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Why? 

§ LAPACK 
–  Linear Algebra Package 
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Why? 

§ LAPACK 
–  Linear Algebra Package 
–  written in Fortran 90 
–  highly optimized 

§  “The original goal of the LAPACK was to … run efficiently on shared-
memory vector and parallel processors.” 
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How? 

§ LAPACK 
–  invoke library code 
–  pass data into library 
–  access data from Java 
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Overview 

§ Existing 
–  Java Native Interface (JNI) & JNR library 
–  java.nio.DirectByteBuffer 
–  sun.misc.Unsafe (get*/set*) 

§  JDK9 
–  j.l.i.VarHandle views over ByteBuffers 

§ Future 
–  Project Panama 



6 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

Native Code 
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JNI 
@since 1.1 
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JNI 

class	LibC	{	
		static	native	long	getpid();	
}	

jlong	JNICALL	Java_LibC_getpid(	
		JNIEnv*	env,	jclass	c)	{	
	 	return	getpid();	
}	

Usage scenario 
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JNI 

jlong	JNICALL	Java_...(JNIEnv*	env,	
	 	 	 	 	 	 	 	 	 	 	 	 			jclass	cls,		
	 	 	 	 	 	 	 	 	 	 	 	 			jobject	obj)	{	
	
jmethodID	mid	=	env->GetMethodID(cls,	“m”,	“(I)J”);	
	
jlong	result	=	env->CallLongMethod(obj,	mid,	10);	

Upcall 
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JNI 

jlong	JNICALL	Java_...(JNIEnv*	env,	
	 	 	 	 	 	 	 	 	 	 	 	 			jclass	cls,		
	 	 	 	 	 	 	 	 	 	 	 	 			jobject	obj)	{	
	
jfieldID	fid	=	env->GetFieldID(cls,	“f”,	“J”);	
	
jlong	result	=	env->GetLongField(obj,	fid);	
jlong	result	=	env->SetLongField(obj,	fid,	10);	
	

Data access 
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JNI 

§ Operations on 
–  Classes 
–  Strings 
–  Arrays 
–  Monitors 

Native API: JNIEnv 
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Java Frame

Java Heap Native Memory

Native Frame

GC roots
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Java Heap Native Memory

Java Frame Native Frame

GC roots
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jobjectraw ptr address

Java Heap

Native Memory

ptr
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jobjectraw ptr address

Java Heap

Native Memory

ptr
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Java Heap Native Memory
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Java

Native

Java Heap

Native Memory

VM

Thread State

Anatomy of JNI call 



18 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

Java

Native

Java Heap

Native Memory

VM

Thread State

Anatomy of JNI call 
Safepoints 
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JNI 

§ Pros 
–  seamless integration 

§  looks like a Java method 
–  rich native API to interact with Java 

§ Cons 
–  manual binding 
–  invocation overhead 
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JNI 
Victim of its own success? 
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JNI 
Sum array elements 

jint	JNICALL	Java_...(JNIEnv	*env,	jclass	c,	jobject	arr)	{		
		jint	len	=	(*env)->GetArrayLength(env,	arr);	
		jbyte*	a	=	(*env)->GetPrimitiveArrayCritical(env,	arr,	0);	
		…	
		return	sum;	
}	

empty sum 1 sum 103 sum 106 
JNI 11.4±0.3 ns 178.0±7.1 ns 798±32 ns 641±51 µs 
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Critical JNI 
Sum array elements 
 

jint	JNICALL	JavaCritical_...(jint	length,	jbyte*	first)	{		
		...	
		return	sum;	
}	

empty sum 1 sum 103 sum 106 
JNI 11.4±0.3 ns 178.0±7.1 ns 798±32 ns 641±51 µs 
CriticalJNI 11.4±0.3 ns 17.2±0.8 ns 680±22 ns 636±12 µs 
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Critical JNI 

§ only static, non-synchronized methods supported 
§ no JNIEnv* 
§ arguments: primitives or primitive arrays 

–  [I => (length, I*) 
–  null => (0, NULL) 

§ no object arguments 



24 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

int	printf(const	char	*format,	...)	
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		void	qsort(	
	void*	base,		
	size_t	nel,		
	size_t	width,	
	int	(*cmp)(const	void*,	const	void*));	
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JNR 
Java Native Runtime 
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JNR 

public interface LibC { 
    @pid_t long getpid(); 
} 
 
LibC lib = LibraryLoader 
  .create(LibC.class) 
  .load("c"); 

 
libc.getpid() 
 
 

Usage scenario 

JNRJava

Native

bindings

Interfaces

libffi

Target

User-defined

generated 
on-the-fly
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DEMO 

§ native call 
–  getpid 

§  structs 
–  gettimeofday 

§ upcalls 
–  qsort 
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JNR 

§ Pros 
–  automatic binding of native methods 

§ Cons 
–  manual interface extraction  

§  doesn’t scale 
–  still uses JNI to perform native calls 
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Better JNI 
Easier, safer, faster!  



31 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

“If non-Java programmers find some library 
useful and easy to access, it should be 
similarly accessible to Java programmers.” 

John Rose, JVM Architect,  

Oracle Corporation 
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Project Panama 
“Bridging the gap” 
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Better JNI 

pid_t get_pid(); 
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Better JNI 

public	interface	LibC	{	
				long	getpid();	
}	
	
LibC	libc	=	Library	
	 	 	.load(LibC.class,	“c”);	
	
libc.getpid();	

Easier 

j.l.iJava

Native

bindings

Interfaces

JVM stubs

Target

User-defined

Library

generated 
on-the-fly

produced  
by jextract



36 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

Better JNI 

public	interface	LibC	{	
				long	getpid();	
}	
	
LibC	libc	=	Library.load(LibC.class,	“c”	/*	lib_name	*/	);	
	
libc.getpid();	

Easier 
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Better JNI 
Faster 

callq 0x1057b2eb0  ; getpid entry 
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Better JNI 

MethodType	mt	=	MethodType.methodType(int.class);	//	pid_t	
MethodHandle	mh	=	
				MethodHandles.lookup().findNative("getpid",	mt);	
	
int	pid	=	(int)mh.invokeExact();	
	

Faster 

getpid 
JNI 13.7 ± 0.5 ns 
Direct call   3.4 ± 0.2 ns 
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Better JNI 

§ no crashes 
§ no leaks 
§ no hangs 
§ no privilege escalation  
§ no unguarded casts 
 

Safer 
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Better JNI 
Trust Levels 

Untrusted 
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Better JNI 
Trust Levels 

Trusted 
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Better JNI 
Trust Levels 

Privileged 
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Better JNI 



44 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

Better JNI 
gettimeofday 

/*	time.h	*/	
	
struct	{	
				time_t						tv_sec;			
				suseconds_t	tv_usec;		
}	timeval;	
	

int	gettimeofday(struct	timeval*	tv,	struct	timezone*	tz);	

	
	
struct	{	
				int	tz_minuteswest;			
				int	tz_dsttime;		
}	timezone;	
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Carrier Types 

§ Java	
boolean	
byte	
short	
char	
int	
long	
…	

§ C	
char	
short	
float	
int	
long	
long	long	
…	

?
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Carrier Types 

§ Java	
boolean		(uint8_t)	
byte					(int8_t)	
short				(int16_t)	
char					(uint16_t)	
int						(int32_t)	
long					(int64_t)	
…	

§ C	
char	
short	
float	
int	
long	
long	long	
…	

?
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Better JNI 
$ jextract time.h 

interface	Time	{	
	
interface	Timeval	{	
				long	tv_sec$get();	
				void	tv_sec$set(long);	
				long	tv_usec$get();	
				void	tv_usec$set(long);			
}	
	

int	gettimeofday(Timeval,	Timezone);	

interface	Timezone	{	
				int		tz_...$get();	
				void	tz_...$set(int);	
				int		tz_...$get();	
				void	tz_...$set(int);			
}	
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Foreign Layouts 

§ Native data requires special address arithmetic  
–  Native layouts should not be built into the JVM  
–  Native types are unsafe, so trusted code must manage the bits  

§ Solution: A metadata-driven Layout API  

§ As a bonus, layouts other than C and Java are naturally supported  
–  Network protocols, specialized in-memory data stores, mapped files, etc.  

4
8
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Better JNI 
Data Layout 

interface	Timeval	{	
…	
				@Offset(offset=0L)		
				long	tv_sec$get();	
…	
				@Offset(offset=64L)	
				long	tv_usec$get();	
…	
	
	§ work on Layout Definition Language (LDL) is in progress 

–  https://github.com/J9Java/panama-docs/blob/master/StateOfTheLDL.html 
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Better JNI 
Runtime 
Library	lib	=	Library.create(“c”);	
	
Time	time	=	lib.create(Time.class);	
	
Timeval	tval	=	lib.create(Timeval.class);	
	
int	res	=	time.gettimeofday(tval,	null);	
if	(res	==	0)	{	
		long	tv_sec		=	tval.tv_sec$get();	
		long	tv_usec	=	tval.tv_usec$get();	
}	
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Better JNI 
Resources 

Timeval	tval;	
try	{	
		tval	=	lib.create(Timeval.class);	
	
		int	res	=	time.gettimeofday(tval,	null);	
		if	(res	==	0)	{	
				long	tv_sec		=	tval.tv_sec$get();	
				long	tv_usec	=	tval.tv_usec$get();	
		}	else	{	/*	error	handling	*/	}	
}	finally	{	
		lib.free(tval);	
		tval	=	null;	
}	
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Better JNI 
Resources 

interface	Timeval	extends	AutoCloseable	{	…	}	
	
	
try	(Timeval	tval	=	lib.create(Timeval.class))	{	
		int	res	=	time.gettimeofday(tval,	null);	
		if	(res	==	0)	{	
				long	tv_sec		=	tval.tv_sec$get();	
				long	tv_usec	=	tval.tv_usec$get();	
		}	else	{	/*	error	handling	*/	}	
}	
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Better JNI 
“Civilizer” 

interface	Timeval	{	
		void	gettimeofday(Timeval,	Timezone)	throws	ErrNo…;	
}	
	
	
try	(Timeval	tval	=	lib.create(Timeval.class))	{	
		time.gettimeofday(tval,	null);	//	throws	exception	
		long	tv_sec		=	tval.tv_sec$get();	
		long	tv_usec	=	tval.tv_usec$get();	
}	
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Better JNI 
Variadic Function 

int printf(const char *format, ...) 
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Better JNI 
jextract + Civilizer 

//	int printf(const char *format, ...) 
	
interface	Stdio	{	
…	
				//	“Civilized”	
				void	printf(String	format,	Object…	args);	
	
				//	“Raw”	
				int	printf(Pointer<Byte>	format,	byte[]	args);	



56 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

Optimize checks 

void run(MyClass obj) { 
    obj.nativeFunc1(); // checks & state trans. 
    obj.nativeFunc2(); // checks & state trans. 
    obj.nativeFunc3(); // checks & state trans. 
} 

5
6
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Optimize checks 

void run(MyClass obj) { 
    obj.f1(); // NPE 
    obj.f2(); // NPE 
    obj.f3(); // NPE 
} 
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Optimize checks 

void run(MyClass obj) { 
    if (obj == null) jump throwNPE_stub; 
    call MyClass::f(obj); 
    call MyClass::f1(obj); 
    call MyClass::f3(obj);  
} 
 

5
8
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Optimize checks 

void run(MyClass obj) { 
    obj.nativeFunc1(); // checks & state trans. 
    obj.nativeFunc2(); // checks & state trans. 
    obj.nativeFunc3(); // checks & state trans. 
} 

5
9
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Optimize checks 

void run(MyClass obj) { 
    if (!performChecks())  jump failed_stub; 
    call transJavaToNative(); 
    MyClass::nativeFunc1(env, obj); 
    MyClass::nativeFunc2(env, obj);  
    MyClass::nativeFunc3(env, obj);  
    call transNativeToJava(); 
} 

6
0
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Java

Java Heap

Native Memory

VM

Native

Thread State
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Java

Java Heap

Native Memory
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Better JNI 

§ Native access between the JVM and native APIs  
–  Native code via FFIs 
–  Native data via safely-wrapped access functions  
–  Tooling for header file API extraction and API metadata storage  

§ Wrapper interposition mechanisms, based on JVM interfaces  
–  add (or delete) wrappers for specialized safety invariants  

§ Basic bindings for selected native APIs  

Easier, Safer, Faster! 

6
3
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Native Data 
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NIO 
@since 1.4 



66 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

NIO 

§   Provides access to the low-level I/O operations 
–  Buffers for bulk memory operations 

§  on-heap and off-heap 
–  Character set encoders and decoders 
–  Channels, a new primitive I/O abstraction 
–  File interface 

§  supports locks and memory mapping of files 
–  Multiplexed, non-blocking I/O 

“New I/O” 
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java.nio.Buffer 

§  java.nio.ByteBuffer / CharBuffer / … 
–  MappedByteBuffer extends ByteBuffer 

§  memory-mapped region of a file 
–  DirectByteBuffer extends MappedByteBuffer 

§  malloc’ed native memory 
–  HeapByteBuffer 

§  backed by byte[] 
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java.nio.DirectByteBuffer 

ByteBuffer	dbb	=	ByteBuffer.allocateDirect(size);	
	
dbb.rewind();	//	reset	position	
while	(dbb.hasRemaining())	{	
		byte	b	=	dbb.get();	
}	
	

Usage 
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java.nio.Buffer 

§ < 2GiB 
–  ByteBuffer.allocateDirect(int size) 

§ Stateful 
–  Buffer.position 
–  not thread-safe 

§ Resource deallocation 
–  GC-based (Cleaner) memory management 

§ Zeroing 
–  on initialization 

§ Bounds checking 
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sun.misc.Unsafe 
Anti-JNI 
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sun.misc.Unsafe 

Use case Example methods  

Concurrency primitives  compareAndSwap*  

Serialization allocateInstance 

Efficient memory management,  
layout, and access 

allocateMemory/freeMemory  
get*/put* 

Interoperate across the JVM 
boundary  get*/put* 

… … 
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sun.misc.Unsafe 

§ Unsafe.get*/put* 
–  getInt(Object base, long offset) 
–  putInt(Object base, long offset, int value); 

§ double-register addressing mode 
–  getInt(o, offset) == o + offset 
–  getInt(null, address) == address 

§  long allocateMemory(long size) 
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sun.misc.Unsafe 

§ Absolute addresses 
–  byte getByte(long address) 
–  int getInt(long address) 
–  … 
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UNSAFE.putInt(new Object(), 0L, 0) 
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UNSAFE.putInt(null, 0L, 0) 
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 Object UNSAFE.getObject(long address) 
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long UNSAFE.getAddress(long address) 
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UNSAFE.getObject(addr) 
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Unsafe =?= Fast 
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Unsafe != Fast 
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Unsafe != Fast 

§ public native Object allocateInstance(Class<?> cls) throws …; 

§ Array index vs raw offset 
long[]	base	=	new	long[…];	
int	idx	=	…;	long	offset	=	(((long)	idx)	<<	SCALE	+	OFFSET)	
long	value	=	Unsafe.getLong(base,	offset);		
 

§  JDK-8078629: “VM should constant fold Unsafe.get*() loads from final 
fields” 



82 
Copyright © 2016, Oracle and/or its affiliates. All rights reserved 

- How many of you have used the Unsafe API? 
… 

John Rose, JVM Architect, Oracle 
JVM Language Summit 2014 

 

8
2
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- How many of you have used the Unsafe API? 
… 

- A lot of you. Gosh. I'm sorry. 

John Rose, JVM Architect, Oracle 
JVM Language Summit 2014 

 

8
3
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sun.misc.Unsafe 

Use case Example methods  

Concurrency primitives  compareAndSwap*  

Serialization allocateInstance  
(ReflectionFactory.newConstructorForSerialization) 

Efficient memory management,  
layout, and access 

allocateMemory/freeMemory  
get*/put* 

Interoperate across the JVM 
boundary  

 

get*/put* 
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sun.misc.Unsafe 

Use case Replacement 

Concurrency primitives  JEP 193 Variable Handles 

Serialization Reboot JEP 187 Serialization 
Improvements  

Efficient memory management,  
layout, and access 

Project Panama, Project Valhalla,  
 Arrays 2.0, Better GC 

Interoperate across the JVM 
boundary  

 

Project Panama, 
JEP 191 Foreign Function Interface 
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java.lang.invoke. 
 

VarHandle 
@since 9 

 
JEP 193: Variable Handles 
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VarHandle 

MethodHandles.Lookup:	
VarHandle	byteBufferViewVarHandle(Class<?>	viewArrayClass,	
																																		boolean	bigEndian)	{…}	
	

“Produces a VarHandle giving access to elements of a ByteBuffer 
viewed as if it were an array of elements of a different primitive 
component type to that of byte, such as int[] or long[].” 
	

ByteBuffer View 
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VarHandle 

VarHandle	VH	=		
				MethodHandles.byteBufferViewVarHandle(	
								int[].class,		
								ByteOrder.nativeOrder()	==	ByteOrder.BIG_ENDIAN);	
	
ByteBuffer dbb = ByteBuffer.allocateDirect(size);	
 
int v = (int)VH.get(dbb, idx);	

ByteBuffer View 
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java.nio.ByteBuffer vs VarHandle View 

DirectByteBuffer VarHandle 
Size < 2 GiB < 2 GiB 
State Yes No 
Resource management GC-based No (delegates to DBB) 
Zeroing Yes No (delegates to DBB) 
Bound checks Yes (optimized) Yes (optimized) 
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Optimized Bounds Checks 

//	null	check	+	(index	u<	array.length)	
return	array[index];		
	

int[] 
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Optimized Bounds Checks 

//	bounds	and	null	check		
if	(index	<	0	||	index	>=	array.length)	
		throw	new	…();	
	
long	offset	=	BASE	+	(((long)	index)	<<	2);	
return	UNSAFE.getInt(array,	offset);	

	
	

int[]: Unsafe access 
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Optimized Bounds Checks 

//	bounds	and	null	check		
index	=	Objects.checkIndex(index,	array.length);		
	
	
long	offset	=	BASE	+	(((long)	index)	<<	2);	
return	UNSAFE.getInt(array,	offset);	

@HotSpotIntrinsicCandidate	
public	static	int	checkIndex(int	index,	int	length,	…);	
	

	
	

int[]: Unsafe access 
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Summary 

§ Existing 
–  Java Native Interface (JNI) & JNR library 
–  java.nio.DirectByteBuffer 
–  sun.misc.Unsafe (get*/set*) 

§  JDK9 
–  j.l.i.VarHandle views over ByteBuffers 

§ Future 
–  Project Panama 
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http://openjdk.java.net	

Project Panama 
Foreign Function Interface 
Data Layout Control 
Vector API 
Arrays 2.0 
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http://openjdk.java.net	

Project Panama panama-dev@openjdk.java.net	
http://hg.openjdk.java.net/panama/panama	
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Safe Harbor Statement 
 

The preceding is intended to outline our general product direction. It is 
intended for information purposes only, and may not be incorporated into 
any contract. It is not a commitment to deliver any material, code, or 
functionality, and should not be relied upon in making purchasing 
decisions. The development, release, and timing of any features or 
functionality described for Oracle’s products remains at the sole 
discretion of Oracle. 
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Graphic Section Divider 


