1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_MULNODE_HPP
  26 #define SHARE_OPTO_MULNODE_HPP
  27 
  28 #include "opto/node.hpp"
  29 #include "opto/opcodes.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 class PhaseTransform;
  35 
  36 //------------------------------MulNode----------------------------------------
  37 // Classic MULTIPLY functionality.  This covers all the usual 'multiply'
  38 // behaviors for an algebraic ring.  Multiply-integer, multiply-float,
  39 // multiply-double, and binary-and are all inherited from this class.  The
  40 // various identity values are supplied by virtual functions.
  41 class MulNode : public Node {
  42   virtual uint hash() const;
  43 public:
  44   MulNode( Node *in1, Node *in2 ): Node(0,in1,in2) {
  45     init_class_id(Class_Mul);
  46   }
  47 
  48   // Handle algebraic identities here.  If we have an identity, return the Node
  49   // we are equivalent to.  We look for "add of zero" as an identity.
  50   virtual Node* Identity(PhaseGVN* phase);
  51 
  52   // We also canonicalize the Node, moving constants to the right input,
  53   // and flatten expressions (so that 1+x+2 becomes x+3).
  54   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  55 
  56   // Compute a new Type for this node.  Basically we just do the pre-check,
  57   // then call the virtual add() to set the type.
  58   virtual const Type* Value(PhaseGVN* phase) const;
  59 
  60   // Supplied function returns the product of the inputs.
  61   // This also type-checks the inputs for sanity.  Guaranteed never to
  62   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
  63   // This call recognizes the multiplicative zero type.
  64   virtual const Type *mul_ring( const Type *, const Type * ) const = 0;
  65 
  66   // Supplied function to return the multiplicative identity type
  67   virtual const Type *mul_id() const = 0;
  68 
  69   // Supplied function to return the additive identity type
  70   virtual const Type *add_id() const = 0;
  71 
  72   // Supplied function to return the additive opcode
  73   virtual int add_opcode() const = 0;
  74 
  75   // Supplied function to return the multiplicative opcode
  76   virtual int mul_opcode() const = 0;
  77 
  78 };
  79 
  80 //------------------------------MulINode---------------------------------------
  81 // Multiply 2 integers
  82 class MulINode : public MulNode {
  83 public:
  84   MulINode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
  85   virtual int Opcode() const;
  86   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  87   virtual const Type *mul_ring( const Type *, const Type * ) const;
  88   const Type *mul_id() const { return TypeInt::ONE; }
  89   const Type *add_id() const { return TypeInt::ZERO; }
  90   int add_opcode() const { return Op_AddI; }
  91   int mul_opcode() const { return Op_MulI; }
  92   const Type *bottom_type() const { return TypeInt::INT; }
  93   virtual uint ideal_reg() const { return Op_RegI; }
  94 };
  95 
  96 //------------------------------MulLNode---------------------------------------
  97 // Multiply 2 longs
  98 class MulLNode : public MulNode {
  99 public:
 100   MulLNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
 101   virtual int Opcode() const;
 102   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 103   virtual const Type *mul_ring( const Type *, const Type * ) const;
 104   const Type *mul_id() const { return TypeLong::ONE; }
 105   const Type *add_id() const { return TypeLong::ZERO; }
 106   int add_opcode() const { return Op_AddL; }
 107   int mul_opcode() const { return Op_MulL; }
 108   const Type *bottom_type() const { return TypeLong::LONG; }
 109   virtual uint ideal_reg() const { return Op_RegL; }
 110 };
 111 
 112 
 113 //------------------------------MulFNode---------------------------------------
 114 // Multiply 2 floats
 115 class MulFNode : public MulNode {
 116 public:
 117   MulFNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
 118   virtual int Opcode() const;
 119   virtual const Type *mul_ring( const Type *, const Type * ) const;
 120   const Type *mul_id() const { return TypeF::ONE; }
 121   const Type *add_id() const { return TypeF::ZERO; }
 122   int add_opcode() const { return Op_AddF; }
 123   int mul_opcode() const { return Op_MulF; }
 124   const Type *bottom_type() const { return Type::FLOAT; }
 125   virtual uint ideal_reg() const { return Op_RegF; }
 126 };
 127 
 128 //------------------------------MulDNode---------------------------------------
 129 // Multiply 2 doubles
 130 class MulDNode : public MulNode {
 131 public:
 132   MulDNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
 133   virtual int Opcode() const;
 134   virtual const Type *mul_ring( const Type *, const Type * ) const;
 135   const Type *mul_id() const { return TypeD::ONE; }
 136   const Type *add_id() const { return TypeD::ZERO; }
 137   int add_opcode() const { return Op_AddD; }
 138   int mul_opcode() const { return Op_MulD; }
 139   const Type *bottom_type() const { return Type::DOUBLE; }
 140   virtual uint ideal_reg() const { return Op_RegD; }
 141 };
 142 
 143 //-------------------------------MulHiLNode------------------------------------
 144 // Upper 64 bits of a 64 bit by 64 bit multiply
 145 class MulHiLNode : public Node {
 146 public:
 147   MulHiLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 148   virtual int Opcode() const;
 149   virtual const Type* Value(PhaseGVN* phase) const;
 150   const Type *bottom_type() const { return TypeLong::LONG; }
 151   virtual uint ideal_reg() const { return Op_RegL; }
 152 };
 153 
 154 //------------------------------AndINode---------------------------------------
 155 // Logically AND 2 integers.  Included with the MUL nodes because it inherits
 156 // all the behavior of multiplication on a ring.
 157 class AndINode : public MulINode {
 158 public:
 159   AndINode( Node *in1, Node *in2 ) : MulINode(in1,in2) {}
 160   virtual int Opcode() const;
 161   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 162   virtual Node* Identity(PhaseGVN* phase);
 163   virtual const Type *mul_ring( const Type *, const Type * ) const;
 164   const Type *mul_id() const { return TypeInt::MINUS_1; }
 165   const Type *add_id() const { return TypeInt::ZERO; }
 166   int add_opcode() const { return Op_OrI; }
 167   int mul_opcode() const { return Op_AndI; }
 168   virtual uint ideal_reg() const { return Op_RegI; }
 169 };
 170 
 171 //------------------------------AndINode---------------------------------------
 172 // Logically AND 2 longs.  Included with the MUL nodes because it inherits
 173 // all the behavior of multiplication on a ring.
 174 class AndLNode : public MulLNode {
 175 public:
 176   AndLNode( Node *in1, Node *in2 ) : MulLNode(in1,in2) {}
 177   virtual int Opcode() const;
 178   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 179   virtual Node* Identity(PhaseGVN* phase);
 180   virtual const Type *mul_ring( const Type *, const Type * ) const;
 181   const Type *mul_id() const { return TypeLong::MINUS_1; }
 182   const Type *add_id() const { return TypeLong::ZERO; }
 183   int add_opcode() const { return Op_OrL; }
 184   int mul_opcode() const { return Op_AndL; }
 185   virtual uint ideal_reg() const { return Op_RegL; }
 186 };
 187 
 188 //------------------------------LShiftINode------------------------------------
 189 // Logical shift left
 190 class LShiftINode : public Node {
 191 public:
 192   LShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 193   virtual int Opcode() const;
 194   virtual Node* Identity(PhaseGVN* phase);
 195   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 196   virtual const Type* Value(PhaseGVN* phase) const;
 197   const Type *bottom_type() const { return TypeInt::INT; }
 198   virtual uint ideal_reg() const { return Op_RegI; }
 199 };
 200 
 201 //------------------------------LShiftLNode------------------------------------
 202 // Logical shift left
 203 class LShiftLNode : public Node {
 204 public:
 205   LShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 206   virtual int Opcode() const;
 207   virtual Node* Identity(PhaseGVN* phase);
 208   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 209   virtual const Type* Value(PhaseGVN* phase) const;
 210   const Type *bottom_type() const { return TypeLong::LONG; }
 211   virtual uint ideal_reg() const { return Op_RegL; }
 212 };
 213 
 214 //------------------------------RShiftINode------------------------------------
 215 // Signed shift right
 216 class RShiftINode : public Node {
 217 public:
 218   RShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 219   virtual int Opcode() const;
 220   virtual Node* Identity(PhaseGVN* phase);
 221   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 222   virtual const Type* Value(PhaseGVN* phase) const;
 223   const Type *bottom_type() const { return TypeInt::INT; }
 224   virtual uint ideal_reg() const { return Op_RegI; }
 225 };
 226 
 227 //------------------------------RShiftLNode------------------------------------
 228 // Signed shift right
 229 class RShiftLNode : public Node {
 230 public:
 231   RShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 232   virtual int Opcode() const;
 233   virtual Node* Identity(PhaseGVN* phase);
 234   virtual const Type* Value(PhaseGVN* phase) const;
 235   const Type *bottom_type() const { return TypeLong::LONG; }
 236   virtual uint ideal_reg() const { return Op_RegL; }
 237 };
 238 
 239 
 240 //------------------------------URShiftINode-----------------------------------
 241 // Logical shift right
 242 class URShiftINode : public Node {
 243 public:
 244   URShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 245   virtual int Opcode() const;
 246   virtual Node* Identity(PhaseGVN* phase);
 247   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 248   virtual const Type* Value(PhaseGVN* phase) const;
 249   const Type *bottom_type() const { return TypeInt::INT; }
 250   virtual uint ideal_reg() const { return Op_RegI; }
 251 };
 252 
 253 //------------------------------URShiftLNode-----------------------------------
 254 // Logical shift right
 255 class URShiftLNode : public Node {
 256 public:
 257   URShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
 258   virtual int Opcode() const;
 259   virtual Node* Identity(PhaseGVN* phase);
 260   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 261   virtual const Type* Value(PhaseGVN* phase) const;
 262   const Type *bottom_type() const { return TypeLong::LONG; }
 263   virtual uint ideal_reg() const { return Op_RegL; }
 264 };
 265 
 266 //------------------------------FmaDNode--------------------------------------
 267 // fused-multiply-add double
 268 class FmaDNode : public Node {
 269 public:
 270   FmaDNode(Node *c, Node *in1, Node *in2, Node *in3) : Node(c, in1, in2, in3) {}
 271   virtual int Opcode() const;
 272   const Type *bottom_type() const { return Type::DOUBLE; }
 273   virtual uint ideal_reg() const { return Op_RegD; }
 274   virtual const Type* Value(PhaseGVN* phase) const;
 275 };
 276 
 277 //------------------------------FmaFNode--------------------------------------
 278 // fused-multiply-add float
 279 class FmaFNode : public Node {
 280 public:
 281   FmaFNode(Node *c, Node *in1, Node *in2, Node *in3) : Node(c, in1, in2, in3) {}
 282   virtual int Opcode() const;
 283   const Type *bottom_type() const { return Type::FLOAT; }
 284   virtual uint ideal_reg() const { return Op_RegF; }
 285   virtual const Type* Value(PhaseGVN* phase) const;
 286 };
 287 
 288 //------------------------------MulAddS2INode----------------------------------
 289 // Multiply shorts into integers and add them.
 290 // Semantics: I_OUT = S1 * S2 + S3 * S4
 291 class MulAddS2INode : public Node {
 292   virtual uint hash() const;
 293 public:
 294   MulAddS2INode(Node* in1, Node *in2, Node *in3, Node* in4) : Node(0, in1, in2, in3, in4) {}
 295   virtual int Opcode() const;
 296   const Type *bottom_type() const { return TypeInt::INT; }
 297   virtual uint ideal_reg() const { return Op_RegI; }
 298 };
 299 
 300 #endif // SHARE_OPTO_MULNODE_HPP