1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2019, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/cardTableBarrierSet.hpp"
  38 #include "nativeInst_ppc.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 #define __ _masm->
  45 
  46 
  47 const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5;
  48 
  49 
  50 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  51   Unimplemented(); return false; // Currently not used on this platform.
  52 }
  53 
  54 
  55 LIR_Opr LIR_Assembler::receiverOpr() {
  56   return FrameMap::R3_oop_opr;
  57 }
  58 
  59 
  60 LIR_Opr LIR_Assembler::osrBufferPointer() {
  61   return FrameMap::R3_opr;
  62 }
  63 
  64 
  65 // This specifies the stack pointer decrement needed to build the frame.
  66 int LIR_Assembler::initial_frame_size_in_bytes() const {
  67   return in_bytes(frame_map()->framesize_in_bytes());
  68 }
  69 
  70 
  71 // Inline cache check: the inline cached class is in inline_cache_reg;
  72 // we fetch the class of the receiver and compare it with the cached class.
  73 // If they do not match we jump to slow case.
  74 int LIR_Assembler::check_icache() {
  75   int offset = __ offset();
  76   __ inline_cache_check(R3_ARG1, R19_inline_cache_reg);
  77   return offset;
  78 }
  79 
  80 void LIR_Assembler::clinit_barrier(ciMethod* method) {
  81   ShouldNotReachHere(); // not implemented
  82 }
  83 
  84 void LIR_Assembler::osr_entry() {
  85   // On-stack-replacement entry sequence:
  86   //
  87   //   1. Create a new compiled activation.
  88   //   2. Initialize local variables in the compiled activation. The expression
  89   //      stack must be empty at the osr_bci; it is not initialized.
  90   //   3. Jump to the continuation address in compiled code to resume execution.
  91 
  92   // OSR entry point
  93   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
  94   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
  95   ValueStack* entry_state = osr_entry->end()->state();
  96   int number_of_locks = entry_state->locks_size();
  97 
  98   // Create a frame for the compiled activation.
  99   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 100 
 101   // OSR buffer is
 102   //
 103   // locals[nlocals-1..0]
 104   // monitors[number_of_locks-1..0]
 105   //
 106   // Locals is a direct copy of the interpreter frame so in the osr buffer
 107   // the first slot in the local array is the last local from the interpreter
 108   // and the last slot is local[0] (receiver) from the interpreter.
 109   //
 110   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 111   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 112   // in the interpreter frame (the method lock if a sync method).
 113 
 114   // Initialize monitors in the compiled activation.
 115   //   R3: pointer to osr buffer
 116   //
 117   // All other registers are dead at this point and the locals will be
 118   // copied into place by code emitted in the IR.
 119 
 120   Register OSR_buf = osrBufferPointer()->as_register();
 121   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 122     int monitor_offset = BytesPerWord * method()->max_locals() +
 123       (2 * BytesPerWord) * (number_of_locks - 1);
 124     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 125     // the OSR buffer using 2 word entries: first the lock and then
 126     // the oop.
 127     for (int i = 0; i < number_of_locks; i++) {
 128       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 129 #ifdef ASSERT
 130       // Verify the interpreter's monitor has a non-null object.
 131       {
 132         Label L;
 133         __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
 134         __ cmpdi(CCR0, R0, 0);
 135         __ bne(CCR0, L);
 136         __ stop("locked object is NULL");
 137         __ bind(L);
 138       }
 139 #endif // ASSERT
 140       // Copy the lock field into the compiled activation.
 141       Address ml = frame_map()->address_for_monitor_lock(i),
 142               mo = frame_map()->address_for_monitor_object(i);
 143       assert(ml.index() == noreg && mo.index() == noreg, "sanity");
 144       __ ld(R0, slot_offset + 0, OSR_buf);
 145       __ std(R0, ml.disp(), ml.base());
 146       __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf);
 147       __ std(R0, mo.disp(), mo.base());
 148     }
 149   }
 150 }
 151 
 152 
 153 int LIR_Assembler::emit_exception_handler() {
 154   // If the last instruction is a call (typically to do a throw which
 155   // is coming at the end after block reordering) the return address
 156   // must still point into the code area in order to avoid assertion
 157   // failures when searching for the corresponding bci => add a nop
 158   // (was bug 5/14/1999 - gri).
 159   __ nop();
 160 
 161   // Generate code for the exception handler.
 162   address handler_base = __ start_a_stub(exception_handler_size());
 163 
 164   if (handler_base == NULL) {
 165     // Not enough space left for the handler.
 166     bailout("exception handler overflow");
 167     return -1;
 168   }
 169 
 170   int offset = code_offset();
 171   address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id));
 172   //__ load_const_optimized(R0, entry_point);
 173   __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point));
 174   __ mtctr(R0);
 175   __ bctr();
 176 
 177   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 178   __ end_a_stub();
 179 
 180   return offset;
 181 }
 182 
 183 
 184 // Emit the code to remove the frame from the stack in the exception
 185 // unwind path.
 186 int LIR_Assembler::emit_unwind_handler() {
 187   _masm->block_comment("Unwind handler");
 188 
 189   int offset = code_offset();
 190   bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes();
 191   const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31;
 192 
 193   // Fetch the exception from TLS and clear out exception related thread state.
 194   __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
 195   __ li(R0, 0);
 196   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
 197   __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
 198 
 199   __ bind(_unwind_handler_entry);
 200   __ verify_not_null_oop(Rexception);
 201   if (preserve_exception) { __ mr(Rexception_save, Rexception); }
 202 
 203   // Perform needed unlocking
 204   MonitorExitStub* stub = NULL;
 205   if (method()->is_synchronized()) {
 206     monitor_address(0, FrameMap::R4_opr);
 207     stub = new MonitorExitStub(FrameMap::R4_opr, true, 0);
 208     __ unlock_object(R5, R6, R4, *stub->entry());
 209     __ bind(*stub->continuation());
 210   }
 211 
 212   if (compilation()->env()->dtrace_method_probes()) {
 213     Unimplemented();
 214   }
 215 
 216   // Dispatch to the unwind logic.
 217   address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id);
 218   //__ load_const_optimized(R0, unwind_stub);
 219   __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub));
 220   if (preserve_exception) { __ mr(Rexception, Rexception_save); }
 221   __ mtctr(R0);
 222   __ bctr();
 223 
 224   // Emit the slow path assembly.
 225   if (stub != NULL) {
 226     stub->emit_code(this);
 227   }
 228 
 229   return offset;
 230 }
 231 
 232 
 233 int LIR_Assembler::emit_deopt_handler() {
 234   // If the last instruction is a call (typically to do a throw which
 235   // is coming at the end after block reordering) the return address
 236   // must still point into the code area in order to avoid assertion
 237   // failures when searching for the corresponding bci => add a nop
 238   // (was bug 5/14/1999 - gri).
 239   __ nop();
 240 
 241   // Generate code for deopt handler.
 242   address handler_base = __ start_a_stub(deopt_handler_size());
 243 
 244   if (handler_base == NULL) {
 245     // Not enough space left for the handler.
 246     bailout("deopt handler overflow");
 247     return -1;
 248   }
 249 
 250   int offset = code_offset();
 251   __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type);
 252 
 253   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 254   __ end_a_stub();
 255 
 256   return offset;
 257 }
 258 
 259 
 260 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 261   if (o == NULL) {
 262     __ li(reg, 0);
 263   } else {
 264     AddressLiteral addrlit = __ constant_oop_address(o);
 265     __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg);
 266   }
 267 }
 268 
 269 
 270 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 271   // Allocate a new index in table to hold the object once it's been patched.
 272   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
 273   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 274 
 275   AddressLiteral addrlit((address)NULL, oop_Relocation::spec(oop_index));
 276   __ load_const(reg, addrlit, R0);
 277 
 278   patching_epilog(patch, lir_patch_normal, reg, info);
 279 }
 280 
 281 
 282 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
 283   AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation)
 284   __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg);
 285 }
 286 
 287 
 288 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 289   // Allocate a new index in table to hold the klass once it's been patched.
 290   int index = __ oop_recorder()->allocate_metadata_index(NULL);
 291   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 292 
 293   AddressLiteral addrlit((address)NULL, metadata_Relocation::spec(index));
 294   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 295   __ load_const(reg, addrlit, R0);
 296 
 297   patching_epilog(patch, lir_patch_normal, reg, info);
 298 }
 299 
 300 
 301 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
 302   const bool is_int = result->is_single_cpu();
 303   Register Rdividend = is_int ? left->as_register() : left->as_register_lo();
 304   Register Rdivisor  = noreg;
 305   Register Rscratch  = temp->as_register();
 306   Register Rresult   = is_int ? result->as_register() : result->as_register_lo();
 307   long divisor = -1;
 308 
 309   if (right->is_register()) {
 310     Rdivisor = is_int ? right->as_register() : right->as_register_lo();
 311   } else {
 312     divisor = is_int ? right->as_constant_ptr()->as_jint()
 313                      : right->as_constant_ptr()->as_jlong();
 314   }
 315 
 316   assert(Rdividend != Rscratch, "");
 317   assert(Rdivisor  != Rscratch, "");
 318   assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv");
 319 
 320   if (Rdivisor == noreg) {
 321     if (divisor == 1) { // stupid, but can happen
 322       if (code == lir_idiv) {
 323         __ mr_if_needed(Rresult, Rdividend);
 324       } else {
 325         __ li(Rresult, 0);
 326       }
 327 
 328     } else if (is_power_of_2(divisor)) {
 329       // Convert division by a power of two into some shifts and logical operations.
 330       int log2 = log2_intptr(divisor);
 331 
 332       // Round towards 0.
 333       if (divisor == 2) {
 334         if (is_int) {
 335           __ srwi(Rscratch, Rdividend, 31);
 336         } else {
 337           __ srdi(Rscratch, Rdividend, 63);
 338         }
 339       } else {
 340         if (is_int) {
 341           __ srawi(Rscratch, Rdividend, 31);
 342         } else {
 343           __ sradi(Rscratch, Rdividend, 63);
 344         }
 345         __ clrldi(Rscratch, Rscratch, 64-log2);
 346       }
 347       __ add(Rscratch, Rdividend, Rscratch);
 348 
 349       if (code == lir_idiv) {
 350         if (is_int) {
 351           __ srawi(Rresult, Rscratch, log2);
 352         } else {
 353           __ sradi(Rresult, Rscratch, log2);
 354         }
 355       } else { // lir_irem
 356         __ clrrdi(Rscratch, Rscratch, log2);
 357         __ sub(Rresult, Rdividend, Rscratch);
 358       }
 359 
 360     } else if (divisor == -1) {
 361       if (code == lir_idiv) {
 362         __ neg(Rresult, Rdividend);
 363       } else {
 364         __ li(Rresult, 0);
 365       }
 366 
 367     } else {
 368       __ load_const_optimized(Rscratch, divisor);
 369       if (code == lir_idiv) {
 370         if (is_int) {
 371           __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
 372         } else {
 373           __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1.
 374         }
 375       } else {
 376         assert(Rscratch != R0, "need both");
 377         if (is_int) {
 378           __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1.
 379           __ mullw(Rscratch, R0, Rscratch);
 380         } else {
 381           __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1.
 382           __ mulld(Rscratch, R0, Rscratch);
 383         }
 384         __ sub(Rresult, Rdividend, Rscratch);
 385       }
 386 
 387     }
 388     return;
 389   }
 390 
 391   Label regular, done;
 392   if (is_int) {
 393     __ cmpwi(CCR0, Rdivisor, -1);
 394   } else {
 395     __ cmpdi(CCR0, Rdivisor, -1);
 396   }
 397   __ bne(CCR0, regular);
 398   if (code == lir_idiv) {
 399     __ neg(Rresult, Rdividend);
 400     __ b(done);
 401     __ bind(regular);
 402     if (is_int) {
 403       __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
 404     } else {
 405       __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1.
 406     }
 407   } else { // lir_irem
 408     __ li(Rresult, 0);
 409     __ b(done);
 410     __ bind(regular);
 411     if (is_int) {
 412       __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
 413       __ mullw(Rscratch, Rscratch, Rdivisor);
 414     } else {
 415       __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1.
 416       __ mulld(Rscratch, Rscratch, Rdivisor);
 417     }
 418     __ sub(Rresult, Rdividend, Rscratch);
 419   }
 420   __ bind(done);
 421 }
 422 
 423 
 424 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 425   switch (op->code()) {
 426   case lir_idiv:
 427   case lir_irem:
 428     arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(),
 429                     op->result_opr(), op->info());
 430     break;
 431   case lir_fmad:
 432     __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(),
 433              op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg());
 434     break;
 435   case lir_fmaf:
 436     __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(),
 437               op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg());
 438     break;
 439   default: ShouldNotReachHere(); break;
 440   }
 441 }
 442 
 443 
 444 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 445 #ifdef ASSERT
 446   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 447   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 448   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 449   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 450 #endif
 451 
 452   Label *L = op->label();
 453   if (op->cond() == lir_cond_always) {
 454     __ b(*L);
 455   } else {
 456     Label done;
 457     bool is_unordered = false;
 458     if (op->code() == lir_cond_float_branch) {
 459       assert(op->ublock() != NULL, "must have unordered successor");
 460       is_unordered = true;
 461     } else {
 462       assert(op->code() == lir_branch, "just checking");
 463     }
 464 
 465     bool positive = false;
 466     Assembler::Condition cond = Assembler::equal;
 467     switch (op->cond()) {
 468       case lir_cond_equal:        positive = true ; cond = Assembler::equal  ; is_unordered = false; break;
 469       case lir_cond_notEqual:     positive = false; cond = Assembler::equal  ; is_unordered = false; break;
 470       case lir_cond_less:         positive = true ; cond = Assembler::less   ; break;
 471       case lir_cond_belowEqual:   assert(op->code() != lir_cond_float_branch, ""); // fallthru
 472       case lir_cond_lessEqual:    positive = false; cond = Assembler::greater; break;
 473       case lir_cond_greater:      positive = true ; cond = Assembler::greater; break;
 474       case lir_cond_aboveEqual:   assert(op->code() != lir_cond_float_branch, ""); // fallthru
 475       case lir_cond_greaterEqual: positive = false; cond = Assembler::less   ; break;
 476       default:                    ShouldNotReachHere();
 477     }
 478     int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
 479     int bi = Assembler::bi0(BOOL_RESULT, cond);
 480     if (is_unordered) {
 481       if (positive) {
 482         if (op->ublock() == op->block()) {
 483           __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L);
 484         }
 485       } else {
 486         if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); }
 487       }
 488     }
 489     __ bc_far_optimized(bo, bi, *L);
 490     __ bind(done);
 491   }
 492 }
 493 
 494 
 495 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 496   Bytecodes::Code code = op->bytecode();
 497   LIR_Opr src = op->in_opr(),
 498           dst = op->result_opr();
 499 
 500   switch(code) {
 501     case Bytecodes::_i2l: {
 502       __ extsw(dst->as_register_lo(), src->as_register());
 503       break;
 504     }
 505     case Bytecodes::_l2i: {
 506       __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage
 507       break;
 508     }
 509     case Bytecodes::_i2b: {
 510       __ extsb(dst->as_register(), src->as_register());
 511       break;
 512     }
 513     case Bytecodes::_i2c: {
 514       __ clrldi(dst->as_register(), src->as_register(), 64-16);
 515       break;
 516     }
 517     case Bytecodes::_i2s: {
 518       __ extsh(dst->as_register(), src->as_register());
 519       break;
 520     }
 521     case Bytecodes::_i2d:
 522     case Bytecodes::_l2d: {
 523       bool src_in_memory = !VM_Version::has_mtfprd();
 524       FloatRegister rdst = dst->as_double_reg();
 525       FloatRegister rsrc;
 526       if (src_in_memory) {
 527         rsrc = src->as_double_reg(); // via mem
 528       } else {
 529         // move src to dst register
 530         if (code == Bytecodes::_i2d) {
 531           __ mtfprwa(rdst, src->as_register());
 532         } else {
 533           __ mtfprd(rdst, src->as_register_lo());
 534         }
 535         rsrc = rdst;
 536       }
 537       __ fcfid(rdst, rsrc);
 538       break;
 539     }
 540     case Bytecodes::_i2f:
 541     case Bytecodes::_l2f: {
 542       bool src_in_memory = !VM_Version::has_mtfprd();
 543       FloatRegister rdst = dst->as_float_reg();
 544       FloatRegister rsrc;
 545       if (src_in_memory) {
 546         rsrc = src->as_double_reg(); // via mem
 547       } else {
 548         // move src to dst register
 549         if (code == Bytecodes::_i2f) {
 550           __ mtfprwa(rdst, src->as_register());
 551         } else {
 552           __ mtfprd(rdst, src->as_register_lo());
 553         }
 554         rsrc = rdst;
 555       }
 556       if (VM_Version::has_fcfids()) {
 557         __ fcfids(rdst, rsrc);
 558       } else {
 559         assert(code == Bytecodes::_i2f, "fcfid+frsp needs fixup code to avoid rounding incompatibility");
 560         __ fcfid(rdst, rsrc);
 561         __ frsp(rdst, rdst);
 562       }
 563       break;
 564     }
 565     case Bytecodes::_f2d: {
 566       __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg());
 567       break;
 568     }
 569     case Bytecodes::_d2f: {
 570       __ frsp(dst->as_float_reg(), src->as_double_reg());
 571       break;
 572     }
 573     case Bytecodes::_d2i:
 574     case Bytecodes::_f2i: {
 575       bool dst_in_memory = !VM_Version::has_mtfprd();
 576       FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg();
 577       Address       addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL;
 578       Label L;
 579       // Result must be 0 if value is NaN; test by comparing value to itself.
 580       __ fcmpu(CCR0, rsrc, rsrc);
 581       if (dst_in_memory) {
 582         __ li(R0, 0); // 0 in case of NAN
 583         __ std(R0, addr.disp(), addr.base());
 584       } else {
 585         __ li(dst->as_register(), 0);
 586       }
 587       __ bso(CCR0, L);
 588       __ fctiwz(rsrc, rsrc); // USE_KILL
 589       if (dst_in_memory) {
 590         __ stfd(rsrc, addr.disp(), addr.base());
 591       } else {
 592         __ mffprd(dst->as_register(), rsrc);
 593       }
 594       __ bind(L);
 595       break;
 596     }
 597     case Bytecodes::_d2l:
 598     case Bytecodes::_f2l: {
 599       bool dst_in_memory = !VM_Version::has_mtfprd();
 600       FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg();
 601       Address       addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : NULL;
 602       Label L;
 603       // Result must be 0 if value is NaN; test by comparing value to itself.
 604       __ fcmpu(CCR0, rsrc, rsrc);
 605       if (dst_in_memory) {
 606         __ li(R0, 0); // 0 in case of NAN
 607         __ std(R0, addr.disp(), addr.base());
 608       } else {
 609         __ li(dst->as_register_lo(), 0);
 610       }
 611       __ bso(CCR0, L);
 612       __ fctidz(rsrc, rsrc); // USE_KILL
 613       if (dst_in_memory) {
 614         __ stfd(rsrc, addr.disp(), addr.base());
 615       } else {
 616         __ mffprd(dst->as_register_lo(), rsrc);
 617       }
 618       __ bind(L);
 619       break;
 620     }
 621 
 622     default: ShouldNotReachHere();
 623   }
 624 }
 625 
 626 
 627 void LIR_Assembler::align_call(LIR_Code) {
 628   // do nothing since all instructions are word aligned on ppc
 629 }
 630 
 631 
 632 bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) {
 633   int start_offset = __ offset();
 634   // Put the entry point as a constant into the constant pool.
 635   const address entry_point_toc_addr   = __ address_constant(target, RelocationHolder::none);
 636   if (entry_point_toc_addr == NULL) {
 637     bailout("const section overflow");
 638     return false;
 639   }
 640   const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
 641 
 642   // Emit the trampoline stub which will be related to the branch-and-link below.
 643   address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc);
 644   if (!stub) {
 645     bailout("no space for trampoline stub");
 646     return false;
 647   }
 648   return true;
 649 }
 650 
 651 
 652 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 653   assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype");
 654 
 655   bool success = emit_trampoline_stub_for_call(op->addr());
 656   if (!success) { return; }
 657 
 658   __ relocate(rtype);
 659   // Note: At this point we do not have the address of the trampoline
 660   // stub, and the entry point might be too far away for bl, so __ pc()
 661   // serves as dummy and the bl will be patched later.
 662   __ code()->set_insts_mark();
 663   __ bl(__ pc());
 664   add_call_info(code_offset(), op->info());
 665 }
 666 
 667 
 668 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 669   __ calculate_address_from_global_toc(R2_TOC, __ method_toc());
 670 
 671   // Virtual call relocation will point to ic load.
 672   address virtual_call_meta_addr = __ pc();
 673   // Load a clear inline cache.
 674   AddressLiteral empty_ic((address) Universe::non_oop_word());
 675   bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC);
 676   if (!success) {
 677     bailout("const section overflow");
 678     return;
 679   }
 680   // Call to fixup routine. Fixup routine uses ScopeDesc info
 681   // to determine who we intended to call.
 682   __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr));
 683 
 684   success = emit_trampoline_stub_for_call(op->addr(), R2_TOC);
 685   if (!success) { return; }
 686 
 687   // Note: At this point we do not have the address of the trampoline
 688   // stub, and the entry point might be too far away for bl, so __ pc()
 689   // serves as dummy and the bl will be patched later.
 690   __ bl(__ pc());
 691   add_call_info(code_offset(), op->info());
 692 }
 693 
 694 
 695 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 696   ShouldNotReachHere(); // ic_call is used instead.
 697 }
 698 
 699 
 700 void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) {
 701   ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info);
 702   __ null_check(addr, stub->entry());
 703   append_code_stub(stub);
 704 }
 705 
 706 
 707 // Attention: caller must encode oop if needed
 708 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 709   int store_offset;
 710   if (!Assembler::is_simm16(offset)) {
 711     // For offsets larger than a simm16 we setup the offset.
 712     assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case");
 713     __ load_const_optimized(R0, offset);
 714     store_offset = store(from_reg, base, R0, type, wide);
 715   } else {
 716     store_offset = code_offset();
 717     switch (type) {
 718       case T_BOOLEAN: // fall through
 719       case T_BYTE  : __ stb(from_reg->as_register(), offset, base); break;
 720       case T_CHAR  :
 721       case T_SHORT : __ sth(from_reg->as_register(), offset, base); break;
 722       case T_INT   : __ stw(from_reg->as_register(), offset, base); break;
 723       case T_LONG  : __ std(from_reg->as_register_lo(), offset, base); break;
 724       case T_ADDRESS:
 725       case T_METADATA: __ std(from_reg->as_register(), offset, base); break;
 726       case T_ARRAY : // fall through
 727       case T_OBJECT:
 728         {
 729           if (UseCompressedOops && !wide) {
 730             // Encoding done in caller
 731             __ stw(from_reg->as_register(), offset, base);
 732           } else {
 733             __ std(from_reg->as_register(), offset, base);
 734           }
 735           __ verify_oop(from_reg->as_register());
 736           break;
 737         }
 738       case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break;
 739       case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break;
 740       default      : ShouldNotReachHere();
 741     }
 742   }
 743   return store_offset;
 744 }
 745 
 746 
 747 // Attention: caller must encode oop if needed
 748 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 749   int store_offset = code_offset();
 750   switch (type) {
 751     case T_BOOLEAN: // fall through
 752     case T_BYTE  : __ stbx(from_reg->as_register(), base, disp); break;
 753     case T_CHAR  :
 754     case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break;
 755     case T_INT   : __ stwx(from_reg->as_register(), base, disp); break;
 756     case T_LONG  :
 757 #ifdef _LP64
 758       __ stdx(from_reg->as_register_lo(), base, disp);
 759 #else
 760       Unimplemented();
 761 #endif
 762       break;
 763     case T_ADDRESS:
 764       __ stdx(from_reg->as_register(), base, disp);
 765       break;
 766     case T_ARRAY : // fall through
 767     case T_OBJECT:
 768       {
 769         if (UseCompressedOops && !wide) {
 770           // Encoding done in caller.
 771           __ stwx(from_reg->as_register(), base, disp);
 772         } else {
 773           __ stdx(from_reg->as_register(), base, disp);
 774         }
 775         __ verify_oop(from_reg->as_register()); // kills R0
 776         break;
 777       }
 778     case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break;
 779     case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break;
 780     default      : ShouldNotReachHere();
 781   }
 782   return store_offset;
 783 }
 784 
 785 
 786 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 787   int load_offset;
 788   if (!Assembler::is_simm16(offset)) {
 789     // For offsets larger than a simm16 we setup the offset.
 790     __ load_const_optimized(R0, offset);
 791     load_offset = load(base, R0, to_reg, type, wide);
 792   } else {
 793     load_offset = code_offset();
 794     switch(type) {
 795       case T_BOOLEAN: // fall through
 796       case T_BYTE  :   __ lbz(to_reg->as_register(), offset, base);
 797                        __ extsb(to_reg->as_register(), to_reg->as_register()); break;
 798       case T_CHAR  :   __ lhz(to_reg->as_register(), offset, base); break;
 799       case T_SHORT :   __ lha(to_reg->as_register(), offset, base); break;
 800       case T_INT   :   __ lwa(to_reg->as_register(), offset, base); break;
 801       case T_LONG  :   __ ld(to_reg->as_register_lo(), offset, base); break;
 802       case T_METADATA: __ ld(to_reg->as_register(), offset, base); break;
 803       case T_ADDRESS:
 804         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
 805           __ lwz(to_reg->as_register(), offset, base);
 806           __ decode_klass_not_null(to_reg->as_register());
 807         } else {
 808           __ ld(to_reg->as_register(), offset, base);
 809         }
 810         break;
 811       case T_ARRAY : // fall through
 812       case T_OBJECT:
 813         {
 814           if (UseCompressedOops && !wide) {
 815             __ lwz(to_reg->as_register(), offset, base);
 816             __ decode_heap_oop(to_reg->as_register());
 817           } else {
 818             __ ld(to_reg->as_register(), offset, base);
 819           }
 820           __ verify_oop(to_reg->as_register());
 821           break;
 822         }
 823       case T_FLOAT:  __ lfs(to_reg->as_float_reg(), offset, base); break;
 824       case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break;
 825       default      : ShouldNotReachHere();
 826     }
 827   }
 828   return load_offset;
 829 }
 830 
 831 
 832 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 833   int load_offset = code_offset();
 834   switch(type) {
 835     case T_BOOLEAN: // fall through
 836     case T_BYTE  :  __ lbzx(to_reg->as_register(), base, disp);
 837                     __ extsb(to_reg->as_register(), to_reg->as_register()); break;
 838     case T_CHAR  :  __ lhzx(to_reg->as_register(), base, disp); break;
 839     case T_SHORT :  __ lhax(to_reg->as_register(), base, disp); break;
 840     case T_INT   :  __ lwax(to_reg->as_register(), base, disp); break;
 841     case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break;
 842     case T_ARRAY : // fall through
 843     case T_OBJECT:
 844       {
 845         if (UseCompressedOops && !wide) {
 846           __ lwzx(to_reg->as_register(), base, disp);
 847           __ decode_heap_oop(to_reg->as_register());
 848         } else {
 849           __ ldx(to_reg->as_register(), base, disp);
 850         }
 851         __ verify_oop(to_reg->as_register());
 852         break;
 853       }
 854     case T_FLOAT:  __ lfsx(to_reg->as_float_reg() , base, disp); break;
 855     case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break;
 856     case T_LONG  :
 857 #ifdef _LP64
 858       __ ldx(to_reg->as_register_lo(), base, disp);
 859 #else
 860       Unimplemented();
 861 #endif
 862       break;
 863     default      : ShouldNotReachHere();
 864   }
 865   return load_offset;
 866 }
 867 
 868 
 869 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 870   LIR_Const* c = src->as_constant_ptr();
 871   Register src_reg = R0;
 872   switch (c->type()) {
 873     case T_INT:
 874     case T_FLOAT: {
 875       int value = c->as_jint_bits();
 876       __ load_const_optimized(src_reg, value);
 877       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 878       __ stw(src_reg, addr.disp(), addr.base());
 879       break;
 880     }
 881     case T_ADDRESS: {
 882       int value = c->as_jint_bits();
 883       __ load_const_optimized(src_reg, value);
 884       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 885       __ std(src_reg, addr.disp(), addr.base());
 886       break;
 887     }
 888     case T_OBJECT: {
 889       jobject2reg(c->as_jobject(), src_reg);
 890       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 891       __ std(src_reg, addr.disp(), addr.base());
 892       break;
 893     }
 894     case T_LONG:
 895     case T_DOUBLE: {
 896       int value = c->as_jlong_bits();
 897       __ load_const_optimized(src_reg, value);
 898       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
 899       __ std(src_reg, addr.disp(), addr.base());
 900       break;
 901     }
 902     default:
 903       Unimplemented();
 904   }
 905 }
 906 
 907 
 908 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 909   LIR_Const* c = src->as_constant_ptr();
 910   LIR_Address* addr = dest->as_address_ptr();
 911   Register base = addr->base()->as_pointer_register();
 912   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 913   int offset = -1;
 914   // Null check for large offsets in LIRGenerator::do_StoreField.
 915   bool needs_explicit_null_check = !ImplicitNullChecks;
 916 
 917   if (info != NULL && needs_explicit_null_check) {
 918     explicit_null_check(base, info);
 919   }
 920 
 921   switch (c->type()) {
 922     case T_FLOAT: type = T_INT;
 923     case T_INT:
 924     case T_ADDRESS: {
 925       tmp = FrameMap::R0_opr;
 926       __ load_const_optimized(tmp->as_register(), c->as_jint_bits());
 927       break;
 928     }
 929     case T_DOUBLE: type = T_LONG;
 930     case T_LONG: {
 931       tmp = FrameMap::R0_long_opr;
 932       __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits());
 933       break;
 934     }
 935     case T_OBJECT: {
 936       tmp = FrameMap::R0_opr;
 937       if (UseCompressedOops && !wide && c->as_jobject() != NULL) {
 938         AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject());
 939         __ lis(R0, oop_addr.value() >> 16); // Don't care about sign extend (will use stw).
 940         __ relocate(oop_addr.rspec(), /*compressed format*/ 1);
 941         __ ori(R0, R0, oop_addr.value() & 0xffff);
 942       } else {
 943         jobject2reg(c->as_jobject(), R0);
 944       }
 945       break;
 946     }
 947     default:
 948       Unimplemented();
 949   }
 950 
 951   // Handle either reg+reg or reg+disp address.
 952   if (addr->index()->is_valid()) {
 953     assert(addr->disp() == 0, "must be zero");
 954     offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
 955   } else {
 956     assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses");
 957     offset = store(tmp, base, addr->disp(), type, wide, false);
 958   }
 959 
 960   if (info != NULL) {
 961     assert(offset != -1, "offset should've been set");
 962     if (!needs_explicit_null_check) {
 963       add_debug_info_for_null_check(offset, info);
 964     }
 965   }
 966 }
 967 
 968 
 969 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 970   LIR_Const* c = src->as_constant_ptr();
 971   LIR_Opr to_reg = dest;
 972 
 973   switch (c->type()) {
 974     case T_INT: {
 975       assert(patch_code == lir_patch_none, "no patching handled here");
 976       __ load_const_optimized(dest->as_register(), c->as_jint(), R0);
 977       break;
 978     }
 979     case T_ADDRESS: {
 980       assert(patch_code == lir_patch_none, "no patching handled here");
 981       __ load_const_optimized(dest->as_register(), c->as_jint(), R0);  // Yes, as_jint ...
 982       break;
 983     }
 984     case T_LONG: {
 985       assert(patch_code == lir_patch_none, "no patching handled here");
 986       __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0);
 987       break;
 988     }
 989 
 990     case T_OBJECT: {
 991       if (patch_code == lir_patch_none) {
 992         jobject2reg(c->as_jobject(), to_reg->as_register());
 993       } else {
 994         jobject2reg_with_patching(to_reg->as_register(), info);
 995       }
 996       break;
 997     }
 998 
 999     case T_METADATA:
1000       {
1001         if (patch_code == lir_patch_none) {
1002           metadata2reg(c->as_metadata(), to_reg->as_register());
1003         } else {
1004           klass2reg_with_patching(to_reg->as_register(), info);
1005         }
1006       }
1007       break;
1008 
1009     case T_FLOAT:
1010       {
1011         if (to_reg->is_single_fpu()) {
1012           address const_addr = __ float_constant(c->as_jfloat());
1013           if (const_addr == NULL) {
1014             bailout("const section overflow");
1015             break;
1016           }
1017           RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1018           __ relocate(rspec);
1019           __ load_const(R0, const_addr);
1020           __ lfsx(to_reg->as_float_reg(), R0);
1021         } else {
1022           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1023           __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0);
1024         }
1025       }
1026       break;
1027 
1028     case T_DOUBLE:
1029       {
1030         if (to_reg->is_double_fpu()) {
1031           address const_addr = __ double_constant(c->as_jdouble());
1032           if (const_addr == NULL) {
1033             bailout("const section overflow");
1034             break;
1035           }
1036           RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1037           __ relocate(rspec);
1038           __ load_const(R0, const_addr);
1039           __ lfdx(to_reg->as_double_reg(), R0);
1040         } else {
1041           assert(to_reg->is_double_cpu(), "Must be a long register.");
1042           __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0);
1043         }
1044       }
1045       break;
1046 
1047     default:
1048       ShouldNotReachHere();
1049   }
1050 }
1051 
1052 
1053 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1054   Unimplemented(); return Address();
1055 }
1056 
1057 
1058 inline RegisterOrConstant index_or_disp(LIR_Address* addr) {
1059   if (addr->index()->is_illegal()) {
1060     return (RegisterOrConstant)(addr->disp());
1061   } else {
1062     return (RegisterOrConstant)(addr->index()->as_pointer_register());
1063   }
1064 }
1065 
1066 
1067 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1068   const Register tmp = R0;
1069   switch (type) {
1070     case T_INT:
1071     case T_FLOAT: {
1072       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1073       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1074       __ lwz(tmp, from.disp(), from.base());
1075       __ stw(tmp, to.disp(), to.base());
1076       break;
1077     }
1078     case T_ADDRESS:
1079     case T_OBJECT: {
1080       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1081       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1082       __ ld(tmp, from.disp(), from.base());
1083       __ std(tmp, to.disp(), to.base());
1084       break;
1085     }
1086     case T_LONG:
1087     case T_DOUBLE: {
1088       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1089       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1090       __ ld(tmp, from.disp(), from.base());
1091       __ std(tmp, to.disp(), to.base());
1092       break;
1093     }
1094 
1095     default:
1096       ShouldNotReachHere();
1097   }
1098 }
1099 
1100 
1101 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1102   Unimplemented(); return Address();
1103 }
1104 
1105 
1106 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1107   Unimplemented(); return Address();
1108 }
1109 
1110 
1111 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1112                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1113 
1114   assert(type != T_METADATA, "load of metadata ptr not supported");
1115   LIR_Address* addr = src_opr->as_address_ptr();
1116   LIR_Opr to_reg = dest;
1117 
1118   Register src = addr->base()->as_pointer_register();
1119   Register disp_reg = noreg;
1120   int disp_value = addr->disp();
1121   bool needs_patching = (patch_code != lir_patch_none);
1122   // null check for large offsets in LIRGenerator::do_LoadField
1123   bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks;
1124 
1125   if (info != NULL && needs_explicit_null_check) {
1126     explicit_null_check(src, info);
1127   }
1128 
1129   if (addr->base()->type() == T_OBJECT) {
1130     __ verify_oop(src);
1131   }
1132 
1133   PatchingStub* patch = NULL;
1134   if (needs_patching) {
1135     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1136     assert(!to_reg->is_double_cpu() ||
1137            patch_code == lir_patch_none ||
1138            patch_code == lir_patch_normal, "patching doesn't match register");
1139   }
1140 
1141   if (addr->index()->is_illegal()) {
1142     if (!Assembler::is_simm16(disp_value)) {
1143       if (needs_patching) {
1144         __ load_const32(R0, 0); // patchable int
1145       } else {
1146         __ load_const_optimized(R0, disp_value);
1147       }
1148       disp_reg = R0;
1149     }
1150   } else {
1151     disp_reg = addr->index()->as_pointer_register();
1152     assert(disp_value == 0, "can't handle 3 operand addresses");
1153   }
1154 
1155   // Remember the offset of the load. The patching_epilog must be done
1156   // before the call to add_debug_info, otherwise the PcDescs don't get
1157   // entered in increasing order.
1158   int offset;
1159 
1160   if (disp_reg == noreg) {
1161     assert(Assembler::is_simm16(disp_value), "should have set this up");
1162     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1163   } else {
1164     assert(!unaligned, "unexpected");
1165     offset = load(src, disp_reg, to_reg, type, wide);
1166   }
1167 
1168   if (patch != NULL) {
1169     patching_epilog(patch, patch_code, src, info);
1170   }
1171   if (info != NULL && !needs_explicit_null_check) {
1172     add_debug_info_for_null_check(offset, info);
1173   }
1174 }
1175 
1176 
1177 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1178   Address addr;
1179   if (src->is_single_word()) {
1180     addr = frame_map()->address_for_slot(src->single_stack_ix());
1181   } else if (src->is_double_word())  {
1182     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1183   }
1184 
1185   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1186   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1187 }
1188 
1189 
1190 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1191   Address addr;
1192   if (dest->is_single_word()) {
1193     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1194   } else if (dest->is_double_word())  {
1195     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1196   }
1197   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1198   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1199 }
1200 
1201 
1202 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1203   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1204     if (from_reg->is_double_fpu()) {
1205       // double to double moves
1206       assert(to_reg->is_double_fpu(), "should match");
1207       __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg());
1208     } else {
1209       // float to float moves
1210       assert(to_reg->is_single_fpu(), "should match");
1211       __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg());
1212     }
1213   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1214     if (from_reg->is_double_cpu()) {
1215       __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register());
1216     } else if (to_reg->is_double_cpu()) {
1217       // int to int moves
1218       __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register());
1219     } else {
1220       // int to int moves
1221       __ mr_if_needed(to_reg->as_register(), from_reg->as_register());
1222     }
1223   } else {
1224     ShouldNotReachHere();
1225   }
1226   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1227     __ verify_oop(to_reg->as_register());
1228   }
1229 }
1230 
1231 
1232 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1233                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1234                             bool wide, bool unaligned) {
1235   assert(type != T_METADATA, "store of metadata ptr not supported");
1236   LIR_Address* addr = dest->as_address_ptr();
1237 
1238   Register src = addr->base()->as_pointer_register();
1239   Register disp_reg = noreg;
1240   int disp_value = addr->disp();
1241   bool needs_patching = (patch_code != lir_patch_none);
1242   bool compress_oop = (type == T_ARRAY || type == T_OBJECT) && UseCompressedOops && !wide &&
1243                       Universe::narrow_oop_mode() != Universe::UnscaledNarrowOop;
1244   bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value);
1245   bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29.
1246   // Null check for large offsets in LIRGenerator::do_StoreField.
1247   bool needs_explicit_null_check = !ImplicitNullChecks || use_R29;
1248 
1249   if (info != NULL && needs_explicit_null_check) {
1250     explicit_null_check(src, info);
1251   }
1252 
1253   if (addr->base()->is_oop_register()) {
1254     __ verify_oop(src);
1255   }
1256 
1257   PatchingStub* patch = NULL;
1258   if (needs_patching) {
1259     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1260     assert(!from_reg->is_double_cpu() ||
1261            patch_code == lir_patch_none ||
1262            patch_code == lir_patch_normal, "patching doesn't match register");
1263   }
1264 
1265   if (addr->index()->is_illegal()) {
1266     if (load_disp) {
1267       disp_reg = use_R29 ? R29_TOC : R0;
1268       if (needs_patching) {
1269         __ load_const32(disp_reg, 0); // patchable int
1270       } else {
1271         __ load_const_optimized(disp_reg, disp_value);
1272       }
1273     }
1274   } else {
1275     disp_reg = addr->index()->as_pointer_register();
1276     assert(disp_value == 0, "can't handle 3 operand addresses");
1277   }
1278 
1279   // remember the offset of the store. The patching_epilog must be done
1280   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1281   // entered in increasing order.
1282   int offset;
1283 
1284   if (compress_oop) {
1285     Register co = __ encode_heap_oop(R0, from_reg->as_register());
1286     from_reg = FrameMap::as_opr(co);
1287   }
1288 
1289   if (disp_reg == noreg) {
1290     assert(Assembler::is_simm16(disp_value), "should have set this up");
1291     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1292   } else {
1293     assert(!unaligned, "unexpected");
1294     offset = store(from_reg, src, disp_reg, type, wide);
1295   }
1296 
1297   if (use_R29) {
1298     __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit
1299   }
1300 
1301   if (patch != NULL) {
1302     patching_epilog(patch, patch_code, src, info);
1303   }
1304 
1305   if (info != NULL && !needs_explicit_null_check) {
1306     add_debug_info_for_null_check(offset, info);
1307   }
1308 }
1309 
1310 
1311 void LIR_Assembler::return_op(LIR_Opr result) {
1312   const Register return_pc        = R31;  // Must survive C-call to enable_stack_reserved_zone().
1313   const Register polling_page     = R12;
1314 
1315   // Pop the stack before the safepoint code.
1316   int frame_size = initial_frame_size_in_bytes();
1317   if (Assembler::is_simm(frame_size, 16)) {
1318     __ addi(R1_SP, R1_SP, frame_size);
1319   } else {
1320     __ pop_frame();
1321   }
1322 
1323   if (SafepointMechanism::uses_thread_local_poll()) {
1324     __ ld(polling_page, in_bytes(Thread::polling_page_offset()), R16_thread);
1325   } else {
1326     __ load_const_optimized(polling_page, (long)(address) os::get_polling_page(), R0);
1327   }
1328 
1329   // Restore return pc relative to callers' sp.
1330   __ ld(return_pc, _abi(lr), R1_SP);
1331   // Move return pc to LR.
1332   __ mtlr(return_pc);
1333 
1334   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1335     __ reserved_stack_check(return_pc);
1336   }
1337 
1338   // We need to mark the code position where the load from the safepoint
1339   // polling page was emitted as relocInfo::poll_return_type here.
1340   __ relocate(relocInfo::poll_return_type);
1341   __ load_from_polling_page(polling_page);
1342 
1343   // Return.
1344   __ blr();
1345 }
1346 
1347 
1348 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1349   const Register poll_addr = tmp->as_register();
1350   if (SafepointMechanism::uses_thread_local_poll()) {
1351     __ ld(poll_addr, in_bytes(Thread::polling_page_offset()), R16_thread);
1352   } else {
1353     __ load_const_optimized(poll_addr, (intptr_t)os::get_polling_page(), R0);
1354   }
1355   if (info != NULL) {
1356     add_debug_info_for_branch(info);
1357   }
1358   int offset = __ offset();
1359   __ relocate(relocInfo::poll_type);
1360   __ load_from_polling_page(poll_addr);
1361 
1362   return offset;
1363 }
1364 
1365 
1366 void LIR_Assembler::emit_static_call_stub() {
1367   address call_pc = __ pc();
1368   address stub = __ start_a_stub(static_call_stub_size());
1369   if (stub == NULL) {
1370     bailout("static call stub overflow");
1371     return;
1372   }
1373 
1374   // For java_to_interp stubs we use R11_scratch1 as scratch register
1375   // and in call trampoline stubs we use R12_scratch2. This way we
1376   // can distinguish them (see is_NativeCallTrampolineStub_at()).
1377   const Register reg_scratch = R11_scratch1;
1378 
1379   // Create a static stub relocation which relates this stub
1380   // with the call instruction at insts_call_instruction_offset in the
1381   // instructions code-section.
1382   int start = __ offset();
1383   __ relocate(static_stub_Relocation::spec(call_pc));
1384 
1385   // Now, create the stub's code:
1386   // - load the TOC
1387   // - load the inline cache oop from the constant pool
1388   // - load the call target from the constant pool
1389   // - call
1390   __ calculate_address_from_global_toc(reg_scratch, __ method_toc());
1391   AddressLiteral ic = __ allocate_metadata_address((Metadata *)NULL);
1392   bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true);
1393 
1394   if (ReoptimizeCallSequences) {
1395     __ b64_patchable((address)-1, relocInfo::none);
1396   } else {
1397     AddressLiteral a((address)-1);
1398     success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true);
1399     __ mtctr(reg_scratch);
1400     __ bctr();
1401   }
1402   if (!success) {
1403     bailout("const section overflow");
1404     return;
1405   }
1406 
1407   assert(__ offset() - start <= static_call_stub_size(), "stub too big");
1408   __ end_a_stub();
1409 }
1410 
1411 
1412 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1413   bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual);
1414   if (opr1->is_single_fpu()) {
1415     __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg());
1416   } else if (opr1->is_double_fpu()) {
1417     __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg());
1418   } else if (opr1->is_single_cpu()) {
1419     if (opr2->is_constant()) {
1420       switch (opr2->as_constant_ptr()->type()) {
1421         case T_INT:
1422           {
1423             jint con = opr2->as_constant_ptr()->as_jint();
1424             if (unsigned_comp) {
1425               if (Assembler::is_uimm(con, 16)) {
1426                 __ cmplwi(BOOL_RESULT, opr1->as_register(), con);
1427               } else {
1428                 __ load_const_optimized(R0, con);
1429                 __ cmplw(BOOL_RESULT, opr1->as_register(), R0);
1430               }
1431             } else {
1432               if (Assembler::is_simm(con, 16)) {
1433                 __ cmpwi(BOOL_RESULT, opr1->as_register(), con);
1434               } else {
1435                 __ load_const_optimized(R0, con);
1436                 __ cmpw(BOOL_RESULT, opr1->as_register(), R0);
1437               }
1438             }
1439           }
1440           break;
1441 
1442         case T_OBJECT:
1443           // There are only equal/notequal comparisons on objects.
1444           {
1445             assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1446             jobject con = opr2->as_constant_ptr()->as_jobject();
1447             if (con == NULL) {
1448               __ cmpdi(BOOL_RESULT, opr1->as_register(), 0);
1449             } else {
1450               jobject2reg(con, R0);
1451               __ cmpd(BOOL_RESULT, opr1->as_register(), R0);
1452             }
1453           }
1454           break;
1455 
1456         default:
1457           ShouldNotReachHere();
1458           break;
1459       }
1460     } else {
1461       assert(opr1->type() != T_ADDRESS && opr2->type() != T_ADDRESS, "currently unsupported");
1462       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1463         // There are only equal/notequal comparisons on objects.
1464         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1465         __ cmpd(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1466       } else {
1467         if (unsigned_comp) {
1468           __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1469         } else {
1470           __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register());
1471         }
1472       }
1473     }
1474   } else if (opr1->is_double_cpu()) {
1475     if (opr2->is_constant()) {
1476       jlong con = opr2->as_constant_ptr()->as_jlong();
1477       if (unsigned_comp) {
1478         if (Assembler::is_uimm(con, 16)) {
1479           __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con);
1480         } else {
1481           __ load_const_optimized(R0, con);
1482           __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0);
1483         }
1484       } else {
1485         if (Assembler::is_simm(con, 16)) {
1486           __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con);
1487         } else {
1488           __ load_const_optimized(R0, con);
1489           __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0);
1490         }
1491       }
1492     } else if (opr2->is_register()) {
1493       if (unsigned_comp) {
1494         __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
1495       } else {
1496         __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo());
1497       }
1498     } else {
1499       ShouldNotReachHere();
1500     }
1501   } else {
1502     ShouldNotReachHere();
1503   }
1504 }
1505 
1506 
1507 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1508   const Register Rdst = dst->as_register();
1509   Label done;
1510   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1511     bool is_unordered_less = (code == lir_ucmp_fd2i);
1512     if (left->is_single_fpu()) {
1513       __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg());
1514     } else if (left->is_double_fpu()) {
1515       __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg());
1516     } else {
1517       ShouldNotReachHere();
1518     }
1519     __ li(Rdst, is_unordered_less ? -1 : 1);
1520     __ bso(CCR0, done);
1521   } else if (code == lir_cmp_l2i) {
1522     __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo());
1523   } else {
1524     ShouldNotReachHere();
1525   }
1526   __ mfcr(R0); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1527   __ srwi(Rdst, R0, 30);
1528   __ srawi(R0, R0, 31);
1529   __ orr(Rdst, R0, Rdst); // set result as follows: <: -1, =: 0, >: 1
1530   __ bind(done);
1531 }
1532 
1533 
1534 inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) {
1535   if (src->is_constant()) {
1536     lasm->const2reg(src, dst, lir_patch_none, NULL);
1537   } else if (src->is_register()) {
1538     lasm->reg2reg(src, dst);
1539   } else if (src->is_stack()) {
1540     lasm->stack2reg(src, dst, dst->type());
1541   } else {
1542     ShouldNotReachHere();
1543   }
1544 }
1545 
1546 
1547 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1548   if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) {
1549     load_to_reg(this, opr1, result); // Condition doesn't matter.
1550     return;
1551   }
1552 
1553   bool positive = false;
1554   Assembler::Condition cond = Assembler::equal;
1555   switch (condition) {
1556     case lir_cond_equal:        positive = true ; cond = Assembler::equal  ; break;
1557     case lir_cond_notEqual:     positive = false; cond = Assembler::equal  ; break;
1558     case lir_cond_less:         positive = true ; cond = Assembler::less   ; break;
1559     case lir_cond_belowEqual:
1560     case lir_cond_lessEqual:    positive = false; cond = Assembler::greater; break;
1561     case lir_cond_greater:      positive = true ; cond = Assembler::greater; break;
1562     case lir_cond_aboveEqual:
1563     case lir_cond_greaterEqual: positive = false; cond = Assembler::less   ; break;
1564     default:                    ShouldNotReachHere();
1565   }
1566 
1567   // Try to use isel on >=Power7.
1568   if (VM_Version::has_isel() && result->is_cpu_register()) {
1569     bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register();
1570     const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo();
1571 
1572     // We can use result_reg to load one operand if not already in register.
1573     Register first  = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg,
1574              second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg;
1575 
1576     if (first != second) {
1577       if (!o1_is_reg) {
1578         load_to_reg(this, opr1, result);
1579       }
1580 
1581       if (!o2_is_reg) {
1582         load_to_reg(this, opr2, result);
1583       }
1584 
1585       __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second);
1586       return;
1587     }
1588   } // isel
1589 
1590   load_to_reg(this, opr1, result);
1591 
1592   Label skip;
1593   int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1594   int bi = Assembler::bi0(BOOL_RESULT, cond);
1595   __ bc(bo, bi, skip);
1596 
1597   load_to_reg(this, opr2, result);
1598   __ bind(skip);
1599 }
1600 
1601 
1602 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1603                              CodeEmitInfo* info, bool pop_fpu_stack) {
1604   assert(info == NULL, "unused on this code path");
1605   assert(left->is_register(), "wrong items state");
1606   assert(dest->is_register(), "wrong items state");
1607 
1608   if (right->is_register()) {
1609     if (dest->is_float_kind()) {
1610 
1611       FloatRegister lreg, rreg, res;
1612       if (right->is_single_fpu()) {
1613         lreg = left->as_float_reg();
1614         rreg = right->as_float_reg();
1615         res  = dest->as_float_reg();
1616         switch (code) {
1617           case lir_add: __ fadds(res, lreg, rreg); break;
1618           case lir_sub: __ fsubs(res, lreg, rreg); break;
1619           case lir_mul: // fall through
1620           case lir_mul_strictfp: __ fmuls(res, lreg, rreg); break;
1621           case lir_div: // fall through
1622           case lir_div_strictfp: __ fdivs(res, lreg, rreg); break;
1623           default: ShouldNotReachHere();
1624         }
1625       } else {
1626         lreg = left->as_double_reg();
1627         rreg = right->as_double_reg();
1628         res  = dest->as_double_reg();
1629         switch (code) {
1630           case lir_add: __ fadd(res, lreg, rreg); break;
1631           case lir_sub: __ fsub(res, lreg, rreg); break;
1632           case lir_mul: // fall through
1633           case lir_mul_strictfp: __ fmul(res, lreg, rreg); break;
1634           case lir_div: // fall through
1635           case lir_div_strictfp: __ fdiv(res, lreg, rreg); break;
1636           default: ShouldNotReachHere();
1637         }
1638       }
1639 
1640     } else if (dest->is_double_cpu()) {
1641 
1642       Register dst_lo = dest->as_register_lo();
1643       Register op1_lo = left->as_pointer_register();
1644       Register op2_lo = right->as_pointer_register();
1645 
1646       switch (code) {
1647         case lir_add: __ add(dst_lo, op1_lo, op2_lo); break;
1648         case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break;
1649         case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break;
1650         default: ShouldNotReachHere();
1651       }
1652     } else {
1653       assert (right->is_single_cpu(), "Just Checking");
1654 
1655       Register lreg = left->as_register();
1656       Register res  = dest->as_register();
1657       Register rreg = right->as_register();
1658       switch (code) {
1659         case lir_add:  __ add  (res, lreg, rreg); break;
1660         case lir_sub:  __ sub  (res, lreg, rreg); break;
1661         case lir_mul:  __ mullw(res, lreg, rreg); break;
1662         default: ShouldNotReachHere();
1663       }
1664     }
1665   } else {
1666     assert (right->is_constant(), "must be constant");
1667 
1668     if (dest->is_single_cpu()) {
1669       Register lreg = left->as_register();
1670       Register res  = dest->as_register();
1671       int    simm16 = right->as_constant_ptr()->as_jint();
1672 
1673       switch (code) {
1674         case lir_sub:  assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int
1675                        simm16 = -simm16;
1676         case lir_add:  if (res == lreg && simm16 == 0) break;
1677                        __ addi(res, lreg, simm16); break;
1678         case lir_mul:  if (res == lreg && simm16 == 1) break;
1679                        __ mulli(res, lreg, simm16); break;
1680         default: ShouldNotReachHere();
1681       }
1682     } else {
1683       Register lreg = left->as_pointer_register();
1684       Register res  = dest->as_register_lo();
1685       long con = right->as_constant_ptr()->as_jlong();
1686       assert(Assembler::is_simm16(con), "must be simm16");
1687 
1688       switch (code) {
1689         case lir_sub:  assert(Assembler::is_simm16(-con), "cannot encode");  // see do_ArithmeticOp_Long
1690                        con = -con;
1691         case lir_add:  if (res == lreg && con == 0) break;
1692                        __ addi(res, lreg, (int)con); break;
1693         case lir_mul:  if (res == lreg && con == 1) break;
1694                        __ mulli(res, lreg, (int)con); break;
1695         default: ShouldNotReachHere();
1696       }
1697     }
1698   }
1699 }
1700 
1701 
1702 void LIR_Assembler::fpop() {
1703   Unimplemented();
1704   // do nothing
1705 }
1706 
1707 
1708 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1709   switch (code) {
1710     case lir_sqrt: {
1711       __ fsqrt(dest->as_double_reg(), value->as_double_reg());
1712       break;
1713     }
1714     case lir_abs: {
1715       __ fabs(dest->as_double_reg(), value->as_double_reg());
1716       break;
1717     }
1718     default: {
1719       ShouldNotReachHere();
1720       break;
1721     }
1722   }
1723 }
1724 
1725 
1726 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1727   if (right->is_constant()) { // see do_LogicOp
1728     long uimm;
1729     Register d, l;
1730     if (dest->is_single_cpu()) {
1731       uimm = right->as_constant_ptr()->as_jint();
1732       d = dest->as_register();
1733       l = left->as_register();
1734     } else {
1735       uimm = right->as_constant_ptr()->as_jlong();
1736       d = dest->as_register_lo();
1737       l = left->as_register_lo();
1738     }
1739     long uimms  = (unsigned long)uimm >> 16,
1740          uimmss = (unsigned long)uimm >> 32;
1741 
1742     switch (code) {
1743       case lir_logic_and:
1744         if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2_long(uimm)) {
1745           __ andi(d, l, uimm); // special cases
1746         } else if (uimms != 0) { __ andis_(d, l, uimms); }
1747         else { __ andi_(d, l, uimm); }
1748         break;
1749 
1750       case lir_logic_or:
1751         if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); }
1752         else { __ ori(d, l, uimm); }
1753         break;
1754 
1755       case lir_logic_xor:
1756         if (uimm == -1) { __ nand(d, l, l); } // special case
1757         else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); }
1758         else { __ xori(d, l, uimm); }
1759         break;
1760 
1761       default: ShouldNotReachHere();
1762     }
1763   } else {
1764     assert(right->is_register(), "right should be in register");
1765 
1766     if (dest->is_single_cpu()) {
1767       switch (code) {
1768         case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break;
1769         case lir_logic_or:  __ orr (dest->as_register(), left->as_register(), right->as_register()); break;
1770         case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break;
1771         default: ShouldNotReachHere();
1772       }
1773     } else {
1774       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1775                                                                         left->as_register_lo();
1776       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1777                                                                           right->as_register_lo();
1778 
1779       switch (code) {
1780         case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break;
1781         case lir_logic_or:  __ orr (dest->as_register_lo(), l, r); break;
1782         case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break;
1783         default: ShouldNotReachHere();
1784       }
1785     }
1786   }
1787 }
1788 
1789 
1790 int LIR_Assembler::shift_amount(BasicType t) {
1791   int elem_size = type2aelembytes(t);
1792   switch (elem_size) {
1793     case 1 : return 0;
1794     case 2 : return 1;
1795     case 4 : return 2;
1796     case 8 : return 3;
1797   }
1798   ShouldNotReachHere();
1799   return -1;
1800 }
1801 
1802 
1803 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1804   info->add_register_oop(exceptionOop);
1805 
1806   // Reuse the debug info from the safepoint poll for the throw op itself.
1807   address pc_for_athrow = __ pc();
1808   int pc_for_athrow_offset = __ offset();
1809   //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1810   //__ relocate(rspec);
1811   //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0);
1812   __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true);
1813   add_call_info(pc_for_athrow_offset, info); // for exception handler
1814 
1815   address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id
1816                                                                    : Runtime1::handle_exception_nofpu_id);
1817   //__ load_const_optimized(R0, stub);
1818   __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub));
1819   __ mtctr(R0);
1820   __ bctr();
1821 }
1822 
1823 
1824 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1825   // Note: Not used with EnableDebuggingOnDemand.
1826   assert(exceptionOop->as_register() == R3, "should match");
1827   __ b(_unwind_handler_entry);
1828 }
1829 
1830 
1831 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1832   Register src = op->src()->as_register();
1833   Register dst = op->dst()->as_register();
1834   Register src_pos = op->src_pos()->as_register();
1835   Register dst_pos = op->dst_pos()->as_register();
1836   Register length  = op->length()->as_register();
1837   Register tmp = op->tmp()->as_register();
1838   Register tmp2 = R0;
1839 
1840   int flags = op->flags();
1841   ciArrayKlass* default_type = op->expected_type();
1842   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1843   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1844 
1845   // Set up the arraycopy stub information.
1846   ArrayCopyStub* stub = op->stub();
1847   const int frame_resize = frame::abi_reg_args_size - sizeof(frame::jit_abi); // C calls need larger frame.
1848 
1849   // Always do stub if no type information is available. It's ok if
1850   // the known type isn't loaded since the code sanity checks
1851   // in debug mode and the type isn't required when we know the exact type
1852   // also check that the type is an array type.
1853   if (op->expected_type() == NULL) {
1854     assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() &&
1855            length->is_nonvolatile(), "must preserve");
1856     address copyfunc_addr = StubRoutines::generic_arraycopy();
1857     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
1858 
1859     // 3 parms are int. Convert to long.
1860     __ mr(R3_ARG1, src);
1861     __ extsw(R4_ARG2, src_pos);
1862     __ mr(R5_ARG3, dst);
1863     __ extsw(R6_ARG4, dst_pos);
1864     __ extsw(R7_ARG5, length);
1865 
1866 #ifndef PRODUCT
1867     if (PrintC1Statistics) {
1868       address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1869       int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
1870       __ lwz(R11_scratch1, simm16_offs, tmp);
1871       __ addi(R11_scratch1, R11_scratch1, 1);
1872       __ stw(R11_scratch1, simm16_offs, tmp);
1873     }
1874 #endif
1875     __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
1876 
1877     __ nand(tmp, R3_RET, R3_RET);
1878     __ subf(length, tmp, length);
1879     __ add(src_pos, tmp, src_pos);
1880     __ add(dst_pos, tmp, dst_pos);
1881 
1882     __ cmpwi(CCR0, R3_RET, 0);
1883     __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry());
1884     __ bind(*stub->continuation());
1885     return;
1886   }
1887 
1888   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1889   Label cont, slow, copyfunc;
1890 
1891   bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check |
1892                                         LIR_OpArrayCopy::dst_null_check |
1893                                         LIR_OpArrayCopy::src_pos_positive_check |
1894                                         LIR_OpArrayCopy::dst_pos_positive_check |
1895                                         LIR_OpArrayCopy::length_positive_check);
1896 
1897   // Use only one conditional branch for simple checks.
1898   if (simple_check_flag_set) {
1899     ConditionRegister combined_check = CCR1, tmp_check = CCR1;
1900 
1901     // Make sure src and dst are non-null.
1902     if (flags & LIR_OpArrayCopy::src_null_check) {
1903       __ cmpdi(combined_check, src, 0);
1904       tmp_check = CCR0;
1905     }
1906 
1907     if (flags & LIR_OpArrayCopy::dst_null_check) {
1908       __ cmpdi(tmp_check, dst, 0);
1909       if (tmp_check != combined_check) {
1910         __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal);
1911       }
1912       tmp_check = CCR0;
1913     }
1914 
1915     // Clear combined_check.eq if not already used.
1916     if (tmp_check == combined_check) {
1917       __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal);
1918       tmp_check = CCR0;
1919     }
1920 
1921     if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1922       // Test src_pos register.
1923       __ cmpwi(tmp_check, src_pos, 0);
1924       __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1925     }
1926 
1927     if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1928       // Test dst_pos register.
1929       __ cmpwi(tmp_check, dst_pos, 0);
1930       __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1931     }
1932 
1933     if (flags & LIR_OpArrayCopy::length_positive_check) {
1934       // Make sure length isn't negative.
1935       __ cmpwi(tmp_check, length, 0);
1936       __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less);
1937     }
1938 
1939     __ beq(combined_check, slow);
1940   }
1941 
1942   // If the compiler was not able to prove that exact type of the source or the destination
1943   // of the arraycopy is an array type, check at runtime if the source or the destination is
1944   // an instance type.
1945   if (flags & LIR_OpArrayCopy::type_check) {
1946     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
1947       __ load_klass(tmp, dst);
1948       __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
1949       __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
1950       __ bge(CCR0, slow);
1951     }
1952 
1953     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
1954       __ load_klass(tmp, src);
1955       __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
1956       __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value);
1957       __ bge(CCR0, slow);
1958     }
1959   }
1960 
1961   // Higher 32bits must be null.
1962   __ extsw(length, length);
1963 
1964   __ extsw(src_pos, src_pos);
1965   if (flags & LIR_OpArrayCopy::src_range_check) {
1966     __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src);
1967     __ add(tmp, length, src_pos);
1968     __ cmpld(CCR0, tmp2, tmp);
1969     __ ble(CCR0, slow);
1970   }
1971 
1972   __ extsw(dst_pos, dst_pos);
1973   if (flags & LIR_OpArrayCopy::dst_range_check) {
1974     __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst);
1975     __ add(tmp, length, dst_pos);
1976     __ cmpld(CCR0, tmp2, tmp);
1977     __ ble(CCR0, slow);
1978   }
1979 
1980   int shift = shift_amount(basic_type);
1981 
1982   if (!(flags & LIR_OpArrayCopy::type_check)) {
1983     __ b(cont);
1984   } else {
1985     // We don't know the array types are compatible.
1986     if (basic_type != T_OBJECT) {
1987       // Simple test for basic type arrays.
1988       if (UseCompressedClassPointers) {
1989         // We don't need decode because we just need to compare.
1990         __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src);
1991         __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
1992         __ cmpw(CCR0, tmp, tmp2);
1993       } else {
1994         __ ld(tmp, oopDesc::klass_offset_in_bytes(), src);
1995         __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
1996         __ cmpd(CCR0, tmp, tmp2);
1997       }
1998       __ beq(CCR0, cont);
1999     } else {
2000       // For object arrays, if src is a sub class of dst then we can
2001       // safely do the copy.
2002       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2003 
2004       const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf
2005       assert_different_registers(tmp, tmp2, sub_klass, super_klass);
2006 
2007       __ load_klass(sub_klass, src);
2008       __ load_klass(super_klass, dst);
2009 
2010       __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2,
2011                                        &cont, copyfunc_addr != NULL ? &copyfunc : &slow, NULL);
2012 
2013       address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
2014       //__ load_const_optimized(tmp, slow_stc, tmp2);
2015       __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false);
2016       __ mtctr(tmp);
2017       __ bctrl(); // sets CR0
2018       __ beq(CCR0, cont);
2019 
2020       if (copyfunc_addr != NULL) { // Use stub if available.
2021         __ bind(copyfunc);
2022         // Src is not a sub class of dst so we have to do a
2023         // per-element check.
2024         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2025         if ((flags & mask) != mask) {
2026           assert(flags & mask, "one of the two should be known to be an object array");
2027 
2028           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2029             __ load_klass(tmp, src);
2030           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2031             __ load_klass(tmp, dst);
2032           }
2033 
2034           __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp);
2035 
2036           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2037           __ load_const_optimized(tmp, objArray_lh);
2038           __ cmpw(CCR0, tmp, tmp2);
2039           __ bne(CCR0, slow);
2040         }
2041 
2042         Register src_ptr = R3_ARG1;
2043         Register dst_ptr = R4_ARG2;
2044         Register len     = R5_ARG3;
2045         Register chk_off = R6_ARG4;
2046         Register super_k = R7_ARG5;
2047 
2048         __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2049         __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2050         if (shift == 0) {
2051           __ add(src_ptr, src_pos, src_ptr);
2052           __ add(dst_ptr, dst_pos, dst_ptr);
2053         } else {
2054           __ sldi(tmp, src_pos, shift);
2055           __ sldi(tmp2, dst_pos, shift);
2056           __ add(src_ptr, tmp, src_ptr);
2057           __ add(dst_ptr, tmp2, dst_ptr);
2058         }
2059 
2060         __ load_klass(tmp, dst);
2061         __ mr(len, length);
2062 
2063         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2064         __ ld(super_k, ek_offset, tmp);
2065 
2066         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2067         __ lwz(chk_off, sco_offset, super_k);
2068 
2069         __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0);
2070 
2071 #ifndef PRODUCT
2072         if (PrintC1Statistics) {
2073           Label failed;
2074           __ cmpwi(CCR0, R3_RET, 0);
2075           __ bne(CCR0, failed);
2076           address counter = (address)&Runtime1::_arraycopy_checkcast_cnt;
2077           int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2078           __ lwz(R11_scratch1, simm16_offs, tmp);
2079           __ addi(R11_scratch1, R11_scratch1, 1);
2080           __ stw(R11_scratch1, simm16_offs, tmp);
2081           __ bind(failed);
2082         }
2083 #endif
2084 
2085         __ nand(tmp, R3_RET, R3_RET);
2086         __ cmpwi(CCR0, R3_RET, 0);
2087         __ beq(CCR0, *stub->continuation());
2088 
2089 #ifndef PRODUCT
2090         if (PrintC1Statistics) {
2091           address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt;
2092           int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2093           __ lwz(R11_scratch1, simm16_offs, tmp);
2094           __ addi(R11_scratch1, R11_scratch1, 1);
2095           __ stw(R11_scratch1, simm16_offs, tmp);
2096         }
2097 #endif
2098 
2099         __ subf(length, tmp, length);
2100         __ add(src_pos, tmp, src_pos);
2101         __ add(dst_pos, tmp, dst_pos);
2102       }
2103     }
2104   }
2105   __ bind(slow);
2106   __ b(*stub->entry());
2107   __ bind(cont);
2108 
2109 #ifdef ASSERT
2110   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2111     // Sanity check the known type with the incoming class. For the
2112     // primitive case the types must match exactly with src.klass and
2113     // dst.klass each exactly matching the default type. For the
2114     // object array case, if no type check is needed then either the
2115     // dst type is exactly the expected type and the src type is a
2116     // subtype which we can't check or src is the same array as dst
2117     // but not necessarily exactly of type default_type.
2118     Label known_ok, halt;
2119     metadata2reg(op->expected_type()->constant_encoding(), tmp);
2120     if (UseCompressedClassPointers) {
2121       // Tmp holds the default type. It currently comes uncompressed after the
2122       // load of a constant, so encode it.
2123       __ encode_klass_not_null(tmp);
2124       // Load the raw value of the dst klass, since we will be comparing
2125       // uncompressed values directly.
2126       __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst);
2127       __ cmpw(CCR0, tmp, tmp2);
2128       if (basic_type != T_OBJECT) {
2129         __ bne(CCR0, halt);
2130         // Load the raw value of the src klass.
2131         __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src);
2132         __ cmpw(CCR0, tmp, tmp2);
2133         __ beq(CCR0, known_ok);
2134       } else {
2135         __ beq(CCR0, known_ok);
2136         __ cmpw(CCR0, src, dst);
2137         __ beq(CCR0, known_ok);
2138       }
2139     } else {
2140       __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst);
2141       __ cmpd(CCR0, tmp, tmp2);
2142       if (basic_type != T_OBJECT) {
2143         __ bne(CCR0, halt);
2144         // Load the raw value of the src klass.
2145         __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src);
2146         __ cmpd(CCR0, tmp, tmp2);
2147         __ beq(CCR0, known_ok);
2148       } else {
2149         __ beq(CCR0, known_ok);
2150         __ cmpd(CCR0, src, dst);
2151         __ beq(CCR0, known_ok);
2152       }
2153     }
2154     __ bind(halt);
2155     __ stop("incorrect type information in arraycopy");
2156     __ bind(known_ok);
2157   }
2158 #endif
2159 
2160 #ifndef PRODUCT
2161   if (PrintC1Statistics) {
2162     address counter = Runtime1::arraycopy_count_address(basic_type);
2163     int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true);
2164     __ lwz(R11_scratch1, simm16_offs, tmp);
2165     __ addi(R11_scratch1, R11_scratch1, 1);
2166     __ stw(R11_scratch1, simm16_offs, tmp);
2167   }
2168 #endif
2169 
2170   Register src_ptr = R3_ARG1;
2171   Register dst_ptr = R4_ARG2;
2172   Register len     = R5_ARG3;
2173 
2174   __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2175   __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2176   if (shift == 0) {
2177     __ add(src_ptr, src_pos, src_ptr);
2178     __ add(dst_ptr, dst_pos, dst_ptr);
2179   } else {
2180     __ sldi(tmp, src_pos, shift);
2181     __ sldi(tmp2, dst_pos, shift);
2182     __ add(src_ptr, tmp, src_ptr);
2183     __ add(dst_ptr, tmp2, dst_ptr);
2184   }
2185 
2186   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2187   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2188   const char *name;
2189   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2190 
2191   // Arraycopy stubs takes a length in number of elements, so don't scale it.
2192   __ mr(len, length);
2193   __ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0);
2194 
2195   __ bind(*stub->continuation());
2196 }
2197 
2198 
2199 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2200   if (dest->is_single_cpu()) {
2201     __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5);
2202 #ifdef _LP64
2203     if (left->type() == T_OBJECT) {
2204       switch (code) {
2205         case lir_shl:  __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break;
2206         case lir_shr:  __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break;
2207         case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break;
2208         default: ShouldNotReachHere();
2209       }
2210     } else
2211 #endif
2212       switch (code) {
2213         case lir_shl:  __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2214         case lir_shr:  __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2215         case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break;
2216         default: ShouldNotReachHere();
2217       }
2218   } else {
2219     __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6);
2220     switch (code) {
2221       case lir_shl:  __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2222       case lir_shr:  __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2223       case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break;
2224       default: ShouldNotReachHere();
2225     }
2226   }
2227 }
2228 
2229 
2230 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2231 #ifdef _LP64
2232   if (left->type() == T_OBJECT) {
2233     count = count & 63;  // Shouldn't shift by more than sizeof(intptr_t).
2234     if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); }
2235     else {
2236       switch (code) {
2237         case lir_shl:  __ sldi(dest->as_register_lo(), left->as_register(), count); break;
2238         case lir_shr:  __ sradi(dest->as_register_lo(), left->as_register(), count); break;
2239         case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break;
2240         default: ShouldNotReachHere();
2241       }
2242     }
2243     return;
2244   }
2245 #endif
2246 
2247   if (dest->is_single_cpu()) {
2248     count = count & 0x1F; // Java spec
2249     if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); }
2250     else {
2251       switch (code) {
2252         case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break;
2253         case lir_shr:  __ srawi(dest->as_register(), left->as_register(), count); break;
2254         case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break;
2255         default: ShouldNotReachHere();
2256       }
2257     }
2258   } else if (dest->is_double_cpu()) {
2259     count = count & 63; // Java spec
2260     if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); }
2261     else {
2262       switch (code) {
2263         case lir_shl:  __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2264         case lir_shr:  __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2265         case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break;
2266         default: ShouldNotReachHere();
2267       }
2268     }
2269   } else {
2270     ShouldNotReachHere();
2271   }
2272 }
2273 
2274 
2275 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2276   if (op->init_check()) {
2277     if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2278       explicit_null_check(op->klass()->as_register(), op->stub()->info());
2279     } else {
2280       add_debug_info_for_null_check_here(op->stub()->info());
2281     }
2282     __ lbz(op->tmp1()->as_register(),
2283            in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register());
2284     __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2285     __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry());
2286   }
2287   __ allocate_object(op->obj()->as_register(),
2288                      op->tmp1()->as_register(),
2289                      op->tmp2()->as_register(),
2290                      op->tmp3()->as_register(),
2291                      op->header_size(),
2292                      op->object_size(),
2293                      op->klass()->as_register(),
2294                      *op->stub()->entry());
2295 
2296   __ bind(*op->stub()->continuation());
2297   __ verify_oop(op->obj()->as_register());
2298 }
2299 
2300 
2301 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2302   LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); )
2303   if (UseSlowPath ||
2304       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2305       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2306     __ b(*op->stub()->entry());
2307   } else {
2308     __ allocate_array(op->obj()->as_register(),
2309                       op->len()->as_register(),
2310                       op->tmp1()->as_register(),
2311                       op->tmp2()->as_register(),
2312                       op->tmp3()->as_register(),
2313                       arrayOopDesc::header_size(op->type()),
2314                       type2aelembytes(op->type()),
2315                       op->klass()->as_register(),
2316                       *op->stub()->entry());
2317   }
2318   __ bind(*op->stub()->continuation());
2319 }
2320 
2321 
2322 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2323                                         ciMethodData *md, ciProfileData *data,
2324                                         Register recv, Register tmp1, Label* update_done) {
2325   uint i;
2326   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2327     Label next_test;
2328     // See if the receiver is receiver[n].
2329     __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2330     __ verify_klass_ptr(tmp1);
2331     __ cmpd(CCR0, recv, tmp1);
2332     __ bne(CCR0, next_test);
2333 
2334     __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2335     __ addi(tmp1, tmp1, DataLayout::counter_increment);
2336     __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2337     __ b(*update_done);
2338 
2339     __ bind(next_test);
2340   }
2341 
2342   // Didn't find receiver; find next empty slot and fill it in.
2343   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2344     Label next_test;
2345     __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2346     __ cmpdi(CCR0, tmp1, 0);
2347     __ bne(CCR0, next_test);
2348     __ li(tmp1, DataLayout::counter_increment);
2349     __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo);
2350     __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2351     __ b(*update_done);
2352 
2353     __ bind(next_test);
2354   }
2355 }
2356 
2357 
2358 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2359                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2360   md = method->method_data_or_null();
2361   assert(md != NULL, "Sanity");
2362   data = md->bci_to_data(bci);
2363   assert(data != NULL,       "need data for checkcast");
2364   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2365   if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2366     // The offset is large so bias the mdo by the base of the slot so
2367     // that the ld can use simm16s to reference the slots of the data.
2368     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2369   }
2370 }
2371 
2372 
2373 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2374   const Register obj = op->object()->as_register(); // Needs to live in this register at safepoint (patching stub).
2375   Register k_RInfo = op->tmp1()->as_register();
2376   Register klass_RInfo = op->tmp2()->as_register();
2377   Register Rtmp1 = op->tmp3()->as_register();
2378   Register dst = op->result_opr()->as_register();
2379   ciKlass* k = op->klass();
2380   bool should_profile = op->should_profile();
2381   // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps.
2382   bool reg_conflict = false;
2383   if (obj == k_RInfo) {
2384     k_RInfo = dst;
2385     reg_conflict = true;
2386   } else if (obj == klass_RInfo) {
2387     klass_RInfo = dst;
2388     reg_conflict = true;
2389   } else if (obj == Rtmp1) {
2390     Rtmp1 = dst;
2391     reg_conflict = true;
2392   }
2393   assert_different_registers(obj, k_RInfo, klass_RInfo, Rtmp1);
2394 
2395   __ cmpdi(CCR0, obj, 0);
2396 
2397   ciMethodData* md = NULL;
2398   ciProfileData* data = NULL;
2399   int mdo_offset_bias = 0;
2400   if (should_profile) {
2401     ciMethod* method = op->profiled_method();
2402     assert(method != NULL, "Should have method");
2403     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2404 
2405     Register mdo      = k_RInfo;
2406     Register data_val = Rtmp1;
2407     Label not_null;
2408     __ bne(CCR0, not_null);
2409     metadata2reg(md->constant_encoding(), mdo);
2410     __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2411     __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2412     __ ori(data_val, data_val, BitData::null_seen_byte_constant());
2413     __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2414     __ b(*obj_is_null);
2415     __ bind(not_null);
2416   } else {
2417     __ beq(CCR0, *obj_is_null);
2418   }
2419 
2420   // get object class
2421   __ load_klass(klass_RInfo, obj);
2422 
2423   if (k->is_loaded()) {
2424     metadata2reg(k->constant_encoding(), k_RInfo);
2425   } else {
2426     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2427   }
2428 
2429   Label profile_cast_failure, failure_restore_obj, profile_cast_success;
2430   Label *failure_target = should_profile ? &profile_cast_failure : failure;
2431   Label *success_target = should_profile ? &profile_cast_success : success;
2432 
2433   if (op->fast_check()) {
2434     assert_different_registers(klass_RInfo, k_RInfo);
2435     __ cmpd(CCR0, k_RInfo, klass_RInfo);
2436     if (should_profile) {
2437       __ bne(CCR0, *failure_target);
2438       // Fall through to success case.
2439     } else {
2440       __ beq(CCR0, *success);
2441       // Fall through to failure case.
2442     }
2443   } else {
2444     bool need_slow_path = true;
2445     if (k->is_loaded()) {
2446       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) {
2447         need_slow_path = false;
2448       }
2449       // Perform the fast part of the checking logic.
2450       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : NULL),
2451                                        failure_target, NULL, RegisterOrConstant(k->super_check_offset()));
2452     } else {
2453       // Perform the fast part of the checking logic.
2454       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target);
2455     }
2456     if (!need_slow_path) {
2457       if (!should_profile) { __ b(*success); }
2458     } else {
2459       // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2460       address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
2461       // Stub needs fixed registers (tmp1-3).
2462       Register original_k_RInfo = op->tmp1()->as_register();
2463       Register original_klass_RInfo = op->tmp2()->as_register();
2464       Register original_Rtmp1 = op->tmp3()->as_register();
2465       bool keep_obj_alive = reg_conflict && (op->code() == lir_checkcast);
2466       bool keep_klass_RInfo_alive = (obj == original_klass_RInfo) && should_profile;
2467       if (keep_obj_alive && (obj != original_Rtmp1)) { __ mr(R0, obj); }
2468       __ mr_if_needed(original_k_RInfo, k_RInfo);
2469       __ mr_if_needed(original_klass_RInfo, klass_RInfo);
2470       if (keep_obj_alive) { __ mr(dst, (obj == original_Rtmp1) ? obj : R0); }
2471       //__ load_const_optimized(original_Rtmp1, entry, R0);
2472       __ calculate_address_from_global_toc(original_Rtmp1, entry, true, true, false);
2473       __ mtctr(original_Rtmp1);
2474       __ bctrl(); // sets CR0
2475       if (keep_obj_alive) {
2476         if (keep_klass_RInfo_alive) { __ mr(R0, obj); }
2477         __ mr(obj, dst);
2478       }
2479       if (should_profile) {
2480         __ bne(CCR0, *failure_target);
2481         if (keep_klass_RInfo_alive) { __ mr(klass_RInfo, keep_obj_alive ? R0 : obj); }
2482         // Fall through to success case.
2483       } else {
2484         __ beq(CCR0, *success);
2485         // Fall through to failure case.
2486       }
2487     }
2488   }
2489 
2490   if (should_profile) {
2491     Register mdo = k_RInfo, recv = klass_RInfo;
2492     assert_different_registers(mdo, recv, Rtmp1);
2493     __ bind(profile_cast_success);
2494     metadata2reg(md->constant_encoding(), mdo);
2495     __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2496     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success);
2497     __ b(*success);
2498 
2499     // Cast failure case.
2500     __ bind(profile_cast_failure);
2501     metadata2reg(md->constant_encoding(), mdo);
2502     __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2503     __ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2504     __ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment);
2505     __ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2506   }
2507 
2508   __ bind(*failure);
2509 }
2510 
2511 
2512 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2513   LIR_Code code = op->code();
2514   if (code == lir_store_check) {
2515     Register value = op->object()->as_register();
2516     Register array = op->array()->as_register();
2517     Register k_RInfo = op->tmp1()->as_register();
2518     Register klass_RInfo = op->tmp2()->as_register();
2519     Register Rtmp1 = op->tmp3()->as_register();
2520     bool should_profile = op->should_profile();
2521 
2522     __ verify_oop(value);
2523     CodeStub* stub = op->stub();
2524     // Check if it needs to be profiled.
2525     ciMethodData* md = NULL;
2526     ciProfileData* data = NULL;
2527     int mdo_offset_bias = 0;
2528     if (should_profile) {
2529       ciMethod* method = op->profiled_method();
2530       assert(method != NULL, "Should have method");
2531       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2532     }
2533     Label profile_cast_success, failure, done;
2534     Label *success_target = should_profile ? &profile_cast_success : &done;
2535 
2536     __ cmpdi(CCR0, value, 0);
2537     if (should_profile) {
2538       Label not_null;
2539       __ bne(CCR0, not_null);
2540       Register mdo      = k_RInfo;
2541       Register data_val = Rtmp1;
2542       metadata2reg(md->constant_encoding(), mdo);
2543       __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2544       __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2545       __ ori(data_val, data_val, BitData::null_seen_byte_constant());
2546       __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo);
2547       __ b(done);
2548       __ bind(not_null);
2549     } else {
2550       __ beq(CCR0, done);
2551     }
2552     if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2553       explicit_null_check(array, op->info_for_exception());
2554     } else {
2555       add_debug_info_for_null_check_here(op->info_for_exception());
2556     }
2557     __ load_klass(k_RInfo, array);
2558     __ load_klass(klass_RInfo, value);
2559 
2560     // Get instance klass.
2561     __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo);
2562     // Perform the fast part of the checking logic.
2563     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, NULL);
2564 
2565     // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2566     const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id);
2567     //__ load_const_optimized(R0, slow_path);
2568     __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path));
2569     __ mtctr(R0);
2570     __ bctrl(); // sets CR0
2571     if (!should_profile) {
2572       __ beq(CCR0, done);
2573       __ bind(failure);
2574     } else {
2575       __ bne(CCR0, failure);
2576       // Fall through to the success case.
2577 
2578       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2579       assert_different_registers(value, mdo, recv, tmp1);
2580       __ bind(profile_cast_success);
2581       metadata2reg(md->constant_encoding(), mdo);
2582       __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2583       __ load_klass(recv, value);
2584       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2585       __ b(done);
2586 
2587       // Cast failure case.
2588       __ bind(failure);
2589       metadata2reg(md->constant_encoding(), mdo);
2590       __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2591       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2592       __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2593       __ addi(tmp1, tmp1, -DataLayout::counter_increment);
2594       __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2595     }
2596     __ b(*stub->entry());
2597     __ bind(done);
2598 
2599   } else if (code == lir_checkcast) {
2600     Label success, failure;
2601     emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success);
2602     __ b(*op->stub()->entry());
2603     __ align(32, 12);
2604     __ bind(success);
2605     __ mr_if_needed(op->result_opr()->as_register(), op->object()->as_register());
2606   } else if (code == lir_instanceof) {
2607     Register dst = op->result_opr()->as_register();
2608     Label success, failure, done;
2609     emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure);
2610     __ li(dst, 0);
2611     __ b(done);
2612     __ align(32, 12);
2613     __ bind(success);
2614     __ li(dst, 1);
2615     __ bind(done);
2616   } else {
2617     ShouldNotReachHere();
2618   }
2619 }
2620 
2621 
2622 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2623   Register addr = op->addr()->as_pointer_register();
2624   Register cmp_value = noreg, new_value = noreg;
2625   bool is_64bit = false;
2626 
2627   if (op->code() == lir_cas_long) {
2628     cmp_value = op->cmp_value()->as_register_lo();
2629     new_value = op->new_value()->as_register_lo();
2630     is_64bit = true;
2631   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2632     cmp_value = op->cmp_value()->as_register();
2633     new_value = op->new_value()->as_register();
2634     if (op->code() == lir_cas_obj) {
2635       if (UseCompressedOops) {
2636         Register t1 = op->tmp1()->as_register();
2637         Register t2 = op->tmp2()->as_register();
2638         cmp_value = __ encode_heap_oop(t1, cmp_value);
2639         new_value = __ encode_heap_oop(t2, new_value);
2640       } else {
2641         is_64bit = true;
2642       }
2643     }
2644   } else {
2645     Unimplemented();
2646   }
2647 
2648   if (is_64bit) {
2649     __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
2650                 MacroAssembler::MemBarNone,
2651                 MacroAssembler::cmpxchgx_hint_atomic_update(),
2652                 noreg, NULL, /*check without ldarx first*/true);
2653   } else {
2654     __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr,
2655                 MacroAssembler::MemBarNone,
2656                 MacroAssembler::cmpxchgx_hint_atomic_update(),
2657                 noreg, /*check without ldarx first*/true);
2658   }
2659 
2660   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2661     __ isync();
2662   } else {
2663     __ sync();
2664   }
2665 }
2666 
2667 
2668 void LIR_Assembler::set_24bit_FPU() {
2669   Unimplemented();
2670 }
2671 
2672 void LIR_Assembler::reset_FPU() {
2673   Unimplemented();
2674 }
2675 
2676 
2677 void LIR_Assembler::breakpoint() {
2678   __ illtrap();
2679 }
2680 
2681 
2682 void LIR_Assembler::push(LIR_Opr opr) {
2683   Unimplemented();
2684 }
2685 
2686 void LIR_Assembler::pop(LIR_Opr opr) {
2687   Unimplemented();
2688 }
2689 
2690 
2691 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2692   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2693   Register dst = dst_opr->as_register();
2694   Register reg = mon_addr.base();
2695   int offset = mon_addr.disp();
2696   // Compute pointer to BasicLock.
2697   __ add_const_optimized(dst, reg, offset);
2698 }
2699 
2700 
2701 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2702   Register obj = op->obj_opr()->as_register();
2703   Register hdr = op->hdr_opr()->as_register();
2704   Register lock = op->lock_opr()->as_register();
2705 
2706   // Obj may not be an oop.
2707   if (op->code() == lir_lock) {
2708     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2709     if (UseFastLocking) {
2710       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2711       // Add debug info for NullPointerException only if one is possible.
2712       if (op->info() != NULL) {
2713         if (!os::zero_page_read_protected() || !ImplicitNullChecks) {
2714           explicit_null_check(obj, op->info());
2715         } else {
2716           add_debug_info_for_null_check_here(op->info());
2717         }
2718       }
2719       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2720     } else {
2721       // always do slow locking
2722       // note: The slow locking code could be inlined here, however if we use
2723       //       slow locking, speed doesn't matter anyway and this solution is
2724       //       simpler and requires less duplicated code - additionally, the
2725       //       slow locking code is the same in either case which simplifies
2726       //       debugging.
2727       __ b(*op->stub()->entry());
2728     }
2729   } else {
2730     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2731     if (UseFastLocking) {
2732       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2733       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2734     } else {
2735       // always do slow unlocking
2736       // note: The slow unlocking code could be inlined here, however if we use
2737       //       slow unlocking, speed doesn't matter anyway and this solution is
2738       //       simpler and requires less duplicated code - additionally, the
2739       //       slow unlocking code is the same in either case which simplifies
2740       //       debugging.
2741       __ b(*op->stub()->entry());
2742     }
2743   }
2744   __ bind(*op->stub()->continuation());
2745 }
2746 
2747 
2748 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2749   ciMethod* method = op->profiled_method();
2750   int bci          = op->profiled_bci();
2751   ciMethod* callee = op->profiled_callee();
2752 
2753   // Update counter for all call types.
2754   ciMethodData* md = method->method_data_or_null();
2755   assert(md != NULL, "Sanity");
2756   ciProfileData* data = md->bci_to_data(bci);
2757   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2758   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2759   Register mdo = op->mdo()->as_register();
2760 #ifdef _LP64
2761   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2762   Register tmp1 = op->tmp1()->as_register_lo();
2763 #else
2764   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2765   Register tmp1 = op->tmp1()->as_register();
2766 #endif
2767   metadata2reg(md->constant_encoding(), mdo);
2768   int mdo_offset_bias = 0;
2769   if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2770                             data->size_in_bytes())) {
2771     // The offset is large so bias the mdo by the base of the slot so
2772     // that the ld can use simm16s to reference the slots of the data.
2773     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2774     __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0);
2775   }
2776 
2777   // Perform additional virtual call profiling for invokevirtual and
2778   // invokeinterface bytecodes
2779   if (op->should_profile_receiver_type()) {
2780     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2781     Register recv = op->recv()->as_register();
2782     assert_different_registers(mdo, tmp1, recv);
2783     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2784     ciKlass* known_klass = op->known_holder();
2785     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2786       // We know the type that will be seen at this call site; we can
2787       // statically update the MethodData* rather than needing to do
2788       // dynamic tests on the receiver type.
2789 
2790       // NOTE: we should probably put a lock around this search to
2791       // avoid collisions by concurrent compilations.
2792       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2793       uint i;
2794       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2795         ciKlass* receiver = vc_data->receiver(i);
2796         if (known_klass->equals(receiver)) {
2797           __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2798           __ addi(tmp1, tmp1, DataLayout::counter_increment);
2799           __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2800           return;
2801         }
2802       }
2803 
2804       // Receiver type not found in profile data; select an empty slot.
2805 
2806       // Note that this is less efficient than it should be because it
2807       // always does a write to the receiver part of the
2808       // VirtualCallData rather than just the first time.
2809       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2810         ciKlass* receiver = vc_data->receiver(i);
2811         if (receiver == NULL) {
2812           metadata2reg(known_klass->constant_encoding(), tmp1);
2813           __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo);
2814 
2815           __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2816           __ addi(tmp1, tmp1, DataLayout::counter_increment);
2817           __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo);
2818           return;
2819         }
2820       }
2821     } else {
2822       __ load_klass(recv, recv);
2823       Label update_done;
2824       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2825       // Receiver did not match any saved receiver and there is no empty row for it.
2826       // Increment total counter to indicate polymorphic case.
2827       __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2828       __ addi(tmp1, tmp1, DataLayout::counter_increment);
2829       __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2830 
2831       __ bind(update_done);
2832     }
2833   } else {
2834     // Static call
2835     __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2836     __ addi(tmp1, tmp1, DataLayout::counter_increment);
2837     __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo);
2838   }
2839 }
2840 
2841 
2842 void LIR_Assembler::align_backward_branch_target() {
2843   __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary.
2844 }
2845 
2846 
2847 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2848   Unimplemented();
2849 }
2850 
2851 
2852 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2853   // tmp must be unused
2854   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2855   assert(left->is_register(), "can only handle registers");
2856 
2857   if (left->is_single_cpu()) {
2858     __ neg(dest->as_register(), left->as_register());
2859   } else if (left->is_single_fpu()) {
2860     __ fneg(dest->as_float_reg(), left->as_float_reg());
2861   } else if (left->is_double_fpu()) {
2862     __ fneg(dest->as_double_reg(), left->as_double_reg());
2863   } else {
2864     assert (left->is_double_cpu(), "Must be a long");
2865     __ neg(dest->as_register_lo(), left->as_register_lo());
2866   }
2867 }
2868 
2869 
2870 void LIR_Assembler::fxch(int i) {
2871   Unimplemented();
2872 }
2873 
2874 void LIR_Assembler::fld(int i) {
2875   Unimplemented();
2876 }
2877 
2878 void LIR_Assembler::ffree(int i) {
2879   Unimplemented();
2880 }
2881 
2882 
2883 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2884                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2885   // Stubs: Called via rt_call, but dest is a stub address (no function descriptor).
2886   if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) ||
2887       dest == Runtime1::entry_for(Runtime1::new_multi_array_id   )) {
2888     //__ load_const_optimized(R0, dest);
2889     __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest));
2890     __ mtctr(R0);
2891     __ bctrl();
2892     assert(info != NULL, "sanity");
2893     add_call_info_here(info);
2894     return;
2895   }
2896 
2897   __ call_c_with_frame_resize(dest, /*no resizing*/ 0);
2898   if (info != NULL) {
2899     add_call_info_here(info);
2900   }
2901 }
2902 
2903 
2904 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2905   ShouldNotReachHere(); // Not needed on _LP64.
2906 }
2907 
2908 void LIR_Assembler::membar() {
2909   __ fence();
2910 }
2911 
2912 void LIR_Assembler::membar_acquire() {
2913   __ acquire();
2914 }
2915 
2916 void LIR_Assembler::membar_release() {
2917   __ release();
2918 }
2919 
2920 void LIR_Assembler::membar_loadload() {
2921   __ membar(Assembler::LoadLoad);
2922 }
2923 
2924 void LIR_Assembler::membar_storestore() {
2925   __ membar(Assembler::StoreStore);
2926 }
2927 
2928 void LIR_Assembler::membar_loadstore() {
2929   __ membar(Assembler::LoadStore);
2930 }
2931 
2932 void LIR_Assembler::membar_storeload() {
2933   __ membar(Assembler::StoreLoad);
2934 }
2935 
2936 void LIR_Assembler::on_spin_wait() {
2937   Unimplemented();
2938 }
2939 
2940 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2941   assert(patch_code == lir_patch_none, "Patch code not supported");
2942   LIR_Address* addr = addr_opr->as_address_ptr();
2943   assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform");
2944   if (addr->index()->is_illegal()) {
2945     __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp());
2946   } else {
2947     assert(addr->disp() == 0, "can't have both: index and disp");
2948     __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register());
2949   }
2950 }
2951 
2952 
2953 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2954   ShouldNotReachHere();
2955 }
2956 
2957 
2958 #ifdef ASSERT
2959 // Emit run-time assertion.
2960 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2961   Unimplemented();
2962 }
2963 #endif
2964 
2965 
2966 void LIR_Assembler::peephole(LIR_List* lir) {
2967   // Optimize instruction pairs before emitting.
2968   LIR_OpList* inst = lir->instructions_list();
2969   for (int i = 1; i < inst->length(); i++) {
2970     LIR_Op* op = inst->at(i);
2971 
2972     // 2 register-register-moves
2973     if (op->code() == lir_move) {
2974       LIR_Opr in2  = ((LIR_Op1*)op)->in_opr(),
2975               res2 = ((LIR_Op1*)op)->result_opr();
2976       if (in2->is_register() && res2->is_register()) {
2977         LIR_Op* prev = inst->at(i - 1);
2978         if (prev && prev->code() == lir_move) {
2979           LIR_Opr in1  = ((LIR_Op1*)prev)->in_opr(),
2980                   res1 = ((LIR_Op1*)prev)->result_opr();
2981           if (in1->is_same_register(res2) && in2->is_same_register(res1)) {
2982             inst->remove_at(i);
2983           }
2984         }
2985       }
2986     }
2987 
2988   }
2989   return;
2990 }
2991 
2992 
2993 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2994   const LIR_Address *addr = src->as_address_ptr();
2995   assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!");
2996   const Register Rptr = addr->base()->as_pointer_register(),
2997                  Rtmp = tmp->as_register();
2998   Register Rco = noreg;
2999   if (UseCompressedOops && data->is_oop()) {
3000     Rco = __ encode_heap_oop(Rtmp, data->as_register());
3001   }
3002 
3003   Label Lretry;
3004   __ bind(Lretry);
3005 
3006   if (data->type() == T_INT) {
3007     const Register Rold = dest->as_register(),
3008                    Rsrc = data->as_register();
3009     assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
3010     __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3011     if (code == lir_xadd) {
3012       __ add(Rtmp, Rsrc, Rold);
3013       __ stwcx_(Rtmp, Rptr);
3014     } else {
3015       __ stwcx_(Rsrc, Rptr);
3016     }
3017   } else if (data->is_oop()) {
3018     assert(code == lir_xchg, "xadd for oops");
3019     const Register Rold = dest->as_register();
3020     if (UseCompressedOops) {
3021       assert_different_registers(Rptr, Rold, Rco);
3022       __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3023       __ stwcx_(Rco, Rptr);
3024     } else {
3025       const Register Robj = data->as_register();
3026       assert_different_registers(Rptr, Rold, Robj);
3027       __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3028       __ stdcx_(Robj, Rptr);
3029     }
3030   } else if (data->type() == T_LONG) {
3031     const Register Rold = dest->as_register_lo(),
3032                    Rsrc = data->as_register_lo();
3033     assert_different_registers(Rptr, Rtmp, Rold, Rsrc);
3034     __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update());
3035     if (code == lir_xadd) {
3036       __ add(Rtmp, Rsrc, Rold);
3037       __ stdcx_(Rtmp, Rptr);
3038     } else {
3039       __ stdcx_(Rsrc, Rptr);
3040     }
3041   } else {
3042     ShouldNotReachHere();
3043   }
3044 
3045   if (UseStaticBranchPredictionInCompareAndSwapPPC64) {
3046     __ bne_predict_not_taken(CCR0, Lretry);
3047   } else {
3048     __ bne(                  CCR0, Lretry);
3049   }
3050 
3051   if (UseCompressedOops && data->is_oop()) {
3052     __ decode_heap_oop(dest->as_register());
3053   }
3054 }
3055 
3056 
3057 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3058   Register obj = op->obj()->as_register();
3059   Register tmp = op->tmp()->as_pointer_register();
3060   LIR_Address* mdo_addr = op->mdp()->as_address_ptr();
3061   ciKlass* exact_klass = op->exact_klass();
3062   intptr_t current_klass = op->current_klass();
3063   bool not_null = op->not_null();
3064   bool no_conflict = op->no_conflict();
3065 
3066   Label Lupdate, Ldo_update, Ldone;
3067 
3068   bool do_null = !not_null;
3069   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3070   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3071 
3072   assert(do_null || do_update, "why are we here?");
3073   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3074 
3075   __ verify_oop(obj);
3076 
3077   if (do_null) {
3078     if (!TypeEntries::was_null_seen(current_klass)) {
3079       __ cmpdi(CCR0, obj, 0);
3080       __ bne(CCR0, Lupdate);
3081       __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3082       __ ori(R0, R0, TypeEntries::null_seen);
3083       if (do_update) {
3084         __ b(Ldo_update);
3085       } else {
3086         __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3087       }
3088     } else {
3089       if (do_update) {
3090         __ cmpdi(CCR0, obj, 0);
3091         __ beq(CCR0, Ldone);
3092       }
3093     }
3094 #ifdef ASSERT
3095   } else {
3096     __ cmpdi(CCR0, obj, 0);
3097     __ bne(CCR0, Lupdate);
3098     __ stop("unexpect null obj", 0x9652);
3099 #endif
3100   }
3101 
3102   __ bind(Lupdate);
3103   if (do_update) {
3104     Label Lnext;
3105     const Register klass = R29_TOC; // kill and reload
3106     bool klass_reg_used = false;
3107 #ifdef ASSERT
3108     if (exact_klass != NULL) {
3109       Label ok;
3110       klass_reg_used = true;
3111       __ load_klass(klass, obj);
3112       metadata2reg(exact_klass->constant_encoding(), R0);
3113       __ cmpd(CCR0, klass, R0);
3114       __ beq(CCR0, ok);
3115       __ stop("exact klass and actual klass differ", 0x8564);
3116       __ bind(ok);
3117     }
3118 #endif
3119 
3120     if (!no_conflict) {
3121       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3122         klass_reg_used = true;
3123         if (exact_klass != NULL) {
3124           __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3125           metadata2reg(exact_klass->constant_encoding(), klass);
3126         } else {
3127           __ load_klass(klass, obj);
3128           __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj
3129         }
3130 
3131         // Like InterpreterMacroAssembler::profile_obj_type
3132         __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
3133         // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
3134         __ cmpd(CCR1, R0, klass);
3135         // Klass seen before, nothing to do (regardless of unknown bit).
3136         //beq(CCR1, do_nothing);
3137 
3138         __ andi_(R0, klass, TypeEntries::type_unknown);
3139         // Already unknown. Nothing to do anymore.
3140         //bne(CCR0, do_nothing);
3141         __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
3142         __ beq(CCR0, Lnext);
3143 
3144         if (TypeEntries::is_type_none(current_klass)) {
3145           __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
3146           __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3147           __ beq(CCR0, Ldo_update); // First time here. Set profile type.
3148         }
3149 
3150       } else {
3151         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3152                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3153 
3154         __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3155         __ andi_(R0, tmp, TypeEntries::type_unknown);
3156         // Already unknown. Nothing to do anymore.
3157         __ bne(CCR0, Lnext);
3158       }
3159 
3160       // Different than before. Cannot keep accurate profile.
3161       __ ori(R0, tmp, TypeEntries::type_unknown);
3162     } else {
3163       // There's a single possible klass at this profile point
3164       assert(exact_klass != NULL, "should be");
3165       __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3166 
3167       if (TypeEntries::is_type_none(current_klass)) {
3168         klass_reg_used = true;
3169         metadata2reg(exact_klass->constant_encoding(), klass);
3170 
3171         __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
3172         // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
3173         __ cmpd(CCR1, R0, klass);
3174         // Klass seen before, nothing to do (regardless of unknown bit).
3175         __ beq(CCR1, Lnext);
3176 #ifdef ASSERT
3177         {
3178           Label ok;
3179           __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
3180           __ beq(CCR0, ok); // First time here.
3181 
3182           __ stop("unexpected profiling mismatch", 0x7865);
3183           __ bind(ok);
3184         }
3185 #endif
3186         // First time here. Set profile type.
3187         __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3188       } else {
3189         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3190                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3191 
3192         // Already unknown. Nothing to do anymore.
3193         __ andi_(R0, tmp, TypeEntries::type_unknown);
3194         __ bne(CCR0, Lnext);
3195 
3196         // Different than before. Cannot keep accurate profile.
3197         __ ori(R0, tmp, TypeEntries::type_unknown);
3198       }
3199     }
3200 
3201     __ bind(Ldo_update);
3202     __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register());
3203 
3204     __ bind(Lnext);
3205     if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit
3206   }
3207   __ bind(Ldone);
3208 }
3209 
3210 
3211 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3212   assert(op->crc()->is_single_cpu(), "crc must be register");
3213   assert(op->val()->is_single_cpu(), "byte value must be register");
3214   assert(op->result_opr()->is_single_cpu(), "result must be register");
3215   Register crc = op->crc()->as_register();
3216   Register val = op->val()->as_register();
3217   Register res = op->result_opr()->as_register();
3218 
3219   assert_different_registers(val, crc, res);
3220 
3221   __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0);
3222   __ kernel_crc32_singleByteReg(crc, val, res, true);
3223   __ mr(res, crc);
3224 }
3225 
3226 #undef __