() &&
2039       !value->bottom_type()->higher_equal(_type)) {
2040     // If the input to the store does not fit with the load's result type,
2041     // it must be truncated. We can't delay until Ideal call since
2042     // a singleton Value is needed for split_thru_phi optimization.
2043     int con = value->get_int();
2044     return TypeInt::make((con << 16) >> 16);
2045   }
2046   return LoadNode::Value(phase);
2047 }
2048 
2049 //=============================================================================
2050 //----------------------------LoadKlassNode::make------------------------------
2051 // Polymorphic factory method:
2052 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2053   // sanity check the alias category against the created node type
2054   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2055   assert(adr_type != NULL, "expecting TypeKlassPtr");
2056 #ifdef _LP64
2057   if (adr_type->is_ptr_to_narrowklass()) {
2058     assert(UseCompressedClassPointers, "no compressed klasses");
2059     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2060     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2061   }
2062 #endif
2063   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2064   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2065 }
2066 
2067 //------------------------------Value------------------------------------------
2068 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2069   return klass_value_common(phase);
2070 }
2071 
2072 // In most cases, LoadKlassNode does not have the control input set. If the control
2073 // input is set, it must not be removed (by LoadNode::Ideal()).
2074 bool LoadKlassNode::can_remove_control() const {
2075   return false;
2076 }
2077 
2078 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2079   // Either input is TOP ==> the result is TOP
2080   const Type *t1 = phase->type( in(MemNode::Memory) );
2081   if (t1 == Type::TOP)  return Type::TOP;
2082   Node *adr = in(MemNode::Address);
2083   const Type *t2 = phase->type( adr );
2084   if (t2 == Type::TOP)  return Type::TOP;
2085   const TypePtr *tp = t2->is_ptr();
2086   if (TypePtr::above_centerline(tp->ptr()) ||
2087       tp->ptr() == TypePtr::Null)  return Type::TOP;
2088 
2089   // Return a more precise klass, if possible
2090   const TypeInstPtr *tinst = tp->isa_instptr();
2091   if (tinst != NULL) {
2092     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2093     int offset = tinst->offset();
2094     if (ik == phase->C->env()->Class_klass()
2095         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2096             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2097       // We are loading a special hidden field from a Class mirror object,
2098       // the field which points to the VM's Klass metaobject.
2099       ciType* t = tinst->java_mirror_type();
2100       // java_mirror_type returns non-null for compile-time Class constants.
2101       if (t != NULL) {
2102         // constant oop => constant klass
2103         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2104           if (t->is_void()) {
2105             // We cannot create a void array.  Since void is a primitive type return null
2106             // klass.  Users of this result need to do a null check on the returned klass.
2107             return TypePtr::NULL_PTR;
2108           }
2109           return TypeKlassPtr::make(ciArrayKlass::make(t));
2110         }
2111         if (!t->is_klass()) {
2112           // a primitive Class (e.g., int.class) has NULL for a klass field
2113           return TypePtr::NULL_PTR;
2114         }
2115         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2116         return TypeKlassPtr::make(t->as_klass());
2117       }
2118       // non-constant mirror, so we can't tell what's going on
2119     }
2120     if( !ik->is_loaded() )
2121       return _type;             // Bail out if not loaded
2122     if (offset == oopDesc::klass_offset_in_bytes()) {
2123       if (tinst->klass_is_exact()) {
2124         return TypeKlassPtr::make(ik);
2125       }
2126       // See if we can become precise: no subklasses and no interface
2127       // (Note:  We need to support verified interfaces.)
2128       if (!ik->is_interface() && !ik->has_subklass()) {
2129         //assert(!UseExactTypes, "this code should be useless with exact types");
2130         // Add a dependence; if any subclass added we need to recompile
2131         if (!ik->is_final()) {
2132           // %%% should use stronger assert_unique_concrete_subtype instead
2133           phase->C->dependencies()->assert_leaf_type(ik);
2134         }
2135         // Return precise klass
2136         return TypeKlassPtr::make(ik);
2137       }
2138 
2139       // Return root of possible klass
2140       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2141     }
2142   }
2143 
2144   // Check for loading klass from an array
2145   const TypeAryPtr *tary = tp->isa_aryptr();
2146   if( tary != NULL ) {
2147     ciKlass *tary_klass = tary->klass();
2148     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2149         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2150       if (tary->klass_is_exact()) {
2151         return TypeKlassPtr::make(tary_klass);
2152       }
2153       ciArrayKlass *ak = tary->klass()->as_array_klass();
2154       // If the klass is an object array, we defer the question to the
2155       // array component klass.
2156       if( ak->is_obj_array_klass() ) {
2157         assert( ak->is_loaded(), "" );
2158         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2159         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2160           ciInstanceKlass* ik = base_k->as_instance_klass();
2161           // See if we can become precise: no subklasses and no interface
2162           if (!ik->is_interface() && !ik->has_subklass()) {
2163             //assert(!UseExactTypes, "this code should be useless with exact types");
2164             // Add a dependence; if any subclass added we need to recompile
2165             if (!ik->is_final()) {
2166               phase->C->dependencies()->assert_leaf_type(ik);
2167             }
2168             // Return precise array klass
2169             return TypeKlassPtr::make(ak);
2170           }
2171         }
2172         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2173       } else {                  // Found a type-array?
2174         //assert(!UseExactTypes, "this code should be useless with exact types");
2175         assert( ak->is_type_array_klass(), "" );
2176         return TypeKlassPtr::make(ak); // These are always precise
2177       }
2178     }
2179   }
2180 
2181   // Check for loading klass from an array klass
2182   const TypeKlassPtr *tkls = tp->isa_klassptr();
2183   if (tkls != NULL && !StressReflectiveCode) {
2184     ciKlass* klass = tkls->klass();
2185     if( !klass->is_loaded() )
2186       return _type;             // Bail out if not loaded
2187     if( klass->is_obj_array_klass() &&
2188         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2189       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2190       // // Always returning precise element type is incorrect,
2191       // // e.g., element type could be object and array may contain strings
2192       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2193 
2194       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2195       // according to the element type's subclassing.
2196       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2197     }
2198     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2199         tkls->offset() == in_bytes(Klass::super_offset())) {
2200       ciKlass* sup = klass->as_instance_klass()->super();
2201       // The field is Klass::_super.  Return its (constant) value.
2202       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2203       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2204     }
2205   }
2206 
2207   // Bailout case
2208   return LoadNode::Value(phase);
2209 }
2210 
2211 //------------------------------Identity---------------------------------------
2212 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2213 // Also feed through the klass in Allocate(...klass...)._klass.
2214 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2215   return klass_identity_common(phase);
2216 }
2217 
2218 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2219   Node* x = LoadNode::Identity(phase);
2220   if (x != this)  return x;
2221 
2222   // Take apart the address into an oop and and offset.
2223   // Return 'this' if we cannot.
2224   Node*    adr    = in(MemNode::Address);
2225   intptr_t offset = 0;
2226   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2227   if (base == NULL)     return this;
2228   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2229   if (toop == NULL)     return this;
2230 
2231   // Step over potential GC barrier for OopHandle resolve
2232   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2233   if (bs->is_gc_barrier_node(base)) {
2234     base = bs->step_over_gc_barrier(base);
2235   }
2236 
2237   // We can fetch the klass directly through an AllocateNode.
2238   // This works even if the klass is not constant (clone or newArray).
2239   if (offset == oopDesc::klass_offset_in_bytes()) {
2240     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2241     if (allocated_klass != NULL) {
2242       return allocated_klass;
2243     }
2244   }
2245 
2246   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2247   // See inline_native_Class_query for occurrences of these patterns.
2248   // Java Example:  x.getClass().isAssignableFrom(y)
2249   //
2250   // This improves reflective code, often making the Class
2251   // mirror go completely dead.  (Current exception:  Class
2252   // mirrors may appear in debug info, but we could clean them out by
2253   // introducing a new debug info operator for Klass.java_mirror).
2254 
2255   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2256       && offset == java_lang_Class::klass_offset_in_bytes()) {
2257     if (base->is_Load()) {
2258       Node* base2 = base->in(MemNode::Address);
2259       if (base2->is_Load()) { /* direct load of a load which is the OopHandle */
2260         Node* adr2 = base2->in(MemNode::Address);
2261         const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2262         if (tkls != NULL && !tkls->empty()
2263             && (tkls->klass()->is_instance_klass() ||
2264               tkls->klass()->is_array_klass())
2265             && adr2->is_AddP()
2266            ) {
2267           int mirror_field = in_bytes(Klass::java_mirror_offset());
2268           if (tkls->offset() == mirror_field) {
2269             return adr2->in(AddPNode::Base);
2270           }
2271         }
2272       }
2273     }
2274   }
2275 
2276   return this;
2277 }
2278 
2279 
2280 //------------------------------Value------------------------------------------
2281 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2282   const Type *t = klass_value_common(phase);
2283   if (t == Type::TOP)
2284     return t;
2285 
2286   return t->make_narrowklass();
2287 }
2288 
2289 //------------------------------Identity---------------------------------------
2290 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2291 // Also feed through the klass in Allocate(...klass...)._klass.
2292 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2293   Node *x = klass_identity_common(phase);
2294 
2295   const Type *t = phase->type( x );
2296   if( t == Type::TOP ) return x;
2297   if( t->isa_narrowklass()) return x;
2298   assert (!t->isa_narrowoop(), "no narrow oop here");
2299 
2300   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2301 }
2302 
2303 //------------------------------Value-----------------------------------------
2304 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2305   // Either input is TOP ==> the result is TOP
2306   const Type *t1 = phase->type( in(MemNode::Memory) );
2307   if( t1 == Type::TOP ) return Type::TOP;
2308   Node *adr = in(MemNode::Address);
2309   const Type *t2 = phase->type( adr );
2310   if( t2 == Type::TOP ) return Type::TOP;
2311   const TypePtr *tp = t2->is_ptr();
2312   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2313   const TypeAryPtr *tap = tp->isa_aryptr();
2314   if( !tap ) return _type;
2315   return tap->size();
2316 }
2317 
2318 //-------------------------------Ideal---------------------------------------
2319 // Feed through the length in AllocateArray(...length...)._length.
2320 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2321   Node* p = MemNode::Ideal_common(phase, can_reshape);
2322   if (p)  return (p == NodeSentinel) ? NULL : p;
2323 
2324   // Take apart the address into an oop and and offset.
2325   // Return 'this' if we cannot.
2326   Node*    adr    = in(MemNode::Address);
2327   intptr_t offset = 0;
2328   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2329   if (base == NULL)     return NULL;
2330   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2331   if (tary == NULL)     return NULL;
2332 
2333   // We can fetch the length directly through an AllocateArrayNode.
2334   // This works even if the length is not constant (clone or newArray).
2335   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2336     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2337     if (alloc != NULL) {
2338       Node* allocated_length = alloc->Ideal_length();
2339       Node* len = alloc->make_ideal_length(tary, phase);
2340       if (allocated_length != len) {
2341         // New CastII improves on this.
2342         return len;
2343       }
2344     }
2345   }
2346 
2347   return NULL;
2348 }
2349 
2350 //------------------------------Identity---------------------------------------
2351 // Feed through the length in AllocateArray(...length...)._length.
2352 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2353   Node* x = LoadINode::Identity(phase);
2354   if (x != this)  return x;
2355 
2356   // Take apart the address into an oop and and offset.
2357   // Return 'this' if we cannot.
2358   Node*    adr    = in(MemNode::Address);
2359   intptr_t offset = 0;
2360   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2361   if (base == NULL)     return this;
2362   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2363   if (tary == NULL)     return this;
2364 
2365   // We can fetch the length directly through an AllocateArrayNode.
2366   // This works even if the length is not constant (clone or newArray).
2367   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2368     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2369     if (alloc != NULL) {
2370       Node* allocated_length = alloc->Ideal_length();
2371       // Do not allow make_ideal_length to allocate a CastII node.
2372       Node* len = alloc->make_ideal_length(tary, phase, false);
2373       if (allocated_length == len) {
2374         // Return allocated_length only if it would not be improved by a CastII.
2375         return allocated_length;
2376       }
2377     }
2378   }
2379 
2380   return this;
2381 
2382 }
2383 
2384 //=============================================================================
2385 //---------------------------StoreNode::make-----------------------------------
2386 // Polymorphic factory method:
2387 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2388   assert((mo == unordered || mo == release), "unexpected");
2389   Compile* C = gvn.C;
2390   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2391          ctl != NULL, "raw memory operations should have control edge");
2392 
2393   switch (bt) {
2394   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2395   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2396   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2397   case T_CHAR:
2398   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2399   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2400   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2401   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2402   case T_METADATA:
2403   case T_ADDRESS:
2404   case T_OBJECT:
2405 #ifdef _LP64
2406     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2407       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2408       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2409     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2410                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2411                 adr->bottom_type()->isa_rawptr())) {
2412       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2413       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2414     }
2415 #endif
2416     {
2417       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2418     }
2419   default:
2420     ShouldNotReachHere();
2421     return (StoreNode*)NULL;
2422   }
2423 }
2424 
2425 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2426   bool require_atomic = true;
2427   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2428 }
2429 
2430 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2431   bool require_atomic = true;
2432   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2433 }
2434 
2435 
2436 //--------------------------bottom_type----------------------------------------
2437 const Type *StoreNode::bottom_type() const {
2438   return Type::MEMORY;
2439 }
2440 
2441 //------------------------------hash-------------------------------------------
2442 uint StoreNode::hash() const {
2443   // unroll addition of interesting fields
2444   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2445 
2446   // Since they are not commoned, do not hash them:
2447   return NO_HASH;
2448 }
2449 
2450 //------------------------------Ideal------------------------------------------
2451 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2452 // When a store immediately follows a relevant allocation/initialization,
2453 // try to capture it into the initialization, or hoist it above.
2454 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2455   Node* p = MemNode::Ideal_common(phase, can_reshape);
2456   if (p)  return (p == NodeSentinel) ? NULL : p;
2457 
2458   Node* mem     = in(MemNode::Memory);
2459   Node* address = in(MemNode::Address);
2460   // Back-to-back stores to same address?  Fold em up.  Generally
2461   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2462   // since they must follow each StoreP operation.  Redundant StoreCMs
2463   // are eliminated just before matching in final_graph_reshape.
2464   {
2465     Node* st = mem;
2466     // If Store 'st' has more than one use, we cannot fold 'st' away.
2467     // For example, 'st' might be the final state at a conditional
2468     // return.  Or, 'st' might be used by some node which is live at
2469     // the same time 'st' is live, which might be unschedulable.  So,
2470     // require exactly ONE user until such time as we clone 'mem' for
2471     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2472     // true).
2473     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2474       // Looking at a dead closed cycle of memory?
2475       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2476       assert(Opcode() == st->Opcode() ||
2477              st->Opcode() == Op_StoreVector ||
2478              Opcode() == Op_StoreVector ||
2479              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2480              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2481              (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy
2482              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2483              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2484 
2485       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2486           st->as_Store()->memory_size() <= this->memory_size()) {
2487         Node* use = st->raw_out(0);
2488         phase->igvn_rehash_node_delayed(use);
2489         if (can_reshape) {
2490           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2491         } else {
2492           // It's OK to do this in the parser, since DU info is always accurate,
2493           // and the parser always refers to nodes via SafePointNode maps.
2494           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2495         }
2496         return this;
2497       }
2498       st = st->in(MemNode::Memory);
2499     }
2500   }
2501 
2502 
2503   // Capture an unaliased, unconditional, simple store into an initializer.
2504   // Or, if it is independent of the allocation, hoist it above the allocation.
2505   if (ReduceFieldZeroing && /*can_reshape &&*/
2506       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2507     InitializeNode* init = mem->in(0)->as_Initialize();
2508     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2509     if (offset > 0) {
2510       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2511       // If the InitializeNode captured me, it made a raw copy of me,
2512       // and I need to disappear.
2513       if (moved != NULL) {
2514         // %%% hack to ensure that Ideal returns a new node:
2515         mem = MergeMemNode::make(mem);
2516         return mem;             // fold me away
2517       }
2518     }
2519   }
2520 
2521   return NULL;                  // No further progress
2522 }
2523 
2524 //------------------------------Value-----------------------------------------
2525 const Type* StoreNode::Value(PhaseGVN* phase) const {
2526   // Either input is TOP ==> the result is TOP
2527   const Type *t1 = phase->type( in(MemNode::Memory) );
2528   if( t1 == Type::TOP ) return Type::TOP;
2529   const Type *t2 = phase->type( in(MemNode::Address) );
2530   if( t2 == Type::TOP ) return Type::TOP;
2531   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2532   if( t3 == Type::TOP ) return Type::TOP;
2533   return Type::MEMORY;
2534 }
2535 
2536 //------------------------------Identity---------------------------------------
2537 // Remove redundant stores:
2538 //   Store(m, p, Load(m, p)) changes to m.
2539 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2540 Node* StoreNode::Identity(PhaseGVN* phase) {
2541   Node* mem = in(MemNode::Memory);
2542   Node* adr = in(MemNode::Address);
2543   Node* val = in(MemNode::ValueIn);
2544 
2545   Node* result = this;
2546 
2547   // Load then Store?  Then the Store is useless
2548   if (val->is_Load() &&
2549       val->in(MemNode::Address)->eqv_uncast(adr) &&
2550       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2551       val->as_Load()->store_Opcode() == Opcode()) {
2552     result = mem;
2553   }
2554 
2555   // Two stores in a row of the same value?
2556   if (result == this &&
2557       mem->is_Store() &&
2558       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2559       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2560       mem->Opcode() == Opcode()) {
2561     result = mem;
2562   }
2563 
2564   // Store of zero anywhere into a freshly-allocated object?
2565   // Then the store is useless.
2566   // (It must already have been captured by the InitializeNode.)
2567   if (result == this &&
2568       ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2569     // a newly allocated object is already all-zeroes everywhere
2570     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2571       result = mem;
2572     }
2573 
2574     if (result == this) {
2575       // the store may also apply to zero-bits in an earlier object
2576       Node* prev_mem = find_previous_store(phase);
2577       // Steps (a), (b):  Walk past independent stores to find an exact match.
2578       if (prev_mem != NULL) {
2579         Node* prev_val = can_see_stored_value(prev_mem, phase);
2580         if (prev_val != NULL && phase->eqv(prev_val, val)) {
2581           // prev_val and val might differ by a cast; it would be good
2582           // to keep the more informative of the two.
2583           result = mem;
2584         }
2585       }
2586     }
2587   }
2588 
2589   if (result != this && phase->is_IterGVN() != NULL) {
2590     MemBarNode* trailing = trailing_membar();
2591     if (trailing != NULL) {
2592 #ifdef ASSERT
2593       const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr();
2594       assert(t_oop == NULL || t_oop->is_known_instance_field(), "only for non escaping objects");
2595 #endif
2596       PhaseIterGVN* igvn = phase->is_IterGVN();
2597       trailing->remove(igvn);
2598     }
2599   }
2600 
2601   return result;
2602 }
2603 
2604 //------------------------------match_edge-------------------------------------
2605 // Do we Match on this edge index or not?  Match only memory & value
2606 uint StoreNode::match_edge(uint idx) const {
2607   return idx == MemNode::Address || idx == MemNode::ValueIn;
2608 }
2609 
2610 //------------------------------cmp--------------------------------------------
2611 // Do not common stores up together.  They generally have to be split
2612 // back up anyways, so do not bother.
2613 uint StoreNode::cmp( const Node &n ) const {
2614   return (&n == this);          // Always fail except on self
2615 }
2616 
2617 //------------------------------Ideal_masked_input-----------------------------
2618 // Check for a useless mask before a partial-word store
2619 // (StoreB ... (AndI valIn conIa) )
2620 // If (conIa & mask == mask) this simplifies to
2621 // (StoreB ... (valIn) )
2622 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2623   Node *val = in(MemNode::ValueIn);
2624   if( val->Opcode() == Op_AndI ) {
2625     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2626     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2627       set_req(MemNode::ValueIn, val->in(1));
2628       return this;
2629     }
2630   }
2631   return NULL;
2632 }
2633 
2634 
2635 //------------------------------Ideal_sign_extended_input----------------------
2636 // Check for useless sign-extension before a partial-word store
2637 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2638 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2639 // (StoreB ... (valIn) )
2640 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2641   Node *val = in(MemNode::ValueIn);
2642   if( val->Opcode() == Op_RShiftI ) {
2643     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2644     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2645       Node *shl = val->in(1);
2646       if( shl->Opcode() == Op_LShiftI ) {
2647         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2648         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2649           set_req(MemNode::ValueIn, shl->in(1));
2650           return this;
2651         }
2652       }
2653     }
2654   }
2655   return NULL;
2656 }
2657 
2658 //------------------------------value_never_loaded-----------------------------------
2659 // Determine whether there are any possible loads of the value stored.
2660 // For simplicity, we actually check if there are any loads from the
2661 // address stored to, not just for loads of the value stored by this node.
2662 //
2663 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2664   Node *adr = in(Address);
2665   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2666   if (adr_oop == NULL)
2667     return false;
2668   if (!adr_oop->is_known_instance_field())
2669     return false; // if not a distinct instance, there may be aliases of the address
2670   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2671     Node *use = adr->fast_out(i);
2672     if (use->is_Load() || use->is_LoadStore()) {
2673       return false;
2674     }
2675   }
2676   return true;
2677 }
2678 
2679 MemBarNode* StoreNode::trailing_membar() const {
2680   if (is_release()) {
2681     MemBarNode* trailing_mb = NULL;
2682     for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2683       Node* u = fast_out(i);
2684       if (u->is_MemBar()) {
2685         if (u->as_MemBar()->trailing_store()) {
2686           assert(u->Opcode() == Op_MemBarVolatile, "");
2687           assert(trailing_mb == NULL, "only one");
2688           trailing_mb = u->as_MemBar();
2689 #ifdef ASSERT
2690           Node* leading = u->as_MemBar()->leading_membar();
2691           assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2692           assert(leading->as_MemBar()->leading_store(), "incorrect membar pair");
2693           assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair");
2694 #endif
2695         } else {
2696           assert(u->as_MemBar()->standalone(), "");
2697         }
2698       }
2699     }
2700     return trailing_mb;
2701   }
2702   return NULL;
2703 }
2704 
2705 
2706 //=============================================================================
2707 //------------------------------Ideal------------------------------------------
2708 // If the store is from an AND mask that leaves the low bits untouched, then
2709 // we can skip the AND operation.  If the store is from a sign-extension
2710 // (a left shift, then right shift) we can skip both.
2711 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2712   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2713   if( progress != NULL ) return progress;
2714 
2715   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2716   if( progress != NULL ) return progress;
2717 
2718   // Finally check the default case
2719   return StoreNode::Ideal(phase, can_reshape);
2720 }
2721 
2722 //=============================================================================
2723 //------------------------------Ideal------------------------------------------
2724 // If the store is from an AND mask that leaves the low bits untouched, then
2725 // we can skip the AND operation
2726 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2727   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2728   if( progress != NULL ) return progress;
2729 
2730   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2731   if( progress != NULL ) return progress;
2732 
2733   // Finally check the default case
2734   return StoreNode::Ideal(phase, can_reshape);
2735 }
2736 
2737 //=============================================================================
2738 //------------------------------Identity---------------------------------------
2739 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2740   // No need to card mark when storing a null ptr
2741   Node* my_store = in(MemNode::OopStore);
2742   if (my_store->is_Store()) {
2743     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2744     if( t1 == TypePtr::NULL_PTR ) {
2745       return in(MemNode::Memory);
2746     }
2747   }
2748   return this;
2749 }
2750 
2751 //=============================================================================
2752 //------------------------------Ideal---------------------------------------
2753 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2754   Node* progress = StoreNode::Ideal(phase, can_reshape);
2755   if (progress != NULL) return progress;
2756 
2757   Node* my_store = in(MemNode::OopStore);
2758   if (my_store->is_MergeMem()) {
2759     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2760     set_req(MemNode::OopStore, mem);
2761     return this;
2762   }
2763 
2764   return NULL;
2765 }
2766 
2767 //------------------------------Value-----------------------------------------
2768 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2769   // Either input is TOP ==> the result is TOP
2770   const Type *t = phase->type( in(MemNode::Memory) );
2771   if( t == Type::TOP ) return Type::TOP;
2772   t = phase->type( in(MemNode::Address) );
2773   if( t == Type::TOP ) return Type::TOP;
2774   t = phase->type( in(MemNode::ValueIn) );
2775   if( t == Type::TOP ) return Type::TOP;
2776   // If extra input is TOP ==> the result is TOP
2777   t = phase->type( in(MemNode::OopStore) );
2778   if( t == Type::TOP ) return Type::TOP;
2779 
2780   return StoreNode::Value( phase );
2781 }
2782 
2783 
2784 //=============================================================================
2785 //----------------------------------SCMemProjNode------------------------------
2786 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2787 {
2788   return bottom_type();
2789 }
2790 
2791 //=============================================================================
2792 //----------------------------------LoadStoreNode------------------------------
2793 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2794   : Node(required),
2795     _type(rt),
2796     _adr_type(at)
2797 {
2798   init_req(MemNode::Control, c  );
2799   init_req(MemNode::Memory , mem);
2800   init_req(MemNode::Address, adr);
2801   init_req(MemNode::ValueIn, val);
2802   init_class_id(Class_LoadStore);
2803 }
2804 
2805 uint LoadStoreNode::ideal_reg() const {
2806   return _type->ideal_reg();
2807 }
2808 
2809 bool LoadStoreNode::result_not_used() const {
2810   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2811     Node *x = fast_out(i);
2812     if (x->Opcode() == Op_SCMemProj) continue;
2813     return false;
2814   }
2815   return true;
2816 }
2817 
2818 MemBarNode* LoadStoreNode::trailing_membar() const {
2819   MemBarNode* trailing = NULL;
2820   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
2821     Node* u = fast_out(i);
2822     if (u->is_MemBar()) {
2823       if (u->as_MemBar()->trailing_load_store()) {
2824         assert(u->Opcode() == Op_MemBarAcquire, "");
2825         assert(trailing == NULL, "only one");
2826         trailing = u->as_MemBar();
2827 #ifdef ASSERT
2828         Node* leading = trailing->leading_membar();
2829         assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar");
2830         assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair");
2831         assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair");
2832 #endif
2833       } else {
2834         assert(u->as_MemBar()->standalone(), "wrong barrier kind");
2835       }
2836     }
2837   }
2838 
2839   return trailing;
2840 }
2841 
2842 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2843 
2844 //=============================================================================
2845 //----------------------------------LoadStoreConditionalNode--------------------
2846 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2847   init_req(ExpectedIn, ex );
2848 }
2849 
2850 //=============================================================================
2851 //-------------------------------adr_type--------------------------------------
2852 const TypePtr* ClearArrayNode::adr_type() const {
2853   Node *adr = in(3);
2854   if (adr == NULL)  return NULL; // node is dead
2855   return MemNode::calculate_adr_type(adr->bottom_type());
2856 }
2857 
2858 //------------------------------match_edge-------------------------------------
2859 // Do we Match on this edge index or not?  Do not match memory
2860 uint ClearArrayNode::match_edge(uint idx) const {
2861   return idx > 1;
2862 }
2863 
2864 //------------------------------Identity---------------------------------------
2865 // Clearing a zero length array does nothing
2866 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2867   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2868 }
2869 
2870 //------------------------------Idealize---------------------------------------
2871 // Clearing a short array is faster with stores
2872 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2873   // Already know this is a large node, do not try to ideal it
2874   if (!IdealizeClearArrayNode || _is_large) return NULL;
2875 
2876   const int unit = BytesPerLong;
2877   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2878   if (!t)  return NULL;
2879   if (!t->is_con())  return NULL;
2880   intptr_t raw_count = t->get_con();
2881   intptr_t size = raw_count;
2882   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2883   // Clearing nothing uses the Identity call.
2884   // Negative clears are possible on dead ClearArrays
2885   // (see jck test stmt114.stmt11402.val).
2886   if (size <= 0 || size % unit != 0)  return NULL;
2887   intptr_t count = size / unit;
2888   // Length too long; communicate this to matchers and assemblers.
2889   // Assemblers are responsible to produce fast hardware clears for it.
2890   if (size > InitArrayShortSize) {
2891     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2892   }
2893   Node *mem = in(1);
2894   if( phase->type(mem)==Type::TOP ) return NULL;
2895   Node *adr = in(3);
2896   const Type* at = phase->type(adr);
2897   if( at==Type::TOP ) return NULL;
2898   const TypePtr* atp = at->isa_ptr();
2899   // adjust atp to be the correct array element address type
2900   if (atp == NULL)  atp = TypePtr::BOTTOM;
2901   else              atp = atp->add_offset(Type::OffsetBot);
2902   // Get base for derived pointer purposes
2903   if( adr->Opcode() != Op_AddP ) Unimplemented();
2904   Node *base = adr->in(1);
2905 
2906   Node *zero = phase->makecon(TypeLong::ZERO);
2907   Node *off  = phase->MakeConX(BytesPerLong);
2908   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2909   count--;
2910   while( count-- ) {
2911     mem = phase->transform(mem);
2912     adr = phase->transform(new AddPNode(base,adr,off));
2913     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2914   }
2915   return mem;
2916 }
2917 
2918 //----------------------------step_through----------------------------------
2919 // Return allocation input memory edge if it is different instance
2920 // or itself if it is the one we are looking for.
2921 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2922   Node* n = *np;
2923   assert(n->is_ClearArray(), "sanity");
2924   intptr_t offset;
2925   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2926   // This method is called only before Allocate nodes are expanded
2927   // during macro nodes expansion. Before that ClearArray nodes are
2928   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2929   // Allocate nodes are expanded) which follows allocations.
2930   assert(alloc != NULL, "should have allocation");
2931   if (alloc->_idx == instance_id) {
2932     // Can not bypass initialization of the instance we are looking for.
2933     return false;
2934   }
2935   // Otherwise skip it.
2936   InitializeNode* init = alloc->initialization();
2937   if (init != NULL)
2938     *np = init->in(TypeFunc::Memory);
2939   else
2940     *np = alloc->in(TypeFunc::Memory);
2941   return true;
2942 }
2943 
2944 //----------------------------clear_memory-------------------------------------
2945 // Generate code to initialize object storage to zero.
2946 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2947                                    intptr_t start_offset,
2948                                    Node* end_offset,
2949                                    PhaseGVN* phase) {
2950   intptr_t offset = start_offset;
2951 
2952   int unit = BytesPerLong;
2953   if ((offset % unit) != 0) {
2954     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2955     adr = phase->transform(adr);
2956     const TypePtr* atp = TypeRawPtr::BOTTOM;
2957     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2958     mem = phase->transform(mem);
2959     offset += BytesPerInt;
2960   }
2961   assert((offset % unit) == 0, "");
2962 
2963   // Initialize the remaining stuff, if any, with a ClearArray.
2964   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2965 }
2966 
2967 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2968                                    Node* start_offset,
2969                                    Node* end_offset,
2970                                    PhaseGVN* phase) {
2971   if (start_offset == end_offset) {
2972     // nothing to do
2973     return mem;
2974   }
2975 
2976   int unit = BytesPerLong;
2977   Node* zbase = start_offset;
2978   Node* zend  = end_offset;
2979 
2980   // Scale to the unit required by the CPU:
2981   if (!Matcher::init_array_count_is_in_bytes) {
2982     Node* shift = phase->intcon(exact_log2(unit));
2983     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2984     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2985   }
2986 
2987   // Bulk clear double-words
2988   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2989   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2990   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2991   return phase->transform(mem);
2992 }
2993 
2994 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2995                                    intptr_t start_offset,
2996                                    intptr_t end_offset,
2997                                    PhaseGVN* phase) {
2998   if (start_offset == end_offset) {
2999     // nothing to do
3000     return mem;
3001   }
3002 
3003   assert((end_offset % BytesPerInt) == 0, "odd end offset");
3004   intptr_t done_offset = end_offset;
3005   if ((done_offset % BytesPerLong) != 0) {
3006     done_offset -= BytesPerInt;
3007   }
3008   if (done_offset > start_offset) {
3009     mem = clear_memory(ctl, mem, dest,
3010                        start_offset, phase->MakeConX(done_offset), phase);
3011   }
3012   if (done_offset < end_offset) { // emit the final 32-bit store
3013     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
3014     adr = phase->transform(adr);
3015     const TypePtr* atp = TypeRawPtr::BOTTOM;
3016     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
3017     mem = phase->transform(mem);
3018     done_offset += BytesPerInt;
3019   }
3020   assert(done_offset == end_offset, "");
3021   return mem;
3022 }
3023 
3024 //=============================================================================
3025 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
3026   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
3027     _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone)
3028 #ifdef ASSERT
3029   , _pair_idx(0)
3030 #endif
3031 {
3032   init_class_id(Class_MemBar);
3033   Node* top = C->top();
3034   init_req(TypeFunc::I_O,top);
3035   init_req(TypeFunc::FramePtr,top);
3036   init_req(TypeFunc::ReturnAdr,top);
3037   if (precedent != NULL)
3038     init_req(TypeFunc::Parms, precedent);
3039 }
3040 
3041 //------------------------------cmp--------------------------------------------
3042 uint MemBarNode::hash() const { return NO_HASH; }
3043 uint MemBarNode::cmp( const Node &n ) const {
3044   return (&n == this);          // Always fail except on self
3045 }
3046 
3047 //------------------------------make-------------------------------------------
3048 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
3049   switch (opcode) {
3050   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
3051   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
3052   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
3053   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
3054   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
3055   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
3056   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
3057   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
3058   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
3059   case Op_Initialize:        return new InitializeNode(C, atp, pn);
3060   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
3061   default: ShouldNotReachHere(); return NULL;
3062   }
3063 }
3064 
3065 void MemBarNode::remove(PhaseIterGVN *igvn) {
3066   if (outcnt() != 2) {
3067     return;
3068   }
3069   if (trailing_store() || trailing_load_store()) {
3070     MemBarNode* leading = leading_membar();
3071     if (leading != NULL) {
3072       assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars");
3073       leading->remove(igvn);
3074     }
3075   }
3076   igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3077   igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3078 }
3079 
3080 //------------------------------Ideal------------------------------------------
3081 // Return a node which is more "ideal" than the current node.  Strip out
3082 // control copies
3083 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3084   if (remove_dead_region(phase, can_reshape)) return this;
3085   // Don't bother trying to transform a dead node
3086   if (in(0) && in(0)->is_top()) {
3087     return NULL;
3088   }
3089 
3090 #if INCLUDE_ZGC
3091   if (UseZGC) {
3092     if (req() == (Precedent+1) && in(MemBarNode::Precedent)->in(0) != NULL && in(MemBarNode::Precedent)->in(0)->is_LoadBarrier()) {
3093       Node* load_node = in(MemBarNode::Precedent)->in(0)->in(LoadBarrierNode::Oop);
3094       set_req(MemBarNode::Precedent, load_node);
3095       return this;
3096     }
3097   }
3098 #endif
3099 
3100   bool progress = false;
3101   // Eliminate volatile MemBars for scalar replaced objects.
3102   if (can_reshape && req() == (Precedent+1)) {
3103     bool eliminate = false;
3104     int opc = Opcode();
3105     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3106       // Volatile field loads and stores.
3107       Node* my_mem = in(MemBarNode::Precedent);
3108       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3109       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3110         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3111         // replace this Precedent (decodeN) with the Load instead.
3112         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3113           Node* load_node = my_mem->in(1);
3114           set_req(MemBarNode::Precedent, load_node);
3115           phase->is_IterGVN()->_worklist.push(my_mem);
3116           my_mem = load_node;
3117         } else {
3118           assert(my_mem->unique_out() == this, "sanity");
3119           del_req(Precedent);
3120           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3121           my_mem = NULL;
3122         }
3123         progress = true;
3124       }
3125       if (my_mem != NULL && my_mem->is_Mem()) {
3126         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3127         // Check for scalar replaced object reference.
3128         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3129             t_oop->offset() != Type::OffsetBot &&
3130             t_oop->offset() != Type::OffsetTop) {
3131           eliminate = true;
3132         }
3133       }
3134     } else if (opc == Op_MemBarRelease) {
3135       // Final field stores.
3136       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3137       if ((alloc != NULL) && alloc->is_Allocate() &&
3138           alloc->as_Allocate()->does_not_escape_thread()) {
3139         // The allocated object does not escape.
3140         eliminate = true;
3141       }
3142     }
3143     if (eliminate) {
3144       // Replace MemBar projections by its inputs.
3145       PhaseIterGVN* igvn = phase->is_IterGVN();
3146       remove(igvn);
3147       // Must return either the original node (now dead) or a new node
3148       // (Do not return a top here, since that would break the uniqueness of top.)
3149       return new ConINode(TypeInt::ZERO);
3150     }
3151   }
3152   return progress ? this : NULL;
3153 }
3154 
3155 //------------------------------Value------------------------------------------
3156 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3157   if( !in(0) ) return Type::TOP;
3158   if( phase->type(in(0)) == Type::TOP )
3159     return Type::TOP;
3160   return TypeTuple::MEMBAR;
3161 }
3162 
3163 //------------------------------match------------------------------------------
3164 // Construct projections for memory.
3165 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3166   switch (proj->_con) {
3167   case TypeFunc::Control:
3168   case TypeFunc::Memory:
3169     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3170   }
3171   ShouldNotReachHere();
3172   return NULL;
3173 }
3174 
3175 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3176   trailing->_kind = TrailingStore;
3177   leading->_kind = LeadingStore;
3178 #ifdef ASSERT
3179   trailing->_pair_idx = leading->_idx;
3180   leading->_pair_idx = leading->_idx;
3181 #endif
3182 }
3183 
3184 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) {
3185   trailing->_kind = TrailingLoadStore;
3186   leading->_kind = LeadingLoadStore;
3187 #ifdef ASSERT
3188   trailing->_pair_idx = leading->_idx;
3189   leading->_pair_idx = leading->_idx;
3190 #endif
3191 }
3192 
3193 MemBarNode* MemBarNode::trailing_membar() const {
3194   ResourceMark rm;
3195   Node* trailing = (Node*)this;
3196   VectorSet seen(Thread::current()->resource_area());
3197   Node_Stack multis(0);
3198   do {
3199     Node* c = trailing;
3200     uint i = 0;
3201     do {
3202       trailing = NULL;
3203       for (; i < c->outcnt(); i++) {
3204         Node* next = c->raw_out(i);
3205         if (next != c && next->is_CFG()) {
3206           if (c->is_MultiBranch()) {
3207             if (multis.node() == c) {
3208               multis.set_index(i+1);
3209             } else {
3210               multis.push(c, i+1);
3211             }
3212           }
3213           trailing = next;
3214           break;
3215         }
3216       }
3217       if (trailing != NULL && !seen.test_set(trailing->_idx)) {
3218         break;
3219       }
3220       while (multis.size() > 0) {
3221         c = multis.node();
3222         i = multis.index();
3223         if (i < c->req()) {
3224           break;
3225         }
3226         multis.pop();
3227       }
3228     } while (multis.size() > 0);
3229   } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing());
3230 
3231   MemBarNode* mb = trailing->as_MemBar();
3232   assert((mb->_kind == TrailingStore && _kind == LeadingStore) ||
3233          (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar");
3234   assert(mb->_pair_idx == _pair_idx, "bad trailing membar");
3235   return mb;
3236 }
3237 
3238 MemBarNode* MemBarNode::leading_membar() const {
3239   ResourceMark rm;
3240   VectorSet seen(Thread::current()->resource_area());
3241   Node_Stack regions(0);
3242   Node* leading = in(0);
3243   while (leading != NULL && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) {
3244     while (leading == NULL || leading->is_top() || seen.test_set(leading->_idx)) {
3245       leading = NULL;
3246       while (regions.size() > 0 && leading == NULL) {
3247         Node* r = regions.node();
3248         uint i = regions.index();
3249         if (i < r->req()) {
3250           leading = r->in(i);
3251           regions.set_index(i+1);
3252         } else {
3253           regions.pop();
3254         }
3255       }
3256       if (leading == NULL) {
3257         assert(regions.size() == 0, "all paths should have been tried");
3258         return NULL;
3259       }
3260     }
3261     if (leading->is_Region()) {
3262       regions.push(leading, 2);
3263       leading = leading->in(1);
3264     } else {
3265       leading = leading->in(0);
3266     }
3267   }
3268 #ifdef ASSERT
3269   Unique_Node_List wq;
3270   wq.push((Node*)this);
3271   uint found = 0;
3272   for (uint i = 0; i < wq.size(); i++) {
3273     Node* n = wq.at(i);
3274     if (n->is_Region()) {
3275       for (uint j = 1; j < n->req(); j++) {
3276         Node* in = n->in(j);
3277         if (in != NULL && !in->is_top()) {
3278           wq.push(in);
3279         }
3280       }
3281     } else {
3282       if (n->is_MemBar() && n->as_MemBar()->leading()) {
3283         assert(n == leading, "consistency check failed");
3284         found++;
3285       } else {
3286         Node* in = n->in(0);
3287         if (in != NULL && !in->is_top()) {
3288           wq.push(in);
3289         }
3290       }
3291     }
3292   }
3293   assert(found == 1 || (found == 0 && leading == NULL), "consistency check failed");
3294 #endif
3295   if (leading == NULL) {
3296     return NULL;
3297   }
3298   MemBarNode* mb = leading->as_MemBar();
3299   assert((mb->_kind == LeadingStore && _kind == TrailingStore) ||
3300          (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar");
3301   assert(mb->_pair_idx == _pair_idx, "bad leading membar");
3302   return mb;
3303 }
3304 
3305 //===========================InitializeNode====================================
3306 // SUMMARY:
3307 // This node acts as a memory barrier on raw memory, after some raw stores.
3308 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3309 // The Initialize can 'capture' suitably constrained stores as raw inits.
3310 // It can coalesce related raw stores into larger units (called 'tiles').
3311 // It can avoid zeroing new storage for memory units which have raw inits.
3312 // At macro-expansion, it is marked 'complete', and does not optimize further.
3313 //
3314 // EXAMPLE:
3315 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3316 //   ctl = incoming control; mem* = incoming memory
3317 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3318 // First allocate uninitialized memory and fill in the header:
3319 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3320 //   ctl := alloc.Control; mem* := alloc.Memory*
3321 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3322 // Then initialize to zero the non-header parts of the raw memory block:
3323 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3324 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3325 // After the initialize node executes, the object is ready for service:
3326 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3327 // Suppose its body is immediately initialized as {1,2}:
3328 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3329 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3330 //   mem.SLICE(#short[*]) := store2
3331 //
3332 // DETAILS:
3333 // An InitializeNode collects and isolates object initialization after
3334 // an AllocateNode and before the next possible safepoint.  As a
3335 // memory barrier (MemBarNode), it keeps critical stores from drifting
3336 // down past any safepoint or any publication of the allocation.
3337 // Before this barrier, a newly-allocated object may have uninitialized bits.
3338 // After this barrier, it may be treated as a real oop, and GC is allowed.
3339 //
3340 // The semantics of the InitializeNode include an implicit zeroing of
3341 // the new object from object header to the end of the object.
3342 // (The object header and end are determined by the AllocateNode.)
3343 //
3344 // Certain stores may be added as direct inputs to the InitializeNode.
3345 // These stores must update raw memory, and they must be to addresses
3346 // derived from the raw address produced by AllocateNode, and with
3347 // a constant offset.  They must be ordered by increasing offset.
3348 // The first one is at in(RawStores), the last at in(req()-1).
3349 // Unlike most memory operations, they are not linked in a chain,
3350 // but are displayed in parallel as users of the rawmem output of
3351 // the allocation.
3352 //
3353 // (See comments in InitializeNode::capture_store, which continue
3354 // the example given above.)
3355 //
3356 // When the associated Allocate is macro-expanded, the InitializeNode
3357 // may be rewritten to optimize collected stores.  A ClearArrayNode
3358 // may also be created at that point to represent any required zeroing.
3359 // The InitializeNode is then marked 'complete', prohibiting further
3360 // capturing of nearby memory operations.
3361 //
3362 // During macro-expansion, all captured initializations which store
3363 // constant values of 32 bits or smaller are coalesced (if advantageous)
3364 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3365 // initialized in fewer memory operations.  Memory words which are
3366 // covered by neither tiles nor non-constant stores are pre-zeroed
3367 // by explicit stores of zero.  (The code shape happens to do all
3368 // zeroing first, then all other stores, with both sequences occurring
3369 // in order of ascending offsets.)
3370 //
3371 // Alternatively, code may be inserted between an AllocateNode and its
3372 // InitializeNode, to perform arbitrary initialization of the new object.
3373 // E.g., the object copying intrinsics insert complex data transfers here.
3374 // The initialization must then be marked as 'complete' disable the
3375 // built-in zeroing semantics and the collection of initializing stores.
3376 //
3377 // While an InitializeNode is incomplete, reads from the memory state
3378 // produced by it are optimizable if they match the control edge and
3379 // new oop address associated with the allocation/initialization.
3380 // They return a stored value (if the offset matches) or else zero.
3381 // A write to the memory state, if it matches control and address,
3382 // and if it is to a constant offset, may be 'captured' by the
3383 // InitializeNode.  It is cloned as a raw memory operation and rewired
3384 // inside the initialization, to the raw oop produced by the allocation.
3385 // Operations on addresses which are provably distinct (e.g., to
3386 // other AllocateNodes) are allowed to bypass the initialization.
3387 //
3388 // The effect of all this is to consolidate object initialization
3389 // (both arrays and non-arrays, both piecewise and bulk) into a
3390 // single location, where it can be optimized as a unit.
3391 //
3392 // Only stores with an offset less than TrackedInitializationLimit words
3393 // will be considered for capture by an InitializeNode.  This puts a
3394 // reasonable limit on the complexity of optimized initializations.
3395 
3396 //---------------------------InitializeNode------------------------------------
3397 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3398   : MemBarNode(C, adr_type, rawoop),
3399     _is_complete(Incomplete), _does_not_escape(false)
3400 {
3401   init_class_id(Class_Initialize);
3402 
3403   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3404   assert(in(RawAddress) == rawoop, "proper init");
3405   // Note:  allocation() can be NULL, for secondary initialization barriers
3406 }
3407 
3408 // Since this node is not matched, it will be processed by the
3409 // register allocator.  Declare that there are no constraints
3410 // on the allocation of the RawAddress edge.
3411 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3412   // This edge should be set to top, by the set_complete.  But be conservative.
3413   if (idx == InitializeNode::RawAddress)
3414     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3415   return RegMask::Empty;
3416 }
3417 
3418 Node* InitializeNode::memory(uint alias_idx) {
3419   Node* mem = in(Memory);
3420   if (mem->is_MergeMem()) {
3421     return mem->as_MergeMem()->memory_at(alias_idx);
3422   } else {
3423     // incoming raw memory is not split
3424     return mem;
3425   }
3426 }
3427 
3428 bool InitializeNode::is_non_zero() {
3429   if (is_complete())  return false;
3430   remove_extra_zeroes();
3431   return (req() > RawStores);
3432 }
3433 
3434 void InitializeNode::set_complete(PhaseGVN* phase) {
3435   assert(!is_complete(), "caller responsibility");
3436   _is_complete = Complete;
3437 
3438   // After this node is complete, it contains a bunch of
3439   // raw-memory initializations.  There is no need for
3440   // it to have anything to do with non-raw memory effects.
3441   // Therefore, tell all non-raw users to re-optimize themselves,
3442   // after skipping the memory effects of this initialization.
3443   PhaseIterGVN* igvn = phase->is_IterGVN();
3444   if (igvn)  igvn->add_users_to_worklist(this);
3445 }
3446 
3447 // convenience function
3448 // return false if the init contains any stores already
3449 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3450   InitializeNode* init = initialization();
3451   if (init == NULL || init->is_complete())  return false;
3452   init->remove_extra_zeroes();
3453   // for now, if this allocation has already collected any inits, bail:
3454   if (init->is_non_zero())  return false;
3455   init->set_complete(phase);
3456   return true;
3457 }
3458 
3459 void InitializeNode::remove_extra_zeroes() {
3460   if (req() == RawStores)  return;
3461   Node* zmem = zero_memory();
3462   uint fill = RawStores;
3463   for (uint i = fill; i < req(); i++) {
3464     Node* n = in(i);
3465     if (n->is_top() || n == zmem)  continue;  // skip
3466     if (fill < i)  set_req(fill, n);          // compact
3467     ++fill;
3468   }
3469   // delete any empty spaces created:
3470   while (fill < req()) {
3471     del_req(fill);
3472   }
3473 }
3474 
3475 // Helper for remembering which stores go with which offsets.
3476 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3477   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3478   intptr_t offset = -1;
3479   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3480                                                phase, offset);
3481   if (base == NULL)     return -1;  // something is dead,
3482   if (offset < 0)       return -1;  //        dead, dead
3483   return offset;
3484 }
3485 
3486 // Helper for proving that an initialization expression is
3487 // "simple enough" to be folded into an object initialization.
3488 // Attempts to prove that a store's initial value 'n' can be captured
3489 // within the initialization without creating a vicious cycle, such as:
3490 //     { Foo p = new Foo(); p.next = p; }
3491 // True for constants and parameters and small combinations thereof.
3492 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3493   if (n == NULL)      return true;   // (can this really happen?)
3494   if (n->is_Proj())   n = n->in(0);
3495   if (n == this)      return false;  // found a cycle
3496   if (n->is_Con())    return true;
3497   if (n->is_Start())  return true;   // params, etc., are OK
3498   if (n->is_Root())   return true;   // even better
3499 
3500   Node* ctl = n->in(0);
3501   if (ctl != NULL && !ctl->is_top()) {
3502     if (ctl->is_Proj())  ctl = ctl->in(0);
3503     if (ctl == this)  return false;
3504 
3505     // If we already know that the enclosing memory op is pinned right after
3506     // the init, then any control flow that the store has picked up
3507     // must have preceded the init, or else be equal to the init.
3508     // Even after loop optimizations (which might change control edges)
3509     // a store is never pinned *before* the availability of its inputs.
3510     if (!MemNode::all_controls_dominate(n, this))
3511       return false;                  // failed to prove a good control
3512   }
3513 
3514   // Check data edges for possible dependencies on 'this'.
3515   if ((count += 1) > 20)  return false;  // complexity limit
3516   for (uint i = 1; i < n->req(); i++) {
3517     Node* m = n->in(i);
3518     if (m == NULL || m == n || m->is_top())  continue;
3519     uint first_i = n->find_edge(m);
3520     if (i != first_i)  continue;  // process duplicate edge just once
3521     if (!detect_init_independence(m, count)) {
3522       return false;
3523     }
3524   }
3525 
3526   return true;
3527 }
3528 
3529 // Here are all the checks a Store must pass before it can be moved into
3530 // an initialization.  Returns zero if a check fails.
3531 // On success, returns the (constant) offset to which the store applies,
3532 // within the initialized memory.
3533 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3534   const int FAIL = 0;
3535   if (st->is_unaligned_access()) {
3536     return FAIL;
3537   }
3538   if (st->req() != MemNode::ValueIn + 1)
3539     return FAIL;                // an inscrutable StoreNode (card mark?)
3540   Node* ctl = st->in(MemNode::Control);
3541   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3542     return FAIL;                // must be unconditional after the initialization
3543   Node* mem = st->in(MemNode::Memory);
3544   if (!(mem->is_Proj() && mem->in(0) == this))
3545     return FAIL;                // must not be preceded by other stores
3546   Node* adr = st->in(MemNode::Address);
3547   intptr_t offset;
3548   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3549   if (alloc == NULL)
3550     return FAIL;                // inscrutable address
3551   if (alloc != allocation())
3552     return FAIL;                // wrong allocation!  (store needs to float up)
3553   Node* val = st->in(MemNode::ValueIn);
3554   int complexity_count = 0;
3555   if (!detect_init_independence(val, complexity_count))
3556     return FAIL;                // stored value must be 'simple enough'
3557 
3558   // The Store can be captured only if nothing after the allocation
3559   // and before the Store is using the memory location that the store
3560   // overwrites.
3561   bool failed = false;
3562   // If is_complete_with_arraycopy() is true the shape of the graph is
3563   // well defined and is safe so no need for extra checks.
3564   if (!is_complete_with_arraycopy()) {
3565     // We are going to look at each use of the memory state following
3566     // the allocation to make sure nothing reads the memory that the
3567     // Store writes.
3568     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3569     int alias_idx = phase->C->get_alias_index(t_adr);
3570     ResourceMark rm;
3571     Unique_Node_List mems;
3572     mems.push(mem);
3573     Node* unique_merge = NULL;
3574     for (uint next = 0; next < mems.size(); ++next) {
3575       Node *m  = mems.at(next);
3576       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3577         Node *n = m->fast_out(j);
3578         if (n->outcnt() == 0) {
3579           continue;
3580         }
3581         if (n == st) {
3582           continue;
3583         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3584           // If the control of this use is different from the control
3585           // of the Store which is right after the InitializeNode then
3586           // this node cannot be between the InitializeNode and the
3587           // Store.
3588           continue;
3589         } else if (n->is_MergeMem()) {
3590           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3591             // We can hit a MergeMemNode (that will likely go away
3592             // later) that is a direct use of the memory state
3593             // following the InitializeNode on the same slice as the
3594             // store node that we'd like to capture. We need to check
3595             // the uses of the MergeMemNode.
3596             mems.push(n);
3597           }
3598         } else if (n->is_Mem()) {
3599           Node* other_adr = n->in(MemNode::Address);
3600           if (other_adr == adr) {
3601             failed = true;
3602             break;
3603           } else {
3604             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3605             if (other_t_adr != NULL) {
3606               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3607               if (other_alias_idx == alias_idx) {
3608                 // A load from the same memory slice as the store right
3609                 // after the InitializeNode. We check the control of the
3610                 // object/array that is loaded from. If it's the same as
3611                 // the store control then we cannot capture the store.
3612                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3613                 Node* base = other_adr;
3614                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3615                 base = base->in(AddPNode::Base);
3616                 if (base != NULL) {
3617                   base = base->uncast();
3618                   if (base->is_Proj() && base->in(0) == alloc) {
3619                     failed = true;
3620                     break;
3621                   }
3622                 }
3623               }
3624             }
3625           }
3626         } else {
3627           failed = true;
3628           break;
3629         }
3630       }
3631     }
3632   }
3633   if (failed) {
3634     if (!can_reshape) {
3635       // We decided we couldn't capture the store during parsing. We
3636       // should try again during the next IGVN once the graph is
3637       // cleaner.
3638       phase->C->record_for_igvn(st);
3639     }
3640     return FAIL;
3641   }
3642 
3643   return offset;                // success
3644 }
3645 
3646 // Find the captured store in(i) which corresponds to the range
3647 // [start..start+size) in the initialized object.
3648 // If there is one, return its index i.  If there isn't, return the
3649 // negative of the index where it should be inserted.
3650 // Return 0 if the queried range overlaps an initialization boundary
3651 // or if dead code is encountered.
3652 // If size_in_bytes is zero, do not bother with overlap checks.
3653 int InitializeNode::captured_store_insertion_point(intptr_t start,
3654                                                    int size_in_bytes,
3655                                                    PhaseTransform* phase) {
3656   const int FAIL = 0, MAX_STORE = BytesPerLong;
3657 
3658   if (is_complete())
3659     return FAIL;                // arraycopy got here first; punt
3660 
3661   assert(allocation() != NULL, "must be present");
3662 
3663   // no negatives, no header fields:
3664   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3665 
3666   // after a certain size, we bail out on tracking all the stores:
3667   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3668   if (start >= ti_limit)  return FAIL;
3669 
3670   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3671     if (i >= limit)  return -(int)i; // not found; here is where to put it
3672 
3673     Node*    st     = in(i);
3674     intptr_t st_off = get_store_offset(st, phase);
3675     if (st_off < 0) {
3676       if (st != zero_memory()) {
3677         return FAIL;            // bail out if there is dead garbage
3678       }
3679     } else if (st_off > start) {
3680       // ...we are done, since stores are ordered
3681       if (st_off < start + size_in_bytes) {
3682         return FAIL;            // the next store overlaps
3683       }
3684       return -(int)i;           // not found; here is where to put it
3685     } else if (st_off < start) {
3686       if (size_in_bytes != 0 &&
3687           start < st_off + MAX_STORE &&
3688           start < st_off + st->as_Store()->memory_size()) {
3689         return FAIL;            // the previous store overlaps
3690       }
3691     } else {
3692       if (size_in_bytes != 0 &&
3693           st->as_Store()->memory_size() != size_in_bytes) {
3694         return FAIL;            // mismatched store size
3695       }
3696       return i;
3697     }
3698 
3699     ++i;
3700   }
3701 }
3702 
3703 // Look for a captured store which initializes at the offset 'start'
3704 // with the given size.  If there is no such store, and no other
3705 // initialization interferes, then return zero_memory (the memory
3706 // projection of the AllocateNode).
3707 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3708                                           PhaseTransform* phase) {
3709   assert(stores_are_sane(phase), "");
3710   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3711   if (i == 0) {
3712     return NULL;                // something is dead
3713   } else if (i < 0) {
3714     return zero_memory();       // just primordial zero bits here
3715   } else {
3716     Node* st = in(i);           // here is the store at this position
3717     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3718     return st;
3719   }
3720 }
3721 
3722 // Create, as a raw pointer, an address within my new object at 'offset'.
3723 Node* InitializeNode::make_raw_address(intptr_t offset,
3724                                        PhaseTransform* phase) {
3725   Node* addr = in(RawAddress);
3726   if (offset != 0) {
3727     Compile* C = phase->C;
3728     addr = phase->transform( new AddPNode(C->top(), addr,
3729                                                  phase->MakeConX(offset)) );
3730   }
3731   return addr;
3732 }
3733 
3734 // Clone the given store, converting it into a raw store
3735 // initializing a field or element of my new object.
3736 // Caller is responsible for retiring the original store,
3737 // with subsume_node or the like.
3738 //
3739 // From the example above InitializeNode::InitializeNode,
3740 // here are the old stores to be captured:
3741 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3742 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3743 //
3744 // Here is the changed code; note the extra edges on init:
3745 //   alloc = (Allocate ...)
3746 //   rawoop = alloc.RawAddress
3747 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3748 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3749 //   init = (Initialize alloc.Control alloc.Memory rawoop
3750 //                      rawstore1 rawstore2)
3751 //
3752 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3753                                     PhaseTransform* phase, bool can_reshape) {
3754   assert(stores_are_sane(phase), "");
3755 
3756   if (start < 0)  return NULL;
3757   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3758 
3759   Compile* C = phase->C;
3760   int size_in_bytes = st->memory_size();
3761   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3762   if (i == 0)  return NULL;     // bail out
3763   Node* prev_mem = NULL;        // raw memory for the captured store
3764   if (i > 0) {
3765     prev_mem = in(i);           // there is a pre-existing store under this one
3766     set_req(i, C->top());       // temporarily disconnect it
3767     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3768   } else {
3769     i = -i;                     // no pre-existing store
3770     prev_mem = zero_memory();   // a slice of the newly allocated object
3771     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3772       set_req(--i, C->top());   // reuse this edge; it has been folded away
3773     else
3774       ins_req(i, C->top());     // build a new edge
3775   }
3776   Node* new_st = st->clone();
3777   new_st->set_req(MemNode::Control, in(Control));
3778   new_st->set_req(MemNode::Memory,  prev_mem);
3779   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3780   new_st = phase->transform(new_st);
3781 
3782   // At this point, new_st might have swallowed a pre-existing store
3783   // at the same offset, or perhaps new_st might have disappeared,
3784   // if it redundantly stored the same value (or zero to fresh memory).
3785 
3786   // In any case, wire it in:
3787   phase->igvn_rehash_node_delayed(this);
3788   set_req(i, new_st);
3789 
3790   // The caller may now kill the old guy.
3791   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3792   assert(check_st == new_st || check_st == NULL, "must be findable");
3793   assert(!is_complete(), "");
3794   return new_st;
3795 }
3796 
3797 static bool store_constant(jlong* tiles, int num_tiles,
3798                            intptr_t st_off, int st_size,
3799                            jlong con) {
3800   if ((st_off & (st_size-1)) != 0)
3801     return false;               // strange store offset (assume size==2**N)
3802   address addr = (address)tiles + st_off;
3803   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3804   switch (st_size) {
3805   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3806   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3807   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3808   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3809   default: return false;        // strange store size (detect size!=2**N here)
3810   }
3811   return true;                  // return success to caller
3812 }
3813 
3814 // Coalesce subword constants into int constants and possibly
3815 // into long constants.  The goal, if the CPU permits,
3816 // is to initialize the object with a small number of 64-bit tiles.
3817 // Also, convert floating-point constants to bit patterns.
3818 // Non-constants are not relevant to this pass.
3819 //
3820 // In terms of the running example on InitializeNode::InitializeNode
3821 // and InitializeNode::capture_store, here is the transformation
3822 // of rawstore1 and rawstore2 into rawstore12:
3823 //   alloc = (Allocate ...)
3824 //   rawoop = alloc.RawAddress
3825 //   tile12 = 0x00010002
3826 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3827 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3828 //
3829 void
3830 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3831                                         Node* size_in_bytes,
3832                                         PhaseGVN* phase) {
3833   Compile* C = phase->C;
3834 
3835   assert(stores_are_sane(phase), "");
3836   // Note:  After this pass, they are not completely sane,
3837   // since there may be some overlaps.
3838 
3839   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3840 
3841   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3842   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3843   size_limit = MIN2(size_limit, ti_limit);
3844   size_limit = align_up(size_limit, BytesPerLong);
3845   int num_tiles = size_limit / BytesPerLong;
3846 
3847   // allocate space for the tile map:
3848   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3849   jlong  tiles_buf[small_len];
3850   Node*  nodes_buf[small_len];
3851   jlong  inits_buf[small_len];
3852   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3853                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3854   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3855                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3856   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3857                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3858   // tiles: exact bitwise model of all primitive constants
3859   // nodes: last constant-storing node subsumed into the tiles model
3860   // inits: which bytes (in each tile) are touched by any initializations
3861 
3862   //// Pass A: Fill in the tile model with any relevant stores.
3863 
3864   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3865   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3866   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3867   Node* zmem = zero_memory(); // initially zero memory state
3868   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3869     Node* st = in(i);
3870     intptr_t st_off = get_store_offset(st, phase);
3871 
3872     // Figure out the store's offset and constant value:
3873     if (st_off < header_size)             continue; //skip (ignore header)
3874     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3875     int st_size = st->as_Store()->memory_size();
3876     if (st_off + st_size > size_limit)    break;
3877 
3878     // Record which bytes are touched, whether by constant or not.
3879     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3880       continue;                 // skip (strange store size)
3881 
3882     const Type* val = phase->type(st->in(MemNode::ValueIn));
3883     if (!val->singleton())                continue; //skip (non-con store)
3884     BasicType type = val->basic_type();
3885 
3886     jlong con = 0;
3887     switch (type) {
3888     case T_INT:    con = val->is_int()->get_con();  break;
3889     case T_LONG:   con = val->is_long()->get_con(); break;
3890     case T_FLOAT:  con = jint_cast(val->getf());    break;
3891     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3892     default:                              continue; //skip (odd store type)
3893     }
3894 
3895     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3896         st->Opcode() == Op_StoreL) {
3897       continue;                 // This StoreL is already optimal.
3898     }
3899 
3900     // Store down the constant.
3901     store_constant(tiles, num_tiles, st_off, st_size, con);
3902 
3903     intptr_t j = st_off >> LogBytesPerLong;
3904 
3905     if (type == T_INT && st_size == BytesPerInt
3906         && (st_off & BytesPerInt) == BytesPerInt) {
3907       jlong lcon = tiles[j];
3908       if (!Matcher::isSimpleConstant64(lcon) &&
3909           st->Opcode() == Op_StoreI) {
3910         // This StoreI is already optimal by itself.
3911         jint* intcon = (jint*) &tiles[j];
3912         intcon[1] = 0;  // undo the store_constant()
3913 
3914         // If the previous store is also optimal by itself, back up and
3915         // undo the action of the previous loop iteration... if we can.
3916         // But if we can't, just let the previous half take care of itself.
3917         st = nodes[j];
3918         st_off -= BytesPerInt;
3919         con = intcon[0];
3920         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3921           assert(st_off >= header_size, "still ignoring header");
3922           assert(get_store_offset(st, phase) == st_off, "must be");
3923           assert(in(i-1) == zmem, "must be");
3924           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3925           assert(con == tcon->is_int()->get_con(), "must be");
3926           // Undo the effects of the previous loop trip, which swallowed st:
3927           intcon[0] = 0;        // undo store_constant()
3928           set_req(i-1, st);     // undo set_req(i, zmem)
3929           nodes[j] = NULL;      // undo nodes[j] = st
3930           --old_subword;        // undo ++old_subword
3931         }
3932         continue;               // This StoreI is already optimal.
3933       }
3934     }
3935 
3936     // This store is not needed.
3937     set_req(i, zmem);
3938     nodes[j] = st;              // record for the moment
3939     if (st_size < BytesPerLong) // something has changed
3940           ++old_subword;        // includes int/float, but who's counting...
3941     else  ++old_long;
3942   }
3943 
3944   if ((old_subword + old_long) == 0)
3945     return;                     // nothing more to do
3946 
3947   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3948   // Be sure to insert them before overlapping non-constant stores.
3949   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3950   for (int j = 0; j < num_tiles; j++) {
3951     jlong con  = tiles[j];
3952     jlong init = inits[j];
3953     if (con == 0)  continue;
3954     jint con0,  con1;           // split the constant, address-wise
3955     jint init0, init1;          // split the init map, address-wise
3956     { union { jlong con; jint intcon[2]; } u;
3957       u.con = con;
3958       con0  = u.intcon[0];
3959       con1  = u.intcon[1];
3960       u.con = init;
3961       init0 = u.intcon[0];
3962       init1 = u.intcon[1];
3963     }
3964 
3965     Node* old = nodes[j];
3966     assert(old != NULL, "need the prior store");
3967     intptr_t offset = (j * BytesPerLong);
3968 
3969     bool split = !Matcher::isSimpleConstant64(con);
3970 
3971     if (offset < header_size) {
3972       assert(offset + BytesPerInt >= header_size, "second int counts");
3973       assert(*(jint*)&tiles[j] == 0, "junk in header");
3974       split = true;             // only the second word counts
3975       // Example:  int a[] = { 42 ... }
3976     } else if (con0 == 0 && init0 == -1) {
3977       split = true;             // first word is covered by full inits
3978       // Example:  int a[] = { ... foo(), 42 ... }
3979     } else if (con1 == 0 && init1 == -1) {
3980       split = true;             // second word is covered by full inits
3981       // Example:  int a[] = { ... 42, foo() ... }
3982     }
3983 
3984     // Here's a case where init0 is neither 0 nor -1:
3985     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3986     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3987     // In this case the tile is not split; it is (jlong)42.
3988     // The big tile is stored down, and then the foo() value is inserted.
3989     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3990 
3991     Node* ctl = old->in(MemNode::Control);
3992     Node* adr = make_raw_address(offset, phase);
3993     const TypePtr* atp = TypeRawPtr::BOTTOM;
3994 
3995     // One or two coalesced stores to plop down.
3996     Node*    st[2];
3997     intptr_t off[2];
3998     int  nst = 0;
3999     if (!split) {
4000       ++new_long;
4001       off[nst] = offset;
4002       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4003                                   phase->longcon(con), T_LONG, MemNode::unordered);
4004     } else {
4005       // Omit either if it is a zero.
4006       if (con0 != 0) {
4007         ++new_int;
4008         off[nst]  = offset;
4009         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4010                                     phase->intcon(con0), T_INT, MemNode::unordered);
4011       }
4012       if (con1 != 0) {
4013         ++new_int;
4014         offset += BytesPerInt;
4015         adr = make_raw_address(offset, phase);
4016         off[nst]  = offset;
4017         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
4018                                     phase->intcon(con1), T_INT, MemNode::unordered);
4019       }
4020     }
4021 
4022     // Insert second store first, then the first before the second.
4023     // Insert each one just before any overlapping non-constant stores.
4024     while (nst > 0) {
4025       Node* st1 = st[--nst];
4026       C->copy_node_notes_to(st1, old);
4027       st1 = phase->transform(st1);
4028       offset = off[nst];
4029       assert(offset >= header_size, "do not smash header");
4030       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
4031       guarantee(ins_idx != 0, "must re-insert constant store");
4032       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
4033       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
4034         set_req(--ins_idx, st1);
4035       else
4036         ins_req(ins_idx, st1);
4037     }
4038   }
4039 
4040   if (PrintCompilation && WizardMode)
4041     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
4042                   old_subword, old_long, new_int, new_long);
4043   if (C->log() != NULL)
4044     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
4045                    old_subword, old_long, new_int, new_long);
4046 
4047   // Clean up any remaining occurrences of zmem:
4048   remove_extra_zeroes();
4049 }
4050 
4051 // Explore forward from in(start) to find the first fully initialized
4052 // word, and return its offset.  Skip groups of subword stores which
4053 // together initialize full words.  If in(start) is itself part of a
4054 // fully initialized word, return the offset of in(start).  If there
4055 // are no following full-word stores, or if something is fishy, return
4056 // a negative value.
4057 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
4058   int       int_map = 0;
4059   intptr_t  int_map_off = 0;
4060   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
4061 
4062   for (uint i = start, limit = req(); i < limit; i++) {
4063     Node* st = in(i);
4064 
4065     intptr_t st_off = get_store_offset(st, phase);
4066     if (st_off < 0)  break;  // return conservative answer
4067 
4068     int st_size = st->as_Store()->memory_size();
4069     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
4070       return st_off;            // we found a complete word init
4071     }
4072 
4073     // update the map:
4074 
4075     intptr_t this_int_off = align_down(st_off, BytesPerInt);
4076     if (this_int_off != int_map_off) {
4077       // reset the map:
4078       int_map = 0;
4079       int_map_off = this_int_off;
4080     }
4081 
4082     int subword_off = st_off - this_int_off;
4083     int_map |= right_n_bits(st_size) << subword_off;
4084     if ((int_map & FULL_MAP) == FULL_MAP) {
4085       return this_int_off;      // we found a complete word init
4086     }
4087 
4088     // Did this store hit or cross the word boundary?
4089     intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
4090     if (next_int_off == this_int_off + BytesPerInt) {
4091       // We passed the current int, without fully initializing it.
4092       int_map_off = next_int_off;
4093       int_map >>= BytesPerInt;
4094     } else if (next_int_off > this_int_off + BytesPerInt) {
4095       // We passed the current and next int.
4096       return this_int_off + BytesPerInt;
4097     }
4098   }
4099 
4100   return -1;
4101 }
4102 
4103 
4104 // Called when the associated AllocateNode is expanded into CFG.
4105 // At this point, we may perform additional optimizations.
4106 // Linearize the stores by ascending offset, to make memory
4107 // activity as coherent as possible.
4108 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
4109                                       intptr_t header_size,
4110                                       Node* size_in_bytes,
4111                                       PhaseGVN* phase) {
4112   assert(!is_complete(), "not already complete");
4113   assert(stores_are_sane(phase), "");
4114   assert(allocation() != NULL, "must be present");
4115 
4116   remove_extra_zeroes();
4117 
4118   if (ReduceFieldZeroing || ReduceBulkZeroing)
4119     // reduce instruction count for common initialization patterns
4120     coalesce_subword_stores(header_size, size_in_bytes, phase);
4121 
4122   Node* zmem = zero_memory();   // initially zero memory state
4123   Node* inits = zmem;           // accumulating a linearized chain of inits
4124   #ifdef ASSERT
4125   intptr_t first_offset = allocation()->minimum_header_size();
4126   intptr_t last_init_off = first_offset;  // previous init offset
4127   intptr_t last_init_end = first_offset;  // previous init offset+size
4128   intptr_t last_tile_end = first_offset;  // previous tile offset+size
4129   #endif
4130   intptr_t zeroes_done = header_size;
4131 
4132   bool do_zeroing = true;       // we might give up if inits are very sparse
4133   int  big_init_gaps = 0;       // how many large gaps have we seen?
4134 
4135   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
4136   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
4137 
4138   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
4139     Node* st = in(i);
4140     intptr_t st_off = get_store_offset(st, phase);
4141     if (st_off < 0)
4142       break;                    // unknown junk in the inits
4143     if (st->in(MemNode::Memory) != zmem)
4144       break;                    // complicated store chains somehow in list
4145 
4146     int st_size = st->as_Store()->memory_size();
4147     intptr_t next_init_off = st_off + st_size;
4148 
4149     if (do_zeroing && zeroes_done < next_init_off) {
4150       // See if this store needs a zero before it or under it.
4151       intptr_t zeroes_needed = st_off;
4152 
4153       if (st_size < BytesPerInt) {
4154         // Look for subword stores which only partially initialize words.
4155         // If we find some, we must lay down some word-level zeroes first,
4156         // underneath the subword stores.
4157         //
4158         // Examples:
4159         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
4160         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
4161         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
4162         //
4163         // Note:  coalesce_subword_stores may have already done this,
4164         // if it was prompted by constant non-zero subword initializers.
4165         // But this case can still arise with non-constant stores.
4166 
4167         intptr_t next_full_store = find_next_fullword_store(i, phase);
4168 
4169         // In the examples above:
4170         //   in(i)          p   q   r   s     x   y     z
4171         //   st_off        12  13  14  15    12  13    14
4172         //   st_size        1   1   1   1     1   1     1
4173         //   next_full_s.  12  16  16  16    16  16    16
4174         //   z's_done      12  16  16  16    12  16    12
4175         //   z's_needed    12  16  16  16    16  16    16
4176         //   zsize          0   0   0   0     4   0     4
4177         if (next_full_store < 0) {
4178           // Conservative tack:  Zero to end of current word.
4179           zeroes_needed = align_up(zeroes_needed, BytesPerInt);
4180         } else {
4181           // Zero to beginning of next fully initialized word.
4182           // Or, don't zero at all, if we are already in that word.
4183           assert(next_full_store >= zeroes_needed, "must go forward");
4184           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
4185           zeroes_needed = next_full_store;
4186         }
4187       }
4188 
4189       if (zeroes_needed > zeroes_done) {
4190         intptr_t zsize = zeroes_needed - zeroes_done;
4191         // Do some incremental zeroing on rawmem, in parallel with inits.
4192         zeroes_done = align_down(zeroes_done, BytesPerInt);
4193         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4194                                               zeroes_done, zeroes_needed,
4195                                               phase);
4196         zeroes_done = zeroes_needed;
4197         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
4198           do_zeroing = false;   // leave the hole, next time
4199       }
4200     }
4201 
4202     // Collect the store and move on:
4203     st->set_req(MemNode::Memory, inits);
4204     inits = st;                 // put it on the linearized chain
4205     set_req(i, zmem);           // unhook from previous position
4206 
4207     if (zeroes_done == st_off)
4208       zeroes_done = next_init_off;
4209 
4210     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
4211 
4212     #ifdef ASSERT
4213     // Various order invariants.  Weaker than stores_are_sane because
4214     // a large constant tile can be filled in by smaller non-constant stores.
4215     assert(st_off >= last_init_off, "inits do not reverse");
4216     last_init_off = st_off;
4217     const Type* val = NULL;
4218     if (st_size >= BytesPerInt &&
4219         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
4220         (int)val->basic_type() < (int)T_OBJECT) {
4221       assert(st_off >= last_tile_end, "tiles do not overlap");
4222       assert(st_off >= last_init_end, "tiles do not overwrite inits");
4223       last_tile_end = MAX2(last_tile_end, next_init_off);
4224     } else {
4225       intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
4226       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
4227       assert(st_off      >= last_init_end, "inits do not overlap");
4228       last_init_end = next_init_off;  // it's a non-tile
4229     }
4230     #endif //ASSERT
4231   }
4232 
4233   remove_extra_zeroes();        // clear out all the zmems left over
4234   add_req(inits);
4235 
4236   if (!(UseTLAB && ZeroTLAB)) {
4237     // If anything remains to be zeroed, zero it all now.
4238     zeroes_done = align_down(zeroes_done, BytesPerInt);
4239     // if it is the last unused 4 bytes of an instance, forget about it
4240     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4241     if (zeroes_done + BytesPerLong >= size_limit) {
4242       AllocateNode* alloc = allocation();
4243       assert(alloc != NULL, "must be present");
4244       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
4245         Node* klass_node = alloc->in(AllocateNode::KlassNode);
4246         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4247         if (zeroes_done == k->layout_helper())
4248           zeroes_done = size_limit;
4249       }
4250     }
4251     if (zeroes_done < size_limit) {
4252       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4253                                             zeroes_done, size_in_bytes, phase);
4254     }
4255   }
4256 
4257   set_complete(phase);
4258   return rawmem;
4259 }
4260 
4261 
4262 #ifdef ASSERT
4263 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4264   if (is_complete())
4265     return true;                // stores could be anything at this point
4266   assert(allocation() != NULL, "must be present");
4267   intptr_t last_off = allocation()->minimum_header_size();
4268   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4269     Node* st = in(i);
4270     intptr_t st_off = get_store_offset(st, phase);
4271     if (st_off < 0)  continue;  // ignore dead garbage
4272     if (last_off > st_off) {
4273       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4274       this->dump(2);
4275       assert(false, "ascending store offsets");
4276       return false;
4277     }
4278     last_off = st_off + st->as_Store()->memory_size();
4279   }
4280   return true;
4281 }
4282 #endif //ASSERT
4283 
4284 
4285 
4286 
4287 //============================MergeMemNode=====================================
4288 //
4289 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4290 // contributing store or call operations.  Each contributor provides the memory
4291 // state for a particular "alias type" (see Compile::alias_type).  For example,
4292 // if a MergeMem has an input X for alias category #6, then any memory reference
4293 // to alias category #6 may use X as its memory state input, as an exact equivalent
4294 // to using the MergeMem as a whole.
4295 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4296 //
4297 // (Here, the <N> notation gives the index of the relevant adr_type.)
4298 //
4299 // In one special case (and more cases in the future), alias categories overlap.
4300 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4301 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4302 // it is exactly equivalent to that state W:
4303 //   MergeMem(<Bot>: W) <==> W
4304 //
4305 // Usually, the merge has more than one input.  In that case, where inputs
4306 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4307 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4308 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4309 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4310 //
4311 // A merge can take a "wide" memory state as one of its narrow inputs.
4312 // This simply means that the merge observes out only the relevant parts of
4313 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4314 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4315 //
4316 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4317 // and that memory slices "leak through":
4318 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4319 //
4320 // But, in such a cascade, repeated memory slices can "block the leak":
4321 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4322 //
4323 // In the last example, Y is not part of the combined memory state of the
4324 // outermost MergeMem.  The system must, of course, prevent unschedulable
4325 // memory states from arising, so you can be sure that the state Y is somehow
4326 // a precursor to state Y'.
4327 //
4328 //
4329 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4330 // of each MergeMemNode array are exactly the numerical alias indexes, including
4331 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4332 // Compile::alias_type (and kin) produce and manage these indexes.
4333 //
4334 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4335 // (Note that this provides quick access to the top node inside MergeMem methods,
4336 // without the need to reach out via TLS to Compile::current.)
4337 //
4338 // As a consequence of what was just described, a MergeMem that represents a full
4339 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4340 // containing all alias categories.
4341 //
4342 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4343 //
4344 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4345 // a memory state for the alias type <N>, or else the top node, meaning that
4346 // there is no particular input for that alias type.  Note that the length of
4347 // a MergeMem is variable, and may be extended at any time to accommodate new
4348 // memory states at larger alias indexes.  When merges grow, they are of course
4349 // filled with "top" in the unused in() positions.
4350 //
4351 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4352 // (Top was chosen because it works smoothly with passes like GCM.)
4353 //
4354 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4355 // the type of random VM bits like TLS references.)  Since it is always the
4356 // first non-Bot memory slice, some low-level loops use it to initialize an
4357 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4358 //
4359 //
4360 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4361 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4362 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4363 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4364 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4365 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4366 //
4367 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4368 // really that different from the other memory inputs.  An abbreviation called
4369 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4370 //
4371 //
4372 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4373 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4374 // that "emerges though" the base memory will be marked as excluding the alias types
4375 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4376 //
4377 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4378 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4379 //
4380 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4381 // (It is currently unimplemented.)  As you can see, the resulting merge is
4382 // actually a disjoint union of memory states, rather than an overlay.
4383 //
4384 
4385 //------------------------------MergeMemNode-----------------------------------
4386 Node* MergeMemNode::make_empty_memory() {
4387   Node* empty_memory = (Node*) Compile::current()->top();
4388   assert(empty_memory->is_top(), "correct sentinel identity");
4389   return empty_memory;
4390 }
4391 
4392 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4393   init_class_id(Class_MergeMem);
4394   // all inputs are nullified in Node::Node(int)
4395   // set_input(0, NULL);  // no control input
4396 
4397   // Initialize the edges uniformly to top, for starters.
4398   Node* empty_mem = make_empty_memory();
4399   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4400     init_req(i,empty_mem);
4401   }
4402   assert(empty_memory() == empty_mem, "");
4403 
4404   if( new_base != NULL && new_base->is_MergeMem() ) {
4405     MergeMemNode* mdef = new_base->as_MergeMem();
4406     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4407     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4408       mms.set_memory(mms.memory2());
4409     }
4410     assert(base_memory() == mdef->base_memory(), "");
4411   } else {
4412     set_base_memory(new_base);
4413   }
4414 }
4415 
4416 // Make a new, untransformed MergeMem with the same base as 'mem'.
4417 // If mem is itself a MergeMem, populate the result with the same edges.
4418 MergeMemNode* MergeMemNode::make(Node* mem) {
4419   return new MergeMemNode(mem);
4420 }
4421 
4422 //------------------------------cmp--------------------------------------------
4423 uint MergeMemNode::hash() const { return NO_HASH; }
4424 uint MergeMemNode::cmp( const Node &n ) const {
4425   return (&n == this);          // Always fail except on self
4426 }
4427 
4428 //------------------------------Identity---------------------------------------
4429 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4430   // Identity if this merge point does not record any interesting memory
4431   // disambiguations.
4432   Node* base_mem = base_memory();
4433   Node* empty_mem = empty_memory();
4434   if (base_mem != empty_mem) {  // Memory path is not dead?
4435     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4436       Node* mem = in(i);
4437       if (mem != empty_mem && mem != base_mem) {
4438         return this;            // Many memory splits; no change
4439       }
4440     }
4441   }
4442   return base_mem;              // No memory splits; ID on the one true input
4443 }
4444 
4445 //------------------------------Ideal------------------------------------------
4446 // This method is invoked recursively on chains of MergeMem nodes
4447 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4448   // Remove chain'd MergeMems
4449   //
4450   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4451   // relative to the "in(Bot)".  Since we are patching both at the same time,
4452   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4453   // but rewrite each "in(i)" relative to the new "in(Bot)".
4454   Node *progress = NULL;
4455 
4456 
4457   Node* old_base = base_memory();
4458   Node* empty_mem = empty_memory();
4459   if (old_base == empty_mem)
4460     return NULL; // Dead memory path.
4461 
4462   MergeMemNode* old_mbase;
4463   if (old_base != NULL && old_base->is_MergeMem())
4464     old_mbase = old_base->as_MergeMem();
4465   else
4466     old_mbase = NULL;
4467   Node* new_base = old_base;
4468 
4469   // simplify stacked MergeMems in base memory
4470   if (old_mbase)  new_base = old_mbase->base_memory();
4471 
4472   // the base memory might contribute new slices beyond my req()
4473   if (old_mbase)  grow_to_match(old_mbase);
4474 
4475   // Look carefully at the base node if it is a phi.
4476   PhiNode* phi_base;
4477   if (new_base != NULL && new_base->is_Phi())
4478     phi_base = new_base->as_Phi();
4479   else
4480     phi_base = NULL;
4481 
4482   Node*    phi_reg = NULL;
4483   uint     phi_len = (uint)-1;
4484   if (phi_base != NULL && !phi_base->is_copy()) {
4485     // do not examine phi if degraded to a copy
4486     phi_reg = phi_base->region();
4487     phi_len = phi_base->req();
4488     // see if the phi is unfinished
4489     for (uint i = 1; i < phi_len; i++) {
4490       if (phi_base->in(i) == NULL) {
4491         // incomplete phi; do not look at it yet!
4492         phi_reg = NULL;
4493         phi_len = (uint)-1;
4494         break;
4495       }
4496     }
4497   }
4498 
4499   // Note:  We do not call verify_sparse on entry, because inputs
4500   // can normalize to the base_memory via subsume_node or similar
4501   // mechanisms.  This method repairs that damage.
4502 
4503   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4504 
4505   // Look at each slice.
4506   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4507     Node* old_in = in(i);
4508     // calculate the old memory value
4509     Node* old_mem = old_in;
4510     if (old_mem == empty_mem)  old_mem = old_base;
4511     assert(old_mem == memory_at(i), "");
4512 
4513     // maybe update (reslice) the old memory value
4514 
4515     // simplify stacked MergeMems
4516     Node* new_mem = old_mem;
4517     MergeMemNode* old_mmem;
4518     if (old_mem != NULL && old_mem->is_MergeMem())
4519       old_mmem = old_mem->as_MergeMem();
4520     else
4521       old_mmem = NULL;
4522     if (old_mmem == this) {
4523       // This can happen if loops break up and safepoints disappear.
4524       // A merge of BotPtr (default) with a RawPtr memory derived from a
4525       // safepoint can be rewritten to a merge of the same BotPtr with
4526       // the BotPtr phi coming into the loop.  If that phi disappears
4527       // also, we can end up with a self-loop of the mergemem.
4528       // In general, if loops degenerate and memory effects disappear,
4529       // a mergemem can be left looking at itself.  This simply means
4530       // that the mergemem's default should be used, since there is
4531       // no longer any apparent effect on this slice.
4532       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4533       //       from start.  Update the input to TOP.
4534       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4535     }
4536     else if (old_mmem != NULL) {
4537       new_mem = old_mmem->memory_at(i);
4538     }
4539     // else preceding memory was not a MergeMem
4540 
4541     // replace equivalent phis (unfortunately, they do not GVN together)
4542     if (new_mem != NULL && new_mem != new_base &&
4543         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4544       if (new_mem->is_Phi()) {
4545         PhiNode* phi_mem = new_mem->as_Phi();
4546         for (uint i = 1; i < phi_len; i++) {
4547           if (phi_base->in(i) != phi_mem->in(i)) {
4548             phi_mem = NULL;
4549             break;
4550           }
4551         }
4552         if (phi_mem != NULL) {
4553           // equivalent phi nodes; revert to the def
4554           new_mem = new_base;
4555         }
4556       }
4557     }
4558 
4559     // maybe store down a new value
4560     Node* new_in = new_mem;
4561     if (new_in == new_base)  new_in = empty_mem;
4562 
4563     if (new_in != old_in) {
4564       // Warning:  Do not combine this "if" with the previous "if"
4565       // A memory slice might have be be rewritten even if it is semantically
4566       // unchanged, if the base_memory value has changed.
4567       set_req(i, new_in);
4568       progress = this;          // Report progress
4569     }
4570   }
4571 
4572   if (new_base != old_base) {
4573     set_req(Compile::AliasIdxBot, new_base);
4574     // Don't use set_base_memory(new_base), because we need to update du.
4575     assert(base_memory() == new_base, "");
4576     progress = this;
4577   }
4578 
4579   if( base_memory() == this ) {
4580     // a self cycle indicates this memory path is dead
4581     set_req(Compile::AliasIdxBot, empty_mem);
4582   }
4583 
4584   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4585   // Recursion must occur after the self cycle check above
4586   if( base_memory()->is_MergeMem() ) {
4587     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4588     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4589     if( m != NULL &&
4590         (m->is_top() ||
4591          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4592       // propagate rollup of dead cycle to self
4593       set_req(Compile::AliasIdxBot, empty_mem);
4594     }
4595   }
4596 
4597   if( base_memory() == empty_mem ) {
4598     progress = this;
4599     // Cut inputs during Parse phase only.
4600     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4601     if( !can_reshape ) {
4602       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4603         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4604       }
4605     }
4606   }
4607 
4608   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4609     // Check if PhiNode::Ideal's "Split phis through memory merges"
4610     // transform should be attempted. Look for this->phi->this cycle.
4611     uint merge_width = req();
4612     if (merge_width > Compile::AliasIdxRaw) {
4613       PhiNode* phi = base_memory()->as_Phi();
4614       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4615         if (phi->in(i) == this) {
4616           phase->is_IterGVN()->_worklist.push(phi);
4617           break;
4618         }
4619       }
4620     }
4621   }
4622 
4623   assert(progress || verify_sparse(), "please, no dups of base");
4624   return progress;
4625 }
4626 
4627 //-------------------------set_base_memory-------------------------------------
4628 void MergeMemNode::set_base_memory(Node *new_base) {
4629   Node* empty_mem = empty_memory();
4630   set_req(Compile::AliasIdxBot, new_base);
4631   assert(memory_at(req()) == new_base, "must set default memory");
4632   // Clear out other occurrences of new_base:
4633   if (new_base != empty_mem) {
4634     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4635       if (in(i) == new_base)  set_req(i, empty_mem);
4636     }
4637   }
4638 }
4639 
4640 //------------------------------out_RegMask------------------------------------
4641 const RegMask &MergeMemNode::out_RegMask() const {
4642   return RegMask::Empty;
4643 }
4644 
4645 //------------------------------dump_spec--------------------------------------
4646 #ifndef PRODUCT
4647 void MergeMemNode::dump_spec(outputStream *st) const {
4648   st->print(" {");
4649   Node* base_mem = base_memory();
4650   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4651     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4652     if (mem == base_mem) { st->print(" -"); continue; }
4653     st->print( " N%d:", mem->_idx );
4654     Compile::current()->get_adr_type(i)->dump_on(st);
4655   }
4656   st->print(" }");
4657 }
4658 #endif // !PRODUCT
4659 
4660 
4661 #ifdef ASSERT
4662 static bool might_be_same(Node* a, Node* b) {
4663   if (a == b)  return true;
4664   if (!(a->is_Phi() || b->is_Phi()))  return false;
4665   // phis shift around during optimization
4666   return true;  // pretty stupid...
4667 }
4668 
4669 // verify a narrow slice (either incoming or outgoing)
4670 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4671   if (!VerifyAliases)                return;  // don't bother to verify unless requested
4672   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4673   if (Node::in_dump())               return;  // muzzle asserts when printing
4674   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4675   assert(n != NULL, "");
4676   // Elide intervening MergeMem's
4677   while (n->is_MergeMem()) {
4678     n = n->as_MergeMem()->memory_at(alias_idx);
4679   }
4680   Compile* C = Compile::current();
4681   const TypePtr* n_adr_type = n->adr_type();
4682   if (n == m->empty_memory()) {
4683     // Implicit copy of base_memory()
4684   } else if (n_adr_type != TypePtr::BOTTOM) {
4685     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4686     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4687   } else {
4688     // A few places like make_runtime_call "know" that VM calls are narrow,
4689     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4690     bool expected_wide_mem = false;
4691     if (n == m->base_memory()) {
4692       expected_wide_mem = true;
4693     } else if (alias_idx == Compile::AliasIdxRaw ||
4694                n == m->memory_at(Compile::AliasIdxRaw)) {
4695       expected_wide_mem = true;
4696     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4697       // memory can "leak through" calls on channels that
4698       // are write-once.  Allow this also.
4699       expected_wide_mem = true;
4700     }
4701     assert(expected_wide_mem, "expected narrow slice replacement");
4702   }
4703 }
4704 #else // !ASSERT
4705 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4706 #endif
4707 
4708 
4709 //-----------------------------memory_at---------------------------------------
4710 Node* MergeMemNode::memory_at(uint alias_idx) const {
4711   assert(alias_idx >= Compile::AliasIdxRaw ||
4712          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4713          "must avoid base_memory and AliasIdxTop");
4714 
4715   // Otherwise, it is a narrow slice.
4716   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4717   Compile *C = Compile::current();
4718   if (is_empty_memory(n)) {
4719     // the array is sparse; empty slots are the "top" node
4720     n = base_memory();
4721     assert(Node::in_dump()
4722            || n == NULL || n->bottom_type() == Type::TOP
4723            || n->adr_type() == NULL // address is TOP
4724            || n->adr_type() == TypePtr::BOTTOM
4725            || n->adr_type() == TypeRawPtr::BOTTOM
4726            || Compile::current()->AliasLevel() == 0,
4727            "must be a wide memory");
4728     // AliasLevel == 0 if we are organizing the memory states manually.
4729     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4730   } else {
4731     // make sure the stored slice is sane
4732     #ifdef ASSERT
4733     if (VMError::is_error_reported() || Node::in_dump()) {
4734     } else if (might_be_same(n, base_memory())) {
4735       // Give it a pass:  It is a mostly harmless repetition of the base.
4736       // This can arise normally from node subsumption during optimization.
4737     } else {
4738       verify_memory_slice(this, alias_idx, n);
4739     }
4740     #endif
4741   }
4742   return n;
4743 }
4744 
4745 //---------------------------set_memory_at-------------------------------------
4746 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4747   verify_memory_slice(this, alias_idx, n);
4748   Node* empty_mem = empty_memory();
4749   if (n == base_memory())  n = empty_mem;  // collapse default
4750   uint need_req = alias_idx+1;
4751   if (req() < need_req) {
4752     if (n == empty_mem)  return;  // already the default, so do not grow me
4753     // grow the sparse array
4754     do {
4755       add_req(empty_mem);
4756     } while (req() < need_req);
4757   }
4758   set_req( alias_idx, n );
4759 }
4760 
4761 
4762 
4763 //--------------------------iteration_setup------------------------------------
4764 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4765   if (other != NULL) {
4766     grow_to_match(other);
4767     // invariant:  the finite support of mm2 is within mm->req()
4768     #ifdef ASSERT
4769     for (uint i = req(); i < other->req(); i++) {
4770       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4771     }
4772     #endif
4773   }
4774   // Replace spurious copies of base_memory by top.
4775   Node* base_mem = base_memory();
4776   if (base_mem != NULL && !base_mem->is_top()) {
4777     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4778       if (in(i) == base_mem)
4779         set_req(i, empty_memory());
4780     }
4781   }
4782 }
4783 
4784 //---------------------------grow_to_match-------------------------------------
4785 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4786   Node* empty_mem = empty_memory();
4787   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4788   // look for the finite support of the other memory
4789   for (uint i = other->req(); --i >= req(); ) {
4790     if (other->in(i) != empty_mem) {
4791       uint new_len = i+1;
4792       while (req() < new_len)  add_req(empty_mem);
4793       break;
4794     }
4795   }
4796 }
4797 
4798 //---------------------------verify_sparse-------------------------------------
4799 #ifndef PRODUCT
4800 bool MergeMemNode::verify_sparse() const {
4801   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4802   Node* base_mem = base_memory();
4803   // The following can happen in degenerate cases, since empty==top.
4804   if (is_empty_memory(base_mem))  return true;
4805   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4806     assert(in(i) != NULL, "sane slice");
4807     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4808   }
4809   return true;
4810 }
4811 
4812 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4813   Node* n;
4814   n = mm->in(idx);
4815   if (mem == n)  return true;  // might be empty_memory()
4816   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4817   if (mem == n)  return true;
4818   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4819     if (mem == n)  return true;
4820     if (n == NULL)  break;
4821   }
4822   return false;
4823 }
4824 #endif // !PRODUCT