1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "utilities/bitMap.inline.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/heapRegion.hpp"
  45 #endif // INCLUDE_ALL_GCS
  46 #ifdef TRACE_HAVE_INTRINSICS
  47 #include "trace/traceMacros.hpp"
  48 #endif
  49 
  50 #ifdef ASSERT
  51 #define __ gen()->lir(__FILE__, __LINE__)->
  52 #else
  53 #define __ gen()->lir()->
  54 #endif
  55 
  56 #ifndef PATCHED_ADDR
  57 #define PATCHED_ADDR  (max_jint)
  58 #endif
  59 
  60 void PhiResolverState::reset(int max_vregs) {
  61   // Initialize array sizes
  62   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _virtual_operands.trunc_to(0);
  64   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _other_operands.trunc_to(0);
  66   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _vreg_table.trunc_to(0);
  68 }
  69 
  70 
  71 
  72 //--------------------------------------------------------------
  73 // PhiResolver
  74 
  75 // Resolves cycles:
  76 //
  77 //  r1 := r2  becomes  temp := r1
  78 //  r2 := r1           r1 := r2
  79 //                     r2 := temp
  80 // and orders moves:
  81 //
  82 //  r2 := r3  becomes  r1 := r2
  83 //  r1 := r2           r2 := r3
  84 
  85 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  86  : _gen(gen)
  87  , _state(gen->resolver_state())
  88  , _temp(LIR_OprFact::illegalOpr)
  89 {
  90   // reinitialize the shared state arrays
  91   _state.reset(max_vregs);
  92 }
  93 
  94 
  95 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  96   assert(src->is_valid(), "");
  97   assert(dest->is_valid(), "");
  98   __ move(src, dest);
  99 }
 100 
 101 
 102 void PhiResolver::move_temp_to(LIR_Opr dest) {
 103   assert(_temp->is_valid(), "");
 104   emit_move(_temp, dest);
 105   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 106 }
 107 
 108 
 109 void PhiResolver::move_to_temp(LIR_Opr src) {
 110   assert(_temp->is_illegal(), "");
 111   _temp = _gen->new_register(src->type());
 112   emit_move(src, _temp);
 113 }
 114 
 115 
 116 // Traverse assignment graph in depth first order and generate moves in post order
 117 // ie. two assignments: b := c, a := b start with node c:
 118 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 119 // Generates moves in this order: move b to a and move c to b
 120 // ie. cycle a := b, b := a start with node a
 121 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 122 // Generates moves in this order: move b to temp, move a to b, move temp to a
 123 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 124   if (!dest->visited()) {
 125     dest->set_visited();
 126     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 127       move(dest, dest->destination_at(i));
 128     }
 129   } else if (!dest->start_node()) {
 130     // cylce in graph detected
 131     assert(_loop == NULL, "only one loop valid!");
 132     _loop = dest;
 133     move_to_temp(src->operand());
 134     return;
 135   } // else dest is a start node
 136 
 137   if (!dest->assigned()) {
 138     if (_loop == dest) {
 139       move_temp_to(dest->operand());
 140       dest->set_assigned();
 141     } else if (src != NULL) {
 142       emit_move(src->operand(), dest->operand());
 143       dest->set_assigned();
 144     }
 145   }
 146 }
 147 
 148 
 149 PhiResolver::~PhiResolver() {
 150   int i;
 151   // resolve any cycles in moves from and to virtual registers
 152   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 153     ResolveNode* node = virtual_operands().at(i);
 154     if (!node->visited()) {
 155       _loop = NULL;
 156       move(NULL, node);
 157       node->set_start_node();
 158       assert(_temp->is_illegal(), "move_temp_to() call missing");
 159     }
 160   }
 161 
 162   // generate move for move from non virtual register to abitrary destination
 163   for (i = other_operands().length() - 1; i >= 0; i --) {
 164     ResolveNode* node = other_operands().at(i);
 165     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 166       emit_move(node->operand(), node->destination_at(j)->operand());
 167     }
 168   }
 169 }
 170 
 171 
 172 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 173   ResolveNode* node;
 174   if (opr->is_virtual()) {
 175     int vreg_num = opr->vreg_number();
 176     node = vreg_table().at_grow(vreg_num, NULL);
 177     assert(node == NULL || node->operand() == opr, "");
 178     if (node == NULL) {
 179       node = new ResolveNode(opr);
 180       vreg_table().at_put(vreg_num, node);
 181     }
 182     // Make sure that all virtual operands show up in the list when
 183     // they are used as the source of a move.
 184     if (source && !virtual_operands().contains(node)) {
 185       virtual_operands().append(node);
 186     }
 187   } else {
 188     assert(source, "");
 189     node = new ResolveNode(opr);
 190     other_operands().append(node);
 191   }
 192   return node;
 193 }
 194 
 195 
 196 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 197   assert(dest->is_virtual(), "");
 198   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 199   assert(src->is_valid(), "");
 200   assert(dest->is_valid(), "");
 201   ResolveNode* source = source_node(src);
 202   source->append(destination_node(dest));
 203 }
 204 
 205 
 206 //--------------------------------------------------------------
 207 // LIRItem
 208 
 209 void LIRItem::set_result(LIR_Opr opr) {
 210   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 211   value()->set_operand(opr);
 212 
 213   if (opr->is_virtual()) {
 214     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 215   }
 216 
 217   _result = opr;
 218 }
 219 
 220 void LIRItem::load_item() {
 221   if (result()->is_illegal()) {
 222     // update the items result
 223     _result = value()->operand();
 224   }
 225   if (!result()->is_register()) {
 226     LIR_Opr reg = _gen->new_register(value()->type());
 227     __ move(result(), reg);
 228     if (result()->is_constant()) {
 229       _result = reg;
 230     } else {
 231       set_result(reg);
 232     }
 233   }
 234 }
 235 
 236 
 237 void LIRItem::load_for_store(BasicType type) {
 238   if (_gen->can_store_as_constant(value(), type)) {
 239     _result = value()->operand();
 240     if (!_result->is_constant()) {
 241       _result = LIR_OprFact::value_type(value()->type());
 242     }
 243   } else if (type == T_BYTE || type == T_BOOLEAN) {
 244     load_byte_item();
 245   } else {
 246     load_item();
 247   }
 248 }
 249 
 250 void LIRItem::load_item_force(LIR_Opr reg) {
 251   LIR_Opr r = result();
 252   if (r != reg) {
 253 #if !defined(ARM) && !defined(E500V2)
 254     if (r->type() != reg->type()) {
 255       // moves between different types need an intervening spill slot
 256       r = _gen->force_to_spill(r, reg->type());
 257     }
 258 #endif
 259     __ move(r, reg);
 260     _result = reg;
 261   }
 262 }
 263 
 264 ciObject* LIRItem::get_jobject_constant() const {
 265   ObjectType* oc = type()->as_ObjectType();
 266   if (oc) {
 267     return oc->constant_value();
 268   }
 269   return NULL;
 270 }
 271 
 272 
 273 jint LIRItem::get_jint_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_IntConstant() != NULL, "type check");
 276   return type()->as_IntConstant()->value();
 277 }
 278 
 279 
 280 jint LIRItem::get_address_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_AddressConstant() != NULL, "type check");
 283   return type()->as_AddressConstant()->value();
 284 }
 285 
 286 
 287 jfloat LIRItem::get_jfloat_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_FloatConstant() != NULL, "type check");
 290   return type()->as_FloatConstant()->value();
 291 }
 292 
 293 
 294 jdouble LIRItem::get_jdouble_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_DoubleConstant() != NULL, "type check");
 297   return type()->as_DoubleConstant()->value();
 298 }
 299 
 300 
 301 jlong LIRItem::get_jlong_constant() const {
 302   assert(is_constant() && value() != NULL, "");
 303   assert(type()->as_LongConstant() != NULL, "type check");
 304   return type()->as_LongConstant()->value();
 305 }
 306 
 307 
 308 
 309 //--------------------------------------------------------------
 310 
 311 
 312 void LIRGenerator::init() {
 313   _bs = Universe::heap()->barrier_set();
 314 }
 315 
 316 
 317 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 318 #ifndef PRODUCT
 319   if (PrintIRWithLIR) {
 320     block->print();
 321   }
 322 #endif
 323 
 324   // set up the list of LIR instructions
 325   assert(block->lir() == NULL, "LIR list already computed for this block");
 326   _lir = new LIR_List(compilation(), block);
 327   block->set_lir(_lir);
 328 
 329   __ branch_destination(block->label());
 330 
 331   if (LIRTraceExecution &&
 332       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 333       !block->is_set(BlockBegin::exception_entry_flag)) {
 334     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 335     trace_block_entry(block);
 336   }
 337 }
 338 
 339 
 340 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 341 #ifndef PRODUCT
 342   if (PrintIRWithLIR) {
 343     tty->cr();
 344   }
 345 #endif
 346 
 347   // LIR_Opr for unpinned constants shouldn't be referenced by other
 348   // blocks so clear them out after processing the block.
 349   for (int i = 0; i < _unpinned_constants.length(); i++) {
 350     _unpinned_constants.at(i)->clear_operand();
 351   }
 352   _unpinned_constants.trunc_to(0);
 353 
 354   // clear our any registers for other local constants
 355   _constants.trunc_to(0);
 356   _reg_for_constants.trunc_to(0);
 357 }
 358 
 359 
 360 void LIRGenerator::block_do(BlockBegin* block) {
 361   CHECK_BAILOUT();
 362 
 363   block_do_prolog(block);
 364   set_block(block);
 365 
 366   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 367     if (instr->is_pinned()) do_root(instr);
 368   }
 369 
 370   set_block(NULL);
 371   block_do_epilog(block);
 372 }
 373 
 374 
 375 //-------------------------LIRGenerator-----------------------------
 376 
 377 // This is where the tree-walk starts; instr must be root;
 378 void LIRGenerator::do_root(Value instr) {
 379   CHECK_BAILOUT();
 380 
 381   InstructionMark im(compilation(), instr);
 382 
 383   assert(instr->is_pinned(), "use only with roots");
 384   assert(instr->subst() == instr, "shouldn't have missed substitution");
 385 
 386   instr->visit(this);
 387 
 388   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 389          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 390 }
 391 
 392 
 393 // This is called for each node in tree; the walk stops if a root is reached
 394 void LIRGenerator::walk(Value instr) {
 395   InstructionMark im(compilation(), instr);
 396   //stop walk when encounter a root
 397   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 398     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 399   } else {
 400     assert(instr->subst() == instr, "shouldn't have missed substitution");
 401     instr->visit(this);
 402     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 403   }
 404 }
 405 
 406 
 407 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 408   assert(state != NULL, "state must be defined");
 409 
 410 #ifndef PRODUCT
 411   state->verify();
 412 #endif
 413 
 414   ValueStack* s = state;
 415   for_each_state(s) {
 416     if (s->kind() == ValueStack::EmptyExceptionState) {
 417       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 418       continue;
 419     }
 420 
 421     int index;
 422     Value value;
 423     for_each_stack_value(s, index, value) {
 424       assert(value->subst() == value, "missed substitution");
 425       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 426         walk(value);
 427         assert(value->operand()->is_valid(), "must be evaluated now");
 428       }
 429     }
 430 
 431     int bci = s->bci();
 432     IRScope* scope = s->scope();
 433     ciMethod* method = scope->method();
 434 
 435     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 436     if (bci == SynchronizationEntryBCI) {
 437       if (x->as_ExceptionObject() || x->as_Throw()) {
 438         // all locals are dead on exit from the synthetic unlocker
 439         liveness.clear();
 440       } else {
 441         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 442       }
 443     }
 444     if (!liveness.is_valid()) {
 445       // Degenerate or breakpointed method.
 446       bailout("Degenerate or breakpointed method");
 447     } else {
 448       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 449       for_each_local_value(s, index, value) {
 450         assert(value->subst() == value, "missed substition");
 451         if (liveness.at(index) && !value->type()->is_illegal()) {
 452           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 453             walk(value);
 454             assert(value->operand()->is_valid(), "must be evaluated now");
 455           }
 456         } else {
 457           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 458           s->invalidate_local(index);
 459         }
 460       }
 461     }
 462   }
 463 
 464   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 465 }
 466 
 467 
 468 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 469   return state_for(x, x->exception_state());
 470 }
 471 
 472 
 473 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 474   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 475    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 476    * the class. */
 477   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 478     assert(info != NULL, "info must be set if class is not loaded");
 479     __ klass2reg_patch(NULL, r, info);
 480   } else {
 481     // no patching needed
 482     __ metadata2reg(obj->constant_encoding(), r);
 483   }
 484 }
 485 
 486 
 487 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 488                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 489   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 490   if (index->is_constant()) {
 491     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 492                 index->as_jint(), null_check_info);
 493     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 494   } else {
 495     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 496                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 497     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 498   }
 499 }
 500 
 501 
 502 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 503   CodeStub* stub = new RangeCheckStub(info, index, true);
 504   if (index->is_constant()) {
 505     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 506     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 507   } else {
 508     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 509                 java_nio_Buffer::limit_offset(), T_INT, info);
 510     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 511   }
 512   __ move(index, result);
 513 }
 514 
 515 
 516 
 517 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 518   LIR_Opr result_op = result;
 519   LIR_Opr left_op   = left;
 520   LIR_Opr right_op  = right;
 521 
 522   if (TwoOperandLIRForm && left_op != result_op) {
 523     assert(right_op != result_op, "malformed");
 524     __ move(left_op, result_op);
 525     left_op = result_op;
 526   }
 527 
 528   switch(code) {
 529     case Bytecodes::_dadd:
 530     case Bytecodes::_fadd:
 531     case Bytecodes::_ladd:
 532     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 533     case Bytecodes::_fmul:
 534     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 535 
 536     case Bytecodes::_dmul:
 537       {
 538         if (is_strictfp) {
 539           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 540         } else {
 541           __ mul(left_op, right_op, result_op); break;
 542         }
 543       }
 544       break;
 545 
 546     case Bytecodes::_imul:
 547       {
 548         bool did_strength_reduce = false;
 549 
 550         if (right->is_constant()) {
 551           jint c = right->as_jint();
 552           if (c > 0 && is_power_of_2(c)) {
 553             // do not need tmp here
 554             __ shift_left(left_op, exact_log2(c), result_op);
 555             did_strength_reduce = true;
 556           } else {
 557             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 558           }
 559         }
 560         // we couldn't strength reduce so just emit the multiply
 561         if (!did_strength_reduce) {
 562           __ mul(left_op, right_op, result_op);
 563         }
 564       }
 565       break;
 566 
 567     case Bytecodes::_dsub:
 568     case Bytecodes::_fsub:
 569     case Bytecodes::_lsub:
 570     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 571 
 572     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 573     // ldiv and lrem are implemented with a direct runtime call
 574 
 575     case Bytecodes::_ddiv:
 576       {
 577         if (is_strictfp) {
 578           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 579         } else {
 580           __ div (left_op, right_op, result_op); break;
 581         }
 582       }
 583       break;
 584 
 585     case Bytecodes::_drem:
 586     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 587 
 588     default: ShouldNotReachHere();
 589   }
 590 }
 591 
 592 
 593 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 594   arithmetic_op(code, result, left, right, false, tmp);
 595 }
 596 
 597 
 598 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 599   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 600 }
 601 
 602 
 603 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 604   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 605 }
 606 
 607 
 608 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 609 
 610   if (TwoOperandLIRForm && value != result_op
 611       // Only 32bit right shifts require two operand form on S390.
 612       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 613     assert(count != result_op, "malformed");
 614     __ move(value, result_op);
 615     value = result_op;
 616   }
 617 
 618   assert(count->is_constant() || count->is_register(), "must be");
 619   switch(code) {
 620   case Bytecodes::_ishl:
 621   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 622   case Bytecodes::_ishr:
 623   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 624   case Bytecodes::_iushr:
 625   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 626   default: ShouldNotReachHere();
 627   }
 628 }
 629 
 630 
 631 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 632   if (TwoOperandLIRForm && left_op != result_op) {
 633     assert(right_op != result_op, "malformed");
 634     __ move(left_op, result_op);
 635     left_op = result_op;
 636   }
 637 
 638   switch(code) {
 639     case Bytecodes::_iand:
 640     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 641 
 642     case Bytecodes::_ior:
 643     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 644 
 645     case Bytecodes::_ixor:
 646     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 647 
 648     default: ShouldNotReachHere();
 649   }
 650 }
 651 
 652 
 653 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 654   if (!GenerateSynchronizationCode) return;
 655   // for slow path, use debug info for state after successful locking
 656   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 657   __ load_stack_address_monitor(monitor_no, lock);
 658   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 659   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 660 }
 661 
 662 
 663 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 664   if (!GenerateSynchronizationCode) return;
 665   // setup registers
 666   LIR_Opr hdr = lock;
 667   lock = new_hdr;
 668   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 669   __ load_stack_address_monitor(monitor_no, lock);
 670   __ unlock_object(hdr, object, lock, scratch, slow_path);
 671 }
 672 
 673 #ifndef PRODUCT
 674 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 675   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 676     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 677   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 678     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 679   }
 680 }
 681 #endif
 682 
 683 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 684   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 685   // If klass is not loaded we do not know if the klass has finalizers:
 686   if (UseFastNewInstance && klass->is_loaded()
 687       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 688 
 689     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 690 
 691     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 692 
 693     assert(klass->is_loaded(), "must be loaded");
 694     // allocate space for instance
 695     assert(klass->size_helper() >= 0, "illegal instance size");
 696     const int instance_size = align_object_size(klass->size_helper());
 697     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 698                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 699   } else {
 700     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 701     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 702     __ branch_destination(slow_path->continuation());
 703   }
 704 }
 705 
 706 
 707 static bool is_constant_zero(Instruction* inst) {
 708   IntConstant* c = inst->type()->as_IntConstant();
 709   if (c) {
 710     return (c->value() == 0);
 711   }
 712   return false;
 713 }
 714 
 715 
 716 static bool positive_constant(Instruction* inst) {
 717   IntConstant* c = inst->type()->as_IntConstant();
 718   if (c) {
 719     return (c->value() >= 0);
 720   }
 721   return false;
 722 }
 723 
 724 
 725 static ciArrayKlass* as_array_klass(ciType* type) {
 726   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 727     return (ciArrayKlass*)type;
 728   } else {
 729     return NULL;
 730   }
 731 }
 732 
 733 static ciType* phi_declared_type(Phi* phi) {
 734   ciType* t = phi->operand_at(0)->declared_type();
 735   if (t == NULL) {
 736     return NULL;
 737   }
 738   for(int i = 1; i < phi->operand_count(); i++) {
 739     if (t != phi->operand_at(i)->declared_type()) {
 740       return NULL;
 741     }
 742   }
 743   return t;
 744 }
 745 
 746 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 747   Instruction* src     = x->argument_at(0);
 748   Instruction* src_pos = x->argument_at(1);
 749   Instruction* dst     = x->argument_at(2);
 750   Instruction* dst_pos = x->argument_at(3);
 751   Instruction* length  = x->argument_at(4);
 752 
 753   // first try to identify the likely type of the arrays involved
 754   ciArrayKlass* expected_type = NULL;
 755   bool is_exact = false, src_objarray = false, dst_objarray = false;
 756   {
 757     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 758     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 759     Phi* phi;
 760     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 761       src_declared_type = as_array_klass(phi_declared_type(phi));
 762     }
 763     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 764     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 765     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 766       dst_declared_type = as_array_klass(phi_declared_type(phi));
 767     }
 768 
 769     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 770       // the types exactly match so the type is fully known
 771       is_exact = true;
 772       expected_type = src_exact_type;
 773     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 774       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 775       ciArrayKlass* src_type = NULL;
 776       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 777         src_type = (ciArrayKlass*) src_exact_type;
 778       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 779         src_type = (ciArrayKlass*) src_declared_type;
 780       }
 781       if (src_type != NULL) {
 782         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 783           is_exact = true;
 784           expected_type = dst_type;
 785         }
 786       }
 787     }
 788     // at least pass along a good guess
 789     if (expected_type == NULL) expected_type = dst_exact_type;
 790     if (expected_type == NULL) expected_type = src_declared_type;
 791     if (expected_type == NULL) expected_type = dst_declared_type;
 792 
 793     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 794     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 795   }
 796 
 797   // if a probable array type has been identified, figure out if any
 798   // of the required checks for a fast case can be elided.
 799   int flags = LIR_OpArrayCopy::all_flags;
 800 
 801   if (!src_objarray)
 802     flags &= ~LIR_OpArrayCopy::src_objarray;
 803   if (!dst_objarray)
 804     flags &= ~LIR_OpArrayCopy::dst_objarray;
 805 
 806   if (!x->arg_needs_null_check(0))
 807     flags &= ~LIR_OpArrayCopy::src_null_check;
 808   if (!x->arg_needs_null_check(2))
 809     flags &= ~LIR_OpArrayCopy::dst_null_check;
 810 
 811 
 812   if (expected_type != NULL) {
 813     Value length_limit = NULL;
 814 
 815     IfOp* ifop = length->as_IfOp();
 816     if (ifop != NULL) {
 817       // look for expressions like min(v, a.length) which ends up as
 818       //   x > y ? y : x  or  x >= y ? y : x
 819       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 820           ifop->x() == ifop->fval() &&
 821           ifop->y() == ifop->tval()) {
 822         length_limit = ifop->y();
 823       }
 824     }
 825 
 826     // try to skip null checks and range checks
 827     NewArray* src_array = src->as_NewArray();
 828     if (src_array != NULL) {
 829       flags &= ~LIR_OpArrayCopy::src_null_check;
 830       if (length_limit != NULL &&
 831           src_array->length() == length_limit &&
 832           is_constant_zero(src_pos)) {
 833         flags &= ~LIR_OpArrayCopy::src_range_check;
 834       }
 835     }
 836 
 837     NewArray* dst_array = dst->as_NewArray();
 838     if (dst_array != NULL) {
 839       flags &= ~LIR_OpArrayCopy::dst_null_check;
 840       if (length_limit != NULL &&
 841           dst_array->length() == length_limit &&
 842           is_constant_zero(dst_pos)) {
 843         flags &= ~LIR_OpArrayCopy::dst_range_check;
 844       }
 845     }
 846 
 847     // check from incoming constant values
 848     if (positive_constant(src_pos))
 849       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 850     if (positive_constant(dst_pos))
 851       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 852     if (positive_constant(length))
 853       flags &= ~LIR_OpArrayCopy::length_positive_check;
 854 
 855     // see if the range check can be elided, which might also imply
 856     // that src or dst is non-null.
 857     ArrayLength* al = length->as_ArrayLength();
 858     if (al != NULL) {
 859       if (al->array() == src) {
 860         // it's the length of the source array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::src_null_check;
 863         if (is_constant_zero(src_pos))
 864           flags &= ~LIR_OpArrayCopy::src_range_check;
 865       }
 866       if (al->array() == dst) {
 867         // it's the length of the destination array
 868         flags &= ~LIR_OpArrayCopy::length_positive_check;
 869         flags &= ~LIR_OpArrayCopy::dst_null_check;
 870         if (is_constant_zero(dst_pos))
 871           flags &= ~LIR_OpArrayCopy::dst_range_check;
 872       }
 873     }
 874     if (is_exact) {
 875       flags &= ~LIR_OpArrayCopy::type_check;
 876     }
 877   }
 878 
 879   IntConstant* src_int = src_pos->type()->as_IntConstant();
 880   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 881   if (src_int && dst_int) {
 882     int s_offs = src_int->value();
 883     int d_offs = dst_int->value();
 884     if (src_int->value() >= dst_int->value()) {
 885       flags &= ~LIR_OpArrayCopy::overlapping;
 886     }
 887     if (expected_type != NULL) {
 888       BasicType t = expected_type->element_type()->basic_type();
 889       int element_size = type2aelembytes(t);
 890       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 891           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 892         flags &= ~LIR_OpArrayCopy::unaligned;
 893       }
 894     }
 895   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 896     // src and dest positions are the same, or dst is zero so assume
 897     // nonoverlapping copy.
 898     flags &= ~LIR_OpArrayCopy::overlapping;
 899   }
 900 
 901   if (src == dst) {
 902     // moving within a single array so no type checks are needed
 903     if (flags & LIR_OpArrayCopy::type_check) {
 904       flags &= ~LIR_OpArrayCopy::type_check;
 905     }
 906   }
 907   *flagsp = flags;
 908   *expected_typep = (ciArrayKlass*)expected_type;
 909 }
 910 
 911 
 912 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 913   assert(opr->is_register(), "why spill if item is not register?");
 914 
 915   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 916     LIR_Opr result = new_register(T_FLOAT);
 917     set_vreg_flag(result, must_start_in_memory);
 918     assert(opr->is_register(), "only a register can be spilled");
 919     assert(opr->value_type()->is_float(), "rounding only for floats available");
 920     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 921     return result;
 922   }
 923   return opr;
 924 }
 925 
 926 
 927 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 928   assert(type2size[t] == type2size[value->type()],
 929          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 930   if (!value->is_register()) {
 931     // force into a register
 932     LIR_Opr r = new_register(value->type());
 933     __ move(value, r);
 934     value = r;
 935   }
 936 
 937   // create a spill location
 938   LIR_Opr tmp = new_register(t);
 939   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 940 
 941   // move from register to spill
 942   __ move(value, tmp);
 943   return tmp;
 944 }
 945 
 946 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 947   if (if_instr->should_profile()) {
 948     ciMethod* method = if_instr->profiled_method();
 949     assert(method != NULL, "method should be set if branch is profiled");
 950     ciMethodData* md = method->method_data_or_null();
 951     assert(md != NULL, "Sanity");
 952     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 953     assert(data != NULL, "must have profiling data");
 954     assert(data->is_BranchData(), "need BranchData for two-way branches");
 955     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 956     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 957     if (if_instr->is_swapped()) {
 958       int t = taken_count_offset;
 959       taken_count_offset = not_taken_count_offset;
 960       not_taken_count_offset = t;
 961     }
 962 
 963     LIR_Opr md_reg = new_register(T_METADATA);
 964     __ metadata2reg(md->constant_encoding(), md_reg);
 965 
 966     LIR_Opr data_offset_reg = new_pointer_register();
 967     __ cmove(lir_cond(cond),
 968              LIR_OprFact::intptrConst(taken_count_offset),
 969              LIR_OprFact::intptrConst(not_taken_count_offset),
 970              data_offset_reg, as_BasicType(if_instr->x()->type()));
 971 
 972     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 973     LIR_Opr data_reg = new_pointer_register();
 974     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 975     __ move(data_addr, data_reg);
 976     // Use leal instead of add to avoid destroying condition codes on x86
 977     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 978     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 979     __ move(data_reg, data_addr);
 980   }
 981 }
 982 
 983 // Phi technique:
 984 // This is about passing live values from one basic block to the other.
 985 // In code generated with Java it is rather rare that more than one
 986 // value is on the stack from one basic block to the other.
 987 // We optimize our technique for efficient passing of one value
 988 // (of type long, int, double..) but it can be extended.
 989 // When entering or leaving a basic block, all registers and all spill
 990 // slots are release and empty. We use the released registers
 991 // and spill slots to pass the live values from one block
 992 // to the other. The topmost value, i.e., the value on TOS of expression
 993 // stack is passed in registers. All other values are stored in spilling
 994 // area. Every Phi has an index which designates its spill slot
 995 // At exit of a basic block, we fill the register(s) and spill slots.
 996 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 997 // and locks necessary registers and spilling slots.
 998 
 999 
1000 // move current value to referenced phi function
1001 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1002   Phi* phi = sux_val->as_Phi();
1003   // cur_val can be null without phi being null in conjunction with inlining
1004   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1005     Phi* cur_phi = cur_val->as_Phi();
1006     if (cur_phi != NULL && cur_phi->is_illegal()) {
1007       // Phi and local would need to get invalidated
1008       // (which is unexpected for Linear Scan).
1009       // But this case is very rare so we simply bail out.
1010       bailout("propagation of illegal phi");
1011       return;
1012     }
1013     LIR_Opr operand = cur_val->operand();
1014     if (operand->is_illegal()) {
1015       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1016              "these can be produced lazily");
1017       operand = operand_for_instruction(cur_val);
1018     }
1019     resolver->move(operand, operand_for_instruction(phi));
1020   }
1021 }
1022 
1023 
1024 // Moves all stack values into their PHI position
1025 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1026   BlockBegin* bb = block();
1027   if (bb->number_of_sux() == 1) {
1028     BlockBegin* sux = bb->sux_at(0);
1029     assert(sux->number_of_preds() > 0, "invalid CFG");
1030 
1031     // a block with only one predecessor never has phi functions
1032     if (sux->number_of_preds() > 1) {
1033       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1034       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1035 
1036       ValueStack* sux_state = sux->state();
1037       Value sux_value;
1038       int index;
1039 
1040       assert(cur_state->scope() == sux_state->scope(), "not matching");
1041       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1042       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1043 
1044       for_each_stack_value(sux_state, index, sux_value) {
1045         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1046       }
1047 
1048       for_each_local_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1050       }
1051 
1052       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1053     }
1054   }
1055 }
1056 
1057 
1058 LIR_Opr LIRGenerator::new_register(BasicType type) {
1059   int vreg = _virtual_register_number;
1060   // add a little fudge factor for the bailout, since the bailout is
1061   // only checked periodically.  This gives a few extra registers to
1062   // hand out before we really run out, which helps us keep from
1063   // tripping over assertions.
1064   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1065     bailout("out of virtual registers");
1066     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1067       // wrap it around
1068       _virtual_register_number = LIR_OprDesc::vreg_base;
1069     }
1070   }
1071   _virtual_register_number += 1;
1072   return LIR_OprFact::virtual_register(vreg, type);
1073 }
1074 
1075 
1076 // Try to lock using register in hint
1077 LIR_Opr LIRGenerator::rlock(Value instr) {
1078   return new_register(instr->type());
1079 }
1080 
1081 
1082 // does an rlock and sets result
1083 LIR_Opr LIRGenerator::rlock_result(Value x) {
1084   LIR_Opr reg = rlock(x);
1085   set_result(x, reg);
1086   return reg;
1087 }
1088 
1089 
1090 // does an rlock and sets result
1091 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1092   LIR_Opr reg;
1093   switch (type) {
1094   case T_BYTE:
1095   case T_BOOLEAN:
1096     reg = rlock_byte(type);
1097     break;
1098   default:
1099     reg = rlock(x);
1100     break;
1101   }
1102 
1103   set_result(x, reg);
1104   return reg;
1105 }
1106 
1107 
1108 //---------------------------------------------------------------------
1109 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1110   ObjectType* oc = value->type()->as_ObjectType();
1111   if (oc) {
1112     return oc->constant_value();
1113   }
1114   return NULL;
1115 }
1116 
1117 
1118 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1119   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1120   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1121 
1122   // no moves are created for phi functions at the begin of exception
1123   // handlers, so assign operands manually here
1124   for_each_phi_fun(block(), phi,
1125                    operand_for_instruction(phi));
1126 
1127   LIR_Opr thread_reg = getThreadPointer();
1128   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1129                exceptionOopOpr());
1130   __ move_wide(LIR_OprFact::oopConst(NULL),
1131                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1132   __ move_wide(LIR_OprFact::oopConst(NULL),
1133                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1134 
1135   LIR_Opr result = new_register(T_OBJECT);
1136   __ move(exceptionOopOpr(), result);
1137   set_result(x, result);
1138 }
1139 
1140 
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 //----------------------------------------------------------------------
1145 //                        visitor functions
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //----------------------------------------------------------------------
1150 
1151 void LIRGenerator::do_Phi(Phi* x) {
1152   // phi functions are never visited directly
1153   ShouldNotReachHere();
1154 }
1155 
1156 
1157 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1158 void LIRGenerator::do_Constant(Constant* x) {
1159   if (x->state_before() != NULL) {
1160     // Any constant with a ValueStack requires patching so emit the patch here
1161     LIR_Opr reg = rlock_result(x);
1162     CodeEmitInfo* info = state_for(x, x->state_before());
1163     __ oop2reg_patch(NULL, reg, info);
1164   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1165     if (!x->is_pinned()) {
1166       // unpinned constants are handled specially so that they can be
1167       // put into registers when they are used multiple times within a
1168       // block.  After the block completes their operand will be
1169       // cleared so that other blocks can't refer to that register.
1170       set_result(x, load_constant(x));
1171     } else {
1172       LIR_Opr res = x->operand();
1173       if (!res->is_valid()) {
1174         res = LIR_OprFact::value_type(x->type());
1175       }
1176       if (res->is_constant()) {
1177         LIR_Opr reg = rlock_result(x);
1178         __ move(res, reg);
1179       } else {
1180         set_result(x, res);
1181       }
1182     }
1183   } else {
1184     set_result(x, LIR_OprFact::value_type(x->type()));
1185   }
1186 }
1187 
1188 
1189 void LIRGenerator::do_Local(Local* x) {
1190   // operand_for_instruction has the side effect of setting the result
1191   // so there's no need to do it here.
1192   operand_for_instruction(x);
1193 }
1194 
1195 
1196 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1197   Unimplemented();
1198 }
1199 
1200 
1201 void LIRGenerator::do_Return(Return* x) {
1202   if (compilation()->env()->dtrace_method_probes()) {
1203     BasicTypeList signature;
1204     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1205     signature.append(T_METADATA); // Method*
1206     LIR_OprList* args = new LIR_OprList();
1207     args->append(getThreadPointer());
1208     LIR_Opr meth = new_register(T_METADATA);
1209     __ metadata2reg(method()->constant_encoding(), meth);
1210     args->append(meth);
1211     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1212   }
1213 
1214   if (x->type()->is_void()) {
1215     __ return_op(LIR_OprFact::illegalOpr);
1216   } else {
1217     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1218     LIRItem result(x->result(), this);
1219 
1220     result.load_item_force(reg);
1221     __ return_op(result.result());
1222   }
1223   set_no_result(x);
1224 }
1225 
1226 // Examble: ref.get()
1227 // Combination of LoadField and g1 pre-write barrier
1228 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1229 
1230   const int referent_offset = java_lang_ref_Reference::referent_offset;
1231   guarantee(referent_offset > 0, "referent offset not initialized");
1232 
1233   assert(x->number_of_arguments() == 1, "wrong type");
1234 
1235   LIRItem reference(x->argument_at(0), this);
1236   reference.load_item();
1237 
1238   // need to perform the null check on the reference objecy
1239   CodeEmitInfo* info = NULL;
1240   if (x->needs_null_check()) {
1241     info = state_for(x);
1242   }
1243 
1244   LIR_Address* referent_field_adr =
1245     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1246 
1247   LIR_Opr result = rlock_result(x);
1248 
1249   __ load(referent_field_adr, result, info);
1250 
1251   // Register the value in the referent field with the pre-barrier
1252   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1253               result /* pre_val */,
1254               false  /* do_load */,
1255               false  /* patch */,
1256               NULL   /* info */);
1257 }
1258 
1259 // Example: clazz.isInstance(object)
1260 void LIRGenerator::do_isInstance(Intrinsic* x) {
1261   assert(x->number_of_arguments() == 2, "wrong type");
1262 
1263   // TODO could try to substitute this node with an equivalent InstanceOf
1264   // if clazz is known to be a constant Class. This will pick up newly found
1265   // constants after HIR construction. I'll leave this to a future change.
1266 
1267   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1268   // could follow the aastore example in a future change.
1269 
1270   LIRItem clazz(x->argument_at(0), this);
1271   LIRItem object(x->argument_at(1), this);
1272   clazz.load_item();
1273   object.load_item();
1274   LIR_Opr result = rlock_result(x);
1275 
1276   // need to perform null check on clazz
1277   if (x->needs_null_check()) {
1278     CodeEmitInfo* info = state_for(x);
1279     __ null_check(clazz.result(), info);
1280   }
1281 
1282   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1283                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1284                                      x->type(),
1285                                      NULL); // NULL CodeEmitInfo results in a leaf call
1286   __ move(call_result, result);
1287 }
1288 
1289 // Example: object.getClass ()
1290 void LIRGenerator::do_getClass(Intrinsic* x) {
1291   assert(x->number_of_arguments() == 1, "wrong type");
1292 
1293   LIRItem rcvr(x->argument_at(0), this);
1294   rcvr.load_item();
1295   LIR_Opr temp = new_register(T_METADATA);
1296   LIR_Opr result = rlock_result(x);
1297 
1298   // need to perform the null check on the rcvr
1299   CodeEmitInfo* info = NULL;
1300   if (x->needs_null_check()) {
1301     info = state_for(x);
1302   }
1303 
1304   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1305   // meaning of these two is mixed up (see JDK-8026837).
1306   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1307   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1308 }
1309 
1310 // java.lang.Class::isPrimitive()
1311 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1312   assert(x->number_of_arguments() == 1, "wrong type");
1313 
1314   LIRItem rcvr(x->argument_at(0), this);
1315   rcvr.load_item();
1316   LIR_Opr temp = new_register(T_METADATA);
1317   LIR_Opr result = rlock_result(x);
1318 
1319   CodeEmitInfo* info = NULL;
1320   if (x->needs_null_check()) {
1321     info = state_for(x);
1322   }
1323 
1324   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1325   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1326   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1327 }
1328 
1329 
1330 // Example: Thread.currentThread()
1331 void LIRGenerator::do_currentThread(Intrinsic* x) {
1332   assert(x->number_of_arguments() == 0, "wrong type");
1333   LIR_Opr reg = rlock_result(x);
1334   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1335 }
1336 
1337 
1338 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1339   assert(x->number_of_arguments() == 1, "wrong type");
1340   LIRItem receiver(x->argument_at(0), this);
1341 
1342   receiver.load_item();
1343   BasicTypeList signature;
1344   signature.append(T_OBJECT); // receiver
1345   LIR_OprList* args = new LIR_OprList();
1346   args->append(receiver.result());
1347   CodeEmitInfo* info = state_for(x, x->state());
1348   call_runtime(&signature, args,
1349                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1350                voidType, info);
1351 
1352   set_no_result(x);
1353 }
1354 
1355 
1356 //------------------------local access--------------------------------------
1357 
1358 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1359   if (x->operand()->is_illegal()) {
1360     Constant* c = x->as_Constant();
1361     if (c != NULL) {
1362       x->set_operand(LIR_OprFact::value_type(c->type()));
1363     } else {
1364       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1365       // allocate a virtual register for this local or phi
1366       x->set_operand(rlock(x));
1367       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1368     }
1369   }
1370   return x->operand();
1371 }
1372 
1373 
1374 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1375   if (opr->is_virtual()) {
1376     return instruction_for_vreg(opr->vreg_number());
1377   }
1378   return NULL;
1379 }
1380 
1381 
1382 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1383   if (reg_num < _instruction_for_operand.length()) {
1384     return _instruction_for_operand.at(reg_num);
1385   }
1386   return NULL;
1387 }
1388 
1389 
1390 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1391   if (_vreg_flags.size_in_bits() == 0) {
1392     BitMap2D temp(100, num_vreg_flags);
1393     _vreg_flags = temp;
1394   }
1395   _vreg_flags.at_put_grow(vreg_num, f, true);
1396 }
1397 
1398 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1399   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1400     return false;
1401   }
1402   return _vreg_flags.at(vreg_num, f);
1403 }
1404 
1405 
1406 // Block local constant handling.  This code is useful for keeping
1407 // unpinned constants and constants which aren't exposed in the IR in
1408 // registers.  Unpinned Constant instructions have their operands
1409 // cleared when the block is finished so that other blocks can't end
1410 // up referring to their registers.
1411 
1412 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1413   assert(!x->is_pinned(), "only for unpinned constants");
1414   _unpinned_constants.append(x);
1415   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1416 }
1417 
1418 
1419 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1420   BasicType t = c->type();
1421   for (int i = 0; i < _constants.length(); i++) {
1422     LIR_Const* other = _constants.at(i);
1423     if (t == other->type()) {
1424       switch (t) {
1425       case T_INT:
1426       case T_FLOAT:
1427         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1428         break;
1429       case T_LONG:
1430       case T_DOUBLE:
1431         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1432         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1433         break;
1434       case T_OBJECT:
1435         if (c->as_jobject() != other->as_jobject()) continue;
1436         break;
1437       }
1438       return _reg_for_constants.at(i);
1439     }
1440   }
1441 
1442   LIR_Opr result = new_register(t);
1443   __ move((LIR_Opr)c, result);
1444   _constants.append(c);
1445   _reg_for_constants.append(result);
1446   return result;
1447 }
1448 
1449 // Various barriers
1450 
1451 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1452                                bool do_load, bool patch, CodeEmitInfo* info) {
1453   // Do the pre-write barrier, if any.
1454   switch (_bs->kind()) {
1455 #if INCLUDE_ALL_GCS
1456     case BarrierSet::G1SATBCTLogging:
1457       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1458       break;
1459 #endif // INCLUDE_ALL_GCS
1460     case BarrierSet::CardTableForRS:
1461     case BarrierSet::CardTableExtension:
1462       // No pre barriers
1463       break;
1464     case BarrierSet::ModRef:
1465       // No pre barriers
1466       break;
1467     default      :
1468       ShouldNotReachHere();
1469 
1470   }
1471 }
1472 
1473 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1474   switch (_bs->kind()) {
1475 #if INCLUDE_ALL_GCS
1476     case BarrierSet::G1SATBCTLogging:
1477       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1478       break;
1479 #endif // INCLUDE_ALL_GCS
1480     case BarrierSet::CardTableForRS:
1481     case BarrierSet::CardTableExtension:
1482       CardTableModRef_post_barrier(addr,  new_val);
1483       break;
1484     case BarrierSet::ModRef:
1485       // No post barriers
1486       break;
1487     default      :
1488       ShouldNotReachHere();
1489     }
1490 }
1491 
1492 ////////////////////////////////////////////////////////////////////////
1493 #if INCLUDE_ALL_GCS
1494 
1495 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1496                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1497   // First we test whether marking is in progress.
1498   BasicType flag_type;
1499   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1500     flag_type = T_INT;
1501   } else {
1502     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1503               "Assumption");
1504     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1505     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1506     flag_type = T_BOOLEAN;
1507   }
1508   LIR_Opr thrd = getThreadPointer();
1509   LIR_Address* mark_active_flag_addr =
1510     new LIR_Address(thrd,
1511                     in_bytes(JavaThread::satb_mark_queue_offset() +
1512                              SATBMarkQueue::byte_offset_of_active()),
1513                     flag_type);
1514   // Read the marking-in-progress flag.
1515   LIR_Opr flag_val = new_register(T_INT);
1516   __ load(mark_active_flag_addr, flag_val);
1517   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1518 
1519   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1520 
1521   CodeStub* slow;
1522 
1523   if (do_load) {
1524     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1525     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1526 
1527     if (patch)
1528       pre_val_patch_code = lir_patch_normal;
1529 
1530     pre_val = new_register(T_OBJECT);
1531 
1532     if (!addr_opr->is_address()) {
1533       assert(addr_opr->is_register(), "must be");
1534       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1535     }
1536     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1537   } else {
1538     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1539     assert(pre_val->is_register(), "must be");
1540     assert(pre_val->type() == T_OBJECT, "must be an object");
1541     assert(info == NULL, "sanity");
1542 
1543     slow = new G1PreBarrierStub(pre_val);
1544   }
1545 
1546   __ branch(lir_cond_notEqual, T_INT, slow);
1547   __ branch_destination(slow->continuation());
1548 }
1549 
1550 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1551   // If the "new_val" is a constant NULL, no barrier is necessary.
1552   if (new_val->is_constant() &&
1553       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1554 
1555   if (!new_val->is_register()) {
1556     LIR_Opr new_val_reg = new_register(T_OBJECT);
1557     if (new_val->is_constant()) {
1558       __ move(new_val, new_val_reg);
1559     } else {
1560       __ leal(new_val, new_val_reg);
1561     }
1562     new_val = new_val_reg;
1563   }
1564   assert(new_val->is_register(), "must be a register at this point");
1565 
1566   if (addr->is_address()) {
1567     LIR_Address* address = addr->as_address_ptr();
1568     LIR_Opr ptr = new_pointer_register();
1569     if (!address->index()->is_valid() && address->disp() == 0) {
1570       __ move(address->base(), ptr);
1571     } else {
1572       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1573       __ leal(addr, ptr);
1574     }
1575     addr = ptr;
1576   }
1577   assert(addr->is_register(), "must be a register at this point");
1578 
1579   LIR_Opr xor_res = new_pointer_register();
1580   LIR_Opr xor_shift_res = new_pointer_register();
1581   if (TwoOperandLIRForm ) {
1582     __ move(addr, xor_res);
1583     __ logical_xor(xor_res, new_val, xor_res);
1584     __ move(xor_res, xor_shift_res);
1585     __ unsigned_shift_right(xor_shift_res,
1586                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1587                             xor_shift_res,
1588                             LIR_OprDesc::illegalOpr());
1589   } else {
1590     __ logical_xor(addr, new_val, xor_res);
1591     __ unsigned_shift_right(xor_res,
1592                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1593                             xor_shift_res,
1594                             LIR_OprDesc::illegalOpr());
1595   }
1596 
1597   if (!new_val->is_register()) {
1598     LIR_Opr new_val_reg = new_register(T_OBJECT);
1599     __ leal(new_val, new_val_reg);
1600     new_val = new_val_reg;
1601   }
1602   assert(new_val->is_register(), "must be a register at this point");
1603 
1604   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1605 
1606   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1607   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1608   __ branch_destination(slow->continuation());
1609 }
1610 
1611 #endif // INCLUDE_ALL_GCS
1612 ////////////////////////////////////////////////////////////////////////
1613 
1614 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1615   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(_bs);
1616   assert(sizeof(*(ct->byte_map_base)) == sizeof(jbyte), "adjust this code");
1617   LIR_Const* card_table_base = new LIR_Const(ct->byte_map_base);
1618   if (addr->is_address()) {
1619     LIR_Address* address = addr->as_address_ptr();
1620     // ptr cannot be an object because we use this barrier for array card marks
1621     // and addr can point in the middle of an array.
1622     LIR_Opr ptr = new_pointer_register();
1623     if (!address->index()->is_valid() && address->disp() == 0) {
1624       __ move(address->base(), ptr);
1625     } else {
1626       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1627       __ leal(addr, ptr);
1628     }
1629     addr = ptr;
1630   }
1631   assert(addr->is_register(), "must be a register at this point");
1632 
1633 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1634   CardTableModRef_post_barrier_helper(addr, card_table_base);
1635 #else
1636   LIR_Opr tmp = new_pointer_register();
1637   if (TwoOperandLIRForm) {
1638     __ move(addr, tmp);
1639     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1640   } else {
1641     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1642   }
1643 
1644   LIR_Address* card_addr;
1645   if (can_inline_as_constant(card_table_base)) {
1646     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1647   } else {
1648     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1649   }
1650 
1651   LIR_Opr dirty = LIR_OprFact::intConst(CardTableModRefBS::dirty_card_val());
1652   if (UseCondCardMark) {
1653     LIR_Opr cur_value = new_register(T_INT);
1654     if (UseConcMarkSweepGC) {
1655       __ membar_storeload();
1656     }
1657     __ move(card_addr, cur_value);
1658 
1659     LabelObj* L_already_dirty = new LabelObj();
1660     __ cmp(lir_cond_equal, cur_value, dirty);
1661     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1662     __ move(dirty, card_addr);
1663     __ branch_destination(L_already_dirty->label());
1664   } else {
1665     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1666       __ membar_storestore();
1667     }
1668     __ move(dirty, card_addr);
1669   }
1670 #endif
1671 }
1672 
1673 
1674 //------------------------field access--------------------------------------
1675 
1676 // Comment copied form templateTable_i486.cpp
1677 // ----------------------------------------------------------------------------
1678 // Volatile variables demand their effects be made known to all CPU's in
1679 // order.  Store buffers on most chips allow reads & writes to reorder; the
1680 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1681 // memory barrier (i.e., it's not sufficient that the interpreter does not
1682 // reorder volatile references, the hardware also must not reorder them).
1683 //
1684 // According to the new Java Memory Model (JMM):
1685 // (1) All volatiles are serialized wrt to each other.
1686 // ALSO reads & writes act as aquire & release, so:
1687 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1688 // the read float up to before the read.  It's OK for non-volatile memory refs
1689 // that happen before the volatile read to float down below it.
1690 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1691 // that happen BEFORE the write float down to after the write.  It's OK for
1692 // non-volatile memory refs that happen after the volatile write to float up
1693 // before it.
1694 //
1695 // We only put in barriers around volatile refs (they are expensive), not
1696 // _between_ memory refs (that would require us to track the flavor of the
1697 // previous memory refs).  Requirements (2) and (3) require some barriers
1698 // before volatile stores and after volatile loads.  These nearly cover
1699 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1700 // case is placed after volatile-stores although it could just as well go
1701 // before volatile-loads.
1702 
1703 
1704 void LIRGenerator::do_StoreField(StoreField* x) {
1705   bool needs_patching = x->needs_patching();
1706   bool is_volatile = x->field()->is_volatile();
1707   BasicType field_type = x->field_type();
1708   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1709 
1710   CodeEmitInfo* info = NULL;
1711   if (needs_patching) {
1712     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1713     info = state_for(x, x->state_before());
1714   } else if (x->needs_null_check()) {
1715     NullCheck* nc = x->explicit_null_check();
1716     if (nc == NULL) {
1717       info = state_for(x);
1718     } else {
1719       info = state_for(nc);
1720     }
1721   }
1722 
1723 
1724   LIRItem object(x->obj(), this);
1725   LIRItem value(x->value(),  this);
1726 
1727   object.load_item();
1728 
1729   if (is_volatile || needs_patching) {
1730     // load item if field is volatile (fewer special cases for volatiles)
1731     // load item if field not initialized
1732     // load item if field not constant
1733     // because of code patching we cannot inline constants
1734     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1735       value.load_byte_item();
1736     } else  {
1737       value.load_item();
1738     }
1739   } else {
1740     value.load_for_store(field_type);
1741   }
1742 
1743   set_no_result(x);
1744 
1745 #ifndef PRODUCT
1746   if (PrintNotLoaded && needs_patching) {
1747     tty->print_cr("   ###class not loaded at store_%s bci %d",
1748                   x->is_static() ?  "static" : "field", x->printable_bci());
1749   }
1750 #endif
1751 
1752   if (x->needs_null_check() &&
1753       (needs_patching ||
1754        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1755     // Emit an explicit null check because the offset is too large.
1756     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1757     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1758     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1759   }
1760 
1761   LIR_Address* address;
1762   if (needs_patching) {
1763     // we need to patch the offset in the instruction so don't allow
1764     // generate_address to try to be smart about emitting the -1.
1765     // Otherwise the patching code won't know how to find the
1766     // instruction to patch.
1767     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1768   } else {
1769     address = generate_address(object.result(), x->offset(), field_type);
1770   }
1771 
1772   if (is_volatile && os::is_MP()) {
1773     __ membar_release();
1774   }
1775 
1776   if (is_oop) {
1777     // Do the pre-write barrier, if any.
1778     pre_barrier(LIR_OprFact::address(address),
1779                 LIR_OprFact::illegalOpr /* pre_val */,
1780                 true /* do_load*/,
1781                 needs_patching,
1782                 (info ? new CodeEmitInfo(info) : NULL));
1783   }
1784 
1785   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1786   if (needs_atomic_access && !needs_patching) {
1787     volatile_field_store(value.result(), address, info);
1788   } else {
1789     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1790     __ store(value.result(), address, info, patch_code);
1791   }
1792 
1793   if (is_oop) {
1794     // Store to object so mark the card of the header
1795     post_barrier(object.result(), value.result());
1796   }
1797 
1798   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1799     __ membar();
1800   }
1801 }
1802 
1803 
1804 void LIRGenerator::do_LoadField(LoadField* x) {
1805   bool needs_patching = x->needs_patching();
1806   bool is_volatile = x->field()->is_volatile();
1807   BasicType field_type = x->field_type();
1808 
1809   CodeEmitInfo* info = NULL;
1810   if (needs_patching) {
1811     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1812     info = state_for(x, x->state_before());
1813   } else if (x->needs_null_check()) {
1814     NullCheck* nc = x->explicit_null_check();
1815     if (nc == NULL) {
1816       info = state_for(x);
1817     } else {
1818       info = state_for(nc);
1819     }
1820   }
1821 
1822   LIRItem object(x->obj(), this);
1823 
1824   object.load_item();
1825 
1826 #ifndef PRODUCT
1827   if (PrintNotLoaded && needs_patching) {
1828     tty->print_cr("   ###class not loaded at load_%s bci %d",
1829                   x->is_static() ?  "static" : "field", x->printable_bci());
1830   }
1831 #endif
1832 
1833   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1834   if (x->needs_null_check() &&
1835       (needs_patching ||
1836        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1837        stress_deopt)) {
1838     LIR_Opr obj = object.result();
1839     if (stress_deopt) {
1840       obj = new_register(T_OBJECT);
1841       __ move(LIR_OprFact::oopConst(NULL), obj);
1842     }
1843     // Emit an explicit null check because the offset is too large.
1844     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1845     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1846     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1847   }
1848 
1849   LIR_Opr reg = rlock_result(x, field_type);
1850   LIR_Address* address;
1851   if (needs_patching) {
1852     // we need to patch the offset in the instruction so don't allow
1853     // generate_address to try to be smart about emitting the -1.
1854     // Otherwise the patching code won't know how to find the
1855     // instruction to patch.
1856     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1857   } else {
1858     address = generate_address(object.result(), x->offset(), field_type);
1859   }
1860 
1861   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1862     __ membar();
1863   }
1864 
1865   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1866   if (needs_atomic_access && !needs_patching) {
1867     volatile_field_load(address, reg, info);
1868   } else {
1869     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1870     __ load(address, reg, info, patch_code);
1871   }
1872 
1873   if (is_volatile && os::is_MP()) {
1874     __ membar_acquire();
1875   }
1876 }
1877 
1878 
1879 //------------------------java.nio.Buffer.checkIndex------------------------
1880 
1881 // int java.nio.Buffer.checkIndex(int)
1882 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1883   // NOTE: by the time we are in checkIndex() we are guaranteed that
1884   // the buffer is non-null (because checkIndex is package-private and
1885   // only called from within other methods in the buffer).
1886   assert(x->number_of_arguments() == 2, "wrong type");
1887   LIRItem buf  (x->argument_at(0), this);
1888   LIRItem index(x->argument_at(1), this);
1889   buf.load_item();
1890   index.load_item();
1891 
1892   LIR_Opr result = rlock_result(x);
1893   if (GenerateRangeChecks) {
1894     CodeEmitInfo* info = state_for(x);
1895     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1896     if (index.result()->is_constant()) {
1897       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1898       __ branch(lir_cond_belowEqual, T_INT, stub);
1899     } else {
1900       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1901                   java_nio_Buffer::limit_offset(), T_INT, info);
1902       __ branch(lir_cond_aboveEqual, T_INT, stub);
1903     }
1904     __ move(index.result(), result);
1905   } else {
1906     // Just load the index into the result register
1907     __ move(index.result(), result);
1908   }
1909 }
1910 
1911 
1912 //------------------------array access--------------------------------------
1913 
1914 
1915 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1916   LIRItem array(x->array(), this);
1917   array.load_item();
1918   LIR_Opr reg = rlock_result(x);
1919 
1920   CodeEmitInfo* info = NULL;
1921   if (x->needs_null_check()) {
1922     NullCheck* nc = x->explicit_null_check();
1923     if (nc == NULL) {
1924       info = state_for(x);
1925     } else {
1926       info = state_for(nc);
1927     }
1928     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1929       LIR_Opr obj = new_register(T_OBJECT);
1930       __ move(LIR_OprFact::oopConst(NULL), obj);
1931       __ null_check(obj, new CodeEmitInfo(info));
1932     }
1933   }
1934   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1935 }
1936 
1937 
1938 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1939   bool use_length = x->length() != NULL;
1940   LIRItem array(x->array(), this);
1941   LIRItem index(x->index(), this);
1942   LIRItem length(this);
1943   bool needs_range_check = x->compute_needs_range_check();
1944 
1945   if (use_length && needs_range_check) {
1946     length.set_instruction(x->length());
1947     length.load_item();
1948   }
1949 
1950   array.load_item();
1951   if (index.is_constant() && can_inline_as_constant(x->index())) {
1952     // let it be a constant
1953     index.dont_load_item();
1954   } else {
1955     index.load_item();
1956   }
1957 
1958   CodeEmitInfo* range_check_info = state_for(x);
1959   CodeEmitInfo* null_check_info = NULL;
1960   if (x->needs_null_check()) {
1961     NullCheck* nc = x->explicit_null_check();
1962     if (nc != NULL) {
1963       null_check_info = state_for(nc);
1964     } else {
1965       null_check_info = range_check_info;
1966     }
1967     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1968       LIR_Opr obj = new_register(T_OBJECT);
1969       __ move(LIR_OprFact::oopConst(NULL), obj);
1970       __ null_check(obj, new CodeEmitInfo(null_check_info));
1971     }
1972   }
1973 
1974   // emit array address setup early so it schedules better
1975   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1976 
1977   if (GenerateRangeChecks && needs_range_check) {
1978     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1979       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1980     } else if (use_length) {
1981       // TODO: use a (modified) version of array_range_check that does not require a
1982       //       constant length to be loaded to a register
1983       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1984       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1985     } else {
1986       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1987       // The range check performs the null check, so clear it out for the load
1988       null_check_info = NULL;
1989     }
1990   }
1991 
1992   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1993 }
1994 
1995 
1996 void LIRGenerator::do_NullCheck(NullCheck* x) {
1997   if (x->can_trap()) {
1998     LIRItem value(x->obj(), this);
1999     value.load_item();
2000     CodeEmitInfo* info = state_for(x);
2001     __ null_check(value.result(), info);
2002   }
2003 }
2004 
2005 
2006 void LIRGenerator::do_TypeCast(TypeCast* x) {
2007   LIRItem value(x->obj(), this);
2008   value.load_item();
2009   // the result is the same as from the node we are casting
2010   set_result(x, value.result());
2011 }
2012 
2013 
2014 void LIRGenerator::do_Throw(Throw* x) {
2015   LIRItem exception(x->exception(), this);
2016   exception.load_item();
2017   set_no_result(x);
2018   LIR_Opr exception_opr = exception.result();
2019   CodeEmitInfo* info = state_for(x, x->state());
2020 
2021 #ifndef PRODUCT
2022   if (PrintC1Statistics) {
2023     increment_counter(Runtime1::throw_count_address(), T_INT);
2024   }
2025 #endif
2026 
2027   // check if the instruction has an xhandler in any of the nested scopes
2028   bool unwind = false;
2029   if (info->exception_handlers()->length() == 0) {
2030     // this throw is not inside an xhandler
2031     unwind = true;
2032   } else {
2033     // get some idea of the throw type
2034     bool type_is_exact = true;
2035     ciType* throw_type = x->exception()->exact_type();
2036     if (throw_type == NULL) {
2037       type_is_exact = false;
2038       throw_type = x->exception()->declared_type();
2039     }
2040     if (throw_type != NULL && throw_type->is_instance_klass()) {
2041       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2042       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2043     }
2044   }
2045 
2046   // do null check before moving exception oop into fixed register
2047   // to avoid a fixed interval with an oop during the null check.
2048   // Use a copy of the CodeEmitInfo because debug information is
2049   // different for null_check and throw.
2050   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2051     // if the exception object wasn't created using new then it might be null.
2052     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2053   }
2054 
2055   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2056     // we need to go through the exception lookup path to get JVMTI
2057     // notification done
2058     unwind = false;
2059   }
2060 
2061   // move exception oop into fixed register
2062   __ move(exception_opr, exceptionOopOpr());
2063 
2064   if (unwind) {
2065     __ unwind_exception(exceptionOopOpr());
2066   } else {
2067     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2068   }
2069 }
2070 
2071 
2072 void LIRGenerator::do_RoundFP(RoundFP* x) {
2073   LIRItem input(x->input(), this);
2074   input.load_item();
2075   LIR_Opr input_opr = input.result();
2076   assert(input_opr->is_register(), "why round if value is not in a register?");
2077   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2078   if (input_opr->is_single_fpu()) {
2079     set_result(x, round_item(input_opr)); // This code path not currently taken
2080   } else {
2081     LIR_Opr result = new_register(T_DOUBLE);
2082     set_vreg_flag(result, must_start_in_memory);
2083     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2084     set_result(x, result);
2085   }
2086 }
2087 
2088 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2089 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2090 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2091   LIRItem base(x->base(), this);
2092   LIRItem idx(this);
2093 
2094   base.load_item();
2095   if (x->has_index()) {
2096     idx.set_instruction(x->index());
2097     idx.load_nonconstant();
2098   }
2099 
2100   LIR_Opr reg = rlock_result(x, x->basic_type());
2101 
2102   int   log2_scale = 0;
2103   if (x->has_index()) {
2104     log2_scale = x->log2_scale();
2105   }
2106 
2107   assert(!x->has_index() || idx.value() == x->index(), "should match");
2108 
2109   LIR_Opr base_op = base.result();
2110   LIR_Opr index_op = idx.result();
2111 #ifndef _LP64
2112   if (base_op->type() == T_LONG) {
2113     base_op = new_register(T_INT);
2114     __ convert(Bytecodes::_l2i, base.result(), base_op);
2115   }
2116   if (x->has_index()) {
2117     if (index_op->type() == T_LONG) {
2118       LIR_Opr long_index_op = index_op;
2119       if (index_op->is_constant()) {
2120         long_index_op = new_register(T_LONG);
2121         __ move(index_op, long_index_op);
2122       }
2123       index_op = new_register(T_INT);
2124       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2125     } else {
2126       assert(x->index()->type()->tag() == intTag, "must be");
2127     }
2128   }
2129   // At this point base and index should be all ints.
2130   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2131   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2132 #else
2133   if (x->has_index()) {
2134     if (index_op->type() == T_INT) {
2135       if (!index_op->is_constant()) {
2136         index_op = new_register(T_LONG);
2137         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2138       }
2139     } else {
2140       assert(index_op->type() == T_LONG, "must be");
2141       if (index_op->is_constant()) {
2142         index_op = new_register(T_LONG);
2143         __ move(idx.result(), index_op);
2144       }
2145     }
2146   }
2147   // At this point base is a long non-constant
2148   // Index is a long register or a int constant.
2149   // We allow the constant to stay an int because that would allow us a more compact encoding by
2150   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2151   // move it into a register first.
2152   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2153   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2154                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2155 #endif
2156 
2157   BasicType dst_type = x->basic_type();
2158 
2159   LIR_Address* addr;
2160   if (index_op->is_constant()) {
2161     assert(log2_scale == 0, "must not have a scale");
2162     assert(index_op->type() == T_INT, "only int constants supported");
2163     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2164   } else {
2165 #ifdef X86
2166     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2167 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2168     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2169 #else
2170     if (index_op->is_illegal() || log2_scale == 0) {
2171       addr = new LIR_Address(base_op, index_op, dst_type);
2172     } else {
2173       LIR_Opr tmp = new_pointer_register();
2174       __ shift_left(index_op, log2_scale, tmp);
2175       addr = new LIR_Address(base_op, tmp, dst_type);
2176     }
2177 #endif
2178   }
2179 
2180   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2181     __ unaligned_move(addr, reg);
2182   } else {
2183     if (dst_type == T_OBJECT && x->is_wide()) {
2184       __ move_wide(addr, reg);
2185     } else {
2186       __ move(addr, reg);
2187     }
2188   }
2189 }
2190 
2191 
2192 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2193   int  log2_scale = 0;
2194   BasicType type = x->basic_type();
2195 
2196   if (x->has_index()) {
2197     log2_scale = x->log2_scale();
2198   }
2199 
2200   LIRItem base(x->base(), this);
2201   LIRItem value(x->value(), this);
2202   LIRItem idx(this);
2203 
2204   base.load_item();
2205   if (x->has_index()) {
2206     idx.set_instruction(x->index());
2207     idx.load_item();
2208   }
2209 
2210   if (type == T_BYTE || type == T_BOOLEAN) {
2211     value.load_byte_item();
2212   } else {
2213     value.load_item();
2214   }
2215 
2216   set_no_result(x);
2217 
2218   LIR_Opr base_op = base.result();
2219   LIR_Opr index_op = idx.result();
2220 
2221 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2222   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2223 #else
2224 #ifndef _LP64
2225   if (base_op->type() == T_LONG) {
2226     base_op = new_register(T_INT);
2227     __ convert(Bytecodes::_l2i, base.result(), base_op);
2228   }
2229   if (x->has_index()) {
2230     if (index_op->type() == T_LONG) {
2231       index_op = new_register(T_INT);
2232       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2233     }
2234   }
2235   // At this point base and index should be all ints and not constants
2236   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2237   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2238 #else
2239   if (x->has_index()) {
2240     if (index_op->type() == T_INT) {
2241       index_op = new_register(T_LONG);
2242       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2243     }
2244   }
2245   // At this point base and index are long and non-constant
2246   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2247   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2248 #endif
2249 
2250   if (log2_scale != 0) {
2251     // temporary fix (platform dependent code without shift on Intel would be better)
2252     // TODO: ARM also allows embedded shift in the address
2253     LIR_Opr tmp = new_pointer_register();
2254     if (TwoOperandLIRForm) {
2255       __ move(index_op, tmp);
2256       index_op = tmp;
2257     }
2258     __ shift_left(index_op, log2_scale, tmp);
2259     if (!TwoOperandLIRForm) {
2260       index_op = tmp;
2261     }
2262   }
2263 
2264   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2265 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2266   __ move(value.result(), addr);
2267 }
2268 
2269 
2270 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2271   BasicType type = x->basic_type();
2272   LIRItem src(x->object(), this);
2273   LIRItem off(x->offset(), this);
2274 
2275   off.load_item();
2276   src.load_item();
2277 
2278   LIR_Opr value = rlock_result(x, x->basic_type());
2279 
2280   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2281     __ membar();
2282   }
2283 
2284   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2285 
2286 #if INCLUDE_ALL_GCS
2287   // We might be reading the value of the referent field of a
2288   // Reference object in order to attach it back to the live
2289   // object graph. If G1 is enabled then we need to record
2290   // the value that is being returned in an SATB log buffer.
2291   //
2292   // We need to generate code similar to the following...
2293   //
2294   // if (offset == java_lang_ref_Reference::referent_offset) {
2295   //   if (src != NULL) {
2296   //     if (klass(src)->reference_type() != REF_NONE) {
2297   //       pre_barrier(..., value, ...);
2298   //     }
2299   //   }
2300   // }
2301 
2302   if (UseG1GC && type == T_OBJECT) {
2303     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2304     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2305     bool gen_source_check = true;    // Assume we need to check the src object for null.
2306     bool gen_type_check = true;      // Assume we need to check the reference_type.
2307 
2308     if (off.is_constant()) {
2309       jlong off_con = (off.type()->is_int() ?
2310                         (jlong) off.get_jint_constant() :
2311                         off.get_jlong_constant());
2312 
2313 
2314       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2315         // The constant offset is something other than referent_offset.
2316         // We can skip generating/checking the remaining guards and
2317         // skip generation of the code stub.
2318         gen_pre_barrier = false;
2319       } else {
2320         // The constant offset is the same as referent_offset -
2321         // we do not need to generate a runtime offset check.
2322         gen_offset_check = false;
2323       }
2324     }
2325 
2326     // We don't need to generate stub if the source object is an array
2327     if (gen_pre_barrier && src.type()->is_array()) {
2328       gen_pre_barrier = false;
2329     }
2330 
2331     if (gen_pre_barrier) {
2332       // We still need to continue with the checks.
2333       if (src.is_constant()) {
2334         ciObject* src_con = src.get_jobject_constant();
2335         guarantee(src_con != NULL, "no source constant");
2336 
2337         if (src_con->is_null_object()) {
2338           // The constant src object is null - We can skip
2339           // generating the code stub.
2340           gen_pre_barrier = false;
2341         } else {
2342           // Non-null constant source object. We still have to generate
2343           // the slow stub - but we don't need to generate the runtime
2344           // null object check.
2345           gen_source_check = false;
2346         }
2347       }
2348     }
2349     if (gen_pre_barrier && !PatchALot) {
2350       // Can the klass of object be statically determined to be
2351       // a sub-class of Reference?
2352       ciType* type = src.value()->declared_type();
2353       if ((type != NULL) && type->is_loaded()) {
2354         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2355           gen_type_check = false;
2356         } else if (type->is_klass() &&
2357                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2358           // Not Reference and not Object klass.
2359           gen_pre_barrier = false;
2360         }
2361       }
2362     }
2363 
2364     if (gen_pre_barrier) {
2365       LabelObj* Lcont = new LabelObj();
2366 
2367       // We can have generate one runtime check here. Let's start with
2368       // the offset check.
2369       if (gen_offset_check) {
2370         // if (offset != referent_offset) -> continue
2371         // If offset is an int then we can do the comparison with the
2372         // referent_offset constant; otherwise we need to move
2373         // referent_offset into a temporary register and generate
2374         // a reg-reg compare.
2375 
2376         LIR_Opr referent_off;
2377 
2378         if (off.type()->is_int()) {
2379           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2380         } else {
2381           assert(off.type()->is_long(), "what else?");
2382           referent_off = new_register(T_LONG);
2383           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2384         }
2385         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2386         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2387       }
2388       if (gen_source_check) {
2389         // offset is a const and equals referent offset
2390         // if (source == null) -> continue
2391         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2392         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2393       }
2394       LIR_Opr src_klass = new_register(T_OBJECT);
2395       if (gen_type_check) {
2396         // We have determined that offset == referent_offset && src != null.
2397         // if (src->_klass->_reference_type == REF_NONE) -> continue
2398         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2399         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2400         LIR_Opr reference_type = new_register(T_INT);
2401         __ move(reference_type_addr, reference_type);
2402         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2403         __ branch(lir_cond_equal, T_INT, Lcont->label());
2404       }
2405       {
2406         // We have determined that src->_klass->_reference_type != REF_NONE
2407         // so register the value in the referent field with the pre-barrier.
2408         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2409                     value  /* pre_val */,
2410                     false  /* do_load */,
2411                     false  /* patch */,
2412                     NULL   /* info */);
2413       }
2414       __ branch_destination(Lcont->label());
2415     }
2416   }
2417 #endif // INCLUDE_ALL_GCS
2418 
2419   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2420 
2421   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2422   if (type == T_BOOLEAN) {
2423     LabelObj* equalZeroLabel = new LabelObj();
2424     __ cmp(lir_cond_equal, value, 0);
2425     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2426     __ move(LIR_OprFact::intConst(1), value);
2427     __ branch_destination(equalZeroLabel->label());
2428   }
2429 }
2430 
2431 
2432 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2433   BasicType type = x->basic_type();
2434   LIRItem src(x->object(), this);
2435   LIRItem off(x->offset(), this);
2436   LIRItem data(x->value(), this);
2437 
2438   src.load_item();
2439   if (type == T_BOOLEAN || type == T_BYTE) {
2440     data.load_byte_item();
2441   } else {
2442     data.load_item();
2443   }
2444   off.load_item();
2445 
2446   set_no_result(x);
2447 
2448   if (x->is_volatile() && os::is_MP()) __ membar_release();
2449   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2450   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2451 }
2452 
2453 
2454 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2455   int lng = x->length();
2456 
2457   for (int i = 0; i < lng; i++) {
2458     SwitchRange* one_range = x->at(i);
2459     int low_key = one_range->low_key();
2460     int high_key = one_range->high_key();
2461     BlockBegin* dest = one_range->sux();
2462     if (low_key == high_key) {
2463       __ cmp(lir_cond_equal, value, low_key);
2464       __ branch(lir_cond_equal, T_INT, dest);
2465     } else if (high_key - low_key == 1) {
2466       __ cmp(lir_cond_equal, value, low_key);
2467       __ branch(lir_cond_equal, T_INT, dest);
2468       __ cmp(lir_cond_equal, value, high_key);
2469       __ branch(lir_cond_equal, T_INT, dest);
2470     } else {
2471       LabelObj* L = new LabelObj();
2472       __ cmp(lir_cond_less, value, low_key);
2473       __ branch(lir_cond_less, T_INT, L->label());
2474       __ cmp(lir_cond_lessEqual, value, high_key);
2475       __ branch(lir_cond_lessEqual, T_INT, dest);
2476       __ branch_destination(L->label());
2477     }
2478   }
2479   __ jump(default_sux);
2480 }
2481 
2482 
2483 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2484   SwitchRangeList* res = new SwitchRangeList();
2485   int len = x->length();
2486   if (len > 0) {
2487     BlockBegin* sux = x->sux_at(0);
2488     int key = x->lo_key();
2489     BlockBegin* default_sux = x->default_sux();
2490     SwitchRange* range = new SwitchRange(key, sux);
2491     for (int i = 0; i < len; i++, key++) {
2492       BlockBegin* new_sux = x->sux_at(i);
2493       if (sux == new_sux) {
2494         // still in same range
2495         range->set_high_key(key);
2496       } else {
2497         // skip tests which explicitly dispatch to the default
2498         if (sux != default_sux) {
2499           res->append(range);
2500         }
2501         range = new SwitchRange(key, new_sux);
2502       }
2503       sux = new_sux;
2504     }
2505     if (res->length() == 0 || res->last() != range)  res->append(range);
2506   }
2507   return res;
2508 }
2509 
2510 
2511 // we expect the keys to be sorted by increasing value
2512 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2513   SwitchRangeList* res = new SwitchRangeList();
2514   int len = x->length();
2515   if (len > 0) {
2516     BlockBegin* default_sux = x->default_sux();
2517     int key = x->key_at(0);
2518     BlockBegin* sux = x->sux_at(0);
2519     SwitchRange* range = new SwitchRange(key, sux);
2520     for (int i = 1; i < len; i++) {
2521       int new_key = x->key_at(i);
2522       BlockBegin* new_sux = x->sux_at(i);
2523       if (key+1 == new_key && sux == new_sux) {
2524         // still in same range
2525         range->set_high_key(new_key);
2526       } else {
2527         // skip tests which explicitly dispatch to the default
2528         if (range->sux() != default_sux) {
2529           res->append(range);
2530         }
2531         range = new SwitchRange(new_key, new_sux);
2532       }
2533       key = new_key;
2534       sux = new_sux;
2535     }
2536     if (res->length() == 0 || res->last() != range)  res->append(range);
2537   }
2538   return res;
2539 }
2540 
2541 
2542 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2543   LIRItem tag(x->tag(), this);
2544   tag.load_item();
2545   set_no_result(x);
2546 
2547   if (x->is_safepoint()) {
2548     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2549   }
2550 
2551   // move values into phi locations
2552   move_to_phi(x->state());
2553 
2554   int lo_key = x->lo_key();
2555   int hi_key = x->hi_key();
2556   int len = x->length();
2557   LIR_Opr value = tag.result();
2558   if (UseTableRanges) {
2559     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2560   } else {
2561     for (int i = 0; i < len; i++) {
2562       __ cmp(lir_cond_equal, value, i + lo_key);
2563       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2564     }
2565     __ jump(x->default_sux());
2566   }
2567 }
2568 
2569 
2570 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2571   LIRItem tag(x->tag(), this);
2572   tag.load_item();
2573   set_no_result(x);
2574 
2575   if (x->is_safepoint()) {
2576     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2577   }
2578 
2579   // move values into phi locations
2580   move_to_phi(x->state());
2581 
2582   LIR_Opr value = tag.result();
2583   if (UseTableRanges) {
2584     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2585   } else {
2586     int len = x->length();
2587     for (int i = 0; i < len; i++) {
2588       __ cmp(lir_cond_equal, value, x->key_at(i));
2589       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2590     }
2591     __ jump(x->default_sux());
2592   }
2593 }
2594 
2595 
2596 void LIRGenerator::do_Goto(Goto* x) {
2597   set_no_result(x);
2598 
2599   if (block()->next()->as_OsrEntry()) {
2600     // need to free up storage used for OSR entry point
2601     LIR_Opr osrBuffer = block()->next()->operand();
2602     BasicTypeList signature;
2603     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2604     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2605     __ move(osrBuffer, cc->args()->at(0));
2606     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2607                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2608   }
2609 
2610   if (x->is_safepoint()) {
2611     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2612 
2613     // increment backedge counter if needed
2614     CodeEmitInfo* info = state_for(x, state);
2615     increment_backedge_counter(info, x->profiled_bci());
2616     CodeEmitInfo* safepoint_info = state_for(x, state);
2617     __ safepoint(safepoint_poll_register(), safepoint_info);
2618   }
2619 
2620   // Gotos can be folded Ifs, handle this case.
2621   if (x->should_profile()) {
2622     ciMethod* method = x->profiled_method();
2623     assert(method != NULL, "method should be set if branch is profiled");
2624     ciMethodData* md = method->method_data_or_null();
2625     assert(md != NULL, "Sanity");
2626     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2627     assert(data != NULL, "must have profiling data");
2628     int offset;
2629     if (x->direction() == Goto::taken) {
2630       assert(data->is_BranchData(), "need BranchData for two-way branches");
2631       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2632     } else if (x->direction() == Goto::not_taken) {
2633       assert(data->is_BranchData(), "need BranchData for two-way branches");
2634       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2635     } else {
2636       assert(data->is_JumpData(), "need JumpData for branches");
2637       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2638     }
2639     LIR_Opr md_reg = new_register(T_METADATA);
2640     __ metadata2reg(md->constant_encoding(), md_reg);
2641 
2642     increment_counter(new LIR_Address(md_reg, offset,
2643                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2644   }
2645 
2646   // emit phi-instruction move after safepoint since this simplifies
2647   // describing the state as the safepoint.
2648   move_to_phi(x->state());
2649 
2650   __ jump(x->default_sux());
2651 }
2652 
2653 /**
2654  * Emit profiling code if needed for arguments, parameters, return value types
2655  *
2656  * @param md                    MDO the code will update at runtime
2657  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2658  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2659  * @param profiled_k            current profile
2660  * @param obj                   IR node for the object to be profiled
2661  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2662  *                              Set once we find an update to make and use for next ones.
2663  * @param not_null              true if we know obj cannot be null
2664  * @param signature_at_call_k   signature at call for obj
2665  * @param callee_signature_k    signature of callee for obj
2666  *                              at call and callee signatures differ at method handle call
2667  * @return                      the only klass we know will ever be seen at this profile point
2668  */
2669 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2670                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2671                                     ciKlass* callee_signature_k) {
2672   ciKlass* result = NULL;
2673   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2674   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2675   // known not to be null or null bit already set and already set to
2676   // unknown: nothing we can do to improve profiling
2677   if (!do_null && !do_update) {
2678     return result;
2679   }
2680 
2681   ciKlass* exact_klass = NULL;
2682   Compilation* comp = Compilation::current();
2683   if (do_update) {
2684     // try to find exact type, using CHA if possible, so that loading
2685     // the klass from the object can be avoided
2686     ciType* type = obj->exact_type();
2687     if (type == NULL) {
2688       type = obj->declared_type();
2689       type = comp->cha_exact_type(type);
2690     }
2691     assert(type == NULL || type->is_klass(), "type should be class");
2692     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2693 
2694     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2695   }
2696 
2697   if (!do_null && !do_update) {
2698     return result;
2699   }
2700 
2701   ciKlass* exact_signature_k = NULL;
2702   if (do_update) {
2703     // Is the type from the signature exact (the only one possible)?
2704     exact_signature_k = signature_at_call_k->exact_klass();
2705     if (exact_signature_k == NULL) {
2706       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2707     } else {
2708       result = exact_signature_k;
2709       // Known statically. No need to emit any code: prevent
2710       // LIR_Assembler::emit_profile_type() from emitting useless code
2711       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2712     }
2713     // exact_klass and exact_signature_k can be both non NULL but
2714     // different if exact_klass is loaded after the ciObject for
2715     // exact_signature_k is created.
2716     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2717       // sometimes the type of the signature is better than the best type
2718       // the compiler has
2719       exact_klass = exact_signature_k;
2720     }
2721     if (callee_signature_k != NULL &&
2722         callee_signature_k != signature_at_call_k) {
2723       ciKlass* improved_klass = callee_signature_k->exact_klass();
2724       if (improved_klass == NULL) {
2725         improved_klass = comp->cha_exact_type(callee_signature_k);
2726       }
2727       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2728         exact_klass = exact_signature_k;
2729       }
2730     }
2731     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2732   }
2733 
2734   if (!do_null && !do_update) {
2735     return result;
2736   }
2737 
2738   if (mdp == LIR_OprFact::illegalOpr) {
2739     mdp = new_register(T_METADATA);
2740     __ metadata2reg(md->constant_encoding(), mdp);
2741     if (md_base_offset != 0) {
2742       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2743       mdp = new_pointer_register();
2744       __ leal(LIR_OprFact::address(base_type_address), mdp);
2745     }
2746   }
2747   LIRItem value(obj, this);
2748   value.load_item();
2749   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2750                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2751   return result;
2752 }
2753 
2754 // profile parameters on entry to the root of the compilation
2755 void LIRGenerator::profile_parameters(Base* x) {
2756   if (compilation()->profile_parameters()) {
2757     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2758     ciMethodData* md = scope()->method()->method_data_or_null();
2759     assert(md != NULL, "Sanity");
2760 
2761     if (md->parameters_type_data() != NULL) {
2762       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2763       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2764       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2765       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2766         LIR_Opr src = args->at(i);
2767         assert(!src->is_illegal(), "check");
2768         BasicType t = src->type();
2769         if (t == T_OBJECT || t == T_ARRAY) {
2770           intptr_t profiled_k = parameters->type(j);
2771           Local* local = x->state()->local_at(java_index)->as_Local();
2772           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2773                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2774                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2775           // If the profile is known statically set it once for all and do not emit any code
2776           if (exact != NULL) {
2777             md->set_parameter_type(j, exact);
2778           }
2779           j++;
2780         }
2781         java_index += type2size[t];
2782       }
2783     }
2784   }
2785 }
2786 
2787 void LIRGenerator::do_Base(Base* x) {
2788   __ std_entry(LIR_OprFact::illegalOpr);
2789   // Emit moves from physical registers / stack slots to virtual registers
2790   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2791   IRScope* irScope = compilation()->hir()->top_scope();
2792   int java_index = 0;
2793   for (int i = 0; i < args->length(); i++) {
2794     LIR_Opr src = args->at(i);
2795     assert(!src->is_illegal(), "check");
2796     BasicType t = src->type();
2797 
2798     // Types which are smaller than int are passed as int, so
2799     // correct the type which passed.
2800     switch (t) {
2801     case T_BYTE:
2802     case T_BOOLEAN:
2803     case T_SHORT:
2804     case T_CHAR:
2805       t = T_INT;
2806       break;
2807     }
2808 
2809     LIR_Opr dest = new_register(t);
2810     __ move(src, dest);
2811 
2812     // Assign new location to Local instruction for this local
2813     Local* local = x->state()->local_at(java_index)->as_Local();
2814     assert(local != NULL, "Locals for incoming arguments must have been created");
2815 #ifndef __SOFTFP__
2816     // The java calling convention passes double as long and float as int.
2817     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2818 #endif // __SOFTFP__
2819     local->set_operand(dest);
2820     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2821     java_index += type2size[t];
2822   }
2823 
2824   if (compilation()->env()->dtrace_method_probes()) {
2825     BasicTypeList signature;
2826     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2827     signature.append(T_METADATA); // Method*
2828     LIR_OprList* args = new LIR_OprList();
2829     args->append(getThreadPointer());
2830     LIR_Opr meth = new_register(T_METADATA);
2831     __ metadata2reg(method()->constant_encoding(), meth);
2832     args->append(meth);
2833     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2834   }
2835 
2836   if (method()->is_synchronized()) {
2837     LIR_Opr obj;
2838     if (method()->is_static()) {
2839       obj = new_register(T_OBJECT);
2840       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2841     } else {
2842       Local* receiver = x->state()->local_at(0)->as_Local();
2843       assert(receiver != NULL, "must already exist");
2844       obj = receiver->operand();
2845     }
2846     assert(obj->is_valid(), "must be valid");
2847 
2848     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2849       LIR_Opr lock = syncLockOpr();
2850       __ load_stack_address_monitor(0, lock);
2851 
2852       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2853       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2854 
2855       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2856       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2857     }
2858   }
2859   if (compilation()->age_code()) {
2860     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2861     decrement_age(info);
2862   }
2863   // increment invocation counters if needed
2864   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2865     profile_parameters(x);
2866     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2867     increment_invocation_counter(info);
2868   }
2869 
2870   // all blocks with a successor must end with an unconditional jump
2871   // to the successor even if they are consecutive
2872   __ jump(x->default_sux());
2873 }
2874 
2875 
2876 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2877   // construct our frame and model the production of incoming pointer
2878   // to the OSR buffer.
2879   __ osr_entry(LIR_Assembler::osrBufferPointer());
2880   LIR_Opr result = rlock_result(x);
2881   __ move(LIR_Assembler::osrBufferPointer(), result);
2882 }
2883 
2884 
2885 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2886   assert(args->length() == arg_list->length(),
2887          "args=%d, arg_list=%d", args->length(), arg_list->length());
2888   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2889     LIRItem* param = args->at(i);
2890     LIR_Opr loc = arg_list->at(i);
2891     if (loc->is_register()) {
2892       param->load_item_force(loc);
2893     } else {
2894       LIR_Address* addr = loc->as_address_ptr();
2895       param->load_for_store(addr->type());
2896       if (addr->type() == T_OBJECT) {
2897         __ move_wide(param->result(), addr);
2898       } else
2899         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2900           __ unaligned_move(param->result(), addr);
2901         } else {
2902           __ move(param->result(), addr);
2903         }
2904     }
2905   }
2906 
2907   if (x->has_receiver()) {
2908     LIRItem* receiver = args->at(0);
2909     LIR_Opr loc = arg_list->at(0);
2910     if (loc->is_register()) {
2911       receiver->load_item_force(loc);
2912     } else {
2913       assert(loc->is_address(), "just checking");
2914       receiver->load_for_store(T_OBJECT);
2915       __ move_wide(receiver->result(), loc->as_address_ptr());
2916     }
2917   }
2918 }
2919 
2920 
2921 // Visits all arguments, returns appropriate items without loading them
2922 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2923   LIRItemList* argument_items = new LIRItemList();
2924   if (x->has_receiver()) {
2925     LIRItem* receiver = new LIRItem(x->receiver(), this);
2926     argument_items->append(receiver);
2927   }
2928   for (int i = 0; i < x->number_of_arguments(); i++) {
2929     LIRItem* param = new LIRItem(x->argument_at(i), this);
2930     argument_items->append(param);
2931   }
2932   return argument_items;
2933 }
2934 
2935 
2936 // The invoke with receiver has following phases:
2937 //   a) traverse and load/lock receiver;
2938 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2939 //   c) push receiver on stack
2940 //   d) load each of the items and push on stack
2941 //   e) unlock receiver
2942 //   f) move receiver into receiver-register %o0
2943 //   g) lock result registers and emit call operation
2944 //
2945 // Before issuing a call, we must spill-save all values on stack
2946 // that are in caller-save register. "spill-save" moves those registers
2947 // either in a free callee-save register or spills them if no free
2948 // callee save register is available.
2949 //
2950 // The problem is where to invoke spill-save.
2951 // - if invoked between e) and f), we may lock callee save
2952 //   register in "spill-save" that destroys the receiver register
2953 //   before f) is executed
2954 // - if we rearrange f) to be earlier (by loading %o0) it
2955 //   may destroy a value on the stack that is currently in %o0
2956 //   and is waiting to be spilled
2957 // - if we keep the receiver locked while doing spill-save,
2958 //   we cannot spill it as it is spill-locked
2959 //
2960 void LIRGenerator::do_Invoke(Invoke* x) {
2961   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2962 
2963   LIR_OprList* arg_list = cc->args();
2964   LIRItemList* args = invoke_visit_arguments(x);
2965   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2966 
2967   // setup result register
2968   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2969   if (x->type() != voidType) {
2970     result_register = result_register_for(x->type());
2971   }
2972 
2973   CodeEmitInfo* info = state_for(x, x->state());
2974 
2975   invoke_load_arguments(x, args, arg_list);
2976 
2977   if (x->has_receiver()) {
2978     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2979     receiver = args->at(0)->result();
2980   }
2981 
2982   // emit invoke code
2983   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2984 
2985   // JSR 292
2986   // Preserve the SP over MethodHandle call sites, if needed.
2987   ciMethod* target = x->target();
2988   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2989                                   target->is_method_handle_intrinsic() ||
2990                                   target->is_compiled_lambda_form());
2991   if (is_method_handle_invoke) {
2992     info->set_is_method_handle_invoke(true);
2993     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2994         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2995     }
2996   }
2997 
2998   switch (x->code()) {
2999     case Bytecodes::_invokestatic:
3000       __ call_static(target, result_register,
3001                      SharedRuntime::get_resolve_static_call_stub(),
3002                      arg_list, info);
3003       break;
3004     case Bytecodes::_invokespecial:
3005     case Bytecodes::_invokevirtual:
3006     case Bytecodes::_invokeinterface:
3007       // for loaded and final (method or class) target we still produce an inline cache,
3008       // in order to be able to call mixed mode
3009       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3010         __ call_opt_virtual(target, receiver, result_register,
3011                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3012                             arg_list, info);
3013       } else if (x->vtable_index() < 0) {
3014         __ call_icvirtual(target, receiver, result_register,
3015                           SharedRuntime::get_resolve_virtual_call_stub(),
3016                           arg_list, info);
3017       } else {
3018         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3019         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3020         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3021       }
3022       break;
3023     case Bytecodes::_invokedynamic: {
3024       __ call_dynamic(target, receiver, result_register,
3025                       SharedRuntime::get_resolve_static_call_stub(),
3026                       arg_list, info);
3027       break;
3028     }
3029     default:
3030       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3031       break;
3032   }
3033 
3034   // JSR 292
3035   // Restore the SP after MethodHandle call sites, if needed.
3036   if (is_method_handle_invoke
3037       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3038     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3039   }
3040 
3041   if (x->type()->is_float() || x->type()->is_double()) {
3042     // Force rounding of results from non-strictfp when in strictfp
3043     // scope (or when we don't know the strictness of the callee, to
3044     // be safe.)
3045     if (method()->is_strict()) {
3046       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3047         result_register = round_item(result_register);
3048       }
3049     }
3050   }
3051 
3052   if (result_register->is_valid()) {
3053     LIR_Opr result = rlock_result(x);
3054     __ move(result_register, result);
3055   }
3056 }
3057 
3058 
3059 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3060   assert(x->number_of_arguments() == 1, "wrong type");
3061   LIRItem value       (x->argument_at(0), this);
3062   LIR_Opr reg = rlock_result(x);
3063   value.load_item();
3064   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3065   __ move(tmp, reg);
3066 }
3067 
3068 
3069 
3070 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3071 void LIRGenerator::do_IfOp(IfOp* x) {
3072 #ifdef ASSERT
3073   {
3074     ValueTag xtag = x->x()->type()->tag();
3075     ValueTag ttag = x->tval()->type()->tag();
3076     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3077     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3078     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3079   }
3080 #endif
3081 
3082   LIRItem left(x->x(), this);
3083   LIRItem right(x->y(), this);
3084   left.load_item();
3085   if (can_inline_as_constant(right.value())) {
3086     right.dont_load_item();
3087   } else {
3088     right.load_item();
3089   }
3090 
3091   LIRItem t_val(x->tval(), this);
3092   LIRItem f_val(x->fval(), this);
3093   t_val.dont_load_item();
3094   f_val.dont_load_item();
3095   LIR_Opr reg = rlock_result(x);
3096 
3097   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3098   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3099 }
3100 
3101 #ifdef TRACE_HAVE_INTRINSICS
3102 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3103   CodeEmitInfo* info = state_for(x);
3104   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3105 
3106   assert(info != NULL, "must have info");
3107   LIRItem arg(x->argument_at(0), this);
3108 
3109   arg.load_item();
3110   LIR_Opr klass = new_register(T_METADATA);
3111   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3112   LIR_Opr id = new_register(T_LONG);
3113   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3114   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3115 
3116   __ move(trace_id_addr, id);
3117   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3118   __ store(id, trace_id_addr);
3119 
3120 #ifdef TRACE_ID_META_BITS
3121   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3122 #endif
3123 #ifdef TRACE_ID_CLASS_SHIFT
3124   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3125 #endif
3126 
3127   __ move(id, rlock_result(x));
3128 }
3129 
3130 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3131   LabelObj* L_end = new LabelObj();
3132 
3133   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3134                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3135                                            T_OBJECT);
3136   LIR_Opr result = rlock_result(x);
3137   __ move_wide(jobj_addr, result);
3138   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3139   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3140   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3141 
3142   __ branch_destination(L_end->label());
3143 }
3144 
3145 #endif
3146 
3147 
3148 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3149   assert(x->number_of_arguments() == 0, "wrong type");
3150   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3151   BasicTypeList signature;
3152   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3153   LIR_Opr reg = result_register_for(x->type());
3154   __ call_runtime_leaf(routine, getThreadTemp(),
3155                        reg, new LIR_OprList());
3156   LIR_Opr result = rlock_result(x);
3157   __ move(reg, result);
3158 }
3159 
3160 
3161 
3162 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3163   switch (x->id()) {
3164   case vmIntrinsics::_intBitsToFloat      :
3165   case vmIntrinsics::_doubleToRawLongBits :
3166   case vmIntrinsics::_longBitsToDouble    :
3167   case vmIntrinsics::_floatToRawIntBits   : {
3168     do_FPIntrinsics(x);
3169     break;
3170   }
3171 
3172 #ifdef TRACE_HAVE_INTRINSICS
3173   case vmIntrinsics::_getClassId:
3174     do_ClassIDIntrinsic(x);
3175     break;
3176   case vmIntrinsics::_getBufferWriter:
3177     do_getBufferWriter(x);
3178     break;
3179   case vmIntrinsics::_counterTime:
3180     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3181     break;
3182 #endif
3183 
3184   case vmIntrinsics::_currentTimeMillis:
3185     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3186     break;
3187 
3188   case vmIntrinsics::_nanoTime:
3189     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3190     break;
3191 
3192   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3193   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3194   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3195   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3196   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3197 
3198   case vmIntrinsics::_dlog:           // fall through
3199   case vmIntrinsics::_dlog10:         // fall through
3200   case vmIntrinsics::_dabs:           // fall through
3201   case vmIntrinsics::_dsqrt:          // fall through
3202   case vmIntrinsics::_dtan:           // fall through
3203   case vmIntrinsics::_dsin :          // fall through
3204   case vmIntrinsics::_dcos :          // fall through
3205   case vmIntrinsics::_dexp :          // fall through
3206   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3207   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3208 
3209   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3210   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3211 
3212   // java.nio.Buffer.checkIndex
3213   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3214 
3215   case vmIntrinsics::_compareAndSetObject:
3216     do_CompareAndSwap(x, objectType);
3217     break;
3218   case vmIntrinsics::_compareAndSetInt:
3219     do_CompareAndSwap(x, intType);
3220     break;
3221   case vmIntrinsics::_compareAndSetLong:
3222     do_CompareAndSwap(x, longType);
3223     break;
3224 
3225   case vmIntrinsics::_loadFence :
3226     if (os::is_MP()) __ membar_acquire();
3227     break;
3228   case vmIntrinsics::_storeFence:
3229     if (os::is_MP()) __ membar_release();
3230     break;
3231   case vmIntrinsics::_fullFence :
3232     if (os::is_MP()) __ membar();
3233     break;
3234   case vmIntrinsics::_onSpinWait:
3235     __ on_spin_wait();
3236     break;
3237   case vmIntrinsics::_Reference_get:
3238     do_Reference_get(x);
3239     break;
3240 
3241   case vmIntrinsics::_updateCRC32:
3242   case vmIntrinsics::_updateBytesCRC32:
3243   case vmIntrinsics::_updateByteBufferCRC32:
3244     do_update_CRC32(x);
3245     break;
3246 
3247   case vmIntrinsics::_updateBytesCRC32C:
3248   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3249     do_update_CRC32C(x);
3250     break;
3251 
3252   case vmIntrinsics::_vectorizedMismatch:
3253     do_vectorizedMismatch(x);
3254     break;
3255 
3256   default: ShouldNotReachHere(); break;
3257   }
3258 }
3259 
3260 void LIRGenerator::profile_arguments(ProfileCall* x) {
3261   if (compilation()->profile_arguments()) {
3262     int bci = x->bci_of_invoke();
3263     ciMethodData* md = x->method()->method_data_or_null();
3264     ciProfileData* data = md->bci_to_data(bci);
3265     if (data != NULL) {
3266       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3267           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3268         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3269         int base_offset = md->byte_offset_of_slot(data, extra);
3270         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3271         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3272 
3273         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3274         int start = 0;
3275         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3276         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3277           // first argument is not profiled at call (method handle invoke)
3278           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3279           start = 1;
3280         }
3281         ciSignature* callee_signature = x->callee()->signature();
3282         // method handle call to virtual method
3283         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3284         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3285 
3286         bool ignored_will_link;
3287         ciSignature* signature_at_call = NULL;
3288         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3289         ciSignatureStream signature_at_call_stream(signature_at_call);
3290 
3291         // if called through method handle invoke, some arguments may have been popped
3292         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3293           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3294           ciKlass* exact = profile_type(md, base_offset, off,
3295               args->type(i), x->profiled_arg_at(i+start), mdp,
3296               !x->arg_needs_null_check(i+start),
3297               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3298           if (exact != NULL) {
3299             md->set_argument_type(bci, i, exact);
3300           }
3301         }
3302       } else {
3303 #ifdef ASSERT
3304         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3305         int n = x->nb_profiled_args();
3306         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3307             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3308             "only at JSR292 bytecodes");
3309 #endif
3310       }
3311     }
3312   }
3313 }
3314 
3315 // profile parameters on entry to an inlined method
3316 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3317   if (compilation()->profile_parameters() && x->inlined()) {
3318     ciMethodData* md = x->callee()->method_data_or_null();
3319     if (md != NULL) {
3320       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3321       if (parameters_type_data != NULL) {
3322         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3323         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3324         bool has_receiver = !x->callee()->is_static();
3325         ciSignature* sig = x->callee()->signature();
3326         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3327         int i = 0; // to iterate on the Instructions
3328         Value arg = x->recv();
3329         bool not_null = false;
3330         int bci = x->bci_of_invoke();
3331         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3332         // The first parameter is the receiver so that's what we start
3333         // with if it exists. One exception is method handle call to
3334         // virtual method: the receiver is in the args list
3335         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3336           i = 1;
3337           arg = x->profiled_arg_at(0);
3338           not_null = !x->arg_needs_null_check(0);
3339         }
3340         int k = 0; // to iterate on the profile data
3341         for (;;) {
3342           intptr_t profiled_k = parameters->type(k);
3343           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3344                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3345                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3346           // If the profile is known statically set it once for all and do not emit any code
3347           if (exact != NULL) {
3348             md->set_parameter_type(k, exact);
3349           }
3350           k++;
3351           if (k >= parameters_type_data->number_of_parameters()) {
3352 #ifdef ASSERT
3353             int extra = 0;
3354             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3355                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3356                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3357               extra += 1;
3358             }
3359             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3360 #endif
3361             break;
3362           }
3363           arg = x->profiled_arg_at(i);
3364           not_null = !x->arg_needs_null_check(i);
3365           i++;
3366         }
3367       }
3368     }
3369   }
3370 }
3371 
3372 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3373   // Need recv in a temporary register so it interferes with the other temporaries
3374   LIR_Opr recv = LIR_OprFact::illegalOpr;
3375   LIR_Opr mdo = new_register(T_OBJECT);
3376   // tmp is used to hold the counters on SPARC
3377   LIR_Opr tmp = new_pointer_register();
3378 
3379   if (x->nb_profiled_args() > 0) {
3380     profile_arguments(x);
3381   }
3382 
3383   // profile parameters on inlined method entry including receiver
3384   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3385     profile_parameters_at_call(x);
3386   }
3387 
3388   if (x->recv() != NULL) {
3389     LIRItem value(x->recv(), this);
3390     value.load_item();
3391     recv = new_register(T_OBJECT);
3392     __ move(value.result(), recv);
3393   }
3394   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3395 }
3396 
3397 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3398   int bci = x->bci_of_invoke();
3399   ciMethodData* md = x->method()->method_data_or_null();
3400   ciProfileData* data = md->bci_to_data(bci);
3401   if (data != NULL) {
3402     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3403     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3404     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3405 
3406     bool ignored_will_link;
3407     ciSignature* signature_at_call = NULL;
3408     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3409 
3410     // The offset within the MDO of the entry to update may be too large
3411     // to be used in load/store instructions on some platforms. So have
3412     // profile_type() compute the address of the profile in a register.
3413     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3414         ret->type(), x->ret(), mdp,
3415         !x->needs_null_check(),
3416         signature_at_call->return_type()->as_klass(),
3417         x->callee()->signature()->return_type()->as_klass());
3418     if (exact != NULL) {
3419       md->set_return_type(bci, exact);
3420     }
3421   }
3422 }
3423 
3424 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3425   // We can safely ignore accessors here, since c2 will inline them anyway,
3426   // accessors are also always mature.
3427   if (!x->inlinee()->is_accessor()) {
3428     CodeEmitInfo* info = state_for(x, x->state(), true);
3429     // Notify the runtime very infrequently only to take care of counter overflows
3430     int freq_log = Tier23InlineeNotifyFreqLog;
3431     double scale;
3432     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3433       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3434     }
3435     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3436   }
3437 }
3438 
3439 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3440   int freq_log = 0;
3441   int level = compilation()->env()->comp_level();
3442   if (level == CompLevel_limited_profile) {
3443     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3444   } else if (level == CompLevel_full_profile) {
3445     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3446   } else {
3447     ShouldNotReachHere();
3448   }
3449   // Increment the appropriate invocation/backedge counter and notify the runtime.
3450   double scale;
3451   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3452     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3453   }
3454   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3455 }
3456 
3457 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3458   ciMethod* method = info->scope()->method();
3459   MethodCounters* mc_adr = method->ensure_method_counters();
3460   if (mc_adr != NULL) {
3461     LIR_Opr mc = new_pointer_register();
3462     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3463     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3464     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3465     LIR_Opr result = new_register(T_INT);
3466     __ load(counter, result);
3467     __ sub(result, LIR_OprFact::intConst(1), result);
3468     __ store(result, counter);
3469     // DeoptimizeStub will reexecute from the current state in code info.
3470     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3471                                          Deoptimization::Action_make_not_entrant);
3472     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3473     __ branch(lir_cond_lessEqual, T_INT, deopt);
3474   }
3475 }
3476 
3477 
3478 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3479                                                 ciMethod *method, int frequency,
3480                                                 int bci, bool backedge, bool notify) {
3481   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3482   int level = _compilation->env()->comp_level();
3483   assert(level > CompLevel_simple, "Shouldn't be here");
3484 
3485   int offset = -1;
3486   LIR_Opr counter_holder = NULL;
3487   if (level == CompLevel_limited_profile) {
3488     MethodCounters* counters_adr = method->ensure_method_counters();
3489     if (counters_adr == NULL) {
3490       bailout("method counters allocation failed");
3491       return;
3492     }
3493     counter_holder = new_pointer_register();
3494     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3495     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3496                                  MethodCounters::invocation_counter_offset());
3497   } else if (level == CompLevel_full_profile) {
3498     counter_holder = new_register(T_METADATA);
3499     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3500                                  MethodData::invocation_counter_offset());
3501     ciMethodData* md = method->method_data_or_null();
3502     assert(md != NULL, "Sanity");
3503     __ metadata2reg(md->constant_encoding(), counter_holder);
3504   } else {
3505     ShouldNotReachHere();
3506   }
3507   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3508   LIR_Opr result = new_register(T_INT);
3509   __ load(counter, result);
3510   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3511   __ store(result, counter);
3512   if (notify && (!backedge || UseOnStackReplacement)) {
3513     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3514     // The bci for info can point to cmp for if's we want the if bci
3515     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3516     int freq = frequency << InvocationCounter::count_shift;
3517     if (freq == 0) {
3518       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3519     } else {
3520       LIR_Opr mask = load_immediate(freq, T_INT);
3521       __ logical_and(result, mask, result);
3522       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3523       __ branch(lir_cond_equal, T_INT, overflow);
3524     }
3525     __ branch_destination(overflow->continuation());
3526   }
3527 }
3528 
3529 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3530   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3531   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3532 
3533   if (x->pass_thread()) {
3534     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3535     args->append(getThreadPointer());
3536   }
3537 
3538   for (int i = 0; i < x->number_of_arguments(); i++) {
3539     Value a = x->argument_at(i);
3540     LIRItem* item = new LIRItem(a, this);
3541     item->load_item();
3542     args->append(item->result());
3543     signature->append(as_BasicType(a->type()));
3544   }
3545 
3546   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3547   if (x->type() == voidType) {
3548     set_no_result(x);
3549   } else {
3550     __ move(result, rlock_result(x));
3551   }
3552 }
3553 
3554 #ifdef ASSERT
3555 void LIRGenerator::do_Assert(Assert *x) {
3556   ValueTag tag = x->x()->type()->tag();
3557   If::Condition cond = x->cond();
3558 
3559   LIRItem xitem(x->x(), this);
3560   LIRItem yitem(x->y(), this);
3561   LIRItem* xin = &xitem;
3562   LIRItem* yin = &yitem;
3563 
3564   assert(tag == intTag, "Only integer assertions are valid!");
3565 
3566   xin->load_item();
3567   yin->dont_load_item();
3568 
3569   set_no_result(x);
3570 
3571   LIR_Opr left = xin->result();
3572   LIR_Opr right = yin->result();
3573 
3574   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3575 }
3576 #endif
3577 
3578 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3579 
3580 
3581   Instruction *a = x->x();
3582   Instruction *b = x->y();
3583   if (!a || StressRangeCheckElimination) {
3584     assert(!b || StressRangeCheckElimination, "B must also be null");
3585 
3586     CodeEmitInfo *info = state_for(x, x->state());
3587     CodeStub* stub = new PredicateFailedStub(info);
3588 
3589     __ jump(stub);
3590   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3591     int a_int = a->type()->as_IntConstant()->value();
3592     int b_int = b->type()->as_IntConstant()->value();
3593 
3594     bool ok = false;
3595 
3596     switch(x->cond()) {
3597       case Instruction::eql: ok = (a_int == b_int); break;
3598       case Instruction::neq: ok = (a_int != b_int); break;
3599       case Instruction::lss: ok = (a_int < b_int); break;
3600       case Instruction::leq: ok = (a_int <= b_int); break;
3601       case Instruction::gtr: ok = (a_int > b_int); break;
3602       case Instruction::geq: ok = (a_int >= b_int); break;
3603       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3604       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3605       default: ShouldNotReachHere();
3606     }
3607 
3608     if (ok) {
3609 
3610       CodeEmitInfo *info = state_for(x, x->state());
3611       CodeStub* stub = new PredicateFailedStub(info);
3612 
3613       __ jump(stub);
3614     }
3615   } else {
3616 
3617     ValueTag tag = x->x()->type()->tag();
3618     If::Condition cond = x->cond();
3619     LIRItem xitem(x->x(), this);
3620     LIRItem yitem(x->y(), this);
3621     LIRItem* xin = &xitem;
3622     LIRItem* yin = &yitem;
3623 
3624     assert(tag == intTag, "Only integer deoptimizations are valid!");
3625 
3626     xin->load_item();
3627     yin->dont_load_item();
3628     set_no_result(x);
3629 
3630     LIR_Opr left = xin->result();
3631     LIR_Opr right = yin->result();
3632 
3633     CodeEmitInfo *info = state_for(x, x->state());
3634     CodeStub* stub = new PredicateFailedStub(info);
3635 
3636     __ cmp(lir_cond(cond), left, right);
3637     __ branch(lir_cond(cond), right->type(), stub);
3638   }
3639 }
3640 
3641 
3642 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3643   LIRItemList args(1);
3644   LIRItem value(arg1, this);
3645   args.append(&value);
3646   BasicTypeList signature;
3647   signature.append(as_BasicType(arg1->type()));
3648 
3649   return call_runtime(&signature, &args, entry, result_type, info);
3650 }
3651 
3652 
3653 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3654   LIRItemList args(2);
3655   LIRItem value1(arg1, this);
3656   LIRItem value2(arg2, this);
3657   args.append(&value1);
3658   args.append(&value2);
3659   BasicTypeList signature;
3660   signature.append(as_BasicType(arg1->type()));
3661   signature.append(as_BasicType(arg2->type()));
3662 
3663   return call_runtime(&signature, &args, entry, result_type, info);
3664 }
3665 
3666 
3667 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3668                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3669   // get a result register
3670   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3671   LIR_Opr result = LIR_OprFact::illegalOpr;
3672   if (result_type->tag() != voidTag) {
3673     result = new_register(result_type);
3674     phys_reg = result_register_for(result_type);
3675   }
3676 
3677   // move the arguments into the correct location
3678   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3679   assert(cc->length() == args->length(), "argument mismatch");
3680   for (int i = 0; i < args->length(); i++) {
3681     LIR_Opr arg = args->at(i);
3682     LIR_Opr loc = cc->at(i);
3683     if (loc->is_register()) {
3684       __ move(arg, loc);
3685     } else {
3686       LIR_Address* addr = loc->as_address_ptr();
3687 //           if (!can_store_as_constant(arg)) {
3688 //             LIR_Opr tmp = new_register(arg->type());
3689 //             __ move(arg, tmp);
3690 //             arg = tmp;
3691 //           }
3692       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3693         __ unaligned_move(arg, addr);
3694       } else {
3695         __ move(arg, addr);
3696       }
3697     }
3698   }
3699 
3700   if (info) {
3701     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3702   } else {
3703     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3704   }
3705   if (result->is_valid()) {
3706     __ move(phys_reg, result);
3707   }
3708   return result;
3709 }
3710 
3711 
3712 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3713                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3714   // get a result register
3715   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3716   LIR_Opr result = LIR_OprFact::illegalOpr;
3717   if (result_type->tag() != voidTag) {
3718     result = new_register(result_type);
3719     phys_reg = result_register_for(result_type);
3720   }
3721 
3722   // move the arguments into the correct location
3723   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3724 
3725   assert(cc->length() == args->length(), "argument mismatch");
3726   for (int i = 0; i < args->length(); i++) {
3727     LIRItem* arg = args->at(i);
3728     LIR_Opr loc = cc->at(i);
3729     if (loc->is_register()) {
3730       arg->load_item_force(loc);
3731     } else {
3732       LIR_Address* addr = loc->as_address_ptr();
3733       arg->load_for_store(addr->type());
3734       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3735         __ unaligned_move(arg->result(), addr);
3736       } else {
3737         __ move(arg->result(), addr);
3738       }
3739     }
3740   }
3741 
3742   if (info) {
3743     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3744   } else {
3745     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3746   }
3747   if (result->is_valid()) {
3748     __ move(phys_reg, result);
3749   }
3750   return result;
3751 }
3752 
3753 void LIRGenerator::do_MemBar(MemBar* x) {
3754   if (os::is_MP()) {
3755     LIR_Code code = x->code();
3756     switch(code) {
3757       case lir_membar_acquire   : __ membar_acquire(); break;
3758       case lir_membar_release   : __ membar_release(); break;
3759       case lir_membar           : __ membar(); break;
3760       case lir_membar_loadload  : __ membar_loadload(); break;
3761       case lir_membar_storestore: __ membar_storestore(); break;
3762       case lir_membar_loadstore : __ membar_loadstore(); break;
3763       case lir_membar_storeload : __ membar_storeload(); break;
3764       default                   : ShouldNotReachHere(); break;
3765     }
3766   }
3767 }
3768 
3769 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3770   if (x->check_boolean()) {
3771     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3772     if (TwoOperandLIRForm) {
3773       __ move(value, value_fixed);
3774       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3775     } else {
3776       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3777     }
3778     LIR_Opr klass = new_register(T_METADATA);
3779     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3780     null_check_info = NULL;
3781     LIR_Opr layout = new_register(T_INT);
3782     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3783     int diffbit = Klass::layout_helper_boolean_diffbit();
3784     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3785     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3786     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3787     value = value_fixed;
3788   }
3789   return value;
3790 }