1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/block.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/chaitin.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 
  41 // Portions of code courtesy of Clifford Click
  42 
  43 // Optimization - Graph Style
  44 
  45 // To avoid float value underflow
  46 #define MIN_BLOCK_FREQUENCY 1.e-35f
  47 
  48 //----------------------------schedule_node_into_block-------------------------
  49 // Insert node n into block b. Look for projections of n and make sure they
  50 // are in b also.
  51 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  52   // Set basic block of n, Add n to b,
  53   map_node_to_block(n, b);
  54   b->add_inst(n);
  55 
  56   // After Matching, nearly any old Node may have projections trailing it.
  57   // These are usually machine-dependent flags.  In any case, they might
  58   // float to another block below this one.  Move them up.
  59   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  60     Node*  use  = n->fast_out(i);
  61     if (use->is_Proj()) {
  62       Block* buse = get_block_for_node(use);
  63       if (buse != b) {              // In wrong block?
  64         if (buse != NULL) {
  65           buse->find_remove(use);   // Remove from wrong block
  66         }
  67         map_node_to_block(use, b);
  68         b->add_inst(use);
  69       }
  70     }
  71   }
  72 }
  73 
  74 //----------------------------replace_block_proj_ctrl-------------------------
  75 // Nodes that have is_block_proj() nodes as their control need to use
  76 // the appropriate Region for their actual block as their control since
  77 // the projection will be in a predecessor block.
  78 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  79   const Node *in0 = n->in(0);
  80   assert(in0 != NULL, "Only control-dependent");
  81   const Node *p = in0->is_block_proj();
  82   if (p != NULL && p != n) {    // Control from a block projection?
  83     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
  84     // Find trailing Region
  85     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
  86     uint j = 0;
  87     if (pb->_num_succs != 1) {  // More then 1 successor?
  88       // Search for successor
  89       uint max = pb->number_of_nodes();
  90       assert( max > 1, "" );
  91       uint start = max - pb->_num_succs;
  92       // Find which output path belongs to projection
  93       for (j = start; j < max; j++) {
  94         if( pb->get_node(j) == in0 )
  95           break;
  96       }
  97       assert( j < max, "must find" );
  98       // Change control to match head of successor basic block
  99       j -= start;
 100     }
 101     n->set_req(0, pb->_succs[j]->head());
 102   }
 103 }
 104 
 105 bool PhaseCFG::is_dominator(Node* dom_node, Node* node) {
 106   if (dom_node == node) {
 107     return true;
 108   }
 109   Block* d = get_block_for_node(dom_node);
 110   Block* n = get_block_for_node(node);
 111   if (d == n) {
 112     if (dom_node->is_block_start()) {
 113       return true;
 114     }
 115     if (node->is_block_start()) {
 116       return false;
 117     }
 118     if (dom_node->is_block_proj()) {
 119       return false;
 120     }
 121     if (node->is_block_proj()) {
 122       return true;
 123     }
 124 #ifdef ASSERT
 125     node->dump();
 126     dom_node->dump();
 127 #endif
 128     fatal("unhandled");
 129     return false;
 130   }
 131   return d->dom_lca(n) == d;
 132 }
 133 
 134 //------------------------------schedule_pinned_nodes--------------------------
 135 // Set the basic block for Nodes pinned into blocks
 136 void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
 137   // Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc
 138   GrowableArray <Node *> spstack(C->live_nodes() + 8);
 139   spstack.push(_root);
 140   while (spstack.is_nonempty()) {
 141     Node* node = spstack.pop();
 142     if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
 143       if (node->pinned() && !has_block(node)) {  // Pinned?  Nail it down!
 144         assert(node->in(0), "pinned Node must have Control");
 145         // Before setting block replace block_proj control edge
 146         replace_block_proj_ctrl(node);
 147         Node* input = node->in(0);
 148         while (!input->is_block_start()) {
 149           input = input->in(0);
 150         }
 151         Block* block = get_block_for_node(input); // Basic block of controlling input
 152         schedule_node_into_block(node, block);
 153       }
 154 
 155       // If the node has precedence edges (added when CastPP nodes are
 156       // removed in final_graph_reshaping), fix the control of the
 157       // node to cover the precedence edges and remove the
 158       // dependencies.
 159       Node* n = NULL;
 160       for (uint i = node->len()-1; i >= node->req(); i--) {
 161         Node* m = node->in(i);
 162         if (m == NULL) continue;
 163         // Skip the precedence edge if the test that guarded a CastPP:
 164         // - was optimized out during escape analysis
 165         // (OptimizePtrCompare): the CastPP's control isn't an end of
 166         // block.
 167         // - is moved in the branch of a dominating If: the control of
 168         // the CastPP is then a Region.
 169         if (m->is_block_proj() || m->is_block_start()) {
 170           node->rm_prec(i);
 171           if (n == NULL) {
 172             n = m;
 173           } else {
 174             assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other");
 175             n = is_dominator(n, m) ? m : n;
 176           }
 177         }
 178       }
 179       if (n != NULL) {
 180         assert(node->in(0), "control should have been set");
 181         assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other");
 182         if (!is_dominator(n, node->in(0))) {
 183           node->set_req(0, n);
 184         }
 185       }
 186 
 187       // process all inputs that are non NULL
 188       for (int i = node->req() - 1; i >= 0; --i) {
 189         if (node->in(i) != NULL) {
 190           spstack.push(node->in(i));
 191         }
 192       }
 193     }
 194   }
 195 }
 196 
 197 #ifdef ASSERT
 198 // Assert that new input b2 is dominated by all previous inputs.
 199 // Check this by by seeing that it is dominated by b1, the deepest
 200 // input observed until b2.
 201 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
 202   if (b1 == NULL)  return;
 203   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 204   Block* tmp = b2;
 205   while (tmp != b1 && tmp != NULL) {
 206     tmp = tmp->_idom;
 207   }
 208   if (tmp != b1) {
 209     // Detected an unschedulable graph.  Print some nice stuff and die.
 210     tty->print_cr("!!! Unschedulable graph !!!");
 211     for (uint j=0; j<n->len(); j++) { // For all inputs
 212       Node* inn = n->in(j); // Get input
 213       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 214       Block* inb = cfg->get_block_for_node(inn);
 215       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 216                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 217       inn->dump();
 218     }
 219     tty->print("Failing node: ");
 220     n->dump();
 221     assert(false, "unscheduable graph");
 222   }
 223 }
 224 #endif
 225 
 226 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
 227   // Find the last input dominated by all other inputs.
 228   Block* deepb           = NULL;        // Deepest block so far
 229   int    deepb_dom_depth = 0;
 230   for (uint k = 0; k < n->len(); k++) { // For all inputs
 231     Node* inn = n->in(k);               // Get input
 232     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 233     Block* inb = cfg->get_block_for_node(inn);
 234     assert(inb != NULL, "must already have scheduled this input");
 235     if (deepb_dom_depth < (int) inb->_dom_depth) {
 236       // The new inb must be dominated by the previous deepb.
 237       // The various inputs must be linearly ordered in the dom
 238       // tree, or else there will not be a unique deepest block.
 239       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
 240       deepb = inb;                      // Save deepest block
 241       deepb_dom_depth = deepb->_dom_depth;
 242     }
 243   }
 244   assert(deepb != NULL, "must be at least one input to n");
 245   return deepb;
 246 }
 247 
 248 
 249 //------------------------------schedule_early---------------------------------
 250 // Find the earliest Block any instruction can be placed in.  Some instructions
 251 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 252 // which all their inputs occur.
 253 bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) {
 254   // Allocate stack with enough space to avoid frequent realloc
 255   Node_Stack nstack(roots.size() + 8);
 256   // _root will be processed among C->top() inputs
 257   roots.push(C->top(), 0);
 258   visited.set(C->top()->_idx);
 259 
 260   while (roots.size() != 0) {
 261     // Use local variables nstack_top_n & nstack_top_i to cache values
 262     // on stack's top.
 263     Node* parent_node = roots.node();
 264     uint  input_index = 0;
 265     roots.pop();
 266 
 267     while (true) {
 268       if (input_index == 0) {
 269         // Fixup some control.  Constants without control get attached
 270         // to root and nodes that use is_block_proj() nodes should be attached
 271         // to the region that starts their block.
 272         const Node* control_input = parent_node->in(0);
 273         if (control_input != NULL) {
 274           replace_block_proj_ctrl(parent_node);
 275         } else {
 276           // Is a constant with NO inputs?
 277           if (parent_node->req() == 1) {
 278             parent_node->set_req(0, _root);
 279           }
 280         }
 281       }
 282 
 283       // First, visit all inputs and force them to get a block.  If an
 284       // input is already in a block we quit following inputs (to avoid
 285       // cycles). Instead we put that Node on a worklist to be handled
 286       // later (since IT'S inputs may not have a block yet).
 287 
 288       // Assume all n's inputs will be processed
 289       bool done = true;
 290 
 291       while (input_index < parent_node->len()) {
 292         Node* in = parent_node->in(input_index++);
 293         if (in == NULL) {
 294           continue;
 295         }
 296 
 297         int is_visited = visited.test_set(in->_idx);
 298         if (!has_block(in)) {
 299           if (is_visited) {
 300             assert(false, "graph should be schedulable");
 301             return false;
 302           }
 303           // Save parent node and next input's index.
 304           nstack.push(parent_node, input_index);
 305           // Process current input now.
 306           parent_node = in;
 307           input_index = 0;
 308           // Not all n's inputs processed.
 309           done = false;
 310           break;
 311         } else if (!is_visited) {
 312           // Visit this guy later, using worklist
 313           roots.push(in, 0);
 314         }
 315       }
 316 
 317       if (done) {
 318         // All of n's inputs have been processed, complete post-processing.
 319 
 320         // Some instructions are pinned into a block.  These include Region,
 321         // Phi, Start, Return, and other control-dependent instructions and
 322         // any projections which depend on them.
 323         if (!parent_node->pinned()) {
 324           // Set earliest legal block.
 325           Block* earliest_block = find_deepest_input(parent_node, this);
 326           map_node_to_block(parent_node, earliest_block);
 327         } else {
 328           assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
 329         }
 330 
 331         if (nstack.is_empty()) {
 332           // Finished all nodes on stack.
 333           // Process next node on the worklist 'roots'.
 334           break;
 335         }
 336         // Get saved parent node and next input's index.
 337         parent_node = nstack.node();
 338         input_index = nstack.index();
 339         nstack.pop();
 340       }
 341     }
 342   }
 343   return true;
 344 }
 345 
 346 //------------------------------dom_lca----------------------------------------
 347 // Find least common ancestor in dominator tree
 348 // LCA is a current notion of LCA, to be raised above 'this'.
 349 // As a convenient boundary condition, return 'this' if LCA is NULL.
 350 // Find the LCA of those two nodes.
 351 Block* Block::dom_lca(Block* LCA) {
 352   if (LCA == NULL || LCA == this)  return this;
 353 
 354   Block* anc = this;
 355   while (anc->_dom_depth > LCA->_dom_depth)
 356     anc = anc->_idom;           // Walk up till anc is as high as LCA
 357 
 358   while (LCA->_dom_depth > anc->_dom_depth)
 359     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 360 
 361   while (LCA != anc) {          // Walk both up till they are the same
 362     LCA = LCA->_idom;
 363     anc = anc->_idom;
 364   }
 365 
 366   return LCA;
 367 }
 368 
 369 //--------------------------raise_LCA_above_use--------------------------------
 370 // We are placing a definition, and have been given a def->use edge.
 371 // The definition must dominate the use, so move the LCA upward in the
 372 // dominator tree to dominate the use.  If the use is a phi, adjust
 373 // the LCA only with the phi input paths which actually use this def.
 374 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
 375   Block* buse = cfg->get_block_for_node(use);
 376   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 377   if (!use->is_Phi())  return buse->dom_lca(LCA);
 378   uint pmax = use->req();       // Number of Phi inputs
 379   // Why does not this loop just break after finding the matching input to
 380   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 381   // chains.  Means I cannot distinguish, from the def-use direction, which
 382   // of many use-defs lead from the same use to the same def.  That is, this
 383   // Phi might have several uses of the same def.  Each use appears in a
 384   // different predecessor block.  But when I enter here, I cannot distinguish
 385   // which use-def edge I should find the predecessor block for.  So I find
 386   // them all.  Means I do a little extra work if a Phi uses the same value
 387   // more than once.
 388   for (uint j=1; j<pmax; j++) { // For all inputs
 389     if (use->in(j) == def) {    // Found matching input?
 390       Block* pred = cfg->get_block_for_node(buse->pred(j));
 391       LCA = pred->dom_lca(LCA);
 392     }
 393   }
 394   return LCA;
 395 }
 396 
 397 //----------------------------raise_LCA_above_marks----------------------------
 398 // Return a new LCA that dominates LCA and any of its marked predecessors.
 399 // Search all my parents up to 'early' (exclusive), looking for predecessors
 400 // which are marked with the given index.  Return the LCA (in the dom tree)
 401 // of all marked blocks.  If there are none marked, return the original
 402 // LCA.
 403 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
 404   Block_List worklist;
 405   worklist.push(LCA);
 406   while (worklist.size() > 0) {
 407     Block* mid = worklist.pop();
 408     if (mid == early)  continue;  // stop searching here
 409 
 410     // Test and set the visited bit.
 411     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 412 
 413     // Don't process the current LCA, otherwise the search may terminate early
 414     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 415       // Raise the LCA.
 416       LCA = mid->dom_lca(LCA);
 417       if (LCA == early)  break;   // stop searching everywhere
 418       assert(early->dominates(LCA), "early is high enough");
 419       // Resume searching at that point, skipping intermediate levels.
 420       worklist.push(LCA);
 421       if (LCA == mid)
 422         continue; // Don't mark as visited to avoid early termination.
 423     } else {
 424       // Keep searching through this block's predecessors.
 425       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 426         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
 427         worklist.push(mid_parent);
 428       }
 429     }
 430     mid->set_raise_LCA_visited(mark);
 431   }
 432   return LCA;
 433 }
 434 
 435 //--------------------------memory_early_block--------------------------------
 436 // This is a variation of find_deepest_input, the heart of schedule_early.
 437 // Find the "early" block for a load, if we considered only memory and
 438 // address inputs, that is, if other data inputs were ignored.
 439 //
 440 // Because a subset of edges are considered, the resulting block will
 441 // be earlier (at a shallower dom_depth) than the true schedule_early
 442 // point of the node. We compute this earlier block as a more permissive
 443 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 444 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
 445   Node* base;
 446   Node* index;
 447   Node* store = load->in(MemNode::Memory);
 448   load->as_Mach()->memory_inputs(base, index);
 449 
 450   assert(base != NodeSentinel && index != NodeSentinel,
 451          "unexpected base/index inputs");
 452 
 453   Node* mem_inputs[4];
 454   int mem_inputs_length = 0;
 455   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 456   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 457   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 458 
 459   // In the comparision below, add one to account for the control input,
 460   // which may be null, but always takes up a spot in the in array.
 461   if (mem_inputs_length + 1 < (int) load->req()) {
 462     // This "load" has more inputs than just the memory, base and index inputs.
 463     // For purposes of checking anti-dependences, we need to start
 464     // from the early block of only the address portion of the instruction,
 465     // and ignore other blocks that may have factored into the wider
 466     // schedule_early calculation.
 467     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 468 
 469     Block* deepb           = NULL;        // Deepest block so far
 470     int    deepb_dom_depth = 0;
 471     for (int i = 0; i < mem_inputs_length; i++) {
 472       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
 473       if (deepb_dom_depth < (int) inb->_dom_depth) {
 474         // The new inb must be dominated by the previous deepb.
 475         // The various inputs must be linearly ordered in the dom
 476         // tree, or else there will not be a unique deepest block.
 477         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
 478         deepb = inb;                      // Save deepest block
 479         deepb_dom_depth = deepb->_dom_depth;
 480       }
 481     }
 482     early = deepb;
 483   }
 484 
 485   return early;
 486 }
 487 
 488 //--------------------------insert_anti_dependences---------------------------
 489 // A load may need to witness memory that nearby stores can overwrite.
 490 // For each nearby store, either insert an "anti-dependence" edge
 491 // from the load to the store, or else move LCA upward to force the
 492 // load to (eventually) be scheduled in a block above the store.
 493 //
 494 // Do not add edges to stores on distinct control-flow paths;
 495 // only add edges to stores which might interfere.
 496 //
 497 // Return the (updated) LCA.  There will not be any possibly interfering
 498 // store between the load's "early block" and the updated LCA.
 499 // Any stores in the updated LCA will have new precedence edges
 500 // back to the load.  The caller is expected to schedule the load
 501 // in the LCA, in which case the precedence edges will make LCM
 502 // preserve anti-dependences.  The caller may also hoist the load
 503 // above the LCA, if it is not the early block.
 504 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 505   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 506   assert(LCA != NULL, "");
 507   DEBUG_ONLY(Block* LCA_orig = LCA);
 508 
 509   // Compute the alias index.  Loads and stores with different alias indices
 510   // do not need anti-dependence edges.
 511   int load_alias_idx = C->get_alias_index(load->adr_type());
 512 #ifdef ASSERT
 513   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 514       (PrintOpto || VerifyAliases ||
 515        (PrintMiscellaneous && (WizardMode || Verbose)))) {
 516     // Load nodes should not consume all of memory.
 517     // Reporting a bottom type indicates a bug in adlc.
 518     // If some particular type of node validly consumes all of memory,
 519     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 520     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 521     load->dump(2);
 522     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 523   }
 524 #endif
 525   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
 526          "String compare is only known 'load' that does not conflict with any stores");
 527   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
 528          "String equals is a 'load' that does not conflict with any stores");
 529   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 530          "String indexOf is a 'load' that does not conflict with any stores");
 531   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOfChar),
 532          "String indexOfChar is a 'load' that does not conflict with any stores");
 533   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 534          "Arrays equals is a 'load' that does not conflict with any stores");
 535   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_HasNegatives),
 536          "HasNegatives is a 'load' that does not conflict with any stores");
 537 
 538   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 539     // It is impossible to spoil this load by putting stores before it,
 540     // because we know that the stores will never update the value
 541     // which 'load' must witness.
 542     return LCA;
 543   }
 544 
 545   node_idx_t load_index = load->_idx;
 546 
 547   // Note the earliest legal placement of 'load', as determined by
 548   // by the unique point in the dom tree where all memory effects
 549   // and other inputs are first available.  (Computed by schedule_early.)
 550   // For normal loads, 'early' is the shallowest place (dom graph wise)
 551   // to look for anti-deps between this load and any store.
 552   Block* early = get_block_for_node(load);
 553 
 554   // If we are subsuming loads, compute an "early" block that only considers
 555   // memory or address inputs. This block may be different than the
 556   // schedule_early block in that it could be at an even shallower depth in the
 557   // dominator tree, and allow for a broader discovery of anti-dependences.
 558   if (C->subsume_loads()) {
 559     early = memory_early_block(load, early, this);
 560   }
 561 
 562   ResourceArea *area = Thread::current()->resource_area();
 563   Node_List worklist_mem(area);     // prior memory state to store
 564   Node_List worklist_store(area);   // possible-def to explore
 565   Node_List worklist_visited(area); // visited mergemem nodes
 566   Node_List non_early_stores(area); // all relevant stores outside of early
 567   bool must_raise_LCA = false;
 568 
 569 #ifdef TRACK_PHI_INPUTS
 570   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 571   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 572   // original memory state.  This indicates a PhiNode for which should not
 573   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 574   // may be overly conservative.
 575   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 576   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 577 #endif
 578 
 579   // 'load' uses some memory state; look for users of the same state.
 580   // Recurse through MergeMem nodes to the stores that use them.
 581 
 582   // Each of these stores is a possible definition of memory
 583   // that 'load' needs to use.  We need to force 'load'
 584   // to occur before each such store.  When the store is in
 585   // the same block as 'load', we insert an anti-dependence
 586   // edge load->store.
 587 
 588   // The relevant stores "nearby" the load consist of a tree rooted
 589   // at initial_mem, with internal nodes of type MergeMem.
 590   // Therefore, the branches visited by the worklist are of this form:
 591   //    initial_mem -> (MergeMem ->)* store
 592   // The anti-dependence constraints apply only to the fringe of this tree.
 593 
 594   Node* initial_mem = load->in(MemNode::Memory);
 595   worklist_store.push(initial_mem);
 596   worklist_visited.push(initial_mem);
 597   worklist_mem.push(NULL);
 598   while (worklist_store.size() > 0) {
 599     // Examine a nearby store to see if it might interfere with our load.
 600     Node* mem   = worklist_mem.pop();
 601     Node* store = worklist_store.pop();
 602     uint op = store->Opcode();
 603 
 604     // MergeMems do not directly have anti-deps.
 605     // Treat them as internal nodes in a forward tree of memory states,
 606     // the leaves of which are each a 'possible-def'.
 607     if (store == initial_mem    // root (exclusive) of tree we are searching
 608         || op == Op_MergeMem    // internal node of tree we are searching
 609         ) {
 610       mem = store;   // It's not a possibly interfering store.
 611       if (store == initial_mem)
 612         initial_mem = NULL;  // only process initial memory once
 613 
 614       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 615         store = mem->fast_out(i);
 616         if (store->is_MergeMem()) {
 617           // Be sure we don't get into combinatorial problems.
 618           // (Allow phis to be repeated; they can merge two relevant states.)
 619           uint j = worklist_visited.size();
 620           for (; j > 0; j--) {
 621             if (worklist_visited.at(j-1) == store)  break;
 622           }
 623           if (j > 0)  continue; // already on work list; do not repeat
 624           worklist_visited.push(store);
 625         }
 626         worklist_mem.push(mem);
 627         worklist_store.push(store);
 628       }
 629       continue;
 630     }
 631 
 632     if (op == Op_MachProj || op == Op_Catch)   continue;
 633     if (store->needs_anti_dependence_check())  continue;  // not really a store
 634 
 635     // Compute the alias index.  Loads and stores with different alias
 636     // indices do not need anti-dependence edges.  Wide MemBar's are
 637     // anti-dependent on everything (except immutable memories).
 638     const TypePtr* adr_type = store->adr_type();
 639     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 640 
 641     // Most slow-path runtime calls do NOT modify Java memory, but
 642     // they can block and so write Raw memory.
 643     if (store->is_Mach()) {
 644       MachNode* mstore = store->as_Mach();
 645       if (load_alias_idx != Compile::AliasIdxRaw) {
 646         // Check for call into the runtime using the Java calling
 647         // convention (and from there into a wrapper); it has no
 648         // _method.  Can't do this optimization for Native calls because
 649         // they CAN write to Java memory.
 650         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 651           assert(mstore->is_MachSafePoint(), "");
 652           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 653           assert(ms->is_MachCallJava(), "");
 654           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 655           if (mcj->_method == NULL) {
 656             // These runtime calls do not write to Java visible memory
 657             // (other than Raw) and so do not require anti-dependence edges.
 658             continue;
 659           }
 660         }
 661         // Same for SafePoints: they read/write Raw but only read otherwise.
 662         // This is basically a workaround for SafePoints only defining control
 663         // instead of control + memory.
 664         if (mstore->ideal_Opcode() == Op_SafePoint)
 665           continue;
 666       } else {
 667         // Some raw memory, such as the load of "top" at an allocation,
 668         // can be control dependent on the previous safepoint. See
 669         // comments in GraphKit::allocate_heap() about control input.
 670         // Inserting an anti-dep between such a safepoint and a use
 671         // creates a cycle, and will cause a subsequent failure in
 672         // local scheduling.  (BugId 4919904)
 673         // (%%% How can a control input be a safepoint and not a projection??)
 674         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 675           continue;
 676       }
 677     }
 678 
 679     // Identify a block that the current load must be above,
 680     // or else observe that 'store' is all the way up in the
 681     // earliest legal block for 'load'.  In the latter case,
 682     // immediately insert an anti-dependence edge.
 683     Block* store_block = get_block_for_node(store);
 684     assert(store_block != NULL, "unused killing projections skipped above");
 685 
 686     if (store->is_Phi()) {
 687       // 'load' uses memory which is one (or more) of the Phi's inputs.
 688       // It must be scheduled not before the Phi, but rather before
 689       // each of the relevant Phi inputs.
 690       //
 691       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 692       // we mark each corresponding predecessor block and do a combined
 693       // hoisting operation later (raise_LCA_above_marks).
 694       //
 695       // Do not assert(store_block != early, "Phi merging memory after access")
 696       // PhiNode may be at start of block 'early' with backedge to 'early'
 697       DEBUG_ONLY(bool found_match = false);
 698       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 699         if (store->in(j) == mem) {   // Found matching input?
 700           DEBUG_ONLY(found_match = true);
 701           Block* pred_block = get_block_for_node(store_block->pred(j));
 702           if (pred_block != early) {
 703             // If any predecessor of the Phi matches the load's "early block",
 704             // we do not need a precedence edge between the Phi and 'load'
 705             // since the load will be forced into a block preceding the Phi.
 706             pred_block->set_raise_LCA_mark(load_index);
 707             assert(!LCA_orig->dominates(pred_block) ||
 708                    early->dominates(pred_block), "early is high enough");
 709             must_raise_LCA = true;
 710           } else {
 711             // anti-dependent upon PHI pinned below 'early', no edge needed
 712             LCA = early;             // but can not schedule below 'early'
 713           }
 714         }
 715       }
 716       assert(found_match, "no worklist bug");
 717 #ifdef TRACK_PHI_INPUTS
 718 #ifdef ASSERT
 719       // This assert asks about correct handling of PhiNodes, which may not
 720       // have all input edges directly from 'mem'. See BugId 4621264
 721       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 722       // Increment by exactly one even if there are multiple copies of 'mem'
 723       // coming into the phi, because we will run this block several times
 724       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 725       phi_inputs.at_put(store->_idx, num_mem_inputs);
 726       assert(PhiNode::Input + num_mem_inputs < store->req(),
 727              "Expect at least one phi input will not be from original memory state");
 728 #endif //ASSERT
 729 #endif //TRACK_PHI_INPUTS
 730     } else if (store_block != early) {
 731       // 'store' is between the current LCA and earliest possible block.
 732       // Label its block, and decide later on how to raise the LCA
 733       // to include the effect on LCA of this store.
 734       // If this store's block gets chosen as the raised LCA, we
 735       // will find him on the non_early_stores list and stick him
 736       // with a precedence edge.
 737       // (But, don't bother if LCA is already raised all the way.)
 738       if (LCA != early) {
 739         store_block->set_raise_LCA_mark(load_index);
 740         must_raise_LCA = true;
 741         non_early_stores.push(store);
 742       }
 743     } else {
 744       // Found a possibly-interfering store in the load's 'early' block.
 745       // This means 'load' cannot sink at all in the dominator tree.
 746       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 747       assert(store != load->in(0), "dependence cycle found");
 748       if (verify) {
 749         assert(store->find_edge(load) != -1, "missing precedence edge");
 750       } else {
 751         store->add_prec(load); // FYI: anti-dep added here
 752       }
 753       LCA = early;
 754       // This turns off the process of gathering non_early_stores.
 755     }
 756   }
 757   // (Worklist is now empty; all nearby stores have been visited.)
 758 
 759   // Finished if 'load' must be scheduled in its 'early' block.
 760   // If we found any stores there, they have already been given
 761   // precedence edges.
 762   if (LCA == early)  return LCA;
 763 
 764   // We get here only if there are no possibly-interfering stores
 765   // in the load's 'early' block.  Move LCA up above all predecessors
 766   // which contain stores we have noted.
 767   //
 768   // The raised LCA block can be a home to such interfering stores,
 769   // but its predecessors must not contain any such stores.
 770   //
 771   // The raised LCA will be a lower bound for placing the load,
 772   // preventing the load from sinking past any block containing
 773   // a store that may invalidate the memory state required by 'load'.
 774   if (must_raise_LCA)
 775     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
 776   if (LCA == early)  return LCA;
 777 
 778   // Insert anti-dependence edges from 'load' to each store
 779   // in the non-early LCA block.
 780   // Mine the non_early_stores list for such stores.
 781   if (LCA->raise_LCA_mark() == load_index) {
 782     while (non_early_stores.size() > 0) {
 783       Node* store = non_early_stores.pop();
 784       Block* store_block = get_block_for_node(store);
 785       if (store_block == LCA) {
 786         // add anti_dependence from store to load in its own block
 787         assert(store != load->in(0), "dependence cycle found");
 788         if (verify) {
 789           assert(store->find_edge(load) != -1, "missing precedence edge");
 790         } else {
 791           store->add_prec(load);
 792         }
 793       } else {
 794         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 795         // Any other stores we found must be either inside the new LCA
 796         // or else outside the original LCA.  In the latter case, they
 797         // did not interfere with any use of 'load'.
 798         assert(LCA->dominates(store_block)
 799                || !LCA_orig->dominates(store_block), "no stray stores");
 800       }
 801     }
 802   }
 803 
 804   // Return the highest block containing stores; any stores
 805   // within that block have been given anti-dependence edges.
 806   return LCA;
 807 }
 808 
 809 // This class is used to iterate backwards over the nodes in the graph.
 810 
 811 class Node_Backward_Iterator {
 812 
 813 private:
 814   Node_Backward_Iterator();
 815 
 816 public:
 817   // Constructor for the iterator
 818   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg);
 819 
 820   // Postincrement operator to iterate over the nodes
 821   Node *next();
 822 
 823 private:
 824   VectorSet   &_visited;
 825   Node_Stack  &_stack;
 826   PhaseCFG &_cfg;
 827 };
 828 
 829 // Constructor for the Node_Backward_Iterator
 830 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg)
 831   : _visited(visited), _stack(stack), _cfg(cfg) {
 832   // The stack should contain exactly the root
 833   stack.clear();
 834   stack.push(root, root->outcnt());
 835 
 836   // Clear the visited bits
 837   visited.Clear();
 838 }
 839 
 840 // Iterator for the Node_Backward_Iterator
 841 Node *Node_Backward_Iterator::next() {
 842 
 843   // If the _stack is empty, then just return NULL: finished.
 844   if ( !_stack.size() )
 845     return NULL;
 846 
 847   // I visit unvisited not-anti-dependence users first, then anti-dependent
 848   // children next. I iterate backwards to support removal of nodes.
 849   // The stack holds states consisting of 3 values:
 850   // current Def node, flag which indicates 1st/2nd pass, index of current out edge
 851   Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1);
 852   bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1);
 853   uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes.
 854   _stack.pop();
 855 
 856   // I cycle here when I am entering a deeper level of recursion.
 857   // The key variable 'self' was set prior to jumping here.
 858   while( 1 ) {
 859 
 860     _visited.set(self->_idx);
 861 
 862     // Now schedule all uses as late as possible.
 863     const Node* src = self->is_Proj() ? self->in(0) : self;
 864     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
 865 
 866     // Schedule all nodes in a post-order visit
 867     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 868 
 869     // Scan for unvisited nodes
 870     while (idx > 0) {
 871       // For all uses, schedule late
 872       Node* n = self->raw_out(--idx); // Use
 873 
 874       // Skip already visited children
 875       if ( _visited.test(n->_idx) )
 876         continue;
 877 
 878       // do not traverse backward control edges
 879       Node *use = n->is_Proj() ? n->in(0) : n;
 880       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
 881 
 882       if ( use_rpo < src_rpo )
 883         continue;
 884 
 885       // Phi nodes always precede uses in a basic block
 886       if ( use_rpo == src_rpo && use->is_Phi() )
 887         continue;
 888 
 889       unvisited = n;      // Found unvisited
 890 
 891       // Check for possible-anti-dependent
 892       // 1st pass: No such nodes, 2nd pass: Only such nodes.
 893       if (n->needs_anti_dependence_check() == iterate_anti_dep) {
 894         unvisited = n;      // Found unvisited
 895         break;
 896       }
 897     }
 898 
 899     // Did I find an unvisited not-anti-dependent Node?
 900     if (!unvisited) {
 901       if (!iterate_anti_dep) {
 902         // 2nd pass: Iterate over nodes which needs_anti_dependence_check.
 903         iterate_anti_dep = true;
 904         idx = self->outcnt();
 905         continue;
 906       }
 907       break;                  // All done with children; post-visit 'self'
 908     }
 909 
 910     // Visit the unvisited Node.  Contains the obvious push to
 911     // indicate I'm entering a deeper level of recursion.  I push the
 912     // old state onto the _stack and set a new state and loop (recurse).
 913     _stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx);
 914     self = unvisited;
 915     iterate_anti_dep = false;
 916     idx = self->outcnt();
 917   } // End recursion loop
 918 
 919   return self;
 920 }
 921 
 922 //------------------------------ComputeLatenciesBackwards----------------------
 923 // Compute the latency of all the instructions.
 924 void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) {
 925 #ifndef PRODUCT
 926   if (trace_opto_pipelining())
 927     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 928 #endif
 929 
 930   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
 931   Node *n;
 932 
 933   // Walk over all the nodes from last to first
 934   while ((n = iter.next())) {
 935     // Set the latency for the definitions of this instruction
 936     partial_latency_of_defs(n);
 937   }
 938 } // end ComputeLatenciesBackwards
 939 
 940 //------------------------------partial_latency_of_defs------------------------
 941 // Compute the latency impact of this node on all defs.  This computes
 942 // a number that increases as we approach the beginning of the routine.
 943 void PhaseCFG::partial_latency_of_defs(Node *n) {
 944   // Set the latency for this instruction
 945 #ifndef PRODUCT
 946   if (trace_opto_pipelining()) {
 947     tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
 948     dump();
 949   }
 950 #endif
 951 
 952   if (n->is_Proj()) {
 953     n = n->in(0);
 954   }
 955 
 956   if (n->is_Root()) {
 957     return;
 958   }
 959 
 960   uint nlen = n->len();
 961   uint use_latency = get_latency_for_node(n);
 962   uint use_pre_order = get_block_for_node(n)->_pre_order;
 963 
 964   for (uint j = 0; j < nlen; j++) {
 965     Node *def = n->in(j);
 966 
 967     if (!def || def == n) {
 968       continue;
 969     }
 970 
 971     // Walk backwards thru projections
 972     if (def->is_Proj()) {
 973       def = def->in(0);
 974     }
 975 
 976 #ifndef PRODUCT
 977     if (trace_opto_pipelining()) {
 978       tty->print("#    in(%2d): ", j);
 979       def->dump();
 980     }
 981 #endif
 982 
 983     // If the defining block is not known, assume it is ok
 984     Block *def_block = get_block_for_node(def);
 985     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 986 
 987     if ((use_pre_order <  def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
 988       continue;
 989     }
 990 
 991     uint delta_latency = n->latency(j);
 992     uint current_latency = delta_latency + use_latency;
 993 
 994     if (get_latency_for_node(def) < current_latency) {
 995       set_latency_for_node(def, current_latency);
 996     }
 997 
 998 #ifndef PRODUCT
 999     if (trace_opto_pipelining()) {
1000       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
1001     }
1002 #endif
1003   }
1004 }
1005 
1006 //------------------------------latency_from_use-------------------------------
1007 // Compute the latency of a specific use
1008 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
1009   // If self-reference, return no latency
1010   if (use == n || use->is_Root()) {
1011     return 0;
1012   }
1013 
1014   uint def_pre_order = get_block_for_node(def)->_pre_order;
1015   uint latency = 0;
1016 
1017   // If the use is not a projection, then it is simple...
1018   if (!use->is_Proj()) {
1019 #ifndef PRODUCT
1020     if (trace_opto_pipelining()) {
1021       tty->print("#    out(): ");
1022       use->dump();
1023     }
1024 #endif
1025 
1026     uint use_pre_order = get_block_for_node(use)->_pre_order;
1027 
1028     if (use_pre_order < def_pre_order)
1029       return 0;
1030 
1031     if (use_pre_order == def_pre_order && use->is_Phi())
1032       return 0;
1033 
1034     uint nlen = use->len();
1035     uint nl = get_latency_for_node(use);
1036 
1037     for ( uint j=0; j<nlen; j++ ) {
1038       if (use->in(j) == n) {
1039         // Change this if we want local latencies
1040         uint ul = use->latency(j);
1041         uint  l = ul + nl;
1042         if (latency < l) latency = l;
1043 #ifndef PRODUCT
1044         if (trace_opto_pipelining()) {
1045           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
1046                         nl, j, ul, l, latency);
1047         }
1048 #endif
1049       }
1050     }
1051   } else {
1052     // This is a projection, just grab the latency of the use(s)
1053     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
1054       uint l = latency_from_use(use, def, use->fast_out(j));
1055       if (latency < l) latency = l;
1056     }
1057   }
1058 
1059   return latency;
1060 }
1061 
1062 //------------------------------latency_from_uses------------------------------
1063 // Compute the latency of this instruction relative to all of it's uses.
1064 // This computes a number that increases as we approach the beginning of the
1065 // routine.
1066 void PhaseCFG::latency_from_uses(Node *n) {
1067   // Set the latency for this instruction
1068 #ifndef PRODUCT
1069   if (trace_opto_pipelining()) {
1070     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
1071     dump();
1072   }
1073 #endif
1074   uint latency=0;
1075   const Node *def = n->is_Proj() ? n->in(0): n;
1076 
1077   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1078     uint l = latency_from_use(n, def, n->fast_out(i));
1079 
1080     if (latency < l) latency = l;
1081   }
1082 
1083   set_latency_for_node(n, latency);
1084 }
1085 
1086 //------------------------------hoist_to_cheaper_block-------------------------
1087 // Pick a block for node self, between early and LCA, that is a cheaper
1088 // alternative to LCA.
1089 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1090   const double delta = 1+PROB_UNLIKELY_MAG(4);
1091   Block* least       = LCA;
1092   double least_freq  = least->_freq;
1093   uint target        = get_latency_for_node(self);
1094   uint start_latency = get_latency_for_node(LCA->head());
1095   uint end_latency   = get_latency_for_node(LCA->get_node(LCA->end_idx()));
1096   bool in_latency    = (target <= start_latency);
1097   const Block* root_block = get_block_for_node(_root);
1098 
1099   // Turn off latency scheduling if scheduling is just plain off
1100   if (!C->do_scheduling())
1101     in_latency = true;
1102 
1103   // Do not hoist (to cover latency) instructions which target a
1104   // single register.  Hoisting stretches the live range of the
1105   // single register and may force spilling.
1106   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1107   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1108     in_latency = true;
1109 
1110 #ifndef PRODUCT
1111   if (trace_opto_pipelining()) {
1112     tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
1113     self->dump();
1114     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1115       LCA->_pre_order,
1116       LCA->head()->_idx,
1117       start_latency,
1118       LCA->get_node(LCA->end_idx())->_idx,
1119       end_latency,
1120       least_freq);
1121   }
1122 #endif
1123 
1124   int cand_cnt = 0;  // number of candidates tried
1125 
1126   // Walk up the dominator tree from LCA (Lowest common ancestor) to
1127   // the earliest legal location.  Capture the least execution frequency.
1128   while (LCA != early) {
1129     LCA = LCA->_idom;         // Follow up the dominator tree
1130 
1131     if (LCA == NULL) {
1132       // Bailout without retry
1133       assert(false, "graph should be schedulable");
1134       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1135       return least;
1136     }
1137 
1138     // Don't hoist machine instructions to the root basic block
1139     if (mach && LCA == root_block)
1140       break;
1141 
1142     uint start_lat = get_latency_for_node(LCA->head());
1143     uint end_idx   = LCA->end_idx();
1144     uint end_lat   = get_latency_for_node(LCA->get_node(end_idx));
1145     double LCA_freq = LCA->_freq;
1146 #ifndef PRODUCT
1147     if (trace_opto_pipelining()) {
1148       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1149         LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
1150     }
1151 #endif
1152     cand_cnt++;
1153     if (LCA_freq < least_freq              || // Better Frequency
1154         (StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
1155          (!StressGCM                    &&    // Otherwise, choose with latency
1156           !in_latency                   &&    // No block containing latency
1157           LCA_freq < least_freq * delta &&    // No worse frequency
1158           target >= end_lat             &&    // within latency range
1159           !self->is_iteratively_computed() )  // But don't hoist IV increments
1160              // because they may end up above other uses of their phi forcing
1161              // their result register to be different from their input.
1162        ) {
1163       least = LCA;            // Found cheaper block
1164       least_freq = LCA_freq;
1165       start_latency = start_lat;
1166       end_latency = end_lat;
1167       if (target <= start_lat)
1168         in_latency = true;
1169     }
1170   }
1171 
1172 #ifndef PRODUCT
1173   if (trace_opto_pipelining()) {
1174     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1175       least->_pre_order, start_latency, least_freq);
1176   }
1177 #endif
1178 
1179   // See if the latency needs to be updated
1180   if (target < end_latency) {
1181 #ifndef PRODUCT
1182     if (trace_opto_pipelining()) {
1183       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1184     }
1185 #endif
1186     set_latency_for_node(self, end_latency);
1187     partial_latency_of_defs(self);
1188   }
1189 
1190   return least;
1191 }
1192 
1193 
1194 //------------------------------schedule_late-----------------------------------
1195 // Now schedule all codes as LATE as possible.  This is the LCA in the
1196 // dominator tree of all USES of a value.  Pick the block with the least
1197 // loop nesting depth that is lowest in the dominator tree.
1198 extern const char must_clone[];
1199 void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) {
1200 #ifndef PRODUCT
1201   if (trace_opto_pipelining())
1202     tty->print("\n#---- schedule_late ----\n");
1203 #endif
1204 
1205   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1206   Node *self;
1207 
1208   // Walk over all the nodes from last to first
1209   while ((self = iter.next())) {
1210     Block* early = get_block_for_node(self); // Earliest legal placement
1211 
1212     if (self->is_top()) {
1213       // Top node goes in bb #2 with other constants.
1214       // It must be special-cased, because it has no out edges.
1215       early->add_inst(self);
1216       continue;
1217     }
1218 
1219     // No uses, just terminate
1220     if (self->outcnt() == 0) {
1221       assert(self->is_MachProj(), "sanity");
1222       continue;                   // Must be a dead machine projection
1223     }
1224 
1225     // If node is pinned in the block, then no scheduling can be done.
1226     if( self->pinned() )          // Pinned in block?
1227       continue;
1228 
1229     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1230     if (mach) {
1231       switch (mach->ideal_Opcode()) {
1232       case Op_CreateEx:
1233         // Don't move exception creation
1234         early->add_inst(self);
1235         continue;
1236         break;
1237       case Op_CheckCastPP: {
1238         // Don't move CheckCastPP nodes away from their input, if the input
1239         // is a rawptr (5071820).
1240         Node *def = self->in(1);
1241         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1242           early->add_inst(self);
1243 #ifdef ASSERT
1244           _raw_oops.push(def);
1245 #endif
1246           continue;
1247         }
1248         break;
1249       }
1250       default:
1251         break;
1252       }
1253     }
1254 
1255     // Gather LCA of all uses
1256     Block *LCA = NULL;
1257     {
1258       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1259         // For all uses, find LCA
1260         Node* use = self->fast_out(i);
1261         LCA = raise_LCA_above_use(LCA, use, self, this);
1262       }
1263     }  // (Hide defs of imax, i from rest of block.)
1264 
1265     // Place temps in the block of their use.  This isn't a
1266     // requirement for correctness but it reduces useless
1267     // interference between temps and other nodes.
1268     if (mach != NULL && mach->is_MachTemp()) {
1269       map_node_to_block(self, LCA);
1270       LCA->add_inst(self);
1271       continue;
1272     }
1273 
1274     // Check if 'self' could be anti-dependent on memory
1275     if (self->needs_anti_dependence_check()) {
1276       // Hoist LCA above possible-defs and insert anti-dependences to
1277       // defs in new LCA block.
1278       LCA = insert_anti_dependences(LCA, self);
1279     }
1280 
1281     if (early->_dom_depth > LCA->_dom_depth) {
1282       // Somehow the LCA has moved above the earliest legal point.
1283       // (One way this can happen is via memory_early_block.)
1284       if (C->subsume_loads() == true && !C->failing()) {
1285         // Retry with subsume_loads == false
1286         // If this is the first failure, the sentinel string will "stick"
1287         // to the Compile object, and the C2Compiler will see it and retry.
1288         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1289       } else {
1290         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1291         assert(false, "graph should be schedulable");
1292         C->record_method_not_compilable("late schedule failed: incorrect graph");
1293       }
1294       return;
1295     }
1296 
1297     // If there is no opportunity to hoist, then we're done.
1298     // In stress mode, try to hoist even the single operations.
1299     bool try_to_hoist = StressGCM || (LCA != early);
1300 
1301     // Must clone guys stay next to use; no hoisting allowed.
1302     // Also cannot hoist guys that alter memory or are otherwise not
1303     // allocatable (hoisting can make a value live longer, leading to
1304     // anti and output dependency problems which are normally resolved
1305     // by the register allocator giving everyone a different register).
1306     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1307       try_to_hoist = false;
1308 
1309     Block* late = NULL;
1310     if (try_to_hoist) {
1311       // Now find the block with the least execution frequency.
1312       // Start at the latest schedule and work up to the earliest schedule
1313       // in the dominator tree.  Thus the Node will dominate all its uses.
1314       late = hoist_to_cheaper_block(LCA, early, self);
1315     } else {
1316       // Just use the LCA of the uses.
1317       late = LCA;
1318     }
1319 
1320     // Put the node into target block
1321     schedule_node_into_block(self, late);
1322 
1323 #ifdef ASSERT
1324     if (self->needs_anti_dependence_check()) {
1325       // since precedence edges are only inserted when we're sure they
1326       // are needed make sure that after placement in a block we don't
1327       // need any new precedence edges.
1328       verify_anti_dependences(late, self);
1329     }
1330 #endif
1331   } // Loop until all nodes have been visited
1332 
1333 } // end ScheduleLate
1334 
1335 //------------------------------GlobalCodeMotion-------------------------------
1336 void PhaseCFG::global_code_motion() {
1337   ResourceMark rm;
1338 
1339 #ifndef PRODUCT
1340   if (trace_opto_pipelining()) {
1341     tty->print("\n---- Start GlobalCodeMotion ----\n");
1342   }
1343 #endif
1344 
1345   // Initialize the node to block mapping for things on the proj_list
1346   for (uint i = 0; i < _matcher.number_of_projections(); i++) {
1347     unmap_node_from_block(_matcher.get_projection(i));
1348   }
1349 
1350   // Set the basic block for Nodes pinned into blocks
1351   Arena* arena = Thread::current()->resource_area();
1352   VectorSet visited(arena);
1353   schedule_pinned_nodes(visited);
1354 
1355   // Find the earliest Block any instruction can be placed in.  Some
1356   // instructions are pinned into Blocks.  Unpinned instructions can
1357   // appear in last block in which all their inputs occur.
1358   visited.Clear();
1359   Node_Stack stack(arena, (C->live_nodes() >> 2) + 16); // pre-grow
1360   if (!schedule_early(visited, stack)) {
1361     // Bailout without retry
1362     C->record_method_not_compilable("early schedule failed");
1363     return;
1364   }
1365 
1366   // Build Def-Use edges.
1367   // Compute the latency information (via backwards walk) for all the
1368   // instructions in the graph
1369   _node_latency = new GrowableArray<uint>(); // resource_area allocation
1370 
1371   if (C->do_scheduling()) {
1372     compute_latencies_backwards(visited, stack);
1373   }
1374 
1375   // Now schedule all codes as LATE as possible.  This is the LCA in the
1376   // dominator tree of all USES of a value.  Pick the block with the least
1377   // loop nesting depth that is lowest in the dominator tree.
1378   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1379   schedule_late(visited, stack);
1380   if (C->failing()) {
1381     // schedule_late fails only when graph is incorrect.
1382     assert(!VerifyGraphEdges, "verification should have failed");
1383     return;
1384   }
1385 
1386 #ifndef PRODUCT
1387   if (trace_opto_pipelining()) {
1388     tty->print("\n---- Detect implicit null checks ----\n");
1389   }
1390 #endif
1391 
1392   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1393   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1394   // I can generate a memory op if there is not one nearby.
1395   if (C->is_method_compilation()) {
1396     // By reversing the loop direction we get a very minor gain on mpegaudio.
1397     // Feel free to revert to a forward loop for clarity.
1398     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1399     for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
1400       Node* proj = _matcher._null_check_tests[i];
1401       Node* val  = _matcher._null_check_tests[i + 1];
1402       Block* block = get_block_for_node(proj);
1403       implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
1404       // The implicit_null_check will only perform the transformation
1405       // if the null branch is truly uncommon, *and* it leads to an
1406       // uncommon trap.  Combined with the too_many_traps guards
1407       // above, this prevents SEGV storms reported in 6366351,
1408       // by recompiling offending methods without this optimization.
1409     }
1410   }
1411 
1412   bool block_size_threshold_ok = false;
1413   intptr_t *recalc_pressure_nodes = NULL;
1414   if (OptoRegScheduling) {
1415     for (uint i = 0; i < number_of_blocks(); i++) {
1416       Block* block = get_block(i);
1417       if (block->number_of_nodes() > 10) {
1418         block_size_threshold_ok = true;
1419         break;
1420       }
1421     }
1422   }
1423 
1424   // Enabling the scheduler for register pressure plus finding blocks of size to schedule for it
1425   // is key to enabling this feature.
1426   PhaseChaitin regalloc(C->unique(), *this, _matcher, true);
1427   ResourceArea live_arena(mtCompiler);      // Arena for liveness
1428   ResourceMark rm_live(&live_arena);
1429   PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true);
1430   PhaseIFG ifg(&live_arena);
1431   if (OptoRegScheduling && block_size_threshold_ok) {
1432     regalloc.mark_ssa();
1433     Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
1434     rm_live.reset_to_mark();           // Reclaim working storage
1435     IndexSet::reset_memory(C, &live_arena);
1436     uint node_size = regalloc._lrg_map.max_lrg_id();
1437     ifg.init(node_size); // Empty IFG
1438     regalloc.set_ifg(ifg);
1439     regalloc.set_live(live);
1440     regalloc.gather_lrg_masks(false);    // Collect LRG masks
1441     live.compute(node_size); // Compute liveness
1442 
1443     recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size);
1444     for (uint i = 0; i < node_size; i++) {
1445       recalc_pressure_nodes[i] = 0;
1446     }
1447   }
1448   _regalloc = &regalloc;
1449 
1450 #ifndef PRODUCT
1451   if (trace_opto_pipelining()) {
1452     tty->print("\n---- Start Local Scheduling ----\n");
1453   }
1454 #endif
1455 
1456   // Schedule locally.  Right now a simple topological sort.
1457   // Later, do a real latency aware scheduler.
1458   GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
1459   visited.Clear();
1460   for (uint i = 0; i < number_of_blocks(); i++) {
1461     Block* block = get_block(i);
1462     if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) {
1463       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1464         C->record_method_not_compilable("local schedule failed");
1465       }
1466       _regalloc = NULL;
1467       return;
1468     }
1469   }
1470   _regalloc = NULL;
1471 
1472   // If we inserted any instructions between a Call and his CatchNode,
1473   // clone the instructions on all paths below the Catch.
1474   for (uint i = 0; i < number_of_blocks(); i++) {
1475     Block* block = get_block(i);
1476     call_catch_cleanup(block);
1477   }
1478 
1479 #ifndef PRODUCT
1480   if (trace_opto_pipelining()) {
1481     tty->print("\n---- After GlobalCodeMotion ----\n");
1482     for (uint i = 0; i < number_of_blocks(); i++) {
1483       Block* block = get_block(i);
1484       block->dump();
1485     }
1486   }
1487 #endif
1488   // Dead.
1489   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1490 }
1491 
1492 bool PhaseCFG::do_global_code_motion() {
1493 
1494   build_dominator_tree();
1495   if (C->failing()) {
1496     return false;
1497   }
1498 
1499   NOT_PRODUCT( C->verify_graph_edges(); )
1500 
1501   estimate_block_frequency();
1502 
1503   global_code_motion();
1504 
1505   if (C->failing()) {
1506     return false;
1507   }
1508 
1509   return true;
1510 }
1511 
1512 //------------------------------Estimate_Block_Frequency-----------------------
1513 // Estimate block frequencies based on IfNode probabilities.
1514 void PhaseCFG::estimate_block_frequency() {
1515 
1516   // Force conditional branches leading to uncommon traps to be unlikely,
1517   // not because we get to the uncommon_trap with less relative frequency,
1518   // but because an uncommon_trap typically causes a deopt, so we only get
1519   // there once.
1520   if (C->do_freq_based_layout()) {
1521     Block_List worklist;
1522     Block* root_blk = get_block(0);
1523     for (uint i = 1; i < root_blk->num_preds(); i++) {
1524       Block *pb = get_block_for_node(root_blk->pred(i));
1525       if (pb->has_uncommon_code()) {
1526         worklist.push(pb);
1527       }
1528     }
1529     while (worklist.size() > 0) {
1530       Block* uct = worklist.pop();
1531       if (uct == get_root_block()) {
1532         continue;
1533       }
1534       for (uint i = 1; i < uct->num_preds(); i++) {
1535         Block *pb = get_block_for_node(uct->pred(i));
1536         if (pb->_num_succs == 1) {
1537           worklist.push(pb);
1538         } else if (pb->num_fall_throughs() == 2) {
1539           pb->update_uncommon_branch(uct);
1540         }
1541       }
1542     }
1543   }
1544 
1545   // Create the loop tree and calculate loop depth.
1546   _root_loop = create_loop_tree();
1547   _root_loop->compute_loop_depth(0);
1548 
1549   // Compute block frequency of each block, relative to a single loop entry.
1550   _root_loop->compute_freq();
1551 
1552   // Adjust all frequencies to be relative to a single method entry
1553   _root_loop->_freq = 1.0;
1554   _root_loop->scale_freq();
1555 
1556   // Save outmost loop frequency for LRG frequency threshold
1557   _outer_loop_frequency = _root_loop->outer_loop_freq();
1558 
1559   // force paths ending at uncommon traps to be infrequent
1560   if (!C->do_freq_based_layout()) {
1561     Block_List worklist;
1562     Block* root_blk = get_block(0);
1563     for (uint i = 1; i < root_blk->num_preds(); i++) {
1564       Block *pb = get_block_for_node(root_blk->pred(i));
1565       if (pb->has_uncommon_code()) {
1566         worklist.push(pb);
1567       }
1568     }
1569     while (worklist.size() > 0) {
1570       Block* uct = worklist.pop();
1571       uct->_freq = PROB_MIN;
1572       for (uint i = 1; i < uct->num_preds(); i++) {
1573         Block *pb = get_block_for_node(uct->pred(i));
1574         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1575           worklist.push(pb);
1576         }
1577       }
1578     }
1579   }
1580 
1581 #ifdef ASSERT
1582   for (uint i = 0; i < number_of_blocks(); i++) {
1583     Block* b = get_block(i);
1584     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1585   }
1586 #endif
1587 
1588 #ifndef PRODUCT
1589   if (PrintCFGBlockFreq) {
1590     tty->print_cr("CFG Block Frequencies");
1591     _root_loop->dump_tree();
1592     if (Verbose) {
1593       tty->print_cr("PhaseCFG dump");
1594       dump();
1595       tty->print_cr("Node dump");
1596       _root->dump(99999);
1597     }
1598   }
1599 #endif
1600 }
1601 
1602 //----------------------------create_loop_tree--------------------------------
1603 // Create a loop tree from the CFG
1604 CFGLoop* PhaseCFG::create_loop_tree() {
1605 
1606 #ifdef ASSERT
1607   assert(get_block(0) == get_root_block(), "first block should be root block");
1608   for (uint i = 0; i < number_of_blocks(); i++) {
1609     Block* block = get_block(i);
1610     // Check that _loop field are clear...we could clear them if not.
1611     assert(block->_loop == NULL, "clear _loop expected");
1612     // Sanity check that the RPO numbering is reflected in the _blocks array.
1613     // It doesn't have to be for the loop tree to be built, but if it is not,
1614     // then the blocks have been reordered since dom graph building...which
1615     // may question the RPO numbering
1616     assert(block->_rpo == i, "unexpected reverse post order number");
1617   }
1618 #endif
1619 
1620   int idct = 0;
1621   CFGLoop* root_loop = new CFGLoop(idct++);
1622 
1623   Block_List worklist;
1624 
1625   // Assign blocks to loops
1626   for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
1627     Block* block = get_block(i);
1628 
1629     if (block->head()->is_Loop()) {
1630       Block* loop_head = block;
1631       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1632       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1633       Block* tail = get_block_for_node(tail_n);
1634 
1635       // Defensively filter out Loop nodes for non-single-entry loops.
1636       // For all reasonable loops, the head occurs before the tail in RPO.
1637       if (i <= tail->_rpo) {
1638 
1639         // The tail and (recursive) predecessors of the tail
1640         // are made members of a new loop.
1641 
1642         assert(worklist.size() == 0, "nonempty worklist");
1643         CFGLoop* nloop = new CFGLoop(idct++);
1644         assert(loop_head->_loop == NULL, "just checking");
1645         loop_head->_loop = nloop;
1646         // Add to nloop so push_pred() will skip over inner loops
1647         nloop->add_member(loop_head);
1648         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1649 
1650         while (worklist.size() > 0) {
1651           Block* member = worklist.pop();
1652           if (member != loop_head) {
1653             for (uint j = 1; j < member->num_preds(); j++) {
1654               nloop->push_pred(member, j, worklist, this);
1655             }
1656           }
1657         }
1658       }
1659     }
1660   }
1661 
1662   // Create a member list for each loop consisting
1663   // of both blocks and (immediate child) loops.
1664   for (uint i = 0; i < number_of_blocks(); i++) {
1665     Block* block = get_block(i);
1666     CFGLoop* lp = block->_loop;
1667     if (lp == NULL) {
1668       // Not assigned to a loop. Add it to the method's pseudo loop.
1669       block->_loop = root_loop;
1670       lp = root_loop;
1671     }
1672     if (lp == root_loop || block != lp->head()) { // loop heads are already members
1673       lp->add_member(block);
1674     }
1675     if (lp != root_loop) {
1676       if (lp->parent() == NULL) {
1677         // Not a nested loop. Make it a child of the method's pseudo loop.
1678         root_loop->add_nested_loop(lp);
1679       }
1680       if (block == lp->head()) {
1681         // Add nested loop to member list of parent loop.
1682         lp->parent()->add_member(lp);
1683       }
1684     }
1685   }
1686 
1687   return root_loop;
1688 }
1689 
1690 //------------------------------push_pred--------------------------------------
1691 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1692   Node* pred_n = blk->pred(i);
1693   Block* pred = cfg->get_block_for_node(pred_n);
1694   CFGLoop *pred_loop = pred->_loop;
1695   if (pred_loop == NULL) {
1696     // Filter out blocks for non-single-entry loops.
1697     // For all reasonable loops, the head occurs before the tail in RPO.
1698     if (pred->_rpo > head()->_rpo) {
1699       pred->_loop = this;
1700       worklist.push(pred);
1701     }
1702   } else if (pred_loop != this) {
1703     // Nested loop.
1704     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1705       pred_loop = pred_loop->_parent;
1706     }
1707     // Make pred's loop be a child
1708     if (pred_loop->_parent == NULL) {
1709       add_nested_loop(pred_loop);
1710       // Continue with loop entry predecessor.
1711       Block* pred_head = pred_loop->head();
1712       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1713       assert(pred_head != head(), "loop head in only one loop");
1714       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1715     } else {
1716       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1717     }
1718   }
1719 }
1720 
1721 //------------------------------add_nested_loop--------------------------------
1722 // Make cl a child of the current loop in the loop tree.
1723 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1724   assert(_parent == NULL, "no parent yet");
1725   assert(cl != this, "not my own parent");
1726   cl->_parent = this;
1727   CFGLoop* ch = _child;
1728   if (ch == NULL) {
1729     _child = cl;
1730   } else {
1731     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1732     ch->_sibling = cl;
1733   }
1734 }
1735 
1736 //------------------------------compute_loop_depth-----------------------------
1737 // Store the loop depth in each CFGLoop object.
1738 // Recursively walk the children to do the same for them.
1739 void CFGLoop::compute_loop_depth(int depth) {
1740   _depth = depth;
1741   CFGLoop* ch = _child;
1742   while (ch != NULL) {
1743     ch->compute_loop_depth(depth + 1);
1744     ch = ch->_sibling;
1745   }
1746 }
1747 
1748 //------------------------------compute_freq-----------------------------------
1749 // Compute the frequency of each block and loop, relative to a single entry
1750 // into the dominating loop head.
1751 void CFGLoop::compute_freq() {
1752   // Bottom up traversal of loop tree (visit inner loops first.)
1753   // Set loop head frequency to 1.0, then transitively
1754   // compute frequency for all successors in the loop,
1755   // as well as for each exit edge.  Inner loops are
1756   // treated as single blocks with loop exit targets
1757   // as the successor blocks.
1758 
1759   // Nested loops first
1760   CFGLoop* ch = _child;
1761   while (ch != NULL) {
1762     ch->compute_freq();
1763     ch = ch->_sibling;
1764   }
1765   assert (_members.length() > 0, "no empty loops");
1766   Block* hd = head();
1767   hd->_freq = 1.0;
1768   for (int i = 0; i < _members.length(); i++) {
1769     CFGElement* s = _members.at(i);
1770     double freq = s->_freq;
1771     if (s->is_block()) {
1772       Block* b = s->as_Block();
1773       for (uint j = 0; j < b->_num_succs; j++) {
1774         Block* sb = b->_succs[j];
1775         update_succ_freq(sb, freq * b->succ_prob(j));
1776       }
1777     } else {
1778       CFGLoop* lp = s->as_CFGLoop();
1779       assert(lp->_parent == this, "immediate child");
1780       for (int k = 0; k < lp->_exits.length(); k++) {
1781         Block* eb = lp->_exits.at(k).get_target();
1782         double prob = lp->_exits.at(k).get_prob();
1783         update_succ_freq(eb, freq * prob);
1784       }
1785     }
1786   }
1787 
1788   // For all loops other than the outer, "method" loop,
1789   // sum and normalize the exit probability. The "method" loop
1790   // should keep the initial exit probability of 1, so that
1791   // inner blocks do not get erroneously scaled.
1792   if (_depth != 0) {
1793     // Total the exit probabilities for this loop.
1794     double exits_sum = 0.0f;
1795     for (int i = 0; i < _exits.length(); i++) {
1796       exits_sum += _exits.at(i).get_prob();
1797     }
1798 
1799     // Normalize the exit probabilities. Until now, the
1800     // probabilities estimate the possibility of exit per
1801     // a single loop iteration; afterward, they estimate
1802     // the probability of exit per loop entry.
1803     for (int i = 0; i < _exits.length(); i++) {
1804       Block* et = _exits.at(i).get_target();
1805       float new_prob = 0.0f;
1806       if (_exits.at(i).get_prob() > 0.0f) {
1807         new_prob = _exits.at(i).get_prob() / exits_sum;
1808       }
1809       BlockProbPair bpp(et, new_prob);
1810       _exits.at_put(i, bpp);
1811     }
1812 
1813     // Save the total, but guard against unreasonable probability,
1814     // as the value is used to estimate the loop trip count.
1815     // An infinite trip count would blur relative block
1816     // frequencies.
1817     if (exits_sum > 1.0f) exits_sum = 1.0;
1818     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1819     _exit_prob = exits_sum;
1820   }
1821 }
1822 
1823 //------------------------------succ_prob-------------------------------------
1824 // Determine the probability of reaching successor 'i' from the receiver block.
1825 float Block::succ_prob(uint i) {
1826   int eidx = end_idx();
1827   Node *n = get_node(eidx);  // Get ending Node
1828 
1829   int op = n->Opcode();
1830   if (n->is_Mach()) {
1831     if (n->is_MachNullCheck()) {
1832       // Can only reach here if called after lcm. The original Op_If is gone,
1833       // so we attempt to infer the probability from one or both of the
1834       // successor blocks.
1835       assert(_num_succs == 2, "expecting 2 successors of a null check");
1836       // If either successor has only one predecessor, then the
1837       // probability estimate can be derived using the
1838       // relative frequency of the successor and this block.
1839       if (_succs[i]->num_preds() == 2) {
1840         return _succs[i]->_freq / _freq;
1841       } else if (_succs[1-i]->num_preds() == 2) {
1842         return 1 - (_succs[1-i]->_freq / _freq);
1843       } else {
1844         // Estimate using both successor frequencies
1845         float freq = _succs[i]->_freq;
1846         return freq / (freq + _succs[1-i]->_freq);
1847       }
1848     }
1849     op = n->as_Mach()->ideal_Opcode();
1850   }
1851 
1852 
1853   // Switch on branch type
1854   switch( op ) {
1855   case Op_CountedLoopEnd:
1856   case Op_If: {
1857     assert (i < 2, "just checking");
1858     // Conditionals pass on only part of their frequency
1859     float prob  = n->as_MachIf()->_prob;
1860     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1861     // If succ[i] is the FALSE branch, invert path info
1862     if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
1863       return 1.0f - prob; // not taken
1864     } else {
1865       return prob; // taken
1866     }
1867   }
1868 
1869   case Op_Jump:
1870     // Divide the frequency between all successors evenly
1871     return 1.0f/_num_succs;
1872 
1873   case Op_Catch: {
1874     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1875     if (ci->_con == CatchProjNode::fall_through_index) {
1876       // Fall-thru path gets the lion's share.
1877       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1878     } else {
1879       // Presume exceptional paths are equally unlikely
1880       return PROB_UNLIKELY_MAG(5);
1881     }
1882   }
1883 
1884   case Op_Root:
1885   case Op_Goto:
1886     // Pass frequency straight thru to target
1887     return 1.0f;
1888 
1889   case Op_NeverBranch:
1890     return 0.0f;
1891 
1892   case Op_TailCall:
1893   case Op_TailJump:
1894   case Op_Return:
1895   case Op_Halt:
1896   case Op_Rethrow:
1897     // Do not push out freq to root block
1898     return 0.0f;
1899 
1900   default:
1901     ShouldNotReachHere();
1902   }
1903 
1904   return 0.0f;
1905 }
1906 
1907 //------------------------------num_fall_throughs-----------------------------
1908 // Return the number of fall-through candidates for a block
1909 int Block::num_fall_throughs() {
1910   int eidx = end_idx();
1911   Node *n = get_node(eidx);  // Get ending Node
1912 
1913   int op = n->Opcode();
1914   if (n->is_Mach()) {
1915     if (n->is_MachNullCheck()) {
1916       // In theory, either side can fall-thru, for simplicity sake,
1917       // let's say only the false branch can now.
1918       return 1;
1919     }
1920     op = n->as_Mach()->ideal_Opcode();
1921   }
1922 
1923   // Switch on branch type
1924   switch( op ) {
1925   case Op_CountedLoopEnd:
1926   case Op_If:
1927     return 2;
1928 
1929   case Op_Root:
1930   case Op_Goto:
1931     return 1;
1932 
1933   case Op_Catch: {
1934     for (uint i = 0; i < _num_succs; i++) {
1935       const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1936       if (ci->_con == CatchProjNode::fall_through_index) {
1937         return 1;
1938       }
1939     }
1940     return 0;
1941   }
1942 
1943   case Op_Jump:
1944   case Op_NeverBranch:
1945   case Op_TailCall:
1946   case Op_TailJump:
1947   case Op_Return:
1948   case Op_Halt:
1949   case Op_Rethrow:
1950     return 0;
1951 
1952   default:
1953     ShouldNotReachHere();
1954   }
1955 
1956   return 0;
1957 }
1958 
1959 //------------------------------succ_fall_through-----------------------------
1960 // Return true if a specific successor could be fall-through target.
1961 bool Block::succ_fall_through(uint i) {
1962   int eidx = end_idx();
1963   Node *n = get_node(eidx);  // Get ending Node
1964 
1965   int op = n->Opcode();
1966   if (n->is_Mach()) {
1967     if (n->is_MachNullCheck()) {
1968       // In theory, either side can fall-thru, for simplicity sake,
1969       // let's say only the false branch can now.
1970       return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
1971     }
1972     op = n->as_Mach()->ideal_Opcode();
1973   }
1974 
1975   // Switch on branch type
1976   switch( op ) {
1977   case Op_CountedLoopEnd:
1978   case Op_If:
1979   case Op_Root:
1980   case Op_Goto:
1981     return true;
1982 
1983   case Op_Catch: {
1984     const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
1985     return ci->_con == CatchProjNode::fall_through_index;
1986   }
1987 
1988   case Op_Jump:
1989   case Op_NeverBranch:
1990   case Op_TailCall:
1991   case Op_TailJump:
1992   case Op_Return:
1993   case Op_Halt:
1994   case Op_Rethrow:
1995     return false;
1996 
1997   default:
1998     ShouldNotReachHere();
1999   }
2000 
2001   return false;
2002 }
2003 
2004 //------------------------------update_uncommon_branch------------------------
2005 // Update the probability of a two-branch to be uncommon
2006 void Block::update_uncommon_branch(Block* ub) {
2007   int eidx = end_idx();
2008   Node *n = get_node(eidx);  // Get ending Node
2009 
2010   int op = n->as_Mach()->ideal_Opcode();
2011 
2012   assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
2013   assert(num_fall_throughs() == 2, "must be a two way branch block");
2014 
2015   // Which successor is ub?
2016   uint s;
2017   for (s = 0; s <_num_succs; s++) {
2018     if (_succs[s] == ub) break;
2019   }
2020   assert(s < 2, "uncommon successor must be found");
2021 
2022   // If ub is the true path, make the proability small, else
2023   // ub is the false path, and make the probability large
2024   bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
2025 
2026   // Get existing probability
2027   float p = n->as_MachIf()->_prob;
2028 
2029   if (invert) p = 1.0 - p;
2030   if (p > PROB_MIN) {
2031     p = PROB_MIN;
2032   }
2033   if (invert) p = 1.0 - p;
2034 
2035   n->as_MachIf()->_prob = p;
2036 }
2037 
2038 //------------------------------update_succ_freq-------------------------------
2039 // Update the appropriate frequency associated with block 'b', a successor of
2040 // a block in this loop.
2041 void CFGLoop::update_succ_freq(Block* b, double freq) {
2042   if (b->_loop == this) {
2043     if (b == head()) {
2044       // back branch within the loop
2045       // Do nothing now, the loop carried frequency will be
2046       // adjust later in scale_freq().
2047     } else {
2048       // simple branch within the loop
2049       b->_freq += freq;
2050     }
2051   } else if (!in_loop_nest(b)) {
2052     // branch is exit from this loop
2053     BlockProbPair bpp(b, freq);
2054     _exits.append(bpp);
2055   } else {
2056     // branch into nested loop
2057     CFGLoop* ch = b->_loop;
2058     ch->_freq += freq;
2059   }
2060 }
2061 
2062 //------------------------------in_loop_nest-----------------------------------
2063 // Determine if block b is in the receiver's loop nest.
2064 bool CFGLoop::in_loop_nest(Block* b) {
2065   int depth = _depth;
2066   CFGLoop* b_loop = b->_loop;
2067   int b_depth = b_loop->_depth;
2068   if (depth == b_depth) {
2069     return true;
2070   }
2071   while (b_depth > depth) {
2072     b_loop = b_loop->_parent;
2073     b_depth = b_loop->_depth;
2074   }
2075   return b_loop == this;
2076 }
2077 
2078 //------------------------------scale_freq-------------------------------------
2079 // Scale frequency of loops and blocks by trip counts from outer loops
2080 // Do a top down traversal of loop tree (visit outer loops first.)
2081 void CFGLoop::scale_freq() {
2082   double loop_freq = _freq * trip_count();
2083   _freq = loop_freq;
2084   for (int i = 0; i < _members.length(); i++) {
2085     CFGElement* s = _members.at(i);
2086     double block_freq = s->_freq * loop_freq;
2087     if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
2088       block_freq = MIN_BLOCK_FREQUENCY;
2089     s->_freq = block_freq;
2090   }
2091   CFGLoop* ch = _child;
2092   while (ch != NULL) {
2093     ch->scale_freq();
2094     ch = ch->_sibling;
2095   }
2096 }
2097 
2098 // Frequency of outer loop
2099 double CFGLoop::outer_loop_freq() const {
2100   if (_child != NULL) {
2101     return _child->_freq;
2102   }
2103   return _freq;
2104 }
2105 
2106 #ifndef PRODUCT
2107 //------------------------------dump_tree--------------------------------------
2108 void CFGLoop::dump_tree() const {
2109   dump();
2110   if (_child != NULL)   _child->dump_tree();
2111   if (_sibling != NULL) _sibling->dump_tree();
2112 }
2113 
2114 //------------------------------dump-------------------------------------------
2115 void CFGLoop::dump() const {
2116   for (int i = 0; i < _depth; i++) tty->print("   ");
2117   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
2118              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
2119   for (int i = 0; i < _depth; i++) tty->print("   ");
2120   tty->print("         members:");
2121   int k = 0;
2122   for (int i = 0; i < _members.length(); i++) {
2123     if (k++ >= 6) {
2124       tty->print("\n              ");
2125       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2126       k = 0;
2127     }
2128     CFGElement *s = _members.at(i);
2129     if (s->is_block()) {
2130       Block *b = s->as_Block();
2131       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
2132     } else {
2133       CFGLoop* lp = s->as_CFGLoop();
2134       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
2135     }
2136   }
2137   tty->print("\n");
2138   for (int i = 0; i < _depth; i++) tty->print("   ");
2139   tty->print("         exits:  ");
2140   k = 0;
2141   for (int i = 0; i < _exits.length(); i++) {
2142     if (k++ >= 7) {
2143       tty->print("\n              ");
2144       for (int j = 0; j < _depth+1; j++) tty->print("   ");
2145       k = 0;
2146     }
2147     Block *blk = _exits.at(i).get_target();
2148     double prob = _exits.at(i).get_prob();
2149     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
2150   }
2151   tty->print("\n");
2152 }
2153 #endif