
1
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Working with Native Libraries
in Java

Vladimir Ivanov
HotSpot JVM Compile r
Oracle Corp.

Twitter: @iwan0www
OpenJDK: vlivanov

23.04.2016

2
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Why?

§ LAPACK
–  Linear Algebra Package

3
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Why?

§ LAPACK
–  Linear Algebra Package
–  written in Fortran 90
–  highly optimized

§  “The original goal of the LAPACK was to … run efficiently on shared-
memory vector and parallel processors.”

4
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

How?

§ LAPACK
–  invoke library code
–  pass data into library
–  access data from Java

5
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Overview

§ Existing
–  Java Native Interface (JNI) & JNR library
–  java.nio.DirectByteBuffer
–  sun.misc.Unsafe (get*/set*)

§  JDK9
–  j.l.i.VarHandle views over ByteBuffers

§ Future
–  Project Panama

6
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Native Code

7
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI
@since 1.1

8
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI

class	LibC	{	
		static	native	long	getpid();	
}	

jlong	JNICALL	Java_LibC_getpid(
		JNIEnv*	env,	jclass	c)	{	
	 	return	getpid();	
}	

Usage scenario

9
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI

jlong	JNICALL	Java_...(JNIEnv*	env,	
	 	 	 	 	 	 	 	 	 	 	 	 			jclass	cls,		
	 	 	 	 	 	 	 	 	 	 	 	 			jobject	obj)	{	
	
jmethodID	mid	=	env->GetMethodID(cls,	“m”,	“(I)J”);	
	
jlong	result	=	env->CallLongMethod(obj,	mid,	10);	

Upcall

10
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI

jlong	JNICALL	Java_...(JNIEnv*	env,	
	 	 	 	 	 	 	 	 	 	 	 	 			jclass	cls,		
	 	 	 	 	 	 	 	 	 	 	 	 			jobject	obj)	{	
	
jfieldID	fid	=	env->GetFieldID(cls,	“f”,	“J”);	
	
jlong	result	=	env->GetLongField(obj,	fid);	
jlong	result	=	env->SetLongField(obj,	fid,	10);	
	

Data access

11
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI

§ Operations on
–  Classes
–  Strings
–  Arrays
–  Monitors

Native API: JNIEnv

12
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java Frame

Java Heap Native Memory

Native Frame

GC roots

13
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java Heap Native Memory

Java Frame Native Frame

GC roots

14
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

jobjectraw ptr address

Java Heap

Native Memory

ptr

15
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

jobjectraw ptr address

Java Heap

Native Memory

ptr

16
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java Heap Native Memory
H

an
dl

es

Java Frame Native Frame

GC roots

17
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java

Native

Java Heap

Native Memory

VM

Thread State

Anatomy of JNI call

18
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java

Native

Java Heap

Native Memory

VM

Thread State

Anatomy of JNI call
Safepoints

19
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI

§ Pros
–  seamless integration

§  looks like a Java method
–  rich native API to interact with Java

§ Cons
–  manual binding
–  invocation overhead

20
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI
Victim of its own success?

21
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNI
Sum array elements

jint	JNICALL	Java_...(JNIEnv	*env,	jclass	c,	jobject	arr)	{		
		jint	len	=	(*env)->GetArrayLength(env,	arr);	
		jbyte*	a	=	(*env)->GetPrimitiveArrayCritical(env,	arr,	0);	
		…	
		return	sum;	
}	

empty sum 1 sum 103 sum 106
JNI 11.4±0.3 ns 178.0±7.1 ns 798±32 ns 641±51 µs

22
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Critical JNI
Sum array elements

jint	JNICALL	JavaCritical_...(jint	length,	jbyte*	first)	{		
		...	
		return	sum;	
}	

empty sum 1 sum 103 sum 106
JNI 11.4±0.3 ns 178.0±7.1 ns 798±32 ns 641±51 µs
CriticalJNI 11.4±0.3 ns 17.2±0.8 ns 680±22 ns 636±12 µs

23
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Critical JNI

§ only static, non-synchronized methods supported
§ no JNIEnv*
§ arguments: primitives or primitive arrays

–  [I => (length, I*)
–  null => (0, NULL)

§ no object arguments

24
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

int	printf(const	char	*format,	...)	

25
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

		void	qsort(
	void*	base,		
	size_t	nel,		
	size_t	width,	
	int	(*cmp)(const	void*,	const	void*));	

26
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNR
Java Native Runtime

27
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNR

public interface LibC {
 @pid_t long getpid();
}

LibC lib = LibraryLoader
 .create(LibC.class)
 .load("c");

libc.getpid()

Usage scenario

JNRJava

Native

bindings

Interfaces

libffi

Target

User-defined

generated
on-the-fly

28
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

DEMO

§ native call
–  getpid

§  structs
–  gettimeofday

§ upcalls
–  qsort

29
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

JNR

§ Pros
–  automatic binding of native methods

§ Cons
–  manual interface extraction

§  doesn’t scale
–  still uses JNI to perform native calls

30
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Easier, safer, faster!

31
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

“If non-Java programmers find some library
useful and easy to access, it should be
similarly accessible to Java programmers.”

John Rose, JVM Architect,

Oracle Corporation

32
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Project Panama
“Bridging the gap”

33
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

34
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI

pid_t get_pid();

35
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI

public	interface	LibC	{	
				long	getpid();	
}	
	
LibC	libc	=	Library	
	 	 	.load(LibC.class,	“c”);	
	
libc.getpid();	

Easier

j.l.iJava

Native

bindings

Interfaces

JVM stubs

Target

User-defined

Library

generated
on-the-fly

produced
by jextract

36
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI

public	interface	LibC	{	
				long	getpid();	
}	
	
LibC	libc	=	Library.load(LibC.class,	“c”	/*	lib_name	*/);	
	
libc.getpid();	

Easier

37
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Faster

callq 0x1057b2eb0 ; getpid entry

38
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI

MethodType	mt	=	MethodType.methodType(int.class);	//	pid_t	
MethodHandle	mh	=	
				MethodHandles.lookup().findNative("getpid",	mt);	
	
int	pid	=	(int)mh.invokeExact();	
	

Faster

getpid
JNI 13.7 ± 0.5 ns
Direct call 3.4 ± 0.2 ns

39
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI

§ no crashes
§ no leaks
§ no hangs
§ no privilege escalation
§ no unguarded casts

Safer

40
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Trust Levels

Untrusted

41
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Trust Levels

Trusted

42
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Trust Levels

Privileged

43
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI

44
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
gettimeofday

/*	time.h	*/	
	
struct	{	
				time_t						tv_sec;			
				suseconds_t	tv_usec;		
}	timeval;	
	

int	gettimeofday(struct	timeval*	tv,	struct	timezone*	tz);	

	
	
struct	{	
				int	tz_minuteswest;			
				int	tz_dsttime;		
}	timezone;	
	

45
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Carrier Types

§ Java	
boolean	
byte	
short	
char	
int	
long	
…	

§ C	
char	
short	
float	
int	
long	
long	long	
…	

?

46
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Carrier Types

§ Java	
boolean		(uint8_t)	
byte					(int8_t)	
short				(int16_t)	
char					(uint16_t)	
int						(int32_t)	
long					(int64_t)	
…	

§ C	
char	
short	
float	
int	
long	
long	long	
…	

?

47
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
$ jextract time.h

interface	Time	{	
	
interface	Timeval	{	
				long	tv_sec$get();	
				void	tv_sec$set(long);	
				long	tv_usec$get();	
				void	tv_usec$set(long);			
}	
	

int	gettimeofday(Timeval,	Timezone);	

interface	Timezone	{	
				int		tz_...$get();	
				void	tz_...$set(int);	
				int		tz_...$get();	
				void	tz_...$set(int);			
}	
	

48
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Foreign Layouts

§ Native data requires special address arithmetic
–  Native layouts should not be built into the JVM
–  Native types are unsafe, so trusted code must manage the bits

§ Solution: A metadata-driven Layout API

§ As a bonus, layouts other than C and Java are naturally supported
–  Network protocols, specialized in-memory data stores, mapped files, etc.

4
8

49
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Data Layout

interface	Timeval	{	
…	
				@Offset(offset=0L)		
				long	tv_sec$get();	
…	
				@Offset(offset=64L)	
				long	tv_usec$get();	
…	
	
	§ work on Layout Definition Language (LDL) is in progress

–  https://github.com/J9Java/panama-docs/blob/master/StateOfTheLDL.html

50
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Runtime
Library	lib	=	Library.create(“c”);	
	
Time	time	=	lib.create(Time.class);	
	
Timeval	tval	=	lib.create(Timeval.class);	
	
int	res	=	time.gettimeofday(tval,	null);	
if	(res	==	0)	{	
		long	tv_sec		=	tval.tv_sec$get();	
		long	tv_usec	=	tval.tv_usec$get();	
}	

51
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Resources

Timeval	tval;	
try	{	
		tval	=	lib.create(Timeval.class);	
	
		int	res	=	time.gettimeofday(tval,	null);	
		if	(res	==	0)	{	
				long	tv_sec		=	tval.tv_sec$get();	
				long	tv_usec	=	tval.tv_usec$get();	
		}	else	{	/*	error	handling	*/	}	
}	finally	{	
		lib.free(tval);	
		tval	=	null;	
}	

52
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Resources

interface	Timeval	extends	AutoCloseable	{	…	}	
	
	
try	(Timeval	tval	=	lib.create(Timeval.class))	{	
		int	res	=	time.gettimeofday(tval,	null);	
		if	(res	==	0)	{	
				long	tv_sec		=	tval.tv_sec$get();	
				long	tv_usec	=	tval.tv_usec$get();	
		}	else	{	/*	error	handling	*/	}	
}	

53
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
“Civilizer”

interface	Timeval	{	
		void	gettimeofday(Timeval,	Timezone)	throws	ErrNo…;	
}	
	
	
try	(Timeval	tval	=	lib.create(Timeval.class))	{	
		time.gettimeofday(tval,	null);	//	throws	exception	
		long	tv_sec		=	tval.tv_sec$get();	
		long	tv_usec	=	tval.tv_usec$get();	
}	

54
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
Variadic Function

int printf(const char *format, ...)

55
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI
jextract + Civilizer

//	int printf(const char *format, ...)
	
interface	Stdio	{	
…	
				//	“Civilized”	
				void	printf(String	format,	Object…	args);	
	
				//	“Raw”	
				int	printf(Pointer<Byte>	format,	byte[]	args);	

56
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimize checks

void run(MyClass obj) {
 obj.nativeFunc1(); // checks & state trans.
 obj.nativeFunc2(); // checks & state trans.
 obj.nativeFunc3(); // checks & state trans.
}

5
6

57
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimize checks

void run(MyClass obj) {
 obj.f1(); // NPE
 obj.f2(); // NPE
 obj.f3(); // NPE
}

58
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimize checks

void run(MyClass obj) {
 if (obj == null) jump throwNPE_stub;
 call MyClass::f(obj);
 call MyClass::f1(obj);
 call MyClass::f3(obj);
}

5
8

59
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimize checks

void run(MyClass obj) {
 obj.nativeFunc1(); // checks & state trans.
 obj.nativeFunc2(); // checks & state trans.
 obj.nativeFunc3(); // checks & state trans.
}

5
9

60
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimize checks

void run(MyClass obj) {
 if (!performChecks()) jump failed_stub;
 call transJavaToNative();
 MyClass::nativeFunc1(env, obj);
 MyClass::nativeFunc2(env, obj);
 MyClass::nativeFunc3(env, obj);
 call transNativeToJava();
}

6
0

61
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java

Java Heap

Native Memory

VM

Native

Thread State

62
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Java

Java Heap

Native Memory

VM

Native

Thread State

63
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Better JNI

§ Native access between the JVM and native APIs
–  Native code via FFIs
–  Native data via safely-wrapped access functions
–  Tooling for header file API extraction and API metadata storage

§ Wrapper interposition mechanisms, based on JVM interfaces
–  add (or delete) wrappers for specialized safety invariants

§ Basic bindings for selected native APIs

Easier, Safer, Faster!

6
3

64
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Native Data

65
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

NIO
@since 1.4

66
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

NIO

§  Provides access to the low-level I/O operations
–  Buffers for bulk memory operations

§  on-heap and off-heap
–  Character set encoders and decoders
–  Channels, a new primitive I/O abstraction
–  File interface

§  supports locks and memory mapping of files
–  Multiplexed, non-blocking I/O

“New I/O”

67
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

java.nio.Buffer

§  java.nio.ByteBuffer / CharBuffer / …
–  MappedByteBuffer extends ByteBuffer

§  memory-mapped region of a file
–  DirectByteBuffer extends MappedByteBuffer

§  malloc’ed native memory
–  HeapByteBuffer

§  backed by byte[]

68
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

java.nio.DirectByteBuffer

ByteBuffer	dbb	=	ByteBuffer.allocateDirect(size);	
	
dbb.rewind();	//	reset	position	
while	(dbb.hasRemaining())	{	
		byte	b	=	dbb.get();	
}	
	

Usage

69
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

java.nio.Buffer

§ < 2GiB
–  ByteBuffer.allocateDirect(int size)

§ Stateful
–  Buffer.position
–  not thread-safe

§ Resource deallocation
–  GC-based (Cleaner) memory management

§ Zeroing
–  on initialization

§ Bounds checking

70
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

sun.misc.Unsafe
Anti-JNI

71
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

sun.misc.Unsafe

Use case Example methods

Concurrency primitives compareAndSwap*

Serialization allocateInstance

Efficient memory management,
layout, and access

allocateMemory/freeMemory
get*/put*

Interoperate across the JVM
boundary get*/put*

… …

72
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

sun.misc.Unsafe

§ Unsafe.get*/put*
–  getInt(Object base, long offset)
–  putInt(Object base, long offset, int value);

§ double-register addressing mode
–  getInt(o, offset) == o + offset
–  getInt(null, address) == address

§  long allocateMemory(long size)

73
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

sun.misc.Unsafe

§ Absolute addresses
–  byte getByte(long address)
–  int getInt(long address)
–  …

74
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

UNSAFE.putInt(new Object(), 0L, 0)

75
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

UNSAFE.putInt(null, 0L, 0)

76
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

 Object UNSAFE.getObject(long address)

77
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

long UNSAFE.getAddress(long address)

78
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

UNSAFE.getObject(addr)

79
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Unsafe =?= Fast

80
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Unsafe != Fast

81
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Unsafe != Fast

§ public native Object allocateInstance(Class<?> cls) throws …;

§ Array index vs raw offset
long[]	base	=	new	long[…];	
int	idx	=	…;	long	offset	=	(((long)	idx)	<<	SCALE	+	OFFSET)	
long	value	=	Unsafe.getLong(base,	offset);		

§  JDK-8078629: “VM should constant fold Unsafe.get*() loads from final
fields”

82
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

- How many of you have used the Unsafe API?
…

John Rose, JVM Architect, Oracle
JVM Language Summit 2014

8
2

83
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

- How many of you have used the Unsafe API?
…

- A lot of you. Gosh. I'm sorry.

John Rose, JVM Architect, Oracle
JVM Language Summit 2014

8
3

84
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

85
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

sun.misc.Unsafe

Use case Example methods

Concurrency primitives compareAndSwap*

Serialization allocateInstance
(ReflectionFactory.newConstructorForSerialization)

Efficient memory management,
layout, and access

allocateMemory/freeMemory
get*/put*

Interoperate across the JVM
boundary

get*/put*

86
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

sun.misc.Unsafe

Use case Replacement

Concurrency primitives JEP 193 Variable Handles

Serialization Reboot JEP 187 Serialization
Improvements

Efficient memory management,
layout, and access

Project Panama, Project Valhalla,
 Arrays 2.0, Better GC

Interoperate across the JVM
boundary

Project Panama,
JEP 191 Foreign Function Interface

87
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

java.lang.invoke.

VarHandle
@since 9

JEP 193: Variable Handles

88
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

VarHandle

MethodHandles.Lookup:	
VarHandle	byteBufferViewVarHandle(Class<?>	viewArrayClass,	
																																		boolean	bigEndian)	{…}	
	

“Produces a VarHandle giving access to elements of a ByteBuffer
viewed as if it were an array of elements of a different primitive
component type to that of byte, such as int[] or long[].”
	

ByteBuffer View

89
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

VarHandle

VarHandle	VH	=		
				MethodHandles.byteBufferViewVarHandle(
								int[].class,		
								ByteOrder.nativeOrder()	==	ByteOrder.BIG_ENDIAN);	
	
ByteBuffer dbb = ByteBuffer.allocateDirect(size);	

int v = (int)VH.get(dbb, idx);	

ByteBuffer View

90
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

java.nio.ByteBuffer vs VarHandle View

DirectByteBuffer VarHandle
Size < 2 GiB < 2 GiB
State Yes No
Resource management GC-based No (delegates to DBB)
Zeroing Yes No (delegates to DBB)
Bound checks Yes (optimized) Yes (optimized)

91
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimized Bounds Checks

//	null	check	+	(index	u<	array.length)	
return	array[index];		
	

int[]

92
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimized Bounds Checks

//	bounds	and	null	check		
if	(index	<	0	||	index	>=	array.length)	
		throw	new	…();	
	
long	offset	=	BASE	+	(((long)	index)	<<	2);	
return	UNSAFE.getInt(array,	offset);	

	
	

int[]: Unsafe access

93
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Optimized Bounds Checks

//	bounds	and	null	check		
index	=	Objects.checkIndex(index,	array.length);		
	
	
long	offset	=	BASE	+	(((long)	index)	<<	2);	
return	UNSAFE.getInt(array,	offset);	

@HotSpotIntrinsicCandidate	
public	static	int	checkIndex(int	index,	int	length,	…);	
	

	
	

int[]: Unsafe access

94
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Summary

§ Existing
–  Java Native Interface (JNI) & JNR library
–  java.nio.DirectByteBuffer
–  sun.misc.Unsafe (get*/set*)

§  JDK9
–  j.l.i.VarHandle views over ByteBuffers

§ Future
–  Project Panama

95
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

http://openjdk.java.net	

Project Panama
Foreign Function Interface
Data Layout Control
Vector API
Arrays 2.0

96
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

http://openjdk.java.net	

Project Panama panama-dev@openjdk.java.net	
http://hg.openjdk.java.net/panama/panama	

97
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Safe Harbor Statement

The preceding is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

98
Copyright © 2016, Oracle and/or its affiliates. All rights reserved

Graphic Section Divider

