/* * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "memory/allocation.inline.hpp" #include "opto/connode.hpp" #include "opto/subnode.hpp" #include "opto/vectornode.hpp" #include "utilities/powerOfTwo.hpp" //------------------------------VectorNode-------------------------------------- // Return the vector operator for the specified scalar operation // and vector length. int VectorNode::opcode(int sopc, BasicType bt) { switch (sopc) { case Op_AddI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_AddVB; case T_CHAR: case T_SHORT: return Op_AddVS; case T_INT: return Op_AddVI; default: ShouldNotReachHere(); return 0; } case Op_AddL: assert(bt == T_LONG, "must be"); return Op_AddVL; case Op_AddF: assert(bt == T_FLOAT, "must be"); return Op_AddVF; case Op_AddD: assert(bt == T_DOUBLE, "must be"); return Op_AddVD; case Op_SubI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_SubVB; case T_CHAR: case T_SHORT: return Op_SubVS; case T_INT: return Op_SubVI; default: ShouldNotReachHere(); return 0; } case Op_SubL: assert(bt == T_LONG, "must be"); return Op_SubVL; case Op_SubF: assert(bt == T_FLOAT, "must be"); return Op_SubVF; case Op_SubD: assert(bt == T_DOUBLE, "must be"); return Op_SubVD; case Op_MulI: switch (bt) { case T_BOOLEAN:return 0; case T_BYTE: return Op_MulVB; case T_CHAR: case T_SHORT: return Op_MulVS; case T_INT: return Op_MulVI; default: ShouldNotReachHere(); return 0; } case Op_MulL: assert(bt == T_LONG, "must be"); return Op_MulVL; case Op_MulF: assert(bt == T_FLOAT, "must be"); return Op_MulVF; case Op_MulD: assert(bt == T_DOUBLE, "must be"); return Op_MulVD; case Op_FmaD: assert(bt == T_DOUBLE, "must be"); return Op_FmaVD; case Op_FmaF: assert(bt == T_FLOAT, "must be"); return Op_FmaVF; case Op_CMoveF: assert(bt == T_FLOAT, "must be"); return Op_CMoveVF; case Op_CMoveD: assert(bt == T_DOUBLE, "must be"); return Op_CMoveVD; case Op_DivF: assert(bt == T_FLOAT, "must be"); return Op_DivVF; case Op_DivD: assert(bt == T_DOUBLE, "must be"); return Op_DivVD; case Op_AbsI: switch (bt) { case T_BOOLEAN: case T_CHAR: return 0; // abs does not make sense for unsigned case T_BYTE: return Op_AbsVB; case T_SHORT: return Op_AbsVS; case T_INT: return Op_AbsVI; default: ShouldNotReachHere(); return 0; } case Op_AbsL: assert(bt == T_LONG, "must be"); return Op_AbsVL; case Op_MinI: switch (bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: return Op_MinV; default: ShouldNotReachHere(); return 0; } case Op_MinL: assert(bt == T_LONG, "must be"); return Op_MinV; case Op_MinF: assert(bt == T_FLOAT, "must be"); return Op_MinV; case Op_MinD: assert(bt == T_DOUBLE, "must be"); return Op_MinV; case Op_MaxI: switch (bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: return Op_MaxV; default: ShouldNotReachHere(); return 0; } case Op_MaxL: assert(bt == T_LONG, "must be"); return Op_MaxV; case Op_MaxF: assert(bt == T_FLOAT, "must be"); return Op_MaxV; case Op_MaxD: assert(bt == T_DOUBLE, "must be"); return Op_MaxV; case Op_AbsF: assert(bt == T_FLOAT, "must be"); return Op_AbsVF; case Op_AbsD: assert(bt == T_DOUBLE, "must be"); return Op_AbsVD; case Op_NegI: assert(bt == T_INT, "must be"); return Op_NegVI; case Op_NegF: assert(bt == T_FLOAT, "must be"); return Op_NegVF; case Op_NegD: assert(bt == T_DOUBLE, "must be"); return Op_NegVD; case Op_RoundDoubleMode: assert(bt == T_DOUBLE, "must be"); return Op_RoundDoubleModeV; case Op_SqrtF: assert(bt == T_FLOAT, "must be"); return Op_SqrtVF; case Op_SqrtD: assert(bt == T_DOUBLE, "must be"); return Op_SqrtVD; case Op_PopCountI: if (bt == T_INT) { return Op_PopCountVI; } // Unimplemented for subword types since bit count changes // depending on size of lane (and sign bit). return 0; case Op_LShiftI: switch (bt) { case T_BOOLEAN: case T_BYTE: return Op_LShiftVB; case T_CHAR: case T_SHORT: return Op_LShiftVS; case T_INT: return Op_LShiftVI; default: ShouldNotReachHere(); return 0; } case Op_LShiftL: assert(bt == T_LONG, "must be"); return Op_LShiftVL; case Op_RShiftI: switch (bt) { case T_BOOLEAN:return Op_URShiftVB; // boolean is unsigned value case T_CHAR: return Op_URShiftVS; // char is unsigned value case T_BYTE: return Op_RShiftVB; case T_SHORT: return Op_RShiftVS; case T_INT: return Op_RShiftVI; default: ShouldNotReachHere(); return 0; } case Op_RShiftL: assert(bt == T_LONG, "must be"); return Op_RShiftVL; case Op_URShiftB: assert(bt == T_BYTE, "must be"); return Op_URShiftVB; case Op_URShiftS: assert(bt == T_SHORT, "must be"); return Op_URShiftVS; case Op_URShiftI: switch (bt) { case T_BOOLEAN:return Op_URShiftVB; case T_CHAR: return Op_URShiftVS; case T_BYTE: case T_SHORT: return 0; // Vector logical right shift for signed short // values produces incorrect Java result for // negative data because java code should convert // a short value into int value with sign // extension before a shift. case T_INT: return Op_URShiftVI; default: ShouldNotReachHere(); return 0; } case Op_URShiftL: assert(bt == T_LONG, "must be"); return Op_URShiftVL; case Op_AndI: case Op_AndL: return Op_AndV; case Op_OrI: case Op_OrL: return Op_OrV; case Op_XorI: case Op_XorL: return Op_XorV; case Op_LoadB: case Op_LoadUB: case Op_LoadUS: case Op_LoadS: case Op_LoadI: case Op_LoadL: case Op_LoadF: case Op_LoadD: return Op_LoadVector; case Op_StoreB: case Op_StoreC: case Op_StoreI: case Op_StoreL: case Op_StoreF: case Op_StoreD: return Op_StoreVector; case Op_MulAddS2I: return Op_MulAddVS2VI; default: return 0; // Unimplemented } } int VectorNode::replicate_opcode(BasicType bt) { switch(bt) { case T_BOOLEAN: case T_BYTE: return Op_ReplicateB; case T_SHORT: case T_CHAR: return Op_ReplicateS; case T_INT: return Op_ReplicateI; case T_LONG: return Op_ReplicateL; case T_FLOAT: return Op_ReplicateF; case T_DOUBLE: return Op_ReplicateD; default: assert(false, "wrong type: %s", type2name(bt)); return 0; } } // Also used to check if the code generator // supports the vector operation. bool VectorNode::implemented(int opc, uint vlen, BasicType bt) { if (is_java_primitive(bt) && (vlen > 1) && is_power_of_2(vlen) && Matcher::vector_size_supported(bt, vlen)) { int vopc = VectorNode::opcode(opc, bt); return vopc > 0 && Matcher::match_rule_supported_vector(vopc, vlen, bt); } return false; } bool VectorNode::is_type_transition_short_to_int(Node* n) { switch (n->Opcode()) { case Op_MulAddS2I: return true; } return false; } bool VectorNode::is_type_transition_to_int(Node* n) { return is_type_transition_short_to_int(n); } bool VectorNode::is_muladds2i(Node* n) { if (n->Opcode() == Op_MulAddS2I) { return true; } return false; } bool VectorNode::is_roundopD(Node *n) { if (n->Opcode() == Op_RoundDoubleMode) { return true; } return false; } bool VectorNode::is_shift(Node* n) { switch (n->Opcode()) { case Op_LShiftI: case Op_LShiftL: case Op_RShiftI: case Op_RShiftL: case Op_URShiftI: case Op_URShiftL: return true; default: return false; } } bool VectorNode::is_vshift_cnt(Node* n) { switch (n->Opcode()) { case Op_LShiftCntV: case Op_RShiftCntV: return true; default: return false; } } // Check if input is loop invariant vector. bool VectorNode::is_invariant_vector(Node* n) { // Only Replicate vector nodes are loop invariant for now. switch (n->Opcode()) { case Op_ReplicateB: case Op_ReplicateS: case Op_ReplicateI: case Op_ReplicateL: case Op_ReplicateF: case Op_ReplicateD: return true; default: return false; } } // [Start, end) half-open range defining which operands are vectors void VectorNode::vector_operands(Node* n, uint* start, uint* end) { switch (n->Opcode()) { case Op_LoadB: case Op_LoadUB: case Op_LoadS: case Op_LoadUS: case Op_LoadI: case Op_LoadL: case Op_LoadF: case Op_LoadD: case Op_LoadP: case Op_LoadN: *start = 0; *end = 0; // no vector operands break; case Op_StoreB: case Op_StoreC: case Op_StoreI: case Op_StoreL: case Op_StoreF: case Op_StoreD: case Op_StoreP: case Op_StoreN: *start = MemNode::ValueIn; *end = MemNode::ValueIn + 1; // 1 vector operand break; case Op_LShiftI: case Op_LShiftL: case Op_RShiftI: case Op_RShiftL: case Op_URShiftI: case Op_URShiftL: *start = 1; *end = 2; // 1 vector operand break; case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD: case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD: case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD: case Op_DivF: case Op_DivD: case Op_AndI: case Op_AndL: case Op_OrI: case Op_OrL: case Op_XorI: case Op_XorL: case Op_MulAddS2I: *start = 1; *end = 3; // 2 vector operands break; case Op_CMoveI: case Op_CMoveL: case Op_CMoveF: case Op_CMoveD: *start = 2; *end = n->req(); break; case Op_FmaD: case Op_FmaF: *start = 1; *end = 4; // 3 vector operands break; default: *start = 1; *end = n->req(); // default is all operands } } // Make a vector node for binary operation VectorNode* VectorNode::make(int vopc, Node* n1, Node* n2, const TypeVect* vt) { // This method should not be called for unimplemented vectors. guarantee(vopc > 0, "vopc must be > 0"); switch (vopc) { case Op_AddVB: return new AddVBNode(n1, n2, vt); case Op_AddVS: return new AddVSNode(n1, n2, vt); case Op_AddVI: return new AddVINode(n1, n2, vt); case Op_AddVL: return new AddVLNode(n1, n2, vt); case Op_AddVF: return new AddVFNode(n1, n2, vt); case Op_AddVD: return new AddVDNode(n1, n2, vt); case Op_SubVB: return new SubVBNode(n1, n2, vt); case Op_SubVS: return new SubVSNode(n1, n2, vt); case Op_SubVI: return new SubVINode(n1, n2, vt); case Op_SubVL: return new SubVLNode(n1, n2, vt); case Op_SubVF: return new SubVFNode(n1, n2, vt); case Op_SubVD: return new SubVDNode(n1, n2, vt); case Op_MulVB: return new MulVBNode(n1, n2, vt); case Op_MulVS: return new MulVSNode(n1, n2, vt); case Op_MulVI: return new MulVINode(n1, n2, vt); case Op_MulVL: return new MulVLNode(n1, n2, vt); case Op_MulVF: return new MulVFNode(n1, n2, vt); case Op_MulVD: return new MulVDNode(n1, n2, vt); case Op_DivVF: return new DivVFNode(n1, n2, vt); case Op_DivVD: return new DivVDNode(n1, n2, vt); case Op_MinV: return new MinVNode(n1, n2, vt); case Op_MaxV: return new MaxVNode(n1, n2, vt); case Op_AbsVF: return new AbsVFNode(n1, vt); case Op_AbsVD: return new AbsVDNode(n1, vt); case Op_AbsVB: return new AbsVBNode(n1, vt); case Op_AbsVS: return new AbsVSNode(n1, vt); case Op_AbsVI: return new AbsVINode(n1, vt); case Op_AbsVL: return new AbsVLNode(n1, vt); case Op_NegVI: return new NegVINode(n1, vt); case Op_NegVF: return new NegVFNode(n1, vt); case Op_NegVD: return new NegVDNode(n1, vt); case Op_SqrtVF: return new SqrtVFNode(n1, vt); case Op_SqrtVD: return new SqrtVDNode(n1, vt); case Op_PopCountVI: return new PopCountVINode(n1, vt); case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt); case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt); case Op_LShiftVI: return new LShiftVINode(n1, n2, vt); case Op_LShiftVL: return new LShiftVLNode(n1, n2, vt); case Op_RShiftVB: return new RShiftVBNode(n1, n2, vt); case Op_RShiftVS: return new RShiftVSNode(n1, n2, vt); case Op_RShiftVI: return new RShiftVINode(n1, n2, vt); case Op_RShiftVL: return new RShiftVLNode(n1, n2, vt); case Op_URShiftVB: return new URShiftVBNode(n1, n2, vt); case Op_URShiftVS: return new URShiftVSNode(n1, n2, vt); case Op_URShiftVI: return new URShiftVINode(n1, n2, vt); case Op_URShiftVL: return new URShiftVLNode(n1, n2, vt); case Op_AndV: return new AndVNode(n1, n2, vt); case Op_OrV: return new OrVNode (n1, n2, vt); case Op_XorV: return new XorVNode(n1, n2, vt); case Op_RoundDoubleModeV: return new RoundDoubleModeVNode(n1, n2, vt); case Op_MulAddVS2VI: return new MulAddVS2VINode(n1, n2, vt); default: fatal("Missed vector creation for '%s'", NodeClassNames[vopc]); return NULL; } } // Return the vector version of a scalar binary operation node. VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt) { const TypeVect* vt = TypeVect::make(bt, vlen); int vopc = VectorNode::opcode(opc, bt); // This method should not be called for unimplemented vectors. guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]); return make(vopc, n1, n2, vt); } // Make a vector node for ternary operation VectorNode* VectorNode::make(int vopc, Node* n1, Node* n2, Node* n3, const TypeVect* vt) { // This method should not be called for unimplemented vectors. guarantee(vopc > 0, "vopc must be > 0"); switch (vopc) { case Op_FmaVD: return new FmaVDNode(n1, n2, n3, vt); case Op_FmaVF: return new FmaVFNode(n1, n2, n3, vt); default: fatal("Missed vector creation for '%s'", NodeClassNames[vopc]); return NULL; } } // Return the vector version of a scalar ternary operation node. VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, Node* n3, uint vlen, BasicType bt) { const TypeVect* vt = TypeVect::make(bt, vlen); int vopc = VectorNode::opcode(opc, bt); // This method should not be called for unimplemented vectors. guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]); return make(vopc, n1, n2, n3, vt); } // Scalar promotion VectorNode* VectorNode::scalar2vector(Node* s, uint vlen, const Type* opd_t) { BasicType bt = opd_t->array_element_basic_type(); const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen) : TypeVect::make(bt, vlen); switch (bt) { case T_BOOLEAN: case T_BYTE: return new ReplicateBNode(s, vt); case T_CHAR: case T_SHORT: return new ReplicateSNode(s, vt); case T_INT: return new ReplicateINode(s, vt); case T_LONG: return new ReplicateLNode(s, vt); case T_FLOAT: return new ReplicateFNode(s, vt); case T_DOUBLE: return new ReplicateDNode(s, vt); default: fatal("Type '%s' is not supported for vectors", type2name(bt)); return NULL; } } VectorNode* VectorNode::shift_count(int opc, Node* cnt, uint vlen, BasicType bt) { // Match shift count type with shift vector type. const TypeVect* vt = TypeVect::make(bt, vlen); switch (opc) { case Op_LShiftI: case Op_LShiftL: return new LShiftCntVNode(cnt, vt); case Op_RShiftI: case Op_RShiftL: case Op_URShiftB: case Op_URShiftS: case Op_URShiftI: case Op_URShiftL: return new RShiftCntVNode(cnt, vt); default: fatal("Missed vector creation for '%s'", NodeClassNames[opc]); return NULL; } } bool VectorNode::is_vector_shift(int opc) { assert(opc > _last_machine_leaf && opc < _last_opcode, "invalid opcode"); switch (opc) { case Op_LShiftVB: case Op_LShiftVS: case Op_LShiftVI: case Op_LShiftVL: case Op_RShiftVB: case Op_RShiftVS: case Op_RShiftVI: case Op_RShiftVL: case Op_URShiftVB: case Op_URShiftVS: case Op_URShiftVI: case Op_URShiftVL: return true; default: return false; } } bool VectorNode::is_vector_shift_count(int opc) { assert(opc > _last_machine_leaf && opc < _last_opcode, "invalid opcode"); switch (opc) { case Op_RShiftCntV: case Op_LShiftCntV: return true; default: return false; } } static bool is_con_M1(Node* n) { if (n->is_Con()) { const Type* t = n->bottom_type(); if (t->isa_int() && t->is_int()->get_con() == -1) { return true; } if (t->isa_long() && t->is_long()->get_con() == -1) { return true; } } return false; } bool VectorNode::is_all_ones_vector(Node* n) { switch (n->Opcode()) { case Op_ReplicateB: case Op_ReplicateS: case Op_ReplicateI: case Op_ReplicateL: return is_con_M1(n->in(1)); default: return false; } } bool VectorNode::is_vector_bitwise_not_pattern(Node* n) { if (n->Opcode() == Op_XorV) { return is_all_ones_vector(n->in(1)) || is_all_ones_vector(n->in(2)); } return false; } // Return initial Pack node. Additional operands added with add_opd() calls. PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) { const TypeVect* vt = TypeVect::make(bt, vlen); switch (bt) { case T_BOOLEAN: case T_BYTE: return new PackBNode(s, vt); case T_CHAR: case T_SHORT: return new PackSNode(s, vt); case T_INT: return new PackINode(s, vt); case T_LONG: return new PackLNode(s, vt); case T_FLOAT: return new PackFNode(s, vt); case T_DOUBLE: return new PackDNode(s, vt); default: fatal("Type '%s' is not supported for vectors", type2name(bt)); return NULL; } } // Create a binary tree form for Packs. [lo, hi) (half-open) range PackNode* PackNode::binary_tree_pack(int lo, int hi) { int ct = hi - lo; assert(is_power_of_2(ct), "power of 2"); if (ct == 2) { PackNode* pk = PackNode::make(in(lo), 2, vect_type()->element_basic_type()); pk->add_opd(in(lo+1)); return pk; } else { int mid = lo + ct/2; PackNode* n1 = binary_tree_pack(lo, mid); PackNode* n2 = binary_tree_pack(mid, hi ); BasicType bt = n1->vect_type()->element_basic_type(); assert(bt == n2->vect_type()->element_basic_type(), "should be the same"); switch (bt) { case T_BOOLEAN: case T_BYTE: return new PackSNode(n1, n2, TypeVect::make(T_SHORT, 2)); case T_CHAR: case T_SHORT: return new PackINode(n1, n2, TypeVect::make(T_INT, 2)); case T_INT: return new PackLNode(n1, n2, TypeVect::make(T_LONG, 2)); case T_LONG: return new Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2)); case T_FLOAT: return new PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2)); case T_DOUBLE: return new Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2)); default: fatal("Type '%s' is not supported for vectors", type2name(bt)); return NULL; } } } // Return the vector version of a scalar load node. LoadVectorNode* LoadVectorNode::make(int opc, Node* ctl, Node* mem, Node* adr, const TypePtr* atyp, uint vlen, BasicType bt, ControlDependency control_dependency) { const TypeVect* vt = TypeVect::make(bt, vlen); return new LoadVectorNode(ctl, mem, adr, atyp, vt, control_dependency); } // Return the vector version of a scalar store node. StoreVectorNode* StoreVectorNode::make(int opc, Node* ctl, Node* mem, Node* adr, const TypePtr* atyp, Node* val, uint vlen) { return new StoreVectorNode(ctl, mem, adr, atyp, val); } int ExtractNode::opcode(BasicType bt) { switch (bt) { case T_BOOLEAN: return Op_ExtractUB; case T_BYTE: return Op_ExtractB; case T_CHAR: return Op_ExtractC; case T_SHORT: return Op_ExtractS; case T_INT: return Op_ExtractI; case T_LONG: return Op_ExtractL; case T_FLOAT: return Op_ExtractF; case T_DOUBLE: return Op_ExtractD; default: assert(false, "wrong type: %s", type2name(bt)); return 0; } } // Extract a scalar element of vector. Node* ExtractNode::make(Node* v, uint position, BasicType bt) { assert((int)position < Matcher::max_vector_size(bt), "pos in range"); ConINode* pos = ConINode::make((int)position); switch (bt) { case T_BOOLEAN: return new ExtractUBNode(v, pos); case T_BYTE: return new ExtractBNode(v, pos); case T_CHAR: return new ExtractCNode(v, pos); case T_SHORT: return new ExtractSNode(v, pos); case T_INT: return new ExtractINode(v, pos); case T_LONG: return new ExtractLNode(v, pos); case T_FLOAT: return new ExtractFNode(v, pos); case T_DOUBLE: return new ExtractDNode(v, pos); default: assert(false, "wrong type: %s", type2name(bt)); return NULL; } } int ReductionNode::opcode(int opc, BasicType bt) { int vopc = opc; switch (opc) { case Op_AddI: switch (bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: vopc = Op_AddReductionVI; break; default: ShouldNotReachHere(); return 0; } break; case Op_AddL: assert(bt == T_LONG, "must be"); vopc = Op_AddReductionVL; break; case Op_AddF: assert(bt == T_FLOAT, "must be"); vopc = Op_AddReductionVF; break; case Op_AddD: assert(bt == T_DOUBLE, "must be"); vopc = Op_AddReductionVD; break; case Op_MulI: switch (bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: vopc = Op_MulReductionVI; break; default: ShouldNotReachHere(); return 0; } break; case Op_MulL: assert(bt == T_LONG, "must be"); vopc = Op_MulReductionVL; break; case Op_MulF: assert(bt == T_FLOAT, "must be"); vopc = Op_MulReductionVF; break; case Op_MulD: assert(bt == T_DOUBLE, "must be"); vopc = Op_MulReductionVD; break; case Op_MinI: switch (bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: vopc = Op_MinReductionV; break; default: ShouldNotReachHere(); return 0; } break; case Op_MinL: assert(bt == T_LONG, "must be"); vopc = Op_MinReductionV; break; case Op_MinF: assert(bt == T_FLOAT, "must be"); vopc = Op_MinReductionV; break; case Op_MinD: assert(bt == T_DOUBLE, "must be"); vopc = Op_MinReductionV; break; case Op_MaxI: switch (bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: vopc = Op_MaxReductionV; break; default: ShouldNotReachHere(); return 0; } break; case Op_MaxL: assert(bt == T_LONG, "must be"); vopc = Op_MaxReductionV; break; case Op_MaxF: assert(bt == T_FLOAT, "must be"); vopc = Op_MaxReductionV; break; case Op_MaxD: assert(bt == T_DOUBLE, "must be"); vopc = Op_MaxReductionV; break; case Op_AndI: switch (bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: vopc = Op_AndReductionV; break; default: ShouldNotReachHere(); return 0; } break; case Op_AndL: assert(bt == T_LONG, "must be"); vopc = Op_AndReductionV; break; case Op_OrI: switch(bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: vopc = Op_OrReductionV; break; default: ShouldNotReachHere(); return 0; } break; case Op_OrL: assert(bt == T_LONG, "must be"); vopc = Op_OrReductionV; break; case Op_XorI: switch(bt) { case T_BOOLEAN: case T_CHAR: return 0; case T_BYTE: case T_SHORT: case T_INT: vopc = Op_XorReductionV; break; default: ShouldNotReachHere(); return 0; } break; case Op_XorL: assert(bt == T_LONG, "must be"); vopc = Op_XorReductionV; break; default: break; } return vopc; } // Return the appropriate reduction node. ReductionNode* ReductionNode::make(int opc, Node *ctrl, Node* n1, Node* n2, BasicType bt) { int vopc = opcode(opc, bt); // This method should not be called for unimplemented vectors. guarantee(vopc != opc, "Vector for '%s' is not implemented", NodeClassNames[opc]); switch (vopc) { case Op_AddReductionVI: return new AddReductionVINode(ctrl, n1, n2); case Op_AddReductionVL: return new AddReductionVLNode(ctrl, n1, n2); case Op_AddReductionVF: return new AddReductionVFNode(ctrl, n1, n2); case Op_AddReductionVD: return new AddReductionVDNode(ctrl, n1, n2); case Op_MulReductionVI: return new MulReductionVINode(ctrl, n1, n2); case Op_MulReductionVL: return new MulReductionVLNode(ctrl, n1, n2); case Op_MulReductionVF: return new MulReductionVFNode(ctrl, n1, n2); case Op_MulReductionVD: return new MulReductionVDNode(ctrl, n1, n2); case Op_MinReductionV: return new MinReductionVNode(ctrl, n1, n2); case Op_MaxReductionV: return new MaxReductionVNode(ctrl, n1, n2); case Op_AndReductionV: return new AndReductionVNode(ctrl, n1, n2); case Op_OrReductionV: return new OrReductionVNode(ctrl, n1, n2); case Op_XorReductionV: return new XorReductionVNode(ctrl, n1, n2); default: assert(false, "unknown node: %s", NodeClassNames[vopc]); return NULL; } } VectorStoreMaskNode* VectorStoreMaskNode::make(PhaseGVN& gvn, Node* in, BasicType in_type, uint num_elem) { assert(in->bottom_type()->isa_vect(), "sanity"); const TypeVect* vt = TypeVect::make(T_BOOLEAN, num_elem); int elem_size = type2aelembytes(in_type); return new VectorStoreMaskNode(in, gvn.intcon(elem_size), vt); } VectorCastNode* VectorCastNode::make(int vopc, Node* n1, BasicType bt, uint vlen) { const TypeVect* vt = TypeVect::make(bt, vlen); switch (vopc) { case Op_VectorCastB2X: return new VectorCastB2XNode(n1, vt); case Op_VectorCastS2X: return new VectorCastS2XNode(n1, vt); case Op_VectorCastI2X: return new VectorCastI2XNode(n1, vt); case Op_VectorCastL2X: return new VectorCastL2XNode(n1, vt); case Op_VectorCastF2X: return new VectorCastF2XNode(n1, vt); case Op_VectorCastD2X: return new VectorCastD2XNode(n1, vt); default: assert(false, "unknown node: %s", NodeClassNames[vopc]); return NULL; } } int VectorCastNode::opcode(BasicType bt) { switch (bt) { case T_BYTE: return Op_VectorCastB2X; case T_SHORT: return Op_VectorCastS2X; case T_INT: return Op_VectorCastI2X; case T_LONG: return Op_VectorCastL2X; case T_FLOAT: return Op_VectorCastF2X; case T_DOUBLE: return Op_VectorCastD2X; default: assert(false, "unknown type: %s", type2name(bt)); return 0; } } Node* ReductionNode::make_reduction_input(PhaseGVN& gvn, int opc, BasicType bt) { int vopc = opcode(opc, bt); guarantee(vopc != opc, "Vector reduction for '%s' is not implemented", NodeClassNames[opc]); switch (vopc) { case Op_AndReductionV: switch (bt) { case T_BYTE: case T_SHORT: case T_INT: return gvn.makecon(TypeInt::MINUS_1); case T_LONG: return gvn.makecon(TypeLong::MINUS_1); default: fatal("Missed vector creation for '%s' as the basic type is not correct.", NodeClassNames[vopc]); return NULL; } break; case Op_AddReductionVI: // fallthrough case Op_AddReductionVL: // fallthrough case Op_AddReductionVF: // fallthrough case Op_AddReductionVD: case Op_OrReductionV: case Op_XorReductionV: return gvn.zerocon(bt); case Op_MulReductionVI: return gvn.makecon(TypeInt::ONE); case Op_MulReductionVL: return gvn.makecon(TypeLong::ONE); case Op_MulReductionVF: return gvn.makecon(TypeF::ONE); case Op_MulReductionVD: return gvn.makecon(TypeD::ONE); case Op_MinReductionV: switch (bt) { case T_BYTE: case T_SHORT: case T_INT: return gvn.makecon(TypeInt::MAX); case T_LONG: return gvn.makecon(TypeLong::MAX); case T_FLOAT: return gvn.makecon(TypeF::POS_INF); case T_DOUBLE: return gvn.makecon(TypeD::POS_INF); default: Unimplemented(); return NULL; } break; case Op_MaxReductionV: switch (bt) { case T_BYTE: case T_SHORT: case T_INT: return gvn.makecon(TypeInt::MIN); case T_LONG: return gvn.makecon(TypeLong::MIN); case T_FLOAT: return gvn.makecon(TypeF::NEG_INF); case T_DOUBLE: return gvn.makecon(TypeD::NEG_INF); default: Unimplemented(); return NULL; } break; default: fatal("Missed vector creation for '%s'", NodeClassNames[vopc]); return NULL; } } bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) { if (is_java_primitive(bt) && (vlen > 1) && is_power_of_2(vlen) && Matcher::vector_size_supported(bt, vlen)) { int vopc = ReductionNode::opcode(opc, bt); return vopc != opc && Matcher::match_rule_supported(vopc); } return false; } MacroLogicVNode* MacroLogicVNode::make(PhaseGVN& gvn, Node* in1, Node* in2, Node* in3, uint truth_table, const TypeVect* vt) { assert(truth_table <= 0xFF, "invalid"); assert(in1->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch"); assert(in2->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch"); assert(in3->bottom_type()->is_vect()->length_in_bytes() == vt->length_in_bytes(), "mismatch"); Node* fn = gvn.intcon(truth_table); return new MacroLogicVNode(in1, in2, in3, fn, vt); } #ifndef PRODUCT void VectorMaskCmpNode::dump_spec(outputStream *st) const { st->print(" %d #", _predicate); _type->dump_on(st); } #endif // PRODUCT Node* VectorReinterpretNode::Identity(PhaseGVN *phase) { Node* n = in(1); if (n->Opcode() == Op_VectorReinterpret) { if (Type::cmp(bottom_type(), n->in(1)->bottom_type()) == 0) { return n->in(1); } } return this; } Node* VectorInsertNode::make(Node* vec, Node* new_val, int position) { assert(position < (int)vec->bottom_type()->is_vect()->length(), "pos in range"); ConINode* pos = ConINode::make(position); return new VectorInsertNode(vec, new_val, pos, vec->bottom_type()->is_vect()); } Node* VectorUnboxNode::Identity(PhaseGVN *phase) { Node* n = obj()->uncast(); if (EnableVectorReboxing && n->Opcode() == Op_VectorBox) { if (Type::cmp(bottom_type(), n->in(VectorBoxNode::Value)->bottom_type()) == 0) { return n->in(VectorBoxNode::Value); } } return this; } const TypeFunc* VectorBoxNode::vec_box_type(const TypeInstPtr* box_type) { const Type** fields = TypeTuple::fields(0); const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); fields = TypeTuple::fields(1); fields[TypeFunc::Parms+0] = box_type; const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); return TypeFunc::make(domain, range); } #ifndef PRODUCT void VectorBoxAllocateNode::dump_spec(outputStream *st) const { CallStaticJavaNode::dump_spec(st); } #endif // !PRODUCT