1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/powerOfTwo.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 // Dictionary of types shared among compilations.
  49 Dict* Type::_shared_type_dict = NULL;
  50 
  51 // Array which maps compiler types to Basic Types
  52 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  53   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  54   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  55   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  56   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  57   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  58   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  59   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  60   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  61   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  62   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  63 
  64 #if defined(PPC64)
  65   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  66   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  67   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  68   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  69   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  70 #elif defined(S390)
  71   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  72   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  73   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  74   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  75   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  82 #endif
  83   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  84   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  85   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  86   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  87   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  88   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  89   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  90   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  91   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  92   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  93   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  94   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  95   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  96   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  97   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  98   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  99   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 100   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 101 };
 102 
 103 // Map ideal registers (machine types) to ideal types
 104 const Type *Type::mreg2type[_last_machine_leaf];
 105 
 106 // Map basic types to canonical Type* pointers.
 107 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 108 
 109 // Map basic types to constant-zero Types.
 110 const Type* Type::            _zero_type[T_CONFLICT+1];
 111 
 112 // Map basic types to array-body alias types.
 113 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 114 
 115 //=============================================================================
 116 // Convenience common pre-built types.
 117 const Type *Type::ABIO;         // State-of-machine only
 118 const Type *Type::BOTTOM;       // All values
 119 const Type *Type::CONTROL;      // Control only
 120 const Type *Type::DOUBLE;       // All doubles
 121 const Type *Type::FLOAT;        // All floats
 122 const Type *Type::HALF;         // Placeholder half of doublewide type
 123 const Type *Type::MEMORY;       // Abstract store only
 124 const Type *Type::RETURN_ADDRESS;
 125 const Type *Type::TOP;          // No values in set
 126 
 127 //------------------------------get_const_type---------------------------
 128 const Type* Type::get_const_type(ciType* type) {
 129   if (type == NULL) {
 130     return NULL;
 131   } else if (type->is_primitive_type()) {
 132     return get_const_basic_type(type->basic_type());
 133   } else {
 134     return TypeOopPtr::make_from_klass(type->as_klass());
 135   }
 136 }
 137 
 138 //---------------------------array_element_basic_type---------------------------------
 139 // Mapping to the array element's basic type.
 140 BasicType Type::array_element_basic_type() const {
 141   BasicType bt = basic_type();
 142   if (bt == T_INT) {
 143     if (this == TypeInt::INT)   return T_INT;
 144     if (this == TypeInt::CHAR)  return T_CHAR;
 145     if (this == TypeInt::BYTE)  return T_BYTE;
 146     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 147     if (this == TypeInt::SHORT) return T_SHORT;
 148     return T_VOID;
 149   }
 150   return bt;
 151 }
 152 
 153 // For two instance arrays of same dimension, return the base element types.
 154 // Otherwise or if the arrays have different dimensions, return NULL.
 155 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 156                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 157 
 158   if (e1) *e1 = NULL;
 159   if (e2) *e2 = NULL;
 160   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 161   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 162 
 163   if (a1tap != NULL && a2tap != NULL) {
 164     // Handle multidimensional arrays
 165     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 166     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 167     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 168       a1tap = a1tp->is_aryptr();
 169       a2tap = a2tp->is_aryptr();
 170       a1tp = a1tap->elem()->make_ptr();
 171       a2tp = a2tap->elem()->make_ptr();
 172     }
 173     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 174       if (e1) *e1 = a1tp->is_instptr();
 175       if (e2) *e2 = a2tp->is_instptr();
 176     }
 177   }
 178 }
 179 
 180 //---------------------------get_typeflow_type---------------------------------
 181 // Import a type produced by ciTypeFlow.
 182 const Type* Type::get_typeflow_type(ciType* type) {
 183   switch (type->basic_type()) {
 184 
 185   case ciTypeFlow::StateVector::T_BOTTOM:
 186     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 187     return Type::BOTTOM;
 188 
 189   case ciTypeFlow::StateVector::T_TOP:
 190     assert(type == ciTypeFlow::StateVector::top_type(), "");
 191     return Type::TOP;
 192 
 193   case ciTypeFlow::StateVector::T_NULL:
 194     assert(type == ciTypeFlow::StateVector::null_type(), "");
 195     return TypePtr::NULL_PTR;
 196 
 197   case ciTypeFlow::StateVector::T_LONG2:
 198     // The ciTypeFlow pass pushes a long, then the half.
 199     // We do the same.
 200     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 201     return TypeInt::TOP;
 202 
 203   case ciTypeFlow::StateVector::T_DOUBLE2:
 204     // The ciTypeFlow pass pushes double, then the half.
 205     // Our convention is the same.
 206     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 207     return Type::TOP;
 208 
 209   case T_ADDRESS:
 210     assert(type->is_return_address(), "");
 211     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 212 
 213   default:
 214     // make sure we did not mix up the cases:
 215     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 216     assert(type != ciTypeFlow::StateVector::top_type(), "");
 217     assert(type != ciTypeFlow::StateVector::null_type(), "");
 218     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 219     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 220     assert(!type->is_return_address(), "");
 221 
 222     return Type::get_const_type(type);
 223   }
 224 }
 225 
 226 
 227 //-----------------------make_from_constant------------------------------------
 228 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 229                                      int stable_dimension, bool is_narrow_oop,
 230                                      bool is_autobox_cache) {
 231   switch (constant.basic_type()) {
 232     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 233     case T_CHAR:     return TypeInt::make(constant.as_char());
 234     case T_BYTE:     return TypeInt::make(constant.as_byte());
 235     case T_SHORT:    return TypeInt::make(constant.as_short());
 236     case T_INT:      return TypeInt::make(constant.as_int());
 237     case T_LONG:     return TypeLong::make(constant.as_long());
 238     case T_FLOAT:    return TypeF::make(constant.as_float());
 239     case T_DOUBLE:   return TypeD::make(constant.as_double());
 240     case T_ARRAY:
 241     case T_OBJECT: {
 242         const Type* con_type = NULL;
 243         ciObject* oop_constant = constant.as_object();
 244         if (oop_constant->is_null_object()) {
 245           con_type = Type::get_zero_type(T_OBJECT);
 246         } else {
 247           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 248           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 249           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 250             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 251           }
 252           if (stable_dimension > 0) {
 253             assert(FoldStableValues, "sanity");
 254             assert(!con_type->is_zero_type(), "default value for stable field");
 255             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 256           }
 257         }
 258         if (is_narrow_oop) {
 259           con_type = con_type->make_narrowoop();
 260         }
 261         return con_type;
 262       }
 263     case T_ILLEGAL:
 264       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 265       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 266       return NULL;
 267     default:
 268       // Fall through to failure
 269       return NULL;
 270   }
 271 }
 272 
 273 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 274   BasicType conbt = con.basic_type();
 275   switch (conbt) {
 276     case T_BOOLEAN: conbt = T_BYTE;   break;
 277     case T_ARRAY:   conbt = T_OBJECT; break;
 278     default:                          break;
 279   }
 280   switch (loadbt) {
 281     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 282     case T_NARROWOOP: loadbt = T_OBJECT; break;
 283     case T_ARRAY:     loadbt = T_OBJECT; break;
 284     case T_ADDRESS:   loadbt = T_OBJECT; break;
 285     default:                             break;
 286   }
 287   if (conbt == loadbt) {
 288     if (is_unsigned && conbt == T_BYTE) {
 289       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 290       return ciConstant(T_INT, con.as_int() & 0xFF);
 291     } else {
 292       return con;
 293     }
 294   }
 295   if (conbt == T_SHORT && loadbt == T_CHAR) {
 296     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 297     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 298   }
 299   return ciConstant(); // T_ILLEGAL
 300 }
 301 
 302 // Try to constant-fold a stable array element.
 303 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 304                                                    BasicType loadbt, bool is_unsigned_load) {
 305   // Decode the results of GraphKit::array_element_address.
 306   ciConstant element_value = array->element_value_by_offset(off);
 307   if (element_value.basic_type() == T_ILLEGAL) {
 308     return NULL; // wrong offset
 309   }
 310   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 311 
 312   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 313          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 314 
 315   if (con.is_valid() &&          // not a mismatched access
 316       !con.is_null_or_zero()) {  // not a default value
 317     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 318     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 319   }
 320   return NULL;
 321 }
 322 
 323 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 324   ciField* field;
 325   ciType* type = holder->java_mirror_type();
 326   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 327     // Static field
 328     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 329   } else {
 330     // Instance field
 331     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 332   }
 333   if (field == NULL) {
 334     return NULL; // Wrong offset
 335   }
 336   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 337 }
 338 
 339 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 340                                            BasicType loadbt, bool is_unsigned_load) {
 341   if (!field->is_constant()) {
 342     return NULL; // Non-constant field
 343   }
 344   ciConstant field_value;
 345   if (field->is_static()) {
 346     // final static field
 347     field_value = field->constant_value();
 348   } else if (holder != NULL) {
 349     // final or stable non-static field
 350     // Treat final non-static fields of trusted classes (classes in
 351     // java.lang.invoke and sun.invoke packages and subpackages) as
 352     // compile time constants.
 353     field_value = field->constant_value_of(holder);
 354   }
 355   if (!field_value.is_valid()) {
 356     return NULL; // Not a constant
 357   }
 358 
 359   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 360 
 361   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 362          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 363 
 364   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 365   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 366   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 367 
 368   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 369                                             stable_dimension, is_narrow_oop,
 370                                             field->is_autobox_cache());
 371   if (con_type != NULL && field->is_call_site_target()) {
 372     ciCallSite* call_site = holder->as_call_site();
 373     if (!call_site->is_fully_initialized_constant_call_site()) {
 374       ciMethodHandle* target = con.as_object()->as_method_handle();
 375       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 376     }
 377   }
 378   return con_type;
 379 }
 380 
 381 //------------------------------make-------------------------------------------
 382 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 383 // and look for an existing copy in the type dictionary.
 384 const Type *Type::make( enum TYPES t ) {
 385   return (new Type(t))->hashcons();
 386 }
 387 
 388 //------------------------------cmp--------------------------------------------
 389 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 390   if( t1->_base != t2->_base )
 391     return 1;                   // Missed badly
 392   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 393   return !t1->eq(t2);           // Return ZERO if equal
 394 }
 395 
 396 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 397   if (!include_speculative) {
 398     return remove_speculative();
 399   }
 400   return this;
 401 }
 402 
 403 //------------------------------hash-------------------------------------------
 404 int Type::uhash( const Type *const t ) {
 405   return t->hash();
 406 }
 407 
 408 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 409 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 410 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 411 
 412 //--------------------------Initialize_shared----------------------------------
 413 void Type::Initialize_shared(Compile* current) {
 414   // This method does not need to be locked because the first system
 415   // compilations (stub compilations) occur serially.  If they are
 416   // changed to proceed in parallel, then this section will need
 417   // locking.
 418 
 419   Arena* save = current->type_arena();
 420   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 421 
 422   current->set_type_arena(shared_type_arena);
 423   _shared_type_dict =
 424     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 425                                   shared_type_arena, 128 );
 426   current->set_type_dict(_shared_type_dict);
 427 
 428   // Make shared pre-built types.
 429   CONTROL = make(Control);      // Control only
 430   TOP     = make(Top);          // No values in set
 431   MEMORY  = make(Memory);       // Abstract store only
 432   ABIO    = make(Abio);         // State-of-machine only
 433   RETURN_ADDRESS=make(Return_Address);
 434   FLOAT   = make(FloatBot);     // All floats
 435   DOUBLE  = make(DoubleBot);    // All doubles
 436   BOTTOM  = make(Bottom);       // Everything
 437   HALF    = make(Half);         // Placeholder half of doublewide type
 438 
 439   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 440   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 441   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 442   TypeF::ONE  = TypeF::make(1.0); // Float 1
 443   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 444   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 445 
 446   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 447   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 448   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 449   TypeD::ONE  = TypeD::make(1.0); // Double 1
 450   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 451   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 452 
 453   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 454   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 455   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 456   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 457   TypeInt::ONE     = TypeInt::make( 1);  //  1
 458   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 459   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 460   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 461   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 462   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 463   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 464   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 465   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 466   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 467   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 468   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 469   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 470   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 471   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 472   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 473   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 474   // CmpL is overloaded both as the bytecode computation returning
 475   // a trinary (-1,0,+1) integer result AND as an efficient long
 476   // compare returning optimizer ideal-type flags.
 477   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 478   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 479   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 480   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 481   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 482 
 483   TypeLong::MAX = TypeLong::make(max_jlong);  // Long MAX
 484   TypeLong::MIN = TypeLong::make(min_jlong);  // Long MIN
 485   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 486   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 487   TypeLong::ONE     = TypeLong::make( 1);        //  1
 488   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 489   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 490   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 491   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 492   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 493 
 494   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 495   fboth[0] = Type::CONTROL;
 496   fboth[1] = Type::CONTROL;
 497   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 498 
 499   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 500   ffalse[0] = Type::CONTROL;
 501   ffalse[1] = Type::TOP;
 502   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 503 
 504   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 505   fneither[0] = Type::TOP;
 506   fneither[1] = Type::TOP;
 507   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 508 
 509   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 510   ftrue[0] = Type::TOP;
 511   ftrue[1] = Type::CONTROL;
 512   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 513 
 514   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 515   floop[0] = Type::CONTROL;
 516   floop[1] = TypeInt::INT;
 517   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 518 
 519   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 520   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 521   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 522 
 523   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 524   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 525 
 526   const Type **fmembar = TypeTuple::fields(0);
 527   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 528 
 529   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 530   fsc[0] = TypeInt::CC;
 531   fsc[1] = Type::MEMORY;
 532   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 533 
 534   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 535   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 536   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 537   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 538                                            false, 0, oopDesc::mark_offset_in_bytes());
 539   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 540                                            false, 0, oopDesc::klass_offset_in_bytes());
 541   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 542 
 543   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 544 
 545   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 546   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 547 
 548   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 549 
 550   mreg2type[Op_Node] = Type::BOTTOM;
 551   mreg2type[Op_Set ] = 0;
 552   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 553   mreg2type[Op_RegI] = TypeInt::INT;
 554   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 555   mreg2type[Op_RegF] = Type::FLOAT;
 556   mreg2type[Op_RegD] = Type::DOUBLE;
 557   mreg2type[Op_RegL] = TypeLong::LONG;
 558   mreg2type[Op_RegFlags] = TypeInt::CC;
 559 
 560   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 561 
 562   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 563 
 564 #ifdef _LP64
 565   if (UseCompressedOops) {
 566     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 567     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 568   } else
 569 #endif
 570   {
 571     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 572     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 573   }
 574   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 575   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 576   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 577   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 578   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 579   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 580   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 581 
 582   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 583   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 584   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 585   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 586   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 587   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 588   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 589   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 590   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 591   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 592   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 593   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 594 
 595   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 596   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 597 
 598   const Type **fi2c = TypeTuple::fields(2);
 599   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 600   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 601   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 602 
 603   const Type **intpair = TypeTuple::fields(2);
 604   intpair[0] = TypeInt::INT;
 605   intpair[1] = TypeInt::INT;
 606   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 607 
 608   const Type **longpair = TypeTuple::fields(2);
 609   longpair[0] = TypeLong::LONG;
 610   longpair[1] = TypeLong::LONG;
 611   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 612 
 613   const Type **intccpair = TypeTuple::fields(2);
 614   intccpair[0] = TypeInt::INT;
 615   intccpair[1] = TypeInt::CC;
 616   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 617 
 618   const Type **longccpair = TypeTuple::fields(2);
 619   longccpair[0] = TypeLong::LONG;
 620   longccpair[1] = TypeInt::CC;
 621   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 622 
 623   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 624   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 625   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 626   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 627   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 628   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 629   _const_basic_type[T_INT]         = TypeInt::INT;
 630   _const_basic_type[T_LONG]        = TypeLong::LONG;
 631   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 632   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 633   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 634   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 635   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 636   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 637   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 638 
 639   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 640   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 641   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 642   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 643   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 644   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 645   _zero_type[T_INT]         = TypeInt::ZERO;
 646   _zero_type[T_LONG]        = TypeLong::ZERO;
 647   _zero_type[T_FLOAT]       = TypeF::ZERO;
 648   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 649   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 650   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 651   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 652   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 653 
 654   // get_zero_type() should not happen for T_CONFLICT
 655   _zero_type[T_CONFLICT]= NULL;
 656 
 657   // Vector predefined types, it needs initialized _const_basic_type[].
 658   if (Matcher::vector_size_supported(T_BYTE,4)) {
 659     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 660   }
 661   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 662     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 663   }
 664   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 665     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 666   }
 667   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 668     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 669   }
 670   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 671     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 672   }
 673   mreg2type[Op_VecS] = TypeVect::VECTS;
 674   mreg2type[Op_VecD] = TypeVect::VECTD;
 675   mreg2type[Op_VecX] = TypeVect::VECTX;
 676   mreg2type[Op_VecY] = TypeVect::VECTY;
 677   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 678 
 679   // Restore working type arena.
 680   current->set_type_arena(save);
 681   current->set_type_dict(NULL);
 682 }
 683 
 684 //------------------------------Initialize-------------------------------------
 685 void Type::Initialize(Compile* current) {
 686   assert(current->type_arena() != NULL, "must have created type arena");
 687 
 688   if (_shared_type_dict == NULL) {
 689     Initialize_shared(current);
 690   }
 691 
 692   Arena* type_arena = current->type_arena();
 693 
 694   // Create the hash-cons'ing dictionary with top-level storage allocation
 695   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 696   current->set_type_dict(tdic);
 697 
 698   // Transfer the shared types.
 699   DictI i(_shared_type_dict);
 700   for( ; i.test(); ++i ) {
 701     Type* t = (Type*)i._value;
 702     tdic->Insert(t,t);  // New Type, insert into Type table
 703   }
 704 }
 705 
 706 //------------------------------hashcons---------------------------------------
 707 // Do the hash-cons trick.  If the Type already exists in the type table,
 708 // delete the current Type and return the existing Type.  Otherwise stick the
 709 // current Type in the Type table.
 710 const Type *Type::hashcons(void) {
 711   debug_only(base());           // Check the assertion in Type::base().
 712   // Look up the Type in the Type dictionary
 713   Dict *tdic = type_dict();
 714   Type* old = (Type*)(tdic->Insert(this, this, false));
 715   if( old ) {                   // Pre-existing Type?
 716     if( old != this )           // Yes, this guy is not the pre-existing?
 717       delete this;              // Yes, Nuke this guy
 718     assert( old->_dual, "" );
 719     return old;                 // Return pre-existing
 720   }
 721 
 722   // Every type has a dual (to make my lattice symmetric).
 723   // Since we just discovered a new Type, compute its dual right now.
 724   assert( !_dual, "" );         // No dual yet
 725   _dual = xdual();              // Compute the dual
 726   if (cmp(this, _dual) == 0) {  // Handle self-symmetric
 727     if (_dual != this) {
 728       delete _dual;
 729       _dual = this;
 730     }
 731     return this;
 732   }
 733   assert( !_dual->_dual, "" );  // No reverse dual yet
 734   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 735   // New Type, insert into Type table
 736   tdic->Insert((void*)_dual,(void*)_dual);
 737   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 738 #ifdef ASSERT
 739   Type *dual_dual = (Type*)_dual->xdual();
 740   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 741   delete dual_dual;
 742 #endif
 743   return this;                  // Return new Type
 744 }
 745 
 746 //------------------------------eq---------------------------------------------
 747 // Structural equality check for Type representations
 748 bool Type::eq( const Type * ) const {
 749   return true;                  // Nothing else can go wrong
 750 }
 751 
 752 //------------------------------hash-------------------------------------------
 753 // Type-specific hashing function.
 754 int Type::hash(void) const {
 755   return _base;
 756 }
 757 
 758 //------------------------------is_finite--------------------------------------
 759 // Has a finite value
 760 bool Type::is_finite() const {
 761   return false;
 762 }
 763 
 764 //------------------------------is_nan-----------------------------------------
 765 // Is not a number (NaN)
 766 bool Type::is_nan()    const {
 767   return false;
 768 }
 769 
 770 //----------------------interface_vs_oop---------------------------------------
 771 #ifdef ASSERT
 772 bool Type::interface_vs_oop_helper(const Type *t) const {
 773   bool result = false;
 774 
 775   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 776   const TypePtr*    t_ptr =    t->make_ptr();
 777   if( this_ptr == NULL || t_ptr == NULL )
 778     return result;
 779 
 780   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 781   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 782   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 783     bool this_interface = this_inst->klass()->is_interface();
 784     bool    t_interface =    t_inst->klass()->is_interface();
 785     result = this_interface ^ t_interface;
 786   }
 787 
 788   return result;
 789 }
 790 
 791 bool Type::interface_vs_oop(const Type *t) const {
 792   if (interface_vs_oop_helper(t)) {
 793     return true;
 794   }
 795   // Now check the speculative parts as well
 796   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 797   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 798   if (this_spec != NULL && t_spec != NULL) {
 799     if (this_spec->interface_vs_oop_helper(t_spec)) {
 800       return true;
 801     }
 802     return false;
 803   }
 804   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 805     return true;
 806   }
 807   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 808     return true;
 809   }
 810   return false;
 811 }
 812 
 813 #endif
 814 
 815 void Type::check_symmetrical(const Type *t, const Type *mt) const {
 816 #ifdef ASSERT
 817   assert(mt == t->xmeet(this), "meet not commutative");
 818   const Type* dual_join = mt->_dual;
 819   const Type *t2t    = dual_join->xmeet(t->_dual);
 820   const Type *t2this = dual_join->xmeet(this->_dual);
 821 
 822   // Interface meet Oop is Not Symmetric:
 823   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 824   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 825 
 826   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual) ) {
 827     tty->print_cr("=== Meet Not Symmetric ===");
 828     tty->print("t   =                   ");              t->dump(); tty->cr();
 829     tty->print("this=                   ");                 dump(); tty->cr();
 830     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 831 
 832     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 833     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 834     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 835 
 836     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 837     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 838 
 839     fatal("meet not symmetric" );
 840   }
 841 #endif
 842 }
 843 
 844 //------------------------------meet-------------------------------------------
 845 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 846 // commutative and the lattice is symmetric.
 847 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 848   if (isa_narrowoop() && t->isa_narrowoop()) {
 849     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 850     return result->make_narrowoop();
 851   }
 852   if (isa_narrowklass() && t->isa_narrowklass()) {
 853     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 854     return result->make_narrowklass();
 855   }
 856 
 857   const Type *this_t = maybe_remove_speculative(include_speculative);
 858   t = t->maybe_remove_speculative(include_speculative);
 859 
 860   const Type *mt = this_t->xmeet(t);
 861 #ifdef ASSERT
 862   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 863   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 864   Compile* C = Compile::current();
 865   if (!C->_type_verify_symmetry) {
 866     return mt;
 867   }
 868   this_t->check_symmetrical(t, mt);
 869   // In the case of an array, computing the meet above, caused the
 870   // computation of the meet of the elements which at verification
 871   // time caused the computation of the meet of the dual of the
 872   // elements. Computing the meet of the dual of the arrays here
 873   // causes the meet of the dual of the elements to be computed which
 874   // would cause the meet of the dual of the dual of the elements,
 875   // that is the meet of the elements already computed above to be
 876   // computed. Avoid redundant computations by requesting no
 877   // verification.
 878   C->_type_verify_symmetry = false;
 879   const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
 880   this_t->_dual->check_symmetrical(t->_dual, mt_dual);
 881   assert(!C->_type_verify_symmetry, "shouldn't have changed");
 882   C->_type_verify_symmetry = true;
 883 #endif
 884   return mt;
 885 }
 886 
 887 //------------------------------xmeet------------------------------------------
 888 // Compute the MEET of two types.  It returns a new Type object.
 889 const Type *Type::xmeet( const Type *t ) const {
 890   // Perform a fast test for common case; meeting the same types together.
 891   if( this == t ) return this;  // Meeting same type-rep?
 892 
 893   // Meeting TOP with anything?
 894   if( _base == Top ) return t;
 895 
 896   // Meeting BOTTOM with anything?
 897   if( _base == Bottom ) return BOTTOM;
 898 
 899   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 900   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 901   switch (t->base()) {  // Switch on original type
 902 
 903   // Cut in half the number of cases I must handle.  Only need cases for when
 904   // the given enum "t->type" is less than or equal to the local enum "type".
 905   case FloatCon:
 906   case DoubleCon:
 907   case Int:
 908   case Long:
 909     return t->xmeet(this);
 910 
 911   case OopPtr:
 912     return t->xmeet(this);
 913 
 914   case InstPtr:
 915     return t->xmeet(this);
 916 
 917   case MetadataPtr:
 918   case KlassPtr:
 919     return t->xmeet(this);
 920 
 921   case AryPtr:
 922     return t->xmeet(this);
 923 
 924   case NarrowOop:
 925     return t->xmeet(this);
 926 
 927   case NarrowKlass:
 928     return t->xmeet(this);
 929 
 930   case Bad:                     // Type check
 931   default:                      // Bogus type not in lattice
 932     typerr(t);
 933     return Type::BOTTOM;
 934 
 935   case Bottom:                  // Ye Olde Default
 936     return t;
 937 
 938   case FloatTop:
 939     if( _base == FloatTop ) return this;
 940   case FloatBot:                // Float
 941     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 942     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 943     typerr(t);
 944     return Type::BOTTOM;
 945 
 946   case DoubleTop:
 947     if( _base == DoubleTop ) return this;
 948   case DoubleBot:               // Double
 949     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 950     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 951     typerr(t);
 952     return Type::BOTTOM;
 953 
 954   // These next few cases must match exactly or it is a compile-time error.
 955   case Control:                 // Control of code
 956   case Abio:                    // State of world outside of program
 957   case Memory:
 958     if( _base == t->_base )  return this;
 959     typerr(t);
 960     return Type::BOTTOM;
 961 
 962   case Top:                     // Top of the lattice
 963     return this;
 964   }
 965 
 966   // The type is unchanged
 967   return this;
 968 }
 969 
 970 //-----------------------------filter------------------------------------------
 971 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 972   const Type* ft = join_helper(kills, include_speculative);
 973   if (ft->empty())
 974     return Type::TOP;           // Canonical empty value
 975   return ft;
 976 }
 977 
 978 //------------------------------xdual------------------------------------------
 979 // Compute dual right now.
 980 const Type::TYPES Type::dual_type[Type::lastype] = {
 981   Bad,          // Bad
 982   Control,      // Control
 983   Bottom,       // Top
 984   Bad,          // Int - handled in v-call
 985   Bad,          // Long - handled in v-call
 986   Half,         // Half
 987   Bad,          // NarrowOop - handled in v-call
 988   Bad,          // NarrowKlass - handled in v-call
 989 
 990   Bad,          // Tuple - handled in v-call
 991   Bad,          // Array - handled in v-call
 992   Bad,          // VectorS - handled in v-call
 993   Bad,          // VectorD - handled in v-call
 994   Bad,          // VectorX - handled in v-call
 995   Bad,          // VectorY - handled in v-call
 996   Bad,          // VectorZ - handled in v-call
 997 
 998   Bad,          // AnyPtr - handled in v-call
 999   Bad,          // RawPtr - handled in v-call
1000   Bad,          // OopPtr - handled in v-call
1001   Bad,          // InstPtr - handled in v-call
1002   Bad,          // AryPtr - handled in v-call
1003 
1004   Bad,          //  MetadataPtr - handled in v-call
1005   Bad,          // KlassPtr - handled in v-call
1006 
1007   Bad,          // Function - handled in v-call
1008   Abio,         // Abio
1009   Return_Address,// Return_Address
1010   Memory,       // Memory
1011   FloatBot,     // FloatTop
1012   FloatCon,     // FloatCon
1013   FloatTop,     // FloatBot
1014   DoubleBot,    // DoubleTop
1015   DoubleCon,    // DoubleCon
1016   DoubleTop,    // DoubleBot
1017   Top           // Bottom
1018 };
1019 
1020 const Type *Type::xdual() const {
1021   // Note: the base() accessor asserts the sanity of _base.
1022   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1023   return new Type(_type_info[_base].dual_type);
1024 }
1025 
1026 //------------------------------has_memory-------------------------------------
1027 bool Type::has_memory() const {
1028   Type::TYPES tx = base();
1029   if (tx == Memory) return true;
1030   if (tx == Tuple) {
1031     const TypeTuple *t = is_tuple();
1032     for (uint i=0; i < t->cnt(); i++) {
1033       tx = t->field_at(i)->base();
1034       if (tx == Memory)  return true;
1035     }
1036   }
1037   return false;
1038 }
1039 
1040 #ifndef PRODUCT
1041 //------------------------------dump2------------------------------------------
1042 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1043   st->print("%s", _type_info[_base].msg);
1044 }
1045 
1046 //------------------------------dump-------------------------------------------
1047 void Type::dump_on(outputStream *st) const {
1048   ResourceMark rm;
1049   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1050   dump2(d,1, st);
1051   if (is_ptr_to_narrowoop()) {
1052     st->print(" [narrow]");
1053   } else if (is_ptr_to_narrowklass()) {
1054     st->print(" [narrowklass]");
1055   }
1056 }
1057 
1058 //-----------------------------------------------------------------------------
1059 const char* Type::str(const Type* t) {
1060   stringStream ss;
1061   t->dump_on(&ss);
1062   return ss.as_string();
1063 }
1064 #endif
1065 
1066 //------------------------------singleton--------------------------------------
1067 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1068 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1069 bool Type::singleton(void) const {
1070   return _base == Top || _base == Half;
1071 }
1072 
1073 //------------------------------empty------------------------------------------
1074 // TRUE if Type is a type with no values, FALSE otherwise.
1075 bool Type::empty(void) const {
1076   switch (_base) {
1077   case DoubleTop:
1078   case FloatTop:
1079   case Top:
1080     return true;
1081 
1082   case Half:
1083   case Abio:
1084   case Return_Address:
1085   case Memory:
1086   case Bottom:
1087   case FloatBot:
1088   case DoubleBot:
1089     return false;  // never a singleton, therefore never empty
1090 
1091   default:
1092     ShouldNotReachHere();
1093     return false;
1094   }
1095 }
1096 
1097 //------------------------------dump_stats-------------------------------------
1098 // Dump collected statistics to stderr
1099 #ifndef PRODUCT
1100 void Type::dump_stats() {
1101   tty->print("Types made: %d\n", type_dict()->Size());
1102 }
1103 #endif
1104 
1105 //------------------------------typerr-----------------------------------------
1106 void Type::typerr( const Type *t ) const {
1107 #ifndef PRODUCT
1108   tty->print("\nError mixing types: ");
1109   dump();
1110   tty->print(" and ");
1111   t->dump();
1112   tty->print("\n");
1113 #endif
1114   ShouldNotReachHere();
1115 }
1116 
1117 
1118 //=============================================================================
1119 // Convenience common pre-built types.
1120 const TypeF *TypeF::MAX;        // Floating point max
1121 const TypeF *TypeF::MIN;        // Floating point min
1122 const TypeF *TypeF::ZERO;       // Floating point zero
1123 const TypeF *TypeF::ONE;        // Floating point one
1124 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1125 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1126 
1127 //------------------------------make-------------------------------------------
1128 // Create a float constant
1129 const TypeF *TypeF::make(float f) {
1130   return (TypeF*)(new TypeF(f))->hashcons();
1131 }
1132 
1133 //------------------------------meet-------------------------------------------
1134 // Compute the MEET of two types.  It returns a new Type object.
1135 const Type *TypeF::xmeet( const Type *t ) const {
1136   // Perform a fast test for common case; meeting the same types together.
1137   if( this == t ) return this;  // Meeting same type-rep?
1138 
1139   // Current "this->_base" is FloatCon
1140   switch (t->base()) {          // Switch on original type
1141   case AnyPtr:                  // Mixing with oops happens when javac
1142   case RawPtr:                  // reuses local variables
1143   case OopPtr:
1144   case InstPtr:
1145   case AryPtr:
1146   case MetadataPtr:
1147   case KlassPtr:
1148   case NarrowOop:
1149   case NarrowKlass:
1150   case Int:
1151   case Long:
1152   case DoubleTop:
1153   case DoubleCon:
1154   case DoubleBot:
1155   case Bottom:                  // Ye Olde Default
1156     return Type::BOTTOM;
1157 
1158   case FloatBot:
1159     return t;
1160 
1161   default:                      // All else is a mistake
1162     typerr(t);
1163 
1164   case FloatCon:                // Float-constant vs Float-constant?
1165     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1166                                 // must compare bitwise as positive zero, negative zero and NaN have
1167                                 // all the same representation in C++
1168       return FLOAT;             // Return generic float
1169                                 // Equal constants
1170   case Top:
1171   case FloatTop:
1172     break;                      // Return the float constant
1173   }
1174   return this;                  // Return the float constant
1175 }
1176 
1177 //------------------------------xdual------------------------------------------
1178 // Dual: symmetric
1179 const Type *TypeF::xdual() const {
1180   return this;
1181 }
1182 
1183 //------------------------------eq---------------------------------------------
1184 // Structural equality check for Type representations
1185 bool TypeF::eq(const Type *t) const {
1186   // Bitwise comparison to distinguish between +/-0. These values must be treated
1187   // as different to be consistent with C1 and the interpreter.
1188   return (jint_cast(_f) == jint_cast(t->getf()));
1189 }
1190 
1191 //------------------------------hash-------------------------------------------
1192 // Type-specific hashing function.
1193 int TypeF::hash(void) const {
1194   return *(int*)(&_f);
1195 }
1196 
1197 //------------------------------is_finite--------------------------------------
1198 // Has a finite value
1199 bool TypeF::is_finite() const {
1200   return g_isfinite(getf()) != 0;
1201 }
1202 
1203 //------------------------------is_nan-----------------------------------------
1204 // Is not a number (NaN)
1205 bool TypeF::is_nan()    const {
1206   return g_isnan(getf()) != 0;
1207 }
1208 
1209 //------------------------------dump2------------------------------------------
1210 // Dump float constant Type
1211 #ifndef PRODUCT
1212 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1213   Type::dump2(d,depth, st);
1214   st->print("%f", _f);
1215 }
1216 #endif
1217 
1218 //------------------------------singleton--------------------------------------
1219 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1220 // constants (Ldi nodes).  Singletons are integer, float or double constants
1221 // or a single symbol.
1222 bool TypeF::singleton(void) const {
1223   return true;                  // Always a singleton
1224 }
1225 
1226 bool TypeF::empty(void) const {
1227   return false;                 // always exactly a singleton
1228 }
1229 
1230 //=============================================================================
1231 // Convenience common pre-built types.
1232 const TypeD *TypeD::MAX;        // Floating point max
1233 const TypeD *TypeD::MIN;        // Floating point min
1234 const TypeD *TypeD::ZERO;       // Floating point zero
1235 const TypeD *TypeD::ONE;        // Floating point one
1236 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1237 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1238 
1239 //------------------------------make-------------------------------------------
1240 const TypeD *TypeD::make(double d) {
1241   return (TypeD*)(new TypeD(d))->hashcons();
1242 }
1243 
1244 //------------------------------meet-------------------------------------------
1245 // Compute the MEET of two types.  It returns a new Type object.
1246 const Type *TypeD::xmeet( const Type *t ) const {
1247   // Perform a fast test for common case; meeting the same types together.
1248   if( this == t ) return this;  // Meeting same type-rep?
1249 
1250   // Current "this->_base" is DoubleCon
1251   switch (t->base()) {          // Switch on original type
1252   case AnyPtr:                  // Mixing with oops happens when javac
1253   case RawPtr:                  // reuses local variables
1254   case OopPtr:
1255   case InstPtr:
1256   case AryPtr:
1257   case MetadataPtr:
1258   case KlassPtr:
1259   case NarrowOop:
1260   case NarrowKlass:
1261   case Int:
1262   case Long:
1263   case FloatTop:
1264   case FloatCon:
1265   case FloatBot:
1266   case Bottom:                  // Ye Olde Default
1267     return Type::BOTTOM;
1268 
1269   case DoubleBot:
1270     return t;
1271 
1272   default:                      // All else is a mistake
1273     typerr(t);
1274 
1275   case DoubleCon:               // Double-constant vs Double-constant?
1276     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1277       return DOUBLE;            // Return generic double
1278   case Top:
1279   case DoubleTop:
1280     break;
1281   }
1282   return this;                  // Return the double constant
1283 }
1284 
1285 //------------------------------xdual------------------------------------------
1286 // Dual: symmetric
1287 const Type *TypeD::xdual() const {
1288   return this;
1289 }
1290 
1291 //------------------------------eq---------------------------------------------
1292 // Structural equality check for Type representations
1293 bool TypeD::eq(const Type *t) const {
1294   // Bitwise comparison to distinguish between +/-0. These values must be treated
1295   // as different to be consistent with C1 and the interpreter.
1296   return (jlong_cast(_d) == jlong_cast(t->getd()));
1297 }
1298 
1299 //------------------------------hash-------------------------------------------
1300 // Type-specific hashing function.
1301 int TypeD::hash(void) const {
1302   return *(int*)(&_d);
1303 }
1304 
1305 //------------------------------is_finite--------------------------------------
1306 // Has a finite value
1307 bool TypeD::is_finite() const {
1308   return g_isfinite(getd()) != 0;
1309 }
1310 
1311 //------------------------------is_nan-----------------------------------------
1312 // Is not a number (NaN)
1313 bool TypeD::is_nan()    const {
1314   return g_isnan(getd()) != 0;
1315 }
1316 
1317 //------------------------------dump2------------------------------------------
1318 // Dump double constant Type
1319 #ifndef PRODUCT
1320 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1321   Type::dump2(d,depth,st);
1322   st->print("%f", _d);
1323 }
1324 #endif
1325 
1326 //------------------------------singleton--------------------------------------
1327 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1328 // constants (Ldi nodes).  Singletons are integer, float or double constants
1329 // or a single symbol.
1330 bool TypeD::singleton(void) const {
1331   return true;                  // Always a singleton
1332 }
1333 
1334 bool TypeD::empty(void) const {
1335   return false;                 // always exactly a singleton
1336 }
1337 
1338 //=============================================================================
1339 // Convience common pre-built types.
1340 const TypeInt *TypeInt::MAX;    // INT_MAX
1341 const TypeInt *TypeInt::MIN;    // INT_MIN
1342 const TypeInt *TypeInt::MINUS_1;// -1
1343 const TypeInt *TypeInt::ZERO;   // 0
1344 const TypeInt *TypeInt::ONE;    // 1
1345 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1346 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1347 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1348 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1349 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1350 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1351 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1352 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1353 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1354 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1355 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1356 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1357 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1358 const TypeInt *TypeInt::INT;    // 32-bit integers
1359 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1360 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1361 
1362 //------------------------------TypeInt----------------------------------------
1363 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1364 }
1365 
1366 //------------------------------make-------------------------------------------
1367 const TypeInt *TypeInt::make( jint lo ) {
1368   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1369 }
1370 
1371 static int normalize_int_widen( jint lo, jint hi, int w ) {
1372   // Certain normalizations keep us sane when comparing types.
1373   // The 'SMALLINT' covers constants and also CC and its relatives.
1374   if (lo <= hi) {
1375     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1376     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1377   } else {
1378     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1379     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1380   }
1381   return w;
1382 }
1383 
1384 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1385   w = normalize_int_widen(lo, hi, w);
1386   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1387 }
1388 
1389 //------------------------------meet-------------------------------------------
1390 // Compute the MEET of two types.  It returns a new Type representation object
1391 // with reference count equal to the number of Types pointing at it.
1392 // Caller should wrap a Types around it.
1393 const Type *TypeInt::xmeet( const Type *t ) const {
1394   // Perform a fast test for common case; meeting the same types together.
1395   if( this == t ) return this;  // Meeting same type?
1396 
1397   // Currently "this->_base" is a TypeInt
1398   switch (t->base()) {          // Switch on original type
1399   case AnyPtr:                  // Mixing with oops happens when javac
1400   case RawPtr:                  // reuses local variables
1401   case OopPtr:
1402   case InstPtr:
1403   case AryPtr:
1404   case MetadataPtr:
1405   case KlassPtr:
1406   case NarrowOop:
1407   case NarrowKlass:
1408   case Long:
1409   case FloatTop:
1410   case FloatCon:
1411   case FloatBot:
1412   case DoubleTop:
1413   case DoubleCon:
1414   case DoubleBot:
1415   case Bottom:                  // Ye Olde Default
1416     return Type::BOTTOM;
1417   default:                      // All else is a mistake
1418     typerr(t);
1419   case Top:                     // No change
1420     return this;
1421   case Int:                     // Int vs Int?
1422     break;
1423   }
1424 
1425   // Expand covered set
1426   const TypeInt *r = t->is_int();
1427   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1428 }
1429 
1430 //------------------------------xdual------------------------------------------
1431 // Dual: reverse hi & lo; flip widen
1432 const Type *TypeInt::xdual() const {
1433   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1434   return new TypeInt(_hi,_lo,w);
1435 }
1436 
1437 //------------------------------widen------------------------------------------
1438 // Only happens for optimistic top-down optimizations.
1439 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1440   // Coming from TOP or such; no widening
1441   if( old->base() != Int ) return this;
1442   const TypeInt *ot = old->is_int();
1443 
1444   // If new guy is equal to old guy, no widening
1445   if( _lo == ot->_lo && _hi == ot->_hi )
1446     return old;
1447 
1448   // If new guy contains old, then we widened
1449   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1450     // New contains old
1451     // If new guy is already wider than old, no widening
1452     if( _widen > ot->_widen ) return this;
1453     // If old guy was a constant, do not bother
1454     if (ot->_lo == ot->_hi)  return this;
1455     // Now widen new guy.
1456     // Check for widening too far
1457     if (_widen == WidenMax) {
1458       int max = max_jint;
1459       int min = min_jint;
1460       if (limit->isa_int()) {
1461         max = limit->is_int()->_hi;
1462         min = limit->is_int()->_lo;
1463       }
1464       if (min < _lo && _hi < max) {
1465         // If neither endpoint is extremal yet, push out the endpoint
1466         // which is closer to its respective limit.
1467         if (_lo >= 0 ||                 // easy common case
1468             (juint)(_lo - min) >= (juint)(max - _hi)) {
1469           // Try to widen to an unsigned range type of 31 bits:
1470           return make(_lo, max, WidenMax);
1471         } else {
1472           return make(min, _hi, WidenMax);
1473         }
1474       }
1475       return TypeInt::INT;
1476     }
1477     // Returned widened new guy
1478     return make(_lo,_hi,_widen+1);
1479   }
1480 
1481   // If old guy contains new, then we probably widened too far & dropped to
1482   // bottom.  Return the wider fellow.
1483   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1484     return old;
1485 
1486   //fatal("Integer value range is not subset");
1487   //return this;
1488   return TypeInt::INT;
1489 }
1490 
1491 //------------------------------narrow---------------------------------------
1492 // Only happens for pessimistic optimizations.
1493 const Type *TypeInt::narrow( const Type *old ) const {
1494   if (_lo >= _hi)  return this;   // already narrow enough
1495   if (old == NULL)  return this;
1496   const TypeInt* ot = old->isa_int();
1497   if (ot == NULL)  return this;
1498   jint olo = ot->_lo;
1499   jint ohi = ot->_hi;
1500 
1501   // If new guy is equal to old guy, no narrowing
1502   if (_lo == olo && _hi == ohi)  return old;
1503 
1504   // If old guy was maximum range, allow the narrowing
1505   if (olo == min_jint && ohi == max_jint)  return this;
1506 
1507   if (_lo < olo || _hi > ohi)
1508     return this;                // doesn't narrow; pretty wierd
1509 
1510   // The new type narrows the old type, so look for a "death march".
1511   // See comments on PhaseTransform::saturate.
1512   juint nrange = (juint)_hi - _lo;
1513   juint orange = (juint)ohi - olo;
1514   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1515     // Use the new type only if the range shrinks a lot.
1516     // We do not want the optimizer computing 2^31 point by point.
1517     return old;
1518   }
1519 
1520   return this;
1521 }
1522 
1523 //-----------------------------filter------------------------------------------
1524 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1525   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1526   if (ft == NULL || ft->empty())
1527     return Type::TOP;           // Canonical empty value
1528   if (ft->_widen < this->_widen) {
1529     // Do not allow the value of kill->_widen to affect the outcome.
1530     // The widen bits must be allowed to run freely through the graph.
1531     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1532   }
1533   return ft;
1534 }
1535 
1536 //------------------------------eq---------------------------------------------
1537 // Structural equality check for Type representations
1538 bool TypeInt::eq( const Type *t ) const {
1539   const TypeInt *r = t->is_int(); // Handy access
1540   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1541 }
1542 
1543 //------------------------------hash-------------------------------------------
1544 // Type-specific hashing function.
1545 int TypeInt::hash(void) const {
1546   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1547 }
1548 
1549 //------------------------------is_finite--------------------------------------
1550 // Has a finite value
1551 bool TypeInt::is_finite() const {
1552   return true;
1553 }
1554 
1555 //------------------------------dump2------------------------------------------
1556 // Dump TypeInt
1557 #ifndef PRODUCT
1558 static const char* intname(char* buf, jint n) {
1559   if (n == min_jint)
1560     return "min";
1561   else if (n < min_jint + 10000)
1562     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1563   else if (n == max_jint)
1564     return "max";
1565   else if (n > max_jint - 10000)
1566     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1567   else
1568     sprintf(buf, INT32_FORMAT, n);
1569   return buf;
1570 }
1571 
1572 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1573   char buf[40], buf2[40];
1574   if (_lo == min_jint && _hi == max_jint)
1575     st->print("int");
1576   else if (is_con())
1577     st->print("int:%s", intname(buf, get_con()));
1578   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1579     st->print("bool");
1580   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1581     st->print("byte");
1582   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1583     st->print("char");
1584   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1585     st->print("short");
1586   else if (_hi == max_jint)
1587     st->print("int:>=%s", intname(buf, _lo));
1588   else if (_lo == min_jint)
1589     st->print("int:<=%s", intname(buf, _hi));
1590   else
1591     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1592 
1593   if (_widen != 0 && this != TypeInt::INT)
1594     st->print(":%.*s", _widen, "wwww");
1595 }
1596 #endif
1597 
1598 //------------------------------singleton--------------------------------------
1599 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1600 // constants.
1601 bool TypeInt::singleton(void) const {
1602   return _lo >= _hi;
1603 }
1604 
1605 bool TypeInt::empty(void) const {
1606   return _lo > _hi;
1607 }
1608 
1609 //=============================================================================
1610 // Convenience common pre-built types.
1611 const TypeLong *TypeLong::MAX;
1612 const TypeLong *TypeLong::MIN;
1613 const TypeLong *TypeLong::MINUS_1;// -1
1614 const TypeLong *TypeLong::ZERO; // 0
1615 const TypeLong *TypeLong::ONE;  // 1
1616 const TypeLong *TypeLong::POS;  // >=0
1617 const TypeLong *TypeLong::LONG; // 64-bit integers
1618 const TypeLong *TypeLong::INT;  // 32-bit subrange
1619 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1620 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1621 
1622 //------------------------------TypeLong---------------------------------------
1623 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1624 }
1625 
1626 //------------------------------make-------------------------------------------
1627 const TypeLong *TypeLong::make( jlong lo ) {
1628   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1629 }
1630 
1631 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1632   // Certain normalizations keep us sane when comparing types.
1633   // The 'SMALLINT' covers constants.
1634   if (lo <= hi) {
1635     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1636     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1637   } else {
1638     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1639     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1640   }
1641   return w;
1642 }
1643 
1644 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1645   w = normalize_long_widen(lo, hi, w);
1646   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1647 }
1648 
1649 
1650 //------------------------------meet-------------------------------------------
1651 // Compute the MEET of two types.  It returns a new Type representation object
1652 // with reference count equal to the number of Types pointing at it.
1653 // Caller should wrap a Types around it.
1654 const Type *TypeLong::xmeet( const Type *t ) const {
1655   // Perform a fast test for common case; meeting the same types together.
1656   if( this == t ) return this;  // Meeting same type?
1657 
1658   // Currently "this->_base" is a TypeLong
1659   switch (t->base()) {          // Switch on original type
1660   case AnyPtr:                  // Mixing with oops happens when javac
1661   case RawPtr:                  // reuses local variables
1662   case OopPtr:
1663   case InstPtr:
1664   case AryPtr:
1665   case MetadataPtr:
1666   case KlassPtr:
1667   case NarrowOop:
1668   case NarrowKlass:
1669   case Int:
1670   case FloatTop:
1671   case FloatCon:
1672   case FloatBot:
1673   case DoubleTop:
1674   case DoubleCon:
1675   case DoubleBot:
1676   case Bottom:                  // Ye Olde Default
1677     return Type::BOTTOM;
1678   default:                      // All else is a mistake
1679     typerr(t);
1680   case Top:                     // No change
1681     return this;
1682   case Long:                    // Long vs Long?
1683     break;
1684   }
1685 
1686   // Expand covered set
1687   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1688   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1689 }
1690 
1691 //------------------------------xdual------------------------------------------
1692 // Dual: reverse hi & lo; flip widen
1693 const Type *TypeLong::xdual() const {
1694   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1695   return new TypeLong(_hi,_lo,w);
1696 }
1697 
1698 //------------------------------widen------------------------------------------
1699 // Only happens for optimistic top-down optimizations.
1700 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1701   // Coming from TOP or such; no widening
1702   if( old->base() != Long ) return this;
1703   const TypeLong *ot = old->is_long();
1704 
1705   // If new guy is equal to old guy, no widening
1706   if( _lo == ot->_lo && _hi == ot->_hi )
1707     return old;
1708 
1709   // If new guy contains old, then we widened
1710   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1711     // New contains old
1712     // If new guy is already wider than old, no widening
1713     if( _widen > ot->_widen ) return this;
1714     // If old guy was a constant, do not bother
1715     if (ot->_lo == ot->_hi)  return this;
1716     // Now widen new guy.
1717     // Check for widening too far
1718     if (_widen == WidenMax) {
1719       jlong max = max_jlong;
1720       jlong min = min_jlong;
1721       if (limit->isa_long()) {
1722         max = limit->is_long()->_hi;
1723         min = limit->is_long()->_lo;
1724       }
1725       if (min < _lo && _hi < max) {
1726         // If neither endpoint is extremal yet, push out the endpoint
1727         // which is closer to its respective limit.
1728         if (_lo >= 0 ||                 // easy common case
1729             ((julong)_lo - min) >= ((julong)max - _hi)) {
1730           // Try to widen to an unsigned range type of 32/63 bits:
1731           if (max >= max_juint && _hi < max_juint)
1732             return make(_lo, max_juint, WidenMax);
1733           else
1734             return make(_lo, max, WidenMax);
1735         } else {
1736           return make(min, _hi, WidenMax);
1737         }
1738       }
1739       return TypeLong::LONG;
1740     }
1741     // Returned widened new guy
1742     return make(_lo,_hi,_widen+1);
1743   }
1744 
1745   // If old guy contains new, then we probably widened too far & dropped to
1746   // bottom.  Return the wider fellow.
1747   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1748     return old;
1749 
1750   //  fatal("Long value range is not subset");
1751   // return this;
1752   return TypeLong::LONG;
1753 }
1754 
1755 //------------------------------narrow----------------------------------------
1756 // Only happens for pessimistic optimizations.
1757 const Type *TypeLong::narrow( const Type *old ) const {
1758   if (_lo >= _hi)  return this;   // already narrow enough
1759   if (old == NULL)  return this;
1760   const TypeLong* ot = old->isa_long();
1761   if (ot == NULL)  return this;
1762   jlong olo = ot->_lo;
1763   jlong ohi = ot->_hi;
1764 
1765   // If new guy is equal to old guy, no narrowing
1766   if (_lo == olo && _hi == ohi)  return old;
1767 
1768   // If old guy was maximum range, allow the narrowing
1769   if (olo == min_jlong && ohi == max_jlong)  return this;
1770 
1771   if (_lo < olo || _hi > ohi)
1772     return this;                // doesn't narrow; pretty wierd
1773 
1774   // The new type narrows the old type, so look for a "death march".
1775   // See comments on PhaseTransform::saturate.
1776   julong nrange = _hi - _lo;
1777   julong orange = ohi - olo;
1778   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1779     // Use the new type only if the range shrinks a lot.
1780     // We do not want the optimizer computing 2^31 point by point.
1781     return old;
1782   }
1783 
1784   return this;
1785 }
1786 
1787 //-----------------------------filter------------------------------------------
1788 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1789   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1790   if (ft == NULL || ft->empty())
1791     return Type::TOP;           // Canonical empty value
1792   if (ft->_widen < this->_widen) {
1793     // Do not allow the value of kill->_widen to affect the outcome.
1794     // The widen bits must be allowed to run freely through the graph.
1795     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1796   }
1797   return ft;
1798 }
1799 
1800 //------------------------------eq---------------------------------------------
1801 // Structural equality check for Type representations
1802 bool TypeLong::eq( const Type *t ) const {
1803   const TypeLong *r = t->is_long(); // Handy access
1804   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1805 }
1806 
1807 //------------------------------hash-------------------------------------------
1808 // Type-specific hashing function.
1809 int TypeLong::hash(void) const {
1810   return (int)(_lo+_hi+_widen+(int)Type::Long);
1811 }
1812 
1813 //------------------------------is_finite--------------------------------------
1814 // Has a finite value
1815 bool TypeLong::is_finite() const {
1816   return true;
1817 }
1818 
1819 //------------------------------dump2------------------------------------------
1820 // Dump TypeLong
1821 #ifndef PRODUCT
1822 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1823   if (n > x) {
1824     if (n >= x + 10000)  return NULL;
1825     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1826   } else if (n < x) {
1827     if (n <= x - 10000)  return NULL;
1828     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1829   } else {
1830     return xname;
1831   }
1832   return buf;
1833 }
1834 
1835 static const char* longname(char* buf, jlong n) {
1836   const char* str;
1837   if (n == min_jlong)
1838     return "min";
1839   else if (n < min_jlong + 10000)
1840     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1841   else if (n == max_jlong)
1842     return "max";
1843   else if (n > max_jlong - 10000)
1844     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1845   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1846     return str;
1847   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1848     return str;
1849   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1850     return str;
1851   else
1852     sprintf(buf, JLONG_FORMAT, n);
1853   return buf;
1854 }
1855 
1856 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1857   char buf[80], buf2[80];
1858   if (_lo == min_jlong && _hi == max_jlong)
1859     st->print("long");
1860   else if (is_con())
1861     st->print("long:%s", longname(buf, get_con()));
1862   else if (_hi == max_jlong)
1863     st->print("long:>=%s", longname(buf, _lo));
1864   else if (_lo == min_jlong)
1865     st->print("long:<=%s", longname(buf, _hi));
1866   else
1867     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1868 
1869   if (_widen != 0 && this != TypeLong::LONG)
1870     st->print(":%.*s", _widen, "wwww");
1871 }
1872 #endif
1873 
1874 //------------------------------singleton--------------------------------------
1875 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1876 // constants
1877 bool TypeLong::singleton(void) const {
1878   return _lo >= _hi;
1879 }
1880 
1881 bool TypeLong::empty(void) const {
1882   return _lo > _hi;
1883 }
1884 
1885 //=============================================================================
1886 // Convenience common pre-built types.
1887 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1888 const TypeTuple *TypeTuple::IFFALSE;
1889 const TypeTuple *TypeTuple::IFTRUE;
1890 const TypeTuple *TypeTuple::IFNEITHER;
1891 const TypeTuple *TypeTuple::LOOPBODY;
1892 const TypeTuple *TypeTuple::MEMBAR;
1893 const TypeTuple *TypeTuple::STORECONDITIONAL;
1894 const TypeTuple *TypeTuple::START_I2C;
1895 const TypeTuple *TypeTuple::INT_PAIR;
1896 const TypeTuple *TypeTuple::LONG_PAIR;
1897 const TypeTuple *TypeTuple::INT_CC_PAIR;
1898 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1899 
1900 
1901 //------------------------------make-------------------------------------------
1902 // Make a TypeTuple from the range of a method signature
1903 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1904   ciType* return_type = sig->return_type();
1905   uint arg_cnt = return_type->size();
1906   const Type **field_array = fields(arg_cnt);
1907   switch (return_type->basic_type()) {
1908   case T_LONG:
1909     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1910     field_array[TypeFunc::Parms+1] = Type::HALF;
1911     break;
1912   case T_DOUBLE:
1913     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1914     field_array[TypeFunc::Parms+1] = Type::HALF;
1915     break;
1916   case T_OBJECT:
1917   case T_ARRAY:
1918   case T_BOOLEAN:
1919   case T_CHAR:
1920   case T_FLOAT:
1921   case T_BYTE:
1922   case T_SHORT:
1923   case T_INT:
1924     field_array[TypeFunc::Parms] = get_const_type(return_type);
1925     break;
1926   case T_VOID:
1927     break;
1928   default:
1929     ShouldNotReachHere();
1930   }
1931   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1932 }
1933 
1934 // Make a TypeTuple from the domain of a method signature
1935 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1936   uint arg_cnt = sig->size();
1937 
1938   uint pos = TypeFunc::Parms;
1939   const Type **field_array;
1940   if (recv != NULL) {
1941     arg_cnt++;
1942     field_array = fields(arg_cnt);
1943     // Use get_const_type here because it respects UseUniqueSubclasses:
1944     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1945   } else {
1946     field_array = fields(arg_cnt);
1947   }
1948 
1949   int i = 0;
1950   while (pos < TypeFunc::Parms + arg_cnt) {
1951     ciType* type = sig->type_at(i);
1952 
1953     switch (type->basic_type()) {
1954     case T_LONG:
1955       field_array[pos++] = TypeLong::LONG;
1956       field_array[pos++] = Type::HALF;
1957       break;
1958     case T_DOUBLE:
1959       field_array[pos++] = Type::DOUBLE;
1960       field_array[pos++] = Type::HALF;
1961       break;
1962     case T_OBJECT:
1963     case T_ARRAY:
1964     case T_FLOAT:
1965     case T_INT:
1966       field_array[pos++] = get_const_type(type);
1967       break;
1968     case T_BOOLEAN:
1969     case T_CHAR:
1970     case T_BYTE:
1971     case T_SHORT:
1972       field_array[pos++] = TypeInt::INT;
1973       break;
1974     default:
1975       ShouldNotReachHere();
1976     }
1977     i++;
1978   }
1979 
1980   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1981 }
1982 
1983 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1984   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1985 }
1986 
1987 //------------------------------fields-----------------------------------------
1988 // Subroutine call type with space allocated for argument types
1989 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1990 const Type **TypeTuple::fields( uint arg_cnt ) {
1991   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1992   flds[TypeFunc::Control  ] = Type::CONTROL;
1993   flds[TypeFunc::I_O      ] = Type::ABIO;
1994   flds[TypeFunc::Memory   ] = Type::MEMORY;
1995   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1996   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1997 
1998   return flds;
1999 }
2000 
2001 //------------------------------meet-------------------------------------------
2002 // Compute the MEET of two types.  It returns a new Type object.
2003 const Type *TypeTuple::xmeet( const Type *t ) const {
2004   // Perform a fast test for common case; meeting the same types together.
2005   if( this == t ) return this;  // Meeting same type-rep?
2006 
2007   // Current "this->_base" is Tuple
2008   switch (t->base()) {          // switch on original type
2009 
2010   case Bottom:                  // Ye Olde Default
2011     return t;
2012 
2013   default:                      // All else is a mistake
2014     typerr(t);
2015 
2016   case Tuple: {                 // Meeting 2 signatures?
2017     const TypeTuple *x = t->is_tuple();
2018     assert( _cnt == x->_cnt, "" );
2019     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2020     for( uint i=0; i<_cnt; i++ )
2021       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2022     return TypeTuple::make(_cnt,fields);
2023   }
2024   case Top:
2025     break;
2026   }
2027   return this;                  // Return the double constant
2028 }
2029 
2030 //------------------------------xdual------------------------------------------
2031 // Dual: compute field-by-field dual
2032 const Type *TypeTuple::xdual() const {
2033   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2034   for( uint i=0; i<_cnt; i++ )
2035     fields[i] = _fields[i]->dual();
2036   return new TypeTuple(_cnt,fields);
2037 }
2038 
2039 //------------------------------eq---------------------------------------------
2040 // Structural equality check for Type representations
2041 bool TypeTuple::eq( const Type *t ) const {
2042   const TypeTuple *s = (const TypeTuple *)t;
2043   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2044   for (uint i = 0; i < _cnt; i++)
2045     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2046       return false;             // Missed
2047   return true;
2048 }
2049 
2050 //------------------------------hash-------------------------------------------
2051 // Type-specific hashing function.
2052 int TypeTuple::hash(void) const {
2053   intptr_t sum = _cnt;
2054   for( uint i=0; i<_cnt; i++ )
2055     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2056   return sum;
2057 }
2058 
2059 //------------------------------dump2------------------------------------------
2060 // Dump signature Type
2061 #ifndef PRODUCT
2062 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2063   st->print("{");
2064   if( !depth || d[this] ) {     // Check for recursive print
2065     st->print("...}");
2066     return;
2067   }
2068   d.Insert((void*)this, (void*)this);   // Stop recursion
2069   if( _cnt ) {
2070     uint i;
2071     for( i=0; i<_cnt-1; i++ ) {
2072       st->print("%d:", i);
2073       _fields[i]->dump2(d, depth-1, st);
2074       st->print(", ");
2075     }
2076     st->print("%d:", i);
2077     _fields[i]->dump2(d, depth-1, st);
2078   }
2079   st->print("}");
2080 }
2081 #endif
2082 
2083 //------------------------------singleton--------------------------------------
2084 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2085 // constants (Ldi nodes).  Singletons are integer, float or double constants
2086 // or a single symbol.
2087 bool TypeTuple::singleton(void) const {
2088   return false;                 // Never a singleton
2089 }
2090 
2091 bool TypeTuple::empty(void) const {
2092   for( uint i=0; i<_cnt; i++ ) {
2093     if (_fields[i]->empty())  return true;
2094   }
2095   return false;
2096 }
2097 
2098 //=============================================================================
2099 // Convenience common pre-built types.
2100 
2101 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2102   // Certain normalizations keep us sane when comparing types.
2103   // We do not want arrayOop variables to differ only by the wideness
2104   // of their index types.  Pick minimum wideness, since that is the
2105   // forced wideness of small ranges anyway.
2106   if (size->_widen != Type::WidenMin)
2107     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2108   else
2109     return size;
2110 }
2111 
2112 //------------------------------make-------------------------------------------
2113 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2114   if (UseCompressedOops && elem->isa_oopptr()) {
2115     elem = elem->make_narrowoop();
2116   }
2117   size = normalize_array_size(size);
2118   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2119 }
2120 
2121 //------------------------------meet-------------------------------------------
2122 // Compute the MEET of two types.  It returns a new Type object.
2123 const Type *TypeAry::xmeet( const Type *t ) const {
2124   // Perform a fast test for common case; meeting the same types together.
2125   if( this == t ) return this;  // Meeting same type-rep?
2126 
2127   // Current "this->_base" is Ary
2128   switch (t->base()) {          // switch on original type
2129 
2130   case Bottom:                  // Ye Olde Default
2131     return t;
2132 
2133   default:                      // All else is a mistake
2134     typerr(t);
2135 
2136   case Array: {                 // Meeting 2 arrays?
2137     const TypeAry *a = t->is_ary();
2138     return TypeAry::make(_elem->meet_speculative(a->_elem),
2139                          _size->xmeet(a->_size)->is_int(),
2140                          _stable && a->_stable);
2141   }
2142   case Top:
2143     break;
2144   }
2145   return this;                  // Return the double constant
2146 }
2147 
2148 //------------------------------xdual------------------------------------------
2149 // Dual: compute field-by-field dual
2150 const Type *TypeAry::xdual() const {
2151   const TypeInt* size_dual = _size->dual()->is_int();
2152   size_dual = normalize_array_size(size_dual);
2153   return new TypeAry(_elem->dual(), size_dual, !_stable);
2154 }
2155 
2156 //------------------------------eq---------------------------------------------
2157 // Structural equality check for Type representations
2158 bool TypeAry::eq( const Type *t ) const {
2159   const TypeAry *a = (const TypeAry*)t;
2160   return _elem == a->_elem &&
2161     _stable == a->_stable &&
2162     _size == a->_size;
2163 }
2164 
2165 //------------------------------hash-------------------------------------------
2166 // Type-specific hashing function.
2167 int TypeAry::hash(void) const {
2168   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2169 }
2170 
2171 /**
2172  * Return same type without a speculative part in the element
2173  */
2174 const Type* TypeAry::remove_speculative() const {
2175   return make(_elem->remove_speculative(), _size, _stable);
2176 }
2177 
2178 /**
2179  * Return same type with cleaned up speculative part of element
2180  */
2181 const Type* TypeAry::cleanup_speculative() const {
2182   return make(_elem->cleanup_speculative(), _size, _stable);
2183 }
2184 
2185 /**
2186  * Return same type but with a different inline depth (used for speculation)
2187  *
2188  * @param depth  depth to meet with
2189  */
2190 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2191   if (!UseInlineDepthForSpeculativeTypes) {
2192     return this;
2193   }
2194   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2195 }
2196 
2197 //----------------------interface_vs_oop---------------------------------------
2198 #ifdef ASSERT
2199 bool TypeAry::interface_vs_oop(const Type *t) const {
2200   const TypeAry* t_ary = t->is_ary();
2201   if (t_ary) {
2202     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2203     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2204     if(this_ptr != NULL && t_ptr != NULL) {
2205       return this_ptr->interface_vs_oop(t_ptr);
2206     }
2207   }
2208   return false;
2209 }
2210 #endif
2211 
2212 //------------------------------dump2------------------------------------------
2213 #ifndef PRODUCT
2214 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2215   if (_stable)  st->print("stable:");
2216   _elem->dump2(d, depth, st);
2217   st->print("[");
2218   _size->dump2(d, depth, st);
2219   st->print("]");
2220 }
2221 #endif
2222 
2223 //------------------------------singleton--------------------------------------
2224 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2225 // constants (Ldi nodes).  Singletons are integer, float or double constants
2226 // or a single symbol.
2227 bool TypeAry::singleton(void) const {
2228   return false;                 // Never a singleton
2229 }
2230 
2231 bool TypeAry::empty(void) const {
2232   return _elem->empty() || _size->empty();
2233 }
2234 
2235 //--------------------------ary_must_be_exact----------------------------------
2236 bool TypeAry::ary_must_be_exact() const {
2237   // This logic looks at the element type of an array, and returns true
2238   // if the element type is either a primitive or a final instance class.
2239   // In such cases, an array built on this ary must have no subclasses.
2240   if (_elem == BOTTOM)      return false;  // general array not exact
2241   if (_elem == TOP   )      return false;  // inverted general array not exact
2242   const TypeOopPtr*  toop = NULL;
2243   if (UseCompressedOops && _elem->isa_narrowoop()) {
2244     toop = _elem->make_ptr()->isa_oopptr();
2245   } else {
2246     toop = _elem->isa_oopptr();
2247   }
2248   if (!toop)                return true;   // a primitive type, like int
2249   ciKlass* tklass = toop->klass();
2250   if (tklass == NULL)       return false;  // unloaded class
2251   if (!tklass->is_loaded()) return false;  // unloaded class
2252   const TypeInstPtr* tinst;
2253   if (_elem->isa_narrowoop())
2254     tinst = _elem->make_ptr()->isa_instptr();
2255   else
2256     tinst = _elem->isa_instptr();
2257   if (tinst)
2258     return tklass->as_instance_klass()->is_final();
2259   const TypeAryPtr*  tap;
2260   if (_elem->isa_narrowoop())
2261     tap = _elem->make_ptr()->isa_aryptr();
2262   else
2263     tap = _elem->isa_aryptr();
2264   if (tap)
2265     return tap->ary()->ary_must_be_exact();
2266   return false;
2267 }
2268 
2269 //==============================TypeVect=======================================
2270 // Convenience common pre-built types.
2271 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2272 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2273 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2274 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2275 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2276 
2277 //------------------------------make-------------------------------------------
2278 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2279   BasicType elem_bt = elem->array_element_basic_type();
2280   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2281   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2282   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2283   int size = length * type2aelembytes(elem_bt);
2284   switch (Matcher::vector_ideal_reg(size)) {
2285   case Op_VecS:
2286     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2287   case Op_RegL:
2288   case Op_VecD:
2289   case Op_RegD:
2290     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2291   case Op_VecX:
2292     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2293   case Op_VecY:
2294     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2295   case Op_VecZ:
2296     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2297   }
2298  ShouldNotReachHere();
2299   return NULL;
2300 }
2301 
2302 //------------------------------meet-------------------------------------------
2303 // Compute the MEET of two types.  It returns a new Type object.
2304 const Type *TypeVect::xmeet( const Type *t ) const {
2305   // Perform a fast test for common case; meeting the same types together.
2306   if( this == t ) return this;  // Meeting same type-rep?
2307 
2308   // Current "this->_base" is Vector
2309   switch (t->base()) {          // switch on original type
2310 
2311   case Bottom:                  // Ye Olde Default
2312     return t;
2313 
2314   default:                      // All else is a mistake
2315     typerr(t);
2316 
2317   case VectorS:
2318   case VectorD:
2319   case VectorX:
2320   case VectorY:
2321   case VectorZ: {                // Meeting 2 vectors?
2322     const TypeVect* v = t->is_vect();
2323     assert(  base() == v->base(), "");
2324     assert(length() == v->length(), "");
2325     assert(element_basic_type() == v->element_basic_type(), "");
2326     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2327   }
2328   case Top:
2329     break;
2330   }
2331   return this;
2332 }
2333 
2334 //------------------------------xdual------------------------------------------
2335 // Dual: compute field-by-field dual
2336 const Type *TypeVect::xdual() const {
2337   return new TypeVect(base(), _elem->dual(), _length);
2338 }
2339 
2340 //------------------------------eq---------------------------------------------
2341 // Structural equality check for Type representations
2342 bool TypeVect::eq(const Type *t) const {
2343   const TypeVect *v = t->is_vect();
2344   return (_elem == v->_elem) && (_length == v->_length);
2345 }
2346 
2347 //------------------------------hash-------------------------------------------
2348 // Type-specific hashing function.
2349 int TypeVect::hash(void) const {
2350   return (intptr_t)_elem + (intptr_t)_length;
2351 }
2352 
2353 //------------------------------singleton--------------------------------------
2354 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2355 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2356 // constant value (when vector is created with Replicate code).
2357 bool TypeVect::singleton(void) const {
2358 // There is no Con node for vectors yet.
2359 //  return _elem->singleton();
2360   return false;
2361 }
2362 
2363 bool TypeVect::empty(void) const {
2364   return _elem->empty();
2365 }
2366 
2367 //------------------------------dump2------------------------------------------
2368 #ifndef PRODUCT
2369 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2370   switch (base()) {
2371   case VectorS:
2372     st->print("vectors["); break;
2373   case VectorD:
2374     st->print("vectord["); break;
2375   case VectorX:
2376     st->print("vectorx["); break;
2377   case VectorY:
2378     st->print("vectory["); break;
2379   case VectorZ:
2380     st->print("vectorz["); break;
2381   default:
2382     ShouldNotReachHere();
2383   }
2384   st->print("%d]:{", _length);
2385   _elem->dump2(d, depth, st);
2386   st->print("}");
2387 }
2388 #endif
2389 
2390 
2391 //=============================================================================
2392 // Convenience common pre-built types.
2393 const TypePtr *TypePtr::NULL_PTR;
2394 const TypePtr *TypePtr::NOTNULL;
2395 const TypePtr *TypePtr::BOTTOM;
2396 
2397 //------------------------------meet-------------------------------------------
2398 // Meet over the PTR enum
2399 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2400   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2401   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2402   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2403   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2404   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2405   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2406   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2407 };
2408 
2409 //------------------------------make-------------------------------------------
2410 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2411   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2412 }
2413 
2414 //------------------------------cast_to_ptr_type-------------------------------
2415 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2416   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2417   if( ptr == _ptr ) return this;
2418   return make(_base, ptr, _offset, _speculative, _inline_depth);
2419 }
2420 
2421 //------------------------------get_con----------------------------------------
2422 intptr_t TypePtr::get_con() const {
2423   assert( _ptr == Null, "" );
2424   return _offset;
2425 }
2426 
2427 //------------------------------meet-------------------------------------------
2428 // Compute the MEET of two types.  It returns a new Type object.
2429 const Type *TypePtr::xmeet(const Type *t) const {
2430   const Type* res = xmeet_helper(t);
2431   if (res->isa_ptr() == NULL) {
2432     return res;
2433   }
2434 
2435   const TypePtr* res_ptr = res->is_ptr();
2436   if (res_ptr->speculative() != NULL) {
2437     // type->speculative() == NULL means that speculation is no better
2438     // than type, i.e. type->speculative() == type. So there are 2
2439     // ways to represent the fact that we have no useful speculative
2440     // data and we should use a single one to be able to test for
2441     // equality between types. Check whether type->speculative() ==
2442     // type and set speculative to NULL if it is the case.
2443     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2444       return res_ptr->remove_speculative();
2445     }
2446   }
2447 
2448   return res;
2449 }
2450 
2451 const Type *TypePtr::xmeet_helper(const Type *t) const {
2452   // Perform a fast test for common case; meeting the same types together.
2453   if( this == t ) return this;  // Meeting same type-rep?
2454 
2455   // Current "this->_base" is AnyPtr
2456   switch (t->base()) {          // switch on original type
2457   case Int:                     // Mixing ints & oops happens when javac
2458   case Long:                    // reuses local variables
2459   case FloatTop:
2460   case FloatCon:
2461   case FloatBot:
2462   case DoubleTop:
2463   case DoubleCon:
2464   case DoubleBot:
2465   case NarrowOop:
2466   case NarrowKlass:
2467   case Bottom:                  // Ye Olde Default
2468     return Type::BOTTOM;
2469   case Top:
2470     return this;
2471 
2472   case AnyPtr: {                // Meeting to AnyPtrs
2473     const TypePtr *tp = t->is_ptr();
2474     const TypePtr* speculative = xmeet_speculative(tp);
2475     int depth = meet_inline_depth(tp->inline_depth());
2476     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2477   }
2478   case RawPtr:                  // For these, flip the call around to cut down
2479   case OopPtr:
2480   case InstPtr:                 // on the cases I have to handle.
2481   case AryPtr:
2482   case MetadataPtr:
2483   case KlassPtr:
2484     return t->xmeet(this);      // Call in reverse direction
2485   default:                      // All else is a mistake
2486     typerr(t);
2487 
2488   }
2489   return this;
2490 }
2491 
2492 //------------------------------meet_offset------------------------------------
2493 int TypePtr::meet_offset( int offset ) const {
2494   // Either is 'TOP' offset?  Return the other offset!
2495   if( _offset == OffsetTop ) return offset;
2496   if( offset == OffsetTop ) return _offset;
2497   // If either is different, return 'BOTTOM' offset
2498   if( _offset != offset ) return OffsetBot;
2499   return _offset;
2500 }
2501 
2502 //------------------------------dual_offset------------------------------------
2503 int TypePtr::dual_offset( ) const {
2504   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2505   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2506   return _offset;               // Map everything else into self
2507 }
2508 
2509 //------------------------------xdual------------------------------------------
2510 // Dual: compute field-by-field dual
2511 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2512   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2513 };
2514 const Type *TypePtr::xdual() const {
2515   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2516 }
2517 
2518 //------------------------------xadd_offset------------------------------------
2519 int TypePtr::xadd_offset( intptr_t offset ) const {
2520   // Adding to 'TOP' offset?  Return 'TOP'!
2521   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2522   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2523   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2524   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2525   offset += (intptr_t)_offset;
2526   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2527 
2528   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2529   // It is possible to construct a negative offset during PhaseCCP
2530 
2531   return (int)offset;        // Sum valid offsets
2532 }
2533 
2534 //------------------------------add_offset-------------------------------------
2535 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2536   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2537 }
2538 
2539 //------------------------------eq---------------------------------------------
2540 // Structural equality check for Type representations
2541 bool TypePtr::eq( const Type *t ) const {
2542   const TypePtr *a = (const TypePtr*)t;
2543   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2544 }
2545 
2546 //------------------------------hash-------------------------------------------
2547 // Type-specific hashing function.
2548 int TypePtr::hash(void) const {
2549   return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2550 ;
2551 }
2552 
2553 /**
2554  * Return same type without a speculative part
2555  */
2556 const Type* TypePtr::remove_speculative() const {
2557   if (_speculative == NULL) {
2558     return this;
2559   }
2560   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2561   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2562 }
2563 
2564 /**
2565  * Return same type but drop speculative part if we know we won't use
2566  * it
2567  */
2568 const Type* TypePtr::cleanup_speculative() const {
2569   if (speculative() == NULL) {
2570     return this;
2571   }
2572   const Type* no_spec = remove_speculative();
2573   // If this is NULL_PTR then we don't need the speculative type
2574   // (with_inline_depth in case the current type inline depth is
2575   // InlineDepthTop)
2576   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2577     return no_spec;
2578   }
2579   if (above_centerline(speculative()->ptr())) {
2580     return no_spec;
2581   }
2582   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2583   // If the speculative may be null and is an inexact klass then it
2584   // doesn't help
2585   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2586       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2587     return no_spec;
2588   }
2589   return this;
2590 }
2591 
2592 /**
2593  * dual of the speculative part of the type
2594  */
2595 const TypePtr* TypePtr::dual_speculative() const {
2596   if (_speculative == NULL) {
2597     return NULL;
2598   }
2599   return _speculative->dual()->is_ptr();
2600 }
2601 
2602 /**
2603  * meet of the speculative parts of 2 types
2604  *
2605  * @param other  type to meet with
2606  */
2607 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2608   bool this_has_spec = (_speculative != NULL);
2609   bool other_has_spec = (other->speculative() != NULL);
2610 
2611   if (!this_has_spec && !other_has_spec) {
2612     return NULL;
2613   }
2614 
2615   // If we are at a point where control flow meets and one branch has
2616   // a speculative type and the other has not, we meet the speculative
2617   // type of one branch with the actual type of the other. If the
2618   // actual type is exact and the speculative is as well, then the
2619   // result is a speculative type which is exact and we can continue
2620   // speculation further.
2621   const TypePtr* this_spec = _speculative;
2622   const TypePtr* other_spec = other->speculative();
2623 
2624   if (!this_has_spec) {
2625     this_spec = this;
2626   }
2627 
2628   if (!other_has_spec) {
2629     other_spec = other;
2630   }
2631 
2632   return this_spec->meet(other_spec)->is_ptr();
2633 }
2634 
2635 /**
2636  * dual of the inline depth for this type (used for speculation)
2637  */
2638 int TypePtr::dual_inline_depth() const {
2639   return -inline_depth();
2640 }
2641 
2642 /**
2643  * meet of 2 inline depths (used for speculation)
2644  *
2645  * @param depth  depth to meet with
2646  */
2647 int TypePtr::meet_inline_depth(int depth) const {
2648   return MAX2(inline_depth(), depth);
2649 }
2650 
2651 /**
2652  * Are the speculative parts of 2 types equal?
2653  *
2654  * @param other  type to compare this one to
2655  */
2656 bool TypePtr::eq_speculative(const TypePtr* other) const {
2657   if (_speculative == NULL || other->speculative() == NULL) {
2658     return _speculative == other->speculative();
2659   }
2660 
2661   if (_speculative->base() != other->speculative()->base()) {
2662     return false;
2663   }
2664 
2665   return _speculative->eq(other->speculative());
2666 }
2667 
2668 /**
2669  * Hash of the speculative part of the type
2670  */
2671 int TypePtr::hash_speculative() const {
2672   if (_speculative == NULL) {
2673     return 0;
2674   }
2675 
2676   return _speculative->hash();
2677 }
2678 
2679 /**
2680  * add offset to the speculative part of the type
2681  *
2682  * @param offset  offset to add
2683  */
2684 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2685   if (_speculative == NULL) {
2686     return NULL;
2687   }
2688   return _speculative->add_offset(offset)->is_ptr();
2689 }
2690 
2691 /**
2692  * return exact klass from the speculative type if there's one
2693  */
2694 ciKlass* TypePtr::speculative_type() const {
2695   if (_speculative != NULL && _speculative->isa_oopptr()) {
2696     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2697     if (speculative->klass_is_exact()) {
2698       return speculative->klass();
2699     }
2700   }
2701   return NULL;
2702 }
2703 
2704 /**
2705  * return true if speculative type may be null
2706  */
2707 bool TypePtr::speculative_maybe_null() const {
2708   if (_speculative != NULL) {
2709     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2710     return speculative->maybe_null();
2711   }
2712   return true;
2713 }
2714 
2715 bool TypePtr::speculative_always_null() const {
2716   if (_speculative != NULL) {
2717     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2718     return speculative == TypePtr::NULL_PTR;
2719   }
2720   return false;
2721 }
2722 
2723 /**
2724  * Same as TypePtr::speculative_type() but return the klass only if
2725  * the speculative tells us is not null
2726  */
2727 ciKlass* TypePtr::speculative_type_not_null() const {
2728   if (speculative_maybe_null()) {
2729     return NULL;
2730   }
2731   return speculative_type();
2732 }
2733 
2734 /**
2735  * Check whether new profiling would improve speculative type
2736  *
2737  * @param   exact_kls    class from profiling
2738  * @param   inline_depth inlining depth of profile point
2739  *
2740  * @return  true if type profile is valuable
2741  */
2742 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2743   // no profiling?
2744   if (exact_kls == NULL) {
2745     return false;
2746   }
2747   if (speculative() == TypePtr::NULL_PTR) {
2748     return false;
2749   }
2750   // no speculative type or non exact speculative type?
2751   if (speculative_type() == NULL) {
2752     return true;
2753   }
2754   // If the node already has an exact speculative type keep it,
2755   // unless it was provided by profiling that is at a deeper
2756   // inlining level. Profiling at a higher inlining depth is
2757   // expected to be less accurate.
2758   if (_speculative->inline_depth() == InlineDepthBottom) {
2759     return false;
2760   }
2761   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2762   return inline_depth < _speculative->inline_depth();
2763 }
2764 
2765 /**
2766  * Check whether new profiling would improve ptr (= tells us it is non
2767  * null)
2768  *
2769  * @param   ptr_kind always null or not null?
2770  *
2771  * @return  true if ptr profile is valuable
2772  */
2773 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2774   // profiling doesn't tell us anything useful
2775   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2776     return false;
2777   }
2778   // We already know this is not null
2779   if (!this->maybe_null()) {
2780     return false;
2781   }
2782   // We already know the speculative type cannot be null
2783   if (!speculative_maybe_null()) {
2784     return false;
2785   }
2786   // We already know this is always null
2787   if (this == TypePtr::NULL_PTR) {
2788     return false;
2789   }
2790   // We already know the speculative type is always null
2791   if (speculative_always_null()) {
2792     return false;
2793   }
2794   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2795     return false;
2796   }
2797   return true;
2798 }
2799 
2800 //------------------------------dump2------------------------------------------
2801 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2802   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2803 };
2804 
2805 #ifndef PRODUCT
2806 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2807   if( _ptr == Null ) st->print("NULL");
2808   else st->print("%s *", ptr_msg[_ptr]);
2809   if( _offset == OffsetTop ) st->print("+top");
2810   else if( _offset == OffsetBot ) st->print("+bot");
2811   else if( _offset ) st->print("+%d", _offset);
2812   dump_inline_depth(st);
2813   dump_speculative(st);
2814 }
2815 
2816 /**
2817  *dump the speculative part of the type
2818  */
2819 void TypePtr::dump_speculative(outputStream *st) const {
2820   if (_speculative != NULL) {
2821     st->print(" (speculative=");
2822     _speculative->dump_on(st);
2823     st->print(")");
2824   }
2825 }
2826 
2827 /**
2828  *dump the inline depth of the type
2829  */
2830 void TypePtr::dump_inline_depth(outputStream *st) const {
2831   if (_inline_depth != InlineDepthBottom) {
2832     if (_inline_depth == InlineDepthTop) {
2833       st->print(" (inline_depth=InlineDepthTop)");
2834     } else {
2835       st->print(" (inline_depth=%d)", _inline_depth);
2836     }
2837   }
2838 }
2839 #endif
2840 
2841 //------------------------------singleton--------------------------------------
2842 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2843 // constants
2844 bool TypePtr::singleton(void) const {
2845   // TopPTR, Null, AnyNull, Constant are all singletons
2846   return (_offset != OffsetBot) && !below_centerline(_ptr);
2847 }
2848 
2849 bool TypePtr::empty(void) const {
2850   return (_offset == OffsetTop) || above_centerline(_ptr);
2851 }
2852 
2853 //=============================================================================
2854 // Convenience common pre-built types.
2855 const TypeRawPtr *TypeRawPtr::BOTTOM;
2856 const TypeRawPtr *TypeRawPtr::NOTNULL;
2857 
2858 //------------------------------make-------------------------------------------
2859 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2860   assert( ptr != Constant, "what is the constant?" );
2861   assert( ptr != Null, "Use TypePtr for NULL" );
2862   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2863 }
2864 
2865 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2866   assert( bits, "Use TypePtr for NULL" );
2867   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2868 }
2869 
2870 //------------------------------cast_to_ptr_type-------------------------------
2871 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2872   assert( ptr != Constant, "what is the constant?" );
2873   assert( ptr != Null, "Use TypePtr for NULL" );
2874   assert( _bits==0, "Why cast a constant address?");
2875   if( ptr == _ptr ) return this;
2876   return make(ptr);
2877 }
2878 
2879 //------------------------------get_con----------------------------------------
2880 intptr_t TypeRawPtr::get_con() const {
2881   assert( _ptr == Null || _ptr == Constant, "" );
2882   return (intptr_t)_bits;
2883 }
2884 
2885 //------------------------------meet-------------------------------------------
2886 // Compute the MEET of two types.  It returns a new Type object.
2887 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2888   // Perform a fast test for common case; meeting the same types together.
2889   if( this == t ) return this;  // Meeting same type-rep?
2890 
2891   // Current "this->_base" is RawPtr
2892   switch( t->base() ) {         // switch on original type
2893   case Bottom:                  // Ye Olde Default
2894     return t;
2895   case Top:
2896     return this;
2897   case AnyPtr:                  // Meeting to AnyPtrs
2898     break;
2899   case RawPtr: {                // might be top, bot, any/not or constant
2900     enum PTR tptr = t->is_ptr()->ptr();
2901     enum PTR ptr = meet_ptr( tptr );
2902     if( ptr == Constant ) {     // Cannot be equal constants, so...
2903       if( tptr == Constant && _ptr != Constant)  return t;
2904       if( _ptr == Constant && tptr != Constant)  return this;
2905       ptr = NotNull;            // Fall down in lattice
2906     }
2907     return make( ptr );
2908   }
2909 
2910   case OopPtr:
2911   case InstPtr:
2912   case AryPtr:
2913   case MetadataPtr:
2914   case KlassPtr:
2915     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2916   default:                      // All else is a mistake
2917     typerr(t);
2918   }
2919 
2920   // Found an AnyPtr type vs self-RawPtr type
2921   const TypePtr *tp = t->is_ptr();
2922   switch (tp->ptr()) {
2923   case TypePtr::TopPTR:  return this;
2924   case TypePtr::BotPTR:  return t;
2925   case TypePtr::Null:
2926     if( _ptr == TypePtr::TopPTR ) return t;
2927     return TypeRawPtr::BOTTOM;
2928   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2929   case TypePtr::AnyNull:
2930     if( _ptr == TypePtr::Constant) return this;
2931     return make( meet_ptr(TypePtr::AnyNull) );
2932   default: ShouldNotReachHere();
2933   }
2934   return this;
2935 }
2936 
2937 //------------------------------xdual------------------------------------------
2938 // Dual: compute field-by-field dual
2939 const Type *TypeRawPtr::xdual() const {
2940   return new TypeRawPtr( dual_ptr(), _bits );
2941 }
2942 
2943 //------------------------------add_offset-------------------------------------
2944 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2945   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2946   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2947   if( offset == 0 ) return this; // No change
2948   switch (_ptr) {
2949   case TypePtr::TopPTR:
2950   case TypePtr::BotPTR:
2951   case TypePtr::NotNull:
2952     return this;
2953   case TypePtr::Null:
2954   case TypePtr::Constant: {
2955     address bits = _bits+offset;
2956     if ( bits == 0 ) return TypePtr::NULL_PTR;
2957     return make( bits );
2958   }
2959   default:  ShouldNotReachHere();
2960   }
2961   return NULL;                  // Lint noise
2962 }
2963 
2964 //------------------------------eq---------------------------------------------
2965 // Structural equality check for Type representations
2966 bool TypeRawPtr::eq( const Type *t ) const {
2967   const TypeRawPtr *a = (const TypeRawPtr*)t;
2968   return _bits == a->_bits && TypePtr::eq(t);
2969 }
2970 
2971 //------------------------------hash-------------------------------------------
2972 // Type-specific hashing function.
2973 int TypeRawPtr::hash(void) const {
2974   return (intptr_t)_bits + TypePtr::hash();
2975 }
2976 
2977 //------------------------------dump2------------------------------------------
2978 #ifndef PRODUCT
2979 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2980   if( _ptr == Constant )
2981     st->print(INTPTR_FORMAT, p2i(_bits));
2982   else
2983     st->print("rawptr:%s", ptr_msg[_ptr]);
2984 }
2985 #endif
2986 
2987 //=============================================================================
2988 // Convenience common pre-built type.
2989 const TypeOopPtr *TypeOopPtr::BOTTOM;
2990 
2991 //------------------------------TypeOopPtr-------------------------------------
2992 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2993                        int instance_id, const TypePtr* speculative, int inline_depth)
2994   : TypePtr(t, ptr, offset, speculative, inline_depth),
2995     _const_oop(o), _klass(k),
2996     _klass_is_exact(xk),
2997     _is_ptr_to_narrowoop(false),
2998     _is_ptr_to_narrowklass(false),
2999     _is_ptr_to_boxed_value(false),
3000     _instance_id(instance_id) {
3001   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3002       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3003     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3004   }
3005 #ifdef _LP64
3006   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3007     if (_offset == oopDesc::klass_offset_in_bytes()) {
3008       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3009     } else if (klass() == NULL) {
3010       // Array with unknown body type
3011       assert(this->isa_aryptr(), "only arrays without klass");
3012       _is_ptr_to_narrowoop = UseCompressedOops;
3013     } else if (this->isa_aryptr()) {
3014       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3015                              _offset != arrayOopDesc::length_offset_in_bytes());
3016     } else if (klass()->is_instance_klass()) {
3017       ciInstanceKlass* ik = klass()->as_instance_klass();
3018       ciField* field = NULL;
3019       if (this->isa_klassptr()) {
3020         // Perm objects don't use compressed references
3021       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3022         // unsafe access
3023         _is_ptr_to_narrowoop = UseCompressedOops;
3024       } else {
3025         assert(this->isa_instptr(), "must be an instance ptr.");
3026 
3027         if (klass() == ciEnv::current()->Class_klass() &&
3028             (_offset == java_lang_Class::klass_offset() ||
3029              _offset == java_lang_Class::array_klass_offset())) {
3030           // Special hidden fields from the Class.
3031           assert(this->isa_instptr(), "must be an instance ptr.");
3032           _is_ptr_to_narrowoop = false;
3033         } else if (klass() == ciEnv::current()->Class_klass() &&
3034                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3035           // Static fields
3036           assert(o != NULL, "must be constant");
3037           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3038           ciField* field = k->get_field_by_offset(_offset, true);
3039           if (field != NULL) {
3040             BasicType basic_elem_type = field->layout_type();
3041             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3042           } else {
3043             // unsafe access
3044             _is_ptr_to_narrowoop = UseCompressedOops;
3045           }
3046         } else {
3047           // Instance fields which contains a compressed oop references.
3048           field = ik->get_field_by_offset(_offset, false);
3049           if (field != NULL) {
3050             BasicType basic_elem_type = field->layout_type();
3051             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3052           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3053             // Compile::find_alias_type() cast exactness on all types to verify
3054             // that it does not affect alias type.
3055             _is_ptr_to_narrowoop = UseCompressedOops;
3056           } else {
3057             // Type for the copy start in LibraryCallKit::inline_native_clone().
3058             _is_ptr_to_narrowoop = UseCompressedOops;
3059           }
3060         }
3061       }
3062     }
3063   }
3064 #endif
3065 }
3066 
3067 //------------------------------make-------------------------------------------
3068 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3069                                      const TypePtr* speculative, int inline_depth) {
3070   assert(ptr != Constant, "no constant generic pointers");
3071   ciKlass*  k = Compile::current()->env()->Object_klass();
3072   bool      xk = false;
3073   ciObject* o = NULL;
3074   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3075 }
3076 
3077 
3078 //------------------------------cast_to_ptr_type-------------------------------
3079 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3080   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3081   if( ptr == _ptr ) return this;
3082   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3083 }
3084 
3085 //-----------------------------cast_to_instance_id----------------------------
3086 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3087   // There are no instances of a general oop.
3088   // Return self unchanged.
3089   return this;
3090 }
3091 
3092 //-----------------------------cast_to_exactness-------------------------------
3093 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3094   // There is no such thing as an exact general oop.
3095   // Return self unchanged.
3096   return this;
3097 }
3098 
3099 
3100 //------------------------------as_klass_type----------------------------------
3101 // Return the klass type corresponding to this instance or array type.
3102 // It is the type that is loaded from an object of this type.
3103 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3104   ciKlass* k = klass();
3105   bool    xk = klass_is_exact();
3106   if (k == NULL)
3107     return TypeKlassPtr::OBJECT;
3108   else
3109     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3110 }
3111 
3112 //------------------------------meet-------------------------------------------
3113 // Compute the MEET of two types.  It returns a new Type object.
3114 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3115   // Perform a fast test for common case; meeting the same types together.
3116   if( this == t ) return this;  // Meeting same type-rep?
3117 
3118   // Current "this->_base" is OopPtr
3119   switch (t->base()) {          // switch on original type
3120 
3121   case Int:                     // Mixing ints & oops happens when javac
3122   case Long:                    // reuses local variables
3123   case FloatTop:
3124   case FloatCon:
3125   case FloatBot:
3126   case DoubleTop:
3127   case DoubleCon:
3128   case DoubleBot:
3129   case NarrowOop:
3130   case NarrowKlass:
3131   case Bottom:                  // Ye Olde Default
3132     return Type::BOTTOM;
3133   case Top:
3134     return this;
3135 
3136   default:                      // All else is a mistake
3137     typerr(t);
3138 
3139   case RawPtr:
3140   case MetadataPtr:
3141   case KlassPtr:
3142     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3143 
3144   case AnyPtr: {
3145     // Found an AnyPtr type vs self-OopPtr type
3146     const TypePtr *tp = t->is_ptr();
3147     int offset = meet_offset(tp->offset());
3148     PTR ptr = meet_ptr(tp->ptr());
3149     const TypePtr* speculative = xmeet_speculative(tp);
3150     int depth = meet_inline_depth(tp->inline_depth());
3151     switch (tp->ptr()) {
3152     case Null:
3153       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3154       // else fall through:
3155     case TopPTR:
3156     case AnyNull: {
3157       int instance_id = meet_instance_id(InstanceTop);
3158       return make(ptr, offset, instance_id, speculative, depth);
3159     }
3160     case BotPTR:
3161     case NotNull:
3162       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3163     default: typerr(t);
3164     }
3165   }
3166 
3167   case OopPtr: {                 // Meeting to other OopPtrs
3168     const TypeOopPtr *tp = t->is_oopptr();
3169     int instance_id = meet_instance_id(tp->instance_id());
3170     const TypePtr* speculative = xmeet_speculative(tp);
3171     int depth = meet_inline_depth(tp->inline_depth());
3172     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3173   }
3174 
3175   case InstPtr:                  // For these, flip the call around to cut down
3176   case AryPtr:
3177     return t->xmeet(this);      // Call in reverse direction
3178 
3179   } // End of switch
3180   return this;                  // Return the double constant
3181 }
3182 
3183 
3184 //------------------------------xdual------------------------------------------
3185 // Dual of a pure heap pointer.  No relevant klass or oop information.
3186 const Type *TypeOopPtr::xdual() const {
3187   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3188   assert(const_oop() == NULL,             "no constants here");
3189   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3190 }
3191 
3192 //--------------------------make_from_klass_common-----------------------------
3193 // Computes the element-type given a klass.
3194 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3195   if (klass->is_instance_klass()) {
3196     Compile* C = Compile::current();
3197     Dependencies* deps = C->dependencies();
3198     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3199     // Element is an instance
3200     bool klass_is_exact = false;
3201     if (klass->is_loaded()) {
3202       // Try to set klass_is_exact.
3203       ciInstanceKlass* ik = klass->as_instance_klass();
3204       klass_is_exact = ik->is_final();
3205       if (!klass_is_exact && klass_change
3206           && deps != NULL && UseUniqueSubclasses) {
3207         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3208         if (sub != NULL) {
3209           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3210           klass = ik = sub;
3211           klass_is_exact = sub->is_final();
3212         }
3213       }
3214       if (!klass_is_exact && try_for_exact && deps != NULL &&
3215           !ik->is_interface() && !ik->has_subklass()) {
3216         // Add a dependence; if concrete subclass added we need to recompile
3217         deps->assert_leaf_type(ik);
3218         klass_is_exact = true;
3219       }
3220     }
3221     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3222   } else if (klass->is_obj_array_klass()) {
3223     // Element is an object array. Recursively call ourself.
3224     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3225     bool xk = etype->klass_is_exact();
3226     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3227     // We used to pass NotNull in here, asserting that the sub-arrays
3228     // are all not-null.  This is not true in generally, as code can
3229     // slam NULLs down in the subarrays.
3230     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3231     return arr;
3232   } else if (klass->is_type_array_klass()) {
3233     // Element is an typeArray
3234     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3235     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3236     // We used to pass NotNull in here, asserting that the array pointer
3237     // is not-null. That was not true in general.
3238     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3239     return arr;
3240   } else {
3241     ShouldNotReachHere();
3242     return NULL;
3243   }
3244 }
3245 
3246 //------------------------------make_from_constant-----------------------------
3247 // Make a java pointer from an oop constant
3248 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3249   assert(!o->is_null_object(), "null object not yet handled here.");
3250 
3251   const bool make_constant = require_constant || o->should_be_constant();
3252 
3253   ciKlass* klass = o->klass();
3254   if (klass->is_instance_klass()) {
3255     // Element is an instance
3256     if (make_constant) {
3257       return TypeInstPtr::make(o);
3258     } else {
3259       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3260     }
3261   } else if (klass->is_obj_array_klass()) {
3262     // Element is an object array. Recursively call ourself.
3263     const TypeOopPtr *etype =
3264       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3265     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3266     // We used to pass NotNull in here, asserting that the sub-arrays
3267     // are all not-null.  This is not true in generally, as code can
3268     // slam NULLs down in the subarrays.
3269     if (make_constant) {
3270       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3271     } else {
3272       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3273     }
3274   } else if (klass->is_type_array_klass()) {
3275     // Element is an typeArray
3276     const Type* etype =
3277       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3278     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3279     // We used to pass NotNull in here, asserting that the array pointer
3280     // is not-null. That was not true in general.
3281     if (make_constant) {
3282       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3283     } else {
3284       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3285     }
3286   }
3287 
3288   fatal("unhandled object type");
3289   return NULL;
3290 }
3291 
3292 //------------------------------get_con----------------------------------------
3293 intptr_t TypeOopPtr::get_con() const {
3294   assert( _ptr == Null || _ptr == Constant, "" );
3295   assert( _offset >= 0, "" );
3296 
3297   if (_offset != 0) {
3298     // After being ported to the compiler interface, the compiler no longer
3299     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3300     // to a handle at compile time.  This handle is embedded in the generated
3301     // code and dereferenced at the time the nmethod is made.  Until that time,
3302     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3303     // have access to the addresses!).  This does not seem to currently happen,
3304     // but this assertion here is to help prevent its occurence.
3305     tty->print_cr("Found oop constant with non-zero offset");
3306     ShouldNotReachHere();
3307   }
3308 
3309   return (intptr_t)const_oop()->constant_encoding();
3310 }
3311 
3312 
3313 //-----------------------------filter------------------------------------------
3314 // Do not allow interface-vs.-noninterface joins to collapse to top.
3315 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3316 
3317   const Type* ft = join_helper(kills, include_speculative);
3318   const TypeInstPtr* ftip = ft->isa_instptr();
3319   const TypeInstPtr* ktip = kills->isa_instptr();
3320 
3321   if (ft->empty()) {
3322     // Check for evil case of 'this' being a class and 'kills' expecting an
3323     // interface.  This can happen because the bytecodes do not contain
3324     // enough type info to distinguish a Java-level interface variable
3325     // from a Java-level object variable.  If we meet 2 classes which
3326     // both implement interface I, but their meet is at 'j/l/O' which
3327     // doesn't implement I, we have no way to tell if the result should
3328     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3329     // into a Phi which "knows" it's an Interface type we'll have to
3330     // uplift the type.
3331     if (!empty()) {
3332       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3333         return kills;           // Uplift to interface
3334       }
3335       // Also check for evil cases of 'this' being a class array
3336       // and 'kills' expecting an array of interfaces.
3337       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3338       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3339         return kills;           // Uplift to array of interface
3340       }
3341     }
3342 
3343     return Type::TOP;           // Canonical empty value
3344   }
3345 
3346   // If we have an interface-typed Phi or cast and we narrow to a class type,
3347   // the join should report back the class.  However, if we have a J/L/Object
3348   // class-typed Phi and an interface flows in, it's possible that the meet &
3349   // join report an interface back out.  This isn't possible but happens
3350   // because the type system doesn't interact well with interfaces.
3351   if (ftip != NULL && ktip != NULL &&
3352       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3353       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3354     assert(!ftip->klass_is_exact(), "interface could not be exact");
3355     return ktip->cast_to_ptr_type(ftip->ptr());
3356   }
3357 
3358   return ft;
3359 }
3360 
3361 //------------------------------eq---------------------------------------------
3362 // Structural equality check for Type representations
3363 bool TypeOopPtr::eq( const Type *t ) const {
3364   const TypeOopPtr *a = (const TypeOopPtr*)t;
3365   if (_klass_is_exact != a->_klass_is_exact ||
3366       _instance_id != a->_instance_id)  return false;
3367   ciObject* one = const_oop();
3368   ciObject* two = a->const_oop();
3369   if (one == NULL || two == NULL) {
3370     return (one == two) && TypePtr::eq(t);
3371   } else {
3372     return one->equals(two) && TypePtr::eq(t);
3373   }
3374 }
3375 
3376 //------------------------------hash-------------------------------------------
3377 // Type-specific hashing function.
3378 int TypeOopPtr::hash(void) const {
3379   return
3380     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3381              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3382 }
3383 
3384 //------------------------------dump2------------------------------------------
3385 #ifndef PRODUCT
3386 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3387   st->print("oopptr:%s", ptr_msg[_ptr]);
3388   if( _klass_is_exact ) st->print(":exact");
3389   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3390   switch( _offset ) {
3391   case OffsetTop: st->print("+top"); break;
3392   case OffsetBot: st->print("+any"); break;
3393   case         0: break;
3394   default:        st->print("+%d",_offset); break;
3395   }
3396   if (_instance_id == InstanceTop)
3397     st->print(",iid=top");
3398   else if (_instance_id != InstanceBot)
3399     st->print(",iid=%d",_instance_id);
3400 
3401   dump_inline_depth(st);
3402   dump_speculative(st);
3403 }
3404 #endif
3405 
3406 //------------------------------singleton--------------------------------------
3407 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3408 // constants
3409 bool TypeOopPtr::singleton(void) const {
3410   // detune optimizer to not generate constant oop + constant offset as a constant!
3411   // TopPTR, Null, AnyNull, Constant are all singletons
3412   return (_offset == 0) && !below_centerline(_ptr);
3413 }
3414 
3415 //------------------------------add_offset-------------------------------------
3416 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3417   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3418 }
3419 
3420 /**
3421  * Return same type without a speculative part
3422  */
3423 const Type* TypeOopPtr::remove_speculative() const {
3424   if (_speculative == NULL) {
3425     return this;
3426   }
3427   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3428   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3429 }
3430 
3431 /**
3432  * Return same type but drop speculative part if we know we won't use
3433  * it
3434  */
3435 const Type* TypeOopPtr::cleanup_speculative() const {
3436   // If the klass is exact and the ptr is not null then there's
3437   // nothing that the speculative type can help us with
3438   if (klass_is_exact() && !maybe_null()) {
3439     return remove_speculative();
3440   }
3441   return TypePtr::cleanup_speculative();
3442 }
3443 
3444 /**
3445  * Return same type but with a different inline depth (used for speculation)
3446  *
3447  * @param depth  depth to meet with
3448  */
3449 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3450   if (!UseInlineDepthForSpeculativeTypes) {
3451     return this;
3452   }
3453   return make(_ptr, _offset, _instance_id, _speculative, depth);
3454 }
3455 
3456 //------------------------------with_instance_id--------------------------------
3457 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3458   assert(_instance_id != -1, "should be known");
3459   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3460 }
3461 
3462 //------------------------------meet_instance_id--------------------------------
3463 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3464   // Either is 'TOP' instance?  Return the other instance!
3465   if( _instance_id == InstanceTop ) return  instance_id;
3466   if(  instance_id == InstanceTop ) return _instance_id;
3467   // If either is different, return 'BOTTOM' instance
3468   if( _instance_id != instance_id ) return InstanceBot;
3469   return _instance_id;
3470 }
3471 
3472 //------------------------------dual_instance_id--------------------------------
3473 int TypeOopPtr::dual_instance_id( ) const {
3474   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3475   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3476   return _instance_id;              // Map everything else into self
3477 }
3478 
3479 /**
3480  * Check whether new profiling would improve speculative type
3481  *
3482  * @param   exact_kls    class from profiling
3483  * @param   inline_depth inlining depth of profile point
3484  *
3485  * @return  true if type profile is valuable
3486  */
3487 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3488   // no way to improve an already exact type
3489   if (klass_is_exact()) {
3490     return false;
3491   }
3492   return TypePtr::would_improve_type(exact_kls, inline_depth);
3493 }
3494 
3495 //=============================================================================
3496 // Convenience common pre-built types.
3497 const TypeInstPtr *TypeInstPtr::NOTNULL;
3498 const TypeInstPtr *TypeInstPtr::BOTTOM;
3499 const TypeInstPtr *TypeInstPtr::MIRROR;
3500 const TypeInstPtr *TypeInstPtr::MARK;
3501 const TypeInstPtr *TypeInstPtr::KLASS;
3502 
3503 //------------------------------TypeInstPtr-------------------------------------
3504 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3505                          int instance_id, const TypePtr* speculative, int inline_depth)
3506   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3507     _name(k->name()) {
3508    assert(k != NULL &&
3509           (k->is_loaded() || o == NULL),
3510           "cannot have constants with non-loaded klass");
3511 };
3512 
3513 //------------------------------make-------------------------------------------
3514 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3515                                      ciKlass* k,
3516                                      bool xk,
3517                                      ciObject* o,
3518                                      int offset,
3519                                      int instance_id,
3520                                      const TypePtr* speculative,
3521                                      int inline_depth) {
3522   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3523   // Either const_oop() is NULL or else ptr is Constant
3524   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3525           "constant pointers must have a value supplied" );
3526   // Ptr is never Null
3527   assert( ptr != Null, "NULL pointers are not typed" );
3528 
3529   assert(instance_id <= 0 || xk, "instances are always exactly typed");
3530   if (ptr == Constant) {
3531     // Note:  This case includes meta-object constants, such as methods.
3532     xk = true;
3533   } else if (k->is_loaded()) {
3534     ciInstanceKlass* ik = k->as_instance_klass();
3535     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3536     if (xk && ik->is_interface())  xk = false;  // no exact interface
3537   }
3538 
3539   // Now hash this baby
3540   TypeInstPtr *result =
3541     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3542 
3543   return result;
3544 }
3545 
3546 /**
3547  *  Create constant type for a constant boxed value
3548  */
3549 const Type* TypeInstPtr::get_const_boxed_value() const {
3550   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3551   assert((const_oop() != NULL), "should be called only for constant object");
3552   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3553   BasicType bt = constant.basic_type();
3554   switch (bt) {
3555     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3556     case T_INT:      return TypeInt::make(constant.as_int());
3557     case T_CHAR:     return TypeInt::make(constant.as_char());
3558     case T_BYTE:     return TypeInt::make(constant.as_byte());
3559     case T_SHORT:    return TypeInt::make(constant.as_short());
3560     case T_FLOAT:    return TypeF::make(constant.as_float());
3561     case T_DOUBLE:   return TypeD::make(constant.as_double());
3562     case T_LONG:     return TypeLong::make(constant.as_long());
3563     default:         break;
3564   }
3565   fatal("Invalid boxed value type '%s'", type2name(bt));
3566   return NULL;
3567 }
3568 
3569 //------------------------------cast_to_ptr_type-------------------------------
3570 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3571   if( ptr == _ptr ) return this;
3572   // Reconstruct _sig info here since not a problem with later lazy
3573   // construction, _sig will show up on demand.
3574   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3575 }
3576 
3577 
3578 //-----------------------------cast_to_exactness-------------------------------
3579 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3580   if( klass_is_exact == _klass_is_exact ) return this;
3581   if (!_klass->is_loaded())  return this;
3582   ciInstanceKlass* ik = _klass->as_instance_klass();
3583   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3584   if( ik->is_interface() )              return this;  // cannot set xk
3585   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3586 }
3587 
3588 //-----------------------------cast_to_instance_id----------------------------
3589 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3590   if( instance_id == _instance_id ) return this;
3591   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3592 }
3593 
3594 //------------------------------xmeet_unloaded---------------------------------
3595 // Compute the MEET of two InstPtrs when at least one is unloaded.
3596 // Assume classes are different since called after check for same name/class-loader
3597 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3598     int off = meet_offset(tinst->offset());
3599     PTR ptr = meet_ptr(tinst->ptr());
3600     int instance_id = meet_instance_id(tinst->instance_id());
3601     const TypePtr* speculative = xmeet_speculative(tinst);
3602     int depth = meet_inline_depth(tinst->inline_depth());
3603 
3604     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3605     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3606     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3607       //
3608       // Meet unloaded class with java/lang/Object
3609       //
3610       // Meet
3611       //          |                     Unloaded Class
3612       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3613       //  ===================================================================
3614       //   TOP    | ..........................Unloaded......................|
3615       //  AnyNull |  U-AN    |................Unloaded......................|
3616       // Constant | ... O-NN .................................. |   O-BOT   |
3617       //  NotNull | ... O-NN .................................. |   O-BOT   |
3618       //  BOTTOM  | ........................Object-BOTTOM ..................|
3619       //
3620       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3621       //
3622       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3623       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3624       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3625       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3626         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3627         else                                      { return TypeInstPtr::NOTNULL; }
3628       }
3629       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3630 
3631       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3632     }
3633 
3634     // Both are unloaded, not the same class, not Object
3635     // Or meet unloaded with a different loaded class, not java/lang/Object
3636     if( ptr != TypePtr::BotPTR ) {
3637       return TypeInstPtr::NOTNULL;
3638     }
3639     return TypeInstPtr::BOTTOM;
3640 }
3641 
3642 
3643 //------------------------------meet-------------------------------------------
3644 // Compute the MEET of two types.  It returns a new Type object.
3645 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3646   // Perform a fast test for common case; meeting the same types together.
3647   if( this == t ) return this;  // Meeting same type-rep?
3648 
3649   // Current "this->_base" is Pointer
3650   switch (t->base()) {          // switch on original type
3651 
3652   case Int:                     // Mixing ints & oops happens when javac
3653   case Long:                    // reuses local variables
3654   case FloatTop:
3655   case FloatCon:
3656   case FloatBot:
3657   case DoubleTop:
3658   case DoubleCon:
3659   case DoubleBot:
3660   case NarrowOop:
3661   case NarrowKlass:
3662   case Bottom:                  // Ye Olde Default
3663     return Type::BOTTOM;
3664   case Top:
3665     return this;
3666 
3667   default:                      // All else is a mistake
3668     typerr(t);
3669 
3670   case MetadataPtr:
3671   case KlassPtr:
3672   case RawPtr: return TypePtr::BOTTOM;
3673 
3674   case AryPtr: {                // All arrays inherit from Object class
3675     const TypeAryPtr *tp = t->is_aryptr();
3676     int offset = meet_offset(tp->offset());
3677     PTR ptr = meet_ptr(tp->ptr());
3678     int instance_id = meet_instance_id(tp->instance_id());
3679     const TypePtr* speculative = xmeet_speculative(tp);
3680     int depth = meet_inline_depth(tp->inline_depth());
3681     switch (ptr) {
3682     case TopPTR:
3683     case AnyNull:                // Fall 'down' to dual of object klass
3684       // For instances when a subclass meets a superclass we fall
3685       // below the centerline when the superclass is exact. We need to
3686       // do the same here.
3687       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3688         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3689       } else {
3690         // cannot subclass, so the meet has to fall badly below the centerline
3691         ptr = NotNull;
3692         instance_id = InstanceBot;
3693         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3694       }
3695     case Constant:
3696     case NotNull:
3697     case BotPTR:                // Fall down to object klass
3698       // LCA is object_klass, but if we subclass from the top we can do better
3699       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3700         // If 'this' (InstPtr) is above the centerline and it is Object class
3701         // then we can subclass in the Java class hierarchy.
3702         // For instances when a subclass meets a superclass we fall
3703         // below the centerline when the superclass is exact. We need
3704         // to do the same here.
3705         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3706           // that is, tp's array type is a subtype of my klass
3707           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3708                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3709         }
3710       }
3711       // The other case cannot happen, since I cannot be a subtype of an array.
3712       // The meet falls down to Object class below centerline.
3713       if( ptr == Constant )
3714          ptr = NotNull;
3715       instance_id = InstanceBot;
3716       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3717     default: typerr(t);
3718     }
3719   }
3720 
3721   case OopPtr: {                // Meeting to OopPtrs
3722     // Found a OopPtr type vs self-InstPtr type
3723     const TypeOopPtr *tp = t->is_oopptr();
3724     int offset = meet_offset(tp->offset());
3725     PTR ptr = meet_ptr(tp->ptr());
3726     switch (tp->ptr()) {
3727     case TopPTR:
3728     case AnyNull: {
3729       int instance_id = meet_instance_id(InstanceTop);
3730       const TypePtr* speculative = xmeet_speculative(tp);
3731       int depth = meet_inline_depth(tp->inline_depth());
3732       return make(ptr, klass(), klass_is_exact(),
3733                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3734     }
3735     case NotNull:
3736     case BotPTR: {
3737       int instance_id = meet_instance_id(tp->instance_id());
3738       const TypePtr* speculative = xmeet_speculative(tp);
3739       int depth = meet_inline_depth(tp->inline_depth());
3740       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3741     }
3742     default: typerr(t);
3743     }
3744   }
3745 
3746   case AnyPtr: {                // Meeting to AnyPtrs
3747     // Found an AnyPtr type vs self-InstPtr type
3748     const TypePtr *tp = t->is_ptr();
3749     int offset = meet_offset(tp->offset());
3750     PTR ptr = meet_ptr(tp->ptr());
3751     int instance_id = meet_instance_id(InstanceTop);
3752     const TypePtr* speculative = xmeet_speculative(tp);
3753     int depth = meet_inline_depth(tp->inline_depth());
3754     switch (tp->ptr()) {
3755     case Null:
3756       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3757       // else fall through to AnyNull
3758     case TopPTR:
3759     case AnyNull: {
3760       return make(ptr, klass(), klass_is_exact(),
3761                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3762     }
3763     case NotNull:
3764     case BotPTR:
3765       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3766     default: typerr(t);
3767     }
3768   }
3769 
3770   /*
3771                  A-top         }
3772                /   |   \       }  Tops
3773            B-top A-any C-top   }
3774               | /  |  \ |      }  Any-nulls
3775            B-any   |   C-any   }
3776               |    |    |
3777            B-con A-con C-con   } constants; not comparable across classes
3778               |    |    |
3779            B-not   |   C-not   }
3780               | \  |  / |      }  not-nulls
3781            B-bot A-not C-bot   }
3782                \   |   /       }  Bottoms
3783                  A-bot         }
3784   */
3785 
3786   case InstPtr: {                // Meeting 2 Oops?
3787     // Found an InstPtr sub-type vs self-InstPtr type
3788     const TypeInstPtr *tinst = t->is_instptr();
3789     int off = meet_offset( tinst->offset() );
3790     PTR ptr = meet_ptr( tinst->ptr() );
3791     int instance_id = meet_instance_id(tinst->instance_id());
3792     const TypePtr* speculative = xmeet_speculative(tinst);
3793     int depth = meet_inline_depth(tinst->inline_depth());
3794 
3795     // Check for easy case; klasses are equal (and perhaps not loaded!)
3796     // If we have constants, then we created oops so classes are loaded
3797     // and we can handle the constants further down.  This case handles
3798     // both-not-loaded or both-loaded classes
3799     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3800       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3801     }
3802 
3803     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3804     ciKlass* tinst_klass = tinst->klass();
3805     ciKlass* this_klass  = this->klass();
3806     bool tinst_xk = tinst->klass_is_exact();
3807     bool this_xk  = this->klass_is_exact();
3808     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3809       // One of these classes has not been loaded
3810       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3811 #ifndef PRODUCT
3812       if( PrintOpto && Verbose ) {
3813         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3814         tty->print("  this == "); this->dump(); tty->cr();
3815         tty->print(" tinst == "); tinst->dump(); tty->cr();
3816       }
3817 #endif
3818       return unloaded_meet;
3819     }
3820 
3821     // Handle mixing oops and interfaces first.
3822     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3823                                         tinst_klass == ciEnv::current()->Object_klass())) {
3824       ciKlass *tmp = tinst_klass; // Swap interface around
3825       tinst_klass = this_klass;
3826       this_klass = tmp;
3827       bool tmp2 = tinst_xk;
3828       tinst_xk = this_xk;
3829       this_xk = tmp2;
3830     }
3831     if (tinst_klass->is_interface() &&
3832         !(this_klass->is_interface() ||
3833           // Treat java/lang/Object as an honorary interface,
3834           // because we need a bottom for the interface hierarchy.
3835           this_klass == ciEnv::current()->Object_klass())) {
3836       // Oop meets interface!
3837 
3838       // See if the oop subtypes (implements) interface.
3839       ciKlass *k;
3840       bool xk;
3841       if( this_klass->is_subtype_of( tinst_klass ) ) {
3842         // Oop indeed subtypes.  Now keep oop or interface depending
3843         // on whether we are both above the centerline or either is
3844         // below the centerline.  If we are on the centerline
3845         // (e.g., Constant vs. AnyNull interface), use the constant.
3846         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3847         // If we are keeping this_klass, keep its exactness too.
3848         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3849       } else {                  // Does not implement, fall to Object
3850         // Oop does not implement interface, so mixing falls to Object
3851         // just like the verifier does (if both are above the
3852         // centerline fall to interface)
3853         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3854         xk = above_centerline(ptr) ? tinst_xk : false;
3855         // Watch out for Constant vs. AnyNull interface.
3856         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3857         instance_id = InstanceBot;
3858       }
3859       ciObject* o = NULL;  // the Constant value, if any
3860       if (ptr == Constant) {
3861         // Find out which constant.
3862         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3863       }
3864       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3865     }
3866 
3867     // Either oop vs oop or interface vs interface or interface vs Object
3868 
3869     // !!! Here's how the symmetry requirement breaks down into invariants:
3870     // If we split one up & one down AND they subtype, take the down man.
3871     // If we split one up & one down AND they do NOT subtype, "fall hard".
3872     // If both are up and they subtype, take the subtype class.
3873     // If both are up and they do NOT subtype, "fall hard".
3874     // If both are down and they subtype, take the supertype class.
3875     // If both are down and they do NOT subtype, "fall hard".
3876     // Constants treated as down.
3877 
3878     // Now, reorder the above list; observe that both-down+subtype is also
3879     // "fall hard"; "fall hard" becomes the default case:
3880     // If we split one up & one down AND they subtype, take the down man.
3881     // If both are up and they subtype, take the subtype class.
3882 
3883     // If both are down and they subtype, "fall hard".
3884     // If both are down and they do NOT subtype, "fall hard".
3885     // If both are up and they do NOT subtype, "fall hard".
3886     // If we split one up & one down AND they do NOT subtype, "fall hard".
3887 
3888     // If a proper subtype is exact, and we return it, we return it exactly.
3889     // If a proper supertype is exact, there can be no subtyping relationship!
3890     // If both types are equal to the subtype, exactness is and-ed below the
3891     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3892 
3893     // Check for subtyping:
3894     ciKlass *subtype = NULL;
3895     bool subtype_exact = false;
3896     if( tinst_klass->equals(this_klass) ) {
3897       subtype = this_klass;
3898       subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
3899     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3900       subtype = this_klass;     // Pick subtyping class
3901       subtype_exact = this_xk;
3902     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3903       subtype = tinst_klass;    // Pick subtyping class
3904       subtype_exact = tinst_xk;
3905     }
3906 
3907     if( subtype ) {
3908       if( above_centerline(ptr) ) { // both are up?
3909         this_klass = tinst_klass = subtype;
3910         this_xk = tinst_xk = subtype_exact;
3911       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3912         this_klass = tinst_klass; // tinst is down; keep down man
3913         this_xk = tinst_xk;
3914       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3915         tinst_klass = this_klass; // this is down; keep down man
3916         tinst_xk = this_xk;
3917       } else {
3918         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3919       }
3920     }
3921 
3922     // Check for classes now being equal
3923     if (tinst_klass->equals(this_klass)) {
3924       // If the klasses are equal, the constants may still differ.  Fall to
3925       // NotNull if they do (neither constant is NULL; that is a special case
3926       // handled elsewhere).
3927       ciObject* o = NULL;             // Assume not constant when done
3928       ciObject* this_oop  = const_oop();
3929       ciObject* tinst_oop = tinst->const_oop();
3930       if( ptr == Constant ) {
3931         if (this_oop != NULL && tinst_oop != NULL &&
3932             this_oop->equals(tinst_oop) )
3933           o = this_oop;
3934         else if (above_centerline(this ->_ptr))
3935           o = tinst_oop;
3936         else if (above_centerline(tinst ->_ptr))
3937           o = this_oop;
3938         else
3939           ptr = NotNull;
3940       }
3941       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3942     } // Else classes are not equal
3943 
3944     // Since klasses are different, we require a LCA in the Java
3945     // class hierarchy - which means we have to fall to at least NotNull.
3946     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3947       ptr = NotNull;
3948 
3949     instance_id = InstanceBot;
3950 
3951     // Now we find the LCA of Java classes
3952     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3953     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3954   } // End of case InstPtr
3955 
3956   } // End of switch
3957   return this;                  // Return the double constant
3958 }
3959 
3960 
3961 //------------------------java_mirror_type--------------------------------------
3962 ciType* TypeInstPtr::java_mirror_type() const {
3963   // must be a singleton type
3964   if( const_oop() == NULL )  return NULL;
3965 
3966   // must be of type java.lang.Class
3967   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3968 
3969   return const_oop()->as_instance()->java_mirror_type();
3970 }
3971 
3972 
3973 //------------------------------xdual------------------------------------------
3974 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3975 // inheritance mechanism.
3976 const Type *TypeInstPtr::xdual() const {
3977   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3978 }
3979 
3980 //------------------------------eq---------------------------------------------
3981 // Structural equality check for Type representations
3982 bool TypeInstPtr::eq( const Type *t ) const {
3983   const TypeInstPtr *p = t->is_instptr();
3984   return
3985     klass()->equals(p->klass()) &&
3986     TypeOopPtr::eq(p);          // Check sub-type stuff
3987 }
3988 
3989 //------------------------------hash-------------------------------------------
3990 // Type-specific hashing function.
3991 int TypeInstPtr::hash(void) const {
3992   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
3993   return hash;
3994 }
3995 
3996 //------------------------------dump2------------------------------------------
3997 // Dump oop Type
3998 #ifndef PRODUCT
3999 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4000   // Print the name of the klass.
4001   klass()->print_name_on(st);
4002 
4003   switch( _ptr ) {
4004   case Constant:
4005     // TO DO: Make CI print the hex address of the underlying oop.
4006     if (WizardMode || Verbose) {
4007       const_oop()->print_oop(st);
4008     }
4009   case BotPTR:
4010     if (!WizardMode && !Verbose) {
4011       if( _klass_is_exact ) st->print(":exact");
4012       break;
4013     }
4014   case TopPTR:
4015   case AnyNull:
4016   case NotNull:
4017     st->print(":%s", ptr_msg[_ptr]);
4018     if( _klass_is_exact ) st->print(":exact");
4019     break;
4020   default:
4021     break;
4022   }
4023 
4024   if( _offset ) {               // Dump offset, if any
4025     if( _offset == OffsetBot )      st->print("+any");
4026     else if( _offset == OffsetTop ) st->print("+unknown");
4027     else st->print("+%d", _offset);
4028   }
4029 
4030   st->print(" *");
4031   if (_instance_id == InstanceTop)
4032     st->print(",iid=top");
4033   else if (_instance_id != InstanceBot)
4034     st->print(",iid=%d",_instance_id);
4035 
4036   dump_inline_depth(st);
4037   dump_speculative(st);
4038 }
4039 #endif
4040 
4041 //------------------------------add_offset-------------------------------------
4042 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4043   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4044               _instance_id, add_offset_speculative(offset), _inline_depth);
4045 }
4046 
4047 const Type *TypeInstPtr::remove_speculative() const {
4048   if (_speculative == NULL) {
4049     return this;
4050   }
4051   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4052   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4053               _instance_id, NULL, _inline_depth);
4054 }
4055 
4056 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4057   if (!UseInlineDepthForSpeculativeTypes) {
4058     return this;
4059   }
4060   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4061 }
4062 
4063 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4064   assert(is_known_instance(), "should be known");
4065   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4066 }
4067 
4068 //=============================================================================
4069 // Convenience common pre-built types.
4070 const TypeAryPtr *TypeAryPtr::RANGE;
4071 const TypeAryPtr *TypeAryPtr::OOPS;
4072 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4073 const TypeAryPtr *TypeAryPtr::BYTES;
4074 const TypeAryPtr *TypeAryPtr::SHORTS;
4075 const TypeAryPtr *TypeAryPtr::CHARS;
4076 const TypeAryPtr *TypeAryPtr::INTS;
4077 const TypeAryPtr *TypeAryPtr::LONGS;
4078 const TypeAryPtr *TypeAryPtr::FLOATS;
4079 const TypeAryPtr *TypeAryPtr::DOUBLES;
4080 
4081 //------------------------------make-------------------------------------------
4082 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4083                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4084   assert(!(k == NULL && ary->_elem->isa_int()),
4085          "integral arrays must be pre-equipped with a class");
4086   if (!xk)  xk = ary->ary_must_be_exact();
4087   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4088   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4089 }
4090 
4091 //------------------------------make-------------------------------------------
4092 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4093                                    int instance_id, const TypePtr* speculative, int inline_depth,
4094                                    bool is_autobox_cache) {
4095   assert(!(k == NULL && ary->_elem->isa_int()),
4096          "integral arrays must be pre-equipped with a class");
4097   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4098   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4099   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4100   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4101 }
4102 
4103 //------------------------------cast_to_ptr_type-------------------------------
4104 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4105   if( ptr == _ptr ) return this;
4106   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4107 }
4108 
4109 
4110 //-----------------------------cast_to_exactness-------------------------------
4111 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4112   if( klass_is_exact == _klass_is_exact ) return this;
4113   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4114   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4115 }
4116 
4117 //-----------------------------cast_to_instance_id----------------------------
4118 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4119   if( instance_id == _instance_id ) return this;
4120   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4121 }
4122 
4123 
4124 //-----------------------------max_array_length-------------------------------
4125 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4126 jint TypeAryPtr::max_array_length(BasicType etype) {
4127   if (!is_java_primitive(etype) && !is_reference_type(etype)) {
4128     if (etype == T_NARROWOOP) {
4129       etype = T_OBJECT;
4130     } else if (etype == T_ILLEGAL) { // bottom[]
4131       etype = T_BYTE; // will produce conservatively high value
4132     } else {
4133       fatal("not an element type: %s", type2name(etype));
4134     }
4135   }
4136   return arrayOopDesc::max_array_length(etype);
4137 }
4138 
4139 //-----------------------------narrow_size_type-------------------------------
4140 // Narrow the given size type to the index range for the given array base type.
4141 // Return NULL if the resulting int type becomes empty.
4142 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4143   jint hi = size->_hi;
4144   jint lo = size->_lo;
4145   jint min_lo = 0;
4146   jint max_hi = max_array_length(elem()->basic_type());
4147   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4148   bool chg = false;
4149   if (lo < min_lo) {
4150     lo = min_lo;
4151     if (size->is_con()) {
4152       hi = lo;
4153     }
4154     chg = true;
4155   }
4156   if (hi > max_hi) {
4157     hi = max_hi;
4158     if (size->is_con()) {
4159       lo = hi;
4160     }
4161     chg = true;
4162   }
4163   // Negative length arrays will produce weird intermediate dead fast-path code
4164   if (lo > hi)
4165     return TypeInt::ZERO;
4166   if (!chg)
4167     return size;
4168   return TypeInt::make(lo, hi, Type::WidenMin);
4169 }
4170 
4171 //-------------------------------cast_to_size----------------------------------
4172 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4173   assert(new_size != NULL, "");
4174   new_size = narrow_size_type(new_size);
4175   if (new_size == size())  return this;
4176   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4177   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4178 }
4179 
4180 //------------------------------cast_to_stable---------------------------------
4181 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4182   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4183     return this;
4184 
4185   const Type* elem = this->elem();
4186   const TypePtr* elem_ptr = elem->make_ptr();
4187 
4188   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4189     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4190     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4191   }
4192 
4193   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4194 
4195   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4196 }
4197 
4198 //-----------------------------stable_dimension--------------------------------
4199 int TypeAryPtr::stable_dimension() const {
4200   if (!is_stable())  return 0;
4201   int dim = 1;
4202   const TypePtr* elem_ptr = elem()->make_ptr();
4203   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4204     dim += elem_ptr->is_aryptr()->stable_dimension();
4205   return dim;
4206 }
4207 
4208 //----------------------cast_to_autobox_cache-----------------------------------
4209 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4210   if (is_autobox_cache() == cache)  return this;
4211   const TypeOopPtr* etype = elem()->make_oopptr();
4212   if (etype == NULL)  return this;
4213   // The pointers in the autobox arrays are always non-null.
4214   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4215   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4216   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4217   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4218 }
4219 
4220 //------------------------------eq---------------------------------------------
4221 // Structural equality check for Type representations
4222 bool TypeAryPtr::eq( const Type *t ) const {
4223   const TypeAryPtr *p = t->is_aryptr();
4224   return
4225     _ary == p->_ary &&  // Check array
4226     TypeOopPtr::eq(p);  // Check sub-parts
4227 }
4228 
4229 //------------------------------hash-------------------------------------------
4230 // Type-specific hashing function.
4231 int TypeAryPtr::hash(void) const {
4232   return (intptr_t)_ary + TypeOopPtr::hash();
4233 }
4234 
4235 //------------------------------meet-------------------------------------------
4236 // Compute the MEET of two types.  It returns a new Type object.
4237 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4238   // Perform a fast test for common case; meeting the same types together.
4239   if( this == t ) return this;  // Meeting same type-rep?
4240   // Current "this->_base" is Pointer
4241   switch (t->base()) {          // switch on original type
4242 
4243   // Mixing ints & oops happens when javac reuses local variables
4244   case Int:
4245   case Long:
4246   case FloatTop:
4247   case FloatCon:
4248   case FloatBot:
4249   case DoubleTop:
4250   case DoubleCon:
4251   case DoubleBot:
4252   case NarrowOop:
4253   case NarrowKlass:
4254   case Bottom:                  // Ye Olde Default
4255     return Type::BOTTOM;
4256   case Top:
4257     return this;
4258 
4259   default:                      // All else is a mistake
4260     typerr(t);
4261 
4262   case OopPtr: {                // Meeting to OopPtrs
4263     // Found a OopPtr type vs self-AryPtr type
4264     const TypeOopPtr *tp = t->is_oopptr();
4265     int offset = meet_offset(tp->offset());
4266     PTR ptr = meet_ptr(tp->ptr());
4267     int depth = meet_inline_depth(tp->inline_depth());
4268     const TypePtr* speculative = xmeet_speculative(tp);
4269     switch (tp->ptr()) {
4270     case TopPTR:
4271     case AnyNull: {
4272       int instance_id = meet_instance_id(InstanceTop);
4273       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4274                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4275     }
4276     case BotPTR:
4277     case NotNull: {
4278       int instance_id = meet_instance_id(tp->instance_id());
4279       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4280     }
4281     default: ShouldNotReachHere();
4282     }
4283   }
4284 
4285   case AnyPtr: {                // Meeting two AnyPtrs
4286     // Found an AnyPtr type vs self-AryPtr type
4287     const TypePtr *tp = t->is_ptr();
4288     int offset = meet_offset(tp->offset());
4289     PTR ptr = meet_ptr(tp->ptr());
4290     const TypePtr* speculative = xmeet_speculative(tp);
4291     int depth = meet_inline_depth(tp->inline_depth());
4292     switch (tp->ptr()) {
4293     case TopPTR:
4294       return this;
4295     case BotPTR:
4296     case NotNull:
4297       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4298     case Null:
4299       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4300       // else fall through to AnyNull
4301     case AnyNull: {
4302       int instance_id = meet_instance_id(InstanceTop);
4303       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4304                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4305     }
4306     default: ShouldNotReachHere();
4307     }
4308   }
4309 
4310   case MetadataPtr:
4311   case KlassPtr:
4312   case RawPtr: return TypePtr::BOTTOM;
4313 
4314   case AryPtr: {                // Meeting 2 references?
4315     const TypeAryPtr *tap = t->is_aryptr();
4316     int off = meet_offset(tap->offset());
4317     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4318     PTR ptr = meet_ptr(tap->ptr());
4319     int instance_id = meet_instance_id(tap->instance_id());
4320     const TypePtr* speculative = xmeet_speculative(tap);
4321     int depth = meet_inline_depth(tap->inline_depth());
4322     ciKlass* lazy_klass = NULL;
4323     if (tary->_elem->isa_int()) {
4324       // Integral array element types have irrelevant lattice relations.
4325       // It is the klass that determines array layout, not the element type.
4326       if (_klass == NULL)
4327         lazy_klass = tap->_klass;
4328       else if (tap->_klass == NULL || tap->_klass == _klass) {
4329         lazy_klass = _klass;
4330       } else {
4331         // Something like byte[int+] meets char[int+].
4332         // This must fall to bottom, not (int[-128..65535])[int+].
4333         instance_id = InstanceBot;
4334         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4335       }
4336     } else // Non integral arrays.
4337       // Must fall to bottom if exact klasses in upper lattice
4338       // are not equal or super klass is exact.
4339       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4340           // meet with top[] and bottom[] are processed further down:
4341           tap->_klass != NULL  && this->_klass != NULL   &&
4342           // both are exact and not equal:
4343           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4344            // 'tap'  is exact and super or unrelated:
4345            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4346            // 'this' is exact and super or unrelated:
4347            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4348       if (above_centerline(ptr) || (tary->_elem->make_ptr() && above_centerline(tary->_elem->make_ptr()->_ptr))) {
4349         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4350       }
4351       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4352     }
4353 
4354     bool xk = false;
4355     switch (tap->ptr()) {
4356     case AnyNull:
4357     case TopPTR:
4358       // Compute new klass on demand, do not use tap->_klass
4359       if (below_centerline(this->_ptr)) {
4360         xk = this->_klass_is_exact;
4361       } else {
4362         xk = (tap->_klass_is_exact || this->_klass_is_exact);
4363       }
4364       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4365     case Constant: {
4366       ciObject* o = const_oop();
4367       if( _ptr == Constant ) {
4368         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4369           xk = (klass() == tap->klass());
4370           ptr = NotNull;
4371           o = NULL;
4372           instance_id = InstanceBot;
4373         } else {
4374           xk = true;
4375         }
4376       } else if(above_centerline(_ptr)) {
4377         o = tap->const_oop();
4378         xk = true;
4379       } else {
4380         // Only precise for identical arrays
4381         xk = this->_klass_is_exact && (klass() == tap->klass());
4382       }
4383       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4384     }
4385     case NotNull:
4386     case BotPTR:
4387       // Compute new klass on demand, do not use tap->_klass
4388       if (above_centerline(this->_ptr))
4389             xk = tap->_klass_is_exact;
4390       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4391               (klass() == tap->klass()); // Only precise for identical arrays
4392       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4393     default: ShouldNotReachHere();
4394     }
4395   }
4396 
4397   // All arrays inherit from Object class
4398   case InstPtr: {
4399     const TypeInstPtr *tp = t->is_instptr();
4400     int offset = meet_offset(tp->offset());
4401     PTR ptr = meet_ptr(tp->ptr());
4402     int instance_id = meet_instance_id(tp->instance_id());
4403     const TypePtr* speculative = xmeet_speculative(tp);
4404     int depth = meet_inline_depth(tp->inline_depth());
4405     switch (ptr) {
4406     case TopPTR:
4407     case AnyNull:                // Fall 'down' to dual of object klass
4408       // For instances when a subclass meets a superclass we fall
4409       // below the centerline when the superclass is exact. We need to
4410       // do the same here.
4411       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4412         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4413       } else {
4414         // cannot subclass, so the meet has to fall badly below the centerline
4415         ptr = NotNull;
4416         instance_id = InstanceBot;
4417         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4418       }
4419     case Constant:
4420     case NotNull:
4421     case BotPTR:                // Fall down to object klass
4422       // LCA is object_klass, but if we subclass from the top we can do better
4423       if (above_centerline(tp->ptr())) {
4424         // If 'tp'  is above the centerline and it is Object class
4425         // then we can subclass in the Java class hierarchy.
4426         // For instances when a subclass meets a superclass we fall
4427         // below the centerline when the superclass is exact. We need
4428         // to do the same here.
4429         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4430           // that is, my array type is a subtype of 'tp' klass
4431           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4432                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4433         }
4434       }
4435       // The other case cannot happen, since t cannot be a subtype of an array.
4436       // The meet falls down to Object class below centerline.
4437       if( ptr == Constant )
4438          ptr = NotNull;
4439       instance_id = InstanceBot;
4440       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4441     default: typerr(t);
4442     }
4443   }
4444   }
4445   return this;                  // Lint noise
4446 }
4447 
4448 //------------------------------xdual------------------------------------------
4449 // Dual: compute field-by-field dual
4450 const Type *TypeAryPtr::xdual() const {
4451   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4452 }
4453 
4454 //----------------------interface_vs_oop---------------------------------------
4455 #ifdef ASSERT
4456 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4457   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4458   if (t_aryptr) {
4459     return _ary->interface_vs_oop(t_aryptr->_ary);
4460   }
4461   return false;
4462 }
4463 #endif
4464 
4465 //------------------------------dump2------------------------------------------
4466 #ifndef PRODUCT
4467 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4468   _ary->dump2(d,depth,st);
4469   switch( _ptr ) {
4470   case Constant:
4471     const_oop()->print(st);
4472     break;
4473   case BotPTR:
4474     if (!WizardMode && !Verbose) {
4475       if( _klass_is_exact ) st->print(":exact");
4476       break;
4477     }
4478   case TopPTR:
4479   case AnyNull:
4480   case NotNull:
4481     st->print(":%s", ptr_msg[_ptr]);
4482     if( _klass_is_exact ) st->print(":exact");
4483     break;
4484   default:
4485     break;
4486   }
4487 
4488   if( _offset != 0 ) {
4489     int header_size = objArrayOopDesc::header_size() * wordSize;
4490     if( _offset == OffsetTop )       st->print("+undefined");
4491     else if( _offset == OffsetBot )  st->print("+any");
4492     else if( _offset < header_size ) st->print("+%d", _offset);
4493     else {
4494       BasicType basic_elem_type = elem()->basic_type();
4495       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4496       int elem_size = type2aelembytes(basic_elem_type);
4497       st->print("[%d]", (_offset - array_base)/elem_size);
4498     }
4499   }
4500   st->print(" *");
4501   if (_instance_id == InstanceTop)
4502     st->print(",iid=top");
4503   else if (_instance_id != InstanceBot)
4504     st->print(",iid=%d",_instance_id);
4505 
4506   dump_inline_depth(st);
4507   dump_speculative(st);
4508 }
4509 #endif
4510 
4511 bool TypeAryPtr::empty(void) const {
4512   if (_ary->empty())       return true;
4513   return TypeOopPtr::empty();
4514 }
4515 
4516 //------------------------------add_offset-------------------------------------
4517 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4518   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4519 }
4520 
4521 const Type *TypeAryPtr::remove_speculative() const {
4522   if (_speculative == NULL) {
4523     return this;
4524   }
4525   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4526   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4527 }
4528 
4529 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4530   if (!UseInlineDepthForSpeculativeTypes) {
4531     return this;
4532   }
4533   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4534 }
4535 
4536 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4537   assert(is_known_instance(), "should be known");
4538   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4539 }
4540 
4541 //=============================================================================
4542 
4543 //------------------------------hash-------------------------------------------
4544 // Type-specific hashing function.
4545 int TypeNarrowPtr::hash(void) const {
4546   return _ptrtype->hash() + 7;
4547 }
4548 
4549 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4550   return _ptrtype->singleton();
4551 }
4552 
4553 bool TypeNarrowPtr::empty(void) const {
4554   return _ptrtype->empty();
4555 }
4556 
4557 intptr_t TypeNarrowPtr::get_con() const {
4558   return _ptrtype->get_con();
4559 }
4560 
4561 bool TypeNarrowPtr::eq( const Type *t ) const {
4562   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4563   if (tc != NULL) {
4564     if (_ptrtype->base() != tc->_ptrtype->base()) {
4565       return false;
4566     }
4567     return tc->_ptrtype->eq(_ptrtype);
4568   }
4569   return false;
4570 }
4571 
4572 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4573   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4574   return make_same_narrowptr(odual);
4575 }
4576 
4577 
4578 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4579   if (isa_same_narrowptr(kills)) {
4580     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4581     if (ft->empty())
4582       return Type::TOP;           // Canonical empty value
4583     if (ft->isa_ptr()) {
4584       return make_hash_same_narrowptr(ft->isa_ptr());
4585     }
4586     return ft;
4587   } else if (kills->isa_ptr()) {
4588     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4589     if (ft->empty())
4590       return Type::TOP;           // Canonical empty value
4591     return ft;
4592   } else {
4593     return Type::TOP;
4594   }
4595 }
4596 
4597 //------------------------------xmeet------------------------------------------
4598 // Compute the MEET of two types.  It returns a new Type object.
4599 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4600   // Perform a fast test for common case; meeting the same types together.
4601   if( this == t ) return this;  // Meeting same type-rep?
4602 
4603   if (t->base() == base()) {
4604     const Type* result = _ptrtype->xmeet(t->make_ptr());
4605     if (result->isa_ptr()) {
4606       return make_hash_same_narrowptr(result->is_ptr());
4607     }
4608     return result;
4609   }
4610 
4611   // Current "this->_base" is NarrowKlass or NarrowOop
4612   switch (t->base()) {          // switch on original type
4613 
4614   case Int:                     // Mixing ints & oops happens when javac
4615   case Long:                    // reuses local variables
4616   case FloatTop:
4617   case FloatCon:
4618   case FloatBot:
4619   case DoubleTop:
4620   case DoubleCon:
4621   case DoubleBot:
4622   case AnyPtr:
4623   case RawPtr:
4624   case OopPtr:
4625   case InstPtr:
4626   case AryPtr:
4627   case MetadataPtr:
4628   case KlassPtr:
4629   case NarrowOop:
4630   case NarrowKlass:
4631 
4632   case Bottom:                  // Ye Olde Default
4633     return Type::BOTTOM;
4634   case Top:
4635     return this;
4636 
4637   default:                      // All else is a mistake
4638     typerr(t);
4639 
4640   } // End of switch
4641 
4642   return this;
4643 }
4644 
4645 #ifndef PRODUCT
4646 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4647   _ptrtype->dump2(d, depth, st);
4648 }
4649 #endif
4650 
4651 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4652 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4653 
4654 
4655 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4656   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4657 }
4658 
4659 const Type* TypeNarrowOop::remove_speculative() const {
4660   return make(_ptrtype->remove_speculative()->is_ptr());
4661 }
4662 
4663 const Type* TypeNarrowOop::cleanup_speculative() const {
4664   return make(_ptrtype->cleanup_speculative()->is_ptr());
4665 }
4666 
4667 #ifndef PRODUCT
4668 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4669   st->print("narrowoop: ");
4670   TypeNarrowPtr::dump2(d, depth, st);
4671 }
4672 #endif
4673 
4674 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4675 
4676 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4677   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4678 }
4679 
4680 #ifndef PRODUCT
4681 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4682   st->print("narrowklass: ");
4683   TypeNarrowPtr::dump2(d, depth, st);
4684 }
4685 #endif
4686 
4687 
4688 //------------------------------eq---------------------------------------------
4689 // Structural equality check for Type representations
4690 bool TypeMetadataPtr::eq( const Type *t ) const {
4691   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4692   ciMetadata* one = metadata();
4693   ciMetadata* two = a->metadata();
4694   if (one == NULL || two == NULL) {
4695     return (one == two) && TypePtr::eq(t);
4696   } else {
4697     return one->equals(two) && TypePtr::eq(t);
4698   }
4699 }
4700 
4701 //------------------------------hash-------------------------------------------
4702 // Type-specific hashing function.
4703 int TypeMetadataPtr::hash(void) const {
4704   return
4705     (metadata() ? metadata()->hash() : 0) +
4706     TypePtr::hash();
4707 }
4708 
4709 //------------------------------singleton--------------------------------------
4710 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4711 // constants
4712 bool TypeMetadataPtr::singleton(void) const {
4713   // detune optimizer to not generate constant metadata + constant offset as a constant!
4714   // TopPTR, Null, AnyNull, Constant are all singletons
4715   return (_offset == 0) && !below_centerline(_ptr);
4716 }
4717 
4718 //------------------------------add_offset-------------------------------------
4719 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4720   return make( _ptr, _metadata, xadd_offset(offset));
4721 }
4722 
4723 //-----------------------------filter------------------------------------------
4724 // Do not allow interface-vs.-noninterface joins to collapse to top.
4725 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4726   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4727   if (ft == NULL || ft->empty())
4728     return Type::TOP;           // Canonical empty value
4729   return ft;
4730 }
4731 
4732  //------------------------------get_con----------------------------------------
4733 intptr_t TypeMetadataPtr::get_con() const {
4734   assert( _ptr == Null || _ptr == Constant, "" );
4735   assert( _offset >= 0, "" );
4736 
4737   if (_offset != 0) {
4738     // After being ported to the compiler interface, the compiler no longer
4739     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4740     // to a handle at compile time.  This handle is embedded in the generated
4741     // code and dereferenced at the time the nmethod is made.  Until that time,
4742     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4743     // have access to the addresses!).  This does not seem to currently happen,
4744     // but this assertion here is to help prevent its occurence.
4745     tty->print_cr("Found oop constant with non-zero offset");
4746     ShouldNotReachHere();
4747   }
4748 
4749   return (intptr_t)metadata()->constant_encoding();
4750 }
4751 
4752 //------------------------------cast_to_ptr_type-------------------------------
4753 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4754   if( ptr == _ptr ) return this;
4755   return make(ptr, metadata(), _offset);
4756 }
4757 
4758 //------------------------------meet-------------------------------------------
4759 // Compute the MEET of two types.  It returns a new Type object.
4760 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4761   // Perform a fast test for common case; meeting the same types together.
4762   if( this == t ) return this;  // Meeting same type-rep?
4763 
4764   // Current "this->_base" is OopPtr
4765   switch (t->base()) {          // switch on original type
4766 
4767   case Int:                     // Mixing ints & oops happens when javac
4768   case Long:                    // reuses local variables
4769   case FloatTop:
4770   case FloatCon:
4771   case FloatBot:
4772   case DoubleTop:
4773   case DoubleCon:
4774   case DoubleBot:
4775   case NarrowOop:
4776   case NarrowKlass:
4777   case Bottom:                  // Ye Olde Default
4778     return Type::BOTTOM;
4779   case Top:
4780     return this;
4781 
4782   default:                      // All else is a mistake
4783     typerr(t);
4784 
4785   case AnyPtr: {
4786     // Found an AnyPtr type vs self-OopPtr type
4787     const TypePtr *tp = t->is_ptr();
4788     int offset = meet_offset(tp->offset());
4789     PTR ptr = meet_ptr(tp->ptr());
4790     switch (tp->ptr()) {
4791     case Null:
4792       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4793       // else fall through:
4794     case TopPTR:
4795     case AnyNull: {
4796       return make(ptr, _metadata, offset);
4797     }
4798     case BotPTR:
4799     case NotNull:
4800       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4801     default: typerr(t);
4802     }
4803   }
4804 
4805   case RawPtr:
4806   case KlassPtr:
4807   case OopPtr:
4808   case InstPtr:
4809   case AryPtr:
4810     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4811 
4812   case MetadataPtr: {
4813     const TypeMetadataPtr *tp = t->is_metadataptr();
4814     int offset = meet_offset(tp->offset());
4815     PTR tptr = tp->ptr();
4816     PTR ptr = meet_ptr(tptr);
4817     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4818     if (tptr == TopPTR || _ptr == TopPTR ||
4819         metadata()->equals(tp->metadata())) {
4820       return make(ptr, md, offset);
4821     }
4822     // metadata is different
4823     if( ptr == Constant ) {  // Cannot be equal constants, so...
4824       if( tptr == Constant && _ptr != Constant)  return t;
4825       if( _ptr == Constant && tptr != Constant)  return this;
4826       ptr = NotNull;            // Fall down in lattice
4827     }
4828     return make(ptr, NULL, offset);
4829     break;
4830   }
4831   } // End of switch
4832   return this;                  // Return the double constant
4833 }
4834 
4835 
4836 //------------------------------xdual------------------------------------------
4837 // Dual of a pure metadata pointer.
4838 const Type *TypeMetadataPtr::xdual() const {
4839   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4840 }
4841 
4842 //------------------------------dump2------------------------------------------
4843 #ifndef PRODUCT
4844 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4845   st->print("metadataptr:%s", ptr_msg[_ptr]);
4846   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4847   switch( _offset ) {
4848   case OffsetTop: st->print("+top"); break;
4849   case OffsetBot: st->print("+any"); break;
4850   case         0: break;
4851   default:        st->print("+%d",_offset); break;
4852   }
4853 }
4854 #endif
4855 
4856 
4857 //=============================================================================
4858 // Convenience common pre-built type.
4859 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4860 
4861 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4862   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4863 }
4864 
4865 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4866   return make(Constant, m, 0);
4867 }
4868 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4869   return make(Constant, m, 0);
4870 }
4871 
4872 //------------------------------make-------------------------------------------
4873 // Create a meta data constant
4874 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4875   assert(m == NULL || !m->is_klass(), "wrong type");
4876   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4877 }
4878 
4879 
4880 //=============================================================================
4881 // Convenience common pre-built types.
4882 
4883 // Not-null object klass or below
4884 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4885 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4886 
4887 //------------------------------TypeKlassPtr-----------------------------------
4888 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4889   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4890 }
4891 
4892 //------------------------------make-------------------------------------------
4893 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4894 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4895   assert( k != NULL, "Expect a non-NULL klass");
4896   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4897   TypeKlassPtr *r =
4898     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4899 
4900   return r;
4901 }
4902 
4903 //------------------------------eq---------------------------------------------
4904 // Structural equality check for Type representations
4905 bool TypeKlassPtr::eq( const Type *t ) const {
4906   const TypeKlassPtr *p = t->is_klassptr();
4907   return
4908     klass()->equals(p->klass()) &&
4909     TypePtr::eq(p);
4910 }
4911 
4912 //------------------------------hash-------------------------------------------
4913 // Type-specific hashing function.
4914 int TypeKlassPtr::hash(void) const {
4915   return java_add((jint)klass()->hash(), (jint)TypePtr::hash());
4916 }
4917 
4918 //------------------------------singleton--------------------------------------
4919 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4920 // constants
4921 bool TypeKlassPtr::singleton(void) const {
4922   // detune optimizer to not generate constant klass + constant offset as a constant!
4923   // TopPTR, Null, AnyNull, Constant are all singletons
4924   return (_offset == 0) && !below_centerline(_ptr);
4925 }
4926 
4927 // Do not allow interface-vs.-noninterface joins to collapse to top.
4928 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4929   // logic here mirrors the one from TypeOopPtr::filter. See comments
4930   // there.
4931   const Type* ft = join_helper(kills, include_speculative);
4932   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4933   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4934 
4935   if (ft->empty()) {
4936     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4937       return kills;             // Uplift to interface
4938 
4939     return Type::TOP;           // Canonical empty value
4940   }
4941 
4942   // Interface klass type could be exact in opposite to interface type,
4943   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4944   if (ftkp != NULL && ktkp != NULL &&
4945       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4946       !ftkp->klass_is_exact() && // Keep exact interface klass
4947       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4948     return ktkp->cast_to_ptr_type(ftkp->ptr());
4949   }
4950 
4951   return ft;
4952 }
4953 
4954 //----------------------compute_klass------------------------------------------
4955 // Compute the defining klass for this class
4956 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4957   // Compute _klass based on element type.
4958   ciKlass* k_ary = NULL;
4959   const TypeInstPtr *tinst;
4960   const TypeAryPtr *tary;
4961   const Type* el = elem();
4962   if (el->isa_narrowoop()) {
4963     el = el->make_ptr();
4964   }
4965 
4966   // Get element klass
4967   if ((tinst = el->isa_instptr()) != NULL) {
4968     // Compute array klass from element klass
4969     k_ary = ciObjArrayKlass::make(tinst->klass());
4970   } else if ((tary = el->isa_aryptr()) != NULL) {
4971     // Compute array klass from element klass
4972     ciKlass* k_elem = tary->klass();
4973     // If element type is something like bottom[], k_elem will be null.
4974     if (k_elem != NULL)
4975       k_ary = ciObjArrayKlass::make(k_elem);
4976   } else if ((el->base() == Type::Top) ||
4977              (el->base() == Type::Bottom)) {
4978     // element type of Bottom occurs from meet of basic type
4979     // and object; Top occurs when doing join on Bottom.
4980     // Leave k_ary at NULL.
4981   } else {
4982     // Cannot compute array klass directly from basic type,
4983     // since subtypes of TypeInt all have basic type T_INT.
4984 #ifdef ASSERT
4985     if (verify && el->isa_int()) {
4986       // Check simple cases when verifying klass.
4987       BasicType bt = T_ILLEGAL;
4988       if (el == TypeInt::BYTE) {
4989         bt = T_BYTE;
4990       } else if (el == TypeInt::SHORT) {
4991         bt = T_SHORT;
4992       } else if (el == TypeInt::CHAR) {
4993         bt = T_CHAR;
4994       } else if (el == TypeInt::INT) {
4995         bt = T_INT;
4996       } else {
4997         return _klass; // just return specified klass
4998       }
4999       return ciTypeArrayKlass::make(bt);
5000     }
5001 #endif
5002     assert(!el->isa_int(),
5003            "integral arrays must be pre-equipped with a class");
5004     // Compute array klass directly from basic type
5005     k_ary = ciTypeArrayKlass::make(el->basic_type());
5006   }
5007   return k_ary;
5008 }
5009 
5010 //------------------------------klass------------------------------------------
5011 // Return the defining klass for this class
5012 ciKlass* TypeAryPtr::klass() const {
5013   if( _klass ) return _klass;   // Return cached value, if possible
5014 
5015   // Oops, need to compute _klass and cache it
5016   ciKlass* k_ary = compute_klass();
5017 
5018   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5019     // The _klass field acts as a cache of the underlying
5020     // ciKlass for this array type.  In order to set the field,
5021     // we need to cast away const-ness.
5022     //
5023     // IMPORTANT NOTE: we *never* set the _klass field for the
5024     // type TypeAryPtr::OOPS.  This Type is shared between all
5025     // active compilations.  However, the ciKlass which represents
5026     // this Type is *not* shared between compilations, so caching
5027     // this value would result in fetching a dangling pointer.
5028     //
5029     // Recomputing the underlying ciKlass for each request is
5030     // a bit less efficient than caching, but calls to
5031     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5032     ((TypeAryPtr*)this)->_klass = k_ary;
5033     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5034         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5035       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5036     }
5037   }
5038   return k_ary;
5039 }
5040 
5041 
5042 //------------------------------add_offset-------------------------------------
5043 // Access internals of klass object
5044 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5045   return make( _ptr, klass(), xadd_offset(offset) );
5046 }
5047 
5048 //------------------------------cast_to_ptr_type-------------------------------
5049 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5050   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5051   if( ptr == _ptr ) return this;
5052   return make(ptr, _klass, _offset);
5053 }
5054 
5055 
5056 //-----------------------------cast_to_exactness-------------------------------
5057 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5058   if( klass_is_exact == _klass_is_exact ) return this;
5059   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5060 }
5061 
5062 
5063 //-----------------------------as_instance_type--------------------------------
5064 // Corresponding type for an instance of the given class.
5065 // It will be NotNull, and exact if and only if the klass type is exact.
5066 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5067   ciKlass* k = klass();
5068   bool    xk = klass_is_exact();
5069   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5070   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5071   guarantee(toop != NULL, "need type for given klass");
5072   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5073   return toop->cast_to_exactness(xk)->is_oopptr();
5074 }
5075 
5076 
5077 //------------------------------xmeet------------------------------------------
5078 // Compute the MEET of two types, return a new Type object.
5079 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5080   // Perform a fast test for common case; meeting the same types together.
5081   if( this == t ) return this;  // Meeting same type-rep?
5082 
5083   // Current "this->_base" is Pointer
5084   switch (t->base()) {          // switch on original type
5085 
5086   case Int:                     // Mixing ints & oops happens when javac
5087   case Long:                    // reuses local variables
5088   case FloatTop:
5089   case FloatCon:
5090   case FloatBot:
5091   case DoubleTop:
5092   case DoubleCon:
5093   case DoubleBot:
5094   case NarrowOop:
5095   case NarrowKlass:
5096   case Bottom:                  // Ye Olde Default
5097     return Type::BOTTOM;
5098   case Top:
5099     return this;
5100 
5101   default:                      // All else is a mistake
5102     typerr(t);
5103 
5104   case AnyPtr: {                // Meeting to AnyPtrs
5105     // Found an AnyPtr type vs self-KlassPtr type
5106     const TypePtr *tp = t->is_ptr();
5107     int offset = meet_offset(tp->offset());
5108     PTR ptr = meet_ptr(tp->ptr());
5109     switch (tp->ptr()) {
5110     case TopPTR:
5111       return this;
5112     case Null:
5113       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5114     case AnyNull:
5115       return make( ptr, klass(), offset );
5116     case BotPTR:
5117     case NotNull:
5118       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5119     default: typerr(t);
5120     }
5121   }
5122 
5123   case RawPtr:
5124   case MetadataPtr:
5125   case OopPtr:
5126   case AryPtr:                  // Meet with AryPtr
5127   case InstPtr:                 // Meet with InstPtr
5128     return TypePtr::BOTTOM;
5129 
5130   //
5131   //             A-top         }
5132   //           /   |   \       }  Tops
5133   //       B-top A-any C-top   }
5134   //          | /  |  \ |      }  Any-nulls
5135   //       B-any   |   C-any   }
5136   //          |    |    |
5137   //       B-con A-con C-con   } constants; not comparable across classes
5138   //          |    |    |
5139   //       B-not   |   C-not   }
5140   //          | \  |  / |      }  not-nulls
5141   //       B-bot A-not C-bot   }
5142   //           \   |   /       }  Bottoms
5143   //             A-bot         }
5144   //
5145 
5146   case KlassPtr: {  // Meet two KlassPtr types
5147     const TypeKlassPtr *tkls = t->is_klassptr();
5148     int  off     = meet_offset(tkls->offset());
5149     PTR  ptr     = meet_ptr(tkls->ptr());
5150 
5151     // Check for easy case; klasses are equal (and perhaps not loaded!)
5152     // If we have constants, then we created oops so classes are loaded
5153     // and we can handle the constants further down.  This case handles
5154     // not-loaded classes
5155     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5156       return make( ptr, klass(), off );
5157     }
5158 
5159     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5160     ciKlass* tkls_klass = tkls->klass();
5161     ciKlass* this_klass = this->klass();
5162     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5163     assert( this_klass->is_loaded(), "This class should have been loaded.");
5164 
5165     // If 'this' type is above the centerline and is a superclass of the
5166     // other, we can treat 'this' as having the same type as the other.
5167     if ((above_centerline(this->ptr())) &&
5168         tkls_klass->is_subtype_of(this_klass)) {
5169       this_klass = tkls_klass;
5170     }
5171     // If 'tinst' type is above the centerline and is a superclass of the
5172     // other, we can treat 'tinst' as having the same type as the other.
5173     if ((above_centerline(tkls->ptr())) &&
5174         this_klass->is_subtype_of(tkls_klass)) {
5175       tkls_klass = this_klass;
5176     }
5177 
5178     // Check for classes now being equal
5179     if (tkls_klass->equals(this_klass)) {
5180       // If the klasses are equal, the constants may still differ.  Fall to
5181       // NotNull if they do (neither constant is NULL; that is a special case
5182       // handled elsewhere).
5183       if( ptr == Constant ) {
5184         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5185             this->klass()->equals(tkls->klass()));
5186         else if (above_centerline(this->ptr()));
5187         else if (above_centerline(tkls->ptr()));
5188         else
5189           ptr = NotNull;
5190       }
5191       return make( ptr, this_klass, off );
5192     } // Else classes are not equal
5193 
5194     // Since klasses are different, we require the LCA in the Java
5195     // class hierarchy - which means we have to fall to at least NotNull.
5196     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5197       ptr = NotNull;
5198     // Now we find the LCA of Java classes
5199     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5200     return   make( ptr, k, off );
5201   } // End of case KlassPtr
5202 
5203   } // End of switch
5204   return this;                  // Return the double constant
5205 }
5206 
5207 //------------------------------xdual------------------------------------------
5208 // Dual: compute field-by-field dual
5209 const Type    *TypeKlassPtr::xdual() const {
5210   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5211 }
5212 
5213 //------------------------------get_con----------------------------------------
5214 intptr_t TypeKlassPtr::get_con() const {
5215   assert( _ptr == Null || _ptr == Constant, "" );
5216   assert( _offset >= 0, "" );
5217 
5218   if (_offset != 0) {
5219     // After being ported to the compiler interface, the compiler no longer
5220     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5221     // to a handle at compile time.  This handle is embedded in the generated
5222     // code and dereferenced at the time the nmethod is made.  Until that time,
5223     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5224     // have access to the addresses!).  This does not seem to currently happen,
5225     // but this assertion here is to help prevent its occurence.
5226     tty->print_cr("Found oop constant with non-zero offset");
5227     ShouldNotReachHere();
5228   }
5229 
5230   return (intptr_t)klass()->constant_encoding();
5231 }
5232 //------------------------------dump2------------------------------------------
5233 // Dump Klass Type
5234 #ifndef PRODUCT
5235 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5236   switch( _ptr ) {
5237   case Constant:
5238     st->print("precise ");
5239   case NotNull:
5240     {
5241       const char *name = klass()->name()->as_utf8();
5242       if( name ) {
5243         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5244       } else {
5245         ShouldNotReachHere();
5246       }
5247     }
5248   case BotPTR:
5249     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5250   case TopPTR:
5251   case AnyNull:
5252     st->print(":%s", ptr_msg[_ptr]);
5253     if( _klass_is_exact ) st->print(":exact");
5254     break;
5255   default:
5256     break;
5257   }
5258 
5259   if( _offset ) {               // Dump offset, if any
5260     if( _offset == OffsetBot )      { st->print("+any"); }
5261     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5262     else                            { st->print("+%d", _offset); }
5263   }
5264 
5265   st->print(" *");
5266 }
5267 #endif
5268 
5269 
5270 
5271 //=============================================================================
5272 // Convenience common pre-built types.
5273 
5274 //------------------------------make-------------------------------------------
5275 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5276   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5277 }
5278 
5279 //------------------------------make-------------------------------------------
5280 const TypeFunc *TypeFunc::make(ciMethod* method) {
5281   Compile* C = Compile::current();
5282   const TypeFunc* tf = C->last_tf(method); // check cache
5283   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5284   const TypeTuple *domain;
5285   if (method->is_static()) {
5286     domain = TypeTuple::make_domain(NULL, method->signature());
5287   } else {
5288     domain = TypeTuple::make_domain(method->holder(), method->signature());
5289   }
5290   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5291   tf = TypeFunc::make(domain, range);
5292   C->set_last_tf(method, tf);  // fill cache
5293   return tf;
5294 }
5295 
5296 //------------------------------meet-------------------------------------------
5297 // Compute the MEET of two types.  It returns a new Type object.
5298 const Type *TypeFunc::xmeet( const Type *t ) const {
5299   // Perform a fast test for common case; meeting the same types together.
5300   if( this == t ) return this;  // Meeting same type-rep?
5301 
5302   // Current "this->_base" is Func
5303   switch (t->base()) {          // switch on original type
5304 
5305   case Bottom:                  // Ye Olde Default
5306     return t;
5307 
5308   default:                      // All else is a mistake
5309     typerr(t);
5310 
5311   case Top:
5312     break;
5313   }
5314   return this;                  // Return the double constant
5315 }
5316 
5317 //------------------------------xdual------------------------------------------
5318 // Dual: compute field-by-field dual
5319 const Type *TypeFunc::xdual() const {
5320   return this;
5321 }
5322 
5323 //------------------------------eq---------------------------------------------
5324 // Structural equality check for Type representations
5325 bool TypeFunc::eq( const Type *t ) const {
5326   const TypeFunc *a = (const TypeFunc*)t;
5327   return _domain == a->_domain &&
5328     _range == a->_range;
5329 }
5330 
5331 //------------------------------hash-------------------------------------------
5332 // Type-specific hashing function.
5333 int TypeFunc::hash(void) const {
5334   return (intptr_t)_domain + (intptr_t)_range;
5335 }
5336 
5337 //------------------------------dump2------------------------------------------
5338 // Dump Function Type
5339 #ifndef PRODUCT
5340 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5341   if( _range->cnt() <= Parms )
5342     st->print("void");
5343   else {
5344     uint i;
5345     for (i = Parms; i < _range->cnt()-1; i++) {
5346       _range->field_at(i)->dump2(d,depth,st);
5347       st->print("/");
5348     }
5349     _range->field_at(i)->dump2(d,depth,st);
5350   }
5351   st->print(" ");
5352   st->print("( ");
5353   if( !depth || d[this] ) {     // Check for recursive dump
5354     st->print("...)");
5355     return;
5356   }
5357   d.Insert((void*)this,(void*)this);    // Stop recursion
5358   if (Parms < _domain->cnt())
5359     _domain->field_at(Parms)->dump2(d,depth-1,st);
5360   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5361     st->print(", ");
5362     _domain->field_at(i)->dump2(d,depth-1,st);
5363   }
5364   st->print(" )");
5365 }
5366 #endif
5367 
5368 //------------------------------singleton--------------------------------------
5369 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5370 // constants (Ldi nodes).  Singletons are integer, float or double constants
5371 // or a single symbol.
5372 bool TypeFunc::singleton(void) const {
5373   return false;                 // Never a singleton
5374 }
5375 
5376 bool TypeFunc::empty(void) const {
5377   return false;                 // Never empty
5378 }
5379 
5380 
5381 BasicType TypeFunc::return_type() const{
5382   if (range()->cnt() == TypeFunc::Parms) {
5383     return T_VOID;
5384   }
5385   return range()->field_at(TypeFunc::Parms)->basic_type();
5386 }