
Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Vectors and Numerics
on the JVM
Part I: Performance Model

Vladimir Ivanov
HotSpot JVM Compiler team
Java Platform Group
Oracle Corp.

JVMLS 2019

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement
The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

2

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Vector API

• JVMLS
–2016: “Vector API for Java”
–2017: “Vectors and Values”
–2018: “Java Vector API”
–2019: “Vectors and Numerics”

3

Perspective

1

2

3 Intrinsic-backed Typed Vectors
(2017-now)

Machine Code Snippets + Super-longs
(2016-2017)

MVT-based Vectors (2017)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Current Status (August, 2019)

4

Vector API in Panama

• JEP is still in Candidate state, but…
• First version of API is in CSR!

• https://bugs.openjdk.java.net/browse/JDK-8223348
• To be delivered in an upcoming OpenJDK release
• Will be an incubator project, pending integration with

Valhalla
• Ongoing basic experimentation, including machine

learning kernels
• Who uses it? What’s built on top of it? … is TBD. Ideas

solicited.

• Lots of work on productizing the
implementation went in

https://bugs.openjdk.java.net/browse/JDK-8223348

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Case Study: Vectors as Numerics

• Performance is the primary goal
– close to hardware capabilities

• But the only practical representation is boxed
– no suitable carrier types available
– unfeasible to add new basic types

• The only option is to rely on JVM to optimize abstractions away
– don’t make JVM job harder
• choose proper abstractions
• JVM-aware implementation

5

Challenges

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Vector API

1. Expressive and portable API
– “principle of least astonishment”
– uniform coverage operations and data types
– type-safe

2. Performant
– predictable performance
– high quality of generated code
– competitive with existing facilities for auto-vectorization

3. Graceful performance degradation
– fallback for "holes" in native architectures

6

Design Goals

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
– shared boxes, updated in place
– hopefully less boxing to care about

7

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
– JIT has to reason about their state
– hard to avoid memory operations for

updates

Immutable vectors == vector values
–more boxes to care about
– easier for JIT to reason

8

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
– user codes against vector

Immutable vectors == vector values

9

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
– no way to adapt to hardware

Immutable vectors == vector values
Length-agnostic vector views
– particular vector shapes are chosen at

runtime

10

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
”Shape-less" vectors
– raw bits
–mimics hardware registers

Immutable vectors == vector values
Length-agnostic vector views

11

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
”Shape-less" vectors

Immutable vectors == vector values
Length-agnostic vector views
Strongly typed vectors
– both in size/width and element type
• enforced by runtime checks

– no implicit conversions performed

12

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
”Shape-less" vectors
Carrier type as element type

Immutable vectors == vector values
Length-agnostic vector views
Strongly typed vectors

13

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
”Shape-less" vectors
Carrier type as element type

Immutable vectors == vector values
Length-agnostic vector views
Strongly typed vectors
Element type != carrier type
– carries semantic info, not just “raw bits”
– enables vectors of exotic types

– unsigned types, exact/saturated operations,
minifloats

14

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
”Shape-less" vectors
Carrier type as element type
immintrin.h ported to Java
– operation == hardware instruction

Immutable vectors == vector values
Length-agnostic vector views
Strongly typed vectors
Element type != carrier type

15

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Vector API Design

• immintrin.h ported to Java
– operation == single instruction

16

Roads not taken

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Vector API Design

• immintrin.h ported to Java
– operation == single instruction

17

Roads not taken

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
”Shape-less" vectors
Carrier type as element type
immintrin.h ported to Java

Immutable vectors == vector values
Length-agnostic vector views
Strongly typed vectors
Element type != carrier type
Portable across wide range of HW

18

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

interface Vector<E> {
Vector<E> add(Vector<E> v2);

}

interface IntVector extends Vector<Integer> {
IntVector add(Vector<Integer> v2);

}

Vector API

IntVector x = ..., y = ...; // vectors of 8 ints
IntVector z = x.add(y); // element-wise addition

vpaddd %ymm1,%ymm0,%ymm0
19

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Implementation

20

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Roads not taken

Mutable containers == “registers”
Fixed-length vectors
”Shape-less" vectors
Carrier type as element type
immintrin.h ported to Java

Immutable vectors
Length-agnostic vector views
Strongly typed vectors
Element type != carrier type
Portable across wide range of HW

21

Vector API Design

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Implementation Challenges
1. How to represent vector operations on JVM level?
– typed vectors + parameterized intrinsics

2. Optimize away vector boxes
– required for mapping Vector instances to vector registers in generated code
– Int256Vector => ymm register on x86/AVX

3. Vectorize higher-order operations
– higher-order operations are not part of the API for now

22

CUT HERE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Key implementation aspects

1. Strongly-Typed Vectors
– class per vector shape

2. Parameterized JVM intrinsics
– small number of entry points expose large number of behaviors

3. Custom vector box elimination in C2
– powered by implicit aggressive reboxing
– stop-the-gap solution until inline classes arrive

23

JVM support

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

• Crucial for decent performance
• Escape Analysis in C2
– doesn’t cover all the cases (e.g., non-trivial control flow)
– conservative, hence brittle
• depends on inlining decisions
• easy for a user to break it

• Inline classes should solve the issue
– Easier to optimize on JVM side

• Stop-the-gap solution: custom vector box elimination analysis
– Heavily relies on aggressive reboxing

24

Vector Box Elimination

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

• “Well-known“ to the JVM
– special treatment in the JVM
– C2 knows how to map the values to appropriate vector registers
– custom vector box elimination pass in C2
• implicit reboxing (very aggressively!)

Strongly-Typed Vectors

25

size 8 16 32 64 128 256 512 … MAX

x86 EAX RAX XMM0 YMM0 ZMM0 - [XYZ]MM0

JVM B S I J

Int128Vector
Long128Vector
Float128Vector

…

Int256Vector
Long256Vector
Float256Vector

…

Int512Vector
Long512Vector
Float512Vector

…

…

IntMaxVector
LongMaxVector
FloatMaxVector

…

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. | 26

package jdk.incubator.vector;

Vector<E>

IntVector

Int128Vector

FloatVector ….

… Int512Vector

public

package-
private

interface

final class

….

interface

….

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

package jdk.incubator.vector;

/*non-public*/ class VectorIntrinsics {

@HotSpotIntrinsicCandidate
static
<V extends Vector<?>>
V binaryOp(int operatorId,

Class<V> vectorClass,
Class<?> elementType,
int vlen,
V v1,
V v2,
BiFunction<V,V,V> defaultImpl) {…}

27

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

package jdk.incubator.vector;

/*non-public*/ class VectorIntrinsics {

@HotSpotIntrinsicCandidate
static
<V extends Vector<?>>
V binaryOp(int operatorId, // vector operation

Class<V> vectorClass, // vector class
Class<?> elementType, // vector element
int vlen, // vector length

V v1, V v2,
BiFunction<V,V,V> defaultImpl) {…}

28

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

package jdk.incubator.vector;

/*non-public*/ class VectorIntrinsics {

@HotSpotIntrinsicCandidate
static
<V extends Vector<?>>
V binaryOp(int operatorId,

Class<V> vectorClass,
Class<?> elementType,
int vlen,

V v1, V v2, // operation arguments

BiFunction<V,V,V> defaultImpl) {…}

29

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

package jdk.incubator.vector;

/*non-public*/ class VectorIntrinsics {

@HotSpotIntrinsicCandidate
static
<V extends Vector<?>>
V binaryOp(int operatorId,

Class<V> vectorClass,
Class<?> elementType,
int vlen,
V v1, V v2,

BiFunction<V,V,V> defaultImpl) {…}

// implementation in Java
30

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Int256Vector v1 = …
Int256Vector v2 = …

BiFunction<…> int256addImpl = (v1,v2) ->
v1.bOp(v2, (i, a, b) -> (int)(a + b));

Int256Vector vr =
binaryOp(OP_ADD,

Int256Vector.class,
int.class,
8,
v1, v2,
int256addImpl);

31

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Int256Vector v1 = …
Int256Vector v2 = …

BiFunction<…> int256addImpl = (v1,v2) ->
v1.bOp(v2, (i, a, b) -> (int)(a + b));

Int256Vector vr =
binaryOp(OP_ADD,

Int256Vector.class,
int.class,
8,
v1, v2,
int256addImpl);

32

vpaddd %v1,%v2,%vr

int256addImpl.apply(v1, v2)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance

33

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Existing Benchmarks

• Mandelbrot
• SepiaFilter
• Large set of microbenchmarks
– http://hg.openjdk.java.net/panama/dev/file/a059f2c353cf/test/jdk/jdk/incubator/ve

ctor/benchmark/src/main/java/benchmark/jdk/incubator/vector/

• Externally developed benchmark suites
– https://github.com/richardstartin/vectorbenchmarks/ by Richard Startin
• DotProduct, MatrixMultiplication, …

– https://github.com/blacklion/panama-benchmarks/tree/master/vector
by Lev Serebryakov

34

http://hg.openjdk.java.net/panama/dev/file/a059f2c353cf/test/jdk/jdk/incubator/vector/benchmark/src/main/java/benchmark/jdk/incubator/vector/
https://github.com/richardstartin/vectorbenchmarks/
https://github.com/blacklion/panama-benchmarks/tree/master/vector

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance Pitfalls

1. Box elimination failures
– boxing in tight vector code has severe impact

2. Intrinsification failures
– causes box elimination failures
• implementation detail
• Java implementations work on boxed representation

–mixes intrinsified and non-intrinsified operations in the IR
• complicates box elimination analysis

35

Main Causes

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance Pitfalls

1. Identity-sensitive operations
– aggressive reboxing, but box elimination is still conservative
• may still break identity invariants
– controlled by -XX:+/-AggressiveReboxing

– treated as user mistake for now

36

Box elimination failures

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance Pitfalls

1. Identity-sensitive operations
– aggressive reboxing, but box elimination is still conservative
• may still break identity invariants
– controlled by -XX:+/-AggressiveReboxing

– treated as user mistake for now

2. Inlining failures
– box elimination analysis is inherently local
–may be caused by profile pollution
• multiple vector shapes seen in shape-agnostic code

– triggers boxing/unboxing around the call

37

Box elimination failures

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance Pitfalls

• Missing hardware support
– treated as a bug when used with preferred vector species
• VectorSpecies.ofPreferred(Class<E> elementType)

– can be encountered when working with concrete vector species
• XxxVector.SPECIES_PREFERRED vs XxxVector.SPECIES_512

38

Intrinsification failure

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance Pitfalls

• Not enough information about the operation
– all operation defining arguments should be seen by JIT as constants
– otherwise, non-intrinsified implementation is used
– trade-offs on implementation side
• code customization vs code sharing
• “call + intrinsified version” vs “default implementation”

39

Intrinsification failure

binaryOp(operatorId,
vectorClass,
elementType,
vlen,
v1, v2, impl)

impl.apply(v1, v2)

Vector

IntVector

Int256Vector

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Performance Pitfalls

For now:
1. Use preferred vector species when working with shape-agnostic vector

code
– XxxVector.SPECIES_PREFERRED / VectorSpecies.ofPreferred(Class elementType)

2. Keep vector code in a single method to avoid inlining issues
– inlining heuristics are hard to reason about
– calls in cold code may pose some challenges to vector box elimination
• aggressive reboxing sometimes improves the situtation

40

Recommendations

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Better JVM support

41

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Value Inline Classes

• Reliable solution to boxing issues
– completely obsoletes custom box elimination logic
– concrete typed vector classes (XxxNnnVector) migrate to inline classes
• hidden from users, exposed through Vector interface or primitive specializations (XxxVector)

– Identity-sensitive operations don’t block optimizations
• Either forbidden or have consistent behaviour irrespective of buffer identity

– Flattening enables better design
• Super-longs as raw carrier types (Int128/Int256/Int512) + XxxNnnVector as typed wrappers

• What about inlining issues and intrinsification?

42

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Value Inline Classes

• Doesn’t completely eliminate inlining issues
–… and profile pollution is still there
– buffering around calls is needed without additional JVM support
• depending on JVM implementation, buffering may be cheaper than boxing

• Possible answer - vector calling conventions
– Inline classes enable custom calling conventions in the JVM
• Pass arguments/receive results in scalarized form
• … but that works only for inline classes in the signature

43

Inlining

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Value Inline Classes

• Map concrete vector classes to vector registers?
– but XxxNnnVector are implementation detail and not part of the API!

• Cover XxxVector instead?
– but it’s not an inline class, but an interface!
–… and XxxVector may represent “super-vectors”

• Begs for a different representation
– A single inline class which encapsulates whole hardware vector register + vector

shape (size + element type) information
• MaxVector – like XxxMaxVector, but with element type omitted

– Custom entry point based on profile info

44

Vector calling convention

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Value Inline Classes

• Begs for a different representation
– A single inline class which encapsulates whole hardware vector register + vector

shape (size + element type) information
• MaxVector – like XxxMaxVector, but with element type omitted

– Custom entry points based on profile?

• Requires additional work for intrinsification
– Type info is not statically known anymore
– Less of an issue for newer hardware
• predication in AVX512 and SVE (ARM) enables variable size instruction encodings

45

Vector calling convention

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Summary

46

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

• Vector<E>
+ new carrier types
+ intrinsics
– AVX* on x86, NEON/SVE on ARM

+ inline classes

• Complex
+/- new carrier types (64-/128-bit)
+/- intrinsics
+ inline classes

• Half precision (binary16), bfloat16
- new carrier type (16-bit)
+/- intrinsics
– F16C, AVX512_BF16 on x86

+ inline classes

47

Summary

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

• Vector<E>
+ new carrier types
+ intrinsics
– AVX* on x86, NEON/SVE on ARM

+ inline classes
+ shape-agnostic

• Vector<Complex>
• Vector<binary16>
• Vector<bfloat16>
…

• Complex
+/- new carrier types (64-/128-bit)
+/- intrinsics
+ inline classes
- shape-agnostic

• Half precision (binary16), bfloat16
- new carrier type (16-bit)
+/- intrinsics
– F16C, AVX512_BF16 on x86

+ inline classes
- shape-agnostic

• Minifloats, binary128/256, …
48

Summary

49

